Science.gov

Sample records for active thiol metabolite

  1. Formation of the Thiol Conjugates and Active Metabolite of Clopidogrel by Human Liver Microsomes

    PubMed Central

    Lau, Wei C.; Hollenberg, Paul F.

    2012-01-01

    We reported previously the formation of a glutathionyl conjugate of the active metabolite (AM) of clopidogrel and the covalent modification of a cysteinyl residue of human cytochrome P450 2B6 in a reconstituted system (Mol Pharmacol 80:839–847, 2011). In this work, we extended our studies of the metabolism of clopidogrel to human liver microsomes in the presence of four reductants, namely, GSH, l-Cys, N-acetyl-l-cysteine (NAC), and ascorbic acid. Our results demonstrated that formation of the AM was greatly affected by the reductant used and the relative amounts of the AM formed were increased in the following order: NAC (17%) < l-Cys (53%) < ascorbic acid (61%) < GSH (100%). AM-thiol conjugates were observed in the presence of NAC, l-Cys, and GSH. In the case of GSH, the formation of both the AM and the glutathionyl conjugate was dependent on the GSH concentrations, with similar Km values of ∼0.5 mM, which indicates that formation of the thiol conjugates constitutes an integral part of the bioactivation processes for clopidogrel. It was observed that the AM was slowly converted to the thiol conjugate, with a half-life of ∼10 h. Addition of dithiothreitol to the reaction mixture reversed the conversion, which resulted in a decrease in AM-thiol conjugate levels and a concomitant increase in AM levels, whereas addition of NAC led to the formation of AM-NAC and a concomitant decrease in AM-GSH levels. These results not only confirm that the AM is formed through oxidative opening of the thiolactone ring but also suggest the existence of an equilibrium between the AM, the thiol conjugates, and the reductants. These factors may affect the effective concentrations of the AM in vivo. PMID:22584220

  2. Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer.

    PubMed

    Dansette, Patrick M; Rosi, Julien; Bertho, Gildas; Mansuy, Daniel

    2012-02-20

    The mechanism generally admitted for the bioactivation of the antithrombotic prodrug, clopidogrel, is its two-step enzymatic conversion into a biologically active thiol metabolite. The first step is a classical cytochrome P450 (P450)-dependent monooxygenation of its thiophene ring leading to 2-oxo-clopidogrel, a thiolactone metabolite. The second step was described as a P450-dependent oxidative opening of the thiolactone ring of 2-oxo-clopidogrel, with intermediate formation of a reactive sulfenic acid metabolite that is eventually reduced to the corresponding thiol 4b. A very recent paper published in Nat. Med. (Bouman et al., (2011) 17, 110) reported that the second step of clopidogrel bioactivation was not catalyzed by P450 enzymes but by paraoxonase-1(PON-1) and that PON-1 was a major determinant of clopidogrel efficacy. The results described in the present article show that there are two metabolic pathways for the opening of the thiolactone ring of 2-oxo-clopidogrel. The major one, that was previously described, results from a P450-dependent redox bioactivation of 2-oxo-clopidogrel and leads to 4b cis, two previously reported thiol diastereomers bearing an exocyclic double bond. The second, minor one, results from a hydrolysis of 2-oxo-clopidogrel, which seems to be dependent on PON-1, and leads to an isomer of 4b cis, 4b "endo", in which the double bond has migrated from an exocyclic to an endocyclic position in the piperidine ring. These results were obtained from a detailed study of the metabolism of 2-oxo-clopidogrel by human liver microsomes and human sera and analysis by HPLC-MS under conditions allowing a complete separation of the thiol metabolite isomers, either as such or after derivatization with 3'-methoxy phenacyl bromide or N-ethyl maleimide (NEM). These results also show that the major bioactive thiol isomer found in the plasma of clopidogrel-treated patients derives from 2-oxo-clopidogrel by the P450-dependent pathway. Finally, chemical

  3. The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes.

    PubMed

    Jarrett, Joseph T

    2015-02-13

    Sulfur atoms are present as thiol and thioether functional groups in amino acids, coenzymes, cofactors, and various products of secondary metabolic pathways. The biosynthetic pathways for several sulfur-containing biomolecules require the substitution of sulfur for hydrogen at unreactive aliphatic or electron-rich aromatic carbon atoms. Examples discussed in this review include biotin, lipoic acid, methylthioether modifications found in some nucleic acids and proteins, and thioether cross-links found in peptide natural products. Radical S-adenosyl-L-methionine (SAM) enzymes use an iron-sulfur cluster to catalyze the reduction of SAM to methionine and a highly reactive 5'-deoxyadenosyl radical; this radical can abstract hydrogen atoms at unreactive positions, facilitating the introduction of a variety of functional groups. Radical SAM enzymes that catalyze sulfur insertion reactions contain a second iron-sulfur cluster that facilitates the chemistry, either by donating the cluster's endogenous sulfide or by binding and activating exogenous sulfide or sulfur-containing substrates. The use of radical chemistry involving iron-sulfur clusters is an efficient anaerobic route to the generation of carbon-sulfur bonds in cofactors, secondary metabolites, and other natural products.

  4. The Biosynthesis of Thiol- and Thioether-containing Cofactors and Secondary Metabolites Catalyzed by Radical S-Adenosylmethionine Enzymes*

    PubMed Central

    Jarrett, Joseph T.

    2015-01-01

    Sulfur atoms are present as thiol and thioether functional groups in amino acids, coenzymes, cofactors, and various products of secondary metabolic pathways. The biosynthetic pathways for several sulfur-containing biomolecules require the substitution of sulfur for hydrogen at unreactive aliphatic or electron-rich aromatic carbon atoms. Examples discussed in this review include biotin, lipoic acid, methylthioether modifications found in some nucleic acids and proteins, and thioether cross-links found in peptide natural products. Radical S-adenosyl-l-methionine (SAM) enzymes use an iron-sulfur cluster to catalyze the reduction of SAM to methionine and a highly reactive 5′-deoxyadenosyl radical; this radical can abstract hydrogen atoms at unreactive positions, facilitating the introduction of a variety of functional groups. Radical SAM enzymes that catalyze sulfur insertion reactions contain a second iron-sulfur cluster that facilitates the chemistry, either by donating the cluster's endogenous sulfide or by binding and activating exogenous sulfide or sulfur-containing substrates. The use of radical chemistry involving iron-sulfur clusters is an efficient anaerobic route to the generation of carbon-sulfur bonds in cofactors, secondary metabolites, and other natural products. PMID:25477512

  5. Thiol-independent activity of a cholesterol-binding enterohemolysin produced by enteropathogenic Escherichia coli.

    PubMed

    Figueirêdo, P M S; Catani, C F; Yano, T

    2003-11-01

    Enterohemolysin produced by Escherichia coli associated with infant diarrhea showed characteristics similar to those of thiol-activated hemolysins produced by Gram-positive bacteria, including inactivation by cholesterol, lytic activity towards eukaryotic cells and thermoinstability. However, enterohemolysin activity was not inactivated by oxidation or by SH group-blocking agents (1 mM HgCl2, 1 mM iodoacetic acid) and the hemolysin (100 microg/ml) was not lethal to mice, in contrast to the lethality of the thiol-activated hemolysin family to animals. Earlier reports showed that intravenous injection of partially purified streptolysin O preparations (0.2 microg) was rapidly lethal to mice. These results suggest that E. coli enterohemolysin is not a thiol-activated hemolysin, despite its ability to bind cholesterol, probably due to the absence of free thiol-group(s) that characterize the active form of the thiol-activated hemolysin molecule.

  6. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-02-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1-11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines.

  7. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    PubMed Central

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  8. Nitric oxide and thiol redox regulation of Janus kinase activity

    PubMed Central

    Duhé, Roy J.; Evans, Gerald A.; Erwin, Rebecca A.; Kirken, Robert A.; Cox, George W.; Farrar, William L.

    1998-01-01

    The activation of Janus kinases (JAKs) is crucial for propagation of the proliferative response initiated by many cytokines. The proliferation of various cell lines, particularly those of hematopoietic origin, is also modulated by mediators of oxidative stress such as nitric oxide and thiol redox reagents. Herein we demonstrate that nitric oxide and other thiol oxidants can inhibit the autokinase activity of rat JAK2 in vitro, presumably through oxidation of crucial dithiols to disulfides within JAK2. The reduced form of JAK2 is the most active form, and the oxidized JAK2 form is inactive. Nitric oxide pretreatment of quiescent Ba/F3 cells also inhibits the interleukin 3-triggered in vivo activation of JAK2, a phenomenon that correlates with inhibited proliferation. Furthermore, we observed that the autokinase activity of JAK3 responds in a similar fashion to thiol redox reagents in vitro and to nitric oxide donors in vivo. We suggest that the thiol redox regulation of JAKs may partially explain the generally immunosuppressive effects of nitric oxide and of other thiol oxidants. PMID:9419340

  9. Serum Thiols as a Biomarker of Disease Activity in Lupus Nephritis

    PubMed Central

    Lalwani, Pritesh; de Souza, Giselle Katiane Bonfim Bacelar; de Lima, Domingos Savio Nunes; Passos, Luiz Fernando Souza; Boechat, Antonio Luiz; Lima, Emerson Silva

    2015-01-01

    Lupus Nephritis (LN) develops in more than half of the Systemic Lupus Erythematous (SLE) patients. However, lack of reliable, specific biomarkers for LN hampers clinical management of patients and impedes development of new therapeutics. The goal of this study was to investigate whether oxidative stress biomarkers in patients with SLE is predictive of renal pathology. Serum biochemical and oxidative stress markers were measured in patients with inactive lupus, active lupus with and without nephritis and compared to healthy control group. To assess the predictive performance of biomarkers, Receiver Operating Characteristic (ROC) curves were constructed and cut-offs were used to identify SLE patients with nephritis. We observed an increased oxidative stress response in all SLE patients compared to healthy controls. Among the several biomarkers tested, serum thiols had a significant inverse association with SLE Disease Activity Index (SLEDAI). Interestingly, thiols were able too aptly differentiate between SLE patients with and without renal pathology, and serum thiol levels were not affected by immunosuppressive drug therapy. The decreased thiols in SLE correlated significantly with serum creatinine and serum C3 levels. Further retrospective evaluation using serum creatinine or C3 levels in combination with thiol’s cutoff values from ROC analysis, we could positively predict chronicity of renal pathology in SLE patients. In summary, serum thiols emerge as an inexpensive and reliable indicator of LN, which may not only help in early identification of renal pathology but also aid in the therapeutic management of the disease, in developing countries with resource poor settings. PMID:25799079

  10. Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors.

    PubMed

    Pardeshi, Kundansingh A; Malwal, Satish R; Banerjee, Ankita; Lahiri, Surobhi; Rangarajan, Radha; Chakrapani, Harinath

    2015-07-01

    Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2. PMID:25981687

  11. Reductive activation of mitomycin C by thiols: kinetics, mechanism, and biological implications.

    PubMed

    Paz, Manuel M

    2009-10-01

    The clinically used antitumor antibiotic mitomycin C requires a reductive activation to be converted to a bis-electrophile that forms several covalent adducts with DNA, including an interstrand cross-link which is considered to be the lesion responsible for the cytotoxic effects of the drug. Enzymes such as cytochrome P450 reductase and DT-diaphorase have traditionally been implicated in the bioreduction of mitomycin C, but recent reports indicate that enzymes containing a dithiol active site are also involved in the metabolism of mitomycin C. The reductive activation can also be effected in vitro with chemical reductants, but until now, mitomycin C was considered to be inert to thiols. We report here that mitomycin C can, in fact, be reductively activated by thiols. We show that the reaction is autocatalytic and that the end product is a relatively stable aziridinomitosene that can be trapped by adding several nucleophiles after the activation reaction. Kinetic studies show that the reaction is highly sensitive to pH and does not proceed or proceeds very slowly at neutral pH, an observation that explains the unsuccessful results on previous attempts to activate mitomycin C with thiols. The optimum pH for the reactions is around the pK(a) values of the thiols used in the activation. A mechanism for the reaction is hypothesized, involving the initial formation of a thiolate-mitomycin adduct, that then evolves to give the hydroquinone of mitomycin C and disulfide. The results presented here provide a chemical mechanism to explain how some biological dithiols containing an unusually acidic thiol group (deprotonated at physiological pH) participate in the modulation of mitomycin C cytotoxicity.

  12. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities.

    PubMed

    Nakamura, Yukiko; Afendi, Farit Mochamad; Parvin, Aziza Kawsar; Ono, Naoaki; Tanaka, Ken; Hirai Morita, Aki; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2014-01-01

    Databases (DBs) are required by various omics fields because the volume of molecular biology data is increasing rapidly. In this study, we provide instructions for users and describe the current status of our metabolite activity DB. To facilitate a comprehensive understanding of the interactions between the metabolites of organisms and the chemical-level contribution of metabolites to human health, we constructed a metabolite activity DB known as the KNApSAcK Metabolite Activity DB. It comprises 9,584 triplet relationships (metabolite-biological activity-target species), including 2,356 metabolites, 140 activity categories, 2,963 specific descriptions of biological activities and 778 target species. Approximately 46% of the activities described in the DB are related to chemical ecology, most of which are attributed to antimicrobial agents and plant growth regulators. The majority of the metabolites with antimicrobial activities are flavonoids and phenylpropanoids. The metabolites with plant growth regulatory effects include plant hormones. Over half of the DB contents are related to human health care and medicine. The five largest groups are toxins, anticancer agents, nervous system agents, cardiovascular agents and non-therapeutic agents, such as flavors and fragrances. The KNApSAcK Metabolite Activity DB is integrated within the KNApSAcK Family DBs to facilitate further systematized research in various omics fields, especially metabolomics, nutrigenomics and foodomics. The KNApSAcK Metabolite Activity DB could also be utilized for developing novel drugs and materials, as well as for identifying viable drug resources and other useful compounds.

  13. Evaluation of Thiol Raman Activities and pKa Values Using Internally Referenced Raman-Based pH Titration.

    PubMed

    Suwandaratne, Nuwanthi; Hu, Juan; Siriwardana, Kumudu; Gadogbe, Manuel; Zhang, Dongmao

    2016-04-01

    Thiols, including organothiol and thiol-containing biomolecules, are among the most important classes of chemicals that are used broadly in organic synthesis, biological chemistry, and nanosciences. Thiol pKa values are key indicators of thiol reactivity and functionality. Reported herein is an internally referenced Raman-based pH titration method that enables reliable quantification of thiol pKa values for both mono- and dithiols in water. The degree of thiol ionization is monitored directly using the peak intensity of the S-H stretching feature in the 2600 cm(-1) region relative to an internal reference peak as a function of the titration solution's pH. The thiol pKa values and Raman activity relative to its internal reference were then determined by curve fitting the experimental data with equations derived on the basis of the Henderson-Hasselbalch equation. Using this Raman titration method, we determined for the first time the first and second thiol pKa values for 1,2-benzenedithiol in water. This Raman-based method is convenient to implement, and its underlying theory is easy to follow. It should therefore have broad application for thiol pKa determinations and verification.

  14. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.

  15. Evaluation of thiol Raman activities and pKa values using internally referenced Ramanbased pH titration

    NASA Astrophysics Data System (ADS)

    Suwandaratne, Nuwanthi

    Thiols are one of the most important classes of chemicals used broadly in organic synthesis, biological chemistry, and nanosciences. Thiol pKa values are key indicators of thiol reactivity and functionality. This study is an internally-referenced Raman-based pH titration method that enables reliable quantification of thiol pKa values for both mono- and di-thiols in water. The degree of thiol ionization is monitored directly using the peak intensity of the S-H stretching feature relative to an internal reference peak as a function of solution pH. The thiol pKa values and Raman activity relative to its internal reference were then determined by curve-fitting the experimental data with equations derived on the basis of the Henderson-Hasselbalch equation. Using this Raman titration method, first and second thiol pKa values for 1,2-benzenedithol in water were determined for the first time. This method is convenient to implement and its underlying theory is easy to follow.

  16. [Simultaneous determination of erdosteine and its active metabolite in human plasma by liquid chromatography-tandem mass spectrometry with pre-column derivatization].

    PubMed

    Jin, Jing; Chen, Xiao-Yan; Zhang, Yi-Fan; Ma, Zhi-Yu; Zhong, Da-Fang

    2013-03-01

    A sensitive, rapid and accurate liquid chromatography-tandem mass spectrometric (LC-MS/MS) method with pre-column derivatization was developed for the simultaneous determination of erdosteine and its thiol-containing active metabolite in human plasma. Paracetamol and captopril were chosen as the internal standard of erdosteine and its active metabolite, respectively. Aliquots of 100 microL plasma sample were derivatized by 2-bromine-3'-methoxy acetophenone, then separated on an Agilent XDB-C18 (50 mm x 4.6 mm ID, 1.8 microm) column using 0.1% formic acid methanol--0.1% formic acid 5 mmol x L(-1) ammonium acetate as mobile phase, in a gradient mode. Detection of erdosteine and its active metabolite were achieved by ESI MS/MS in the positive ion mode. The linear calibration curves for erdosteine and its active metabolite were obtained in the concentration ranges of 5-3 000 ng x mL(-1) and 5-10 000 ng x mL(-1), respectively. The lower limit of quantification of erdosteine and its active metabolite were both 5.00 ng x mL(-1). The pharmacokinetic results of erdosteine and its thiol-containing active metabolite showed that the area under curve (AUC) of the thiol-containing active metabolite was 6.2 times of that of erdosteine after a single oral dose of 600 mg erdosteine tables in 32 healthy volunteers, The mean residence time (MRT) of the thiol-containing active metabolite was (7.51 +/- 0.788) h, which provided a pharmacokinetic basis for the rational dosage regimen.

  17. Thiol reagents are substrates for the ADP-ribosyltransferase activity of pertussis toxin.

    PubMed

    Lobban, M D; van Heyningen, S

    1988-06-20

    Thiols such as cysteine and dithiothreitol are substrates for the ADP-ribosyltransferase activity of pertussis toxin. When cysteine was incubated with NAD+ and toxin at pH 7.5, a product containing ADP-ribose and cysteine (presumably ADP-ribosylcysteine) was isolated by high-performance liquid chromatography, and characterized by its composition and release of AMP with phosphodiesterase. Cysteine has a Km of 105 mM at saturating NAD+ concentration. The ability of thiols to act as a substrate is one explanation for the very high concentrations (250 mM or greater) that have been observed to enhance the apparent NAD glycohydrolase activity of the toxin. PMID:3133246

  18. Photohemolytic activity of lichen metabolites.

    PubMed

    Hidalgo, M E; Fernández, E; Quilhot, W; Lissi, E A

    1993-11-01

    Irradiation of pannarin 1'-chloropannarin and antranorin with 366 nm light leads to significant hemolysis in a red cell suspension. However, their mechanism of action is different. Hemolysis induced by pannarin and 1'chloropannarin increases in the presence of oxygen, whereas hemolysis induced by atranorin is higher in nitrogen-purged solutions. The effect of free radical scavengers, and the lack of effect of D2O in the medium, suggest that the hemolysis induced by pannarin and 1'chloropannarin is not mediated by (1)O2. Both the hemolytic and photohemolytic activities of the depsidones, particularly 1'-chloropannarin, increase when the temperature increases from 21 to 37 degrees C. PMID:8289110

  19. Photohemolytic activity of lichen metabolites.

    PubMed

    Hidalgo, M E; Fernández, E; Quilhot, W; Lissi, E A

    1993-11-01

    Irradiation of pannarin 1'-chloropannarin and antranorin with 366 nm light leads to significant hemolysis in a red cell suspension. However, their mechanism of action is different. Hemolysis induced by pannarin and 1'chloropannarin increases in the presence of oxygen, whereas hemolysis induced by atranorin is higher in nitrogen-purged solutions. The effect of free radical scavengers, and the lack of effect of D2O in the medium, suggest that the hemolysis induced by pannarin and 1'chloropannarin is not mediated by (1)O2. Both the hemolytic and photohemolytic activities of the depsidones, particularly 1'-chloropannarin, increase when the temperature increases from 21 to 37 degrees C.

  20. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. PMID:26971012

  1. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed.

  2. Biologically Active Metabolites Synthesized by Microalgae.

    PubMed

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  3. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  4. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    PubMed

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  5. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    PubMed

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  6. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    PubMed Central

    Smith, M. Ryan; Vayalil, Praveen K.; Zhou, Fen; Benavides, Gloria A.; Beggs, Reena R.; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G.; Smith, Robin A.J.; Murphy, Michael P.; Velu, Sadanandan E.; Landar, Aimee

    2016-01-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  7. Measurement and meaning of cellular thiol:disufhide redox status.

    PubMed

    Comini, Marcelo A

    2016-01-01

    The functional group of cysteine is a thiol group (SH) that, due to its chemical reactivity, is able to undergo a wide array of modifications each with the potential to confer a different property or function to the molecule harboring this residue. Most of these modifications involve the reversible oxidation of the thiol to sulfenic acid (SOH), and disulfide, including intra- and intermolecular disulfides between polypeptides and glutathione (glutathionylation). The reversibility of these oxidations allows thiol groups to serve as versatile chemical and structural transducing elements in several low molecular mass metabolites and proteins. A plethora of cellular functions such as DNA and protein synthesis, protein secretion, cytoskeleton architecture, differentiation, apoptosis, and anti-oxidant defense, are recognized to be modulated, at certain stage, by thiol-disulfide exchange mechanisms of redox active thiol groups. All organisms are equipped with enzymatic systems composed by NADPH-dependent reductases, redoxins, and peroxidases that provide kinetic control of global thiol-redox homeostasis as well as target selectivity. These redox systems are distributed in different subcellular compartments and are not in equilibrium with each other. In consequence, measuring cellular thiol-disulfide status represents a challenge for studies aimed to obtain dynamic and spatio-temporal resolution. This review provides a summary of the methods and tools available to quantify the thiol redox status of cells.

  8. Antimycobacterial activity of lichen metabolites in vitro.

    PubMed

    Ingólfsdóttir, K; Chung, G A; Skúlason, V G; Gissurarson, S R; Vilhelmsdóttir, M

    1998-04-01

    Several compounds, whose structures represent the most common chemical classes of lichen metabolites, were screened for in vitro activity against Mycobacterium aurum, a non-pathogenic organism with a similar sensitivity profile to M. tuberculosis. Of the compounds tested, usnic acid from Cladonia arbuscula exhibited the highest activity with an MIC value of 32 microg/ml. Atranorin and lobaric acid, both isolated from Stereocaulon alpinum, salazinic acid from Parmelia saxatilis and protolichesterinic acid from Cetraria islandica all showed MIC values >/=125 microg/ml. PMID:9795033

  9. Thiol-dependent Antioxidant Activity of Interphotoreceptor Retinoid-Binding Protein

    PubMed Central

    Gonzalez-Fernandez, Federico; Sung, Dongjin; Haswell, Karen M.; Tsin, Andrew; Ghosh, Debashis

    2014-01-01

    Interphotoreceptor retinoid-binding protein (IRBP), which is critical to photoreceptor survival and function, is comprised of homologous tandem modules each ~300 amino acids, and contains 10 cysteines, possibly 8 as free thiols. Purification of IRBP has historically been difficult due to aggregation, denaturation and precipitation. Our observation that reducing agent 1,4-dithiothreitol dramatically prevents aggregation prompted investigation of possible functions for IRBP’s free thiols. Bovine IRBP (bIRBP) was purified from retina saline washes by a combination of concanavalin A, ion exchange and size exclusion chromatography. Antioxidant activity of the purified protein was measured by its ability to inhibit oxidation of 2,2'-azinobis [3-ethylbenzothiazoline-6-sulfonate] by metmyoglobin. Homology modeling predicted the relationship of the retinoid binding sites to cysteine residues. As a free radical scanvenger, bIRBP was more active than ovalbumin, thioredoxin, and vitamin E analog Trolox. Alkylation of free cysteines by N-ethylmaleimide inhibited bIRBP’s antioxidant activity, but not its ability to bind all-trans retinol. Structural modeling predicted that Cys 1051 is at the mouth of the module 4 hydrophobic ligand-binding site. Its free radical scavenging activity points to a new function for IRBP in defining the redox environment in the subretinal space. PMID:24424263

  10. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress.

    PubMed

    Dietz, Karl-Josef; Hell, Rüdiger

    2015-05-01

    In photosynthesizing chloroplasts, rapidly changing energy input, intermediate generation of strong reductants as well as oxidants and multiple participating physicochemical processes and pathways, call for efficient regulation. Coupling redox information to protein function via thiol modifications offers a powerful mechanism to activate, down-regulate and coordinate interdependent processes. Efficient thiol switching of target proteins involves the thiol-disulfide redox regulatory network, which is highly elaborated in chloroplasts. This review addresses the features of this network. Its conditional function depends on specificity of reduction and oxidation reactions and pathways, thiol redox buffering, but also formation of heterogeneous milieus by microdomains, metabolite gradients and macromolecular assemblies. One major player is glutathione. Its synthesis and function is under feedback redox control. The number of thiol-controlled processes and involved thiol switched proteins is steadily increasing, e.g., in tetrapyrrole biosynthesis, plastid transcription and plastid translation. Thus chloroplasts utilize an intricate and versatile redox regulatory network for intraorganellar and retrograde communication.

  11. Individual interferon regulatory factor-3 thiol residues are not critical for its activation following virus infection.

    PubMed

    Zucchini, Nicolas; Williams, Virginie; Grandvaux, Nathalie

    2012-09-01

    The interferon regulatory factor (IRF)-3 transcription factor plays a central role in the capacity of the host to mount an efficient innate antiviral immune defense, mainly through the regulation of type I Interferon genes. A tight regulation of IRF-3 is crucial for an adapted intensity and duration of the response. Redox-dependent processes are now well known to regulate signaling cascades. Recent reports have revealed that signaling molecules upstream of IRF-3, including the mitochondrial antiviral-signalling protein (MAVS) and the TNF receptor associated factors (TRAFs) adaptors, are sensitive to redox regulation. In the present study, we assessed whether redox regulation of thiol residues contained in IRF-3, which are priviledged redox sensors, play a role in its regulation following Sendai virus infection, using a combination of mutation of Cysteine (Cys) residues into Alanine and thiols alkylation using N-ethyl maleimide. Alkylation of IRF-3 on Cys289 appears to destabilize IRF-3 dimer in vitro. However, a detailed analysis of IRF-3 phosphorylation, dimerization, nuclear accumulation, and induction of target gene promoter in vivo led us to conclude that IRF-3 specific, individual Cys residues redox status does not play an essential role in its activation in vivo.

  12. Transcriptional activation by heat and cold of a thiol protease gene in tomato. [Lycopersicon esculentum

    SciTech Connect

    Schaffer, M.A.; Fischer, R.L. )

    1990-08-01

    We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.

  13. Simultaneous determination of eight biologically active thiol compounds using gradient elution-liquid chromatography with Coul-Array detection.

    PubMed

    Petrlova, Jitka; Mikelova, Radka; Stejskal, Karel; Kleckerova, Andrea; Zitka, Ondrej; Petrek, Jiri; Havel, Ladislav; Zehnalek, Josef; Vojtech, Adam; Trnkova, Libuse; Kizek, Rene

    2006-05-01

    The most active form of sulfur in biomolecules is the thiol group, present in a number of biologically active compounds. Here we present a comprehensive study of thiol analysis using flow injection analysis/HPLC with electrochemical detection. The effect of different potentials of working electrodes, of organic solvent contents in the mobile phase, and of isocratic and gradient elution on simultaneous determination of thiol compounds (cysteine, cystine, N-acetylcysteine, homocysteine, reduced and oxidised glutathione, desglycinephytochelatin, and phytochelatins) are described and discussed. These thiol compounds were well separated and detected under optimised HPLC-electrochemical detection conditions (mobile phase: 80 mM trifluoroacetic acid and methanol with a gradient profile starting at 97:3 (TFA:methanol), kept constant for the first 8 min, then decreasing to 85:15 during one minute, kept constant for 8 min, and finally increasing linearly up to 97:3 from 17 to 18 min; the flow rate was 0.8 mL/min, column and detector temperature 25 degrees C, and the electrode potential 900 mV). We were able to determine tens of femtomoles (3 S/N) of the thiols per injection (5 microL), except for phytochelatin5 whose detection limit was 2.1 pmole. This technique was consequently used for simultaneous determination of compounds of interest in biological samples (maize tissue and human blood serum). PMID:16830732

  14. Role of active metabolites in the use of opioids.

    PubMed

    Coller, Janet K; Christrup, Lona L; Somogyi, Andrew A

    2009-02-01

    The opioid class of drugs, a large group, is mainly used for the treatment of acute and chronic persistent pain. All are eliminated from the body via metabolism involving principally CYP3A4 and the highly polymorphic CYP2D6, which markedly affects the drug's function, and by conjugation reactions mainly by UGT2B7. In many cases, the resultant metabolites have the same pharmacological activity as the parent opioid; however in many cases, plasma metabolite concentrations are too low to make a meaningful contribution to the overall clinical effects of the parent drug. These metabolites are invariably more water soluble and require renal clearance as an important overall elimination pathway. Such metabolites have the potential to accumulate in the elderly and in those with declining renal function with resultant accumulation to a much greater extent than the parent opioid. The best known example is the accumulation of morphine-6-glucuronide from morphine. Some opioids have active metabolites but at different target sites. These are norpethidine, a neurotoxic agent, and nordextropropoxyphene, a cardiotoxic agent. Clinicians need to be aware that many opioids have active metabolites that will become therapeutically important, for example in cases of altered pathology, drug interactions and genetic polymorphisms of drug-metabolizing enzymes. Thus, dose individualisation and the avoidance of adverse effects of opioids due to the accumulation of active metabolites or lack of formation of active metabolites are important considerations when opioids are used.

  15. Biochemical Characterization of a Thiol-Activated, Oxidation Stable Keratinase from Bacillus pumilus KS12

    PubMed Central

    Rajput, Rinky; Sharma, Richa; Gupta, Rani

    2010-01-01

    An extracellular keratinase from Bacillus pumilus KS12 was purified by DEAE ion exchange chromatography. It was a 45 kDa monomer as determined by SDS PAGE analysis. It was found to be an alkaline, serine protease with pH and temperature optima of 10 and 60°C, respectively. It was thiol activated with two- and eight-fold enhancement in presence of 10 mM DTT and β-mercaptoethanol, respectively. In addition, its activity was stimulated in the presence of various surfactants, detergents, and oxidizing agents where a nearly 2- to 3-fold enhancement was observed in presence of H2O2 and NaHClO3. It hydrolyzed broad range of complex substrates including feather keratin, haemoglobin, fibrin, casein,and α-keratin. Analysis of amidolytic activity revealed that it efficiently cleaved phenylalanine → leucine → alanine- p-nitroanilides. It also cleaved insulin B chain between Val2- Asn3, Leu6-Cys7 and His10-Leu11 residues. PMID:21048858

  16. Medicinal chemistry of drugs with active metabolites following conjugation.

    PubMed

    Kalász, Huba; Petroianu, Georg; Hosztafi, Sándor; Darvas, Ferenc; Csermely, Tamás; Adeghate, Ernest; Siddiq, Afshan; Tekes, Kornélia

    2013-10-01

    Authorities of Drug Administration in the United States of America approved about 5000 drugs for use in the therapy or management of several diseases. About two hundred of these drugs have active metabolites and the knowledge of their medicinal chemistry is important both in medical practice and pharmaceutical research. This review gives a detailed description of the medicinal chemistry of drugs with active metabolites generated after conjugation. This review focused on glucuronide-, acetyl-, sulphate- and phosphate-conjugation of drugs, converting the drug into an active metabolite. This conversion essentially changed the lipophilicity of the drug.

  17. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis

    PubMed Central

    Harbut, Michael B.; Vilchèze, Catherine; Luo, Xiaozhou; Hensler, Mary E.; Guo, Hui; Yang, Baiyuan; Chatterjee, Arnab K.; Nizet, Victor; Jacobs, William R.; Schultz, Peter G.; Wang, Feng

    2015-01-01

    Infections caused by antibiotic-resistant bacteria are a rising public health threat and make the identification of new antibiotics a priority. From a cell-based screen for bactericidal compounds against Mycobacterium tuberculosis under nutrient-deprivation conditions we identified auranofin, an orally bioavailable FDA-approved antirheumatic drug, as having potent bactericidal activities against both replicating and nonreplicating M. tuberculosis. We also found that auranofin is active against other Gram-positive bacteria, including Bacillus subtilis and Enterococcus faecalis, and drug-sensitive and drug-resistant strains of Enterococcus faecium and Staphylococcus aureus. Our biochemical studies showed that auranofin inhibits the bacterial thioredoxin reductase, a protein essential in many Gram-positive bacteria for maintaining the thiol-redox balance and protecting against reactive oxidative species. Auranofin decreases the reducing capacity of target bacteria, thereby sensitizing them to oxidative stress. Finally, auranofin was efficacious in a murine model of methicillin-resistant S. aureus infection. These results suggest that the thioredoxin-mediated redox cascade of Gram-positive pathogens is a valid target for the development of antibacterial drugs, and that the existing clinical agent auranofin may be repurposed to aid in the treatment of several important antibiotic-resistant pathogens. PMID:25831516

  18. Penile erectile activity of dinitrosyl iron complexes with thiol-containing ligands.

    PubMed

    Andreyev-Andriyevsky, Alexander A; Mikoyan, Vasak D; Serezhenkov, Vladimir A; Vanin, Anatoly F

    2011-05-31

    It has been established that intracavernous injections of water-soluble dinitrosyl iron complexes (DNIC) with glutathione or cysteine (0.4-6.0μmoles/kg) to male rats induce short-term (2-3 min) penile erection along with a short-term drop of arterial pressure and appearance of protein-bound DNIC in cavernous tissue and circulating blood. The duration of erection and the hypotensive activity of DNIC increase dramatically after simultaneous intracavernous injection of DNIC and the phosphodiesterase-5 inhibitor papaverine. Surgical denervation of cavernous bodies does not influence the erectile activity of DNIC. No penile erection takes place after intravenous (instead of intracavernous) injection of the same dose of DNIC; in this case, protein-bound DNIC are detected only in the blood. These findings suggest that water-soluble DNIC with thiol-containing ligands (cysteine or glutathione) can be used as a basis in the design of a novel class of drugs for treating erectile dysfunctions. PMID:21530670

  19. Thiol-addition reactions and their applications in thiol recognition.

    PubMed

    Yin, Caixia; Huo, Fangjun; Zhang, Jingjing; Martínez-Máñez, Ramón; Yang, Yutao; Lv, Haigang; Li, Sidian

    2013-07-21

    Because of the biological importance of thiols, the development of probes for thiols has been an active research area in recent years. In this review, we summarize the results of recent exciting reports regarding thiol-addition reactions and their applications in thiol recognition. The examples reported can be classified into four reaction types including 1,1, 1,2, 1,3, 1,4 addition reactions, according to their addition mechanisms, based on different Michael acceptors. In all cases, the reactions are coupled to color and/or emission changes, although some examples dealing with electrochemical recognition have also been included. The use of thiol-addition reactions is a very simple and straightforward procedure for the preparation of thiol-sensing probes.

  20. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution.

    PubMed

    Cha, Joon-Yung; Kim, Mi R; Jung, In J; Kang, Sun B; Park, Hee J; Kim, Min G; Yun, Dae-Jin; Kim, Woe-Yeon

    2016-01-01

    Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OX(C85S) plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OX(C85S) plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability.

  1. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution

    PubMed Central

    Cha, Joon-Yung; Kim, Mi R.; Jung, In J.; Kang, Sun B.; Park, Hee J.; Kim, Min G.; Yun, Dae-Jin; Kim, Woe-Yeon

    2016-01-01

    Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OXC85S plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OXC85S plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability. PMID:27242830

  2. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution.

    PubMed

    Cha, Joon-Yung; Kim, Mi R; Jung, In J; Kang, Sun B; Park, Hee J; Kim, Min G; Yun, Dae-Jin; Kim, Woe-Yeon

    2016-01-01

    Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OX(C85S) plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OX(C85S) plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability. PMID:27242830

  3. Yap1 activation by H2O2 or thiol-reactive chemicals elicits distinct adaptive gene responses.

    PubMed

    Ouyang, Xiaoguang; Tran, Quynh T; Goodwin, Shirlean; Wible, Ryan S; Sutter, Carrie Hayes; Sutter, Thomas R

    2011-01-01

    The yeast Saccharomyces cerevisiae transcription factor Yap1 mediates an adaptive response to oxidative stress by regulating protective genes. H(2)O(2) activates Yap1 through the Gpx3-mediated formation of a Yap1 Cys303-Cys598 intramolecular disulfide bond. Thiol-reactive electrophiles can activate Yap1 directly by adduction to cysteine residues in the C-terminal domain containing Cys598, Cys620, and Cys629. H(2)O(2) and N-ethylmaleimide (NEM) showed no cross-protection against each other, whereas another thiol-reactive chemical, acrolein, elicited Yap1-dependent cross-protection against NEM, but not H(2)O(2). Either Cys620 or Cys629 was sufficient for activation of Yap1 by NEM or acrolein; Cys598 was dispensable for this activation mechanism. To determine whether Yap1 activated by H(2)O(2) or thiol-reactive chemicals elicits distinct adaptive gene responses, microarray analysis was performed on the wild-type strain or its isogenic single-deletion strain Δyap1 treated with control buffer, H(2)O(2), NEM, or acrolein. Sixty-five unique H(2)O(2) and 327 NEM and acrolein Yap1-dependent responsive genes were identified. Functional analysis using single-gene-deletion yeast strains demonstrated that protection was conferred by CTA1 and CTT1 in the H(2)O(2)-responsive subset and YDR042C in the NEM- and acrolein-responsive subset. These findings demonstrate that the distinct mechanisms of Yap1 activation by H(2)O(2) or thiol-reactive chemicals result in selective expression of protective genes. PMID:20971184

  4. Lipase catalysis and thiol-Michael addition: a relevant association for the synthesis of new surface-active carbohydrate esters.

    PubMed

    Boyère, Cédric; Favrelle, Audrey; Broze, Guy; Laurent, Pascal; Nott, Katherine; Paquot, Michel; Blecker, Christophe; Jérôme, Christine; Debuigne, Antoine

    2011-10-18

    A novel class of surface-active carbohydrate esters is prepared by a two-step strategy that takes advantage of the selectivity of enzymatic catalysis and the versatility of the thiol-Michael addition reaction. The surfactant performance of the produced aliphatic, fluorinated and silicon based sugar esters are evaluated by surface tension measurements. The novel thiolated mannose, made available in this work, appears as a powerful building block for the incorporation of unprotected sugar moieties into complex molecules.

  5. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    SciTech Connect

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-11-03

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with (1-/sup 14/C)iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 2.8 equiv of /sup 14/C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of /sup 14/C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of /sup 14/C. Sequencing of tryptic peptides shows that 1.4 equiv of /sup 14/C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I.

  6. Monocatenary, branched, double-headed, and bolaform surface active carbohydrate esters via photochemical thiol-ene/-yne reactions.

    PubMed

    Boyère, Cédric; Broze, Guy; Blecker, Christophe; Jérôme, Christine; Debuigne, Antoine

    2013-10-18

    An original and versatile method for the synthesis of a range of novel mannose-based surfactants was developed via metal-free photo-induced thiol-ene/-yne 'click' reactions. This light-mediated hydrothiolation reaction involving a thiolated mannose was successfully applied to terminal and internal alkenes, dienes, and alkynes, leading to monocatenary, branched, double-headed, and bolaform amphiphilic carbohydrate esters, respectively. A surface activity study showed that these new compounds possess valuable properties and display specific behavior at the air-water interface. It also demonstrated the greater flexibility of the thioether moiety in the spacer of the surfactants produced via a thiol-ene reaction in comparison with the triazole heterocyclic rings in similar glucose-based surfactants synthesized elsewhere by the alkyne-azide 1,3-dipolar addition.

  7. Immobilization of proteins in their physiological active state at functionalized thiol monolayers on ATR-germanium crystals.

    PubMed

    Schartner, Jonas; Gavriljuk, Konstantin; Nabers, Andreas; Weide, Philipp; Muhler, Martin; Gerwert, Klaus; Kötting, Carsten

    2014-11-24

    Protein immobilization on solid surfaces has become a powerful tool for the investigation of protein function. Physiologically relevant molecular reaction mechanisms and interactions of proteins can be revealed with excellent signal-to-noise ratio by vibrational spectroscopy (ATR-FTIR) on germanium crystals. Protein immobilization by thiol chemistry is well-established on gold surfaces, for example, for surface plasmon resonance. Here, we combine features of both approaches: a germanium surface functionalized with different thiols to allow specific immobilization of various histidine-tagged proteins with over 99% specific binding. In addition to FTIR, the surfaces were characterized by XPS and fluorescence microscopy. Secondary-structure analysis and stimulus-induced difference spectroscopy confirmed protein activity at the atomic level, for example, physiological cation channel formation of Channelrhodopsin 2.

  8. Purification and characterization of two Listeria ivanovii cytolysins, a sphingomyelinase C and a thiol-activated toxin (ivanolysin O).

    PubMed Central

    Vazquez-Boland, J A; Dominguez, L; Rodriguez-Ferri, E F; Suarez, G

    1989-01-01

    The strong bizonal hemolysis on blood agar and the positive CAMP reaction with Rhodococcus equi denotes the production of two different cytolytic factors by Listeria ivanovii. One was characterized as a thiol-activated (SH) cytolysin of 61 kilodaltons and was termed ivanolysin O (ILO) since data suggested that it is different from listeriolysin O, the SH-cytolysin produced by Listeria monocytogenes. The other is a 27-kilodalton hemolytic sphingomyelinase C that was found to be the cytolytic factor responsible for the halo of incomplete hemolysis synergistically enhanced by R. equi exosubstances. When thiol-disulfide exchange affinity chromatography and gel filtration were applied to the purification of ILO from concentrated L. ivanovii culture supernatants, the copurification of the two cytolysins was observed. This phenomenon seems to be due to the formation of intermolecular disulfide bonds between ILO and the sphingomyelinase, since the latter was found to contain free SH groups, not essential for the activity. These SH groups could react with the single cysteine residue characteristically present in the SH-cytolysins, forming a dimeric cytolytic complex. The purification of ILO was achieved by a further gel filtration with a reducing agent (dithiothreitol) in the eluent. A method for the purification of the sphingomyelinase based on selective sequestration of ILO from the L. ivanovii concentrated culture supernatant by the SH cytolysin target molecule cholesterol and thiol-disulfide affinity chromatography is described. Images PMID:2553614

  9. [Thiol peroxidase activities in rat blood plasma determined with hydrogen peroxide and 5,5`-dithio-bis(2-nitrobenzoic acid)].

    PubMed

    Razygraev, A V; Taborskaya, K I; Petrosyan, M A; Tumasova, Zh N

    2016-05-01

    Earlier it has been shown that extracellular glutathione peroxidase (GPx3) from human plasma is able to use cysteine (Cys-SH) instead of glutathione (GSH) as a thiol substrate. In the present study, the ability of rat plasma to utilize not only GSH, but also Cys-SH and homocysteine (Hcy-SH), in the thiol peroxidase reaction has been confirmed. The molar ratio between thiol and H2O2 in the catalyzed reaction was 2:1. The specific activity increased with fractionation of proteins. At a fixed thiol concentration of 0.23 mM, the saturation by H2O2 with vmax app of 100, 128, and 132 nmol H2O2 / s per 1 ml of plasma was found for DL-Cys-SH, L-GSH, and DL-Hcy-SH, respectively. Rank distributions of activities towards all three thiol substrates within plasma protein fractions are fully identical (the probability of random full coincidence was less than 0.01). The statistical analysis confirms that Cys-SH peroxidase, Hcy-SH peroxidase, and GSH peroxidase activities are closely associated with each other. The most probable outcome of this result is the ability of rat GPx3 to utilize all three thiols as substrates for oxidation. Probably, thiol peroxidase is a participant of formation of plasma cystine (Cys-SS-Cys) from Cys-SH in plasma. If the forms of Hcy exhibit different toxic effects, it can be suggested that thiol peroxidase regulates Hcy toxicity in hyperhomocysteinemia through Hcy-SH oxidation to homocystine (Hcy-SS-Hcy). PMID:27562997

  10. Secondary metabolites and insecticidal activity of Anemone pavonina.

    PubMed

    Varitimidis, Christos; Petrakis, Panos V; Vagias, Constantinos; Roussis, Vassilios

    2006-01-01

    The insecticidal properties of the crude extracts of the leaves and flowers of Anemone pavonina were evaluated on Pheidole pallidula ants and showed significant levels of activity. Bioassay-guided fractionations led to the isolation of the butenolide ranunculin (1) as the active principle. Chemical investigations of the extracts showed them to contain as major components the sitosterol glycopyranoside lipids 2-5 and the glycerides 6-8. The structures of the metabolites were elucidated, following acetylation and hydrolysis of the natural products, by interpretation of their NMR and mass spectral data. The uncommon lipid metabolites 2-8 were isolated for the first time from the genus Anemone and this is the first report of insecticidal activity of the Anemone metabolite ranunculin against ants.

  11. Activation of Heat Shock and Antioxidant Responses by the Natural Product Celastrol: Transcriptional Signatures of a Thiol-targeted Molecule

    PubMed Central

    Trott, Amy; West, James D.; Klaić, Lada; Westerheide, Sandy D.; Silverman, Richard B.; Morimoto, Richard I.

    2008-01-01

    Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product. PMID:18199679

  12. Cattle tick Boophilus microplus salivary gland contains a thiol-activated metalloendopeptidase displaying kininase activity.

    PubMed

    Bastiani, Michele; Hillebrand, Sandro; Horn, Fabiana; Kist, Tarso Benigno Ledur; Guimarães, Jorge Almeida; Termignoni, Carlos

    2002-11-01

    This work reports on the characterization of a metalloendopeptidase kininase present in Boophilus microplus salivary glands. Using the guinea pig ileum assay, salivary gland whole extracts (SGE) were found to have a potent kininase activity. Ion-exchange chromatography separated two kininase activities from SGE. The major enzymatic component, eluted at lower ionic strength, was named BooKase (Boophilus Kininase). Analysis of the hydrolysis products by capillary electrophoresis identified Phe5-Ser6 as the only hydrolyzable peptide bond in bradykinin after BooKase treatment. This is the same specificity as the mammalian thimet oligoendopeptidase (EC 3.4.24.15). Like this enzyme, BooKase is also a metallo-peptidase (requires Mn2+) and is activated by-SH protecting reagents. In addition, BooKase was partially inhibited by cFP-AAF-pAB, a specific inhibitor of thimet oligopeptidase. Contrary to other kininases, BooKase had no activity upon angiontensin I. Our results show that BooKase behaves as a typical peptidase with kinase activity. PMID:12530211

  13. The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive compounds

    PubMed Central

    Wang, Yanyu; Gibney, Patrick A.; West, James D.; Morano, Kevin A.

    2012-01-01

    The heat shock transcription factor HSF1 governs the response to heat shock, oxidative stresses, and xenobiotics through unknown mechanisms. We demonstrate that diverse thiol-reactive molecules potently activate budding yeast Hsf1. Hsf1 activation by thiol-reactive compounds is not consistent with the stresses of misfolding of cytoplasmic proteins or cytotoxicity. Instead, we demonstrate that the Hsp70 chaperone Ssa1, which represses Hsf1 in the absence of stress, is hypersensitive to modification by a thiol-reactive probe. Strikingly, mutation of two conserved cysteine residues to serine in Ssa1 rendered cells insensitive to Hsf1 activation and subsequently induced thermotolerance by thiol-reactive compounds, but not by heat shock. Conversely, substitution with the sulfinic acid mimic aspartic acid resulted in constitutive Hsf1 activation. Cysteine 303, located within the nucleotide-binding domain, was found to be modified in vivo by a model organic electrophile, demonstrating that Ssa1 is a direct target for thiol-reactive molecules through adduct formation. These findings demonstrate that Hsp70 is a proximal sensor for Hsf1-mediated cytoprotection and can discriminate between two distinct environmental stressors. PMID:22809627

  14. Thiol-beta-lactamase: replacement of the active-site serine of RTEM beta-lactamase by a cysteine residue.

    PubMed

    Sigal, I S; Harwood, B G; Arentzen, R

    1982-12-01

    We describe a procedure by which the codon (AGC) for the active-site serine-70 of pBR322 beta-lactamase (penicillinase, penicillin amido-beta-lactamhydrolase, EC 3.5.2.6) is altered to that for cysteine (TGC). The pertinent nucleotide bases, A-G-C-A, positions 410-413, of pBR322 are excised by treating a limited HgiAI digest of pBR322 with the 3' leads to 5' exonuclease of T4 DNA polymerase. The new sequence, T-G-C-A, is inserted in two steps. First, the Kpn I molecular linker d(T-G-G-T-A-C-C-A) is ligated into the gap described above. The internal sequence G-T-A-C is then excised enzymatically with Kpn I and T4 DNA polymerase and the molecule is recircularized. This mutant gene, which codes for a thiol-beta-lactamase, confers on Escherichia coli K-12 hosts an ampicillin resistance that is reduced compared with that given by pBR322 yet is greater than that of E. coli lacking any intact beta-lactamase gene. Cell-free extracts of E. coli strains hosting the thiol-beta-lactamase gene possess a p-chloromercuribenzoate-sensitive beta-lactamase activity.

  15. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death.

    PubMed

    Martin Muñoz, Patricia; Ortega Ferrusola, Cristina; Vizuete, Guillermo; Plaza Dávila, Maria; Rodriguez Martinez, Heriberto; Peña, Fernando J

    2015-12-01

    Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted.

  16. Monascus secondary metabolites: production and biological activity.

    PubMed

    Patakova, Petra

    2013-02-01

    The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.

  17. Pd immobilized on thiol-modified magnetic nanoparticles: A complete magnetically recoverable and highly active catalyst for hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Bo; Zhang, Yao-Heng; Zhang, Yu-Bin; Zhang, Feng-Wei; Niu, Jian-Rui; Yang, Hong-Lei; Li, Rong; Ma, Jian-Tai

    2012-09-01

    A palladium-based catalyst supported on thiol-modified superparamagnetic nanoparticles was successfully prepared by co-precipitation method. These magnetic nanomaterials were characterized by elemental analysis (EA), inductively coupled plasma (ICP), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), fourier transform-infrared (FT-IR), thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The conversions of various aromatic nitro and unsaturated compounds can receive a really high yield with the existence of magnetic nanomaterials. The turn-over frequency (TOF) can be 66.46 h-1 in ethanol under a H2 atmosphere at room temperature. In this paper, the conversions of aromatic nitro bearing a variety of substituents were 93.56-100%, moreover, the catalyst afforded over 90% yield in the reducing unsaturated compounds. Another advantage is that the magnetite nanoparticles modified by thiol group can be separated just through the external magnetic force and can be reused atleast ten times without any significant loss in activity.

  18. Arsenic tolerance in mesquite (Prosopis sp.): low molecular weight thiols synthesis and glutathione activity in response to arsenic.

    PubMed

    Mokgalaka-Matlala, Ntebogeng S; Flores-Tavizón, Edith; Castillo-Michel, Hiram; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2009-09-01

    The effects of arsenic stress on the production of low molecular weight thiols (LMWT), glutathione S-transferase activity (GST) and sulfur metabolism of mesquite plant (Prosopis sp.) were examined in hydroponic culture at different arsenic [As(III) and (V)] concentrations. The production of LMWT was dependent on As speciation and concentration in the growth medium. The roots of As(III) treated plants produced significantly higher LMWT levels than As(V) treated roots at the same concentration of As applied. In leaves, the thiols content increased with increasing As(III) and (V) concentrations in the medium. Hypersensitivity of the plant to high As concentrations was observed by a significant decrease of LMWT produced in the roots at 50 mg/L treatment in both As(III) and (V) treatments. Sulfur was translocated from roots and accumulated mainly in the shoots. In response to As-induced phytotoxicity, the plants slightly increased the sulfur content in the roots at the highest As treatment. Compared with As(V)-treated plants, As(III)-treated roots and leaves showed significantly higher GST activity. The roots of both As(III) and (V) treated plants showed an initial increase in GST at low As concentration (5 mg/L), followed by significant inhibition up to 50 mg/L. The leaves had the highest GST activity, an indication of the ability of the plant to detoxify As in the leaves than in the roots. The correlation between LMWT content, S content and GST activity may be an indication these parameters may be used as biomarkers of As stress in mesquite.

  19. Synthesis of Biologically Active Piperidine Metabolites of Clopidogrel: Determination of Structure and Analyte Development.

    PubMed

    Shaw, Scott A; Balasubramanian, Balu; Bonacorsi, Samuel; Cortes, Janet Caceres; Cao, Kevin; Chen, Bang-Chi; Dai, Jun; Decicco, Carl; Goswami, Animesh; Guo, Zhiwei; Hanson, Ronald; Humphreys, W Griffith; Lam, Patrick Y S; Li, Wenying; Mathur, Arvind; Maxwell, Brad D; Michaudel, Quentin; Peng, Li; Pudzianowski, Andrew; Qiu, Feng; Su, Shun; Sun, Dawn; Tymiak, Adrienne A; Vokits, Benjamin P; Wang, Bei; Wexler, Ruth; Wu, Dauh-Rurng; Zhang, Yingru; Zhao, Rulin; Baran, Phil S

    2015-07-17

    Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.

  20. Chemical modification of thiol groups of mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe. Involvement of alpha- and gamma-subunits in the enzyme activity

    SciTech Connect

    Falson, P.; Di Pietro, A.; Gautheron, D.C.

    1986-06-05

    Mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe has been prepared under a stable form and in relatively high amounts by an improved purification procedure. Specific chemical modification of the enzyme by the thiol reagent N-ethylmaleimide (NEM) at pH 6.8 leads to complete inactivation characterized by complex kinetics and pH dependence, indicating that several thiols are related to the enzyme activity. A complete protection against NEM effect is afforded by low concentrations of nucleotides in the presence of Mg/sup 2 +/, with ADP and ATP being more efficient than GTP. A total binding of 5 mol of (/sup 14/C)NEM/mol of F1-ATPase is obtained when the enzyme is 85% inactivated: 3 mol of the label are located on the alpha-subunits and 2 on the gamma-subunit. Two out of the 3 mol on the alpha-subunits bind very rapidly before any inactivation occurs. Complete protection by ATP against inactivation by NEM prevents the modification of three essential thiols out of the group of five thiols labeled in the absence of ATP: one is located on a alpha-subunit and two on the gamma-subunit. These two essential thiols of the gamma-subunit can be differentiated by modification with 6,6'-dithiodinicotinic acid (CPDS), another specific thiol reagent. A maximal binding of 4 mol of (/sup 14/C)CPDS/mol of enzyme is obtained, concomitant to a 25% inhibition. Sequential modification of the enzyme by CPDS and (/sup 14/C)NEM leads to the same final deep inactivation as that obtained with (/sup 14/C)NEM alone. One out of the two thiols of the gamma-subunit is no longer accessible to (/sup 14/C)NEM after CPDS treatment. When incubated at pH 6.8 with (/sup 3/H)ATP in the presence of Mg/sup 2 +/, F1-ATPase is able to bind 3, largely exchangeable, mol of nucleotide/mol of enzyme. Modification of the three essential thiols by NEM dramatically decreases the binding of /sup 3/H-nucleotide down to about 1 mol/mol of enzyme.

  1. Hsp90 Activity Modulation by Plant Secondary Metabolites.

    PubMed

    Dal Piaz, Fabrizio; Terracciano, Stefania; De Tommasi, Nunziatina; Braca, Alessandra

    2015-09-01

    Hsp90 is an evolutionarily conserved adenosine triphosphate-dependent molecular chaperone and is one of the most abundant proteins in the cells (1-3 %). Hsp90 is induced when a cell undergoes various types of environmental stresses such as heat, cold, or oxygen deprivation. It is involved in the turnover, trafficking, and activity of client proteins, including apoptotic factors, protein kinases, transcription factors, signaling proteins, and a number of oncoproteins. Most of the Hsp90 client proteins are involved in cell growth, differentiation, and survival, and include kinases, nuclear hormone receptors, transcription factors, and other proteins associated with almost all the hallmarks of cancer. Consistent with these diverse activities, genetic and biochemical studies have demonstrated the implication of Hsp90 in a range of diseases, including cancer, making this chaperone an interesting target for drug research.During the last few decades, plant secondary metabolites have been studied as a major source for lead compounds in drug discovery. Recently, several plant-derived small molecules have been discovered exhibiting inhibitory activity towards Hsp90, such as epigallocatechin gallate, gedunin, lentiginosine, celastrol, and deguelin. In this work, an overview of plant secondary metabolites interfering with Hsp90 activities is provided. PMID:26227505

  2. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis

    PubMed Central

    Cha, Joon-Yung; Kim, Woe-Yeon; Kang, Sun Bin; Kim, Jeong Im; Baek, Dongwon; Jung, In Jung; Kim, Mi Ri; Li, Ning; Kim, Hyun-Jin; Nakajima, Masatoshi; Asami, Tadao; Sabir, Jamal S. M.; Park, Hyeong Cheol; Lee, Sang Yeol; Bohnert, Hans J.; Bressan, Ray A.; Pardo, Jose M.; Yun, Dae-Jin

    2015-01-01

    YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses. PMID:26314500

  3. Mutagenic activity of austocystins - secondary metabolites of Aspergillus ustus

    SciTech Connect

    Kfir, R.; Johannsen, E.; Vleggaar, R.

    1986-11-01

    Mycotoxins constitute a group of toxic secondary fungal metabolites. Fungi that produce these toxins frequently contaminate food and feed, creating a potential threat to human and animal health. Biological activities of mycotoxins include, amongst others: toxicity, mutagenicity and carcinogenicity, which can be expressed with or without metabolic activation. Austocystins are similar in structure to aflatoxin B/sup 1/ and are probably synthesized in a similar manner. The Ames Salmonella test, a widely accepted method employed for the detection of mutagenic activity of various chemical compounds was used for testing the mutagenic activity of different mycotoxins. As aflatoxin B/sup 1/ was found by the Ames test to be highly mutagenic, the same test was applied for the study of possible mutagenicity of the austocystins. The mutagenic activity of these compounds was studied with and without metabolic activation using two tester strains of S. typhimurium, one capable of detecting frame shift mutation (strain TA98) and the other capable of detecting base pair substitution (strain TA100).

  4. Depsides: Lichen Metabolites Active against Hepatitis C Virus

    PubMed Central

    Vu, Thi Huyen; Le Lamer, Anne-Cécile; Lalli, Claudia; Boustie, Joël; Samson, Michel

    2015-01-01

    A thorough phytochemical study of Stereocaulon evolutum was conducted, for the isolation of structurally related atranorin derivatives. Indeed, pilot experiments suggested that atranorin (1), the main metabolite of this lichen, would interfere with the lifecycle of hepatitis C virus (HCV). Eight compounds, including one reported for the first time (2), were isolated and characterized. Two analogs (5, 6) were also synthesized, to enlarge the panel of atranorin-related structures. Most of these compounds were active against HCV, with a half-maximal inhibitory concentration of about 10 to 70 µM, with depsides more potent than monoaromatic phenols. The most effective inhibitors (1, 5 and 6) were then added at different steps of the HCV lifecycle. Interestingly, atranorin (1), bearing an aldehyde function at C-3, inhibited only viral entry, whereas the synthetic compounds 5 and 6, bearing a hydroxymethyl and a methyl function, respectively, at C-3 interfered with viral replication. PMID:25793970

  5. Depsides: lichen metabolites active against hepatitis C virus.

    PubMed

    Vu, Thi Huyen; Le Lamer, Anne-Cécile; Lalli, Claudia; Boustie, Joël; Samson, Michel; Lohézic-Le Dévéhat, Françoise; Le Seyec, Jacques

    2015-01-01

    A thorough phytochemical study of Stereocaulon evolutum was conducted, for the isolation of structurally related atranorin derivatives. Indeed, pilot experiments suggested that atranorin (1), the main metabolite of this lichen, would interfere with the lifecycle of hepatitis C virus (HCV). Eight compounds, including one reported for the first time (2), were isolated and characterized. Two analogs (5, 6) were also synthesized, to enlarge the panel of atranorin-related structures. Most of these compounds were active against HCV, with a half-maximal inhibitory concentration of about 10 to 70 µM, with depsides more potent than monoaromatic phenols. The most effective inhibitors (1, 5 and 6) were then added at different steps of the HCV lifecycle. Interestingly, atranorin (1), bearing an aldehyde function at C-3, inhibited only viral entry, whereas the synthetic compounds 5 and 6, bearing a hydroxymethyl and a methyl function, respectively, at C-3 interfered with viral replication. PMID:25793970

  6. Thioredoxin and Thioredoxin Reductase Control Tissue Factor Activity by Thiol Redox-dependent Mechanism*

    PubMed Central

    Wang, Pei; Wu, Yunfei; Li, Xiaoming; Ma, Xiaofeng; Zhong, Liangwei

    2013-01-01

    Abnormally enhanced tissue factor (TF) activity is related to increased thrombosis risk in which oxidative stress plays a critical role. Human cytosolic thioredoxin (hTrx1) and thioredoxin reductase (TrxR), also secreted into circulation, have the power to protect against oxidative stress. However, the relationship between hTrx1/TrxR and TF remains unknown. Here we show reversible association of hTrx1 with TF in human serum and plasma samples. The association is dependent on hTrx1-Cys-73 that bridges TF-Cys-209 via a disulfide bond. hTrx1-Cys-73 is absolutely required for hTrx1 to interfere with FVIIa binding to purified and cell-surface TF, consequently suppressing TF-dependent procoagulant activity and proteinase-activated receptor-2 activation. Moreover, hTrx1/TrxR plays an important role in sensing the alterations of NADPH/NADP+ states and transducing this redox-sensitive signal into changes in TF activity. With NADPH, hTrx1/TrxR readily facilitates the reduction of TF, causing a decrease in TF activity, whereas with NADP+, hTrx1/TrxR promotes the oxidation of TF, leading to an increase in TF activity. By comparison, TF is more likely to favor the reduction by hTrx1-TrxR-NADPH. This reversible reduction-oxidation reaction occurs in the TF extracellular domain that contains partially opened Cys-49/-57 and Cys-186/-209 disulfide bonds. The cell-surface TF procoagulant activity is significantly increased after hTrx1-knockdown. The response of cell-surface TF procoagulant activity to H2O2 is efficiently suppressed through elevating cellular TrxR activity via selenium supplementation. Our data provide a novel mechanism for redox regulation of TF activity. By modifying Cys residues or regulating Cys redox states in TF extracellular domain, hTrx1/TrxR function as a safeguard against inappropriate TF activity. PMID:23223577

  7. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    PubMed Central

    Stodůlková, Eva; Císařová, Ivana; Kolařík, Miroslav; Chudíčková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavlů, Barbora; Černý, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  8. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*

    PubMed Central

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.

    2015-01-01

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479

  9. Characterization of an exocellular serine-thiol proteinase activity in Paracoccidioides brasiliensis.

    PubMed

    Carmona, A K; Puccia, R; Oliveira, M C; Rodrigues, E G; Juliano, L; Travassos, L R

    1995-07-01

    An exocellular proteinase activity has been characterized in Paracoccidioides brasiliensis culture filtrates. Chromatographic analysis showed that the activity was eluted from an anion-exchange Resource Q column at 0.08-0.1 M NaCl, and by gel filtration near ovalbumin elution, in a single peak. Purification of the proteinase, however, was hampered by the low protein yield, in contrast to the high peptidase activity. Numerous chromogenic peptidyl p-nitroanilide derivatives and internally quenched fluorescent peptides, flanked by Abz (O-aminobenzoyl) and EDDnp (ethylenediaminedinitrophenyl), were tested as substrates. Cleavage was observed with Abz-MKRLTL-EDDnp, Abz-FRLVR-EDDnp, and Abz-PLGLLGR-EDDnp at Leu-Thr, Leu-Val and Leu-Leu/Leu-Gly bonds respectively as determined by isolation of the corresponding fragments by HPLC. Leucine at P1 seemed to be restrictive for the activity of the exocellular enzyme, but threonine (P'1) and leucine (P'2) in Abz-MKRLTL-EDDnp apparently were not essential. Also, a pair of alanines could substitute for lysine (P3) and arginine (P2) in this substrate, with a decrease in the Km values. The exocellular peptidase activity of P. brasiliensis had an optimum pH of > 9.0 and was irreversibly inhibited by PMSF, mercuric acetate and p-hydroxymercuribenzoate. Inhibition of the mercuriate compounds could be partially reversed by Cys/EDTA. E-64 [trans-epoxysuccinyl-L-leucylamido-(4-guanido)butene] was a weak and reversible inhibitor, whereas EDTA and pepstatin were not inhibitory. These results suggest that P. brasiliensis exocellular enzyme belongs to the subfamily of SH-containing serine proteinases.

  10. Synthesis and Cytotoxicity of Two Active Metabolites of Larotaxel.

    PubMed

    Li, Jianwei; Li, Anping; Li, Minghua; Qiao, Yufeng; Zhang, Hui

    2016-01-01

    Two epimeric metabolites of Larotaxel were synthesized in eight steps from 10-DAB III as a commercial material and their structures were characterized using NMR and MS spectral data. The cytotoxicity of two metabolites was performed on breast cancer cell lines MCF-7, MX-1 and MDA-MB-231. It is remarkable that both of these two desired taxanes showed great potent cytotoxic effect. PMID:26830032

  11. The versatile low-molecular-weight thiols: Beyond cell protection.

    PubMed

    Wang, Min; Zhao, Qunfei; Liu, Wen

    2015-12-01

    Low-molecular-weight (LMW) thiols are extensively involved in the maintenance of cellular redox potentials and the protection of cells from a variety of reactive chemical and electrophilic species. However, we recently found that the metabolic coupling of two LMW thiols - mycothiol (MSH) and ergothioneine (EGT) - programs the biosynthesis of the anti-infective agent lincomycin A. Remarkably, such a constructive role of the thiols in the biosynthesis of natural products has so far received relatively little attention. We speculate that the unusual thiol EGT might function as a chiral thiolation carrier (for modification) and a novel activator (for glycosylation) of sugar. Additionally, we examine recent evidence for LMW thiols (MSH and others) as sulfur donors of sulfur-containing natural products. Clearly, the LMW thiols have more diverse activities beyond cell protection, and more attention should be paid to the correlation of their functions with thiol-dependent enzymes.

  12. A correlation between antioxidant activity and metabolite release during the blanching of Chrysanthemum coronarium L.

    PubMed

    Kim, Jiyoung; Choi, Jung Nam; Ku, Kang Mo; Kang, Daejung; Kim, Jong Sang; Park, Jung Han Yoon; Lee, Choong Hwan

    2011-01-01

    Liquid chromatography tandem mass spectrometry (LCMS/MS)-based metabolite profiling was applied to elucidate the correlation between metabolite release and antioxidant activity during water blanching of Chrysanthemum coronarium L. (CC). Some major metabolites showing differences between fresh CC and blanched CC (BCC) were selected by principal component analysis (PCA) and partial least-square discriminate analysis (PLS-DA) loading plots, and were identified as dicaffeoylquinic acid (DCQA), succinoyl-DCQA, and acetylmycosinol. By PLS regression analysis of the correlation between antioxidant components and effects, candidate antioxidative metabolites were predicted due to strong positive correlations with DCQA and succinoyl-DCQA, and by a relatively weak positive correlation with acetylmycosinol.

  13. Nobiletin metabolites: synthesis and inhibitory activity against matrix metalloproteinase-9 production.

    PubMed

    Oshitari, Tetsuta; Okuyama, Yuji; Miyata, Yoshiki; Kosano, Hiroshi; Takahashi, Hideyo; Natsugari, Hideaki

    2011-08-01

    A divergent synthesis of nobiletin metabolites was developed through highly oxygenated acetophenone derivative. We used commercially available methyl 3,4,5-trimethoxybenzoate as a starting material for concise preparation of the key intermediate, 2'-hydroxy-3',4',5',6'-tetramethoxyacetophenone (I). These metabolites showed strong inhibitory activity against matrix metalloproteinase-9 production in human lens epithelial cells.

  14. Thiol biochemistry of prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  15. Thiol-reactivity of the fungicide maneb

    PubMed Central

    Roede, James R.; Jones, Dean P.

    2014-01-01

    Maneb (MB) is a manganese-containing ethylene bis-dithiocarbamate fungicide that is implicated as an environmental risk factor for Parkinson's disease, especially in combination with paraquat (PQ). Dithiocarbamates inhibit aldehyde dehydrogenases, but the relationship of this to the combined toxicity of MB + PQ is unclear because PQ is an oxidant and MB activates Nrf2 and increases cellular GSH without apparent oxidative stress. The present research investigated the direct reactivity of MB with protein thiols using recombinant thioredoxin-1 (Trx1) as a model protein. The results show that MB causes stoichiometric loss of protein thiols, reversibly dimerizes the protein and inhibits its enzymatic activity. MB reacted at similar rates with low-molecular weight, thiol-containing chemicals. Together, the data suggest that MB can potentiate neurotoxicity of multiple agents by disrupting protein thiol functions in a manner analogous to that caused by oxidative stress, but without GSH depletion. PMID:24936438

  16. Thiol-reactivity of the fungicide maneb.

    PubMed

    Roede, James R; Jones, Dean P

    2014-01-01

    Maneb (MB) is a manganese-containing ethylene bis-dithiocarbamate fungicide that is implicated as an environmental risk factor for Parkinson's disease, especially in combination with paraquat (PQ). Dithiocarbamates inhibit aldehyde dehydrogenases, but the relationship of this to the combined toxicity of MB + PQ is unclear because PQ is an oxidant and MB activates Nrf2 and increases cellular GSH without apparent oxidative stress. The present research investigated the direct reactivity of MB with protein thiols using recombinant thioredoxin-1 (Trx1) as a model protein. The results show that MB causes stoichiometric loss of protein thiols, reversibly dimerizes the protein and inhibits its enzymatic activity. MB reacted at similar rates with low-molecular weight, thiol-containing chemicals. Together, the data suggest that MB can potentiate neurotoxicity of multiple agents by disrupting protein thiol functions in a manner analogous to that caused by oxidative stress, but without GSH depletion. PMID:24936438

  17. Protein Thiol Oxidation in Murine Airway Epithelial Cells in Response to Naphthalene or Diethyl Maleate

    PubMed Central

    Spiess, Page C.; Morin, Dexter; Williams, Chase R.; Buckpitt, Alan R.

    2010-01-01

    Naphthalene (NA) is a semivolatile aromatic hydrocarbon to which humans are exposed from a variety of sources. NA results in acute cytotoxicity to respiratory epithelium in rodents. Cytochrome P450-dependent metabolic activation to form reactive intermediates and loss of soluble cellular thiols (glutathione) are critical steps in NA toxicity, but the precise mechanisms by which this chemical results in cellular injury remain unclear. Protein thiols are likely targets of reactive NA metabolites. Loss of these, through adduction or thiol oxidation mechanisms, may be important underlying mechanisms for NA toxicity. To address the hypothesis that loss of thiols on specific cellular proteins is critical to NA-induced cytotoxicity, we compared reduced to oxidized thiol ratios in airway epithelial cell proteins isolated from lungs of mice treated with NA or the nontoxic glutathione depletor, diethyl maleate (DEM). At 300 mg/kg doses, NA administration resulted in a greater than 85% loss of glutathione levels in the airway epithelium, which is similar to the loss observed after DEM treatment. Using differential fluorescent maleimide labeling followed by 2DE separation of proteins, we identified more than 35 unique proteins that have treatment-specific differential sulfhydryl oxidation. At doses of NA and DEM that produce similar levels of glutathione depletion, Cy3/Cy5 labeling ratios were statistically different for 16 nonredundant proteins in airway epithelium. Proteins identified include a zinc finger protein, several aldehyde dehydrogenase variants, β-actin, and several other structural proteins. These studies show distinct patterns of protein thiol alterations with the noncytotoxic DEM and the cytotoxic NA. PMID:19843705

  18. Thiol/disulfide homeostasis in patients with ankylosing spondylitis

    PubMed Central

    Dogru, Atalay; Balkarli, Ayse; Cetin, Gozde Yildirim; Neselioglu, Salim; Erel, Ozcan; Tunc, Sevket Ercan; Sahin, Mehmet

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease. In many inflammatory diseases, increased production of pro-inflammatory cytokines is associated with an increase in oxidative stress mediators. Thiol/disulfide homeostasis is a marker for oxidative stress. The aim of this study was to examine the dynamic thiol/disulfide homeostasis in AS. Sixty-nine patients with AS and 60 age- and sex-matched controls were included in the study. The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and visual analogue scale (VAS) were used to determine the disease activity. Native thiol, total thiol, and disulfide levels were measured with a novel automated method recently described by Erel and Neselioglu. The aforementioned method is also optionally manual spectrophotometric assay. The total thiol levels were significantly lower in the AS group compared with the control group (p = 0.03). When the patients were divided into active (n = 35) and inactive (n = 34) subgroups using BASDAI scores, the native plasma thiol and total thiol levels were significantly lower in the active AS patients compared to the inactive AS patients (p = 0.02, p = 0.03 respectively). There was a negative correlation between the plasma native thiol levels and VAS, BASDAI scores. Thiol/disulfide homeostasis may be used for elucidating the effects of oxidative stress in AS. Understanding the role of thiol/disulfide homeostasis in AS might provide new therapeutic intervention strategies for patients.

  19. Thiol/disulfide homeostasis in patients with ankylosing spondylitis.

    PubMed

    Dogru, Atalay; Balkarli, Ayse; Cetin, Gozde Yildirim; Neselioglu, Salim; Erel, Ozcan; Tunc, Sevket Ercan; Sahin, Mehmet

    2016-08-01

    Ankylosing spondylitis (AS) is a chronic inflammatory disease. In many inflammatory diseases, increased production of pro-inflammatory cytokines is associated with an increase in oxidative stress mediators. Thiol/disulfide homeostasis is a marker for oxidative stress. The aim of this study was to examine the dynamic thiol/disulfide homeostasis in AS. Sixty-nine patients with AS and 60 age- and sex-matched controls were included in the study. The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and visual analogue scale (VAS) were used to determine the disease activity. Native thiol, total thiol, and disulfide levels were measured with a novel automated method recently described by Erel and Neselioglu. The aforementioned method is also optionally manual spectrophotometric assay. The total thiol levels were significantly lower in the AS group compared with the control group (p = 0.03). When the patients were divided into active (n = 35) and inactive (n = 34) subgroups using BASDAI scores, the native plasma thiol and total thiol levels were significantly lower in the active AS patients compared to the inactive AS patients (p = 0.02, p = 0.03 respectively). There was a negative correlation between the plasma native thiol levels and VAS, BASDAI scores. Thiol/disulfide homeostasis may be used for elucidating the effects of oxidative stress in AS. Understanding the role of thiol/disulfide homeostasis in AS might provide new therapeutic intervention strategies for patients. PMID:27483176

  20. The Synthesis of Active Metabolites and Analogues of Vitamin D3

    NASA Astrophysics Data System (ADS)

    Yakhimovich, R. I.

    1980-04-01

    The literature date on the synthesis of the active metabolites and analogues of vitamin D3 (cholecalciferol), which play an important role in regulating the homeostatis of calcium in the organism, are reviewed. The bibliography includes 150 references.

  1. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters.

    PubMed

    Writer, Jeffrey H; Ferrer, Imma; Barber, Larry B; Thurman, E Michael

    2013-09-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations±standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700±1000 ng L(-1), 2100±1700 ng L(-1), carbamazepine and 10-hydroxy-carbamazepine 480±380 ng L(-1), 360±400 ng L(-1), venlafaxine and O-desmethyl-venlafaxine 1400±1300 ng L(-1), 1800±2300 ng L(-1). Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that this is likely a global environmental issue

  2. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters.

    PubMed

    Writer, Jeffrey H; Ferrer, Imma; Barber, Larry B; Thurman, E Michael

    2013-09-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations±standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700±1000 ng L(-1), 2100±1700 ng L(-1), carbamazepine and 10-hydroxy-carbamazepine 480±380 ng L(-1), 360±400 ng L(-1), venlafaxine and O-desmethyl-venlafaxine 1400±1300 ng L(-1), 1800±2300 ng L(-1). Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that this is likely a global environmental issue

  3. Antiproliferative and hepatoprotective activity of metabolites from Corynebacterium xerosis against Ehrlich Ascites Carcinoma cells

    PubMed Central

    Islam, Farhadul; Ghosh, Soby; Khanam, Jahan Ara

    2014-01-01

    Objective To find out the effective anticancer drugs from bacterial products, petroleum ether extract of Corynebacterium xerosis. Methods Antiproliferative activity of the metabolite has been measured by monitoring the parameters like tumor weight measurement, tumor cell growth inhibition in mice and survival time of tumor bearing mice, etc. Hepatoprotective effect of the metabolites was determined by observing biochemical, hematological parameters. Results It has been found that the petroleum ether extract bacterial metabolite significantly decrease cell growth (78.58%; P<0.01), tumor weight (36.04 %; P<0.01) and increase the life span of tumor bearing mice (69.23%; P<0.01) at dose 100 mg/kg (i.p.) in comparison to those of untreated Ehrlich ascites carcinoma (EAC) bearing mice. The metabolite also alters the depleted hematological parameters like red blood cell, white blood cell, hemoglobin (Hb%), etc. towards normal in tumor bearing mice. Metabolite show no adverse effect on liver functions regarding blood glucose, serum alkaline phosphatases, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase activity and serum billirubin, etc. in normal mice. Histopathological observation of these mice organ does not show any toxic effect on cellular structure. But in the case of EAC bearing untreated mice these hematological and biochemical parameters deteriorate extremely with time whereas petroleum ether extract bacterial metabolite receiving EAC bearing mice nullified the toxicity induced by EAC cells. Conclusion Study results reveal that metabolite possesses significant antiproliferative and hepatoprotective effect against EAC cells. PMID:25183099

  4. Theoretical estimation of the aqueous pKas of thiols

    NASA Astrophysics Data System (ADS)

    Hunter, Nora E.; Seybold, Paul G.

    2014-02-01

    The ionisation state of a compound is a key parameter influencing the compound's activity as a drug, metabolite, pollutant, or other active chemical agent. Sulfhydrol compounds (thiols) tend to be considerably more acidic than their hydroxyl (alcohol) analogues. In this report, quantum chemical approaches previously used for the estimation of the aqueous pKas of alcohols are applied to the estimation of the acidities of thiols. Acidity estimates obtained from the general-purpose SPARC calculational programme (S.H. Hilal, S.W. Karickhoff, and L.A. Carreira, Quant. Struct.-Act. Relat. 14, 348 (1995)) and the ACD/Labs PhysChem Suite v12 programme package are employed as benchmarks. Quantum chemical calculations were performed using both the semiempirical RM1 method and the density functional theory B3LYP/6-31+G* method. The effectiveness of the SM5.4 and SM8 solvent models in estimating the aqueous-phase acidities was also evaluated. All of the approaches examined demonstrated strong correlations with the experimental acidity values.

  5. C-Npys (S-3-nitro-2-pyridinesulfenyl) and peptide derivatives can inhibit a serine-thiol proteinase activity from Paracoccidioides brasiliensis.

    PubMed

    Matsuo, Alisson L; Carmona, Adriana K; Silva, Luiz S; Cunha, Carlos E L; Nakayasu, Ernesto S; Almeida, Igor C; Juliano, Maria A; Puccia, Rosana

    2007-04-20

    The inhibitory capacity of C-Npys (S-[3-nitro-2-pyridinesulfenyl]) derivatives over thiol-containing serine proteases has never been tested. In the present work we used an extracellular serine-thiol proteinase activity from the fungal pathogen Paracoccidioides brasiliensis (PbST) to describe a potent inhibitory capacity of Bzl-C(Npys)KRLTL-NH(2) and Bzl-MKRLTLC(Npys)-NH(2). The assays were performed with PbST enriched upon affinity chromatography in a p-aminobenzamidine (pABA)-Sepharose column. Although PbST can cleave the fluorescence resonance energy transfer peptide Abz-MKRLTL-EDDnp between L-T, the C(Npys) derivatives were not substrates nor were they toxic in a cell detachment assay, allowing therapeutic use. The best inhibitor was Bzl-C(Npys)KRLTL-NH(2) (K(i)=16nM), suggesting that the peptide sequence promoted a favorable interaction, especially when C(Npys) was placed at a further position from the L-T bond, at the N-terminus. Inhibition was completely reverted with dithioerythritol, indicating that it was due to the reactivity of the C(Npys) moiety with a free SH- group. PMID:17328865

  6. Larvicidal activity of some secondary lichen metabolites against the mosquito Culiseta longiareolata Macquart (Diptera: Culicidae).

    PubMed

    Cetin, H; Tufan-Cetin, O; Turk, A O; Tay, T; Candan, M; Yanikoglu, A; Sumbul, H

    2012-01-01

    The larvicidal activity of some lichen metabolites, (+)-usnic acid, atranorin, 3-hydroxyphysodic acid and gyrophoric acid, against the second and third instar larvae of the mosquito Culiseta longiareolata were studied. All metabolites caused high larvicidal activities. When metabolites were compared on the basis of their LC(50) values, the order of increasing toxicity was as follows: gyrophoric acid (0.41 ppm) > (+)-usnic acid (0.48 ppm) > atranorin (0.52 ppm) > 3-hydroxyphysodic acid (0.97 ppm). However, when LC(90) values were compared, the order of toxicity was (+)-usnic acid (1.54 ppm) > gyrophoric acid (1.93 ppm) > 3-hydroxyphysodic acid (4.33 ppm) > atranorin (5.63 ppm). In conclusion, our results found that lichen secondary metabolites may have a promising role as potential larvicides.

  7. Larvicidal activity of some secondary lichen metabolites against the mosquito Culiseta longiareolata Macquart (Diptera: Culicidae).

    PubMed

    Cetin, H; Tufan-Cetin, O; Turk, A O; Tay, T; Candan, M; Yanikoglu, A; Sumbul, H

    2012-01-01

    The larvicidal activity of some lichen metabolites, (+)-usnic acid, atranorin, 3-hydroxyphysodic acid and gyrophoric acid, against the second and third instar larvae of the mosquito Culiseta longiareolata were studied. All metabolites caused high larvicidal activities. When metabolites were compared on the basis of their LC(50) values, the order of increasing toxicity was as follows: gyrophoric acid (0.41 ppm) > (+)-usnic acid (0.48 ppm) > atranorin (0.52 ppm) > 3-hydroxyphysodic acid (0.97 ppm). However, when LC(90) values were compared, the order of toxicity was (+)-usnic acid (1.54 ppm) > gyrophoric acid (1.93 ppm) > 3-hydroxyphysodic acid (4.33 ppm) > atranorin (5.63 ppm). In conclusion, our results found that lichen secondary metabolites may have a promising role as potential larvicides. PMID:21452097

  8. Thiol-based redox switches in prokaryotes.

    PubMed

    Hillion, Melanie; Antelmann, Haike

    2015-05-01

    Bacteria encounter reactive oxygen species (ROS) as a consequence of the aerobic life or as an oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds, including hypochloric acid (HOCl) and reactive electrophilic species (RES) such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense.

  9. Thiol-based redox switches in prokaryotes

    PubMed Central

    Hillion, Melanie; Antelmann, Haike

    2015-01-01

    Summary Bacteria encounter reactive oxygen species (ROS) as consequence of the aerobic life or as oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds including hypochloric acid (HOCl) and reactive electrophilic species (RES), such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys-phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense. PMID:25720121

  10. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.

    PubMed

    Kojima, Hiroyuki; Takeuchi, Shinji; Van den Eede, Nele; Covaci, Adrian

    2016-03-14

    Organophosphate flame retardants (OPFRs) have been used in a wide variety of applications and detected in several environmental matrices, including indoor air and dust. Continuous human exposure to these chemicals is of growing concern. In this study, the agonistic and/or antagonistic activities of 12 primary OPFR-metabolites against ten human nuclear receptors were examined using cell-based transcriptional assays, and compared to those of their parent compounds. As a result, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate showed more potent estrogen receptor α (ERα) and ERβ agonistic activity than did their parent, triphenyl phosphate (TPHP). In addition, these hydroxylated TPHP-metabolites also showed ERβ antagonistic activity at higher concentrations and exhibited pregnane X receptor (PXR) agonistic activity as well as androgen receptor (AR) and glucocorticoid receptor (GR) antagonistic activities at similar levels to those of TPHP. Bis(2-butoxyethyl) 3'-hydroxy-2-butoxyethyl phosphate and 2-hydroxyethyl bis(2-butoxyethyl) phosphate act as PXR agonists at similar levels to their parent, tris(2-butoxyethyl) phosphate. On the other hand, seven diester OPFR-metabolites and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate did not show any receptor activity. Taken together, these results suggest that hydroxylated TPHP-metabolites show increased estrogenicity compared to the parent compound, whereas the diester OPFR-metabolites may have limited nuclear receptor activity compared to their parent triester OPFRs.

  11. Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile.

    PubMed

    Zakarova, Alexandra; Seo, Ji Yeon; Kim, Hyang Yeon; Kim, Jeong Hwan; Shin, Jung-Hye; Cho, Kye Man; Lee, Choong Hwan; Kim, Jong-Sang

    2014-02-26

    Although garlic (Allium sativum) has been extensively studied for its health benefits, sprouted garlic has received little attention. We hypothesized that sprouting garlic would stimulate the production of various phytochemicals that improve health. Ethanolic extracts from garlic sprouted for different periods had variable antioxidant activities when assessed with in vitro assays, including the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay and the oxygen radical absorbance capacity assay. Extracts from garlic sprouted for 5 days had the highest antioxidant activity, whereas extracts from raw garlic had relatively low antioxidant activity. Furthermore, sprouting changed the metabolite profile of garlic: the metabolite profile of garlic sprouted for 5-6 days was distinct from the metabolite profile of garlic sprouted for 0-4 days, which is consistent with the finding that garlic sprouted for 5 days had the highest antioxidant activity. Therefore, sprouting may be a useful way to improve the antioxidant potential of garlic.

  12. New brominated flame retardants and their metabolites as activators of the pregnane X receptor.

    PubMed

    Gramec Skledar, Darja; Tomašič, Tihomir; Carino, Adriana; Distrutti, Eleonora; Fiorucci, Stefano; Peterlin Mašič, Lucija

    2016-09-30

    The present study investigated the activities on different nuclear receptors of the new brominated flame retardants 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH), and their main carboxylic acid metabolites 2,3,4,5-tetrabromobenzoic acid (TBBA) and mono(2-ethylhexyl) tetrabromophthalate (TBMEPH). None of selected chemicals exhibited marked activity towards PPARα and PPARγ by the use of transactivation assays in HepG2 cells transfected with peroxisome proliferator-activated receptors. In contrast, selected flame retardants all exhibited potent agonist activity on pregnane X receptor (PXR), with EC50 values of 5.5μM for TBPH and 2.0μM for its metabolite TBMEPH. Molecular docking of TBPH and TBMEPH to the PXR ligand binding site revealed similar interactions, with differences only for conformation and orientation of the alkyl chains. Additionally, TBPH showed antagonist activity on PXR (IC50, 13.9μM). Moreover, there was significant up-regulation of CYP3A4 expression via PXR activation for TBB and TBPH and their metabolites. Induction of CYP3A4 might cause undesired drug-drug interactions, lower bioavailability of pharmaceutical drugs, higher formation of reactive toxic metabolites, or enhanced elimination of endogenous hormones, such as T3/T4, to lead to endocrine disruption. These data provide new and important insights into the toxicity of these new polybrominated flame retardants, TBB and TBPH, and their metabolites.

  13. New brominated flame retardants and their metabolites as activators of the pregnane X receptor.

    PubMed

    Gramec Skledar, Darja; Tomašič, Tihomir; Carino, Adriana; Distrutti, Eleonora; Fiorucci, Stefano; Peterlin Mašič, Lucija

    2016-09-30

    The present study investigated the activities on different nuclear receptors of the new brominated flame retardants 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH), and their main carboxylic acid metabolites 2,3,4,5-tetrabromobenzoic acid (TBBA) and mono(2-ethylhexyl) tetrabromophthalate (TBMEPH). None of selected chemicals exhibited marked activity towards PPARα and PPARγ by the use of transactivation assays in HepG2 cells transfected with peroxisome proliferator-activated receptors. In contrast, selected flame retardants all exhibited potent agonist activity on pregnane X receptor (PXR), with EC50 values of 5.5μM for TBPH and 2.0μM for its metabolite TBMEPH. Molecular docking of TBPH and TBMEPH to the PXR ligand binding site revealed similar interactions, with differences only for conformation and orientation of the alkyl chains. Additionally, TBPH showed antagonist activity on PXR (IC50, 13.9μM). Moreover, there was significant up-regulation of CYP3A4 expression via PXR activation for TBB and TBPH and their metabolites. Induction of CYP3A4 might cause undesired drug-drug interactions, lower bioavailability of pharmaceutical drugs, higher formation of reactive toxic metabolites, or enhanced elimination of endogenous hormones, such as T3/T4, to lead to endocrine disruption. These data provide new and important insights into the toxicity of these new polybrominated flame retardants, TBB and TBPH, and their metabolites. PMID:27506419

  14. In vitro antioxidative activity of (-)-epicatechin glucuronide metabolites present in human and rat plasma.

    PubMed

    Natsume, Midori; Osakabe, Naomi; Yasuda, Akiko; Baba, Seigo; Tokunaga, Takashi; Kondo, Kazuo; Osawa, Toshihiko; Terao, Junji

    2004-12-01

    Recently we identified four conjugated glucuronide metabolites of epicatechin, (-)-epicatechin-3'-O-glucuronide (E3'G), 4'-O-methyl-(-)-epicatechin-3'-O-glucuronide (4'ME3'G), (-)-epicatechin-7-O-glucuronide (E7G) and 3'-O-methyl-(-)-epicatechin-7-O-glucuronide (3'ME7G) from plasma and urine. E3'G and 4'ME3'G were isolated from human urine, while E7G and 3'ME7G were isolated from rats that had received oral administration of (-)-epicatechin (Natsume et al. (2003), Free Radic. Biol. Med. 34,840-849). It has been suggested that these metabolites possess considerable in vivo activity, and therefore we carried out a study to compare the antioxidant activities of the metabolites with that of the parent compound. This was achieved by measuring superoxide scavenging activity, reduction of plasma TBARS production and reduced susceptibility of low-density-lipoprotein (LDL) to oxidation. (-)-Epicatechin was found to have more potent antioxidant activity than the conjugated glucuronide metabolites. Both (-)-epicatechin and E7G had marked antioxidative properties with respect to superoxide radical scavenging activity, plasma oxidation induced by 2,2'-azobis-(2-aminopropane) dihydrochloride (AAPH) and LDL oxidation induced by copper ions or 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (MeO-AMVN). In contrast, the other metabolites had light antioxidative activities over the range of physiological concentrations found in plasma.

  15. Synthesis, Characterization and Antibacterial Activity of some Novel Thiosemicarbazides, 1,2,4-Triazol-3-thiols and their S-substituted Derivatives

    PubMed Central

    Kalhor, Mehdi; Shabani, Mahboobeh; Nikokar, Iraj; Reyhaneh Banisaeed, Seyedeh

    2015-01-01

    The thiosemicarbazides 3a-c were appeared by reaction of the corresponding substituted hydrazides 1a-c with allylisothiocyanate 2. Synthesis of some novel 1,2,4-triazole-thiols 4a-c bearing a pyridyl unit using 1-(x-picolinoyl)-4-allyl-thiosemicarbazides (x = 2,3,4) in an alkaline solution, is reported. Also, the S-alkylation of triazole derivatives 5-7a-c is described. The structure of the synthesized compounds resulted from the IR, 1H and -13C NMR spectroscopy and elemental analysis data. The antibacterial studies to all of the synthesized compounds against B. cereus, E. coli, P. aeroginosa, S. aureus and E. faecalis as MIC values are reported. Some of these compounds such as 7a, 4a and 3a exhibited a good to significant antibacterial activity. PMID:25561913

  16. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  17. Thiol-Activated HNO Release from a Ruthenium Antiangiogenesis Complex and HIF-1α Inhibition for Cancer Therapy

    PubMed Central

    2016-01-01

    Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO– (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the RuII complex [Ru(bpy)2(SO3)(NO)]+ (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents. Characteristic absorption spectroscopic profiles for HNO reactions with met-myoglobin were obtained, as well as EPR evidence from carboxy-PTIO experiments. Importantly, the product HNO counteracted NO-induced as well as hypoxia-induced stabilization of the tumor-suppressor HIF-1α in cancer cells. The functional disruption of neovascularization by HNO produced by this metallonitrosyl complex was demonstrated in an in vitro angiogenesis model. This behavior is consistent with HNO biochemistry and contrasts with NO-mediated stabilization of HIF-1α. Together, these results demonstrate for the first time thiol-dependent production of HNO by a ruthenium complex and subsequent destabilization of HIF-1α. This work suggests that the complex warrants further investigation as a promising antiangiogenesis agent for the treatment of cancer. PMID:27191177

  18. Evaluation of Bacillus cereus and Bacillus pumilus metabolites for anthelmintic activity

    PubMed Central

    Kumar, M. L. Vijaya; Thippeswamy, B.; Kuppust, I. L.; Naveenkumar, K. J.; Shivakumar, C. K.

    2015-01-01

    Objective: To assess the anthelmintic acivity of Bacillus cereus and Bacillus pumilus metabolites. Materials and Methods: The successive solvent extractions with petroleum ether, ethyl acetate and methanol. The solvent extracts were tested for anthelmintic activity against Pheretima posthuma at 20 mg/ml concentration. The time of paralysis and time of death of the worms was determined for all the extracts. Albendazole was taken as a standard reference and sterile water as a control. Results: All the sample extracts showed significant anthelmintic activity in paralyzing the worms comparable with that of the standard drug. The time of death exhibited by BP metabolites was close to the time exhibited by standard. Conclusion: The study indicates both bacteria Bacillus cereus and Bacillus pumilus have anthelmintic activity indicating potential metabolites in them. PMID:25598639

  19. Curcumin Pharmacokinetic and Pharmacodynamic Evidences in Streptozotocin-Diabetic Rats Support the Antidiabetic Activity to Be via Metabolite(s)

    PubMed Central

    Gutierres, Vânia Ortega; Campos, Michel Leandro; Arcaro, Carlos Alberto; Assis, Renata Pires; Baldan-Cimatti, Helen Mariana; Peccinini, Rosângela Gonçalves; Paula-Gomes, Silvia; Kettelhut, Isis Carmo; Baviera, Amanda Martins; Brunetti, Iguatemy Lourenço

    2015-01-01

    This study measures the curcumin concentration in rat plasma by liquid chromatography and investigates the changes in the glucose tolerance and insulin sensitivity of streptozotocin-diabetic rats treated with curcumin-enriched yoghurt. The analytical method for curcumin detection was linear from 10 to 500 ng/mL. The Cmax⁡ and the time to reach Cmax⁡ (tmax⁡) of curcumin in plasma were 3.14 ± 0.9 μg/mL and 5 minutes (10 mg/kg, i.v.) and 0.06 ± 0.01 μg/mL and 14 minutes (500 mg/kg, p.o.). The elimination half-time was 8.64 ± 2.31 (i.v.) and 32.70 ± 12.92 (p.o.) minutes. The oral bioavailability was about 0.47%. Changes in the glucose tolerance and insulin sensitivity were investigated in four groups: normal and diabetic rats treated with yoghurt (NYOG and DYOG, resp.) and treated with 90 mg/kg/day curcumin incorporated in yoghurt (NC90 and DC90, resp.). After 15 days of treatment, the glucose tolerance and the insulin sensitivity were significantly improved in DC90 rats in comparison with DYOG, which can be associated with an increase in the AKT phosphorylation levels and GLUT4 translocation in skeletal muscles. These findings can explain, at least in part, the benefits of curcumin-enriched yoghurt to diabetes and substantiate evidences for the curcumin metabolite(s) as being responsible for the antidiabetic activity. PMID:26064170

  20. Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti.

    PubMed

    Chauhan, Nikhil; Hoti, S L

    2016-01-01

    Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2. PMID:26432350

  1. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    USGS Publications Warehouse

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that

  2. Free-thiol Cys331 exposed during activation process is critical for native tetramer structure of cathepsin C (dipeptidyl peptidase I)

    PubMed Central

    Horn, Martin; Baudyš, Miroslav; Voburka, Zdeněk; Kluh, Ivan; Vondrášek, Jiří; Mareš, Michael

    2002-01-01

    The mature bovine cathepsin C (CC) molecule is composed of four identical monomers, each proteolytically processed into three chains. Five intrachain disulfides and three nonpaired cysteine residues per monomer were identified. Beside catalytic Cys234 in the active site, free-thiol Cys331 and Cys424 were characterized. Cys424 can be classified as inaccessible buried residue. Selective modification of Cys331 results in dissociation of native CC tetramer into dimers. The 3D homology-based model of the CC catalytic core suggests that Cys331 becomes exposed as the activation peptide is removed during procathepsin C activation. The model further shows that exposed Cys331 is surrounded by a surface hydrophobic cluster, unique to CC, forming a dimer–dimer interaction interface. Substrate/inhibitor recognition of the active site in the CC dimer differs significantly from that in the native tetramer. Taken together, a mechanism is proposed that assumes that the CC tetramer formation results in a site-specific occlusion of endopeptidase-like active site cleft of each CC monomeric unit. Thus, tetramerization provides for the structural basis of the dipeptidyl peptidase activity of CC through a substrate access-limiting mechanism different from those found in homologous monomeric exopeptidases cathepsin H and B. In conclusion, the mechanism of tetramer formation as well as specific posttranslational processing segregates CC in the family of papain proteases. PMID:11910036

  3. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem".

    PubMed

    Gomes, Nelson G M; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-05-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities.

  4. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications

    PubMed Central

    Ren, Lili; Chen, Fang; Feng, Yuqian

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control. PMID:27214257

  5. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications.

    PubMed

    Pan, Long; Ren, Lili; Chen, Fang; Feng, Yuqian; Luo, Youqing

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control. PMID:27214257

  6. [Influence of Microbial Metabolites of Phenolic Nature on the Activity of Mitochondrial Enzymes].

    PubMed

    Fedotcheva, N I; Litvinova, E G; Osipov, A Aa; Olenin, A Yu; Moroz, V V; Beloborodova, N V

    2015-01-01

    The aim of this work was to study the effect of microbial metabolites of phenolic nature on the activity of enzymes of the tricarboxylic acid cycle in isolated mitochondria, and determine metabolites of the tricarboxylic acid cycle as potential biomarkers of mitochondrial dysfunction in the blood of patients with sepsis. It is shown that microbial metabolites of phenolic nature have an inhibitory effect on the activity of dehydrogenases, determined by the reduction of dichlorophenolindophenol and nitroblue tetrazolium in liver mitochondria and liver homogenates. This effect is more pronounced in oxidation of the NAD-dependent substrates than succinate oxidation, and at lower concentrations of microbial metabolites than inhibition of respiration. By gas chromatography-mass spectrometry it was found that the content of the tricarboxylic acid cycle metabolites in the blood of patients with sepsis decreased compared to healthy donors. The data obtained show that the microbial phenolic acids can contribute significantly to the dysfunction of mitochondria and suppression of general metabolism, characteristic of these pathologies. PMID:26841505

  7. Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus).

    PubMed

    Pereira, Thiago Scremin Boscolo; Boscolo, Camila Nomura Pereira; Felício, Andreia Arantes; Batlouni, Sergio Ricardo; Schlenk, Daniel; de Almeida, Eduardo Alves

    2016-03-01

    Some endocrine disrupting chemicals (EDCs) can alter the estrogenic activities of the organism by directly interacting with estrogen receptors (ER) or indirectly through the hypothalamus-pituitary-gonadal axis. Recent studies in male Nile tilapia (Oreochromis niloticus) indicated that diuron may have anti-androgenic activity augmented by biotransformation. In this study, the effects of diuron and three of its metabolites were evaluated in female tilapia. Sexually mature female fish were exposed for 25 days to diuron, as well as to its metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU), at concentrations of 100 ng/L. Diuron metabolites caused increases in E2 plasma levels, gonadosomatic indices and in the percentage of final vitellogenic oocytes. Moreover, diuron and its metabolites caused a decrease in germinative cells. Significant differences in plasma concentrations of the estrogen precursor and gonadal regulator17α-hydroxyprogesterone (17α-OHP) were not observed. These results show that diuron metabolites had estrogenic effects potentially mediated through enhanced estradiol biosynthesis and accelerated the ovarian development of O. niloticus females.

  8. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  9. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system.

    PubMed

    Arora, A; Nair, M G; Strasburg, G M

    1998-08-15

    Genistein and daidzein, the two major soy isoflavones, principally occur in nature as their glycosylated or methoxylated derivatives, which are cleaved in the large intestine to yield the free aglycones and further metabolites. The objective of this study was to compare the antioxidant activities of genistein and daidzein with their glycosylated and methoxylated derivatives and also those of their human metabolites. The abilities of these compounds to inhibit lipid peroxidation in a liposomal system were evaluated using fluorescence spectroscopy, and structural criteria that enhance antioxidant activity were established. The peroxidation initiators employed in the study were Fe(II) and Fe(III) metal ions and aqueous-phase, azo-derived peroxyl radicals. Both the parent isoflavonoids and their metabolites were more effective at suppressing metal-ion-induced peroxidations than the peroxyl-radical-induced peroxidation. Antioxidant activities for the isoflavone metabolites were comparable to or superior to those for the parent compounds. Equol and its 4-hydroxy and 5-hydroxy derivatives were the most potent antioxidants in the study, suggesting that absence of the 2, 3-double bond and the 4-oxo group on the isoflavone nucleus enhances antioxidant activity. Additionally, the number and position of hydroxyl groups were determining factors for isoflavonoid antioxidant activity, with hydroxyl substitution being of utmost importance at the C-4' position, of moderate importance at the C-5 position, and of little significance at the C-7 position. PMID:9705203

  10. Identification of alcohol-dependent clopidogrel metabolites using conventional liquid chromatography/triple quadrupole mass spectrometry

    PubMed Central

    Hu, Zhe-Yi; Laizure, S. Casey; Herring, Vanessa L.; Parker, Robert B.

    2014-01-01

    RATIONALE Clopidogrel (CLO) is a prodrug used to prevent ischemic events in patients undergoing percutaneous coronary intervention or with myocardial infarction. A previous study found ethyl clopidogrel (ECLO) is formed by transesterification of CLO when incubated with alcohol in human liver microsomes. We hypothesize that ECLO will be subject to further metabolism and developed an assay to identify its metabolites. METHODS A liquid chromatography/triple quadrupole mass spectrometry (LC-MS/MS) method was developed to identify metabolites of ECLO. According to the predicted metabolic pathway of ECLO, precursor–product ion pairs were used to screen the possible metabolites of ECLO in human liver S9 fractions. Subsequently, the detected metabolites were characterized by the results of product ion scan. RESULTS In the presence of alcohol, CLO was tranesterified to ECLO, which was further oxidized to form ethylated 2-oxo-clopidogrel and several ethylated thiol metabolites including the ethylated form of the H4 active metabolite. CONCLUSIONS The ECLO formed by transesterification with alcohol is subject to metabolism by CYP450 enzymes producing ethylated forms of 2-oxo-clopidogrel and the active H4 thiol metabolite. PMID:24760569

  11. Chemical and biological investigation of N-hydroxy-valdecoxib: An active metabolite of valdecoxib.

    PubMed

    Erdélyi, Péter; Fodor, Tamás; Varga, Agnes Kis; Czugler, Mátyás; Gere, Anikó; Fischer, János

    2008-05-01

    The inhibition of cyclooxygenase enzymes plays an important role in the treatment of inflammatory diseases. N-Hydroxy-4-(5-methyl-3-phenylisoxazol-4-yl)benzenesulfonamide (3)-a primary metabolite of the highly selective COX-2 inhibitor valdecoxib-was synthesized and stabilized as its monohydrate (3a.H(2)O). The anti-inflammatory properties of 3a.H(2)O were investigated in carrageenan-induced edema and in acute and chronic pain models. Based on our biological investigation, we conclude that N-hydroxy-valdecoxib 3a is an active metabolite of valdecoxib.

  12. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting

    PubMed Central

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter “D” obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  13. Molecular complexes of cocaine, its active metabolites and some other stimulants with thiamine.

    PubMed

    Misra, A L; Vadlamani, N L

    1976-10-01

    Cocaine, its pharmacologically active metabolites, norcocaine benzoylnorecgonine, benzoylecgonine and other central nervous system stimulants e.g. dextrococaine, nicotine, caffeine and p-hydroxy norephedrine formed molecular complexes with thiamine. The possible implications of such an interaction are discussed. PMID:10608

  14. CHARACTERIZATION ADN BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM ARMILLARIA TABESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethyl acetate extracts from liquid cultures of Armillaria tabescens showed good antimicrobial activity against Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analyses of extract constituents led to the isolation and identification of two new co...

  15. Developing Activity Localization Fluorescence Peptide Probe Using Thiol-Ene Click Reaction for Spatially Resolved Imaging of Caspase-8 in Live Cells.

    PubMed

    Liu, Wei; Liu, Si-Jia; Kuang, Yong-Qing; Luo, Feng-Yan; Jiang, Jian-Hui

    2016-08-01

    Small molecule probes suitable for high-resolution fluorescence imaging of enzyme activity pose a challenge in chemical biology. We developed a novel design of activity localization fluorescence (ALF) peptide probe, which enables spatially resolved, highly sensitive imaging of peptidase in live cells. The ALF probe was synthesized by a facile thiol-ene click reaction of a cysteine-appended peptide with an acryloylated fluorophore. Upon cleavage by peptidase, the probe undergoes a seven-membered intramolecular cyclization and releases the fluorophore with the excited-state intramolecular photon transfer (ESIPT) effect. A highly fluorescent, insoluble aggregate was formed around the enzyme, which facilitates high-sensitivity and high-resolution imaging. This design is demonstrated for detection of caspase-8 activation. The results show that our design allows easy, high-yield synthesis of the probe, and the probe affords high sensitivity for caspase-8 detection. Live cell imaging reveals that the probe is able to render highly localized and high-contrast fluorescence signal for caspase-8. Our design holds the potential as a generally applicable strategy for developing high-sensitivity and high-resolution imaging peptide probes in cell biology and diagnostics. PMID:27388162

  16. Benzenediol lactones: a class of fungal metabolites with diverse structural features and biological activities.

    PubMed

    Shen, Weiyun; Mao, Hongqiang; Huang, Qian; Dong, Jinyan

    2015-06-01

    Benzenediol lactones are a structurally variable family of fungal polyketide metabolites possessing a macrolide core structure fused into a resorcinol aromatic ring. These compounds are widespread in fungi mainly in the genera such as Aigialus, Cochliobolus, Curvularia, Fusarium, Humicola, Lasiodiplodia, Penicillium and Pochonia etc. Most of these fungal metabolites were reported to possess several interesting biological activities, such as cytotoxicities, nematicidal properties, inhibition of various kinases, receptor agonists, anti-inflammatory activities, heat shock response and immune system modulatory activities etc. This review summarizes the research on the isolation, structure elucidation, and biological activities of the benzenediol lactones, along with some available structure-activity relationships, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structure or stereochemistry, published up to the year of 2014. More than 190 benzenediol lactones are described, and over 300 references cited. PMID:25559850

  17. Secondary Metabolites Produced by an Endophytic Fungus Pestalotiopsis sydowiana and Their 20S Proteasome Inhibitory Activities.

    PubMed

    Xia, Xuekui; Kim, Soonok; Liu, Changheng; Shim, Sang Hee

    2016-01-01

    Fungal endophytes have attracted attention due to their functional diversity. Secondary metabolites produced by Pestalotiopsis sydowiana from a halophyte, Phragmites communis Trinus, were investigated. Eleven compounds, including four penicillide derivatives (1-4) and seven α-pyrone analogues (5-10) were isolated from cultures of P. sydowiana. The compounds were identified based on spectroscopic data. The inhibitory activities against the 20S proteasome were evaluated. Compounds 1-3, 5, and 9-10 showed modest proteasome inhibition activities, while compound 8 showed strong activity with an IC50 of 1.2 ± 0.3 μM. This is the first study on the secondary metabolites produced by P. sydowiana and their proteasome inhibitory activities. The endophytic fungus P. sydowiana might be a good resource for proteasome inhibitors. PMID:27447600

  18. Electroanalysis of Plant Thiols

    PubMed Central

    Supalkova, Veronika; Huska, Dalibor; Diopan, Vaclav; Hanustiak, Pavel; Zitka, Ondrej; Stejskal, Karel; Baloun, Jiri; Pikula, Jiri; Havel, Ladislav; Zehnalek, Josef; Adam, Vojtech; Trnkova, Libuse; Beklova, Miroslava; Kizek, Rene

    2007-01-01

    Due to unique physico-chemical properties of –SH moiety thiols comprise wide group of biologically important compounds. A review devoted to biological functions of glutathione and phytochelatins with literature survey of methods used to analysis of these compounds and their interactions with cadmium(II) ions and Murashige-Skoog medium is presented. For these purposes electrochemical techniques are used. Moreover, we revealed the effect of three different cadmium concentrations (0, 10 and 100 μM) on cadmium uptake and thiols content in maize plants during 192 hours long experiments using differential pulse anodic stripping voltammetry to detect cadmium(II) ions and high performance liquid chromatography with electrochemical detection to determine glutathione. Cadmium concentration determined in tissues of the plants cultivated in nutrient solution containing 10 μM Cd was very low up to 96 hours long exposition and then the concentration of Cd markedly increased. On the contrary, the addition of 100 μM Cd caused an immediate sharp increase in all maize plant parts to 96 hours Cd exposition but subsequently the Cd concentration increased more slowly. A high performance liquid chromatography with electrochemical detection was used for glutathione determination in treated maize plants after 96 and 192 hours of treatment. The highest total content of glutathione per one plant was 6 μg (96 h, 10 μM Cd) in comparison with non-treated plant (control) where glutathione content was 1.5 μg. It can be concluded that electrochemical techniques have proved to be useful to analyse plant thiols.

  19. Secondary Metabolites from the Marine Algal-Derived Endophytic Fungi: Chemical Diversity and Biological Activity.

    PubMed

    Zhang, Peng; Li, Xin; Wang, Bin-Gui

    2016-06-01

    Marine algal-derived endophytic fungi have attracted considerable attention in the most recent two decades due to their prolific production of structurally diverse secondary metabolites with various biological activities. This review summarizes a total of 182 natural products isolated from marine algal-derived endophytic fungi in the past two decades. The emphasis is on the unique chemical diversity of these metabolic products, together with relevant biological activities.

  20. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    PubMed

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  1. Participation of covalent modification of Keap1 in the activation of Nrf2 by tert-butylbenzoquinone, an electrophilic metabolite of butylated hydroxyanisole

    SciTech Connect

    Abiko, Yumi; Miura, Takashi; Phuc, Bui Hoang; Shinkai, Yasuhiro; Kumagai, Yoshito

    2011-08-15

    Butylated hydroxyanisole (BHA) is an antioxidant and class-2B carcinogen. It is biotransformed to tert-butylhydroquinone (TBHQ), which readily auto-oxidizes to the electrophilic metabolite tert-butylbenzoquinone (TBQ). BHA and TBHQ activate Nrf2, a transcription factor that is negatively regulated by Keap1 and plays a role in the initial response to chemicals causing oxidative or electrophilic stress, although, the exact mechanism of Nrf2 activation remains unclear. Here, we examined the role of TBQ in Nrf2 activation. Exposure of RAW264.7 cells to TBQ activated Nrf2 and up-regulated its downstream proteins; under these conditions, TBQ produced cellular reactive oxygen species (ROS). However, while pretreatment with catalase conjugated with polyethylene glycol (PEG-CAT) did not affect the TBQ-induced activation of Nrf2, the ROS generation caused by TBQ was entirely abolished by PEG-CAT, suggesting that ROS is not the dominant factor for TBQ-dependent Nrf2 activation. A click chemistry technique indicated that TBQ chemically modifies Keap1. Furthermore, ultrahigh performance liquid chromatography-tandem mass spectrometry analysis with purified Keap1 revealed that TBQ covalently binds to Keap1 through Cys23, Cys151, Cys226, and Cys368. These results suggest that TBQ derived from BHA activates Nrf2 through electrophilic modification of Keap1 rather than ROS formation. - Research Highlights: > tert-Butylbenzoquinone (TBQ) activates Nrf2 in RAW264.7 cells. > ROS is not essential factor for Nrf2 activation caused by TBQ. > TBQ covalently binds to Keap1 through reactive thiols, resulting in Nrf2 activation.

  2. Photopatterned Thiol Surfaces for Biomolecule Immobilization

    PubMed Central

    Chen, Siyuan; Smith, Lloyd M.

    2009-01-01

    The ability to pattern small molecules and proteins on artificial surfaces is of importance for the development of new tools including tissue engineering, cell-based drug screening, and cell-based sensors. We describe here a novel “caged” thiol-mediated strategy for the fabrication of planar substrates patterned with biomolecules using photolithography. A thiol-bearing phosphoramidite (3-(2’-nitrobenzyl)thiopropyl (NBTP) phosphoramidite) was synthesized and coupled to a hydroxyl-terminated amorphous carbon substrate. A biocompatible oligo(ethylene glycol) spacer was used to resist nonspecific adsorption of protein and DNA and enhance flexibility of attached biomolecules. Thiol functionalities are revealed by UV irradiation of NBTP-modified surfaces. Both the surface coupling and photodeprotection were monitored by Polarization Modulation Fourier Transform Infrared Reflection Absorption Spectroscopy (PM-FTIRRAS) and X-ray Photoelectron Spectroscopy (XPS) measurements. The newly exposed thiols are chemically very active and react readily with a wide variety of groups. A series of molecules including biotin, DNA, and proteins were attached to the surfaces with retention of their biological activities, demonstrating the utility and generality of the approach. PMID:19821627

  3. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    PubMed

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease. PMID:18160846

  4. Redox activities of mono- and binuclear forms of low-molecular and protein-bound dinitrosyl iron complexes with thiol-containing ligands.

    PubMed

    Borodulin, Rostislav R; Dereven'kov, Ilia А; Burbaev, Dosymzhan Sh; Makarov, Sergei V; Mikoyan, Vasak D; Serezhenkov, Vladimir А; Kubrina, Lyudmila N; Ivanovic-Burmazovic, Ivana; Vanin, Anatoly F

    2014-08-31

    EPR, optical, electrochemical and stopped-flow methods were used to demonstrate that Fe(NO)2 fragments in paramagnetic mononuclear and diamagnetic binuclear forms of dinitrosyl iron complexes with glutathione are reversibly reduced by a two-electron mechanism to be further transformed from the initial state with d(7) configuration into states with the d(8) and d(9) electronic configurations of the iron atom. Under these conditions, both forms of DNIC display identical optical and EPR characteristics in state d(9) suggesting that reduction of the binuclear form of DNIC initiates their reversible decomposition into two mononuclear dinitrosyl iron fragments, one of which is EPR-silent (d(8)) and the other one is EPR-active (d(9)). Both forms of DNIC produce EPR signals with the following values of the g-factor: g⊥=2.01, g||=1.97, gaver.=2.0. M-DNIC with glutathione manifest an ability to pass into state d(9), however, only in solutions with a low content of free glutathione. Similar transitions were established for protein-bound М- and B-DNIC with thiol-containing ligands. PMID:24997418

  5. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    PubMed

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.

  6. Amplified and in situ detection of redox-active metabolite using a biobased redox capacitor.

    PubMed

    Kim, Eunkyoung; Gordonov, Tanya; Bentley, William E; Payne, Gregory F

    2013-02-19

    Redox cycling provides a mechanism to amplify electrochemical signals for analyte detection. Previous studies have shown that diverse mediators/shuttles can engage in redox-cycling reactions with a biobased redox capacitor that is fabricated by grafting redox-active catechols onto a chitosan film. Here, we report that redox cycling with this catechol-chitosan redox capacitor can amplify electrochemical signals for detecting a redox-active bacterial metabolite. Specifically, we studied the redox-active bacterial metabolite pyocyanin that is reported to be a virulence factor and signaling molecule for the opportunistic pathogen P. aeruginosa. We demonstrate that redox cycling can amplify outputs from various electrochemical methods (cyclic voltammetry, chronocoulometry, and differential pulse voltammetry) and can lower the detection limit of pyocyanin to 50 nM. Further, the compatibility of this biobased redox capacitor allows the in situ monitoring of the production of redox-active metabolites (e.g., pyocyanin) during the course of P. aeruginosa cultivation. We anticipate that the amplified output of redox-active virulence factors should permit an earlier detection of life-threatening infections by the opportunistic pathogen P. aeruginosa while the "bio-compatibility" of this measurement approach should facilitate in situ study of the spatiotemporal dynamics of bacterial redox signaling.

  7. Biotransformation of green tea polyphenols and the biological activities of those metabolites.

    PubMed

    Lambert, Joshua D; Sang, Shengmin; Yang, Chung S

    2007-01-01

    Green tea ( Camellia sinensis, Theaceae) and its major polyphenol constituents, the catechins, have been reported to have many health benefits including the prevention of cancer and heart disease. Many mechanisms of action have been proposed based on in vitro models; however, the importance of most of these mechanisms remains to be determined in vivo. The bioavailability and biotransformation of tea catechins play a key role in determining the importance of various mechanisms in vivo. Likewise, the biological activity and bioavailability of tea catechin metabolites, an understudied area, are important in understanding the potential beneficial effects of tea. In this article, we review the data available on the biotransformation of the tea catechins and the limited data set available on the biological activities of the catechin metabolites. Careful interpretation of available data, carefully designed animal experiments, and integration of bioavailability and biological activity data are needed if the disease preventive activity of tea is to be understood. We hope this article will spark research efforts on some of the important questions regarding tea polyphenol bioavailability, biotransformation, and the biological activities of tea catechin metabolites. PMID:17963356

  8. Global metabolite analysis of the land snail Theba pisana hemolymph during active and aestivated states.

    PubMed

    Bose, U; Centurion, E; Hodson, M P; Shaw, P N; Storey, K B; Cummins, S F

    2016-09-01

    The state of metabolic dormancy has fascinated people for hundreds of years, leading to research exploring the identity of natural molecular components that may induce and maintain this state. Many animals lower their metabolism in response to high temperatures and/or arid conditions, a phenomenon called aestivation. The biological significance for this is clear; by strongly suppressing metabolic rate to low levels, animals minimize their exposure to stressful conditions. Understanding blood or hemolymph metabolite changes that occur between active and aestivated animals can provide valuable insights relating to those molecular components that regulate hypometabolism in animals, and how they afford adaptation to their different environmental conditions. In this study, we have investigated the hemolymph metabolite composition from the land snail Theba pisana, a remarkably resilient mollusc that displays an annual aestivation period. Using LC-MS-based metabolomics analysis, we have identified those hemolymph metabolites that show significant changes in relative abundance between active and aestivated states. We show that certain metabolites, including some phospholipids [e.g. LysoPC(14:0)], and amino acids such as l-arginine and l-tyrosine, are present at high levels within aestivated snails. Further investigation of our T. pisana RNA-sequencing data elucidated the entire repertoire of phospholipid-synthesis genes in the snail digestive gland, as a precursor towards future comparative investigation between the genetic components of aestivating and non-aestivating species. In summary, we have identified a large number of metabolites that are elevated in the hemolymph of aestivating snails, supporting their role in protecting against heat or desiccation. PMID:27318654

  9. Global metabolite analysis of the land snail Theba pisana hemolymph during active and aestivated states.

    PubMed

    Bose, U; Centurion, E; Hodson, M P; Shaw, P N; Storey, K B; Cummins, S F

    2016-09-01

    The state of metabolic dormancy has fascinated people for hundreds of years, leading to research exploring the identity of natural molecular components that may induce and maintain this state. Many animals lower their metabolism in response to high temperatures and/or arid conditions, a phenomenon called aestivation. The biological significance for this is clear; by strongly suppressing metabolic rate to low levels, animals minimize their exposure to stressful conditions. Understanding blood or hemolymph metabolite changes that occur between active and aestivated animals can provide valuable insights relating to those molecular components that regulate hypometabolism in animals, and how they afford adaptation to their different environmental conditions. In this study, we have investigated the hemolymph metabolite composition from the land snail Theba pisana, a remarkably resilient mollusc that displays an annual aestivation period. Using LC-MS-based metabolomics analysis, we have identified those hemolymph metabolites that show significant changes in relative abundance between active and aestivated states. We show that certain metabolites, including some phospholipids [e.g. LysoPC(14:0)], and amino acids such as l-arginine and l-tyrosine, are present at high levels within aestivated snails. Further investigation of our T. pisana RNA-sequencing data elucidated the entire repertoire of phospholipid-synthesis genes in the snail digestive gland, as a precursor towards future comparative investigation between the genetic components of aestivating and non-aestivating species. In summary, we have identified a large number of metabolites that are elevated in the hemolymph of aestivating snails, supporting their role in protecting against heat or desiccation.

  10. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents.

    PubMed

    Patwardhan, Amol M; Akopian, Armen N; Ruparel, Nikita B; Diogenes, Anibal; Weintraub, Susan T; Uhlson, Charis; Murphy, Robert C; Hargreaves, Kenneth M

    2010-05-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is the principal detector of noxious heat in the peripheral nervous system. TRPV1 is expressed in many nociceptors and is involved in heat-induced hyperalgesia and thermoregulation. The precise mechanism or mechanisms mediating the thermal sensitivity of TRPV1 are unknown. Here, we have shown that the oxidized linoleic acid metabolites 9- and 13-hydroxyoctadecadienoic acid (9- and 13-HODE) are formed in mouse and rat skin biopsies by exposure to noxious heat. 9- and 13-HODE and their metabolites, 9- and 13-oxoODE, activated TRPV1 and therefore constitute a family of endogenous TRPV1 agonists. Moreover, blocking these substances substantially decreased the heat sensitivity of TRPV1 in rats and mice and reduced nociception. Collectively, our results indicate that HODEs contribute to the heat sensitivity of TRPV1 in rodents. Because oxidized linoleic acid metabolites are released during cell injury, these findings suggest a mechanism for integrating the hyperalgesic and proinflammatory roles of TRPV1 and linoleic acid metabolites and may provide the foundation for investigating new classes of analgesic drugs.

  11. Nuclear thiol redox systems in plants.

    PubMed

    Delorme-Hinoux, Valérie; Bangash, Sajid A K; Meyer, Andreas J; Reichheld, Jean-Philippe

    2016-02-01

    Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling. PMID:26795153

  12. In vitro evaluation of the antimicrobial activity of lichen metabolites as potential preservatives.

    PubMed Central

    Ingólfsdóttir, K; Bloomfield, S F; Hylands, P J

    1985-01-01

    Antimicrobial screening of several lichen species and subsequent isolation and structure elucidation of active compounds revealed that the hydrolysis products of certain lichen metabolites, i.e., depsides, were active against gram-negative bacteria and fungi as well as gram-positive bacteria. The active constituents isolated from Stereocaulon alpinum and Peltigera aphthosa were identified, respectively, as methyl beta-orsellinate and a mixture of methyl and ethyl orsellinates. MIC determinations indicated that activity of these compounds was superior to that of the commonly used preservative agents methyl and propyl p-hydroxybenzoates and was of the same order as that of chlorocresol. PMID:3834834

  13. Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities

    PubMed Central

    Jin, Un-Ho; Lee, Syng-Ook; Sridharan, Gautham; Lee, Kyongbum; Davidson, Laurie A.; Jayaraman, Arul; Chapkin, Robert S.; Alaniz, Robert

    2014-01-01

    The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome. PMID:24563545

  14. Thiol Reactive Probes and Chemosensors

    PubMed Central

    Peng, Hanjing; Chen, Weixuan; Cheng, Yunfeng; Hakuna, Lovemore; Strongin, Robert; Wang, Binghe

    2012-01-01

    Thiols are important molecules in the environment and in biological processes. Cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and hydrogen sulfide (H2S) play critical roles in a variety of physiological and pathological processes. The selective detection of thiols using reaction-based probes and sensors is very important in basic research and in disease diagnosis. This review focuses on the design of fluorescent and colorimetric probes and sensors for thiol detection. Thiol detection methods include probes and labeling agents based on nucleophilic addition and substitution, Michael addition, disulfide bond or Se-N bond cleavage, metal-sulfur interactions and more. Probes for H2S are based on nucleophilic cyclization, reduction and metal sulfide formation. Thiol probe and chemosensor design strategies and mechanism of action are discussed in this review. PMID:23202239

  15. Reproductive activity in the peninsular pronghorn determined from excreted gonadal steroid metabolites.

    PubMed

    Kersey, David C; Holland, Jeff; Eng, Curtis

    2015-01-01

    Fecal hormone monitoring was employed to better define annual patterns of reproductive steroid metabolites from a breeding pair of peninsular pronghorn (Antilocapra americana peninsularis) maintained at the Los Angeles Zoo. Notably in the female, increased excretion of estrogen metabolites occurred during the breeding season (Jun-Aug), and a biphasic pattern in progestagen activity was measured during gestation. Of additional interest, a preterm increase in estrogen that continued for an additional 64 days post partum. Male androgen activity correlated with the female estrogen patterns, with a single successful copulation occurring during the breeding season; interestingly however, the male exhibited no reproductive behaviors during the female's preterm/post partum estrogen increase. These data are the first reproductive steroid profiles for the peninsular pronghorn and provide valuable insight that will aid efforts that link the species' reproductive physiology with conservation management. PMID:25652944

  16. Plants used in traditional medicine: extracts and secondary metabolites exhibiting antileishmanial activity.

    PubMed

    Passero, Luiz Felipe Domingues; Laurenti, Marcia D; Santos-Gomes, Gabriela; Soares Campos, Bruno Luiz; Sartorelli, Patricia; Lago, Joao Henrique G

    2014-01-01

    Plants and their extracts have been used traditionally against different pathologies, and in some poor regions they are the only therapeutic source for treatments. Moreover, the identification of specific active secondary metabolites can be account for amelioration of clinical status of suffering individual. A series of ethnopharmacological surveys conducted in Brazil recorded the traditional use of plants against different pathologies and interestingly, some of them presented antileishmanial activity in vitro and in vivo, possibly due to their immunostimulatory, healing and microbicidal properties. Of note, Leishmania parasites can alter patient's immunological status, leading to the development of extensive skin and/or visceral alterations. Therefore, the extracts or secondary metabolites presented in plants that might be capable of improving the pathological conditions can be attractive candidates in the development of new chemotherapeuticals against leishmaniosis.

  17. A comparison of cocaine and its metabolite norcocaine: effects on locomotor activity.

    PubMed

    Elliott, P J; Rosen, G M; Nemeroff, C B

    1987-03-01

    Intraventricular and intraperitoneal administration of cocaine and its metabolite norcocaine were studied in adult male rats. Norcocaine (10-100 micrograms) had no behavioral activity following central infusion but proved to be toxic at high doses (50-100 mg/kg) when given peripherally. Cocaine at high doses (100 micrograms), produced possible hypoactivity after central injections but produced significant hyperactivity after peripheral administration (20 mg/kg).

  18. Differential effects of furnidipine and its active metabolites in rat isolated working heart.

    PubMed

    Krzemiński, Tadeusz F; Hudziak, Damian; Sielańczyk, Andrzej W; Porc, Maurycy; Kedzia, Agnieszka

    2008-01-01

    1,4,-dihydropyridines, belonging to the class of "privileged structures", are known to protect the heart from stunning, ischemia and ventricular arrhythmias and mainly used in hypertension. The aim of this study was to compare the continuous infusion of parent drug, furnidipine, with its two active metabolites (M-2; M-3) in rat isolated working heart model, where the following parameters were measured and calculated: heart rate, preload pressure, aortic systolic and diastolic pressures (AoD), as well as +/-dP/dt, aortic (AF) and coronary flow (CF), oxygen and carbon dioxide partial pressures and pH values in pulmonary effluent, myocardial oxygen consumption. At first, the optimal vasodilatatory dose of M-2 was estimated and afterwards it was compared with equivalent doses of both remaining substances. The strongest vasodilatatory effects were observed after the lowest dose of M-2 was used (10(-7) M), at the same time being without marked influence on pressure parameters. The pro-drug evoked significantly weaker influence on both flows. Furthermore, furnidipine significantly reduced AoD and AF in comparison to control as well as +dP/dt in comparison to the initial values, while M-2 did not. Both metabolites caused a significant CF increase, but M-3 additionally the AoS and AoD decrease in comparison to the control. Regarding clear differences in the measured parameters between the pro-drug and its metabolites found, the obtained results allow to claim that the metabolites vs. furnidipine possess a beneficial influence. The distinct flow shift from aorta into the coronaries was observed only after M-2 and to a lesser extent--M-3. The cardio-depressant potency of both metabolites is overcome by advantageous vasodilatatory effect. M-2, being a final product, easier to control and at the same time a precursor of the new chemical class of therapeutics, is promising as a cardio-protective agent.

  19. Quantification of oxidative post-translational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags (ICAT) and mass spectrometry

    PubMed Central

    Sethuraman, Mahadevan; Clavreul, Nicolas; Huang, Hua; McComb, Mark E; Costello, Catherine E; Cohen, Richard A

    2007-01-01

    p21ras GTPase is the protein product of the most commonly mutated human oncogene and has been identified as a target for reactive oxygen and nitrogen species (ROS/RNS). Post-translational modification of reactive thiols, by reversible S-glutathiolation and S-nitrosation, and potentially also by irreversible oxidation, may have significant effects on p21ras activity. Here we used an isotope-coded affinity tag (ICAT) and mass spectrometry to quantitate the reversible and irreversible oxidative post-translational thiol modifications of p21ras caused by peroxynitrite (ONOO−) or glutathione disulfide (GSSG). The activity of p21ras was significantly increased following exposure to GSSG, but not to ONOO−. The results of LC-MS/MS analysis of tryptic peptides of p21ras treated with ONOO− showed that ICAT labeling of Cys118 was decreased by 47%, whereas Cys80 was not significantly affected and was thereby shown to be less reactive. The extent of S-glutathiolation of Cys118 by GSSG was 53%, and that of the terminal cysteines was 85%, as estimated by the decrease in ICAT labeling. The changes in ICAT labeling caused by GSSG were reversible by chemical reduction, but those caused by peroxynitrite were irreversible. The quantitative changes in thiol modification caused by GSSG associated with increased activity demonstrate the potential importance of redox modulation of p21ras. PMID:17320764

  20. Biological activity of secondary metabolites produced by a strain of Pseudomonas fluorescens.

    PubMed

    Boruah, H P Deka; Kumar, B S Dileep

    2002-01-01

    Biological activity of secondary metabolites produced by a plant-growth-promoting Pseudomonas fluorescens was evaluated. The strain produced antibiotics phenazine (PHE), 2,4-diacetylphloroglucinol (PHL) and siderophore pyoverdin (PYO) in standard King's B and succinic acid media, respectively. After extraction, PYO was identified by comparing the UV-spectra and moss-green color development after 'diazotized sulfanilic acid' (DSA) spray in TLC. PHE and PHL were identified by comparing standard compounds on TLC and orange-color development immediately after DSA spray. In vitro antibiosis study of the metabolites revealed their antibacterial and antifungal activity against bacterial test organisms Corynebacterium sp., Mycobacterium phlei and M. smegmatis and test fungi Fusarium moniliforme, F. oxysporum, F. semitectum, F. solani and Rhizoctonia solani. A statistically significantly higher plant growth was recorded in siderophore-amended plantlets under gnotobiotic conditions whereas PHE and PHL did not show any plant-growth-promoting activity. These results support the importance of the secondary metabolites produced by the strain P. fluorescens in enhancing plant growth and in controlling fungal and bacterial pathogens. PMID:12422510

  1. Selective surface activation of a functional monolayer for the fabrication of nanometer scale thiol patterns and directed self-assembly of gold nanoparticles.

    PubMed

    Fresco, Zachary M; Fréchet, Jean M J

    2005-06-15

    Application of a voltage bias between the tip of an atomic force microscope (AFM) and a silicon substrate causes the localized modification of a specially designed self-assembled monolayer (SAM), transforming a surface-bound thiocarbonate into a surface-bound thiol. The resulting surface-bound thiols are used to direct the patternwise self-assembly of gold nanoparticles (AuNPs). This methodology is applied to deposit individual AuNPs onto a surface with nanometer precision and to produce 10 nm lines of closely spaced AuNPs that are a single nanoparticle in width.

  2. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    PubMed Central

    Omotayo, T.I.; Akinyemi, G.S.; Omololu, P.A.; Ajayi, B.O.; Akindahunsi, A.A.; Rocha, J.B.T.; Kade, I.J.

    2014-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump. PMID:25618580

  3. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation.

    PubMed

    Delaunay, Agnès; Pflieger, Delphine; Barrault, Marie Bénédicte; Vinh, Joelle; Toledano, Michel B

    2002-11-15

    The Yap1 transcription factor regulates hydroperoxide homeostasis in S. cerevisiae. Yap1 is activated by oxidation when hydroperoxide levels increase. We show that Yap1 is not directly oxidized by hydroperoxide. We identified the glutathione peroxidase (GPx)-like enzyme Gpx3 as a second component of the pathway, serving the role of sensor and transducer of the hydroperoxide signal to Yap1. When oxidized by H2O2, Gpx3 Cys36 bridges Yap1 Cys598 by a disulfide bond. This intermolecular disulfide bond is then resolved into a Yap1 intramolecular disulfide bond, the activated form of the regulator. Thioredoxin turns off the pathway by reducing both sensor and regulator. These data reveal a redox-signaling function for a GPx-like enzyme and elucidate a eukaryotic hydroperoxide-sensing mechanism. Gpx3 is thus a hydroperoxide receptor and redox-transducer. PMID:12437921

  4. Aldosterone Increases Oxidant Stress to Impair Guanylyl Cyclase Activity by Cysteinyl Thiol Oxidation in Vascular Smooth Muscle Cells*S⃞

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; Handy, Diane E.; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A.

    2009-01-01

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO·); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO· to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10-9-10-7 mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a β1-subunit cysteinyl residue demonstrated previously to modulate NO· sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC β1-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H2O2) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H2O2 did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO·-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC. PMID:19141618

  5. Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells.

    PubMed

    Maron, Bradley A; Zhang, Ying-Yi; Handy, Diane E; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A

    2009-03-20

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO(.)); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO(.) to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10(-9)-10(-7) mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a beta(1)-subunit cysteinyl residue demonstrated previously to modulate NO(.) sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC beta(1)-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H(2)O(2)) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H(2)O(2) did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO(.)-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC.

  6. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem".

    PubMed

    Gomes, Nelson G M; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-05-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  7. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  8. Secondary metabolites from the South China Sea invertebrates: chemistry and biological activity.

    PubMed

    Zhang, Wen; Guo, Yue-Wei; Gu, Yucheng

    2006-01-01

    The increasing demand for new lead compounds in the pharmaceutical and agrochemical industries has driven scientists to search for new sources of bioactive natural products. Marine invertebrates are a rich source of novel, bioactive secondary metabolites and they have attracted a great deal of attention from scientists in the fields of chemistry, pharmacology, ecology, and molecular biology. During the past 25 years, many complex and structurally unique secondary metabolites have been isolated from the invertebrates inhabiting the South China Sea. These metabolites are responsible for various bioactivities such as anti-tumor, anti-inflammation and antioxidant activities, and/or they act on the cardiovascular system. This review will focus on the marine natural product chemistry of invertebrates from the South China Sea, aiming to give the reader a brief view of the compounds isolated from these invertebrates, as well as their biological activities. The article covers the literature published during the period from the beginning of 1980 to the end of 2005, with 340 citations and 811 compounds from invertebrates from the South China Sea, including sponges, coelenterates, molluscs and echinoderms.

  9. Lipopeptaibol metabolites of tolypocladium geodes: total synthesis, preferred conformation, and membrane activity.

    PubMed

    Rainaldi, Mario; Moretto, Alessandro; Peggion, Cristina; Formaggio, Fernando; Mammi, Stefano; Peggion, Evaristo; Galvez, José Antonio; Díaz-de-Villegas, Maria Dolores; Cativiela, Carlos; Toniolo, Claudio

    2003-08-01

    We have synthesized by solution methods and characterized the lipopeptaibol metabolite LP237-F8 extracted from the fungus Tolypocladium geodes and five selected analogues with the Etn-->Aib or Etn-->Nva replacement at position 8 and/or a triple Gln-->Glu(OMe) replacement at positions 5, 6, and 9 (Etn=Calpha-ethylnorvaline, Aib=alpha-aminoisobutyric acid, Nva=norvaline). Conformation analysis, performed by FT-IR absorption, NMR, and CD techniques, strongly supports the view that the six terminally blocked decapeptides are highly helical in solution. Helix topology and amphiphilic character are responsible for their remarkable membrane activity. At position 8 the combination of high hydrophobicity and Calpha tetrasubstitution, as in the Etn-containing LP237-F8 metabolite, has a positive effect on membrane interaction.

  10. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites.

    PubMed

    Gliszczyńska, Anna; Łysek, Agnieszka; Janeczko, Tomasz; Świtalska, Marta; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2011-04-01

    Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated. PMID:21377882

  11. Evaluation of the pharmacological activity of the major mexiletine metabolites on skeletal muscle sodium currents

    PubMed Central

    De Bellis, M; De Luca, A; Rana, F; Cavalluzzi, M M; Catalano, A; Lentini, G; Franchini, C; Tortorella, V; Conte Camerino, D

    2006-01-01

    Background and purpose: Mexiletine (Mex), an orally effective antiarrhythmic agent used to treat ventricular arrhythmias, has also been found to be effective for myotonia and neuropathic pain. It is extensively metabolized in humans but little information exists about the pharmacodynamic properties of its metabolites. Experimental approach: To determine their contribution to the clinical activity of Mex, p-hydroxy-mexiletine (PHM), hydroxy-methyl-mexiletine (HMM), N-hydroxy-mexiletine (NHM) (phase I reaction products) and N-carbonyloxy β-D-glucuronide (NMG) (phase II reaction product) were tested on sodium currents (INa) of frog skeletal muscle fibres. Sodium currents were elicited with depolarizing pulses from different holding potentials (HP=−140, −100, −70 mV) and stimulation frequencies (0.25, 0.5, 1, 2, 5, 10 Hz) using the vaseline-gap voltage-clamp method. Key results: All the hydroxylated derivatives blocked the sodium channel in a voltage- and use-dependent manner. The PHM, HMM and NHM metabolites were up to 10-fold less effective than the parent compound. However, HMM showed a greater use-dependent behaviour (10 Hz), compared to Mex and the other metabolites. Similar to Mex, these products behaved as inactivating channel blockers. Conjugation with glucuronic acid (NMG) resulted in almost complete abolition of the pharmacological activity of the parent compound. Conclusions and Implications: Thus, although less potent, the phase I metabolites tested demonstrated similar pharmacological behaviour to Mex and might contribute to its clinical profile. PMID:16921388

  12. Mutation of the Thiol-Disulfide Oxidoreductase SdbA Activates the CiaRH Two-Component System, Leading to Bacteriocin Expression Shutdown in Streptococcus gordonii

    PubMed Central

    Davey, Lauren; Halperin, Scott A.

    2015-01-01

    ABSTRACT Streptococcus gordonii is a commensal inhabitant of the human oral cavity. To maintain its presence as a major component of oral biofilms, S. gordonii secretes inhibitory molecules such as hydrogen peroxide and bacteriocins to inhibit competitors. S. gordonii produces two nonmodified bacteriocins (i.e., Sth1 and Sth2) that are regulated by the Com two-component regulatory system, which also regulates genetic competence. Previously we found that the thiol-disulfide oxidoreductase SdbA was required for bacteriocin activity; however, the role of SdbA in Com signaling was not clear. Here we demonstrate that ΔsdbA mutants lacked bacteriocin activity because the bacteriocin gene sthA was strongly repressed and the peptides were not secreted. Addition of synthetic competence-stimulating peptide to the medium reversed the phenotype, indicating that the Com pathway was functional but was not activated in the ΔsdbA mutant. Repression of bacteriocin production was mediated by the CiaRH two-component system, which was strongly upregulated in the ΔsdbA mutant, and inactivation of CiaRH restored bacteriocin production. The CiaRH-induced protease DegP was also upregulated in the ΔsdbA mutant, although it was not required for inhibition of bacteriocin production. This establishes CiaRH as a regulator of Sth bacteriocin activity and links the CiaRH and Com systems in S. gordonii. It also suggests that either SdbA or one of its substrates is an important factor in regulating activation of the CiaRH system. IMPORTANCE Streptococcus gordonii is a noncariogenic colonizer of the human oral cavity. To be competitive in the oral biofilm, S. gordonii secretes antimicrobial peptides called bacteriocins, which inhibit closely related species. Our previous data showed that mutation of the disulfide oxidoreductase SdbA abolished bacteriocin production. In this study, we show that mutation of SdbA generates a signal that upregulates the CiaRH two-component system, which in turn

  13. Antimicrobial activity of secondary metabolites from Streptomyces sp. K15, an endophyte in Houttuynia cordata Thunb.

    PubMed

    Chen, Huabao; Yang, Chunping; Ke, Tao; Zhou, Miaomiao; Li, Zhaojun; Zhang, Min; Gong, Guoshu; Hou, Taiping

    2015-01-01

    We isolated Streptomyces sp. K15 from the root tissue of Houttuynia cordata Thunb and found that some of its secondary metabolites exhibited significant antimicrobial activity against Botrytis cinerea. Moreover, we separated, purified and identified the major active ingredient to be 2-pyrrol formic acid by using silica gel column chromatography, high-performance liquid chromatography and NMR analysis of the spectral data. 2-Pyrrol formic acid critically inhibited the growth of some phytopathogenic bacteria. Therefore, it has potential value in agricultural applications. PMID:25675117

  14. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties

    PubMed Central

    2013-01-01

    The resinous metabolites commonly known as frankincense or olibanum are produced by trees of the genus Boswellia and have attracted increasing popularity in Western countries in the last decade for their various pharmacological activities. This review described the pharmacological specific details mainly on anti-inflammatory, anti-carcinogenic, anti-bacterial and apoptosis-regulating activities of individual triterpenoid together with the relevant mechanism. In addition, species-characterizing triterpenic markers with the methods for their detection, bioavailability, safety and other significant properties were reviewed for further research. PMID:24028654

  15. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity.

    PubMed

    Čvančarová, Monika; Moeder, Monika; Filipová, Alena; Cajthaml, Tomáš

    2015-10-01

    A group of white rot fungi (Irpex lacteus, Panus tigrinus, Dichomitus squalens, Trametes versicolor and Pleurotus ostreatus) was investigated for the biodegradation of norfloxacin (NOR), ofloxacin (OF) and ciprofloxacin (CIP). The selected fluoroquinolones were readily degraded almost completely by I. lacteus and T. versicolor within 10 and 14 d of incubation in liquid medium, respectively. The biodegradation products were identified by liquid chromatography-mass spectrometry. The analyses indicated that the fungi use similar mechanisms to degrade structurally related antibiotics. The piperazine ring of the molecules is preferably attacked via either substitution or/and decomposition. In addition to the degradation efficiency, attention was devoted to the residual antibiotic activities estimated using Gram-positive and Gram-negative bacteria. Only I. lacteus was able to remove the antibiotic activity during the course of the degradation of NOR and OF. The product-effect correlations evaluated by Principal Component Analysis (PCA) enabled elucidation of the participation of the individual metabolites in the residual antibacterial activity. Most of the metabolites correlated with the antibacterial activity, explaining the rather high residual activity remaining after the biodegradation. PCA of ligninolytic enzyme activities indicated that manganese peroxidase might participate in the degradation.

  16. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification.

    PubMed

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S; Kapteyn, Jeremy; Zhuang, Xiaofeng; Hasebe, Mitsuyasu; Stewart, C Neal; Gang, David R; Chen, Feng

    2012-09-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5μM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC-MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  17. Identification of metabolites from an active fraction of Cajanus cajan seeds by high resolution mass spectrometry.

    PubMed

    Tekale, Satishkumar S; Jaiwal, Bhimrao V; Padul, Manohar V

    2016-11-15

    Antioxidants are important food additives which prolong food storage due to their protective effects against oxidative degradation of foods by free radicals. However, the synthetic antioxidants show toxic properties. Alternative economical and eco-friendly approach is screening of plant extract for natural antioxidants. Plant phenolics are potent antioxidants. Hence, in present study Cajanus cajan seeds were analyzed for antioxidant activity, Iron chelating activity and total phenolic content. The antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showed 71.3% inhibition and 65.8% Iron chelating activity. Total 37 compounds including some short peptides and five major abundant compounds were identified in active fraction of C. cajan seeds. This study concludes that C. cajan seeds are good source of antioxidants and Iron chelating activity. Metabolites found in C. cajan seeds which remove reactive oxygen species (ROS), may help to alleviate oxidative stress associated dreaded health problem like cancer and cardiovascular diseases. PMID:27283694

  18. Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities.

    PubMed

    Larrosa, Mar; González-Sarrías, Antonio; García-Conesa, María Teresa; Tomás-Barberán, Francisco A; Espín, Juan Carlos

    2006-03-01

    Urolithins A and B (hydroxy-6H-dibenzo[b,d]pyran-6-one derivatives) are colonic microflora metabolites recently proposed as biomarkers of human exposure to dietary ellagic acid derivatives. Molecular models suggest that urolithins could display estrogenic and/or antiestrogenic activity. To this purpose, both urolithins and other known phytoestrogens (genistein, daidzein, resveratrol, and enterolactone) were assayed to evaluate the capacity to induce cell proliferation on the estrogen-sensitive human breast cancer MCF-7 cells as well as the ability to bind to alpha- and beta-estrogen receptors. Both urolithins A and B showed estrogenic activity in a dose-dependent manner even at high concentrations (40 microM), without antiproliferative or toxic effects, whereas the other phytoestrogens inhibited cell proliferation at high concentrations. Overall, urolithins showed weaker estrogenic activity than the other phytoestrogens. However, both urolithins displayed slightly higher antiestrogenic activity (antagonized the growth promotion effect of 17-beta-estradiol in a dose-dependent manner) than the other phytoestrogens. The IC(50) values for the ERalpha and ERbeta binding assays were 0.4 and 0.75 microM for urolithin A; 20 and 11 microM for urolithin B; 3 and 0.02 for genistein; and 2.3 and 1 for daidzein, respectively; no binding was detected for resveratrol and enterolactone. Urolithins A and B entered into MCF-7 cells and were metabolized to yield mainly urolithin-sulfate derivatives. These results, together with previous studies regarding absorption and metabolism of dietary ellagitannins and ellagic acid in humans, suggest that the gut microflora metabolites urolithins are potential endocrine-disrupting molecules, which could resemble other described "enterophytoestrogens" (microflora-derived metabolites with estrogenic/antiestrogenic activity). Further research is warranted to evaluate the possible role of ellagitannins and ellagic acid as dietary "pro-phytoestrogens".

  19. Comparison of the circulating metabolite profile of PF-04991532, a hepatoselective glucokinase activator, across preclinical species and humans: potential implications in metabolites in safety testing assessment.

    PubMed

    Sharma, Raman; Litchfield, John; Bergman, Arthur; Atkinson, Karen; Kazierad, David; Gustavson, Stephanie M; Di, Li; Pfefferkorn, Jeffrey A; Kalgutkar, Amit S

    2015-02-01

    A previous report from our laboratory disclosed the identification of PF-04991532 [(S)-6-(3-cyclopentyl-2-(4-trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid] as a hepatoselective glucokinase activator for the treatment of type 2 diabetes mellitus. Lack of in vitro metabolic turnover in microsomes and hepatocytes from preclinical species and humans suggested that metabolism would be inconsequential as a clearance mechanism of PF-04991532 in vivo. Qualitative examination of human circulating metabolites using plasma samples from a 14-day multiple ascending dose clinical study, however, revealed a glucuronide (M1) and monohydroxylation products (M2a and M2b/M2c) whose abundances (based on UV integration) were greater than 10% of the total drug-related material. Based on this preliminary observation, mass balance/excretion studies were triggered in animals, which revealed that the majority of circulating radioactivity following the oral administration of [¹⁴C]PF-04991532 was attributed to an unchanged parent (>70% in rats and dogs). In contrast with the human circulatory metabolite profile, the monohydroxylated metabolites were not detected in circulation in either rats or dogs. Available mass spectral evidence suggested that M2a and M2b/M2c were diastereomers derived from cyclopentyl ring oxidation in PF-04991532. Because cyclopentyl ring hydroxylation on the C-2 and C-3 positions can generate eight possible diastereomers, it was possible that additional diastereomers may have also formed and would need to be resolved from the M2a and M2b/M2c peaks observed in the current chromatography conditions. In conclusion, the human metabolite scouting study in tandem with the animal mass balance study allowed early identification of PF-04991532 oxidative metabolites, which were not predicted by in vitro methods and may require additional scrutiny in the development phase of PF-04991532.

  20. Reversible inactivation of CO dehydrogenase with thiol compounds

    SciTech Connect

    Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.; Marx, Christian; Meyer-Klaucke, Wolfram; Meyer, Ortwin

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  1. The redox-active drug metronidazole and thiol-depleting garlic compounds act synergistically in the protist parasite Spironucleus vortens.

    PubMed

    Williams, C F; Vacca, A R; Dunham, L; Lloyd, D; Coogan, M P; Evans, G; Graz, M; Cable, J

    2016-01-01

    Spironucleus vortens is a protozoan parasite associated with significant mortalities in the freshwater angelfish, Pterophyllum scalare. Control of this parasite is especially problematic due to restrictions on the use of the drug of choice, metronidazole (MTZ), on fish farms. Use of garlic (Allium sativum) is undergoing a renaissance following experimental validations of its antimicrobial efficiency. Ajoene ((E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide), is a stable transformation product of allicin, the primary biologically active component of garlic. In the current study, an ajoene oil crude extract had a minimum inhibitory concentration (MIC) of 40μg/ml against S. vortens. GC-MS and NMR spectroscopy revealed this ajoene extract contained a mixture of the (E) and (Z)-ajoene isomers along with diallyl disulphide (DADS) and diallyl trisulphide (DATS). The only component of the ajoene crude oil found to substantially inhibit S. vortens growth by optical density monitoring (Bioscreen C Reader) was (Z)-ajoene (MIC 16μg/ml). Ajoene oil acted in synergy with MTZ in vitro, reducing the individual MIC of this drug (4μg/ml) by 16-fold, and that of ajoene oil by 200-fold with a fractional inhibitory concentration (FIC) index of 0.263. This synergistic interaction was confirmed in vivo. S. vortens-infected Pterophyllum scalare angelfish dosed orally with 0.5% (v/w) MTZ combined with 0.05% (v/w) ajoene displayed a significant reduction in faecal trophozoite count, whilst those fed on 0.5% MTZ flakes (half the recommended oral dose) alone did not. This study demonstrates for the first time the synergistic interaction between the synthetic drug MTZ and natural ajoene oil both in vitro and in vivo. Future work should evaluate the potential synergy of ajoene and MTZ against MTZ-resistant bacteria and protists. PMID:26968264

  2. The redox-active drug metronidazole and thiol-depleting garlic compounds act synergistically in the protist parasite Spironucleus vortens.

    PubMed

    Williams, C F; Vacca, A R; Dunham, L; Lloyd, D; Coogan, M P; Evans, G; Graz, M; Cable, J

    2016-01-01

    Spironucleus vortens is a protozoan parasite associated with significant mortalities in the freshwater angelfish, Pterophyllum scalare. Control of this parasite is especially problematic due to restrictions on the use of the drug of choice, metronidazole (MTZ), on fish farms. Use of garlic (Allium sativum) is undergoing a renaissance following experimental validations of its antimicrobial efficiency. Ajoene ((E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide), is a stable transformation product of allicin, the primary biologically active component of garlic. In the current study, an ajoene oil crude extract had a minimum inhibitory concentration (MIC) of 40μg/ml against S. vortens. GC-MS and NMR spectroscopy revealed this ajoene extract contained a mixture of the (E) and (Z)-ajoene isomers along with diallyl disulphide (DADS) and diallyl trisulphide (DATS). The only component of the ajoene crude oil found to substantially inhibit S. vortens growth by optical density monitoring (Bioscreen C Reader) was (Z)-ajoene (MIC 16μg/ml). Ajoene oil acted in synergy with MTZ in vitro, reducing the individual MIC of this drug (4μg/ml) by 16-fold, and that of ajoene oil by 200-fold with a fractional inhibitory concentration (FIC) index of 0.263. This synergistic interaction was confirmed in vivo. S. vortens-infected Pterophyllum scalare angelfish dosed orally with 0.5% (v/w) MTZ combined with 0.05% (v/w) ajoene displayed a significant reduction in faecal trophozoite count, whilst those fed on 0.5% MTZ flakes (half the recommended oral dose) alone did not. This study demonstrates for the first time the synergistic interaction between the synthetic drug MTZ and natural ajoene oil both in vitro and in vivo. Future work should evaluate the potential synergy of ajoene and MTZ against MTZ-resistant bacteria and protists.

  3. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    PubMed

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons. PMID:26364317

  4. Oxidative metabolism of ferrocene analogues of tamoxifen: characterization and antiproliferative activities of the metabolites.

    PubMed

    Richard, Marie-Aude; Hamels, Didier; Pigeon, Pascal; Top, Siden; Dansette, Patrick M; Lee, Hui Zhi Shirley; Vessières, Anne; Mansuy, Daniel; Jaouen, Gérard

    2015-06-01

    Ferrociphenols have been found to have high antiproliferative activity against estrogen-independent breast cancer cells. The rat and human liver microsome-mediated metabolism of three compounds of the ferrocifen (FC) family, 1,1-bis(4-hydroxyphenyl)-2-ferrocenyl-but-1-ene (FC1), 1-(4-hydroxyphenyl)-1-(phenyl)-2-ferrocenyl-but-1-ene (FC2), and 1-[4-(3-dimethylaminopropoxy)phenyl]-1-(4-hydroxyphenyl)-2-ferrocenyl-but-1-ene (FC3), was studied. Three main metabolite classes were identified: quinone methides (QMs) deriving from two-electron oxidation of FCs, cyclic indene products (CPs) deriving from acid-catalyzed cyclization of QMs, and allylic alcohols (AAs) deriving from hydroxylation of FCs. These metabolites are generated by cytochromes P450 (P450s), as shown by experiments with either N-benzylimidazole as a P450 inhibitor or recombinant human P450s. Such P450-dependent oxidation of the phenol function and hydroxylation of the allylic CH2 group of FCs leads to the formation of QM and AA metabolites, respectively. Some of the new ferrociphenols obtained in this study were found to exhibit remarkable antiproliferative effects toward MDA-MB-231 hormone-independent breast cancer cells.

  5. Linear glandular trichomes of Helianthus (Asteraceae): morphology, localization, metabolite activity and occurrence

    PubMed Central

    Aschenbrenner, Anna-Katharina; Horakh, Silke; Spring, Otmar

    2013-01-01

    Capitate glandular trichomes of sunflower are well investigated, but detailed studies are lacking for the linear glandular trichomes (LGT), a second type of physiologically active plant hair present on the surface of sunflowers. Light, fluorescence and scanning electron microscopy as well as histochemical staining were used to investigate the structure and metabolite deposition of LGT. Consisting of 6–11 linearly arranged cells, LGT were found on the surface of most plant organs of Helianthus annuus. They were associated with the leaf vascular system, and also occurred along petioles, stems and the abaxial surface of chaffy bracts, ray and disc florets. The highest density was found on the abaxial surface of phyllaries. Phenotypically similar LGT were common in all species of the genus, but also occurred in most other genera of the Helianthinae so far screened. Brownish and fluorescent metabolites of an as yet unknown chemical structure, together with terpenoids, were produced and stored in apical cells of LGT. The deposition of compounds gradually progressed from the tip cell to the basal cells of older trichomes. This process was accompanied by nucleus degradation in metabolite-accumulating cells. The localization of these trichomes on prominent plant parts of the apical bud and the capitulum combined with the accumulation of terpenoids and other as yet unknown compounds suggests a chemo-ecological function of the LGT in plant–insect or plant–herbivore interaction.

  6. Biotransformation of dianabol with the filamentous fungi and β-glucuronidase inhibitory activity of resulting metabolites.

    PubMed

    Khan, Naik T; Zafar, Salman; Noreen, Shagufta; Al Majid, Abdullah M; Al Othman, Zeid A; Al-Resayes, Saud Ibrahim; Atta-ur-Rahman; Choudhary, M Iqbal

    2014-07-01

    Biotransformation of the anabolic steroid dianabol (1) by suspended-cell cultures of the filamentous fungi Cunninghamella elegans and Macrophomina phaseolina was studied. Incubation of 1 with C. elegans yielded five hydroxylated metabolites 2-6, while M. phaseolina transformed compound 1 into polar metabolites 7-11. These metabolites were identified as 6β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (2), 15α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (3), 11α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (4), 6β,12β,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (5), 6β,15α,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (6), 17β-hydroxy-17α-methylandrost-1,4-dien-3,6-dione (7), 7β,17β,-dihydroxy-17α-methylandrost-1,4-dien-3-one (8), 15β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (9), 17β-hydroxy-17α-methylandrost-1,4-dien-3,11-dione (10), and 11β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (11). Metabolite 3 was also transformed chemically into diketone 12 and oximes 13, and 14. Compounds 6 and 12-14 were identified as new derivatives of dianabol (1). The structures of all transformed products were deduced on the basis of spectral analyses. Compounds 1-14 were evaluated for β-glucuronidase enzyme inhibitory activity. Compounds 7, 13, and 14 showed a strong inhibition of β-glucuronidase enzyme, with IC50 values between 49.0 and 84.9 μM. PMID:24755238

  7. Select steroid hormone glucuronide metabolites can cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Frick, Morin M.; Zhang, Yingning; Maier, Steven F.; Sammakia, Tarek; Rice, Kenner C.; Watkins, Linda R.

    2014-01-01

    We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signalling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and tempromandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest. PMID:25218902

  8. Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales).

    PubMed

    Vairappan, Charles S

    2003-07-01

    Red algae genus Laurencia (Rhodomelaceae, Ceramiales) are known to produce a wide range of chemically interesting secondary halogenated metabolites. This investigation delves upon extraction, isolation, structural elucidation and antibacterial activity of inherently available secondary metabolites of Laurencia majuscula Harvey collected from two locations in waters of Sabah, Malaysia. Two major halogenated compounds, identified as elatol (1) and iso-obtusol (2) were isolated. Structures of these compounds were determined from their spectroscopic data such as IR, 1H-NMR, 13C-NMR and optical rotation. Antibacterial bioassay against human pathogenic bacteria was conducted using disc diffusion (Kirby-Bauer) method. Elatol (1) inhibited six species of bacteria, with significant antibacterial activities against Staphylococcus epidermis, Klebsiella pneumonia and Salmonella sp. while iso-obtusol (2) exhibited antibacterial activity against four bacterial species with significant activity against K. pneumonia and Salmonella sp. Elatol (1) showed equal and better antibacterial activity compared with tested commercial antibiotics while iso-obtusol (2) only equaled the potency of commercial antibiotics against K. pneumonia and Salmonella sp. Further tests conducted using dilution method showed both compounds as having bacteriostatic mode of action against the tested bacteria. PMID:12919806

  9. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi.

    PubMed

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2010-12-27

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.

  10. Thiol-Based Redox Switches in Eukaryotic Proteins

    PubMed Central

    Brandes, Nicolas; Schmitt, Sebastian

    2009-01-01

    Abstract For many years, oxidative thiol modifications in cytosolic proteins were largely disregarded as in vitro artifacts, and considered unlikely to play significant roles within the reducing environment of the cell. Recent developments in in vivo thiol trapping technology combined with mass spectrometric analysis have now provided convincing evidence that thiol-based redox switches are used as molecular tools in many proteins to regulate their activity in response to reactive oxygen and nitrogen species. Reversible oxidative thiol modifications have been found to modulate the function of proteins involved in many different pathways, starting from gene transcription, translation and protein folding, to metabolism, signal transduction, and ultimately apoptosis. This review will focus on three well-characterized eukaryotic proteins that use thiol-based redox switches to influence gene transcription, metabolism, and signal transduction. The transcription factor Yap1p is a good illustration of how oxidative modifications affect the function of a protein without changing its activity. We use glyeraldehyde-3-phosphate dehydrogenase to demonstrate how thiol modification of an active site cysteine re-routes metabolic pathways and converts a metabolic enzyme into a pro-apoptotic factor. Finally, we introduce the redox-sensitive protein tyrosine phosphatase PTP1B to illustrate that reversibility is one of the fundamental aspects of redox-regulation. Antioxid. Redox Signal. 11, 997–1014. PMID:18999917

  11. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.

    PubMed

    Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

    2015-01-01

    This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations. PMID:25248548

  12. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity.

    PubMed

    Wardecki, Tina; Brötz, Elke; De Ford, Christian; von Loewenich, Friederike D; Rebets, Yuriy; Tokovenko, Bogdan; Luzhetskyy, Andriy; Merfort, Irmgard

    2015-08-01

    Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.

  13. Potent Antidiabetic Activity and Metabolite Profiling of Melicope Lunu-ankenda Leaves.

    PubMed

    Al-Zuaidy, Mizher Hezam; Hamid, Azizah Abdul; Ismail, Amin; Mohamed, Suhaila; Abdul Razis, Ahmad Faizal; Mumtaz, Muhammad Waseem; Salleh, Syafiq Zikri

    2016-05-01

    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in

  14. Potent Antidiabetic Activity and Metabolite Profiling of Melicope Lunu-ankenda Leaves.

    PubMed

    Al-Zuaidy, Mizher Hezam; Hamid, Azizah Abdul; Ismail, Amin; Mohamed, Suhaila; Abdul Razis, Ahmad Faizal; Mumtaz, Muhammad Waseem; Salleh, Syafiq Zikri

    2016-05-01

    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in

  15. The effect of glyphosate, its metabolites and impurities on erythrocyte acetylcholinesterase activity.

    PubMed

    Kwiatkowska, Marta; Nowacka-Krukowska, Hanna; Bukowska, Bożena

    2014-05-01

    Glyphosate [N-(phosphonomethyl)glycine] is used all over the world to protect agricultural and horticultural crops. According to initial reports, glyphosate has been considered to be safe for humans and animals; nevertheless, recent investigations had proven its toxicity. Extensive use of glyphosate and the conviction of its low toxicity leads to a situation in which it is used in excessive amounts in agriculture. That is why, we have investigated the effect of the most commonly used pesticide: glyphosate, its metabolites and impurities on acetylcholinesterase (AChE) activity (in vitro) in human erythrocytes, which is biochemically similar to acetylcholinesterase present in neural synapses. The analysis of noxious effects of metabolites and impurities of pesticides seems to be very important to evaluate toxicological risk that is associated with the effect of pesticide formulations (requirement of the EU regulations 1107/200/EC). The erythrocytes were incubated with xenobiotics at concentrations range from 0.01 to 5 mM for 1 and 4 h. Statistically significant decrease in AChE activity (about 20%) was observed only at high concentrations of the compounds (0.25-5 mM), which enter body only as a result of acute poisoning. There were no statistically significant differences in the effect of the investigated compounds, while the changes caused by them were similar after 1 and 4 h incubation. The investigated metabolites and impurities did not cause stronger changes in AChE activity than glyphosate itself. It may be concluded that the compounds studied (used in the concentrations that are usually determined in the environment) do not disturb function of human erythrocyte acetylcholinesterase. PMID:24780534

  16. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity. PMID:27112424

  17. [The pharmacokinetics of the dipeptide analog of piracetam with nootropic activity GVS-111 and of its basic metabolites].

    PubMed

    Boĭko, S S; Zherdev, V P; Dvorianinov, A A; Gudasheva, T A; Ostrovskaia, R U; Voronina, T A; Rozantsev, G G; Seredenin, S B

    1997-01-01

    The pharmacokinetics of a new nootropic dipeptide analog of piracetam-N-phenylacetyl-L-prolylglycine (GWS-111) and its main metabolites were studied in rats by means of high performance liquid chromatography and gas-liquid chromatography. The compound under study showed a greater resistance to an enzymatic effect than natural neuropeptides. In addition to an unchanged compound three of its metabolites were found in the blood plasma of the rats. One of them, cyclo-Pro-Gly was an active metabolite of GWS-111. PMID:9206571

  18. Quantifying Reversible Oxidation of Protein Thiols in Photosynthetic Organisms

    NASA Astrophysics Data System (ADS)

    Slade, William O.; Werth, Emily G.; McConnell, Evan W.; Alvarez, Sophie; Hicks, Leslie M.

    2015-04-01

    Photosynthetic organisms use dynamic post-translational modifications to survive and adapt, which include reversible oxidative modifications of protein thiols that regulate protein structure, function, and activity. Efforts to quantify thiol modifications on a global scale have relied upon peptide derivatization, typically using isobaric tags such as TMT, ICAT, or iTRAQ that are more expensive, less accurate, and provide less proteome coverage than label-free approaches—suggesting the need for improved experimental designs for studies requiring maximal coverage and precision. Herein, we present the coverage and precision of resin-assisted thiol enrichment coupled to label-free quantitation for the characterization of reversible oxidative modifications on protein thiols. Using C. reinhardtii and Arabidopsis as model systems for algae and plants, we quantified 3662 and 1641 unique cysteinyl peptides, respectively, with median coefficient of variation (CV) of 13% and 16%. Further, our method is extendable for the detection of protein abundance changes and stoichiometries of cysteine oxidation. Finally, we demonstrate proof-of-principle for our method, and reveal that exogenous hydrogen peroxide treatment regulates the C. reinhardtii redox proteome by increasing or decreasing the level of oxidation of 501 or 67 peptides, respectively. As protein activity and function is controlled by oxidative modifications on protein thiols, resin-assisted thiol enrichment coupled to label-free quantitation can reveal how intracellular and environmental stimuli affect plant survival and fitness through oxidative stress.

  19. Quantifying reversible oxidation of protein thiols in photosynthetic organisms.

    PubMed

    Slade, William O; Werth, Emily G; McConnell, Evan W; Alvarez, Sophie; Hicks, Leslie M

    2015-04-01

    Photosynthetic organisms use dynamic post-translational modifications to survive and adapt, which include reversible oxidative modifications of protein thiols that regulate protein structure, function, and activity. Efforts to quantify thiol modifications on a global scale have relied upon peptide derivatization, typically using isobaric tags such as TMT, ICAT, or iTRAQ that are more expensive, less accurate, and provide less proteome coverage than label-free approaches--suggesting the need for improved experimental designs for studies requiring maximal coverage and precision. Herein, we present the coverage and precision of resin-assisted thiol enrichment coupled to label-free quantitation for the characterization of reversible oxidative modifications on protein thiols. Using C. reinhardtii and Arabidopsis as model systems for algae and plants, we quantified 3662 and 1641 unique cysteinyl peptides, respectively, with median coefficient of variation (CV) of 13% and 16%. Further, our method is extendable for the detection of protein abundance changes and stoichiometries of cysteine oxidation. Finally, we demonstrate proof-of-principle for our method, and reveal that exogenous hydrogen peroxide treatment regulates the C. reinhardtii redox proteome by increasing or decreasing the level of oxidation of 501 or 67 peptides, respectively. As protein activity and function is controlled by oxidative modifications on protein thiols, resin-assisted thiol enrichment coupled to label-free quantitation can reveal how intracellular and environmental stimuli affect plant survival and fitness through oxidative stress. PMID:25698223

  20. CSF levels of receptor-active endorphins in schizophrenic patients: correlations with symptomatology and monoamine metabolites.

    PubMed

    Lindström, L H; Besev, G; Gunne, L M; Terenius, L

    1986-10-01

    Cerebrospinal fluid (CSF) levels of an opioid receptor-active, chromatographically separated endorphin fraction (Fraction I) were measured in 45 schizophrenic patients and 18 healthy volunteers. Significantly increased levels of Fraction I differentiated the patient group from controls, with no difference being found between newly admitted untreated and chronic previously neuroleptic-treated subjects. Fraction I levels did not correlate with age, weight, height, duration of illness, total time hospitalized, or age when symptoms first appeared. No differences were found between patients with or without a family history of schizophrenia. Fraction I levels were negatively correlated with "hallucinations" and "indecision" on the Comprehensive Psychopathological Rating Scale. Increased levels of Fraction I were associated with low levels of the dopamine metabolite homovanillic acid in drug-free schizophrenics. This relationship was not present after neuroleptic treatment or in healthy controls. No relationship was found between Fraction I and the serotonin metabolite 5-hydroxyindoleacetic acid. Neuroleptic treatment did not significantly change Fraction I levels; when only patients above the control range were considered, however, a significant decrease was observed. The data support our previous hypothesis of an increased opioid activity in schizophrenia and further indicate a concomitant dysfunction of brain endorphin and dopamine activity in schizophrenic patients.

  1. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus

    PubMed Central

    Moghaddam, Ehsan; Teoh, Boon-Teong; Sam, Sing-Sin; Lani, Rafidah; Hassandarvish, Pouya; Chik, Zamri; Yueh, Andrew; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted. PMID:24965553

  2. Chlorotriazine herbicides and metabolites activate an ACTH-dependent release of corticosterone in male Wistar rats.

    PubMed

    Laws, Susan C; Hotchkiss, Michelle; Ferrell, Janet; Jayaraman, Saro; Mills, Lesley; Modic, Walker; Tinfo, Nicole; Fraites, Melanie; Stoker, Tammy; Cooper, Ralph

    2009-11-01

    Previously, we reported that atrazine (ATR) alters steroidogenesis in male Wistar rats resulting in elevated serum corticosterone (CORT), progesterone, and estrogens. The increase in CORT indicated that this chlorotriazine herbicide may alter the hypothalamic-pituitary-adrenal axis. This study characterizes the temporal changes in adrenocorticotropic hormone (ACTH), CORT, and P4 in male Wistar rats following a single dose of ATR (0, 5, 50, 100, and 200 mg/kg), simazine (SIM; 188 mg/kg), propazine (PRO; 213 mg/kg), or primary metabolites, deisopropylatrazine (DIA; 4, 10, 40, 80, and 160 mg/kg), deethylatrazine (DEA; 173 mg/kg), and diamino-s-chlorotriazine (DACT; 3.37, 33.7, 67.5, and 135 mg/kg). The maximum dose for each chemical was the molar equivalent of ATR (200 mg/kg). Significant increases in plasma ACTH were observed within 15 min, following exposure to ATR, SIM, PRO, DIA, or DEA. Dose-dependent elevations in CORT and progesterone were also observed at 15 and 30 min post-dosing with these compounds indicating an activation of adrenal steroidogenesis. Measurement of the plasma concentrations of the parent compounds and metabolites confirmed that ATR, SIM, and PRO are rapidly metabolized to DACT. Although DACT had only minimal effects on ACTH and steroid release, dosing with this metabolite resulted in plasma DACT concentrations that were 60-fold greater than that observed following an equimolar dose of ATR and eightfold greater than equimolar doses of DIA or DEA, indicating that DACT is not likely the primary inducer of ACTH release. Thus, the rapid release of ACTH and subsequent activation of adrenal steroidogenesis following a single exposure to ATR, SIM, PRO, DIA, or DEA may reflect chlorotriazine-induced changes at the level of the brain and/or pituitary.

  3. Avian 3-hydroxy-3-methylglutaryl-CoA lyase: sensitivity of enzyme activity to thiol/disulfide exchange and identification of proximal reactive cysteines.

    PubMed Central

    Hruz, P. W.; Miziorko, H. M.

    1992-01-01

    Catalysis by purified avian 3-hydroxy-3-methylglutaryl-CoA lyase is critically dependent on the reduction state of the enzyme, with less than 1% of optimal activity being observed with the air-oxidized enzyme. The enzyme is irreversibly inactivated by sulfhydryl-directed reagents with the rate of this inactivation being highly dependent upon the redox state of a critical cysteine. Methylation of reduced avian lyase with 1 mM 4-methylnitrobenzene sulfonate results in rapid inactivation of the enzyme with a k(inact) of 0.178 min-1. The oxidized enzyme is inactivated at a sixfold slower rate (k(inact) = 0.028 min-1). Inactivation of the enzyme with the reactive substrate analog 2-butynoyl-CoA shows a similar dependence upon the enzyme's redox state, with a sevenfold difference in k(inact) observed with oxidized vs. reduced forms of the enzyme. Chemical cross-linking of the reduced enzyme with stoichiometric amounts of the bifunctional reagents 1,3-dibromo-2-propanone (DBP) or N,N'-ortho-phenylene-dimaleimide (PDM) coincides with rapid inactivation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of enzyme treated with bifunctional reagent reveals a band of twice the molecular weight of the lyase monomer, indicating that an intersubunit cross-link has been formed. Differential labeling of native and cross-linked protein with [1-14C]iodoacetate has identified as the primary cross-linking target a cysteine within the sequence VSQAACR, which maps at the carboxy-terminus of the cDNA-deduced sequence of the avian enzyme (Mitchell, G.A., et al., 1991, Am. J. Hum. Genet. 49, 101). In contrast, bacterial HMG-CoA lyase, which contains no corresponding cysteine, is not cross-linked by comparable treatment with bifunctional reagent. These results provide evidence for a potential regulatory mechanism for the eukaryotic enzyme via thiol/disulfide exchange and identify a cysteinyl residue with the reactivity and juxtaposition required for participation in disulfide

  4. Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass.

    PubMed

    Song, Qiu-Yan; Nan, Zhi-Biao; Gao, Kun; Song, Hui; Tian, Pei; Zhang, Xing-Xu; Li, Chun-Jie; Xu, Wen-Bo; Li, Xiu-Zhang

    2015-10-14

    The development of high-quality herbage is an important aspect of animal husbandry. Inoculating beneficial fungi onto inferior grass is a feasible strategy for producing new varieties of high-quality herbage. Epichloë bromicola is a candidate fungus that is isolated from Elymus tangutorum. A total of 17 metabolites, 1-17, were obtained from E. bromicola, and their biological activities were assayed. Metabolite 1 exhibited antifungal activities against Alternaria alternata, Fusarium avenaceum, Bipolaris sorokiniana, and Curvularia lunata. EC50 values ranged from 0.7 to 5.3 μM, which were better than the positive control, chlorothalonil. Metabolite 8 displayed obvious phytotoxic effects toward Lolium perenne and Poa crymophila seedlings, and it was as active as glyphosate. None of these isolated metabolites displayed cytotoxicity against Madin-Darby bovine kidney cells. The IC50 values were greater than 100 μM, and the metabolites increased the growth of the cells at a concentration of 12.5 μM. The bioassay indicated that E. bromicola may be a beneficial fungus for producing new varieties of herbage with various resistances. Additionally, metabolite 7, 3-(2'-(4″-hydroxyphenyl)acetoxy)-2S-methylpropanoic acid, is a new natural product, and its stereochemistry was determined by means of optical rotation computation and chemical reactions. PMID:26395226

  5. Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass.

    PubMed

    Song, Qiu-Yan; Nan, Zhi-Biao; Gao, Kun; Song, Hui; Tian, Pei; Zhang, Xing-Xu; Li, Chun-Jie; Xu, Wen-Bo; Li, Xiu-Zhang

    2015-10-14

    The development of high-quality herbage is an important aspect of animal husbandry. Inoculating beneficial fungi onto inferior grass is a feasible strategy for producing new varieties of high-quality herbage. Epichloë bromicola is a candidate fungus that is isolated from Elymus tangutorum. A total of 17 metabolites, 1-17, were obtained from E. bromicola, and their biological activities were assayed. Metabolite 1 exhibited antifungal activities against Alternaria alternata, Fusarium avenaceum, Bipolaris sorokiniana, and Curvularia lunata. EC50 values ranged from 0.7 to 5.3 μM, which were better than the positive control, chlorothalonil. Metabolite 8 displayed obvious phytotoxic effects toward Lolium perenne and Poa crymophila seedlings, and it was as active as glyphosate. None of these isolated metabolites displayed cytotoxicity against Madin-Darby bovine kidney cells. The IC50 values were greater than 100 μM, and the metabolites increased the growth of the cells at a concentration of 12.5 μM. The bioassay indicated that E. bromicola may be a beneficial fungus for producing new varieties of herbage with various resistances. Additionally, metabolite 7, 3-(2'-(4″-hydroxyphenyl)acetoxy)-2S-methylpropanoic acid, is a new natural product, and its stereochemistry was determined by means of optical rotation computation and chemical reactions.

  6. Modifications in the low mobility group nuclear proteins by reactive metabolites of diethylstilbestrol.

    PubMed

    Roy, D; Pathak, D N

    1993-12-01

    In this study we have investigated the potential of nuclear activation system to convert diethylstilbestrol (DES) to reactive metabolites, which bind to low mobility nonhistone nuclear proteins. Reaction of DES with nuclei in the presence of cumene hydroperoxide or NADPH revealed binding of DES in low mobility group (LMG) nonhistone nuclear proteins analyzed by both organic solvent extraction and gel electrophoresis methods. Gel electrophoresis experiments revealed that five LMG proteins of MW 130, 108, 72, 51, and 45 KDa were irreversibly bound to 3H-DES. The kinetic constants, Km and Vmax, of this binding reaction in the presence of cumene hydroperoxide were 39 uM and 1225 pmol/mg protein/30 min, respectively. This binding was significantly inhibited by cytochromes P450 inhibitors. Low molecular weight thiols, i.e., glutathione and cysteine, or thiol modifiers such as n-ethylmaleimide, dithionitrobenzoic acid, and hydroxymercuric benzoate, drastically inhibited binding. The binding of DES metabolites to both transcriptionally active and inactive chromatins LMG proteins was observed. In summary, DES is metabolized to transcriptionally active chromatin LMG protein binding metabolites presumably by nuclear cytochromes P450. These data suggest that an analogous in vivo modification in the transcriptionally active chromatin LMG nonhistone proteins by DES metabolites may influence gene transcription.

  7. Understanding the interactions between metabolites isolated from Achyrocline satureioides in relation to its antibacterial activity.

    PubMed

    Joray, Mariana Belén; Palacios, Sara María; Carpinella, María Cecilia

    2013-02-15

    As part of our ongoing research on the antibacterial activity of Achyrocline satureioides, this study seeks to better understand the interactions between the metabolites isolated from this plant. For this purpose, the combined effect of 23-methyl-6-O-desmethylauricepyrone (1), quercetin (2) and 3-O-methylquercetin (3), obtained through bioguided fractionation from A. satureioides ethanol extract, was evaluated against Staphylococcus aureus and Escherichia coli. In first place, the antibacterial effect of the combination of flavonols 2 and 3 was assessed, as these showed individual effectiveness lower than or equal to that of the fraction from which they were obtained. When the flavonols were applied together at concentrations below their minimum inhibitory concentration (MIC) values, a synergistic effect (FICI<0.30) against S. aureus was observed. In addition, compounds 2 and 3 in combination reduced 1000 times the MIC of compound 1, showing a clear synergistic interaction (FICI<0.15) in treatments against the Gram (+) bacterium. The most active combination against E. coli showed an additive interaction (FICI<0.62) between the three assayed compounds 1-3. These results indicated the existence of concerted action between these metabolites, evidence of the importance of the synergistic interactions between the components of plant-derived extracts for the control of pathogenic bacteria.

  8. Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay

    PubMed Central

    Chen, Fangfang; Qi, Wen; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isorhynchophylline is one of the major alkaloids from the Uncaria hook possessing the effects of lowered blood pressure, vasodilatation and protection against ischemia-induced neuronal damage. However, the metabolic pathway of isorhynchophylline has not been fully reported yet. In this paper, the metabolism of isorhynchophylline was investigated in rats. Five metabolites were isolated by using solvent extraction and repeated chromatographic methods, and identified by spectroscopic methods including UV, MS, NMR and CD experiments. Three new compounds were identified as 5-oxoisorhynchophyllic acid-22-O-β-D-glucuronide (M1), 17-O-demethyl-16,17-dihydro isorhynchophylline (M2) and 5-oxoisorhynchophyllic acid (M4) together with two known compounds isorhynchophylline (M0) and rhynchophylline (M3). Possible metabolic pathways of isorhynchophylline are proposed. Furthermore, the activity assay for all the metabolites showed that isorhynchophylline (M0) exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, little or weak neuroprotective activities were observed for M1–M4. Our present study is important to further understand its metabolic fate and disposition in humans. PMID:24910000

  9. In vitro metabolism of pyripyropene A and ACAT inhibitory activity of its metabolites.

    PubMed

    Matsuda, Daisuke; Ohshiro, Taichi; Ohtawa, Masaki; Yamazaki, Hiroyuki; Nagamitsu, Tohru; Tomoda, Hiroshi

    2015-01-01

    Pyripyropene A (PPPA, 1) of fungal origin, a selective inhibitor of acyl-CoA:cholesterol acyltransferase 2 (ACAT2), proved orally active in atherogenic mouse models. The in vitro metabolites of 1 in liver microsomes and plasma of human, rabbit, rat and mouse were analyzed by ultra fast liquid chromatography and liquid chromatography/tandem mass spectrometry. In the liver microsomes from all species, successive hydrolysis occurred at the 1-O-acetyl residue, then at the 11-O-acetyl residue of 1, while the 7-O-acetyl residue was resistant to hydrolysis. Furthermore, dehydrogenation of the newly generated 11-alcoholic hydroxyl residue occurred in human and mouse-liver microsomes, while oxidation of the pyridine ring occurred in human and rabbit liver microsomes. On the other hand, hydrolysis of the 7-O-acetyl residue proceeded only in the mouse plasma. These data indicated that the in vitro metabolic profiles of 1 have subtle differences among animal species. All of the PPPA metabolites observed in liver microsomes and plasma markedly decreased ACAT2 inhibitory activity. These findings will help us to synthesize new PPPA derivatives more effective in in vivo study than 1. PMID:25005817

  10. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. ex Heuff. and Its Metabolites.

    PubMed

    Pavlović, Ivan; Petrović, Silvana; Milenković, Marina; Stanojković, Tatjana; Nikolić, Dejan; Krunić, Aleksej; Niketić, Marjan

    2015-10-01

    The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75μM). PMID:26460563

  11. Designed Chemical Intervention with Thiols for Prophylactic Contraception.

    PubMed

    Sharma, Monika; Kumar, Lokesh; Jain, Ashish; Verma, Vikas; Sharma, Vikas; Kushwaha, Bhavana; Lal, Nand; Kumar, Lalit; Rawat, Tara; Dwivedi, Anil K; Maikhuri, Jagdamba P; Sharma, Vishnu L; Gupta, Gopal

    2013-01-01

    Unlike somatic cells, sperm have several-fold more available-thiols that are susceptible to redox-active agents. The present study explains the mechanism behind the instant sperm-immobilizing and trichomonacidal activities of pyrrolidinium pyrrolidine-1-carbodithioate (PPC), a novel thiol agent rationally created for prophylactic contraception by minor chemical modifications of some known thiol drugs. PPC, and its three derivatives (with potential active-site blocked by alkylation), were synthesized and evaluated against live human sperm and metronidazole-susceptible and resistant Trichomonas vaginalis, in vitro. Sperm hexokinase activity was evaluated by coupled enzyme assay. PPC irreversibly immobilized 100% human sperm in ∼30 seconds and totally eliminated Trichomonas vaginalis more efficiently than nonoxynol-9 and metronidazole. It significantly inhibited (P<0.001) thiol-sensitive sperm hexokinase. However, the molecule completely lost all its biological activities once its thiol group was blocked by alkylation. PPC was subsequently formulated into a mucoadhesive vaginal film using GRaS excipients and evaluated for spermicidal and microbicidal activities (in vitro), and contraceptive efficacy in rabbits. PPC remained fully active in quick-dissolving, mucoadhesive vaginal-film formulation, and these PPC-films significantly reduced pregnancy and fertility rates in rabbits. The films released ∼90% of PPC in simulated vaginal fluid (pH 4.2) at 37°C in 5 minutes, in vitro. We have thus discovered a common target (reactive thiols) on chiefly-anaerobic, redox-sensitive cells like sperm and Trichomonas, which is susceptible to designed chemical interference for prophylactic contraception. The active thiol in PPC inactivates sperm and Trichomonas via interference with crucial sulfhydryl-disulfide based reactions, e.g. hexokinase activation in human sperm. In comparison to non-specific surfactant action of OTC spermicide nonoxynol-9, the action of thiol-active PPC

  12. Seasonal profiles of ovarian activity in Iberian lynx (Lynx pardinus) based on urinary hormone metabolite analyses.

    PubMed

    Jewgenow, K; Göritz, F; Vargas, A; Dehnhard, M

    2009-07-01

    The Iberian Lynx Ex-Situ Conservation Programme is an essential part of a co-ordinated action plan to conserve the most endangered felid species of the world. Successful captive breeding demands reliable methods for reproduction monitoring including reliable non-invasive pregnancy diagnosis. During a 3-year study, urine samples from six captive Iberian lynx females were obtained (one non-pregnant, one pseudo-pregnant and 11 pregnant cycles). Progesterone, pregnanediol and oestradiol were determined in urinary extracts and relevant urinary oestrogen metabolites were characterized by high-performance liquid chromatography (HPLC). Urinary progestins did not follow the typical pregnancy-related course of felids. In the lynx, we failed to demonstrate an urinary progestin elevation during pregnancy. In contrast, urinary oestrogens increased from 3.8 +/- 0.6 to 8.6 +/- 0.5 ng/mg creatinine (p < 0.001) during the pregnancy. A comparison of pseudo-pregnant with pregnant cycles revealed a further increase of oestrogens caused by implantation (p < 0.05). In one female, which refused to mate, no difference was estimated between oestrogens levels during the breeding and non-breeding seasons. Almost 10-fold higher oestrogen concentrations were measured in urines of females that shared enclosures with males. HPLC analysis of oestrogens in urine samples collected from Iberian lynx during the pregnancy revealed that lynx urine is composed of two polar oestrogen metabolites in addition to oestrone and minor amounts of oestradiol. Oestrone was detectable in all urinary extracts (8-12% of metabolites), whereas oestradiol was elevated only during late pregnancy (18%). Thus, seasonal luteal activity in Iberian lynx can be monitored by urinary oestrogens. The increase of urinary oestradiol during late pregnancy might indicate an oestradiol secretion by the lynx placenta.

  13. Oxidation of cell surface thiol groups by contact sensitizers triggers the maturation of dendritic cells.

    PubMed

    Kagatani, Saori; Sasaki, Yoshinori; Hirota, Morihiko; Mizuashi, Masato; Suzuki, Mie; Ohtani, Tomoyuki; Itagaki, Hiroshi; Aiba, Setsuya

    2010-01-01

    p38 mitogen-activated protein kinase (MAPK) has a crucial role in the maturation of dendritic cells (DCs) by sensitizers. Recently, it has been reported that the oxidation of cell surface thiols by an exogenous impermeant thiol oxidizer can phosphorylate p38 MAPK. In this study, we examined whether sensitizers oxidize cell surface thiols of monocyte-derived DCs (MoDCs). When cell surface thiols were quantified by flow cytometry using Alexa fluor maleimide, all the sensitizers that we examined decreased cell surface thiols on MoDCs. To examine the effects of decreased cell surface thiols by sensitizers on DC maturation, we analyzed the effects of an impermeant thiol oxidizer, o-phenanthroline copper complex (CuPhen). The treatment of MoDCs with CuPhen decreased cell surface thiols, phosphorylated p38 MAPK, and induced MoDC maturation, that is, the augmentation of CD83, CD86, HLA-DR, and IL-8 mRNA, as well as the downregulation of aquaporin-3 mRNA. The augmentation of CD86 was significantly suppressed when MoDCs were pretreated with N-acetyl-L-cystein or treated with SB203580. Finally, we showed that epicutaneous application of 2,4-dinitrochlorobenzene on mouse skin significantly decreased cell surface thiols of Langerhans cells in vivo. These data suggest that the oxidation of cell surface thiols has some role in triggering DC maturation by sensitizers. PMID:19641517

  14. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health.

    PubMed

    Lv, Xinmiao; Zhao, Siyu; Ning, Zhangchi; Zeng, Honglian; Shu, Yisong; Tao, Ou; Xiao, Cheng; Lu, Cheng; Liu, Yuanyan

    2015-01-01

    Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced.

  15. Isophosphoramide mustard, a metabolite of ifosfamide with activity against murine tumours comparable to cyclophosphamide.

    PubMed Central

    Struck, R. F.; Dykes, D. J.; Corbett, T. H.; Suling, W. J.; Trader, M. W.

    1983-01-01

    Isophosphoramide mustard was synthesized and was found to demonstrate activity essentially comparable to cyclophosphamide and ifosfamide against L1210 and P388 leukaemia. Lewis lung carcinoma, mammary adenocarcinoma 16/C, ovarian sarcoma M5076, and colon tumour 6A, in mice and Yoshida ascitic sarcoma in rats. At doses less than, or equivalent to, the LD10, isophosphoramide mustard retained high activity against cyclophosphamide-resistant L1210 and P388 leukaemias, but was less active against intracerebrally-implanted P388 leukaemia while cyclophosphamide produced a 4 log10 tumour cell reduction. It was also less active (one log10 lower cell kill) than cyclophosphamide against the B16 melonoma. Metabolism studies on ifosfamide in mice identified isophosphoramide mustard in blood. In addition, unchanged drug, carboxyifosfamide, 4-ketoifosfamide, dechloroethyl cyclophosphamide, dechloroethylifosfamide, and alcoifosfamide were identified. The latter 4 metabolites were also identified in urine from an ifosfamide-treated dog. In a simulated in vitro pharmacokinetic experiment against L1210 leukaemia in which drugs were incubated at various concentrations for various times, both 4-hydroxycyclophosphamide and isophosphoramide mustard exhibited significant cytoxicity at concentration times time values of 100-1000 micrograms X min ml-1, while acrolein was significantly cytotoxic at 10 micrograms X min ml-1. Treatment of mice with drug followed by L1210 cells demonstrated a shorter duration of effective levels of cytotoxic activity for isophosphoramide mustard and phosphoramide mustard in comparison with cyclophosphamide and ifosfamide. Isophosphoramide mustard and 2-chloroethylamine, a potential hydrolysis product of isophosphoramide mustard and carboxyifosfamide, were less mutagenic in the standard Ames test than the 2 corresponding metabolites of cyclophosphamide [phosphoramide mustard and bis(2-chloroethyl)amine]. PMID:6821629

  16. Biotransformation of bisphenol AF to its major glucuronide metabolite reduces estrogenic activity.

    PubMed

    Li, Ming; Yang, Yunjia; Yang, Yi; Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  17. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  18. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites.

    PubMed

    Masand, Meeta; Jose, Polpass Arul; Menghani, Ekta; Jebakumar, Solomon Robinson David

    2015-12-01

    Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.

  19. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio).

    PubMed

    Liu, Zhenzhen; Wang, Yueyi; Zhu, Zhihong; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei; Jin, Yuanxiang

    2016-04-01

    Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish.

  20. Suppression of SOS-inducing activity of chemical mutagens by metabolites from microbial transformation of (+)-longicyclene.

    PubMed

    Sakata, Kazuki; Miyazawa, Mitsuo

    2010-08-25

    In this study, biotransformation of (+)-longicyclene (1) by Aspergillus niger (NBRC 4414) and the suppressive effect on umuC gene expression by chemical mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and aflatoxin B1 (AFB1) of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Initially, compound 1 was converted to three new terpenoids, (-)-(10R)-10-hydroxy-longicyclic acid (2), (+)-(10S)-10-hydroxy-longicyclic acid (3), and (+)-10-oxo-longicyclic acid (4) by A. niger , and their conversion rates were 27, 23, and 30%, respectively. The metabolites suppressed the SOS-inducing activity of furylfuramide and AFB1 in the umu test. Compounds 1-4 were hardly showing a suppressive effect on umu gene expression of the SOS responses in S. typhimurium TA1535/pSK1002 against furylfuramid. However, metabolites showed a suppressive effect against AFB1. Compound 4 had gene expression by chemical mutagen AFB1, was suppressed 53% at <1.0 mM, and was the most effective compound in this experiment. PMID:20662538

  1. Catalytic asymmetric synthesis of thiols.

    PubMed

    Monaco, Mattia Riccardo; Prévost, Sébastien; List, Benjamin

    2014-12-10

    The synthesis of enantiopure thiols is of significant interest for industrial and academic applications. However, direct asymmetric approaches to free thiols have previously been unknown. Here we describe a novel organocascade that is catalyzed by a confined chiral phosphoric acid and furnishes O-protected β-hydroxythiols with excellent enantioselectivities. The method relies on an asymmetric thiocarboxylysis of meso-epoxides, followed by an intramolecular trans-esterification reaction. By varying the reaction conditions, the intermediate thioesters can also be obtained chemoselectively and enantioselectively.

  2. L-Cysteine and glutathione restore the reduction of rat hippocampal Na+, K+-ATPase activity induced by aspartame metabolites.

    PubMed

    Simintzi, Irene; Schulpis, Kleopatra H; Angelogianni, Panagoula; Liapi, Charis; Tsakiris, Stylianos

    2007-07-31

    Studies have implicated aspartame (ASP) ingestion in neurological problems. The aim of this study was to evaluate hippocampal Na(+),K(+)-ATPase and Mg(2+)-ATPase activities after incubation with ASP or each of ASP metabolites, phenylalanine (Phe), methanol (MeOH) and aspartic acid (asp) separately. Suckling rat hippocampal homogenates or pure Na(+),K(+)-ATPase were incubated with ASP metabolites. Na(+),K(+)-ATPase and Mg(2+)-ATPase activities were measured spectrophotometrically. Incubation of hippocampal or pure Na(+),K(+)-ATPase with ASP concentrations (expected in the cerebrospinal fluid (CSF)) after ASP consumption of 34, 150 or 200mg/kg resulted in hippocampal enzyme activity reduction of 26%, 50% or 59%, respectively, whereas pure enzyme was remarkably stimulated. Moreover, incubation with hippocampal homogenate of each one of the corresponding in the CSF ASP metabolites related to the intake of common, high/abuse doses of the sweetener, inhibited Na(+),K(+)-ATPase, while pure enzyme was activated. Hippocampal Mg(2+)-ATPase remained unaltered. Addition of l-cysteine (cys) or reduced glutathione (GSH) in ASP mixtures, related with high/toxic doses of the sweetener, completely or partially restored the inactivated membrane Na(+),K(+)-ATPase, whereas the activated pure enzyme activity returned to normal. CSF concentrations of ASP metabolites related to common, abuse/toxic doses of the additive significantly reduced rat hippocampal Na(+),K(+)-ATPase activity, whereas pure enzyme was activated. Cys or GSH completely or partially restored both enzyme activities.

  3. Structure-Odor Activity Studies on Monoterpenoid Mercaptans Synthesized by Changing the Structural Motifs of the Key Food Odorant 1-p-Menthene-8-thiol.

    PubMed

    Schoenauer, Sebastian; Schieberle, Peter

    2016-05-18

    1-p-Menthene-8-thiol (1) has been discovered as the key odorant in grapefruit juice several decades ago and contributes to the overall odor of the fruit with an extremely low odor threshold of 0.000034 ng/L in air. This value is among the lowest odor thresholds ever reported for a food odorant. To check whether modifications in the structure of 1 would lead to changes in odor threshold and odor quality, 34 mercapto-containing p-menthane and 1-p-menthene derivatives as well as several aromatic and open-chain mercapto monoterpenoids were synthesized. Eighteen of them are reported for the first time in the literature, and their odor thresholds and odor qualities as well as analytical data are supplied. A comparison of the sensory data with those of 1 showed that hydrogenation of the double bond led to a clear increase in the odor threshold. Furthermore, moving the mercapto group into the ring always resulted in higher odor thresholds compared to thiols with a mercapto group in the side chains. Although all tertiary thiols always exhibited low odor thresholds, none of the 31 compounds reached the extremely low threshold of 1. Also, none of the synthesized mercapto monoterpenoids showed a similar odor quality resembling grapefruit. Although the saturated and aromatic analogues exhibited similar scents as 1, the aromas of the majority of the other compounds were described as sulfury, rubber-like, burned, soapy, or even mushroom-like. NMR and MS data as well as retention indices of the 23 newly reported sulfur-containing compounds might aid in future research to identify terpene-derived mercaptans possibly present in trace levels in foods. PMID:27121638

  4. Structure-Odor Activity Studies on Monoterpenoid Mercaptans Synthesized by Changing the Structural Motifs of the Key Food Odorant 1-p-Menthene-8-thiol.

    PubMed

    Schoenauer, Sebastian; Schieberle, Peter

    2016-05-18

    1-p-Menthene-8-thiol (1) has been discovered as the key odorant in grapefruit juice several decades ago and contributes to the overall odor of the fruit with an extremely low odor threshold of 0.000034 ng/L in air. This value is among the lowest odor thresholds ever reported for a food odorant. To check whether modifications in the structure of 1 would lead to changes in odor threshold and odor quality, 34 mercapto-containing p-menthane and 1-p-menthene derivatives as well as several aromatic and open-chain mercapto monoterpenoids were synthesized. Eighteen of them are reported for the first time in the literature, and their odor thresholds and odor qualities as well as analytical data are supplied. A comparison of the sensory data with those of 1 showed that hydrogenation of the double bond led to a clear increase in the odor threshold. Furthermore, moving the mercapto group into the ring always resulted in higher odor thresholds compared to thiols with a mercapto group in the side chains. Although all tertiary thiols always exhibited low odor thresholds, none of the 31 compounds reached the extremely low threshold of 1. Also, none of the synthesized mercapto monoterpenoids showed a similar odor quality resembling grapefruit. Although the saturated and aromatic analogues exhibited similar scents as 1, the aromas of the majority of the other compounds were described as sulfury, rubber-like, burned, soapy, or even mushroom-like. NMR and MS data as well as retention indices of the 23 newly reported sulfur-containing compounds might aid in future research to identify terpene-derived mercaptans possibly present in trace levels in foods.

  5. The antitumor activity study of ginsenosides and metabolites in lung cancer cell

    PubMed Central

    Xu, Feng-Yuan; Shang, Wen-Qing; Yu, Jia-Jun; Sun, Qian; Li, Ming-Qing; Sun, Jian-Song

    2016-01-01

    Ginseng and its components exert various biological effects, including antioxidant, anti-carcinogenic, anti-mutagenic, and antitumor activity. Ginsenosides are the main biological components of ginseng. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides. However, the difference between these compounds in anti-lung cancer is unclear. The present study aimed to evaluate the antitumor activity of PPD, PPT, Ginsenosides-Rg3 (G-Rg3) and Ginsenosides-Rh2 (G-Rh2) in lung cancer cell. After treatment with cisplatin, PPD, PPT, G-Rg3 or G-Rh2, the viability, apoptosis level and invasiveness of lung cell lines (A549 cell, a lung adenocarcinoma cell line and SK-MES-1 cell, a lung squamous cell line) in vitro were analyzed by Cell Counting Kit-8 (CCK8), Annexin V/PI apoptosis and Matrigel invasion assays, respectively. Here we found that all these compounds led to significant decreases of viability and invasiveness and an obvious increase of apoptosis of A549 and SK-MES-1 cells. Among these, the viability of SK-MES-1 cell treated with PPT was decreased to 66.8%, and this effect was closest to Cisplatin. G-Rg3 had the highest stimulatory effect on apoptosis, and PTT had the highest inhibitory effect on cell invasiveness in A549 and SK-MES-1 cells. These results indicate that both ginsenosides and two metabolites have antitumor activity on lung cancer cell in vitro. However, PPT is more powerful for inhibiting the viability and invasiveness of lung cancer cell, especially lung squamous cell. G-Rg3 has the best pro-apoptosis effects. This study provides a scientific basis for potential therapeutic strategies targeted to lung cancer by further structure modification. PMID:27186294

  6. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  7. Metabolites in safety testing assessment in early clinical development: a case study with a glucokinase activator.

    PubMed

    Sharma, Raman; Litchfield, John; Atkinson, Karen; Eng, Heather; Amin, Neeta B; Denney, William S; Pettersen, John C; Goosen, Theunis C; Di, Li; Lee, Esther; Pfefferkorn, Jeffrey A; Dalvie, Deepak K; Kalgutkar, Amit S

    2014-11-01

    The present article summarizes Metabolites in Safety Testing (MIST) studies on a glucokinase activator, N,N-dimethyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide (PF-04937319), which is under development for the treatment of type 2 diametes mellitus. Metabolic profiling in rat, dog, and human hepatocytes revealed that PF-04937319 is metabolized via oxidative (major) and hydrolytic pathways (minor). N-Demethylation to metabolite M1 [N-methyl-5-((2-methyl-6-((5-methylpyrazin-2-yl)carbamoyl)benzofuran-4-yl)oxy)pyrimidine-2-carboxamide] was the major metabolic fate of PF-04937319 in human (but not rat or dog) hepatocytes, and was catalyzed by CYP3A and CYP2C isoforms. Qualitative examination of circulating metabolites in humans at the 100- and 300-mg doses from a 14-day multiple dose study revealed unchanged parent drug and M1 as principal components. Because M1 accounted for 65% of the drug-related material at steady state, an authentic standard was synthesized and used for comparison of steady-state exposures in humans and the 3-month safety studies in rats and dogs at the no-observed-adverse-effect level. Although circulating levels of M1 were very low in beagle dogs and female rats, adequate coverage was obtained in terms of total maximal plasma concentration (∼7.7× and 1.8×) and area under the plasma concentration-time curve (AUC; 3.6× and 0.8× AUC) relative to the 100- and 300-mg doses, respectively, in male rats. Examination of primary pharmacology revealed M1 was less potent as a glucokinase activator than the parent drug (compound PF-04937319: EC50 = 0.17 μM; M1: EC50 = 4.69 μM). Furthermore, M1 did not inhibit major human P450 enzymes (IC50 > 30 μM), and was negative in the Salmonella Ames assay, with minimal off-target pharmacology, based on CEREP broad ligand profiling. Insights gained from this analysis should lead to a more efficient and focused development plan for fulfilling MIST requirements with

  8. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi.

    PubMed

    Tao, Yi-wen; Lin, Yong-cheng; She, Zhi-gang; Lin, Min-ting; Chen, Pin-xian; Zhang, Jian-ye

    2015-01-01

    One known cyclic peptide, beauvericin, was isolated from the secondary metabolites of mangrove endophytic fungi Fusarium sp. (No. DZ27) in South China Sea. Its structure was determined by spectral analyses and comparisons with reference data from literatures. Beauvericin inhibited growth of KB and KBv200 cells potently with IC50 values of 5.76 ± 0.55 and 5.34 ± 0.09 μM, respectively. Furthermore, beauvericin induced apoptosis through mitochondrial pathway, including decrease of relative oxygen species generation, loss of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-9 and -3, and cleavage of PARP. Additionally, regulation of Bcl-2 or Bax was not involved in the apoptosis induced by beauvericin in KB and KBv200 cells. PMID:25641103

  9. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis.

    PubMed

    Ding, Ling; Qin, Song; Li, Fuchao; Chi, Xiaoyuan; Laatsch, Hartmut

    2008-03-01

    Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.

  10. Secondary metabolites from Sida rhombifolia L. (Malvaceae) and the vasorelaxant activity of cryptolepinone.

    PubMed

    Chaves, Otemberg Souza; Gomes, Roosevelt Albuquerque; Tomaz, Anna Cláudia de Andrade; Fernandes, Marianne Guedes; das Graças Mendes, Leônidas; de Fátima Agra, Maria; Braga, Valdir Andrade; de Fátima Vanderlei de Souza, Maria

    2013-03-01

    The phytochemical study of Sida rhombifolia L. (Malvaceae) led to the isolation through chromatographic techniques of eleven secondary metabolites: sitosterol (1a) and stigmasterol (1b), sitosterol-3-O-b-D-glucopyranoside (2a) and stigmasterol-3-O-b-D-glucopyranoside (2b), phaeophytin A (3), 17³-ethoxypheophorbide A (4), 13²-hydroxy phaeophytin B (5), 17³-ethoxypheophorbide B (6), 5,7-dihydroxy-4'-methoxyflavone (7), cryptolepinone (8) and a salt of cryptolepine (9). Their structures were identified by ¹H- and ¹³C-NMR using one- and two-dimensional techniques. In addition, the vasorelaxant activity of cryptolepinone in rat mesenteric artery rings is reported herein for the first time.

  11. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi.

    PubMed

    Tao, Yi-wen; Lin, Yong-cheng; She, Zhi-gang; Lin, Min-ting; Chen, Pin-xian; Zhang, Jian-ye

    2015-01-01

    One known cyclic peptide, beauvericin, was isolated from the secondary metabolites of mangrove endophytic fungi Fusarium sp. (No. DZ27) in South China Sea. Its structure was determined by spectral analyses and comparisons with reference data from literatures. Beauvericin inhibited growth of KB and KBv200 cells potently with IC50 values of 5.76 ± 0.55 and 5.34 ± 0.09 μM, respectively. Furthermore, beauvericin induced apoptosis through mitochondrial pathway, including decrease of relative oxygen species generation, loss of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-9 and -3, and cleavage of PARP. Additionally, regulation of Bcl-2 or Bax was not involved in the apoptosis induced by beauvericin in KB and KBv200 cells.

  12. Biotransformation of finasteride by Ocimum sanctum L., and tyrosinase inhibitory activity of transformed metabolites: experimental and computational insights.

    PubMed

    Ali, Sajid; Nisar, Muhammad; Iriti, Marcello; Shah, Mohammad Raza; Mahmud, Maqsood; Ali, Ihsan; Khan, Inamullah

    2014-12-01

    Transformation of Finasteride (I) by cell suspension cultures of Ocimum sanctum L. was investigated. Fermentation of compound (I) with O. sanctum afforded three oxidized derivatives, 16β-hydroxyfinasteride (II), 11α-hydroxyfinasteride (III) and 15β-hydroxyfinasteride (IV). Among these metabolites, compound (II) was a new metabolite. Compound (I) and its derivatives were studied for their tyrosinase inhibition assay. All test compounds exhibited significant activity compared to standard drug kojic acid, with compound IV being the most potent member with an IC50 of 1.87μM. Molecular docking revealed significant molecular interactions behind the potent tyrosinase inhibitory activity of the tested compounds. PMID:25159102

  13. Specific affinity-labeling of the nociceptin ORL1 receptor using a thiol-activated Cys(Npys)-containing peptide ligand.

    PubMed

    Matsushima, Ayami; Nishimura, Hirokazu; Matsuyama, Yutaka; Liu, Xiaohui; Costa, Tommaso; Shimohigashi, Yasuyuki

    2016-11-01

    We previously showed that an antagonist-based peptide ligand, H-Cys(Npys)-Arg-Tyr-Tyr-Arg- Ile-Lys-NH2 , captures the free thiol groups in the ligand-binding site of the nociceptin receptor ORL1. However, the exact receptor sites of this thiol-disulfide exchange reaction have not been uncovered, although such identification would help to clarify the ligand recognition site. Since the Cys→Ala substitution prevents the reaction, we performed the so-called Ala scanning for all the Cys residues in the transmembrane (TM) domains of the ORL1 receptor. Seven different mutant receptors were soundly expressed in the COS-7 cells and examined for their specific affinity labeling by a competitive binding assay using nociceptin and [(3) H]nociceptin. The results of in vitro Ala scanning analyses revealed that the labeled residues were Cys59 in TM1, Cys215 and Cys231 in TM5, and Cys310 in TM7. The present study has provided a novel method of Cys(Npys)-affinity labeling for identification of the ligand-binding sites in the ORL1 receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 460-469, 2016.

  14. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    PubMed Central

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-01-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography–mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  15. Contribution of phlA and some metabolites of fluorescent pseudomonads to antifungal activity.

    PubMed

    Afsharmanesh, H; Ahmadzadeh, M; Sharifi-Tehrani, A; Javan-Nikkhah, M; Ghazanfari, K

    2005-01-01

    Fluorescent Pseudomonas species are an important group of PGPR that suppress fungal root and seedling disease by production of antifungal metabolites such as 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin, pyrolinitrin, siderophores and HCN. The compound 2,4-DAPG is a major determinant in biocontrol of plant pathogens. A 7.2 kbp chromosomal DNA region, carrying DAPG biosynthetic genes (phlA, phlC, phlB, phlD, phIE and phlF). Detecting the ph1 genes make them an ideal marker gene for 2,4-DAPG-producing fluorescent pseudomonad's. In this study we detected ph1A gene (that convert MAPG to 2,4-DAPG) using PCR assay with primers phlA-1r and phlA- f that enabled amplification of phlA sequences from fluorescent pseudomonad's from ARDRA group 1 and 3. We could detect phlA gene in P. fluorescens strains CHAO, Pf-44, Pf-1, Pf-2, Pf-3, Pf-17, Pf-62 and Pf-64, native isolates of Iran. The efficacy of this method for rapid assay characterizing rhizosphere population of 2,4-DAPG producing bacteria from soil of different area of Iran is in progress. We used a collection of 48 fluorescent pseudomonas strains in vitro, with known biological control activity against some soil born phytopathogenic fungi such as, Macrophomina phaseoli, Rhizoctonia solani Vericillium dahlia, Phytophthora nicotiana, Pythium spp. and Fusarium spp. and the potential to produce known secondary metabolites such as protease. Strains Pf-1, Pf-2, Pf-3, Pf-17, Pf-33 and Pf-44 showed the best antifungal activity against all fungi used in this study. Thirty-eight of 48 strains produced protease. The ability to rapidly characterize populations of 2,4-DAPG producers will greatly enhance our understanding of their role in the suppression of root disease. PMID:16637170

  16. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin.

    PubMed

    Wang, Chong-Zhi; Zhang, Chun-Feng; Chen, Lina; Anderson, Samantha; Lu, Fang; Yuan, Chun-Su

    2015-11-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal microbiota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anticancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis.

  17. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR

    PubMed Central

    Fedorova, Elena V.; Krylova, Julia V.

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases. PMID:27200207

  18. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin.

    PubMed

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.

  19. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR.

    PubMed

    Kurashov, Evgeny A; Fedorova, Elena V; Krylova, Julia V; Mitrukova, Galina G

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases. PMID:27200207

  20. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin.

    PubMed

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944

  1. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin

    PubMed Central

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944

  2. Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases.

    PubMed Central

    Drotar, A; Burton, G A; Tavernier, J E; Fall, R

    1987-01-01

    A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers. PMID:3662509

  3. Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites.

    PubMed

    Fujisawa, Seiichiro; Kadoma, Yoshinori; Yokoe, Ichiro

    2004-07-01

    To clarify the radical-scavenging activity of butylated hydroxytoluene (BHT), a food additive, stoichiometric factors (n) and inhibition rate constants (kinh) were determined for 2,6-di-tert-butyl-4-methylphenol (BHT) and its metabolites 2,6-di-tert-butyl-p-benzoquinone (BHT-Q), 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHA-CHO) and 3,5-di-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadiene-1-one (BHT-OOH). Values of n and kinh were determined from differential scanning calorimetry (DSC) monitoring of the polymerization of methyl methacrylate (MMA) initiated by 2,2'-azobis(isobutyronitrile) (AIBN) or benzoyl peroxide (BPO) at 70 degrees C in the presence or absence of antioxidants (BHT-related compounds). The n values declined in the order BHT (1-2) > BHT-CHO, BHT-OOH (0.1-0.3) > BHT-Q ( approximately 0). The n value for BHT with AIBN was approximately 1.0, suggesting dimerization of BHT. The kinh values declined in the order BHT-Q ((3.5-4.6) x 10(4) M(-1)s(-1)) > BHT-OOH (0.7-1.9 x 10(4) M(-1)s(-1)) > BHT-CHO ((0.4-1.7 x 10(4) M(-1)s(-1)) > BHT ((0.1-0.2 x 10(4) M(-1)s(-1)). The kinh for metabolites was greater than that for the parent BHT. Growing MMA radicals initiated by BPO were suppressed much more efficiently by BHT or BHT-Q compared with those initiated by AIBN. BHT was effective as a chain-breaking antioxidant. PMID:15172835

  4. Structural Characterization of a Therapeutic Anti-Methamphetamine Antibody Fragment: Oligomerization and Binding of Active Metabolites

    PubMed Central

    Gokulan, Kuppan; Varughese, Kottayil I.

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, KD = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or “ecstasy”). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni2+. Two of the histidine residues of each C-terminal His-tag interact with Ni2+ in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy. PMID:24349338

  5. Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites.

    PubMed

    Fujisawa, Seiichiro; Kadoma, Yoshinori; Yokoe, Ichiro

    2004-07-01

    To clarify the radical-scavenging activity of butylated hydroxytoluene (BHT), a food additive, stoichiometric factors (n) and inhibition rate constants (kinh) were determined for 2,6-di-tert-butyl-4-methylphenol (BHT) and its metabolites 2,6-di-tert-butyl-p-benzoquinone (BHT-Q), 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHA-CHO) and 3,5-di-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadiene-1-one (BHT-OOH). Values of n and kinh were determined from differential scanning calorimetry (DSC) monitoring of the polymerization of methyl methacrylate (MMA) initiated by 2,2'-azobis(isobutyronitrile) (AIBN) or benzoyl peroxide (BPO) at 70 degrees C in the presence or absence of antioxidants (BHT-related compounds). The n values declined in the order BHT (1-2) > BHT-CHO, BHT-OOH (0.1-0.3) > BHT-Q ( approximately 0). The n value for BHT with AIBN was approximately 1.0, suggesting dimerization of BHT. The kinh values declined in the order BHT-Q ((3.5-4.6) x 10(4) M(-1)s(-1)) > BHT-OOH (0.7-1.9 x 10(4) M(-1)s(-1)) > BHT-CHO ((0.4-1.7 x 10(4) M(-1)s(-1)) > BHT ((0.1-0.2 x 10(4) M(-1)s(-1)). The kinh for metabolites was greater than that for the parent BHT. Growing MMA radicals initiated by BPO were suppressed much more efficiently by BHT or BHT-Q compared with those initiated by AIBN. BHT was effective as a chain-breaking antioxidant.

  6. Anti-microfouling activity of lipidic metabolites from the invasive brown alga Sargassum muticum (Yendo) Fensholt.

    PubMed

    Plouguerné, Erwan; Ioannou, Efstathia; Georgantea, Panagiota; Vagias, Constantinos; Roussis, Vassilios; Hellio, Claire; Kraffe, Edouard; Stiger-Pouvreau, Valérie

    2010-02-01

    The purification of the chloroform extract from the brown invasive macroalga Sargassum muticum, through a series of chromatographic separations, yielded 12 fractions that were tested against strains of bacteria, microalgae, and fungi involved in marine biofilm formation. The chemical composition of four (a, c, g, and k) out of the six fractions that exhibited anti-microfouling activity was investigated. Fraction a contained saturated and unsaturated linear hydrocarbons (C12-C27). Arachidonic acid was identified as the major metabolite in fraction c whereas fraction g contained mainly palmitic, linolenic, and palmitoleic acids. Fraction k was submitted to further purification yielding the fraction kAcaF1e that was composed of galactoglycerolipids, active against the growth of two of the four bacterial strains (Shewanella putrefaciens and Polaribacter irgensii) and all tested fungi. These promising results, in particular the isolation and the activity of galactoglycerolipids, attest the potential of the huge biomass of S. muticum as a source of new environmentally friendly antifouling compounds. PMID:19468792

  7. Alteration of decreased plasma NO metabolites and platelet NO synthase activity by paroxetine in depressed patients.

    PubMed

    Chrapko, Wendy; Jurasz, Paul; Radomski, Marek W; Archer, Stephen L; Newman, Stephen C; Baker, Glen; Lara, Nathalie; Le Mellédo, Jean-Michel

    2006-06-01

    Although major depression (MD) and cardiovascular disease (CVD) have been conclusively linked in the literature, the mechanism associating MD and CVD is yet undetermined. The purpose of this paper is to further investigate a potential mechanism involving nitric oxide (NO) and to examine the effect of the selective serotonin reuptake inhibitor paroxetine on NO production by both platelets and the endothelium. In total, 17 subjects with MD and 12 healthy controls (HCs) with no known history of cardiovascular illness completed the study. Paroxetine was administered to both the MD patients and HCs over an 8-week period, and then medication was discontinued. Blood samples were taken at various times throughout paroxetine treatment and after discontinuation. Plasma NO metabolite (NOx) levels were measured by a chemiluminescence method. Platelet endothelial NO synthase (eNOS) activity was examined through the conversion of L-[14C]arginine to L-[(14)C]citrulline. Data were analyzed using t-tests and a linear mixed effects model. Baseline levels of both plasma NOx and platelet NOS activity were significantly lower in subjects with MD compared to HCs. Throughout paroxetine treatment, plasma NOx levels increased in both HCs and MD patients. However, platelet eNOS activity decreased in HCs, while no statistically significant change was evidenced in MD patients. These data suggest that, in MD patients, decreased peripheral production of NO, a potential contributor to increased cardiovascular risk, is modified by administration of the antidepressant paroxetine. PMID:16319917

  8. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic

    PubMed Central

    Shentu, Xuping; Zhan, Xiaohuan; Ma, Zheng; Yu, Xiaoping; Zhang, Chuanxi

    2014-01-01

    The endophytic fungus strain 0248, isolated from garlic, was identified as Trichoderma brevicompactum based on morphological characteristics and the nucleotide sequences of ITS1-5.8S- ITS2 and tef1. The bioactive compound T2 was isolated from the culture extracts of this fungus by bioactivity-guided fractionation and identified as 4β-acetoxy-12,13- epoxy-Δ9-trichothecene (trichodermin) by spectral analysis and mass spectrometry. Trichodermin has a marked inhibitory activity on Rhizoctonia solani, with an EC50 of 0.25 μgmL−1. Strong inhibition by trichodermin was also found for Botrytis cinerea, with an EC50 of 2.02 μgmL−1. However, a relatively poor inhibitory effect was observed for trichodermin against Colletotrichum lindemuthianum (EC50 = 25.60 μgmL−1). Compared with the positive control Carbendazim, trichodermin showed a strong antifungal activity on the above phytopathogens. There is little known about endophytes from garlic. This paper studied in detail the identification of endophytic T. brevicompactum from garlic and the characterization of its active metabolite trichodermin. PMID:24948941

  9. Seasonal variability of Chelidonium majus L. secondary metabolites content and antioxidant activity

    PubMed Central

    Jakovljevic, Z. Dragana; Stankovic, S. Milan; Topuzovic, D. Marina

    2013-01-01

    The aim of this study is to investigate the total phenolic content, concentration of flavonoids and antioxidant activity in extracts of the plant Chelidonium majus L. during different phenological stages (stage of rosette, the initial flowering stage, the stage of fully formed flowers and stage of fruits formation). Five different extracts of the whole plant, for each phase, were obtained by extraction with water, methanol, acetone, ethyl acetate and petroleum ether. The concentration of total phenolic content was determined using the Folin-Ciocalteu´s reagent and obtained values were the highest in the rosette stage (60.96 mg GA/g). The concentration of flavonoids was the highest in the initial stage of flowering (291.58 mg RU/g). The antioxidant activity was determined in vitro using DPPH reagent. The highest antioxidant activity was expressed in the rosette stage (50.72 mg/ml). Based on the obtained results it can be concluded that the concentrations of secondary metabolites in Ch. majus depend on the phenological stage of the plant. PMID:27047313

  10. Cytotoxic, Antiangiogenic and Antitelomerase Activity of Glucosyl- and Acyl- Resveratrol Prodrugs and Resveratrol Sulfate Metabolites.

    PubMed

    Falomir, Eva; Lucas, Ricardo; Peñalver, Pablo; Martí-Centelles, Rosa; Dupont, Alexia; Zafra-Gómez, Alberto; Carda, Miguel; Morales, Juan C

    2016-07-15

    Resveratrol (RES) is a natural polyphenol with relevant and varied biological activity. However, its low bioavailability and rapid metabolism to its glucuronate and sulfate conjugates has opened a debate on the mechanisms underlying its bioactivity. RES prodrugs are being developed to overcome these problems. We have synthesized a series of RES prodrugs and RES sulfate metabolites (RES-S) and evaluated their biological activities. RES glucosylated prodrugs (RES-Glc) were more cytotoxic in HT-29 and MCF-7 cells than RES itself whereas RES-S showed similar or higher cytotoxicity than RES. VEGF production was decreased by RES-Glc, and RES-disulfate (RES-diS) diminished it even more than RES. Finally, RES-Glc and RES-diS inhibited hTERT gene expression to a higher extent than RES. In conclusion, resveratrol prodrugs are promising candidates as anticancer drugs. In addition, RES-S showed distinct biological activity, thus indicating they are not simply RES reservoirs. PMID:27147200

  11. Effect of Competition on the Production and Activity of Secondary Metabolites in Aspergillus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Secondary metabolites are of intense interest to humans due to their pharmaceutical and/or toxic properties. Aspergillus species secrete these metabolites by themselves and in the presence of other fungal species. Here, we have performed co-cultivation competition assays among different Aspergillu...

  12. Thiol-Based Redox Switches and Gene Regulation

    PubMed Central

    2011-01-01

    Abstract Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression. Antioxid. Redox Signal. 14, 1049—1063. PMID:20626317

  13. Thiol/disulfide redox states in signaling and sensing

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  14. Phelligridimer A, a highly oxygenated and unsaturated 26-membered macrocyclic metabolite with antioxidant activity from the fungus Phellinus igniarius.

    PubMed

    Wang, Ying; Wang, Su-Juan; Mo, Shun-Yan; Li, Shuai; Yang, Yong-Chun; Shi, Jian-Gong

    2005-10-13

    [structure: see text] A highly oxygenated and unsaturated 26-membered macrocyclic metabolite, phelligridimer A (1), has been isolated from the Chinese medicinal fungus Phellinus igniarius. Its structure was elucidated by spectroscopic methods. A possible biogenesis of 1 mediated by the fungal metabolite hispidin was postulated. Phelligridimer A showed antioxidant activity (IC50 of 10.2 microM) but was inactive to several human cancer cell lines (IC50 > 50 microM) and enzymes PTP1B (IC50 > 25 microM) and thrombin (IC50 > 10 microM). PMID:16209522

  15. Increased active metabolite formation explains the greater platelet inhibition with prasugrel compared to high-dose clopidogrel.

    PubMed

    Payne, Christopher D; Li, Ying Grace; Small, David S; Ernest, C Steven; Farid, Nagy A; Jakubowski, Joseph A; Brandt, John T; Salazar, Daniel E; Winters, Kenneth J

    2007-11-01

    Prasugrel pharmacodynamics and pharmacokinetics after a 60-mg loading dose (LD) and daily 10-mg maintenance doses (MD) were compared in a 3-way crossover study to clopidogrel 600-mg/75-mg and 300-mg/75-mg LD/MD in 41 healthy, aspirin-free subjects. Each LD was followed by 7 days of daily MD and a 14-day washout period. Inhibition of platelet aggregation (IPA) was assessed by turbidometric aggregometry (20 and 5 microM ADP). Prasugrel 60-mg achieved higher mean IPA (54%) 30 minutes post-LD than clopidogrel 300-mg (3%) or 600-mg (6%) (P < 0.001) and greater IPA by 1 hour (82%) and 2 hours (91%) than the 6-hour IPA for clopidogrel 300-mg (51%) or 600-mg (69%) (P < 0.01). During MD, IPA for prasugrel 10-mg (78%) exceeded that of clopidogrel (300-mg/75-mg, 56%; 600-mg/75-mg, 52%; P < 0.001). Active metabolite area under the concentration-time curve (AUC0-tlast) after prasugrel 60-mg (594 ng.hr/mL) was 2.2 times that after clopidogrel 600-mg. Prasugrel active metabolite AUC0-tlast was consistent with dose-proportionality from 10-mg to 60-mg, while clopidogrel active metabolite AUC0-tlast exhibited saturable absorption and/or metabolism. In conclusion, greater exposure to prasugrel's active metabolite results in faster onset, higher levels, and less variability of platelet inhibition compared with high-dose clopidogrel in healthy subjects. PMID:18030066

  16. EFFECTS OF METHOPRENE, ITS METABOLITES, AND BREAKDOWN PRODUCTS ON RETINOID-ACTIVATED PATHWAYS IN TRANSFECTED CELL LINES

    EPA Science Inventory

    Methoprene is a terpene-based insecticide designed to act as an agonist of insect juvenile hormone, which is essential for the transition from larval to adult forms in some metamorphic insects. Recent evidence suggests that a methoprene metabolite, methoprene acid, activates a ve...

  17. Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum

    PubMed Central

    Abdel-Azeem, Ahmed M.; Zaki, Sherif M.; Khalil, Waleed F.; Makhlouf, Noha A.; Farghaly, Lamiaa M.

    2016-01-01

    The aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1–CG7), being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half – strength potato dextrose broth for 21 days at 28°C on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA) rat model were examined and compared with the effects of methotrexate (MTX) as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM) were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05) in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6) and MTX treatment groups 6 days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82) compared to (13.8 ± 0.98) in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55) was significantly lower than that of the positive control group (3.33 ± 0.82). In contrast, the ethyl acetate extract of CG6 (EACG6) treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KC

  18. A protein disulfide-thiol interchange protein with NADH: protein disulfide reductase (NADH oxidase) activity as a molecular target for low levels of exposure to organic solvents in plant growth.

    PubMed

    Morré, D J

    1998-05-01

    A number of solvents including ethyl, amyl, butyl, octyl and benzyl alcohols, ethylene glycol, ethyl acetate, acetone, diethyl ether, propylene oxide, rho-dioxane, benzene, xylene, chloroform and carbon tetrachloride stimulate the growth of plants or plant parts at low concentrations and inhibit at high concentrations. These same solvents, at low dilutions, stimulate the activity of a growth-related protein disulfide-thiol interchange protein (TIP) with NADH: protein disulfide reductase (NADH oxidase) (NOX) activity with plasma membrane vesicles isolated from elongating regions cut from dark grown seedlings of soybeans. Based on these and other findings, we suggest the TIP/NOX protein to be the molecular target of the biological effects of low levels of exposure (hormesis) involved in the stimulation of plant growth.

  19. Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors.

    PubMed

    Fazio, F; Lionetto, L; Molinaro, G; Bertrand, H O; Acher, F; Ngomba, R T; Notartomaso, S; Curini, M; Rosati, O; Scarselli, P; Di Marco, R; Battaglia, G; Bruno, V; Simmaco, M; Pin, J P; Nicoletti, F; Goudet, C

    2012-05-01

    Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway that meets the structural requirements to interact with glutamate receptors. We found that cinnabarinic acid acts as a partial agonist of type 4 metabotropic glutamate (mGlu4) receptors, with no activity at other mGlu receptor subtypes. We also tested the activity of cinnabarinic acid on native mGlu4 receptors by examining 1) the inhibition of cAMP formation in cultured cerebellar granule cells; 2) protection against excitotoxic neuronal death in mixed cultures of cortical cells; and 3) protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice after local infusion into the external globus pallidus. In all these models, cinnabarinic acid behaved similarly to conventional mGlu4 receptor agonists, and, at least in cultured neurons, the action of low concentrations of cinnabarinic acid was largely attenuated by genetic deletion of mGlu4 receptors. However, high concentrations of cinnabarinic acid were still active in the absence of mGlu4 receptors, suggesting that the compound may have off-target effects. Mutagenesis and molecular modeling experiments showed that cinnabarinic acid acts as an orthosteric agonist interacting with residues of the glutamate binding pocket of mGlu4. Accordingly, cinnabarinic acid did not activate truncated mGlu4 receptors lacking the N-terminal Venus-flytrap domain, as opposed to the mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). Finally, we could detect endogenous cinnabarinic acid in brain tissue and peripheral organs by high-performance liquid chromatography-tandem mass spectrometry analysis. Levels increased substantially during inflammation induced by lipopolysaccharide. We conclude that cinnabarinic acid is a novel endogenous orthosteric agonist of mGlu4 receptors endowed with neuroprotective activity. PMID:22311707

  20. "Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites.

    PubMed

    Barbosa, Daniel José; Capela, João Paulo; Silva, Renata; Ferreira, Luísa Maria; Branco, Paula Sério; Fernandes, Eduarda; Bastos, Maria Lourdes; Carvalho, Félix

    2014-02-01

    3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells. We showed that MDMA metabolites exhibited toxicity to SH-SY5Y differentiated cells, being the GSH and NAC conjugates more toxic than their catecholic precursors and MDMA. Furthermore, whereas the toxicity of the catechol metabolites was potentiated by hyperthermia, NAC-conjugated metabolites revealed higher toxicity under normothermia and GSH-conjugated metabolites-induced toxicity was temperature-independent. Moreover, a time-dependent decrease in extracellular concentration of MDMA metabolites was observed, which was potentiated by hyperthermia. The antioxidant NAC significantly protected against the neurotoxic effects of MDMA metabolites. MDMA metabolites increased intracellular glutathione levels, though depletion in thiol content was observed in MDMA-exposed cells. Finally, the neurotoxic effects induced by the MDMA metabolite N-Me-α-MeDA involved caspase 3 activation. In conclusion, this study evaluated the stability of MDMA metabolites in vitro, and demonstrated that the catechol MDMA metabolites and their GSH and NAC conjugates, rather than MDMA itself, exhibited neurotoxic actions in SH-SY5Y differentiated cells, which were differently affected by hyperthermia, thus highlighting a major role for reactive metabolites and hyperthermia in MDMA's neurotoxicity.

  1. Population pharmacokinetic modeling of motesanib and its active metabolite, M4, in cancer patients.

    PubMed

    Gosselin, Nathalie H; Mouksassi, Mohamad-Samer; Lu, Jian-Feng; Hsu, Cheng-Pang

    2015-11-01

    Motesanib is a small molecule and potent multikinase inhibitor with antiangiogenic and antitumor activity. Population pharmacokinetic (POPPK) modeling of motesanib and M4, an active metabolite, was performed to assess sources of variability in cancer patients. The analysis included data collected from 451 patients from 8 clinical trials with oral doses of motesanib ranging from 25 to 175 mg, either once daily or twice daily. The POPPK analyses were performed using nonlinear mixed-effect models with a sequential approach. Covariate effects of demographics and other baseline characteristics were assessed with stepwise covariate modeling. A 2-compartment model with food effect on absorption parameters fitted the PK data of motesanib well. The effects albumin and sex on apparent clearance (CL/F) of motesanib were statistically significant. The albumin effect was more important but remained below a 25% difference. A 1-compartment model fitted PK data of M4 well. Effects of race (Asian vs non-Asian) and dosing frequency were identified as statistically significant covariates on the CL/F of M4. The maximum effect of albumin would result in less than 25% change in motesanib CL/F and as such would not warrant any dosing adjustment. However, faster elimination of M4 in Asian patients requires further investigation. PMID:27137719

  2. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites

    PubMed Central

    Chen, Xiao-Jia; Zhang, Xiao-Jing; Shui, Yan-Mei; Wan, Jian-Bo

    2016-01-01

    Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer. PMID:27446225

  3. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters

    PubMed Central

    Netzker, Tina; Fischer, Juliane; Weber, Jakob; Mattern, Derek J.; König, Claudia C.; Valiante, Vito; Schroeckh, Volker; Brakhage, Axel A.

    2015-01-01

    Microorganisms form diverse multispecies communities in various ecosystems. The high abundance of fungal and bacterial species in these consortia results in specific communication between the microorganisms. A key role in this communication is played by secondary metabolites (SMs), which are also called natural products. Recently, it was shown that interspecies “talk” between microorganisms represents a physiological trigger to activate silent gene clusters leading to the formation of novel SMs by the involved species. This review focuses on mixed microbial cultivation, mainly between bacteria and fungi, with a special emphasis on the induced formation of fungal SMs in co-cultures. In addition, the role of chromatin remodeling in the induction is examined, and methodical perspectives for the analysis of natural products are presented. As an example for an intermicrobial interaction elucidated at the molecular level, we discuss the specific interaction between the filamentous fungi Aspergillus nidulans and Aspergillus fumigatus with the soil bacterium Streptomyces rapamycinicus, which provides an excellent model system to enlighten molecular concepts behind regulatory mechanisms and will pave the way to a novel avenue of drug discovery through targeted activation of silent SM gene clusters through co-cultivations of microorganisms. PMID:25941517

  4. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites.

    PubMed

    Chen, Xiao-Jia; Zhang, Xiao-Jing; Shui, Yan-Mei; Wan, Jian-Bo; Gao, Jian-Li

    2016-01-01

    Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer. PMID:27446225

  5. Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols.

    PubMed

    Di Mascio, P; Murphy, M E; Sies, H

    1991-01-01

    Reactive oxygen species occur in tissues and can damage DNA, proteins, carbohydrates, and lipids. These potentially deleterious reactions are controlled by a system of enzymatic and nonenzymatic antioxidants which eliminate prooxidants and scavenge free radicals. The ability of the lipid-soluble carotenoids to quench singlet molecular oxygen may explain some anticancer properties of the carotenoids, independent of their provitamin A activity. Tocopherols are the most abundant and efficient scavengers of hydroperoxyl radicals in biological membranes. Water-soluble antioxidants include ascorbate and cellular thiols. Glutathione is an important substrate for enzymatic antioxidant functions and is capable of nonenzymatic radical scavenging. Thiols associated with membrane proteins may also be important to the antioxidant systems. Interactions between the thiols, tocopherols, and other compounds enhance the effectiveness of cellular antioxidant defense. PMID:1985387

  6. Radicals Are Required for Thiol Etching of Gold Particles.

    PubMed

    Dreier, Timothy A; Ackerson, Christopher J

    2015-08-01

    Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process.

  7. Radicals are required for thiol etching of gold particles

    PubMed Central

    Dreier, Timothy A.

    2016-01-01

    Etching of gold with excess thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is opaque. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process. PMID:26089294

  8. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin

    PubMed Central

    WANG, CHONG-ZHI; ZHANG, CHUN-FENG; CHEN, LINA; ANDERSON, SAMANTHA; LU, FANG; YUAN, CHUN-SU

    2015-01-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal micro-biota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anti-cancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis. PMID:26398706

  9. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  10. An Invasive Plant Promotes Its Arbuscular Mycorrhizal Symbioses and Competitiveness through Its Secondary Metabolites: Indirect Evidence from Activated Carbon

    PubMed Central

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W. H.; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1–3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts. PMID:24817325

  11. An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon.

    PubMed

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W H; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1-3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts. PMID:24817325

  12. The ex vivo antiplatelet activation potential of fruit phenolic metabolite hippuric acid.

    PubMed

    Santhakumar, Abishek Bommannan; Stanley, Roger; Singh, Indu

    2015-08-01

    Polyphenol-rich fruit and vegetable intake has been associated with reduction in platelet hyperactivity, a significant contributor to thrombus formation. This study was undertaken to investigate the possible role of hippuric acid, a predominant metabolite of plant cyclic polyols, phenolic acids and polyphenols, in reduction of platelet activation-related thrombogenesis. Fasting blood samples were collected from 13 healthy subjects to analyse the effect of varying concentrations of hippuric acid (100 μM, 200 μM, 500 μM, 1 mM and 2 mM) on activation-dependant platelet surface-marker expression. Procaspase activating compound-1 (PAC-1) and P-selectin/CD62P monoclonal antibodies were used to evaluate platelet activation-related conformational changes and α-granule release respectively using flow cytometry. Platelets were stimulated ex vivo via the P2Y1/P2Y12- adenosine diphosphate (ADP) pathway of platelet activation. Hippuric acid at a concentration of 1 mM and 2 mM significantly reduced P-selectin/CD62P expression (p = 0.03 and p < 0.001 respectively) induced by ADP. Hippuric acid at 2 mM concentration also inhibited PAC-1 activation-dependant antibody expression (p = 0.03). High ex vivo concentrations of hippuric acid can therefore significantly reduce P-selectin and PAC-1 expression thus reducing platelet activation and clotting potential. However, although up to 11 mM of hippuric acid can be excreted in the urine per day following consumption of fruit, hippuric acid is actively excreted with a recorded Cmax for hippuric acid in human plasma at 250-300 μM. This is lower than the blood concentration of 1-2 mM shown to be bioactive in this research. The contribution of hippuric acid to the protective effects of fruit and vegetable intake against vascular disorders by the pathways measured is therefore low but could be synergistic with lowered doses of antiplatelet drugs and help reduce risk of thrombosis in current antiplatelet drug sensitive populations. PMID

  13. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity.

    PubMed

    Suh, Dong Ho; Lee, Sunmin; Heo, Do Yeon; Kim, Young-Suk; Cho, Somi Kim; Lee, Sarah; Lee, Choong Hwan

    2014-08-27

    Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) was performed using gas chromatography-time-of-flight-mass spectrometry and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry with multivariate analysis. Different species and parts of pitayas (red peel, RP; white peel, WP; red flesh, RF; and white flesh, WF) were clearly separated by partial least-squares discriminate analysis. Furthermore, betalain-related metabolites, such as betacyanins and betaxanthins, or their precursors were described on the basis of their metabolites. The results of antioxidant activity tests [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing ability of plasma (FRAP)], total phenolic contents (TPC), total flavonoid contents (TFC), and total betacyanin contents (TBC) showed the following: RP ≥ WP > RF > WF. TPC, TFC, TBC, and betalain-related metabolites were higher in the peel than in the flesh and suggested to be the main contributors to antioxidant activity in pitayas. Therefore, peels as well as pulp of pitaya could beneficially help in the food industry.

  14. Thiol chemistry and specificity in redox signaling.

    PubMed

    Winterbourn, Christine C; Hampton, Mark B

    2008-09-01

    Exposure of cells to sublethal oxidative stress results in the modulation of various signaling pathways. Oxidants can activate and inactivate transcription factors, membrane channels, and metabolic enzymes, and regulate calcium-dependent and phosphorylation signaling pathways. Oxidation and reduction of thiol proteins are thought to be the major mechanisms by which reactive oxidants integrate into cellular signal transduction pathways. This review focuses on mechanisms for sensing and transmitting redox signals, from the perspective of their chemical reactivity with specific oxidants. We discuss substrate preferences for different oxidants and how the kinetics of these reactions determines how each oxidant will react in a cell. This kinetic approach helps to identify initial oxidant-sensitive targets and elucidate mechanisms involved in transmission of redox signals. It indicates that only those proteins with very high reactivity, such as peroxiredoxins, are likely to be direct targets for hydrogen peroxide. Other more modestly reactive thiol proteins such as protein tyrosine phosphatases are more likely to become oxidized by an indirect mechanism. The review also examines oxidative changes observed during receptor-mediated signaling, the strengths and limitations of detection methods for reactive oxidant production, and the evidence for hydrogen peroxide acting as the second messenger. We discuss areas where observations in cell systems can be rationalized with the reactivity of specific oxidants and where further work is needed to understand the mechanisms involved.

  15. Mass spectrometric determination of cocaine and its biologically active metabolite, norcocaine, in human urine.

    PubMed

    Jindal, S P; Lutz, T; Vestergaard, P

    1978-12-01

    A gas chromatographic mass spectrometric assay has been developed for the determination of cocaine and its pharmacologically active metabolite, norcocaine, in human urine. [2H3]Cocaine and [2H3]norcocaine were used as internal standards. The assay utilizes selective focusing to monitor in a gas chromatographic effluent the molecular ions of cocaine, [2H3]cocaine and the fragment ions of trifluoroacetylated norcocaine, [2H3]norcocaine generated by electron impact ionization. The assay can measure 2 ng ml-1 each of cocaine and norcocaine with about 5% precision. The curves, relating the amounts of cocaine and norcocaine added to control urine per 'fixed' amounts of their labeled analogs, versus the appropriate ion intensity ratios are straight lines with nearly zero intercepts and slopes of 0.98 +/- 0.01 and 0.98 +/- 0.02, respectively. The methodology is used for the analysis of urinary cocaine and norcocaine from three human subjects who received 100 mg cocaine-HCL intravenously.

  16. Molecular structure of antihypertensive drug perindopril, its active metabolite perindoprilat and impurity F

    NASA Astrophysics Data System (ADS)

    Remko, M.; Bojarska, J.; Ježko, P.; Maniukiewicz, W.; Olczak, A.

    2013-03-01

    The molecular structure of the antihypertensive drug perindopril (2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-ethoxy-1-oxopentan-2-yl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2 carboxylic acid), its active metabolite perindoprilat ((2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-carboxybutyl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2-carboxylic acid), and impurity F (ethyl (2S)-2-((3S,5aS,9aS,10aS)-3-methyl-1,4-dioxodecahydropyrazino[1,2-a]indol-2(1H)-yl) pentanoate) has been investigated using B3LYP/6-31g(d) and B3LYP/6-311+g(d,p) model chemistry. It has been found that solid state conformations of perindoprilat occur close to, but not actually at minima on the computed gas-phase potential energy surfaces. Both, neutral and zwitterionic structures of perindopril and perindoprilat have been investigated. Relative stability of individual ionized species of this drug has been determined. Water has a remarkable effect on the geometry of the perindopril species studied.

  17. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    PubMed Central

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-01-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions. PMID:27053227

  18. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    NASA Astrophysics Data System (ADS)

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  19. Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-01-01

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage. PMID:26101955

  20. Aspirin's Active Metabolite Salicylic Acid Targets High Mobility Group Box 1 to Modulate Inflammatory Responses.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Song, Fei; Venereau, Emilie; Preti, Alessandro; Park, Sang-Wook; Hamilton, Keith; Swapna, G V T; Manohar, Murli; Moreau, Magali; Agresti, Alessandra; Gorzanelli, Andrea; De Marchis, Francesco; Wang, Huang; Antonyak, Marc; Micikas, Robert J; Gentile, Daniel R; Cerione, Richard A; Schroeder, Frank C; Montelione, Gaetano T; Bianchi, Marco E; Klessig, Daniel F

    2015-06-18

    Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA. Here we demonstrate that human high mobility group box 1 (HMGB1) is a novel SA-binding protein. SA-binding sites on HMGB1 were identified in the HMG-box domains by nuclear magnetic resonance (NMR) spectroscopic studies and confirmed by mutational analysis. Extracellular HMGB1 is a damage-associated molecular pattern molecule (DAMP), with multiple redox states. SA suppresses both the chemoattractant activity of fully reduced HMGB1 and the increased expression of proinflammatory cytokine genes and cyclooxygenase 2 (COX-2) induced by disulfide HMGB1. Natural and synthetic SA derivatives with greater potency for inhibition of HMGB1 were identified, providing proof-of-concept that new molecules with high efficacy against sterile inflammation are attainable. An HMGB1 protein mutated in one of the SA-binding sites identified by NMR chemical shift perturbation studies retained chemoattractant activity, but lost binding of and inhibition by SA and its derivatives, thereby firmly establishing that SA binding to HMGB1 directly suppresses its proinflammatory activities. Identification of HMGB1 as a pharmacological target of SA/aspirin provides new insights into the mechanisms of action of one of the world's longest and most used natural and synthetic drugs. It may also provide an explanation for the protective effects of low-dose aspirin usage.

  1. Exploring the chemodiversity and biological activities of the secondary metabolites from the marine fungus Neosartorya pseudofischeri.

    PubMed

    Liang, Wan-Ling; Le, Xiu; Li, Hou-Jin; Yang, Xiang-Ling; Chen, Jun-Xiong; Xu, Jun; Liu, Huan-Liang; Wang, Lai-You; Wang, Kun-Teng; Hu, Kun-Chao; Yang, De-Po; Lan, Wen-Jian

    2014-11-01

    The production of fungal metabolites can be remarkably influenced by various cultivation parameters. To explore the biosynthetic potentials of the marine fungus, Neosartorya pseudofischeri, which was isolated from the inner tissue of starfish Acanthaster planci, glycerol-peptone-yeast extract (GlyPY) and glucose-peptone-yeast extract (GluPY) media were used to culture this fungus. When cultured in GlyPY medium, this fungus produced two novel diketopiperazines, neosartins A and B (1 and 2), together with six biogenetically-related known diketopiperazines,1,2,3,4-tetrahydro-2, 3-dimethyl-1,4-dioxopyrazino[1,2-a]indole (3), 1,2,3,4-tetrahydro-2-methyl-3-methylen e-1,4-dioxopyrazino[1,2-a]indole (4), 1,2,3,4-tetrahydro-2-methyl-1,3,4-trioxopyrazino[1,2-a] indole (5), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio)gliotoxin (11), didehydrobisdethiobis(methylthio)gliotoxin (12) and N-methyl-1H-indole-2-carboxamide (6). However, a novel tetracyclic-fused alkaloid, neosartin C (14), a meroterpenoid, pyripyropene A (15), gliotoxin (7) and five known gliotoxin analogues, acetylgliotoxin (8), reduced gliotoxin (9), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio) gliotoxin (11) and bis-N-norgliovictin (13), were obtained when grown in glucose-containing medium (GluPY medium). This is the first report of compounds 3, 4, 6, 9, 10 and 12 as naturally occurring. Their structures were determined mainly by MS, 1D and 2D NMR data. The possible biosynthetic pathways of gliotoxin-related analogues and neosartin C were proposed. The antibacterial activity of compounds 2-14 and the cytotoxic activity of compounds 4, 5 and 7-13 were evaluated. Their structure-activity relationships are also preliminarily discussed. PMID:25421322

  2. Exploring the Chemodiversity and Biological Activities of the Secondary Metabolites from the Marine Fungus Neosartorya pseudofischeri

    PubMed Central

    Liang, Wan-Ling; Le, Xiu; Li, Hou-Jin; Yang, Xiang-Ling; Chen, Jun-Xiong; Xu, Jun; Liu, Huan-Liang; Wang, Lai-You; Wang, Kun-Teng; Hu, Kun-Chao; Yang, De-Po; Lan, Wen-Jian

    2014-01-01

    The production of fungal metabolites can be remarkably influenced by various cultivation parameters. To explore the biosynthetic potentials of the marine fungus, Neosartorya pseudofischeri, which was isolated from the inner tissue of starfish Acanthaster planci, glycerol-peptone-yeast extract (GlyPY) and glucose-peptone-yeast extract (GluPY) media were used to culture this fungus. When cultured in GlyPY medium, this fungus produced two novel diketopiperazines, neosartins A and B (1 and 2), together with six biogenetically-related known diketopiperazines,1,2,3,4-tetrahydro-2,3-dimethyl-1,4-dioxopyrazino[1,2-a]indole (3), 1,2,3,4-tetrahydro-2-methyl-3-methylene-1,4-dioxopyrazino[1,2-a]indole (4), 1,2,3,4-tetrahydro-2-methyl-1,3,4-trioxopyrazino[1,2-a] indole (5), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio)gliotoxin (11), didehydrobisdethiobis(methylthio)gliotoxin (12) and N-methyl-1H-indole-2-carboxamide (6). However, a novel tetracyclic-fused alkaloid, neosartin C (14), a meroterpenoid, pyripyropene A (15), gliotoxin (7) and five known gliotoxin analogues, acetylgliotoxin (8), reduced gliotoxin (9), 6-acetylbis(methylthio)gliotoxin (10), bisdethiobis(methylthio) gliotoxin (11) and bis-N-norgliovictin (13), were obtained when grown in glucose-containing medium (GluPY medium). This is the first report of compounds 3, 4, 6, 9, 10 and 12 as naturally occurring. Their structures were determined mainly by MS, 1D and 2D NMR data. The possible biosynthetic pathways of gliotoxin-related analogues and neosartin C were proposed. The antibacterial activity of compounds 2–14 and the cytotoxic activity of compounds 4, 5 and 7–13 were evaluated. Their structure-activity relationships are also preliminarily discussed. PMID:25421322

  3. [Secondary metabolites, lethality and antimicrobial activity of extracts from three corals and three marine mollusks from Sucre, Venezuela].

    PubMed

    Ordaz, Gabriel; D'Armas, Haydelba; Yáñez, Dayanis; Hernández, Juan; Camacho, Angel

    2010-06-01

    The study of biochemical activity of extracts obtained from marine organisms is gaining interest as some have proved to have efficient health or industrial applications. To evaluate lethality and antimicrobial activities, some chemical tests were performed on crude extracts of the octocorals Eunicea sp., Muricea sp. and Pseudopterogorgia acerosa and the mollusks Pteria colymbus, Phyllonotus pomum and Chicoreus brevifrons, collected in Venezuelan waters. The presence of secondary metabolites like alkaloids, unsaturated sterols and pentacyclic triterpenes in all invertebrates, was evidenced. Additionally, sesquiterpenlactones, saponins, tannins, cyanogenic and cardiotonic glycosides were also detected in some octocoral extracts, suggesting that biosynthesis of these metabolites is typical in this group. From the lethality bioassays, all extracts resulted lethal to Artemia salina (LC50<1000 microg/ml) with an increased of lethal activity with exposition time. P. pomum extract showed the highest lethality rate (LC50=46.8 microg/ml). Compared to the octocorals, mollusks extracts displayed more activity and a greater action spectrum against different bacterial strains, whereas octocorals also inhibited some fungi strains growth. Staphylococcus aureus was the most susceptible to the antimicrobial power of the extracts (66.7%), whereas Pseudomonas aeruginosa, Candida albicans and Aspergillus niger were not affected. The antibiosis shown by marine organisms extracts indicates that some of their biosynthesized metabolites are physiologically active, and may have possible cytotoxic potential or as a source of antibiotic components.

  4. CSF Biomarkers of Monocyte Activation and Chemotaxis correlate with Magnetic Resonance Spectroscopy Metabolites during Chronic HIV Disease

    PubMed Central

    Anderson, Albert M.; Fennema-Notestine, Christine; Umlauf, Anya; Taylor, Michael J.; Clifford, David B.; Marra, Christina M.; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Simpson, David M.; Morgello, Susan; Grant, Igor; Letendre, Scott L.

    2015-01-01

    Background HIV-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. Methods A multicenter cross-sectional study involving five sites in the United States was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein 1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM) and frontal gray matter (FGM): N-acetyl-aspartate (NAA), Myo-inositol (MI), Choline (Cho), and Creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Results 83 HIV-infected individuals were included, 78% on cART and 37% with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R2 0.179, p<0.001) as well as MCP-1 and MI in FWM (R2 0.137, p=0.002). Higher Cr levels in FWM were associated with MCP-1 (R2 0. 075, p=0.01) and IP-10 (R2 0.106, p=0.003). Comparing biomarkers to MRS metabolite/Cr ratios impacted some relationships, e.g., higher sCD14 levels were associated with lower Cho/Cr ratios in FGM (R2 0.224, p<0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. Conclusion These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals. PMID:26069183

  5. Comparison of three thiol probes for determination of apoptosis-related changes in cellular redox status.

    PubMed

    Skindersoe, Mette E; Kjaerulff, Soeren

    2014-02-01

    An early step in apoptosis is extrusion of reduced glutathione (GSH). Current assays for measuring apoptosis involve a number of incubation and washing steps, making them time consuming and laborious. Using two novel thiol reactive agents (VitaBright-43 and VitaBright-48) and a GSH specific probe; monochlorobimane, we investigated whether changes in the level of free thiols can be used as an apoptotic marker. Upon addition to cells the probes permeate the cell membrane and react with intracellular thiols, causing cellular fluorescence. Cytometric quantification of the cell fluorescence (without washing) can then be used to determine the population's cellular thiol level at the single cell level. Apoptotic traits such as phosphatidylserine externalisation, caspase activity and mitochondrial potential were investigated at different time points after induction of apoptosis and correlated to changes detected using the thiol probes. We found that though all three thiol probes could be used to detect changes in the level of free thiols correlating well with apoptotic markers, other properties such as detection of early versus late apoptosis and staining kinetics differed among the three probes. However, we suggest adding evaluation of the level of free thiols to the list of phenotypes which may be measured in order to detect apoptosis, as this provides a reliable and easy way of assaying apoptosis. PMID:24222540

  6. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3.

    PubMed

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-07-29

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(D-Pro-D-Phe) (1), cyclo(D-Tyr-D-Pro) (2), phenethyl 5-oxo-L-prolinate (3), cyclo(L-Ile-L-Pro) (4), cyclo(L-Leu-L-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1-6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent fungal

  7. Activation of Dormant Secondary Metabolite Production by Introducing Neomycin Resistance into the Deep-Sea Fungus, Aspergillus versicolor ZBY-3

    PubMed Central

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-01-01

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(d-Pro-d-Phe) (1), cyclo(d-Tyr-d-Pro) (2), phenethyl 5-oxo-l-prolinate (3), cyclo(l-Ile-l-Pro) (4), cyclo(l-Leu-l-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1–6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent

  8. Synthesis of a thiol-β-cyclodextrin, a potential agent for controlling enzymatic browning in fruits and vegetables.

    PubMed

    Manta, Carmen; Peralta-Altier, Gabriela; Gioia, Larissa; Méndez, María F; Seoane, Gustavo; Ovsejevi, Karen

    2013-11-27

    A thiol-β-cyclodextrin was synthesized by a simple and environmentally friendly three-step method comprising epoxy activation of β-cyclodextrin, thiosulfate-mediated oxirane opening, and further reduction of the S-alkyl thiosulfate to a thiol group. The final step was optimized by using thiopropyl-agarose, a solid phase reducing agent with many advantages over soluble ones. β-Cyclodextrin thiolation was confirmed by titration with a thiol-reactive reagent, NMR studies, and MALDI-TOF/TOF. Thiolated cyclodextrin had an average value of one thiol group per molecule. Thiol-β-cyclodextrin proved to be an excellent agent for controlling polyphenol oxidase activity. This copper-containing enzyme is responsible for browning in fruits and vegetables. Under the same conditions, thiol-β-cyclodextrin generated a reductive microenvironment that increased the antibrowning effect on Red Delicious apples compared to unmodified β-cyclodextrin.

  9. Synthesis of a thiol-β-cyclodextrin, a potential agent for controlling enzymatic browning in fruits and vegetables.

    PubMed

    Manta, Carmen; Peralta-Altier, Gabriela; Gioia, Larissa; Méndez, María F; Seoane, Gustavo; Ovsejevi, Karen

    2013-11-27

    A thiol-β-cyclodextrin was synthesized by a simple and environmentally friendly three-step method comprising epoxy activation of β-cyclodextrin, thiosulfate-mediated oxirane opening, and further reduction of the S-alkyl thiosulfate to a thiol group. The final step was optimized by using thiopropyl-agarose, a solid phase reducing agent with many advantages over soluble ones. β-Cyclodextrin thiolation was confirmed by titration with a thiol-reactive reagent, NMR studies, and MALDI-TOF/TOF. Thiolated cyclodextrin had an average value of one thiol group per molecule. Thiol-β-cyclodextrin proved to be an excellent agent for controlling polyphenol oxidase activity. This copper-containing enzyme is responsible for browning in fruits and vegetables. Under the same conditions, thiol-β-cyclodextrin generated a reductive microenvironment that increased the antibrowning effect on Red Delicious apples compared to unmodified β-cyclodextrin. PMID:24215568

  10. Daidzein-sulfate metabolites affect transcriptional and antiproliferative activities of estrogen receptor-beta in cultured human cancer cells.

    PubMed

    Totta, Pierangela; Acconcia, Filippo; Virgili, Fabio; Cassidy, Aedin; Weinberg, Peter D; Rimbach, Gerald; Marino, Maria

    2005-11-01

    Daidzein (D), a soy isoflavone, is almost completely metabolized in the gut and liver. This biotransformation converts D to more water-soluble products and may affect its biological activity. The ability of daidzein metabolites to modulate 17beta-estradiol (E2)-sensitive gene transcription, cell growth, and a proapoptotic cascade was determined in human cancer cells devoid of any estrogen receptor (ER) and rendered E2 sensitive after transfection with ERbeta. The data show that D and some but not all of its metabolites 1) induce promoter activity, 2) reduce proliferation, 3) promote p38/mitogen-activated protein kinase (MAPK) phosphorylation, and 4) activate a proapoptotic cascade involving the cleavage of caspase-3 and its substrate poly(ADP-ribose)polymerase (PARP) in human cancer cells in an ERbeta-dependent manner. Pretreatment of cells with ICI 182,780, a pure antiestrogen, completely prevented the actions of D and its metabolites. These findings highlight the important and complex influence of metabolic transformation on key physiological effects of isoflavones and demonstrate the need to take biotransformation into account when assessing the potential health benefits of consuming soy isoflavones. PMID:16251631

  11. Combined mass spectrometry-based metabolite profiling of different pigmented rice (Oryza sativa L.) seeds and correlation with antioxidant activities.

    PubMed

    Kim, Ga Ryun; Jung, Eun Sung; Lee, Sarah; Lim, Sun-Hyung; Ha, Sun-Hwa; Lee, Choong Hwan

    2014-09-29

    Nine varieties of pigmented rice (Oryza sativa L.) seeds that were black, red, or white were used to perform metabolite profiling by using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography (GC) TOF-MS, to measure antioxidant activities. Clear grouping patterns determined by the color of the rice seeds were identified in principle component analysis (PCA) derived from UPLC-Q-TOF-MS. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimer, proanthocyanidin trimer, apigenin-6-C-glugosyl-8-C-arabiboside, tricin-O-rhamnoside-O-hexoside, and lipids were identified as significantly different secondary metabolites. In PCA score plots derived from GC-TOF-MS, Jakwangdo (JKD) and Ilpoom (IP) species were discriminated from the other rice seeds by PC1 and PC2. Valine, phenylalanine, adenosine, pyruvate, nicotinic acid, succinic acid, maleic acid, malonic acid, gluconic acid, xylose, fructose, glucose, maltose, and myo-inositol were significantly different primary metabolites in JKD species, while GABA, asparagine, xylitol, and sucrose were significantly distributed in IP species. Analysis of antioxidant activities revealed that black and red rice seeds had higher activity than white rice seeds. Cyanidin-3-glucoside, peonidin-3-glucoside, proanthocyanidin dimers, proanthocyanidin trimers, and catechin were highly correlated with antioxidant activities, and were more plentiful in black and red rice seeds. These results are expected to provide valuable information that could help improve and develop rice-breeding techniques.

  12. High-Tg Thiol-Click Thermoset Networks via the Thiol-Maleimide Michael Addition.

    PubMed

    Parker, Shelbi; Reit, Radu; Abitz, Haley; Ellson, Gregory; Yang, Kejia; Lund, Benjamin; Voit, Walter E

    2016-07-01

    Thiol-click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg ) due to rotational flexibility around the thioether linkages found in networks such as thiol-ene, thiol-epoxy, and thiol-acrylate systems. This report explores the thiol-maleimide reaction utilized for the first time as a solvent-free reaction system to synthesize high-Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tg s of thiol-maleimide networks are compared to similarly structured thiol-ene and thiol-epoxy networks. While preliminary data show more heterogeneous networks for thiol-maleimide systems, bulk materials exhibit Tg s 80 °C higher than other thiol-click systems explored herein. Finally, hollow tubes are synthesized using each thiol-click reaction mechanism and employed in low- and high-temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol-click systems fail mechanically. PMID:27168131

  13. Screening of raw coffee for thiol binding site precursors using "in bean" model roasting experiments.

    PubMed

    Müller, Christoph; Hofmann, Thomas

    2005-04-01

    The purpose of the following study was to investigate the influence of coffee roasting on the thiol-binding activity of coffee beverages, and to investigate the potential of various green bean compounds as precursors of thiol-binding sites by using promising "in bean" model roast experiments. Headspace gas chromatographic analysis on coffee brews incubated in the presence of the roasty-sulfury smelling 2-furfurylthiol for 20 min at 30 degrees C in septum-closed vessels revealed that the amounts of "free" thiol decreased drastically with increasing the roasting degree of the beans used for preparation of the brews. A half-maximal binding capacity (BC(50)) of 183 mg of 2-furfurylthiol per liter of standard coffee beverage was determined for a roasted coffee (CTN value of 67), thus demonstrating that enormous amounts of the odor-active thiol are "bound" by the coffee. Furthermore, biomimetic "in bean" precursor experiments have been performed in order to elucidate the precursor for the thiol-binding sites in the raw coffee bean. These experiments opened the possibility of studying coffee model reactions under quasi-natural roasting conditions and undoubtedly identified chlorogenic acids as well as thermal degradation products caffeic acid and quinic acid as important precursors for low-molecular-weight thiol-binding sites. In particular, when roasted in the presence of transition metal ions, chlorogenic acids and even more caffeic acid showed thiol-binding activity which was comparable to the activity measured for the authentic coffee brew.

  14. Pharmacokinetics, safety and tolerability of triflusal and its main active metabolite HTB in healthy Chinese subjects.

    PubMed

    Wang, M; Zhang, Q; Huang, M; Zong, S; Hua, W; Zhou, W

    2014-05-01

    Triflusal presents comparable antiplatelet activity to aspirin while presenting a more favourable safety profile, and is used in the treatment of thrombosis. The study aimed to evaluate the pharmacokinetics and safety of triflusal and its major metabolite 2-(hydroxyl)-4-(trifluoromethyl)- benzoic acid (HTB) in healthy Chinese subjects.30 healthy subjects were recruited in this randomized, single-center, and open-label, parallel, single ascending doses (300, 600, 900 mg) and multiple doses (600 mg, once daily for 7 days) study. Plasma samples were analyzed with a validated liquid chromatography tandem mass spectrometry (LC/MS/MS) method. Safety was assessed by adverse events, ECG, laboratory testing, and vital signs.Triflusal was safe and well tolerated. After single-dose administration, triflusal was rapidly absorbed with a mean Tmax of 0.55-0.92 h and a mean t1/2 kel of 0.35-0.65 h, HTB was absorbed with a mean Tmax of 2.35-3.03 h and a mean t1/2 kel of 52.5-65.57 h. Cmax and AUC for triflusal and HTB were approximately dose proportional over the 300-900 mg dose range. In the steady state, the accumulation index (R) indicated that the exposure of triflusal increased slightly with repeated dosing, and the exposure of HTB increased obviously. 3 adverse events certainly related to the investigational drugs occurred in the multiple-dose phase.Following oral dosing under fasting condition, triflusal is promptly absorbed and rapidly depleted from the systemic circulation. HTB is quickly generated from triflusal and slowly eliminated. Triflusal accumulates slightly in the body. HTB plasma concentration builds up progressively toward steady-state. PMID:24105106

  15. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first

  16. DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite

    PubMed Central

    Watanabe, Chigusa; Egami, Takashi; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Kawanishi, Shosuke

    2010-01-01

    Objectives The environmental pollutant 2-nitrotoluene (2-NO2-T) is carcinogenic and reproductively toxic in animals. In this study, we elucidated the mechanisms of its carcinogenicity and reproductive toxicity. Methods We examined DNA damage induced by 2-NO2-T and its metabolite, 2-nitrosotoluene (2-NO-T), using 32P-5′-end-labeled DNA. We measured 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA and cellular DNA in cultured human leukemia (HL-60) cells treated with 2-NO2-T and 2-NO-T. 8-Oxoguanine DNA glycosylase (OGG1) gene expression in HL-60 cells was measured by real-time polymerase chain reaction (PCR). We examined estrogenic activity using an E-screen assay and a surface plasmon resonance (SPR) sensor. Results In experiments with isolated DNA fragments, 2-NO-T induced oxidative DNA damage in the presence of Cu (II) and β-nicotinamide adenine dinucleotide disodium salt (reduced form) (NADH), while 2-NO2-T did not. 2-NO-T significantly increased levels of 8-oxodG in HL-60 cells. Real-time polymerase chain reaction (PCR) analysis revealed upregulation of OGG1 gene expression induced by 2-NO-T. An E-screen assay using the human breast cancer cell line MCF-7 revealed that 2-NO2-T induced estrogen-dependent cell proliferation. In contrast, 2-NO-T decreased the cell number and suppressed 17β-estradiol-induced cell proliferation. The data obtained with the SPR sensor using estrogen receptor α and the estrogen response element supported the results of the E-screen assay. Conclusions Oxidative DNA damage caused by 2-NO-T and estrogen-disrupting effects caused by 2-NO2-T and 2-NO-T may play a role in the reproductive toxicity and carcinogenicity of these entities. PMID:21432561

  17. Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3.

    PubMed Central

    Nunn, J D; Katz, D R; Barker, S; Fraher, L J; Hewison, M; Hendy, G N; O'Riordan, J L

    1986-01-01

    We have examined the effects of 1,25(OH)2D3 on T-cell populations isolated by buoyant density and E rosetting from human tonsils. Cell proliferation was assessed by measuring the incorporation of 125iododeoxyuridine; interleukin-2 (IL-2) production was measured using an IL-2-dependent cell line, and the number of 1,25(OH)2D3 receptors was measured by whole-cell nuclear association assay. At a concentration of 10(-7) M, 1,25(OH)2D3 inhibited mitogen-induced T-cell proliferation in all E+ T-cell populations. This effect was more pronounced in the cells from the intermediate and high density layers and was reflected both in cell proliferative responses and in relative IL-2 synthesis. By adding the 1,25(OH)2D3 during the course of the mitogen assay, we demonstrated that activation of the T cell precedes the 1,25(OH)2D3-mediated inhibition. Cells that had been preincubated with mitogen in the presence of the 1,25(OH)2D3 were refractory to further stimulation by mitogens. Receptors for 1,25(OH)2D3 could not be detected in unstimulated T cells. However, activation led to the expression of high-affinity receptors for 1,25(OH)2D3. Co-incubation of the cells with mitogen and 1,25(OH)2D3 increased the number of receptors compared with mitogen alone. The effects provide further evidence for the hypothesis that 1,25(OH)2D3 is an important potential modulator of the immune system through its action on T cells. Taking our observations in conjunction with the known capacity of monocytes to hydroxylate the precursor metabolite (and thus synthesize the active form of cholecalciferol), the results support the suggestion that 1,25(OH)2D3 plays a role as a local mediator of mononuclear phagocyte-T cell interaction in human lymphomedullary tissues. PMID:3026959

  18. [Detection of fungal metabolites showing toxic activity through Artemia salina bioassay].

    PubMed

    González, Ana María; Presa, Maximiliano; Latorre, María Gabriela; Lurá, María Cristina

    2007-03-01

    The aim of this study was to detect toxic metabolites from fungi contaminating food and medicinal herbs by applying the toxicity assay to Artemia salina. According to toxicity percentages, the extracts were classified as nontoxic (NT), slightly toxic (ST), toxic (T) and highly toxic (HT). Those classified as T and HT were assayed for mycotoxins. Only 6 out of 71 strains were found to be T (8.5%) for A. salina. Penicillium brevicompactum Dierckx, isolated from sausages, was found to be HT, mainly due to the presence of ochratoxin A and two other unidentified metabolites. PMID:17592895

  19. Trace Amine-Associated Receptor 1 (TAAR1) is Activated by Amiodarone Metabolites

    PubMed Central

    Snead, Aaron N.; Miyakawa, Motonori; Tan, Edwin S.; Scanlan, Thomas S.

    2012-01-01

    Amiodarone (Cordarone, Wyeth-Ayerst Pharmaceuticals) is a clinically available drug used to treat a wide variety of cardiac arrhythmias. We report here the synthesis and characterization of a panel of potential amiodarone metabolites that have significant structural similarity to thyroid hormone and its metabolites the iodothyronamines. Several of these amiodarone derivatives act as specific agonists of the G protein-coupled receptor (GPCR) trace amine-associated receptor 1 (TAAR1). This result demonstrates a novel molecular target for amiodarone derivatives with potential clinical significance. PMID:18752950

  20. Ester-free Thiol-ene Dental Restoratives – Part A: Resin Development

    PubMed Central

    Podgórski, Maciej; Becka, Eftalda; Claudino, Mauro; Flores, Alexander; Shah, Parag K.; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2015-01-01

    Objectives To detail the development of ester-free thiol-ene dental resins with enhanced mechanical performance, limited potential for water uptake/leachables/degradation and low polymerization shrinkage stress. Methods Thiol-terminated oligomers were prepared via a thiol-Michael reaction and a bulky tetra-allyl monomer containing urethane linkages was synthesized. The experimental oligomers and/or monomers were photopolymerized using visible light activation. Several thiol-ene formulations were investigated and their performance ranked by comparisons of the thermo-mechanical properties, polymerization shrinkage stress, water sorption/solubility, and reactivity with respect to a control comprising a conventional BisGMA/TEGDMA dental resin. Results The ester-free thiol-ene formulations had significantly lower viscosities, water sorption and solubility than the BisGMA/TEGDMA control. Depending on the resin, the limiting functional conversions were equivalent to or greater than that of BisGMA/TEGDMA. At comparable conversions, lower shrinkage stress values were achieved by the thiol-ene systems. The polymerization shrinkage stress was dramatically reduced when the tetra-allyl monomer was used as the ene in ester-free thiol-ene mixtures. Although exhibiting lower Young’s modulus, flexural strength, and glass transition temperatures, the toughness values associated with thiol-ene resins were greater than that of the BisGMA/TEGDMA control. In addition, the thiol-ene polymerization resulted in highly uniform polymer networks as indicated by the narrow tan delta peak widths. Significance Employing the developed thiol-ene resins in dental composites will reduce shrinkage stress and moisture absorption and form tougher materials. Furthermore, their low viscosities are expected to enable higher loadings of functionalized micro/nano-scale filler particles relevant for practical dental systems. PMID:26360013

  1. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk)

    PubMed Central

    Patel, Manish K.; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Non-targeted metabolomics implies that psyllium (Plantago ovata) is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids) and essential and sulfur-rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and reactive oxygen species (ROS) scavenging activities. In leaves, seeds, and husks, about 76, 78, 58% polyunsaturated, 21, 15, 20% saturated, and 3, 7, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24) was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha-linolenic acid (57%) and ω-6 linoleic acid (18%) was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulfur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each) metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids, or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food. PMID:27092153

  2. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk).

    PubMed

    Patel, Manish K; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Non-targeted metabolomics implies that psyllium (Plantago ovata) is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids) and essential and sulfur-rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and reactive oxygen species (ROS) scavenging activities. In leaves, seeds, and husks, about 76, 78, 58% polyunsaturated, 21, 15, 20% saturated, and 3, 7, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24) was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha-linolenic acid CPS (57%) and ω-6 linoleic acid CPS (18%) was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulfur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each) metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids, or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food. PMID:27092153

  3. Mutagenic and cell-transforming activities of triol-epoxides as compared to other chrysene metabolites.

    PubMed

    Glatt, H; Seidel, A; Bochnitschek, W; Marquardt, H; Marquardt, H; Hodgson, R M; Grover, P L; Oesch, F

    1986-09-01

    The syn- and anti-isomers of the bay-region diol-epoxides of chrysene and of 3-hydroxychrysene and their metabolic precursors have been investigated for mutagenicity in Salmonella typhimurium (reversion to histidine prototrophy) and V79 Chinese hamster cells (acquirement of resistance to 6-thioguanine) and for transforming activity in M2 mouse prostate cells. Other known and potential chrysene metabolites have been included in mutagenicity experiments. Direct mutagenic activity in S. typhimurium TA 100 exhibited, in order of potency, anti-triol-epoxide greater than syn-triol-epoxide greater than anti-diol-epoxide greater than syn-diol-epoxide greater than chrysene 5,6-oxide much greater than chrysene-1,2-quinone, chrysene-3,4-quinone, and chrysene 5,6-quinone. Chrysene, the six isomeric chrysenols, and the trans-dihydrodiols [trans-1,2-dihydroxy-1,2-dihydrochrysene (chrysene-1,2-diol), trans-3,4-dihydroxy-3,4-dihydrochrysene, trans-5,6-dihydroxy-5,6-dihydrochrysene, and 9-hydroxy-trans-1,2-dihydroxy-1,2-dihydrochrysene (9-hydroxychrysene-1,2-diol)] were inactive per se but were activated to mutagens in the presence of reduced nicotinamide adenine dinucleotide phosphate-fortified postmitochondrial fraction (S9 mix) of liver homogenate from Arochlor 1254-treated rats. Chrysene, 3-hydroxychrysene, chrysene-1,2-diol, and 9-hydroxychrysene-1,2-diol were activated efficiently; the other compounds were activated weakly. In S. typhimurium TA 98, the mutagenic activities of the chrysene derivatives were weak in comparison with those in the strain TA 100. trans-3,4-Dihydroxy-3,4-dihydrochrysene (in the presence of S9 mix) was the most efficacious mutagen in strain TA 98. The relative mutagenic potencies of the directly active compounds differed from the results obtained in strain TA 100, in that in strain TA 98 the anti-diol-epoxide was more mutagenic than the triol-epoxides and chrysene 5,6-oxide was more mutagenic than syn-diol-epoxide and syn-triol-epoxide. In V79 cells

  4. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    biomass of Bacillus subtilis, a Gram-positive bacterium, showed the same pattern. Rapidly-dividing cells derived fewer of their O and H atoms from environmental water than did more slowly-growing cells and spores. To test whether a eukaryotic cell, surrounded by only a membrane, would also maintain an isotopic gradient and a detectable percentage of metabolic water, we applied our approach to cultured rat fibroblasts. Preliminary results showed that approximately 50% of the O and H atoms in exponentially growing cells were derived from metabolic activity. In quiescent cells, metabolic activity generated approximately 25% of the O and H atoms in intracellular water. Thus far, the data we have obtained is consistent with the following model: (1) Intracellular water is composed of water that diffuses in from the extracellular environment and water that is created as a result of metabolic activity. (2) The relative amounts of environmental and metabolic water inside a cell are a function of the cell's metabolic activity. (3) The oxygen and hydrogen isotope ratios of cellular metabolites are a function of those of intracellular water, and therefore reflect the metabolic activity of the cell at the time of biosynthesis.

  5. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes.

    PubMed

    Seviour, T; Doyle, L E; Lauw, S J L; Hinks, J; Rice, S A; Nesatyy, V J; Webster, R D; Kjelleberg, S; Marsili, E

    2015-03-01

    In Pseudomonas aeruginosa, chemical deconvolution of the pyocyanin voltammetric signal allows its expression to be observed simultaneously with the quorum sensing molecule Pseudomonas quinolone signal (PQS). Such analysis has revealed that PQS might protect pyocyanin from self-oxidation, but also exert a pro-oxidative effect on pyocyanin under oxidative conditions to produce additional redox metabolites. PMID:25650009

  6. Are free radicals involved in thiol-based redox signaling?

    PubMed

    Winterbourn, Christine C

    2015-03-01

    Cells respond to many stimuli by transmitting signals through redox-regulated pathways. It is generally accepted that in many instances signal transduction is via reversible oxidation of thiol proteins, although there is uncertainty about the specific redox transformations involved. The prevailing view is that thiol oxidation occurs by a two electron mechanism, most commonly involving hydrogen peroxide. Free radicals, on the other hand, are considered as damaging species and not generally regarded as important in cell signaling. This paper examines whether it is justified to dismiss radicals or whether they could have a signaling role. Although there is no direct evidence that radicals are involved in transmitting thiol-based redox signals, evidence is presented that they are generated in cells when these signaling pathways are activated. Radicals produce the same thiol oxidation products as two electron oxidants, although by a different mechanism, and at this point radical-mediated pathways should not be dismissed. There are unresolved issues about how radical mechanisms could achieve sufficient selectivity, but this could be possible through colocalization of radical-generating and signal-transducing proteins. Colocalization is also likely to be important for nonradical signaling mechanisms and identification of such associations should be a priority for advancing the field.

  7. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    PubMed

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  8. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    PubMed Central

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163

  9. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    NASA Astrophysics Data System (ADS)

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-02-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. ‘Images’ over a 3.25 × 0.9 mm2 area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  10. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.

    PubMed

    Li, Xiao-Jun; Zhang, Qiang; Zhang, An-Ling; Gao, Jin-Ming

    2012-04-01

    Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed. PMID:22409377

  11. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  12. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites.

    PubMed

    Manojlović, Nedeljko; Ranković, Branislav; Kosanić, Marijana; Vasiljević, Perica; Stanojković, Tatjana

    2012-10-15

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia caperata, P. saxatilis and P. sulcata and antioxidant, antimicrobial and anticancer activities of some their major metabolites. The phytochemical analysis of acetone extracts of three Parmelia lichens were determined by HPLC-UV method. The predominant phenolic compounds in these extracts were protocetraric and usnic acids (P. caperata) and depsidone salazinic acid (other two species). Besides these compounds, atranorin and chloroatranorin, were also detected in some of these extracts. Antioxidant activity of their isolated metabolites was evaluated by free radical scavenging, superoxide anion radical scavenging and reducing power. As a result of the study salazinic acid had stronger antioxidant activity than protocetraric acid. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. Both compounds were highly active with minimum inhibitory concentration values ranging from 0.015 to 1mg/ml. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. Salazinic acid and protocetraric acid were found to be strong anticancer activity toward both cell lines with IC(50) values ranging from 35.67 to 60.18μg/ml. The present study shows that tested lichen compounds demonstrated a strong antioxidant, antimicrobial, and anticancer effects. That suggest that these lichens can be used as new sources of the natural antimicrobial agents, antioxidants and anticancer compounds.

  13. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites.

    PubMed

    Manojlović, Nedeljko; Ranković, Branislav; Kosanić, Marijana; Vasiljević, Perica; Stanojković, Tatjana

    2012-10-15

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia caperata, P. saxatilis and P. sulcata and antioxidant, antimicrobial and anticancer activities of some their major metabolites. The phytochemical analysis of acetone extracts of three Parmelia lichens were determined by HPLC-UV method. The predominant phenolic compounds in these extracts were protocetraric and usnic acids (P. caperata) and depsidone salazinic acid (other two species). Besides these compounds, atranorin and chloroatranorin, were also detected in some of these extracts. Antioxidant activity of their isolated metabolites was evaluated by free radical scavenging, superoxide anion radical scavenging and reducing power. As a result of the study salazinic acid had stronger antioxidant activity than protocetraric acid. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. Both compounds were highly active with minimum inhibitory concentration values ranging from 0.015 to 1mg/ml. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. Salazinic acid and protocetraric acid were found to be strong anticancer activity toward both cell lines with IC(50) values ranging from 35.67 to 60.18μg/ml. The present study shows that tested lichen compounds demonstrated a strong antioxidant, antimicrobial, and anticancer effects. That suggest that these lichens can be used as new sources of the natural antimicrobial agents, antioxidants and anticancer compounds. PMID:22921748

  14. Solving the jigsaw puzzle of wound-healing potato cultivars: metabolite profiling and antioxidant activity of polar extracts.

    PubMed

    Dastmalchi, Keyvan; Cai, Qing; Zhou, Kevin; Huang, Wenlin; Serra, Olga; Stark, Ruth E

    2014-08-01

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding.

  15. Solving the Jigsaw Puzzle of Wound-Healing Potato Cultivars: Metabolite Profiling and Antioxidant Activity of Polar Extracts

    PubMed Central

    2015-01-01

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding. PMID:24998264

  16. Tissue distribution study of columbianadin and its active metabolite columbianetin in rats.

    PubMed

    Zhang, You-Bo; Yang, Xiu-Wei

    2016-02-01

    Columbianadin, one of the main bioactive constituents of the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan, has been found to possess obvious pharmacological effects in previous studies. In this study, a valid and sensitive reverse-phase high-performance liquid chromatography (RP-HPLC) method was established and validated for the determination of columbianadin (CBN) and its active metabolite columbianetin (CBT) in rat tissue samples. Sample separation was performed on an RP-HPLC column using a mobile phase of MeOH-H2 O (75:25, v/v) at a flow rate of 1.0 mL/min. The UV absorbance of the samples was measured at the wavelength 325 nm. The calibration curves for CBN were linear over the ranges of 0.5-20 µg/g for brain, testes and muscle, 1.0-10.0 µg/g for stomach and intestine, and 0.2-20.0 µg/g for heart, liver, spleen, lung and kidney. The calibration curves for CBT were linear over the ranges of 0.5-25 µg/g for stomach and intestine, and 0.1-10.0 µg/g for heart, liver, spleen, lung and kidney. The analysis method was successfully applied to a tissue distribution study of CBN and CBT after intravenous administration of CBN to rats. The results of this study indicated that CBN could be detected in all of the selected tissues after i.v. administration. CBN was distributed to rat tissues rapidly and could be metabolized to CBT in most detected tissues. Of the detected tissues, heart had the highest uptake of CBN, which suggested that heart might be one of the main target tissues of CBN. Concentrations of CBT were obviously higher in the digestive system than in other assayed tissues. The information provided by this research is very useful for gaining knowledge of the capacities of CBN and CBT to access different tissues.

  17. Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?

    PubMed Central

    Kovářová, Jana; Svobodová, Zdeňka

    2009-01-01

    Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals we can obviously observe considerable toxicity. It is well known that an organism affected by cadmium (Cd) synthesize low molecular mass thiol compounds rich in cysteine (Cys), such as metallothioneins (MT) and glutathione (GSH/GSSG). The aim of this study was to summarize the effect of Cd on level of thiol compounds in aquatic organisms, and evaluate that the concentrations of thiol compounds are effective indicators of Cd water pollution and explain their potential use in biomonitoring applications. PMID:21217850

  18. Plasmachemical Double Click Thiol-ene Reactions for Wet Electrical Barrier.

    PubMed

    Fraser, R C; Carletto, A; Wilson, M; Badyal, J P S

    2016-08-24

    Click thiol-ene chemistry is demonstrated for the reaction of thiol containing molecules with surface alkene bonds during electrical discharge activation. This plasmachemical reaction mechanism is shown to be 2-fold for allyl mercaptan (an alkene and thiol group containing precursor), comprising self-cross-linked nanolayer deposition in tandem with interfacial cross-linking to the surface alkene bonds of a polyisoprene base layer. A synergistic multilayer structure is attained which displays high wet electrical barrier performance during immersion in water. PMID:27505445

  19. Screening for biologically active metabolites with endosymbiotic bacilli isolated from arthropods.

    PubMed

    Gebhardt, Klaus; Schimana, Judith; Müller, Johannes; Fiedler, Hans-Peter; Kallenborn, Helmut G; Holzenkämpfer, Meike; Krastel, Philipp; Zeeck, Axel; Vater, Joachim; Höltzel, Alexandra; Schmid, Dietmar G; Rheinheimer, Joachim; Dettner, Konrad

    2002-12-17

    Endosymbiotic bacteria from the genus Bacillus were isolated from different compartments of the gut of various members of insects (Hexapoda) and millipedes (Diplopoda). They were grown in submerged culture and investigated by biological assays and HPLC-diode array analysis regarding their production of bioactive metabolites, which were isolated and determined in structure. Known compounds and yet unknown derivatives from the primary metabolism were detected, as well as antibacterially and antifungally acting peptide antibiotics.

  20. Isolation, structural identification and biological activity of two metabolites produced by Penicillium olsonii Bainier and Sartory.

    PubMed

    Amade, P; Mallea, M; Bouaïcha, N

    1994-02-01

    From the culture broth of a fungus, two metabolites have been isolated: bis(2-ethylhexyl)phthalate (DEHP) precedently isolated from Streptomyces sp. and 2-(4-hydroxyphenyl)-2-oxoacetaldehyde oxime (PHBA) here reported as a natural compound in the (E)-s-cis configuration. The producing organism was identified as a strain of Penicillium olsonii. Culture growth and chemical identification are discussed in the present work.

  1. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats

    PubMed Central

    Lysne, Vegard; Strand, Elin; Svingen, Gard F. T.; Bjørndal, Bodil; Pedersen, Eva R.; Midttun, Øivind; Olsen, Thomas; Ueland, Per M.; Berge, Rolf K.; Nygård, Ottar

    2016-01-01

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. PMID:26742069

  2. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats.

    PubMed

    Lysne, Vegard; Strand, Elin; Svingen, Gard F T; Bjørndal, Bodil; Pedersen, Eva R; Midttun, Øivind; Olsen, Thomas; Ueland, Per M; Berge, Rolf K; Nygård, Ottar

    2016-01-01

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats. PMID:26742069

  3. P-glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hydroxytamoxifen and restricts their brain penetration.

    PubMed

    Iusuf, Dilek; Teunissen, Sebastiaan F; Wagenaar, Els; Rosing, Hilde; Beijnen, Jos H; Schinkel, Alfred H

    2011-06-01

    P-glycoprotein (P-gp, ABCB1) is a highly efficient drug efflux pump expressed in brain, liver, and small intestine, but also in tumor cells, that affects pharmacokinetics and confers therapy resistance for many anticancer drugs. The aim of this study was to investigate the impact of P-gp on tamoxifen and its primary active metabolites, 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. We used in vitro transport assays and Abcb1a/1b(-/-) mice to investigate the impact of P-gp on the oral availability and brain penetration of tamoxifen and its metabolites. Systemic exposure of tamoxifen and its metabolites after oral administration of tamoxifen (50 mg/kg) was not changed in the absence of P-gp. However, brain accumulation of tamoxifen, 4-hydroxytamoxifen, and N-desmethyltamoxifen were modestly, but significantly (1.5- to 2-fold), increased. Endoxifen, however, displayed a 9-fold higher brain penetration at 4 h after administration. Endoxifen was transported by P-gp in vitro. Upon direct oral administration of endoxifen (20 mg/kg), systemic exposure was slightly decreased in Abcb1a/1b(-/-) mice, but brain accumulation of endoxifen was dramatically increased (up to 23-fold at 4 h after administration). Shortly after high-dose intravenous administration (5 or 20 mg/kg), endoxifen brain accumulation was increased only 2-fold in Abcb1a/1b(-/-) mice compared with wild-type mice, suggesting a partial saturation of P-gp at the blood-brain barrier. Endoxifen, the clinically most relevant metabolite of tamoxifen, is a P-gp substrate in vitro and in vivo, where P-gp limits its brain penetration. P-gp might thus be relevant for tamoxifen/endoxifen resistance of P-gp-positive breast cancer and tumors positioned behind a functional blood-brain barrier. PMID:21378205

  4. Reduced Photoinhibition under Low Irradiance Enhanced Kacip Fatimah (Labisia pumila Benth) Secondary Metabolites, Phenyl Alanine Lyase and Antioxidant Activity

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z.E.

    2012-01-01

    A randomized complete block design experiment was designed to characterize the relationship between production of total flavonoids and phenolics, anthocyanin, photosynthesis, maximum efficiency of photosystem II (Fv/Fm), electron transfer rate (Fm/Fo), phenyl alanine lyase activity (PAL) and antioxidant (DPPH) in Labisia pumila var. alata, under four levels of irradiance (225, 500, 625 and 900 μmol/m2/s) for 16 weeks. As irradiance levels increased from 225 to 900 μmol/m2/s, the production of plant secondary metabolites (total flavonoids, phenolics and antocyanin) was found to decrease steadily. Production of total flavonoids and phenolics reached their peaks under 225 followed by 500, 625 and 900 μmol/m2/s irradiances. Significant positive correlation of production of total phenolics, flavonoids and antocyanin content with Fv/Fm, Fm/Fo and photosynthesis indicated up-regulation of carbon-based secondary metabolites (CBSM) under reduced photoinhibition on the under low light levels condition. At the lowest irradiance levels, Labisia pumila extracts also exhibited a significantly higher antioxidant activity (DPPH) than under high irradiance. The improved antioxidative activity under low light levels might be due to high availability of total flavonoids, phenolics and anthocyanin content in the plant extract. It was also found that an increase in the production of CBSM was due to high PAL activity under low light, probably signifying more availability of phenylalanine (Phe) under this condition. PMID:22754297

  5. Multiple modes of inhibition of human cytochrome P450 2J2 by dronedarone, amiodarone and their active metabolites.

    PubMed

    Karkhanis, Aneesh; Lam, Hui Yuan; Venkatesan, Gopalakrishnan; Koh, Siew Kwan; Chai, Christina Li Lin; Zhou, Lei; Hong, Yanjun; Kojodjojo, Pipin; Chan, Eric Chun Yong

    2016-05-01

    Dronedarone, a multiple ion channel blocker is prescribed for the treatment of paroxysmal and persistent atrial fibrillation. While dronedarone does not precipitate toxicities like its predecessor amiodarone, its clinical use has been associated with idiosyncratic hepatic and cardiac adverse effects and drug-drug interactions (DDIs). As dronedarone is a potent mechanism-based inactivator of CYP3A4 and CYP3A5, a question arose if it exerts a similar inhibitory effect on CYP2J2, a prominent cardiac CYP450 enzyme. In this study, we demonstrated that CYP2J2 is reversibly inhibited by dronedarone (Ki=0.034 μM), amiodarone (Ki=4.8μM) and their respective pharmacologically active metabolites namely N-desbutyldronedarone (NDBD) (Ki=0.55 μM) and N-desethylamiodarone (NDEA) (Ki=7.4 μM). Moreover, time-, concentration- and NADPH-dependent irreversible inactivation of CYP2J2 was investigated where inactivation kinetic parameters (KI, kinact) and partition ratio (r) of dronedarone (0.05 μM, 0.034 min(-1), 3.3), amiodarone (0.21 μM, 0.015 min(-1), 20.7) and NDBD (0.48 μM, 0.024 min(-1), 21.7) were observed except for NDEA. The absence of the characteristic Soret peak, lack of recovery of CYP2J2 activity upon dialysis, and biotransformation of dronedarone and NDBD to quinone-oxime reactive metabolites further confirmed the irreversible inactivation of CYP2J2 by dronedarone and NDBD is via the covalent adduction of CYP2J2. Our novel findings illuminate the possible mechanisms of DDIs and cardiac adverse effects due to both reversible inhibition and irreversible inactivation of CYP2J2 by dronedarone, amiodarone and their active metabolites. PMID:26972388

  6. Anti-onchocerca Metabolites from Cyperus articulatus: Isolation, In Vitro Activity and In Silico 'Drug-Likeness'.

    PubMed

    Metuge, Jonathan Alunge; Babiaka, Smith B; Mbah, James A; Ntie-Kang, Fidele; Ayimele, Godfred A; Cho-Ngwa, Fidelis

    2014-08-01

    The aims of this investigation were to isolate active ingredients from the roots/rhizomes of Cyperus articulatus used as herbal medicine in Cameroon for the treatment of human onchocerciasis and to assess the efficacy of the metabolites on the Onchocerca worm. The antifilarial activity was evaluated in vitro on microfilariae (Mfs) and adult worms of the bovine derived Onchocerca ochengi, a close relative of Onchocerca volvulus. Cytotoxicity was assessed in vitro on monkey kidney epithelial cells. The structures of the active compounds were determined using spectroscopic methods and their drug-likeness evaluated using Lipinski parameters. Two secondary metabolites, AMJ1 [containing mustakone (1) as the major component] and linoleic acid or (9Z,12Z)-octadeca-9,12-dienoic acid (2) were isolated. Both compounds were found to kill both the microfilariae and adult worms of O. ochengi in a dose dependent manner. The IC50s for AMJ1 were 15.7 µg/mL for Mfs, 17.4 µg/mL for adult males and 21.9 µg/mL for adult female worms while for linoleic acid the values were, 15.7 µg/mL for Mfs, 31.0 µg/mL for adult males and 44.2 µg/mL for adult females. The present report provides the first ever evidence of the anti-Onchocerca efficacy of AMJ1 and linoleic acid. Thus, these secondary metabolites may provide a lead for design and development of new antifilarial agents. PMID:25089243

  7. Activation of 3-nitrobenzanthrone and its metabolites to DNA-damaging species in human B lymphoblastoid MCL-5 cells.

    PubMed

    Arlt, Volker M; Cole, Kathleen J; Phillips, David H

    2004-03-01

    3-Nitrobenzanthrone (3-NBA) is one of the most potent mutagens in the Ames Salmonella typhimurium assay and a suspected human carcinogen recently identified in diesel exhaust and in airborne particulate matter. 3-Aminobenzanthrone (3-ABA), 3-acetylaminobenzanthrone (3-Ac-ABA) and N-acetyl-N-hydroxy-3-aminobenzanthrone (N-Ac-N-OH-ABA) have been identified as 3-NBA metabolites. In the present study we investigated the genotoxic effects of 3-NBA and its metabolites in the human B lymphoblastoid cell line MCL-5. DNA strand breaks were measured using the Comet assay, chromosomal damage was assessed using the micronucleus assay and DNA adduct formation was determined by 32P-post-labelling analysis. DNA strand-breaking activity was observed with each compound in a concentration-dependent manner (1-50 microM, 2 h incubation time). At 50 microM median comet tail lengths (CTLs) were 25.0 microm for 3-NBA, 48.0 microm for 3-ABA, 54.5 microm for 3-Ac-ABA and 65.0 microm for N-Ac-N-OH-ABA. Median CTLs in control incubations were in the range 7.7-13.1 micro m. Moreover, the strand-breaking activity of 3-NBA was more pronounced in the presence of a DNA repair inhibitor, hydroxyurea. Depending on the concentration used (1-20 microM, 24 h incubation time), 3-NBA and its metabolites also showed clastogenic activity in the micronucleus assay. 3-NBA and N-Ac-N-OH-ABA were the most active at low concentrations; at 1 microM the total number of micronuclei per 500 binucleate cells was 4.7 +/- 0.6 in both cases, compared with 1.7-3.0 for controls (P < 0.05). Furthermore, multiple DNA adducts were detected with each compound (1 microM, 24 h incubation time), essentially similar to those found recently in vivo in rats treated with 3-NBA or its metabolites. DNA adduct levels ranged from 1.3 to 42.8 and from 2.0 to 39.8 adducts/10(8) nt using the nuclease P1 and butanol enrichment procedures, respectively. DNA binding was highest for N-Ac-N-OH-ABA, followed by 3-NBA, and much lower for 3-ABA

  8. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  9. Oriented Immobilization of His-Tagged Protein on a Redox Active Thiol Derivative of DPTA-Cu(II) Layer Deposited on a Gold Electrode—The Base of Electrochemical Biosensors

    PubMed Central

    Mikuła, Edyta; Sulima, Magdalena; Marszałek, Ilona; Wysłouch-Cieszyńska, Aleksandra; Verwilst, Peter; Dehaen, Wim; Radecki, Jerzy; Radecka, Hanna

    2013-01-01

    This paper concerns the development of an electrochemical biosensor for the determination of Aβ16–23′ and Aβ1–40 peptides. The His-tagged V and VC1 domains of Receptor for Advanced Glycation end Products (RAGE) immobilized on a gold electrode surface were used as analytically active molecules. The immobilization of His6–RAGE domains consists of: (i) formation of a mixed layer of N-acetylcysteamine (NAC) and the thiol derivative of pentetic acid (DPTA); (ii) complexation of Cu(II) by DPTA; (iii) oriented immobilization of His6–RAGE domains via coordination bonds between Cu(II) sites from DPTA–Cu(II) complex and imidazole nitrogen atoms of a histidine tag. Each modification step was controlled by cyclic voltammetry (CV), Osteryoung square-wave voltammetry (OSWV), and atomic force microscopy (AFM). The applicability of the proposed biosensor was tested in the presence of human plasma, which had no influence on its performance. The detection limits for Aβ1–40 determination were 1.06 nM and 0.80 nM, in the presence of buffer and human plasma, respectively. These values reach the concentration level of Aβ1–40 which is relevant for determination of its soluble form in human plasma, as well as in brain. This indicates the promising future application of biosensor presented for early diagnosis of neurodegenerative diseases. PMID:24005034

  10. Transthyretin Binding Heterogeneity and Anti-amyloidogenic Activity of Natural Polyphenols and Their Metabolites.

    PubMed

    Florio, Paola; Folli, Claudia; Cianci, Michele; Del Rio, Daniele; Zanotti, Giuseppe; Berni, Rodolfo

    2015-12-11

    Transthyretin (TTR) is an amyloidogenic protein, the amyloidogenic potential of which is enhanced by a number of specific point mutations. The ability to inhibit TTR fibrillogenesis is known for several classes of compounds, including natural polyphenols, which protect the native state of TTR by specifically interacting with its thyroxine binding sites. Comparative analyses of the interaction and of the ability to protect the TTR native state for polyphenols, both stilbenoids and flavonoids, and some of their main metabolites have been carried out. A main finding of this investigation was the highly preferential binding of resveratrol and thyroxine, both characterized by negative binding cooperativity, to distinct sites in TTR, consistent with the data of x-ray analysis of TTR in complex with both ligands. Although revealing the ability of the two thyroxine binding sites of TTR to discriminate between different ligands, this feature has allowed us to evaluate the interactions of polyphenols with both resveratrol and thyroxine preferential binding sites, by using resveratrol and radiolabeled T4 as probes. Among flavonoids, genistein and apigenin were able to effectively displace resveratrol from its preferential binding site, whereas genistein also showed the ability to interact, albeit weakly, with the preferential thyroxine binding site. Several glucuronidated polyphenol metabolites did not exhibit significant competition for resveratrol and thyroxine preferential binding sites and lacked the ability to stabilize TTR. However, resveratrol-3-O-sulfate was able to significantly protect the protein native state. A rationale for the in vitro properties found for polyphenol metabolites was provided by x-ray analysis of their complexes with TTR. PMID:26468275

  11. Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells.

    PubMed

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (-)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes.

  12. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    PubMed Central

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  13. Evolution of thiol protective systems in prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Newton, G. L.

    1986-01-01

    Biological thiols are essential elements in most aspects of cell function but undergo rapid oxidation to disulfides in the presence of oxygen. The evolution of systems to protect against such oxygen toxicity was essential to the emergence of aerobic life. The protection system used by eukaryotes is based upon glutathione (GSH) and GSH-dependent enzymes but many bacteria lack GSH and apparently use other mechanisms. The objective of this research is to elaborate the thiol protective mechanisms employed by prokaryotes of widely divergent evolutionary origin and to understand why GSH became the central thiol employed in essentially all higher organisms. Thiol-selective fluorescent labeling and HPLC analysis has been used to determine key monothiol components.

  14. Inhibition of alcohol dehydrogenases by thiol compounds.

    PubMed

    Cheng, L Y; Lek, L H

    1992-04-01

    2-Mercaptoethanol is a strong inhibitor of LADH. The inhibitory effect is likely due to the binding of the SH group to the enzymatic zinc ion. Various thiol compounds do not inhibit YADH and it is suggested that the zinc atoms involved in the catalytic mechanism of LADH and YADH may have different structural arrangements and that these zinc atoms in YADH may not be blocked by thiol compounds. Thiol compounds also quench the enhanced fluorescence of LADH-NADH in a pH-dependent manner. At pH 9.2, the binding of coenzyme to LADH is replaced by 2-mercaptoethanol, whilst at pH 7.3, it further quenches the fluorescence of NADH-LADH. This quenching of fluorescence is likely attributed to a conformational change and energy transfer upon binding of 2-mercaptoethanol to the LADH-NADH complex. Complete reversal of the inhibitory effect of thiol compounds on LADH can be obtained by dialysis.

  15. Nucleophilic Addition of Thiols to Deoxynivalenol.

    PubMed

    Stanic, Ana; Uhlig, Silvio; Solhaug, Anita; Rise, Frode; Wilkins, Alistair L; Miles, Christopher O

    2015-09-01

    Conjugation of deoxynivalenol (DON) with sulfur compounds is recognized as a significant reaction pathway, and putative DON-glutathione (DON-GSH) conjugates have been reported in planta. To understand and control the reaction of trichothecenes with biologically important thiols, we studied the reaction of DON, T-2 tetraol, and de-epoxy-DON with a range of model thiols. Reaction conditions were optimized for DON with 2-mercaptoethanol. Major reaction products were identified using HRMS and NMR spectroscopy. The results indicate that thiols react reversibly with the double bond (Michael addition) and irreversibly with the epoxide group in trichothecenes. These reactions occurred at different rates, and multiple isomers were produced including diconjugated forms. LC-MS analyses indicated that glutathione and cysteine reacted with DON in a similar manner to the model thiols. In contrast to DON, none of the tested mercaptoethanol adducts displayed toxicity in human monocytes or induced pro-inflammatory cytokines in human macrophages.

  16. Isolation and identification of major metabolites of tixocortol pivalate in human urine.

    PubMed

    Chanoine, F; Grenot, C; Sellier, N; Barrett, W E; Thompson, R M; Fentiman, A F; Nixon, J R; Goyer, R; Junien, J L

    1987-01-01

    The metabolism of tixocortol pivalate (PIVALONE), an anti-inflammatory steroid without systemic glucocorticoid effects, has been investigated in man. The analysis was conducted using urine samples collected from two volunteers who had received a 2-g oral dose of 14C-tixocortol pivalate as an oral suspension. Metabolites were purified and isolated from urine by normal phase HPLC, and structural identification was achieved by desorption chemical ionization/NH3 and electron impact/direct line introduction mass spectrometry. Unchanged tixocortol pivalate was not detected in urine; all metabolites were sulfo- and glucurono-conjugates. Metabolites were identified in the neutral steroid fraction obtained after hydrolysis of conjugates. Metabolic transformations in common with cortisol were reduction of the 3-keto, delta 4 system, reduction of the C-20 carbonyl group, oxidation of the C-11 alcohol, and cleavage of the side chain at C-17. Specific metabolic pathways involving the C-21 thiol ester function were transformations into methylthio, methylsulfinyl and methylsulfonyl derivatives, and a reductive cleavage of the C-21-S bond leading to 21-methyl structures. Since none of these metabolites had binding affinity for glucocorticoid receptors in vitro, fast and extensive transformation of tixocortol pivalate into inactive metabolites provides an explanation for the large dissociation between the topical and systemic activities of this drug.

  17. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor. PMID:25922884

  18. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor.

  19. A Comprehensive Analysis of Selenium-Binding Proteins in the Brain Using Its Reactive Metabolite.

    PubMed

    Yoshida, Sakura; Hori, Eriko; Ura, Sakiko; Haratake, Mamoru; Fuchigami, Takeshi; Nakayama, Morio

    2016-01-01

    The intracellular metabolism of selenium in the brain currently remains unknown, although the antioxidant activity of this element is widely acknowledged to be important in maintaining brain functions. In this study, a comprehensive method for identifying the selenium-binding proteins using PenSSeSPen as a model of the selenium metabolite, selenotrisulfide (RSSeSR, STS), was applied to a complex cell lysate generated from the rat brain. Most of the selenium from L-penicillamine selenotrisulfide (PenSSeSPen) was captured by the cytosolic protein thiols in the form of STS through the thiol-exchange reaction (R-SH+PenSSeSPen→R-SSeSPen+PenSH). The cytosolic protein species, which reacted with the PenSSeSPen mainly had a molecular mass of less than 20 kDa. A thiol-containing protein at m/z 15155 in the brain cell lysate was identified as the cystatin-12 precursor (CST12) from a rat protein database search and a tryptic fragmentation experiment. CST12 belongs to the cysteine proteinase inhibitors of the cystatin superfamily that are of interest in mechanisms regulating the protein turnover and polypeptide production in the central nervous system and other tissues. Consequently, CST12 is suggested to be one of the cytosolic proteins responsible for the selenium metabolism in the brain. PMID:26726744

  20. A Comprehensive Analysis of Selenium-Binding Proteins in the Brain Using Its Reactive Metabolite.

    PubMed

    Yoshida, Sakura; Hori, Eriko; Ura, Sakiko; Haratake, Mamoru; Fuchigami, Takeshi; Nakayama, Morio

    2016-01-01

    The intracellular metabolism of selenium in the brain currently remains unknown, although the antioxidant activity of this element is widely acknowledged to be important in maintaining brain functions. In this study, a comprehensive method for identifying the selenium-binding proteins using PenSSeSPen as a model of the selenium metabolite, selenotrisulfide (RSSeSR, STS), was applied to a complex cell lysate generated from the rat brain. Most of the selenium from L-penicillamine selenotrisulfide (PenSSeSPen) was captured by the cytosolic protein thiols in the form of STS through the thiol-exchange reaction (R-SH+PenSSeSPen→R-SSeSPen+PenSH). The cytosolic protein species, which reacted with the PenSSeSPen mainly had a molecular mass of less than 20 kDa. A thiol-containing protein at m/z 15155 in the brain cell lysate was identified as the cystatin-12 precursor (CST12) from a rat protein database search and a tryptic fragmentation experiment. CST12 belongs to the cysteine proteinase inhibitors of the cystatin superfamily that are of interest in mechanisms regulating the protein turnover and polypeptide production in the central nervous system and other tissues. Consequently, CST12 is suggested to be one of the cytosolic proteins responsible for the selenium metabolism in the brain.

  1. Anticholestatic activity of flavonoids from artichoke (Cynara scolymus L.) and of their metabolites.

    PubMed

    Gebhardt, R

    2001-05-01

    It is well known that water-soluble extracts of artichoke (Cynara scolymus L.) leaves exert choleresis. When studying this effect in vitro using primary cultured rat hepatocytes and cholephilic fluorescent compounds, it was noticed that the artichoke leaf extracts not only stimulated biliary secretion, but that they also reestablished it when secretion was inhibited by addition of taurolithocholate to the culture medium. Furthermore, taurolithocholate-induced bizarre bile canalicular membrane distortions detectable by electron microscopy could be prevented by artichoke leaf extracts in a dose-dependent manner when added simultaneously with the bile acid. These effects were exerted by the flavonol luteolin and, to a lesser extent, by luteolin-7-O-glucoside, while chlorogenic acid and 1.5-dicaffeoyl quinic acid were almost ineffective. Surprisingly, metabolites produced by the cultured hepatocytes were able to stimulate biliary secretion substantially as well as prevent canalicular membrane deformation. These results demonstrate that artichoke leaf extracts exert a potent anticholestatic action at least in the case of taurolithocholate-induced cholestasis. Flavonoids and their metabolites may contribute significantly to this effect.

  2. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases.

    PubMed

    Ko, Wen-Hsiung; Tsou, Yi-Jung; Lin, Mei-Ju; Chern, Lih-Ling

    2010-09-30

    Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins. PMID:20580869

  3. Inferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity.

    PubMed

    Rolfsson, Óttar; Paglia, Giuseppe; Magnusdóttir, Manuela; Palsson, Bernhard Ø; Thiele, Ines

    2013-01-15

    Metabolic network reconstructions define metabolic information within a target organism and can therefore be used to address incomplete metabolic information. In the present study we used a computational approach to identify human metabolites whose metabolism is incomplete on the basis of their detection in humans but exclusion from the human metabolic network reconstruction RECON 1. Candidate solutions, composed of metabolic reactions capable of explaining the metabolism of these compounds, were then identified computationally from a global biochemical reaction database. Solutions were characterized with respect to how metabolites were incorporated into RECON 1 and their biological relevance. Through detailed case studies we show that biologically plausible non-intuitive hypotheses regarding the metabolism of these compounds can be proposed in a semi-automated manner, in an approach that is similar to de novo network reconstruction. We subsequently experimentally validated one of the proposed hypotheses and report that C9orf103, previously identified as a candidate tumour suppressor gene, encodes a functional human gluconokinase. The results of the present study demonstrate how semi-automatic gap filling can be used to refine and extend metabolic reconstructions, thereby increasing their biological scope. Furthermore, we illustrate how incomplete human metabolic knowledge can be coupled with gene annotation in order to prioritize and confirm gene functions.

  4. Integration of the thiol redox status with cytokine response to physical training in professional basketball players.

    PubMed

    Zembron-Lacny, A; Slowinska-Lisowska, M; Ziemba, A

    2010-01-01

    The present study was designed to evaluate the plasma markers of reactive oxygen species (ROS) activity and cytokines, and their relationship with thiol redox status of basketball players during training. Sixteen professional players of the Polish Basketball Extraleague participated in the study. The study was performed during the preparatory period and the play-off round. Markers of ROS activity (lipid peroxidation TBARS, protein carbonylation PC) and reduced glutathione (GSH) demonstrated regularity over time, i.e. TBARS, PC and GSH were elevated at the beginning and decreased at the end of training periods. Oxidized glutathione (GSSG) was not affected by exercise training. Thiol redox status (GSH(total)-2GSSG/GSSG) correlated with TBARS and PC in both training periods. The level of interleukin-6 (IL-6) was increased and positively correlated with thiol redox (r=0.423) in the preparatory period, whereas tumor necrosis factor alpha (TNFalpha) was increased and inversely correlated with thiol redox (r= 0.509) in the play-off round. The present study showed significant shifts in markers of ROS activity, thiol redox status and inflammatory mediators (IL-6, TNFalpha) following professional sport training as well as correlation between changes in thiol redox and cytokine response.

  5. Isolation and Identification of Twelve Metabolites of Isocorynoxeine in Rat Urine and their Neuroprotective Activities in HT22 Cell Assay

    PubMed Central

    Qi, Wen; Chen, Fangfang; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isocorynoxeine, one of the major alkaloids from Uncaria Hook, shows the effects of lowering blood pressure, vasodilatation, and protection against ischemia-induced neuronal damage. In this paper, the metabolism of isocorynoxeine was investigated in rats. Twelve metabolites and the parent drug were isolated by using solvent extraction and repeated chromatographic methods, and determined by spectroscopic methods including UV, MS, NMR, and CD experiments. Seven new compounds were identified as 11-hydroxyisocorynoxeine, 5-oxoisocorynoxeinic acid-22-O-β-D-glucuronide, 10-hydroxyisocorynoxeine, 17-O-demethyl-16,17-dihydro-5-oxoisocorynoxeine, 5-oxoisocorynoxeinic acid, 21-hydroxy-5-oxoisocorynoxeine, and oxireno[18,19]-5-oxoisocorynoxeine, together with six known compounds identified as isocorynoxeine, 18,19-dehydrocorynoxinic acid, 18,19-dehydrocorynoxinic acid B, corynoxeine, isocorynoxeine-N-oxide, and corynoxeine-N-oxide. Possible metabolic pathways of isocorynoxeine are proposed. Furthermore, the activity assay for the parent drug and some of its metabolites showed that isocorynoxeine exhibited a significant neuroprotective effect against glutamate-induced HT22 cell death at the maximum concentration. However, little or weak neuroprotective activities were observed for M-3, M-6, M-7, and M-10. Our present study is important to further understand their metabolic fate and disposition in humans. PMID:25519834

  6. Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba.

    PubMed

    Cao, Ling-Ling; Zhang, Ying-Ying; Liu, Ying-Jie; Yang, Ting-Ting; Zhang, Jin-Long; Zhang, Zheng-Guang; Shen, Li; Liu, Jun-Yan; Ye, Yong-Hao

    2016-05-01

    Phytopathogenic fungi such as Rhizoctonia solani and Sclerotinia sclerotiorum caused multiple plant diseases resulting in severe loss of crop production. Increasing documents endorsed that endophytes are a striking resource pool for numerous metabolites with various bioactivities such as anti-fungal. Here we reported the characterization and anti-phytopathogenic activity of sporothriolide, a metabolite produced by Nodulisporium sp. A21-an endophytic fungus in the leaves of Ginkgo biloba. Among the total twenty-five endophytic fungi isolated from the healthy leaves of G. biloba, the fermentation broth (FB) of the strain A21 was found potently inhibitory activity against R. solani and S. sclerotiorum using mycelia growth inhibition method. A21 was then identified as Nodulisporium sp., the asexual stage of Hypoxylon sp., by microscopic examination and ITS rDNA sequence data comparison. Under the bioassay-guided fractionation, sporothriolide was isolated from the petroleum ether extract of the FB of A21, whose structure was established by integrated interpretation of HR-ESI-MS and (1)H- and (13)C-NMR. Furthermore, the crystal structure of sporothriolide was first reported. In addition, sporothriolide was validated to be potently antifungal against R. solani, S. sclerotiorum and inhibit conidium germination of Magnaporthe oryzae in vitro and in vivo, indicating that it could be used as a lead compound for new fungicide development. PMID:27017876

  7. Caffeine metabolites in umbilical cord blood, cytochrome P-450 1A2 activity, and intrauterine growth restriction.

    PubMed

    Grosso, Laura M; Triche, Elizabeth W; Belanger, Kathleen; Benowitz, Neal L; Holford, Theodore R; Bracken, Michael B

    2006-06-01

    Studies investigating antenatal caffeine consumption and reproductive outcomes show conflicting results, and most studies have used maternal self-reported caffeine consumption to estimate fetal exposure. This study (n=1,606) was specifically designed to test the association of caffeine and its primary metabolites in umbilical cord blood with intrauterine growth restriction (IUGR). Pregnant women were recruited from 56 obstetric practices and 15 clinics affiliated with six hospitals in Connecticut and Massachusetts between September 1996 and January 2000. In an adjusted model including caffeine only, levels in all quartiles were associated with reduced risk of IUGR. In adjusted analyses including paraxanthine and caffeine, serum paraxanthine levels in the highest quartile were associated with increased risk of IUGR (adjusted odds ratio=3.29, 95% confidence interval: 1.17, 9.22); caffeine remained protective. These conflicting findings suggest that cytochrome P-450 1A2 (CYP1A2) metabolic activity may be associated with IUGR, so the ratio of paraxanthine to caffeine was then modeled. The likelihood of IUGR increased 21% for every one standard deviation change in the ratio (adjusted odds ratio=1.21, 95% confidence interval: 1.07, 1.37), suggesting that CYP1A2 activity, and not the absolute levels of paraxanthine, influences fetal growth. No associations were observed between caffeine or any metabolites and preterm delivery.

  8. Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59.

    PubMed

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-04-22

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1-5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1-5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.

  9. Metabolic activation of tris(2,3-dibromopropyl)phosphate to reactive intermediates. II. Covalent binding, reactive metabolite formation, and differential metabolite-specific DNA damage in vivo.

    PubMed

    Pearson, P G; Omichinski, J G; Holme, J A; McClanahan, R H; Brunborg, G; Søderlund, E J; Dybing, E; Nelson, S D

    1993-02-01

    Analogs of tris(2,3-dibromopropyl)phosphate (Tris-BP) either labeled at specific positions with carbon-14 and phosphorus-32 or dual-labeled with both deuterium and tritium were administered to male Wistar rats at a nephrotoxic dose of 360 mumol/kg. The covalent binding of Tris-BP metabolites to hepatic, renal, and testicular proteins was determined after 9 and 24 hr, and plasma concentrations of bis(2,3-dibromopropyl)-phosphate (Bis-BP) formed metabolically from Tris-BP were measured at intervals throughout the initial 9-hr postdosing period. The covalent binding of 14C-Tris-BP metabolites in the kidney (2495 +/- 404 pmol/mg protein) was greater than that in the liver (476 +/- 123 pmol/mg protein) or testes (94 +/- 11 pmol/mg protein); the extent of renal covalent protein binding of Tris-BP metabolites was decreased by 82 and 84% when deuterium was substituted at carbon-2 and carbon-3, respectively. Substitution of Tris-BP with deuterium at carbon-2 or carbon-3 also decreased the mean area under the curve for Bis-BP plasma concentration by 48 and 57%, respectively. The mechanism of Tris-BP-induced renal and hepatic DNA damage was evaluated in Wistar rats by an automated alkaline elution procedure after the administration of analogs of Tris-BP or Bis-BP labeled at specific positions with deuterium. Renal DNA damage was decreased when Tris-BP was substituted with deuterium at either carbon-2 or carbon-3; the magnitude of the change correlated with both a decrease in the area under the Bis-BP plasma curve and a decrease in renal covalent binding of Tris-BP metabolites for each of the deuterated analogs. In marked contrast, analogs of Bis-BP labeled with deuterium at carbon-2 or carbon-3 did not show a decrease in the severity of renal DNA damage compared to unlabeled Bis-BP. On the basis of these observations a metabolic scheme for hepatic P-450-mediated oxidation at either carbon-2 or carbon-3 of Tris-BP affording Bis-BP by two alternate pathways that are susceptible

  10. Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity

    PubMed Central

    Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μmol/mol) and four levels of light intensity (225, 500, 625, and 900 μmol/m2/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μmol/mol + light intensity at 225 μmol/m2/s. Meanwhile, at 400 μmol/mol CO2 + 900 μmol/m2/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μmol/mol the photosynthesis, stomatal conductance, fv/fm (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336

  11. Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μ mol/mol) and four levels of light intensity (225, 500, 625, and 900 μ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μ mol/mol + light intensity at 225 μ mol/m(2)/s. Meanwhile, at 400 μ mol/mol CO2 + 900 μ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition.

  12. The Oxidized Linoleic Acid Metabolite-Cytochrome P450 System is Active in Biopsies from Patients with Inflammatory Dental Pain

    PubMed Central

    Ruparel, Shivani; Hargreaves, Kenneth M.; Eskander, Michael; Rowan, Spencer; de Almeida, Jose F.A.; Roman, Linda; Henry, Michael A.

    2013-01-01

    Endogenous TRPV1 agonists such as oxidized linoleic acid metabolites (OLAMs) and the enzymes releasing them [e.g., cytochrome P450 (CYP)], are up-regulated following inflammation in the rat. However, it is not known if such agonists are elevated in human inflammatory pain conditions. Since TRPV1 is expressed in human dental pulp nociceptors, we hypothesized that OLAM-CYP machinery is active in this tissue type and is increased under painful inflammatory conditions such as irreversible pulpitis (IP). The aim of this study was to compare CYP expression and linoleic acid (LA) metabolism in normal versus inflamed human dental pulp. Our data showed that exogenous LA metabolism was significantly increased in IP tissues compared to normal tissues and that pretreatment with a CYP inhibitor, ketoconazole, significantly inhibited LA metabolism. Additionally, extracts obtained from LA-treated inflamed tissues, evoked significant inward currents in TG neurons, and were blocked by pretreatment with the TRPV1 antagonist, IRTX. Moreover, extracts obtained from ketoconazole-pretreated inflamed tissues significantly reduced inward currents in TG neurons. These data suggest that LA metabolites produced in human inflamed tissues act as TRPV1 agonists and that the metabolite production can be targeted by CYP inhibition. In addition, immunohistochemical analysis of two CYP isoforms, CYP2J and CYP3A1, were shown to be predominately expressed in immune cells infiltrating the inflamed dental pulp, emphasizing the paracrine role of CYP enzymes in OLAM regulation. Collectively, our data indicates that the machinery responsible for OLAM production is up-regulated during inflammation and can be targeted to develop potential analgesics for inflammatory-induced dental pain. PMID:23867730

  13. Spectrophotometric assays for the enzymatic hydrolysis of the active metabolites of chlorpyrifos and parathion by plasma paraoxonase/arylesterase.

    PubMed

    Furlong, C E; Richter, R J; Seidel, S L; Costa, L G; Motulsky, A G

    1989-08-01

    Human serum plasma paraoxonase/arylesterase exhibits a genetic polymorphism for the hydrolysis of paraoxon. One allelic form of the enzyme hydrolyzes paraoxon slowly with a low turnover number and the other(s) hydrolyzes paraoxon rapidly with a high turnover number. Chlorpyrifos-oxon, the active metabolite of the insecticide chlorpyrifos (Dursban), is also hydrolyzed by plasma arylesterase/paraoxonase. A specific assay for measuring hydrolysis of this compound is described. This assay is not subject to interference by the esterase activity of serum albumin. The Km for chlorpyrifos-oxon hydrolysis was 75 microM. Hydrolysis was inhibited by phenyl acetate, EDTA, and organic solvents. Enzyme activity required calcium ions and was stimulated by sodium chloride. Hydrolysis was optimized by using methanol instead of acetone to dissolve substrate. Unlike the multimodal distribution of paraoxonase, the distribution of chlorpyrifos-oxonase activity failed to show clear multimodality. An improvement in the assay for hydrolysis of paraoxon by plasma arylesterase/paraoxonase was achieved by elimination of organic solvents. Plotting chlorpyrifos-oxonase activity vs paraoxonase activity for a human population using the new assay conditions provided an excellent resolution of low activity homozygotes from heterozygotes for this allele. A greater than 40-fold difference in rates of chlorpyrifosoxon hydrolysis observed between rat (low activity) and rabbit sera (high activity) correlated well with the reported large differences in LD50 values for chlorpyrifos in these two animals, consistent with an important role of serum paraoxonase in detoxification of organophosphorus pesticides in vivo.

  14. Protopanaxadiol, an Active Ginseng Metabolite, Significantly Enhances the Effects of Fluorouracil on Colon Cancer

    PubMed Central

    Wang, Chong-Zhi; Zhang, Zhiyu; Wan, Jin-Yi; Zhang, Chun-Feng; Anderson, Samantha; He, Xin; Yu, Chunhao; He, Tong-Chuan; Qi, Lian-Wen; Yuan, Chun-Su

    2015-01-01

    In this study, we evaluated the effects of protopanaxadiol (PPD), a gut microbiome induced ginseng metabolite, in increasing the anticancer effects of a chemotherapeutic agent fluorouracil (5-FU) on colorectal cancer. An in vitro HCT-116 colorectal cancer cell proliferation test was conducted to observe the effects of PPD, 5-FU and their co-administration and the related mechanisms of action. Then, an in vivo xenografted athymic mouse model was used to confirm the in vitro data. Our results showed that the human gut microbiome converted ginsenoside compound K to PPD as a metabolite. PPD and 5-FU significantly inhibited HCT-116 cell proliferation in a concentration-dependent manner (both p < 0.01), and the effects of 5-FU were very significantly enhanced by combined treatment with PPD (p < 0.01). Cell cycle evaluation demonstrated that 5-FU markedly induced the cancer cell S phase arrest, while PPD increased arrest in G1 phase. Compared to the control, 5-FU and PPD increased apoptosis, and their co-administration significantly increased the number of apoptotic cells (p < 0.01). Using bioluminescence imaging, in vivo data revealed that 5-FU significantly reduced the tumor growth up to Day 20 (p < 0.05). PPD and 5-FU co-administration very significantly reduced the tumor size in a dose-related manner (p < 0.01 compared to the 5-FU alone). The quantification of the tumor size and weight changes for 43 days supported the in vivo imaging data. Our results demonstrated that the co-administration of PPD and 5-FU significantly inhibited the tumor growth, indicating that PPD significantly enhanced the anticancer action of 5-FU, a commonly used chemotherapeutic agent. PPD may have a clinical value in 5-FU’s cancer therapeutics. PMID:25625815

  15. Stimulation of the thiol-dependent ADP-ribosyltransferase and NAD glycohydrolase activities of Bordetella pertussis toxin by adenine nucleotides, phospholipids, and detergents.

    PubMed

    Moss, J; Stanley, S J; Watkins, P A; Burns, D L; Manclark, C R; Kaslow, H R; Hewlett, E L

    1986-05-01

    Pertussis toxin catalyzed ADP-ribosylation of the guanyl nucleotide binding protein transducin was stimulated by adenine nucleotide and either phospholipids or detergents. To determine the sites of action of these agents, their effects were examined on the transducin-independent NAD glycohydrolase activity. Toxin-catalyzed NAD hydrolysis was increased synergistically by ATP and detergents or phospholipids; the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) was more effective than the nonionic detergent Triton X-100 greater than lysophosphatidylcholine greater than phosphatidylcholine. The A0.5 for ATP in the presence of CHAPS was 2.6 microM; significantly higher concentrations of ATP were required for maximal activation in the presence of cholate or lysophosphatidylcholine. In CHAPS, NAD hydrolysis was enhanced by ATP greater than ADP greater than AMP greater than adenosine; ATP was more effective than MgATP or the nonhydrolyzable analogue adenyl-5'-yl imidodiphosphate. GTP and guanyl-5'-yl imidodiphosphate were less active than the corresponding adenine nucleotides. Activity in the presence of CHAPS and ATP was almost completely dependent on dithiothreitol; the A0.5 for dithiothreitol was significantly decreased by CHAPS alone and, to a greater extent, by CHAPS and ATP. To determine the site of action of ATP, CHAPS, and dithiothreitol, the enzymatic (S1) and binding components (B oligomer) were resolved by chromatography. The purified S1 subunit catalyzed the dithiothreitol-dependent hydrolysis of NAD; activity was enhanced by CHAPS but not ATP. The studies are consistent with the conclusion that adenine nucleotides, dithiothreitol, and CHAPS act on the toxin itself rather than on the substrate; adenine nucleotides appear to be involved in the activation of toxin but not the isolated catalytic unit.

  16. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation.

    PubMed

    Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith

    2009-04-01

    Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm. PMID:19253935

  17. Antitumor Activity of Hierridin B, a Cyanobacterial Secondary Metabolite Found in both Filamentous and Unicellular Marine Strains

    PubMed Central

    Ramos, Vitor; Pereira, Alban R.; Fernandes, Virgínia C.; Domingues, Valentina F.; Gerwick, William H.; Vasconcelos, Vitor M.; Martins, Rosário

    2013-01-01

    Cyanobacteria are widely recognized as a valuable source of bioactive metabolites. The majority of such compounds have been isolated from so-called complex cyanobacteria, such as filamentous or colonial forms, which usually display a larger number of biosynthetic gene clusters in their genomes, when compared to free-living unicellular forms. Nevertheless, picocyanobacteria are also known to have potential to produce bioactive natural products. Here, we report the isolation of hierridin B from the marine picocyanobacterium Cyanobium sp. LEGE 06113. This compound had previously been isolated from the filamentous epiphytic cyanobacterium Phormidium ectocarpi SAG 60.90, and had been shown to possess antiplasmodial activity. A phylogenetic analysis of the 16S rRNA gene from both strains confirmed that these cyanobacteria derive from different evolutionary lineages. We further investigated the biological activity of hierridin B, and tested its cytotoxicity towards a panel of human cancer cell lines; it showed selective cytotoxicity towards HT-29 colon adenocarcinoma cells. PMID:23922738

  18. Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth.

    PubMed

    Kumar, K C; Müller, K

    1999-06-01

    The sensitivity of the human keratinocyte cell line HaCaT to several lichen metabolites isolated from Parmelia nepalensis and Parmelia tinctorum was evaluated. The tridepside gyrophoric acid (6), the dibenzofuran derivative (+)-usnic acid (1), and the didepside diffractaic acid (5) were potent antiproliferative agents and inhibited cell growth, with IC50 values of 1.7, 2.1, and 2.6 microM, respectively. Methyl beta-orcinolcarboxylate (2), ethyl hematommate (3), the didepside atranorin (4), and (+)-protolichesterinic acid (7) did not influence keratinocyte growth at concentrations of 5 microM. Keratinocytes were further tested for their susceptibility to the action of the potent antiproliferative agents on plasma membrane integrity. The release of lactate dehydrogenase activity into the culture medium was unchanged as compared to controls, documenting that the activity of gyrophoric acid (6), (+)-usnic acid (1), and diffractaic acid (5) was due to cytostatic rather than cytotoxic effects. PMID:10395495

  19. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    PubMed

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana.

  20. Simultaneous determination of spironolactone and its active metabolite canrenone in human plasma by HPLC-APCI-MS.

    PubMed

    Dong, Haijuan; Xu, Fengguo; Zhang, Zunjian; Tian, Yuan; Chen, Yun

    2006-04-01

    A sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) method for the simultaneous determination of spironolactone and its active metabolite canrenone in human plasma has been developed and validated. After the addition of estazolam as the internal standard (IS), plasma samples were extracted with methylene chloride : ethyl acetate mixture (20 : 80, v/v) and separated by high-performance liquid chromatography (HPLC) on a reversed-phase C18 column with a mobile phase of methanol-water (57 : 43, v/v). Analytes were determined in a single quadrupole mass spectrometer using an atmospheric pressure chemical ionization (APCI) source. LC-APCI-MS was performed in the selected-ion monitoring (SIM) mode using target ions at m/z 341.25 for spironolactone and canrenone, m/z 295.05 for estazolam. The method was proved to be sensitive and specific by testing six different plasma batches. Calibration curves of spironolactone and canrenone were linear over the range 2-300 ng/ml. The within- and between-batch precisions (relative standard deviation (RSD)%) were lower than 10% and the accuracy ranged from 85 to 115%. The lower limit of quantification (LLOQ) was identifiable and reproducible at 2 ng/ml. The proposed method was successfully applied to study the pharmacokinetics of spironolactone and its major metabolite in healthy male Chinese volunteers. PMID:16541392

  1. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments

    PubMed Central

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the “secondary compound hypothesis” and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  2. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    PubMed

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana. PMID:26688290

  3. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments.

    PubMed

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  4. Synthesis, antimicrobial, and anti-inflammatory activity, of novel S-substituted and N-substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols

    PubMed Central

    Al-Abdullah, Ebtehal S; Asiri, Hanadi H; Lahsasni, Siham; Habib, Elsayed E; Ibrahim, Tarek M; El-Emam, Ali A

    2014-01-01

    The reaction of 5-(1-adamantyl)-4-phenyl-1,2,4-triazoline-3-thione (compound 5) with formaldehyde and 1-substituted piperazines yielded the corresponding N-Mannich bases 6a–f. The reaction of 5-(1-adamantyl)-4-methyl-1,2,4-triazoline-3-thione 8 with various 2-aminoethyl chloride yielded separable mixtures of the S-(2-aminoethyl) 9a–d and the N-(2-aminoethyl) 10a–d derivatives. The reaction of compound 5 with 1-bromo-2-methoxyethane, various aryl methyl halides, and ethyl bromoacetate solely yielded the S-substituted products 11, 12a–d, and 13. The new compounds were tested for activity against a panel of Gram-positive and Gram-negative bacteria and the pathogenic fungus Candida albicans. Compounds 6b, 6c, 6d, 6e, 6f, 10b, 10c, 10d, 12c, 12d, 12e, 13, and 14 displayed potent antibacterial activity. Meanwhile, compounds 13 and 14 produced good dose-dependent anti-inflammatory activity against carrageenan-induced paw edema in rats. PMID:24872681

  5. Potato tuber pyrophosphate-dependent phosphofructokinase: effect of thiols and polyalcohols on its intrinsic fluorescence, oligomeric structure, and activity in dilute solutions.

    PubMed

    Podestá, F E; Moorhead, G B; Plaxton, W C

    1994-08-15

    The effect of dilution of homogeneous potato tuber pyrophosphate:fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90; PFP) on the enzyme's intrinsic fluorescence, activity, and oligomeric structure has been examined. A rapid decrease in PFP's intrinsic fluorescence occurred in response to dilution. The decay follows double-exponential kinetics and was accompanied by a reduction in catalytic activity (measured in the glycolytic direction). Gel filtration-HPLC indicated a concomitant deaggregation of the native alpha 4 beta 4 heterooctamer into the inactive free alpha- and beta-subunits, followed by random aggregation of the subunits into an inactive, high M(r) conglomerate. The addition of 2 mM dithiothreitol, 2 mM 2-mercaptoethanol, or 5% (w/v) polyethylene glycol, but not any of the substrates, Mg2+, or fructose 2,6-bisphosphate, prevented this process. When purified PFP was stored for 1 week at -20 degrees C in the presence of 50% (v/v) glycerol partial degradation of its alpha-subunit occurred. This resulted in a labile enzyme that was more susceptible to subunit dissociation. The intrinsic fluorescence of the degraded PFP could be stabilized by 5% (w/v) polyethylene glycol, but not by 2 mM dithiothreitol or 2-mercaptoethanol. It is proposed that the current assay procedures for PFP, which normally involve considerable dilution in the absence of added sulfhydryl reducing agents or polyhydroxy compounds, may underestimate the actual activity of the enzyme. This has important implications for the assessment of the functions and regulation of PFP in vivo.

  6. An electrophoretic profiling method for thiol-rich phytochelatins and metallothioneins.

    PubMed

    Fan, Teresa W M; Lane, Andrew N; Higashi, Richard M

    2004-01-01

    Thiol-rich peptides such as phytochelatins (PCs) and metallothioneins (MTs) are important cellular chelating agents which function in metal detoxification and/or homeostasis. The variations in molecular sizes and lack of chromophores of these peptides make their analysis difficult. This paper reports an electrophoresis-based method for a broad screen of thiol-rich peptides and proteins. The method uses the thiol-selective fluorescent tag, monobromobimane, coupled with Tricine--sodium dodecyl sulphate--urea polyacrylamide gel electrophoresis for a sensitive determination of both PCs and MTs. Results for PCs were confirmed by two-dimensional NMR and HPLC-tandem MS analyses. Sample throughput is substantially improved over chromatography-based methods through parallel sample analysis in 1 h of electrophoretic separation. The method is versatile in that peptides ranging from glutathione to large proteins can be analysed by simple modification(s) of the extraction and electrophoretic conditions, and the nature of the method supports serendipitous detection of unexpected or novel thiol metabolites. PMID:15202602

  7. An electrophoretic profiling method for thiol-rich phytochelatins and metallothioneins.

    PubMed

    Fan, Teresa W M; Lane, Andrew N; Higashi, Richard M

    2004-01-01

    Thiol-rich peptides such as phytochelatins (PCs) and metallothioneins (MTs) are important cellular chelating agents which function in metal detoxification and/or homeostasis. The variations in molecular sizes and lack of chromophores of these peptides make their analysis difficult. This paper reports an electrophoresis-based method for a broad screen of thiol-rich peptides and proteins. The method uses the thiol-selective fluorescent tag, monobromobimane, coupled with Tricine--sodium dodecyl sulphate--urea polyacrylamide gel electrophoresis for a sensitive determination of both PCs and MTs. Results for PCs were confirmed by two-dimensional NMR and HPLC-tandem MS analyses. Sample throughput is substantially improved over chromatography-based methods through parallel sample analysis in 1 h of electrophoretic separation. The method is versatile in that peptides ranging from glutathione to large proteins can be analysed by simple modification(s) of the extraction and electrophoretic conditions, and the nature of the method supports serendipitous detection of unexpected or novel thiol metabolites.

  8. Aldosterone Inactivates the Endothelin-B Receptor via a Cysteinyl Thiol Redox Switch to Decrease Pulmonary Endothelial Nitric Oxide Levels and Modulate Pulmonary Arterial Hypertension

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; White, Kevin; Chan, Stephen Y.; Handy, Diane E.; Mahoney, Christopher E.; Loscalzo, Joseph; Leopold, Jane A.

    2012-01-01

    Background Pulmonary arterial hypertension (PAH) is characterized, in part, by decreased endothelial nitric oxide (NO•) production and elevated levels of endothelin-1. Endothelin-1 is known to stimulate endothelial nitric oxide synthase (eNOS) via the endothelin-B receptor (ETB), suggesting that this signaling pathway is perturbed in PAH. Endothelin-1 also stimulates adrenal aldosterone synthesis; in systemic blood vessels, hyperaldosteronism induces vascular dysfunction by increasing endothelial reactive oxygen species (ROS) generation and decreasing NO• levels. We hypothesized that aldosterone modulates PAH by disrupting ETB-eNOS signaling through a mechanism involving increased pulmonary endothelial oxidant stress. Methods and Results In rats with PAH, elevated endothelin-1 levels were associated with elevated aldosterone levels in plasma and lung tissue and decreased lung NO• metabolites in the absence of left heart failure. In human pulmonary artery endothelial cells (HPAECs), endothelin-1 increased aldosterone levels via PGC-1α/steroidogenesis factor-1-dependent upregulation of aldosterone synthase. Aldosterone also increased ROS production, which oxidatively modified cysteinyl thiols in the eNOS-activating region of ETB to decrease endothelin-1-stimulated eNOS activity. Substitution of ETB-Cys405 with alanine improved ETB-dependent NO• synthesis under conditions of oxidant stress, confirming that Cys405 is a redox sensitive thiol that is necessary for ETB-eNOS signaling. In HPAECs, mineralocorticoid receptor antagonism with spironolactone decreased aldosterone-mediated ROS generation and restored ETB-dependent NO• production. Spironolactone or eplerenone prevented or reversed pulmonary vascular remodeling and improved cardiopulmonary hemodynamics in two animal models of PAH in vivo. Conclusions Our findings demonstrate that aldosterone modulates an ETB cysteinyl thiol redox switch to decrease pulmonary endothelium-derived NO• and promote PAH

  9. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities.

    PubMed

    Xiao, Jian; Zhang, Qiang; Gao, Yu-Qi; Tang, Jiang-Jiang; Zhang, An-Ling; Gao, Jin-Ming

    2014-04-23

    Two new metabolites, an α-pyridone derivative, 3-hydroxy-2-methoxy-5-methylpyridin-2(1H)-one (1), and a ceramide derivative, 3-hydroxy-N-(1-hydroxy-3-methylpentan-2-yl)-5-oxohexanamide (2), and a new natural product, 3-hydroxy-N-(1-hydroxy-4-methylpentan-2-yl)-5-oxohexanamide (3), along with 15 known compounds including chaetoglobosin C (7) and chaetoglobosin F (8) were isolated from the solid culture of the endophytic fungus Botryosphaeria dothidea KJ-1, collected from the stems of white cedar (Melia azedarach L). The structures were elucidated on the basis of spectroscopic analysis (1D and 2D NMR experiments and by mass spectrometric measurements), and the structure of 1 was confirmed by X-ray single-crystal diffraction. These metabolites were evaluated in vitro for antimicrobial, antioxidant, and cytotoxicity activities. Pycnophorin (4) significantly inhibited the growth of Bacillus subtilis and Staphyloccocus aureus with equal minimum inhibitory concentration (MIC) values of 25 μM. Stemphyperylenol (5) displayed a potent antifungal activity against the plant pathogen Alternaria solani with MIC of 1.57 μM comparable to the commonly used fungicide carbendazim. Both altenusin (9) and djalonensone (10) showed markedly DPPH radical scavenging activities. In addition, stemphyperylenol (5) and altenuene (6) exhibited strong cytotoxicity against HCT116 cancer cell line with a median inhibitory concentration (IC50) value of 3.13 μM in comparison with the positive control etoposide (IC50 = 2.13 μM). This is the first report of the isolation of these compounds from the endophytic B. dothidea. PMID:24689437

  10. Histopathology, enzyme activities, and PAH metabolites in English sole collected near coastal pulp mills

    SciTech Connect

    Brand, D.G.

    1995-12-31

    The bottom-feeding flatfish, English sole (Pleuronectes vetulus), is widely distributed along the B.C. Pacific coast and fulfills a majority of the requirements as a sentinel species for environmental effects monitoring programs. Studies involving the use of histopathological, biochemical, and chemical tools with English sole collected near the vicinity of B.C. pulp mills are currently being conducted. Analysis, to date, has revealed idiopathic liver lesions to be strongly dependent on location of capture with a prevalence of 30% preneoplastic and neoplastic lesions found in fish collected near pulp mills. All fish residing near pulp mills show hepatocellular hemosiderosis, an iron storage disorder. The mixed-function oxidizing enzyme, EROD, was found to be induced in fish collected near pulp mills. However, the levels of conjugating enzymes, GST and UDP-GT, were found to be unchanged when compared with reference fish. PAH metabolites, measured as FACs in bile, are also present in English sole collected from the mill sites and the conjugated derivatives are presently being identified by HPLC/ES-MS techniques, The relationships between these observations will be discussed.

  11. Methicillin-Resistant Staphylococcus aureus (MRSA)-Active Metabolites from Platanus occidentalis (American Sycamore)

    PubMed Central

    Ibrahim, Mohamed A.; Mansoor, Arsala A.; Gross, Amanda; Ashfaq, M. Khalid; Jacob, Melissa; Khan, Shabana I.; Hamann, Mark T.

    2016-01-01

    One known and three new potent, selective, and nontoxic anti-MRSA metabolites, kaempferol 3-O-α-l-(2″,3″-di-E-p-coumaroyl)rhamnoside (1) (IC50 2.0 µg/mL), kaempferol 3-O-α-l-(2″-E-p-coumaroyl-3″-Z-p-coumaroyl)rhamnoside (2) (IC50 0.8 µg/mL), kaempferol 3-O-α-l-(2″-Z-p-coumaroyl-3″-E-p-coumaroyl)rhamnoside (3) (IC50 0.7 µg/mL), and kaempferol 3-O-α-l-(2″,3″-di-Z-p-coumaroyl)rhamnoside (4) (IC50 0.4 µg/mL), were isolated from the leaves of the common American sycamore, Platanus occidentalis. Compounds 2–4 are new. Due to the unusual selectivity, potency, and safety of the pure compounds and the semipure glycoside mixture against MRSA, it is clear that this represents a viable class of inhibitors to prevent growth of MRSA on surfaces and systemically. PMID:19904995

  12. Methicillin-resistant Staphylococcus aureus (MRSA)-active metabolites from Platanus occidentalis (American Sycamore).

    PubMed

    Ibrahim, Mohamed A; Mansoor, Arsala A; Gross, Amanda; Ashfaq, M Khalid; Jacob, Melissa; Khan, Shabana I; Hamann, Mark T

    2009-12-01

    One known and three new potent, selective, and nontoxic anti-MRSA metabolites, kaempferol 3-O-alpha-l-(2'',3''-di-E-p-coumaroyl)rhamnoside (1) (IC(50) 2.0 microg/mL), kaempferol 3-O-alpha-l-(2''-E-p-coumaroyl-3''-Z-p-coumaroyl)rhamnoside (2) (IC(50) 0.8 microg/mL), kaempferol 3-O-alpha-l-(2''-Z-p-coumaroyl-3''-E-p-coumaroyl)rhamnoside (3) (IC(50) 0.7 microg/mL), and kaempferol 3-O-alpha-l-(2'',3''-di-Z-p-coumaroyl)rhamnoside (4) (IC(50) 0.4 microg/mL), were isolated from the leaves of the common American sycamore, Platanus occidentalis. Compounds 2-4 are new. Due to the unusual selectivity, potency, and safety of the pure compounds and the semipure glycoside mixture against MRSA, it is clear that this represents a viable class of inhibitors to prevent growth of MRSA on surfaces and systemically.

  13. Functionalized S 4Zn (II) complexes as structural modelling for the active site of thiolate-alkylating enzymes: The crystal structure of [TtiZn-SpyH] 2·HClO 4 [Tti = tris(thioimidazolyl)hydroborate and SpyH = pyridine-2-thiol

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed M.

    2009-11-01

    Two new functionalized S 3Zn-bound pyridinethiol complexes [TtiZn-SpyH] 2·HClO 41 and [TtiZn-Spy] 2 [Tti = tris(2-mercapto-1-xylyl-imidazolyl)hydroborate, SpyH = pyridine-2-thiol, and Spy = pyridine-4-thiol] were synthesized and characterized. Structural determination of complex 1 showed that the coordination geometry around zinc atom is ideally regular tetrahedral with three thione donors from the ligand Tti and one thiolate donor from the coligand pyridine-2-thiol. The average Zn(1)-S(thione) bond length is 2.349 Å and the Zn(1)-S(thiolate) bond length is 2.289 Å. The reactivity studies of both complexes 1 and 2 as models for the active sites of thiolate-alkylating enzymes toward methylation reactions showed that 1 is much less susceptible to methylation than that of complex 2. This decrease in the nucleophilicity of complex 1 could be explained by electronic effects of the pyridinum salts as well as the steric hindrance, which is provided by the perchlorate anion.

  14. Interaction of thiols and non-thiol {center_dot}OH scavengers in the modification of radiation-induced DNA damage

    SciTech Connect

    Krisch, R.E.; Ayene, I.S.; Koch, C.J.

    1995-12-31

    Oxygen has long been known to sensitize cells to the lethal effects of ionizing radiation and is widely believed to do so by the fixation of potentially reversible radical damage to cellular DNA. A number of studies have suggested that this widely observed oxygen enhancement of cell killing requires the presence of reduced thiols. Published in vitro studies of the modification of DNA damage by glutathione or other thiols have generally shown peak oxygen enhancement ratios (OERs) much higher than those observed for cell killing. However, these studies measured loss of DNA transforming activity or induction of single-strand DNA breaks (SSBs), related endpoints which are not thought to represent lethal lesions, rather than double-strand breaks (DSBs), which are generally believed to be the dominant lethal lesions from ionizing radiation. In addition, non-thiol scavengers of OH radicals were not generally present. There is also evidence that, in addition to their protective effects, some non-thiol {center_dot}OH scavengers can produce radicals which are damaging to DNA under anoxic conditions. In the present investigation, the authors have adapted a previously used in vitro model system to simultaneously investigate the effects on radiation-induced single- and double-strand DNA breaks of various combinations of glutathione and glycerol, a widely used non-thiol scavenger, in the presence and absence of oxygen.

  15. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation.

    PubMed

    Garcia, Gonçalo; Nanni, Sara; Figueira, Inês; Ivanov, Ines; McDougall, Gordon J; Stewart, Derek; Ferreira, Ricardo B; Pinto, Paula; Silva, Rui F M; Brites, Dora; Santos, Cláudia N

    2017-01-15

    Neuroinflammation is an integral part of the neurodegeneration process inherent to several aging dysfunctions. Within the central nervous system, microglia are the effective immune cells, responsible for neuroinflammatory responses. In this study, raspberries were subjected to in vitro digestion simulation to obtain the components that result from the gastrointestinal (GI) conditions, which would be bioaccessible and available for blood uptake. Both the original raspberry extract and the gastrointestinal bioaccessible (GIB) fraction protected neuronal and microglia cells against H2O2-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation, at low concentrations. Furthermore, this neuroprotective capacity was independent of intracellular ROS scavenging mechanisms. We show for the first time that raspberry metabolites present in the GIB fraction significantly inhibited microglial pro-inflammatory activation by LPS, through the inhibition of Iba1 expression, TNF-α release and NO production. Altogether, this study reveals that raspberry polyphenols may present a dietary route to the retardation or amelioration of neurodegenerative-related dysfunctions.

  16. Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects.

    PubMed

    Liu, Xiaoyan; Ruan, Lifang; Peng, Donghai; Li, Lin; Sun, Ming; Yu, Ziniu

    2014-07-25

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided.

  17. Systematic synthesis and anti-inflammatory activity of ω-carboxylated menaquinone derivatives--Investigations on identified and putative vitamin K₂ metabolites.

    PubMed

    Fujii, Shinya; Shimizu, Akitaka; Takeda, Noriaki; Oguchi, Kazuki; Katsurai, Tomoko; Shirakawa, Hitoshi; Komai, Michio; Kagechika, Hiroyuki

    2015-05-15

    Vitamin K is an essential nutrient for blood coagulation and bone homeostasis, and also functions in many physiological processes including inflammation and cancer progression. However, the nature and activities of its metabolites remain unclear. We report here systematic synthesis of ω-carboxylated derivatives of menaquinone (vitamin K2), including previously identified metabolites 5, K acid I (10), and K acid II (12), and evaluation of their inhibitory activity toward LPS-stimulated induction of inflammatory cytokines. These results should contribute to an improved understanding of the biochemistry and pharmacology of vitamin K.

  18. Simultaneous determination of macitentan and its active metabolite in human plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Yu, Lixiu; Zhou, Ying; He, Xiaomeng; Li, Huqun; Chen, Hui; Li, Weiyong

    2015-10-01

    Macitentan is a newly approved endothelin receptor antagonist (ERA) for the long-term treatment of PAH with superior receptor-binding properties and a longer duration of action compared to other available ERAs. However, analytical methods for simultaneous determination of macitentan and its active metabolite, ACT-132577, in human plasma have not been fully reported in the literature. In this work, a fast, sensitive, and reliable high-performance liquid chromatography-tandem mass spectrometry method (HPLC-MS/MS) was firstly developed and completely validated for simultaneous determination of macitentan and its active metabolite in human plasma. Plasma samples were processed with a protein precipitation using acetonitrile, followed by chromatographic separation using an Inertsil ODS-SP column (100×2.1mm, 3.5μm) under isocratic elution with a mobile phase consisting of acetonitrile and 0.2% formic acid at a flow rate of 0.3mL/min. Quantification was operated in multiple reaction monitoring (MRM) mode using the transitions m/z 547.1→201.0 for macitentan, m/z 589.0→203.0 for ACT-132577, and m/z 380.5→243.3 for the IS (donepezil). The assay exhibited a linear range of 1-500ng/mL for both macitentan and ACT-132577. The accuracy and the intra- and inter-precisions were within acceptable ranges and no significant matrix effect was observed during the method validation. The developed method was successfully utilized to a human pharmacokinetic study of macitentan as well as ACT-132577 after oral administration of 10mg macitentan tablet in healthy Chinese volunteers.

  19. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor

    PubMed Central

    Chennupati, Ramesh; Nüsing, Rolf M.; Offermanns, Stefan

    2016-01-01

    19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists. PMID:27662627

  20. The selenium metabolite methylselenol regulates the expression of ligands that trigger immune activation through the lymphocyte receptor NKG2D.

    PubMed

    Hagemann-Jensen, Michael; Uhlenbrock, Franziska; Kehlet, Stephanie; Andresen, Lars; Gabel-Jensen, Charlotte; Ellgaard, Lars; Gammelgaard, Bente; Skov, Søren

    2014-11-01

    For decades, selenium research has been focused on the identification of active metabolites, which are crucial for selenium chemoprevention of cancer. In this context, the metabolite methylselenol (CH3SeH) is known for its action to selectively kill transformed cells through mechanisms that include increased formation of reactive oxygen species, induction of DNA damage, triggering of apoptosis, and inhibition of angiogenesis. Here we reveal that CH3SeH modulates the cell surface expression of NKG2D ligands. The expression of NKG2D ligands is induced by stress-associated pathways that occur early during malignant transformation and enable the recognition and elimination of tumors by activating the lymphocyte receptor NKG2D. CH3SeH regulated NKG2D ligands both on the transcriptional and the posttranscriptional levels. CH3SeH induced the transcription of MHC class I polypeptide-related sequence MICA/B and ULBP2 mRNA. However, the induction of cell surface expression was restricted to the ligands MICA/B. Remarkably, our studies showed that CH3SeH inhibited ULBP2 surface transport through inhibition of the autophagic transport pathway. Finally, we identified extracellular calcium as being essential for CH3SeH regulation of NKG2D ligands. A balanced cell surface expression of NKG2D ligands is considered to be an innate barrier against tumor development. Therefore, our work indicates that the application of selenium compounds that are metabolized to CH3SeH could improve NKG2D-based immune therapy. PMID:25258323

  1. Evaluation of a dithiocarbamate derivative as a model of thiol oxidative stress in H9c2 rat cardiomyocytes.

    PubMed

    Xie, Jiashu; Potter, Ashley; Xie, Wei; Lynch, Christophina; Seefeldt, Teresa

    2014-05-01

    Thiol redox state (TRS) refers to the balance between reduced thiols and their corresponding disulfides and is mainly reflected by the ratio of reduced and oxidized glutathione (GSH/GSSG). A decrease in GSH/GSSG, which reflects a state of thiol oxidative stress, as well as thiol modifications such as S-glutathionylation, has been shown to have important implications in a variety of cardiovascular diseases. Therefore, research models for inducing thiol oxidative stress are important tools for studying the pathophysiology of these disease states as well as examining the impact of pharmacological interventions on thiol pathways. The purpose of this study was to evaluate the use of a dithiocarbamate derivative, 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA), as a pharmacological model of thiol oxidative stress by examining the extent of thiol modifications induced in H9c2 rat cardiomyocytes and its impact on cellular functions. The extent of thiol oxidative stress produced by 2-AAPA was also compared to other models of oxidative stress including hydrogen peroxide (H2O2), diamide, buthionine sulfoximine, and N,N׳-bis(2-chloroethyl)-N-nitroso-urea. Results indicated that 2-AAPA effectively inhibited glutathione reductase and thioredoxin reductase activities and decreased the GSH/GSSG ratio by causing a significant accumulation of GSSG. 2-AAPA also increased the formation of protein disulfides as well as S-glutathionylation. The alteration in TRS led to a loss of mitochondrial membrane potential, release of cytochrome c, and increase in reactive oxygen species production. Compared to other models, 2-AAPA is more potent at creating a state of thiol oxidative stress with lower cytotoxicity, higher specificity, and more pharmacological relevance, and could be utilized as a research tool to study TRS-related normal and abnormal biochemical processes in cardiovascular diseases. PMID:24607690

  2. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    SciTech Connect

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  3. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    PubMed

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety. PMID:27250800

  4. Relationship between disease activity and serum levels of vitamin D metabolites and parathyroid hormone in ankylosing spondylitis.

    PubMed

    Lange, U; Jung, O; Teichmann, J; Neeck, G

    2001-12-01

    Vertebral fractures due to osteoporosis are a common but frequently unrecognized complication of ankylosing spondylitis (AS) and various factors may contribute to the development of osteoporosis in AS. It is known that inflammatory activity in rheumatic disease (i.e., proinflammatory cytokines) itself plays a possible role in the pathophysiology of bone loss. 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) seems to be another possible candidate for mediatory function in regulating both the inflammatory process and bone turnover. The aim of this study was to evaluate the relation between disease activity, bone turnover and calciotropic hormones. In 70 patients with established AS and an age- and sex-matched control group, the relation between disease activity (erythrocyte sedimentation rate, C-reactive protein, Bath Ankylosing Spondylitis Disease Activity Index), and serum levels of vitamin D metabolites, parathyroid hormone (PTH), bone alkaline phosphatase (bAP) and urinary pyridinium cross-links were determined. Serum levels of 1,25(OH)2D3 (p<0.01) and PTH (p<0.01) were negatively correlated with disease activity, the excretion of urinary pyridinium crosslinks showed a positive correlation with disease activity (p<0.01), and 1,25(OH)2D3 and PTH were positively correlated with bAP (p<0.01). These results indicate that high disease activity in AS is associated with an alteration in vitamin D metabolism and increased bone resorption. Furthermore, the decreased levels of 1,25(OH)2D3 may contribute to a negative calcium balance and inhibition of bone formation. Our results suggest further research is necessary to determine whether low levels of 1,25(OH)2D3 as an endogenous immune modulator suppressing activated T cells and cell proliferation may accelerate the inflammation process in AS. PMID:11846329

  5. Disruption of mitochondrial activities in rabbit and human hepatocytes by a quinoxalinone anxiolytic and its carboxylic acid metabolite.

    PubMed

    Ulrich, R G; Bacon, J A; Cramer, C T; Petrella, D K; Sun, E L; Meglasson, M D; Holmuhamedov, E

    1998-11-01

    The quinoxalinone anxiolytic, panadiplon, was dropped from clinical development due to unexpected hepatic toxicity in human volunteers. Subsequent experimental studies in rabbits demonstrated a hepatic toxicity that resembled Reye's syndrome. In the present studies, we examined the effects of panadiplon and a metabolite, cyclopropane carboxylic acid (CPCA) on hepatic mitochondrial activities in vitro and ex vivo. Acute inhibition of beta-oidation of [14C]palmitate was observed in rabbit and human hepatocyte suspensions incubated with 100 microM panadiplon. Panadiplon (30 microM) also reduced mitochondrial uptake of rhodamine 123 (R123) in cultured rabbit and human, but not rat hepatocytes, following 18 h exposure. CPCA also impaired beta-oxidation and R123 uptake in rabbit and human hepatocytes. R123 uptake and beta-oxidation in cells from some donors was not impaired by either agent, and cell death was not observed in any experiment. Hepatocytes isolated from panadiplon-treated rabbits had reduced palmitate beta-oxidation rates and inhibited mitochondrial R123 uptake; R123 uptake remained inhibited until 48-72 h in culture. Rabbit mitochondrial respiration experiments revealed a slightly lower ratio of ATP formed/oxygen consumed in panadiplon-treated animals: direct exposure of normal rabbit liver mitochondria to panadiplon did not have this effect. Hepatocytes isolated from panadiplon-treated rabbits showed reduced respiratory control ratios and lower oxygen consumption compared to controls. Our results indicate that panadiplon induces a mitochondrial dysfunction in the liver, and suggest that this dysfunction may be attributed to the carboxylic acid metabolite.

  6. Proteinase from germinating bean cotyledons. Evidence for involvement of a thiol group in catalysis.

    PubMed

    Csoma, C; Polgár, L

    1984-09-15

    To degrade storage proteins germinating seeds synthesize proteinases de novo that can be inhibited by thiol-blocking reagents [Baumgartner & Chrispeels (1977) Eur. J. Biochem. 77, 223-233]. We have elaborated a procedure for isolation of such a proteinase from the cotyledons of Phaseolus vulgaris. The purification procedure involved fractionation of the cotyledon homogenate with acetone and with (NH4)2SO4 and successive chromatographies on DEAE-cellulose, activated thiol-Sepharose Sepharose and Sephacryl S-200. The purified enzyme has an Mr of 23,400, proved to be highly specific for the asparagine side chain and blocking of its thiol group resulted in loss of the catalytic activity. The chemical properties of the thiol group of the bean enzyme were investigated by acylation with t-butyloxycarbonyl-L-asparagine p-nitro-phenyl ester and by alkylations with iodoacetamide and iodoacetate. Deviations from normal pH-rate profile were observed, which indicated that the thiol group is not a simple functional group, but constitutes a part of an interactive system at the active site. The pKa value for acylation and the magnitude of the rate constant for alkylation with iodoacetate revealed that the bean proteinase possesses some properties not shared by papain and the other cysteine proteinases studied to date.

  7. The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: Influence of other blood cells, calcium, and aspirin.

    PubMed

    Frelinger, Andrew L; Jakubowski, Joseph A; Li, Youfu; Barnard, Marc R; Fox, Marsha L; Linden, Matthew D; Sugidachi, Atsuhiro; Winters, Kenneth J; Furman, Mark I; Michelson, Alan D

    2007-07-01

    The novel thienopyridine prodrug prasugrel, a platelet P2Y(12) ADP receptor antagonist, requires in vivo metabolism for activity. Although pharmacological data have been collected on the effects of prasugrel on platelet aggregation, there are few data on the direct effects of the prasugrel's active metabolite, R-138727, on other aspects of platelet function. Here we examined the effects of R-138727 on thrombo-inflammatory markers of platelet activation, and the possible modulatory effects of other blood cells, calcium, and aspirin. Blood (PPACK or citrate anticoagulated) from healthy donors pre- and post-aspirin was incubated with R-138727 and the response to ADP assessed in whole blood or platelet-rich plasma (PRP) by aggregometry and flow cytometric analysis of leukocyte-platelet aggregates, platelet surface P-selectin, and GPIIb-IIIa activation. Low-micromolar concentrations of R-138727 resulted in a rapid and consistent inhibition of these ADP-stimulated thrombo-inflammatory markers. These rapid kinetics required physiological calcium levels, but were largely unaffected by aspirin. Lower IC(50) values in whole blood relative to PRP suggested that other blood cells affect ADP-induced platelet activation and hence the net inhibition by R-138727. R-138727 did not inhibit P2Y(12)-mediated ADP-induced shape change, even at concentrations that completely inhibited platelet aggregation, confirming the specificity of R-138727 for P2Y(12). In conclusion, R-138727, the active metabolite of prasugrel, results in rapid, potent, consistent, and selective inhibition of P2Y(12)-mediated up-regulation of thrombo-inflammatory markers of platelet activation. This inhibition is enhanced in the presence other blood cells and calcium, but not aspirin. PMID:17598013

  8. Identification of minor secondary metabolites from the latex of Croton lechleri (Muell-Arg) and evaluation of their antioxidant activity.

    PubMed

    De Marino, Simona; Gala, Fulvio; Zollo, Franco; Vitalini, Sara; Fico, Gelsomina; Visioli, Francesco; Iorizzi, Maria

    2008-01-01

    Dragon's blood (Sangre de drago), a viscous red sap derived from Croton lechleri Muell-Arg (Euphorbiaceae), is extensively used by indigenous cultures of the Amazonian basin for its wound healing properties. The aim of this study was to identify the minor secondary metabolites and test the antioxidant activity of this sustance. A bioguided fractionation of the n-hexane, chloroform, n-butanol, and aqueous extracts led to the isolation of 15 compounds: three megastigmanes, four flavan-3-ols, three phenylpropanoids, three lignans, a clerodane, and the alkaloid taspine. In addition to these known molecules, six compounds were isolated and identified for the first time in the latex: blumenol B, blumenol C, 4,5-dihydroblumenol A, erythro-guaiacyl-glyceryl-beta-O-4'- dihydroconiferyl ether, 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-propane-1,3-diol and floribundic acid glucoside. Combinations of spectroscopic methods ((1)H-, (13)C- NMR and 2D-NMR experiments), ESI-MS, and literature comparisons were used for compound identification. In vitro antioxidant activities were assessed by DPPH, total antioxidant capacity and lipid peroxidation assays. Flavan-3-ols derivatives (as major phenolic compounds in the latex) exhibited the highest antioxidant activity.

  9. Activation of p53 with ilimaquinone and ethylsmenoquinone, marine sponge metabolites, induces apoptosis and autophagy in colon cancer cells.

    PubMed

    Lee, Hyun-Young; Chung, Kyu Jin; Hwang, In Hyun; Gwak, Jungsuk; Park, Seoyoung; Ju, Bong Gun; Yun, Eunju; Kim, Dong-Eun; Chung, Young-Hwa; Na, MinKyun; Song, Gyu-Yong; Oh, Sangtaek

    2015-01-01

    The tumor suppressor, p53, plays an essential role in the cellular response to stress through regulating the expression of genes involved in cell cycle arrest, apoptosis and autophagy. Here, we used a cell-based reporter system for the detection of p53 response transcription to identify the marine sponge metabolites, ilimaquinone and ethylsmenoquinone, as activators of the p53 pathway. We demonstrated that ilimaquinone and ethylsmenoquinone efficiently stabilize the p53 protein through promotion of p53 phosphorylation at Ser15 in both HCT116 and RKO colon cancer cells. Moreover, both compounds upregulate the expression of p21WAF1/CIP1, a p53-dependent gene, and suppress proliferation of colon cancer cells. In addition, ilimaquinone and ethylsmenoquinone induced G2/M cell cycle arrest and increased caspase-3 cleavage and the population of cells that positively stained with Annexin V-FITC, both of which are typical biochemical markers of apoptosis. Furthermore, autophagy was elicited by both compounds, as indicated by microtubule-associated protein 1 light chain 3 (LC3) puncta formations and LC3-II turnover in HCT116 cells. Our findings suggest that ilimaquinone and ethylsmenoquinone exert their anti-cancer activity by activation of the p53 pathway and may have significant potential as chemo-preventive and therapeutic agents for human colon cancer. PMID:25603347

  10. "Oxygen Sensing" by Na,K-ATPase: These Miraculous Thiols.

    PubMed

    Bogdanova, Anna; Petrushanko, Irina Y; Hernansanz-Agustín, Pablo; Martínez-Ruiz, Antonio

    2016-01-01

    Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its "oxygen-sensitivity" is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation, and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidized glutathione are the signaling messengers that make the Na,K-ATPase "oxygen-sensitive." This very ancient signaling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the "optimal" level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterize the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summary on (i) the sources of free radical production in hypoxic cells, (ii) localization of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzyme to a variety of stimuli (hypoxia, receptors' activation) (iii) redox-sensitive regulatory phosphorylation, and (iv) the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate. Better understanding of the processes

  11. Selective activation of the gamma-subspecies of protein kinase C from bovine cerebellum by arachidonic acid and its lipoxygenase metabolites.

    PubMed

    Shearman, M S; Naor, Z; Sekiguchi, K; Kishimoto, A; Nishizuka, Y

    1989-01-30

    The gamma-subspecies of protein kinase C (PKC) apparently is expressed only in central nervous tissues, and at a high level in the cerebellum and hippocampus. gamma-PKC from bovine cerebellum, but not the alpha- or beta I/beta II-subspecies, is activated by micromolar concentrations of arachidonic acid (AA), in the absence of both phospholipid and diacylglycerol. A significant component of this activation is also calcium independent. Other unsaturated fatty acids are much less active in this respect. Among the AA metabolites tested, lipoxin A (5(S),6(R),15(S)-11-cis-isomer) was a potent, selective activator of the gamma-subspecies, and also, to a lesser extent, 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid could support activation. These results raise the possibility that AA and some of its lipoxygenase metabolites may function as messenger molecules in neurones to activate the gamma-subspecies of PKC. PMID:2492951

  12. 40 CFR 721.10696 - Polyfluorinated alkyl thiol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl thiol (generic... Specific Chemical Substances § 721.10696 Polyfluorinated alkyl thiol (generic). (a) Chemical substances and... polyfluorinated alkyl thiol (PMNs P-11-483 and P-11-528) are subject to reporting under this section for...

  13. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  14. Bacterial Reductionism: Host Thiols Enhance Virulence

    PubMed Central

    Sperandio, Vanessa

    2016-01-01

    Intracellular bacteria exploit host cytosolic signals to upregulate virulence genes. In this issue of Cell Host & Microbe, Wong et al. (2015) show that Burkholderia pseudomallei senses host cytosolic glutathione, a low-molecular-weight thiol, through the membrane-bound histidine sensor kinase VirA, highlighting the importance of inter-kingdom signaling in bacterial pathogenesis. PMID:26159714

  15. Tryptophan in Alcoholism Treatment I:  Kynurenine Metabolites Inhibit the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevate Blood Acetaldehyde Concentration and Induce Aversion to Alcohol

    PubMed Central

    Badawy, Abdulla A.-B.; Bano, Samina; Steptoe, Alex

    2011-01-01

    Aims: The aims were to provide proofs of mechanism and principle by establishing the ability of kynurenine metabolites to inhibit the liver mitochondrial low Km aldehyde dehydrogenase (ALDH) activity after administration and in vivo, and to induce aversion to alcohol. Methods: Kynurenic acid (KA), 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) were administered to normal male Wistar rats and ALDH activity was determined both in vitro in liver homogenates and in vivo (by measuring blood acetaldehyde following ethanol administration). Alcohol consumption was studied in an aversion model in rats and in alcohol-preferring C57 mice. Results: ALDH activity was significantly inhibited by all three metabolites by doses as small as 1 mg/kg body wt. Blood acetaldehyde accumulation after ethanol administration was strongly elevated by KA and 3-HK and to a lesser extent by 3-HAA. All three metabolites induced aversion to alcohol in rats and decreased alcohol preference in mice. Conclusions: The above kynurenine metabolites of tryptophan induce aversion to alcohol by inhibiting ALDH activity. An intellectual property covering the use of 3-HK and 3-HAA and derivatives thereof in the treatment of alcoholism by aversion awaits further development. PMID:21896552

  16. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus.

    PubMed

    Miao, Fang; Yang, Rui; Chen, Dong-Dong; Wang, Ying; Qin, Bao-Fu; Yang, Xin-Juan; Zhou, Le

    2012-11-28

    From the ethyl acetate extract of the culture broth of Talaromyces verruculosus, a rhizosphere fungus of Stellera chamaejasme L., (-)-8-hydroxy-3-(4-hydroxypentyl)-3,4-dihydroisocoumarin (1) and (E)-3-(2,5-dioxo-3-(propan-2-ylidene)pyrrolidin-1-yl)acrylic acid (2) were isolated and evaluated for their antimicrobial activities. Their structures were elucidated by UV, IR, MS, 1H-NMR, 13C-NMR and 2D NMR spectra. Compound 1 exhibited the significant activities in vitro against two strains of bacteria and four strains of fungi. Compound 2 gave slight activities on the fungi at 100 µg mL(-1), but no activities on the bacteria. Compound 1 should be considered as a new lead or model compound to develop new isocoumarin antimicrobial agents.

  17. Mexiletine metabolites: a review.

    PubMed

    Catalano, Alessia; Carocci, Alessia; Sinicropi, Maria Stefania

    2015-01-01

    Mexiletine belongs to class IB antiarrhythmic drugs and it is still considered a drug of choice for treating myotonias. However some patients do not respond to mexiletine or have significant side effects limiting its use; thus, alternatives to this drug should be envisaged. Mexiletine is extensive metabolized in humans via phase I and phase II reactions. Only a small fraction (about 10%) of the dose of mexiletine administered is recovered without modifications in urine. Although in the past decades Mex metabolites were reported to be devoid of biological activity, recent studies seem to deny this assertion. Actually, several hydroxylated metabolites showed pharmacological activity similar to that of Mex, thus contributing to its clinical profile. Purpose of this review is to summarize all the studies proposed till now about mexiletine metabolites, regarding structureactivity relationship studies as well as synthetic strategies. Biological and analytical studies will be also reported. PMID:25723511

  18. Microbial transformation of ginsenoside-Rg₁ by Absidia coerulea and the reversal activity of the metabolites towards multi-drug resistant tumor cells.

    PubMed

    Liu, Xin; Qiao, Lirui; Xie, Dan; Zhang, Yi; Zou, Jianhua; Chen, Xiaoguang; Dai, Jungui

    2011-12-01

    Biotransformation of ginsenoside-Rg₁ (1) by the fungus Absidia coerulea AS 3.2462 yielded five metabolites (2-6). On the basis of spectroscopic data analyses, the metabolites were identified as ginsenoside-F₁ (2), 6α,12β-dihydroxydammar-3-one-20(S)-O-β-D-glucopyranoside (3), 3-oxo-20(S)-protopanaxatriol (4), 3-oxo-7β-hydroxy-20(S)-protopanaxatriol (5), and 3-oxo-7β,15α-dihydroxy-20(S)-protopanaxatriol (6), respectively. Among them, 5 and 6 are new compounds. These results indicated that Absidia coerulea AS 3.2462 could catalyze the specific C-3 dehydrogenation of derivatives of ginsenoside-Rg₁, as well as hydroxylation at the 7β and 15α positions. Metabolites 2, 4 and 5 exhibited moderate reversal activity towards A549/taxol MDR tumor cells in vitro. PMID:21946057

  19. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    PubMed Central

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621

  20. Thiol reactivity as a sensor of rotation of the converter in myosin.

    PubMed

    Onishi, Hirofumi; Nitanai, Yasushi

    2008-04-25

    Smooth muscle myosin has two reactive thiols located near the C-terminal region of its motor domain, the "converter", which rotates by approximately 70 degrees upon the transition from the "nucleotide-free" state to the "pre-power stroke" state. The incorporation rates of a thiol reagent, 5-(((2-iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (IAEDANS), into these thiols were greatly altered by adding ATP or changing the myosin conformation. Comparisons of the myosin structures in the pre-power stroke state and the nucleotide-free state explained why the reactivity of both thiols is especially sensitive to a conformational change around the converter, and thus can be used as a sensor of the rotation of the converter. Modeling of the myosin structure in the pre-power stroke state, in which the most reactive thiol, "SH1", was selectively modified with IAEDANS, revealed that this label becomes an obstacle when the converter completely rotates toward its position in the pre-power stroke state, thus resulting in incomplete rotation of the converter. Therefore, we suggest that the limitation of the converter rotation by modification causes the as-yet unexplained phenomena of SH1-modified myosin, including the inhibition of 10S myosin formation and the losses in phosphorylation-dependent regulation of the basic and actin-activated Mg-ATPase activities of myosin.

  1. Comparative proteomic analysis of thiol proteins in the liver after oxidative stress induced by diethylnitrosamine.

    PubMed

    Aparicio-Bautista, Diana I; Pérez-Carreón, Julio I; Gutiérrez-Nájera, Nora; Reyes-Grajeda, Juan P; Arellanes-Robledo, Jaime; Vásquez-Garzón, Verónica R; Jiménez-García, Mónica N; Villa-Treviño, Saúl

    2013-12-01

    Conversion of protein -SH groups to disulfides is an early event during protein oxidation, which has prompted great interest in the study of thiol proteins. Chemical carcinogenesis is strongly associated with the formation of reactive oxygen species (ROS). The goal of this study was to detect thiol proteins that are sensitive to ROS generated during diethylnitrosamine (DEN) metabolism in the rat liver. DEN has been widely used to induce experimental hepatocellular carcinoma. We used modified redox-differential gel electrophoresis (redox-DIGE method) and mass spectrometry MALDI-TOF/TOF to identify differential oxidation protein profiles associated with carcinogen exposure. Our analysis revealed a time-dependent increase in the number of oxidized thiol proteins after carcinogen treatment; some of these proteins have antioxidant activity, including thioredoxin, peroxirredoxin 2, peroxiredoxin 6 and glutathione S-transferase alpha-3. According to functional classifications, the identified proteins in our study included chaperones, oxidoreductases, activity isomerases, hydrolases and other protein-binding partners. This study demonstrates that oxidative stress generated by DEN tends to increase gradually through DEN metabolism, causes time-dependent necrosis in the liver and has an oxidative effect on thiol proteins, thereby increasing the number of oxidized thiol proteins. Furthermore, these events occurred during the hepatocarcinogenesis initiation period.

  2. Lack of metabolic activation and predominant formation of an excreted metabolite of nontoxic platynecine-type pyrrolizidine alkaloids.

    PubMed

    Ruan, Jianqing; Liao, Cangsong; Ye, Yang; Lin, Ge

    2014-01-21

    Pyrrolizidine alkaloid (PA) poisoning is well-known because of the intake of PA-containing plant-derived natural products and PA-contaminated foodstuffs. Based on different structures of the necine bases, PAs are classified into three types: retronecine, otonecine, and platynecine type. The former two type PAs possessing an unsaturated necine base with a 1,2-double bond are hepatotoxic due to the P450-mediated metabolic activation to generate reactive pyrrolic ester, which interacts with cellular macromolecules leading to toxicity. With a saturated necine base, platynecine-type PAs are reported to be nontoxic and their nontoxicity was hypothesized to be due to the absence of metabolic activation; however, the metabolic pathway responsible for their nontoxic nature is largely unknown. In the present study, to prove the absence of metabolic activation in nontoxic platynecine-type PAs, hepatic metabolism of platyphylline (PLA), a representative platynecine-type PA, was investigated and directly compared with the representatives of two toxic types of PAs in parallel. By determining the pyrrolic ester-derived glutathione conjugate, our results confirmed that the major metabolic pathway of PLA did not lead to formation of the reactive pyrrolic ester. More interestingly, having a metabolic rate similar to that of toxic PAs, PLA also underwent oxidative metabolisms mediated by P450s, especially P450 3A4, the same enzyme that catalyzes metabolic activation of two toxic types of PAs. However, the predominant oxidative dehydrogenation pathway of PLA formed a novel metabolite, dehydroplatyphylline carboxylic acid, which was water-soluble, readily excreted, and could not interact with cellular macromolecules. In conclusion, our study confirmed that the saturated necine bases determine the absence of metabolic activation and thus govern the metabolic pathway responsible for the nontoxic nature of platynecine-type PAs. PMID:24308637

  3. Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats.

    PubMed Central

    Benavides, J; Gimenez, C; Valdivieso, F; Mayor, F

    1976-01-01

    1. The effects of phenylalanine and its metabolites (phenylacetate, phenethylamine, phenyl-lactate, o-hydroxyphenylacetate and phenylpyruvate) on the activity of 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) 3-oxo acid CoA-transferase (EC 2.8.3.5) and acetoacetyl-CoA thiolase (EC 2.3.1.9) in brain of suckling rats were investigated. 2. The 3-hydroxybutyrate dehydrogenase from the brain of suckling rats had a Km for 3-hydroxybutyrate of 1.2 mM. Phenylpyruvate, phenylacetate and o-hydroxyphenylacetate inhibited the enzyme activity with Ki values of 0.5, 1.3 and 4.7 mM respectively. 3. The suckling-rat brain 3-oxo acid CoA-transferase activity had a Km for acetoacetate of 0.665 mM and for succinyl (3-carboxypropionyl)-CoA of 0.038 mM. The enzyme was inhibited with respect to acetoacetate by phenylpyruvate (Ki equals 1.3 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). The reaction in the direction of acetoacetate was also inhibited by phenylpyruvate (Ki equals 1.6 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). 4. Phenylpyruvate inhibited with respect to acetoacetyl-CoA both the mitochondrial (Ki equals 3.2 mM) and cytoplasmic (Ki equals 5.2 mM) acetoacetyl-CoA thiolase activities. 5. The results suggest that inhibition of 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase activities may impair ketone-body utilization and hence lipid synthesis in the developing brain. This suggestion is discussed with reference to the pathogenesis of mental retardation in phenylketonuria. PMID:12750

  4. Structure of neprilysin in complex with the active metabolite of sacubitril

    PubMed Central

    Schiering, Nikolaus; D’Arcy, Allan; Villard, Frederic; Ramage, Paul; Logel, Claude; Cumin, Frederic; Ksander, Gary M.; Wiesmann, Christian; Karki, Rajeshri G.; Mogi, Muneto

    2016-01-01

    Sacubitril is an ethyl ester prodrug of LBQ657, the active neprilysin (NEP) inhibitor, and a component of LCZ696 (sacubitril/valsartan). We report herein the three-dimensional structure of LBQ657 in complex with human NEP at 2 Å resolution. The crystal structure unravels the binding mode of the compound occupying the S1, S1’ and S2’ sub-pockets of the active site, consistent with a competitive inhibition mode. An induced fit conformational change upon binding of the P1’-biphenyl moiety of the inhibitor suggests an explanation for its selectivity against structurally homologous zinc metallopeptidases. PMID:27302413

  5. Structure of neprilysin in complex with the active metabolite of sacubitril.

    PubMed

    Schiering, Nikolaus; D'Arcy, Allan; Villard, Frederic; Ramage, Paul; Logel, Claude; Cumin, Frederic; Ksander, Gary M; Wiesmann, Christian; Karki, Rajeshri G; Mogi, Muneto

    2016-01-01

    Sacubitril is an ethyl ester prodrug of LBQ657, the active neprilysin (NEP) inhibitor, and a component of LCZ696 (sacubitril/valsartan). We report herein the three-dimensional structure of LBQ657 in complex with human NEP at 2 Å resolution. The crystal structure unravels the binding mode of the compound occupying the S1, S1' and S2' sub-pockets of the active site, consistent with a competitive inhibition mode. An induced fit conformational change upon binding of the P1'-biphenyl moiety of the inhibitor suggests an explanation for its selectivity against structurally homologous zinc metallopeptidases. PMID:27302413

  6. The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts

    PubMed Central

    Savi, Pierre; Zachayus, Jean-Luc; Delesque-Touchard, Nathalie; Labouret, Catherine; Hervé, Caroline; Uzabiaga, Marie-Françoise; Pereillo, Jean-Marie; Culouscou, Jean-Michel; Bono, Françoise; Ferrara, Pascual; Herbert, Jean-Marc

    2006-01-01

    P2Y12, a G protein-coupled receptor that plays a central role in platelet activation has been recently identified as the receptor targeted by the antithrombotic drug, clopidogrel. In this study, we further deciphered the mechanism of action of clopidogrel and of its active metabolite (Act-Met) on P2Y12 receptors. Using biochemical approaches, we demonstrated the existence of homooligomeric complexes of P2Y12 receptors at the surface of mammalian cells and in freshly isolated platelets. In vitro treatment with Act-Met or in vivo oral administration to rats with clopidogrel induced the breakdown of these oligomers into dimeric and monomeric entities in P2Y12 expressing HEK293 and platelets respectively. In addition, we showed the predominant association of P2Y12 oligomers to cell membrane lipid rafts and the partitioning of P2Y12 out of rafts in response to clopidogrel and Act-Met. The raft-associated P2Y12 oligomers represented the functional form of the receptor, as demonstrated by binding and signal transduction studies. Finally, using a series of receptors individually mutated at each cysteine residue and a chimeric P2Y12/P2Y13 receptor, we pointed out the involvement of cysteine 97 within the first extracellular loop of P2Y12 in the mechanism of action of Act-Met. PMID:16835302

  7. Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity.

    PubMed

    Wu, Xue-Feng; Fei, Ming-Jian; Shu, Ren-Geng; Tan, Ren-Xiang; Xu, Qiang

    2005-09-01

    In the present paper, the effect of Fumigaclavine C, a fungal metabolite, on experimental colitis was examined. Fumigaclavine C, when administered intraperitoneally once a day, significantly reduced the weight loss and mortality rate of mice with experimental colitis induced by intrarectally injection of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). This compound also markedly alleviated the macroscopic and microscopic appearances of colitis. Furthermore, Fumigaclavine C, given both in vivo and in vitro, showed a marked inhibition on the expression of several inflammatory cytokines, including IL-1beta, IL-2, IL-12alpha, IFN-gamma, TNF-alpha as well as MMP-9 in sacral lymph node cells, colonic patch lymphocytes and colitis tissues from the TNBS colitis mice. Meanwhile, the compound caused a dose-dependent reduction in IL-2 and IFN-gamma from the lymphocytes at the protein level and MMP-9 activity. These results suggest that Fumigaclavine C may alleviate experimental colitis mainly via down-regulating the production of Th1 cytokines and the activity of matrix metalloproteinase. PMID:16023606

  8. Comparison of thiol subproteome of the vent mussel Bathymodiolus azoricus from different Mid-Atlantic Ridge vent sites.

    PubMed

    Company, Rui; Torreblanca, Amparo; Cajaraville, Miren; Bebianno, Maria João; Sheehan, David

    2012-10-15

    Deep-sea hydrothermal mussels Bathymodiolus azoricus live in the mixing zone where hydrothermal fluid mixes with bottom seawater, creating large gradients in the environmental conditions and are one of the most studied hydrothermal species as a model of adaptation to extreme conditions. Thiol proteins, i.e. proteins containing a thiol or sulfhydryl group (SH) play major roles in intracellular stress defense against reactive oxygen species (ROS) and are especially susceptible to oxidation. However, they are not particularly abundant, representing a small percentage of proteins in the total proteome and therefore are difficult to study by proteomic approaches. Activated thiol sepharose (ATS) was used for the rapid and quantitative selection of proteins comprising thiol- or disulfide-containing subproteomes. This study aims to isolate thiol-containing proteins from the gills of B. azoricus collected in distinct hydrothermal vents and to study the thiol-containing subproteome as a function of site-specific susceptibility to ROS. Results show that ATS is a powerful tool to isolate the thiol-containing sub-proteome and differently-expressed protein spots showed significant differences among the three vent sites, supporting previous findings that specific environmental conditions are crucial for ROS formation and that B. azoricus have different susceptibilities to oxidative stress depending on the vent site they inhabit.

  9. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity.

    PubMed

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. PMID:27244239

  10. In vitro biological activity of secondary metabolites from Seseli rigidum Waldst. et Kit. (Apiaceae).

    PubMed

    Jakovljević, Dragana; Vasić, Sava; Stanković, Milan; Čomić, Ljiljana; Topuzović, Marina

    2015-12-01

    The antioxidant, antimicrobial activity, total phenolic content and flavonoid concentration of Seseli rigidum Waldst. et Kit. were evaluated. Five different extracts of the aboveground plant parts were obtained by extraction with distilled water, methanol, acetone, ethyl acetate and petroleum ether. Total phenols were determined using the Folin-Ciocalteu's reagent, with the highest values obtained in the acetone extract (102.13 mg GAE/g). The concentration of flavonoids, determined by using a spectrophotometric method with aluminum chloride and expressed in terms of rutin equivalent, was also highest in the acetone extracts (291.58 mg RUE/g). The antioxidant activity was determined in vitro using DPPH reagent. The greatest antioxidant activity was expressed in the aqueous extract (46.15 μg/ml). In vitro antimicrobial activities were determined using a microdilution analysis method; minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) were determined. Methanolic extract had the greatest influence on bacilli (MIC at 0.0391 mg/ml), but the best antimicrobial effect had acetone and ethyl acetate extracts considering their broad impact on bacteria. According to our research, S. rigidum can be regarded as promising candidate for natural plant source with high value of biological compounds.

  11. Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity

    PubMed Central

    Shirakawa, Kotaro; Wang, Lan; Man, Na; Maksimoska, Jasna; Sorum, Alexander W; Lim, Hyung W; Lee, Intelly S; Shimazu, Tadahiro; Newman, John C; Schröder, Sebastian; Ott, Melanie; Marmorstein, Ronen; Meier, Jordan; Nimer, Stephen; Verdin, Eric

    2016-01-01

    Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhibits CBP and p300 lysine acetyltransferase activity in vitro by direct competition with acetyl-Coenzyme A at the catalytic site. We used a chemical structure-similarity search to identify another anti-inflammatory drug, diflunisal, that inhibits p300 more potently than salicylate. At concentrations attainable in human plasma after oral administration, both salicylate and diflunisal blocked the acetylation of lysine residues on histone and non-histone proteins in cells. Finally, we found that diflunisal suppressed the growth of p300-dependent leukemia cell lines expressing AML1-ETO fusion protein in vitro and in vivo. These results highlight a novel epigenetic regulatory mechanism of action for salicylate and derivative drugs. DOI: http://dx.doi.org/10.7554/eLife.11156.001 PMID:27244239

  12. Antioxidant and anti-acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla

    PubMed Central

    Ghribia, Lotfi; Ghouilaa, Hatem; Omrib, Amel; Besbesb, Malek; Janneta, Hichem Ben

    2014-01-01

    Objective To investigate the antioxidant potential and anti-acetycholinesterase activity of compounds and extracts from Acacia cyanophylla (A. cyanophylla). Methods Three polyphenolic compounds were isolated from ethyl acetate extract of A. cyanophylla flowers. They have been identified as isosalipurposide 1, quercetin 2 and naringenin 3. Their structures were elucidated by extensive spectroscopic methods including 1D and 2D NMR experiments as well as ES-MS. The prepared extracts and the isolated compounds 1-3 were tested for their antioxidant activity using 1′-1′-diphenylpicrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays and reducing power. They have been also investigated for inhibitory effect against acetylcholinesterase using the microplate assay. Results In the DPPH test, the EtOAc extract of flowers exhibited the highest antioxidant effect (67.26 µg/mL). Isosalipurposide 1 showed a significant antiradical power against DPPH (81.9 µg/mL). All extracts showed a dose-dependent acetylcholinesterase inhibition. In terms of the IC50 value, the butanolic extract (16.03 µg/mL) was the most potent sample. Isosalipurposide 1 was found to be active against AChE with an IC50 value of 52.04 µg/mL. Conclusions The results demonstrated the important antioxidant and anti-acetylcholinesterase activity of pure compounds and extracts from A. cyanophylla. PMID:25183120

  13. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  14. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats.

    PubMed

    Takagaki, Akiko; Nanjo, Fumio

    2015-09-23

    Inhibitory activity of angiotensin I-converting enzyme (ACE) was examined with (-)-epigallocatechin gallate (EGCG) metabolites produced by intestinal bacteria, together with tea catechins. All of the metabolites showed ACE inhibitory activities and the order of IC50 was hydroxyphenyl valeric acids > 5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (1) > trihydroxyphenyl 4-hydroxyvaleric acid ≫ dihydroxyphenyl 4-hydroxyvaleric acid ≫ 5-(3,5-dihydroxyphenyl)-γ-valerolactone (2). Among the catechins, galloylated catechins exhibited stronger ACE inhibitory activity than nongalloylated catechins. Furthermore, the effects of a single oral intake of metabolites 1 and 2 on systolic blood pressure (SBP) were examined with spontaneously hypertensive rats (SHR). Significant decreases in SBP were observed between 2 h after oral administration of 1 (150 mg/kg in SHR) and the control group (p = 0.002) and between 4 h after administration of 2 (200 mg/kg in SHR) and the control group (p = 0.044). These results suggest that the two metabolites have hypotensive effects in vivo.

  15. Non-invasive monitoring of adrenocortical activity in captive African Penguin (Spheniscus demersus) by measuring faecal glucocorticoid metabolites.

    PubMed

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2015-12-01

    Measurement of faecal glucocorticoid metabolites (FGMs) has become a useful and widely-accepted method for the non-invasive evaluation of stress in vertebrates. In this study we assessed the adrenocortical activity of five captive African Penguins (Spheniscus demersus) by means of FGM evaluation following a biological stressor, i.e. capture and immobilization. In addition, we detected individual differences in secretion of FGMs during a stage of the normal biological cycle of penguins, namely the breeding period, without any external or induced causes of stress. Our results showed that FGM concentrations peaked 5.5-8h after the induced stress in all birds, and significantly decreased within 30 h. As predictable, the highest peak of FGMs (6591 ng/g) was reached by the youngest penguin, which was at its first experience with the stressor. This peak was 1.8-2.7-fold higher compared to those of the other animals habituated to the stimulus. For the breeding period, our results revealed that the increase in FGMs compared to ordinary levels, and the peaks of FGMs, varied widely depending on the age and mainly on the reproductive state of the animal. The bird which showed the lowest peak (2518 ng/g) was an old male that was not in a reproductive state at the time of the study. Higher FGM increases and peaks were reached by the two birds which were brooding (male: 5552%, 96,631 ng/g; female: 1438%, 22,846 ng/g) and by the youngest bird (1582%, 39,700 ng/g). The impact of the reproductive state on FGM levels was unexpected compared to that produced by the induced stress. The EIA used in this study to measure FGM levels proved to be a reliable tool for assessing individual and biologically-relevant changes in FGM concentrations in African Penguin. Moreover, this method allowed detection of physiological stress during the breeding period, and identification of individual differences in relation to the reproductive status. The increase in FGM levels as a response to capture and

  16. Non-invasive monitoring of adrenocortical activity in captive African Penguin (Spheniscus demersus) by measuring faecal glucocorticoid metabolites.

    PubMed

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2015-12-01

    Measurement of faecal glucocorticoid metabolites (FGMs) has become a useful and widely-accepted method for the non-invasive evaluation of stress in vertebrates. In this study we assessed the adrenocortical activity of five captive African Penguins (Spheniscus demersus) by means of FGM evaluation following a biological stressor, i.e. capture and immobilization. In addition, we detected individual differences in secretion of FGMs during a stage of the normal biological cycle of penguins, namely the breeding period, without any external or induced causes of stress. Our results showed that FGM concentrations peaked 5.5-8h after the induced stress in all birds, and significantly decreased within 30 h. As predictable, the highest peak of FGMs (6591 ng/g) was reached by the youngest penguin, which was at its first experience with the stressor. This peak was 1.8-2.7-fold higher compared to those of the other animals habituated to the stimulus. For the breeding period, our results revealed that the increase in FGMs compared to ordinary levels, and the peaks of FGMs, varied widely depending on the age and mainly on the reproductive state of the animal. The bird which showed the lowest peak (2518 ng/g) was an old male that was not in a reproductive state at the time of the study. Higher FGM increases and peaks were reached by the two birds which were brooding (male: 5552%, 96,631 ng/g; female: 1438%, 22,846 ng/g) and by the youngest bird (1582%, 39,700 ng/g). The impact of the reproductive state on FGM levels was unexpected compared to that produced by the induced stress. The EIA used in this study to measure FGM levels proved to be a reliable tool for assessing individual and biologically-relevant changes in FGM concentrations in African Penguin. Moreover, this method allowed detection of physiological stress during the breeding period, and identification of individual differences in relation to the reproductive status. The increase in FGM levels as a response to capture and

  17. Secondary metabolites from the unripe pulp of Persea americana and their antimycobacterial activities.

    PubMed

    Lu, Ying-Chen; Chang, Hsun-Shuo; Peng, Chien-Fang; Lin, Chu-Hung; Chen, Ih-Sheng

    2012-12-15

    The fruits of Persea americana (Avocado) are nowadays used as healthy fruits in the world. Bioassay-guided fractionation of the active ethyl acetate soluble fraction has led to the isolation of five new fatty alcohol derivatives, avocadenols A-D (1-4) and avocadoin (5) from the unripe pulp of P. americana, along with 12 known compounds (6-17). These structures were elucidated by spectroscopic analysis. Among the isolates, avocadenol A (1), avocadenol B (2), (2R,4R)-1,2,4-trihydroxynonadecane (6), and (2R,4R)-1,2,4-trihydroxyheptadec-16-ene (7) showed antimycobacterial activity against Mycobacterium tuberculosis H(37)R(V)in vitro, with MIC values of 24.0, 33.8, 24.9, and 35.7 μg/ml, respectively.

  18. Secondary metabolites from the unripe pulp of Persea americana and their antimycobacterial activities.

    PubMed

    Lu, Ying-Chen; Chang, Hsun-Shuo; Peng, Chien-Fang; Lin, Chu-Hung; Chen, Ih-Sheng

    2012-12-15

    The fruits of Persea americana (Avocado) are nowadays used as healthy fruits in the world. Bioassay-guided fractionation of the active ethyl acetate soluble fraction has led to the isolation of five new fatty alcohol derivatives, avocadenols A-D (1-4) and avocadoin (5) from the unripe pulp of P. americana, along with 12 known compounds (6-17). These structures were elucidated by spectroscopic analysis. Among the isolates, avocadenol A (1), avocadenol B (2), (2R,4R)-1,2,4-trihydroxynonadecane (6), and (2R,4R)-1,2,4-trihydroxyheptadec-16-ene (7) showed antimycobacterial activity against Mycobacterium tuberculosis H(37)R(V)in vitro, with MIC values of 24.0, 33.8, 24.9, and 35.7 μg/ml, respectively. PMID:22980888

  19. Secondary metabolites of Seseli rigidum: Chemical composition plus antioxidant, antimicrobial and cholinesterase inhibition activity.

    PubMed

    Stankov-Jovanović, V P; Ilić, M D; Mitić, V D; Mihajilov-Krstev, T M; Simonović, S R; Nikolić Mandić, S D; Tabet, J C; Cole, R B

    2015-01-01

    Extracts of different polarity obtained from various plant parts (root, leaf, flower and fruit) of Seseli rigidum were studied by different antioxidant assays: DPPH and ABTS radical scavenging activity, by total reducing power method as well as via total content of flavonoids and polyphenols. Essential oils of all plant parts showed weak antioxidant characteristics. The inhibitory concentration range of the tested extracts, against bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, and fungi Candida albicans and Aspergillus niger was 0.01-1.50 mg/mL and of a microbicidal 0.02-3.00 mg/mL. In the interaction with cholinesterase, all essential oils proved effective as inhibitors. The highest percentage of inhibition versus human and horse cholinesterase was shown by root essential oil (38.20% and 48.30%, respectively) among oils, and root hexane extract (40.56% and 50.65% respectively). Essential oils and volatile components of all plant parts were identified by GC, GC-MS and headspace/GC-MS. Statistical analysis of the ensemble of results showed that the root essential oil composition differed significantly from essential oils of other parts of the plant. Taking into account all of the studied activities, the root hexane extract showed the best overall properties. By means of high performance liquid chromatography coupled to high resolution mass spectrometry, the 30 most abundant constituents were identified in extracts of different polarity. The presence of identified constituents was linked to observed specific biological activities, thus designating compounds potentially responsible for each exhibited activity. PMID:25863020

  20. Trypanocidal activity of a new pterocarpan and other secondary metabolites of plants from Northeastern Brazil flora.

    PubMed

    Vieira, Nashira Campos; Espíndola, Laila Salmen; Santana, Jaime Martins; Veras, Maria Leopoldina; Pessoa, Otília Deusdênia Loiola; Pinheiro, Sávio Moita; de Araújo, Renata Mendonça; Lima, Mary Anne Sousa; Silveira, Edilberto Rocha

    2008-02-15

    Two hundred fifteen compounds isolated from plants of Northeastern Brazil flora have been assayed against epimastigote forms of Trypanosoma cruzi, using the tetrazolium salt MTT as an alternative method. Eight compounds belonging to four different species: Harpalyce brasiliana (Fabaceae), Acnistus arborescens and Physalis angulata (Solanaceae), and Cordia globosa (Boraginaceae) showed significant activity. Among them, a novel and a known pterocarpan, a chalcone, four withasteroids, and a meroterpene benzoquinone were the represented chemical classes.

  1. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities.

    PubMed

    Mabou, Florence Déclaire; Tamokou, Jean-de-Dieu; Ngnokam, David; Voutquenne-Nazabadioko, Laurence; Kuiate, Jules-Roger; Bag, Prasanta Kumar

    2016-01-01

    Diarrhea continues to be one of the most common causes of morbidity and mortality among infants and children in developing countries. The aim of the present study was to evaluate the antibacterial and antioxidant activities of extracts and compounds from Ludwigia leptocarpa, a plant traditionally used for its vermifugal, anti-dysenteric, and antimicrobial properties. A methanol extract was prepared by maceration of the dried plant and this was successively extracted with ethyl acetate to obtain an EtOAc extract and with n-butanol to obtain an n-BuOH extract. Column chromatography of the EtOAc and n-BuOH extracts was followed by purification of different fractions, leading to the isolation of 10 known compounds. Structures of isolated compounds were assigned on the basis of spectral analysis and by comparison to structures of compounds described in the literature. Antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and gallic acid equivalent antioxidant capacity (GAEAC) assays. Antibacterial activity was assessed with the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) with respect to strains of a Gram-positive bacterium, Staphylococcus aureus (a major cause of community and hospital-associated infection), and Gram-negative multi-drug-resistant bacteria, Vibrio cholerae (a cause of cholera) and Shigella flexneri (a cause of shigellosis). All of the extracts showed different degrees of antioxidant and antibacterial activities. 2β-hydroxyoleanolic acid, (2R,3S,2''S)-3''',4',4''',5,5'',7,7''-heptahydroxy-3,8"-biflavanone, and luteolin-8-C-glucoside displayed the most potent antibacterial and antioxidant properties, and these properties were in some cases equal to or more potent than those of reference drugs. Overall, the present results show that L. leptocarpa has the potential to be a natural source of anti-diarrheal and antioxidant products, so further investigation is warranted. PMID:27431270

  2. Secondary metabolites of plants from the genus Saussurea: chemistry and biological activity.

    PubMed

    Wang, Yu-Fang; Ni, Zhi-Yu; Dong, Mei; Cong, Bin; Shi, Qing-Wen; Gu, Yu-Cheng; Kiyota, Hiromasa

    2010-11-01

    The Asteraceae family comprises ca. 1000 genera, mainly distributed in Asia and Europe. Saussurea DC., as the largest subgenus of this family, comprises ca. 400 species worldwide, of which ca. 300 species occur in China. Most plants in China grow wild in the alpine zone of the Qingzang Plateau and adjacent regions at elevations of 4000 m. Plants of the genus Saussurea (Asteraceae) are used in both traditional Chinese folk medicine and Tibet folklore medicine, since they are efficacious in relieving internal heat or fever, harmonizing menstruation, invigorating blood circulation, stopping bleeding, alleviating pain, increasing energy, and curing rheumatic arthritis. A large number of biologically active compounds have been isolated from this genus. This review shows the chemotaxonomy of these compounds (215 compounds) such as sesquiterpenoids (101 compounds), flavonoids (19 compounds), phytosterols (15 compounds), triterpenoids (25 compounds), lignans (32 compounds), phenolics (23 compounds), and chlorophylls (11 compounds). Biological activities (anti-inflammatory, anticancer, antitumor, hepatoprotective, anti-ulcer, cholagogic, immunosuppressive, spasmolytic, antimicrobial, antiparasitic, antifeedant, CNS depressant, antioxidant, etc.) of these compounds, including structure-activity relationships, are also discussed. PMID:21072766

  3. Neolignans and other metabolites from Ocotea cymosa from the Madagascar rain forest and their biological activities.

    PubMed

    Rakotondraibe, L Harinantenaina; Graupner, Paul R; Xiong, Quanbo; Olson, Monica; Wiley, Jessica D; Krai, Priscilla; Brodie, Peggy J; Callmander, Martin W; Rakotobe, Etienne; Ratovoson, Fidy; Rasamison, Vincent E; Cassera, Maria B; Hahn, Donald R; Kingston, David G I; Fotso, Serge

    2015-03-27

    Ten new neolignans including the 6'-oxo-8.1'-lignans cymosalignans A (1a), B (2), and C (3), an 8.O.6'-neolignan (4a), ococymosin (5a), didymochlaenone C (6a), and the bicyclo[3.2.1]octanoids 7-10 were isolated along with the known compounds 3,4,5,3',5'-pentamethoxy-1'-allyl-8.O.4'-neolignan, 3,4,5,3'-tetramethoxy-1'-allyl-8.O.4'-neolignan, didymochlaenone B, virologin B, ocobullenone, and the unusual 2'-oxo-8.1'-lignan sibyllenone from the stems or bark of the Madagascan plant Ocotea cymosa. The new 8.O.6'-neolignan 4a, dihydrobenzofuranoid 5a, and the bicyclo[3.2.1]octanoid 7a had in vitro activity against Aedes aegypti, while the new compounds 5a, 7a, 8, and 10a and the known virolongin B (4b) and ocobullenone (10b) had antiplasmodial activity. We report herein the structure elucidation of the new compounds on the basis of spectroscopic evidence, including 1D and 2D NMR spectra, electronic circular dichroism, and mass spectrometry, and the biological activities of the new and known compounds. PMID:25650896

  4. Estrogenic and androgenic activities of TBBA and TBMEPH, metabolites of novel brominated flame retardants, and selected bisphenols, using the XenoScreen XL YES/YAS assay.

    PubMed

    Fic, Anja; Žegura, Bojana; Gramec, Darja; Mašič, Lucija Peterlin

    2014-10-01

    The present study investigated and compared the estrogenic and androgenic activities of the three different classes of environmental pollutants and their metabolites using the XenoScreen XL YES/YAS assay, which has advantages compared with the original YES/YAS protocol. Contrary to the parent brominated flame retardants TBB and TBPH, which demonstrated no or very weak (anti)estrogenic or (anti)androgenic activities, their metabolites, TBBA and TBMEPH, exhibited anti-estrogenic (IC50 for TBBA=31.75 μM and IC50 for TBMEPH=0.265 μM) and anti-androgenic (IC50 for TBBA=73.95 μM and IC50 for TBMEPH=2.92 μM) activities. These results reveal that metabolism can enhance the anti-estrogenic and anti-androgenic effects of these two novel brominated flame retardants. Based on the activities of BPAF, BPF, BPA and MBP, we can conclude that the XenoScreen XL YES/YAS assay gives comparable results to the (anti)estrogenic or (anti)androgenic assays that are reported in the literature. For BPA, it was confirmed previously that the metabolite formed after an ipso-reaction (hydroxycumyl alcohol) exhibited higher estrogenic activity compared with the parent BPA, but this was not confirmed for BPAF and BPF ipso-metabolites, which were not active in the XenoScreen YES/YAS assay. Among the substituted BPA analogues, bis-GMA exhibited weak anti-estrogenic activity, BADGE demonstrated weak anti-estrogenic and anti-androgenic activities (IC50=13.73 μM), and the hydrolysed product BADGE·2H2O demonstrated no (anti)estrogenic or (anti)androgenic activities.

  5. Differential thiol-based switches jumpstart Vibrio cholerae pathogenesis

    PubMed Central

    Liu, Zhi; Wang, Hui; Zhou, Zhigang; Naseer, Nawar; Xiang, Fu; Kan, Biao; Goulian, Mark; Zhu, Jun

    2015-01-01

    Bacterial pathogens utilize gene expression versatility to adapt to environmental changes. Vibrio cholerae, the causative agent of cholera, encounters redox potential changes when it transitions from oxygen-rich aquatic reservoirs to the oxygen-limiting human gastrointestinal tract. We previously showed that the virulence regulator AphB uses thiol-based switches to sense the anoxic host environment and transcriptionally activate the key virulence activator tcpP. Here, by performing a high-throughput transposon sequencing screen in vivo, we identified OhrR as another regulator that enables V. cholerae rapid anoxic adaptation. Like AphB, reduced OhrR binds to and regulates the tcpP promoter. OhrR and AphB displayed differential dynamics in response to redox potential changes: OhrR is reduced more rapidly than AphB. Furthermore, OhrR thiol modification is required for rapid activation of virulence and successful colonization. This reveals a mechanism whereby bacterial pathogens employ posttranslational modifications of multiple transcription factors to sense and adapt to dynamic environmental changes. PMID:26748713

  6. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice.

    PubMed

    Gutman, Roee; Dayan, Tamar; Levy, Ofir; Schubert, Iris; Kronfeld-Schor, Noga

    2011-01-01

    We studied stress hormones and foraging of nocturnal Acomys cahirinus and diurnal A. russatus in field populations as well as in two field enclosures populated by both species and two field enclosures with individuals of A. russatus alone. When alone, A. russatus individuals become also nocturnally active. We asked whether nocturnally active A. russatus will respond to moon phase and whether this response will be obtained also in diurnally active individuals. We studied giving-up densities (GUDs) in artificial foraging patches and fecal cortisol metabolite levels. Both species exhibited elevated fecal cortisol metabolite levels and foraged to higher GUDs in full moon nights; thus A. russatus retains physiological response and behavioral patterns that correlate with full moon conditions, as can be expected in nocturnal rodents, in spite of its diurnal activity. The endocrinological and behavioral response of this diurnal species to moon phase reflects its evolutionary heritage.

  7. The Effect of the Lunar Cycle on Fecal Cortisol Metabolite Levels and Foraging Ecology of Nocturnally and Diurnally Active Spiny Mice

    PubMed Central

    Dayan, Tamar; Kronfeld-Schor, Noga

    2011-01-01

    We studied stress hormones and foraging of nocturnal Acomys cahirinus and diurnal A. russatus in field populations as well as in two field enclosures populated by both species and two field enclosures with individuals of A. russatus alone. When alone, A. russatus individuals become also nocturnally active. We asked whether nocturnally active A. russatus will respond to moon phase and whether this response will be obtained also in diurnally active individuals. We studied giving-up densities (GUDs) in artificial foraging patches and fecal cortisol metabolite levels. Both species exhibited elevated fecal cortisol metabolite levels and foraged to higher GUDs in full moon nights; thus A. russatus retains physiological response and behavioral patterns that correlate with full moon conditions, as can be expected in nocturnal rodents, in spite of its diurnal activity. The endocrinological and behavioral response of this diurnal species to moon phase reflects its evolutionary heritage. PMID:21829733

  8. A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites

    PubMed Central

    Haque, Jamil A.; McDonald, Matthew G.; Kulman, John D.

    2014-01-01

    Warfarin and other 4-hydroxycoumarins inhibit vitamin K epoxide reductase (VKOR) by depleting reduced vitamin K that is required for posttranslational modification of vitamin K–dependent clotting factors. In vitro prediction of the in vivo potency of vitamin K antagonists is complicated by the complex multicomponent nature of the vitamin K cycle. Here we describe a sensitive assay that enables quantitative analysis of γ-glutamyl carboxylation and its antagonism in live cells. We engineered a human embryonic kidney (HEK) 293–derived cell line (HEK 293-C3) to express a chimeric protein (F9CH) comprising the Gla domain of factor IX fused to the transmembrane and cytoplasmic regions of proline-rich Gla protein 2. Maximal γ-glutamyl carboxylation of F9CH required vitamin K supplementation, and was dose-dependently inhibited by racemic warfarin at a physiologically relevant concentration. Cellular γ-glutamyl carboxylation also exhibited differential VKOR inhibition by warfarin enantiomers (S > R) consistent with their in vivo potencies. We further analyzed the structure-activity relationship for inhibition of γ-glutamyl carboxylation by warfarin metabolites, observing tolerance to phenolic substitution at the C-5 and especially C-6, but not C-7 or C-8, positions on the 4-hydroxycoumarin nucleus. After correction for in vivo concentration and protein binding, 10-hydroxywarfarin and warfarin alcohols were predicted to be the most potent inhibitory metabolites in vivo. PMID:24297869

  9. The relevance of tissue thiol histochemistry to diagnostic hematopathology.

    PubMed

    Aesif, S W; Kuipers, I; DePalma, L

    2016-01-01

    Expression analyses suggest that alterations of the antioxidant state of some diffuse large B-cell lymphomas can assist prognosis; reversibly oxidized thiols may serve as a surrogate marker for identifying such cases. Little is known about the distribution of free thiols and reversibly oxidized thiols in human tissues. We developed a staining technique that enables visualization of tissue thiols in situ using bright field microscopy and validated it using gastrointestinal tissue specimens. We used our thiol staining technique to assess benign tonsillectomy and diffuse large B-cell lymphoma specimens. The gastrointestinal series revealed the presence of free thiols within epithelial cells and cells of the lamina propria. Staining for reversibly oxidized thiols was robust in gastric foveolar cells, intestinal goblet cells and the mucus they produce. Tonsillectomy specimens exhibited diffuse presence of free thiols. Staining for reversibly oxidized thiols was confined to germinal center macrophages and sinus histiocytes. Among the diffuse large B-cell lymphoma specimens, we observed strong staining for free thiols within malignant cells. By contrast to benign B-cells, the malignant cells demonstrated pronounced and diffuse staining for reversibly oxidized thiols. We demonstrated intrinsic differences between benign and malignant cells. PMID:26984510

  10. Antibacterial Activities of Metabolites from Platanus occidentalis (American sycamore) against Fish Pathogenic Bacteria

    PubMed Central

    Schrader, Kevin K; Hamann, Mark T; McChesney, James D; Rodenburg, Douglas L; Ibrahim, Mohamed A

    2016-01-01

    One approach to the management of common fish diseases in aquaculture is the use of antibiotic-laden feed. However, there are public concerns about the use of antibiotics in agriculture and the potential development of antibiotic resistant bacteria. Therefore, the discovery of other environmentally safe natural compounds as alternatives to antibiotics would benefit the aquaculture industries. Four natural compounds, commonly called platanosides, [kaempferol 3-O-α-L-(2″,3″-di-E-p-coumaroyl)rhamnoside (1), kaempferol 3-O-α-L-(2″-E-p-coumaroyl-3″-Z-p-coumaroyl)rhamnoside (2), kaempferol 3-O-α-L-(2″-Z-p-coumaroyl-3″-E-p-coumaroyl)rhamnoside (3), and kaempferol 3-O-α-L-(2″,3″-di-Z-p-coumaroyl)rhamnoside (4)] isolated from the leaves of the American sycamore (Platanus occidentalis) tree were evaluated using a rapid bioassay for their antibacterial activities against common fish pathogenic bacteria including Flavobacterium columnare, Edwardsiella ictaluri, Aeromonas hydrophila, and Streptococcus iniae. The four isomers and a mixture of all four isomers were strongly antibacterial against isolates of F. columnare and S. iniae. Against F. columnare ALM-00-173, 3 and 4 showed the strongest antibacterial activities, with 24-h 50% inhibition concentration (IC50) values of 2.13 ± 0.11 and 2.62 ± 0.23 mg/L, respectively. Against S. iniae LA94-426, 4 had the strongest antibacterial activity, with 24-h IC50 of 1.87 ± 0.23 mg/L. Neither a mixture of the isomers nor any of the individual isomers were antibacterial against isolates of E. ictaluri and A. hydrophila at the test concentrations used in the study. Several of the isomers appear promising for the potential management of columnaris disease and streptococcosis in fish.

  11. Hesperetin and its sulfate and glucuronide metabolites inhibit TNF-α induced human aortic endothelial cell migration and decrease plasminogen activator inhibitor-1 (PAI-1) levels.

    PubMed

    Giménez-Bastida, Juan Antonio; González-Sarrías, Antonio; Vallejo, Fernando; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2016-01-01

    Epidemiological, clinical and preclinical studies have reported the protection offered by citrus consumption, mainly orange, against cardiovascular diseases, which is primarily mediated by the antiatherogenic and vasculoprotective effects of the flavanone hesperetin-7-O-rutinoside (hesperidin). However, flavanone aglycones or glycosides are not present in the bloodstream but their derived phase-II metabolites could be the actual bioactive molecules. To date, only a few studies have explored the effects of circulating hesperetin-derived metabolites (glucuronides and sulfates) on endothelial cells. Herein, we describe for the first time the effects of hesperetin 3'-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3'-O-sulfate, hesperetin 7-O-sulfate and hesperetin on human aortic endothelial cell (HAEC) migration upon pro-inflammatory stimuli as an essential step to angiogenesis. Hesperetin and its derived metabolites, at physiologically relevant concentrations (1-10 μM), significantly attenuated cell migration in the presence of the pro-inflammatory cytokine TNF-α (50 ng mL(-1)), which was accompanied and perhaps mediated by a significant decrease in the levels of the thrombogenic plasminogen activator inhibitor-1 (PAI-1). However, hesperetin metabolites did not counteract the TNF-α-induced production of pro-inflammatory interleukin-6 (IL-6) and IL-8. We also study here for the first time, the metabolism of hesperetin and its derived metabolites by HAEC with and without a pro-inflammatory stimulus. All these results reinforce the concept according to which circulating phase-II hesperetin metabolites are critical molecules contributing to the cardioprotective effects upon consumption of citrus fruits such as orange.

  12. A Central Role for Thiols in Plant Tolerance to Abiotic Stress

    PubMed Central

    Zagorchev, Lyuben; Seal, Charlotte E.; Kranner, Ilse; Odjakova, Mariela

    2013-01-01

    Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance. PMID:23549272

  13. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.

    PubMed

    Dröse, Stefan; Brandt, Ulrich; Wittig, Ilka

    2014-08-01

    The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.

  14. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control

    PubMed Central

    Kumar, Chitranshu; Igbaria, Aeid; D'Autreaux, Benoît; Planson, Anne-Gaëlle; Junot, Christophe; Godat, Emmanuel; Bachhawat, Anand K; Delaunay-Moisan, Agnès; Toledano, Michel B

    2011-01-01

    Glutathione contributes to thiol-redox control and to extra-mitochondrial iron–sulphur cluster (ISC) maturation. To determine the physiological importance of these functions and sort out those that account for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both conditions triggered an intense iron starvation-like response and impaired the activity of extra-mitochondrial ISC enzymes but did not impact thiol-redox maintenance, except for high glutathione levels that altered oxidative protein folding in the endoplasmic reticulum. While iron partially rescued the ISC maturation and growth defects of GSH-depleted cells, genetic experiments indicated that unlike thioredoxin, glutathione could not support by itself the thiol-redox duties of the cell. We propose that glutathione is essential by its requirement in ISC assembly, but only serves as a thioredoxin backup in cytosolic thiol-redox maintenance. Glutathione-high physiological levels are thus meant to insulate its cytosolic function in iron metabolism from variations of its concentration during redox stresses, a model challenging the traditional view of it as prime actor in thiol-redox control. PMID:21478822

  15. Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae.

    PubMed

    Matasyoh, Josphat C; Dittrich, Birger; Schueffler, Anja; Laatsch, Hartmut

    2011-03-01

    In a screening for natural products with mosquito larvicidal activities, the endophytic fungus Podospora sp. isolated from the plant Laggera alata (Asteraceae) was conspicuous. Two xanthones, sterigmatocystin (1) and secosterigmatocystin (2), and an anthraquinone derivative (3) 13-hydroxyversicolorin B were isolated after fermentation on M(2) medium. These compounds were characterised using spectroscopic and X-ray analysis and examined against third instar larvae of Anopheles gambiae. The results demonstrated that compound 1 was the most potent one with LC(50) and LC(90) values of 13.3 and 73.5 ppm, respectively. Over 95% mortality was observed at a concentration 100 ppm after 24 h. These results compared farvorably with the commercial larvicide pylarvex® that showed 100% mortality at the same concentration. Compound 3 was less potent and had an LC(50) of 294.5 ppm and over 95% mortality was achieved at a concentration of 1,000 ppm. Secosterigmatocystin (2) revealed relatively weak activity and therefore LC values were not determined.

  16. Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities.

    PubMed

    Hamdan, Dalia; El-Readi, Mahmoud Zaki; Tahrani, Ahmad; Herrmann, Florian; Kaufmann, Dorothea; Farrag, Nawal; El-Shazly, Assem; Wink, Michael

    2011-01-01

    Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM].

  17. Lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells

    SciTech Connect

    Zhao, Yu; Wang, Wenhui; Wang, Qi; Zhang, Xiaodong; Ye, Lihong

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886 (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.

  18. A facile reproducible radioimmunoassay of the mixed metabolites of prostaglandins E, suitable for measurement of relative differences of phospholipase/prostaglandin synthetase activity in vivo.

    PubMed

    Fretland, D J; Cammarata, P S

    1984-04-01

    A relatively simple, reproducible, radioimmunoassay for the mixed metabolites of prostaglandins E (U-PGE-M) in rat and human urine is described. Results of the assay of treated versus control urine extracts correlate well with differences expected from treatments known to alter in vivo phospholipase/prostaglandin synthetase activity. Cross-reactivity of heterogeneous metabolite antiserum with 5 available endogenous prostaglandins and a single metabolite was determined and showed little or no cross reaction. Sensitivity, within-assay precision, interassay reproducibility, and parallelism were also determined and found acceptable. Excretion rates of U-PGE-M by rats and humans were determined, and statistically significant differences could be shown, although absolute values were smaller than estimated absolute values obtained from mass-spectrometric measurements of single, purified metabolites. Normal human male excretion rates differed significantly from those of females. Injection of prostaglandin E1 caused a significant rise in U-PGE-M excretion in rats whereas aspirin and indomethacin caused it to fall. U-PGE-M excretion rates of spontaneous hypertensive rats were significantly less than rates of normotensive controls. Adrenalectomy resulted in excretion of significantly larger amounts of U-PGE-M than in normal or sham-operated controls. A screen of clinically active pharmacological agents and hormones gave results consistent with previously published reports. PMID:6427792

  19. Kinetic characterization of high-activity mutants of human butyrylcholinesterase for the cocaine metabolite norcocaine.

    PubMed

    Zhan, Max; Hou, Shurong; Zhan, Chang-Guo; Zheng, Fang

    2014-01-01

    It has been known that cocaine produces its toxic and physiological effects through not only cocaine itself, but also norcocaine formed from cocaine oxidation catalysed by microsomal CYP (cytochrome P450) 3A4 in the human liver. The catalytic parameters (kcat and Km) of human BChE (butyrylcholinesterase) and its three mutants (i.e. A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/E441D and A199S/F227A/S287G/A328W/Y332G) for norcocaine have been characterized in the present study for the first time and compared with those for cocaine. On the basis of the obtained kinetic data, wild-type human BChE has a significantly lower catalytic activity for norcocaine (kcat=2.8 min(-1), Km=15 μM and kcat/Km=1.87 × 10(5) M(-1)·min(-1)) compared with its catalytic activity for (-)-cocaine. The BChE mutants examined in the present study have considerably improved catalytic activities against both cocaine and norcocaine compared with the wild-type enzyme. Within the enzymes examined in the present study, the A199S/F227A/S287G/A328W/Y332G mutant (CocH3) is identified as the most efficient enzyme for hydrolysing both cocaine and norcocaine. CocH3 has a 1080-fold improved catalytic efficiency for norcocaine (kcat=2610 min(-1), Km=13 μM and kcat/Km=2.01 × 10(8) M(-1)·min(-1)) and a 2020-fold improved catalytic efficiency for cocaine. It has been demonstrated that CocH3 as an exogenous enzyme can rapidly metabolize norcocaine, in addition to cocaine, in rats. Further kinetic modelling has suggested that CocH3 with an identical concentration with that of the endogenous BChE in human plasma can effectively eliminate both cocaine and norcocaine in a simplified kinetic model of cocaine abuse.

  20. Kinetic Characterization of High-Activity Mutants of Human Butyrylcholinesterase for Cocaine Metabolite Norcocaine

    PubMed Central

    Zhan, Max; Hou, Shurong; Zhan, Chang-Guo; Zheng, Fang

    2015-01-01

    It has been known that cocaine produces the toxic and physiological effects through not only cocaine itself but also norcocaine formed from cocaine oxidation catalyzed by microsomal cytochrome P450 3A4 in the human liver. The catalytic parameters (kcat and KM) of human butyrylcholinesterase (BChE) and its three mutants (i.e. the A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/E441D, and A199S/F227A/S287G/A328W/Y332G mutants) for norcocaine have been characterized in the present study, for the first time, in comparison with those for cocaine. Based on the obtained kinetic data, wild-type human BChE has a significantly lower catalytic activity for norcocaine (kcat = 2.8 min−1, KM = 15 μM, and kcat/KM = 1.87 × 105 M−1 min−1) compared to its catalytic activity for (−)-cocaine. The BChE mutants examined in this study have considerably improved catalytic activities against both cocaine and norcocaine compared to the wild-type enzyme. Within the enzymes examined in this study, the A199S/F227A/S287G/A328W/Y332G mutant (CocH3) is identified as the most efficient enzyme for hydrolyzing both cocaine and norcocaine. CocH3 has a 1080-fold improved catalytic efficiency for norcocaine (kcat = 2610 min−1, KM = 13 μM, and kcat/KM = 2.01 × 108 M−1 min−1) and a 2020-fold improved catalytic efficiency for cocaine. It has been demonstrated that CocH3 as an exogenous enzyme can rapidly metabolize norcocaine, in addition to cocaine, in rats. Further kinetic modeling has suggested that CocH3 with an identical concentration as that of the endogenous BChE in human plasma can effectively eliminate both cocaine and norcocaine in a simplified kinetic model of cocaine abuse. PMID:24125115

  1. The In Vitro Antimicrobial Activities of Metabolites from Lactobacillus Strains on Candida Species Implicated in Candida Vaginitis

    PubMed Central

    Ogunshe, Adenike A O; Omotoso, Mopelola A; Bello, Victoria B

    2011-01-01

    Background: Research from developing countries, such as Nigeria, on Lactobacillus species in the female urogenital tract and their role as a barrier to vaginal infection is limited. Therefore, the aim of this study was to assess the clinical biotherapeutic potential of indigenous Lactobacillus species. Methods: Antimicrobial metabolites production were characterised using simple and easily reproducible qualitative and quantitative methods. The in vitro inhibitory effect of Lactobacillus antimicrobials on vulvovaginal candidiasis–associated Candida species was investigated using modified agar spot and agar well-diffusion methods. Results: The maximum levels of lactic acid, hydrogen peroxide, and diacetyl from 20 vaginal Lactobacillus strains from diseased subjects were 1.46 mg/L, 1.36 mmol/L, and 1.72 mg/L respectively. From the 4 healthy subjects, the maximum level of lactic acid was 1.08 mg/L; hydrogen peroxide, 1.36 mmol/L; and diacetyl, 0.86 mg/L. The maximum productions of these substances occurred between 72 and 120 hours of incubation. The in vitro antagonistic activities of vaginal L. acidophilus, L. fermentum, L. brevis, L. plantarum, L. casei, L. delbrueckii, and L. jensenii from diseased subjects inhibited a maximum of 5.71% of the 35 Candida species tested, while vaginal L. acidophilus and L. plantarum from healthy subjects inhibited between 57.1% and 68.6% of Candida species in vitro. Conclusion: Antimicrobial-producing lactobacilli can be considered as adjunct biotherapeutic candidates for the treatment of vulvovaginal candidiasis. PMID:22589669

  2. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation.

    PubMed

    Garcia, Gonçalo; Nanni, Sara; Figueira, Inês; Ivanov, Ines; McDougall, Gordon J; Stewart, Derek; Ferreira, Ricardo B; Pinto, Paula; Silva, Rui F M; Brites, Dora; Santos, Cláudia N

    2017-01-15

    Neuroinflammation is an integral part of the neurodegeneration process inherent to several aging dysfunctions. Within the central nervous system, microglia are the effective immune cells, responsible for neuroinflammatory responses. In this study, raspberries were subjected to in vitro digestion simulation to obtain the components that result from the gastrointestinal (GI) conditions, which would be bioaccessible and available for blood uptake. Both the original raspberry extract and the gastrointestinal bioaccessible (GIB) fraction protected neuronal and microglia cells against H2O2-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation, at low concentrations. Furthermore, this neuroprotective capacity was independent of intracellular ROS scavenging mechanisms. We show for the first time that raspberry metabolites present in the GIB fraction significantly inhibited microglial pro-inflammatory activation by LPS, through the inhibition of Iba1 expression, TNF-α release and NO production. Altogether, this study reveals that raspberry polyphenols may present a dietary route to the retardation or amelioration of neurodegenerative-related dysfunctions. PMID:27542476

  3. Chemistry of the nudibranch Aldisa andersoni: structure and biological activity of phorbazole metabolites.

    PubMed

    Nuzzo, Genoveffa; Ciavatta, Maria Letizia; Kiss, Robert; Mathieu, Véronique; Leclercqz, Helene; Manzo, Emiliano; Villani, Guido; Mollo, Ernesto; Lefranc, Florence; D'Souza, Lisette; Gavagnin, Margherita; Cimino, Guido

    2012-08-01

    The first chemical study of the Indo-Pacific dorid nudibranch Aldisa andersoni resulted in the isolation of five chlorinated phenyl-pyrrolyloxazoles belonging to the phorbazole series. Two new molecules, 9-chloro-phorbazole D and N1-methyl-phorbazole A, co-occurring with known phorbazoles A, B and D, have been characterized. Phorbazoles were found to be present mainly in the external part of the mollusc. The structures of the new compounds were determined by interpretation of spectroscopic data, mainly NMR and mass spectrometry and by comparison with the literature data. Evaluation of feeding-deterrence activity as well as in vitro growth inhibitory properties in human cancer cells was also carried out. PMID:23015775

  4. Chemistry of the Nudibranch Aldisa andersoni: Structure and Biological Activity of Phorbazole Metabolites

    PubMed Central

    Nuzzo, Genoveffa; Ciavatta, Maria Letizia; Kiss, Robert; Mathieu, Véronique; Leclercqz, Helene; Manzo, Emiliano; Villani, Guido; Mollo, Ernesto; Lefranc, Florence; D’Souza, Lisette; Gavagnin, Margherita; Cimino, Guido

    2012-01-01

    The first chemical study of the Indo-Pacific dorid nudibranch Aldisa andersoni resulted in the isolation of five chlorinated phenyl-pyrrolyloxazoles belonging to the phorbazole series. Two new molecules, 9-chloro-phorbazole D and N1-methyl-phorbazole A, co-occurring with known phorbazoles A, B and D, have been characterized. Phorbazoles were found to be present mainly in the external part of the mollusc. The structures of the new compounds were determined by interpretation of spectroscopic data, mainly NMR and mass spectrometry and by comparison with the literature data. Evaluation of feeding-deterrence activity as well as in vitro growth inhibitory properties in human cancer cells was also carried out. PMID:23015775

  5. Targeted metabolite analysis and biological activity of Pieris brassicae fed with Brassica rapa var. rapa.

    PubMed

    Pereira, David M; Noites, Alexandra; Valentão, Patricia; Ferreres, Federico; Pereira, José A; Vale-Silva, Luis; Pinto, Eugénia; Andrade, Paula B

    2009-01-28

    For the first time, an insect-plant system, Pieris brassicae fed with Brassica rapa var. rapa, was tested for its biological capacity, namely, antioxidant (DPPH*, *NO, and O(2)*- radicals) and antimicrobial (bacteria and fungi) activities. Samples from the insect's life cycle (larvae, excrements, exuviae, and butterfly) were always found to be more efficient than the host plant. Also, P. brassicae materials, as well as its host plant, were screened for phenolics and organic acids. The host plant revealed higher amounts of both compounds. Two phenolic acids, ferulic and sinapic, as well as kaempferol 3-Osophoroside, were common to insect (larvae and excrements) and plant materials, with excrements being considerably richer. Detection of sulfated compounds in excrements, absent in host plant, revealed that metabolic processes in this species involved sulfation. Additionally, deacylation and deglycosilation were observed. All matrices presented the same organic acids qualitative profile, with the exception of excrements.

  6. Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley.

    PubMed

    Liu, D L; Lovett, J V

    1993-10-01

    Allelopathic effects of barley (Hordeum vulgare L.) on white mustard (Sinapis alba L.) were assessed using modified bioassays that reduced other environmental influences. In a Petri dish bioassay, germination of white mustard was delayed and the radicle lengths were significantly inhibited at a density of 0.5 barley seed/cm(2). In a 'siphoning' bioassay apparatus, when the two species were sown together, radicle elongation of white mustard was not inhibited one day after sowing but became increasingly inhibited as bioassay time increased. Barley allelochemicals were released from the roots in a hydroponic system for at least 70 days after commencement of barley germination. Solutions removed from the hydroponic system of growing barley delayed germination and inhibited growth of white mustard. The allelopathic activity of barley was further confirmed at a density of 0.3 barley seed/cm(2) in a modified stairstep apparatus. PMID:24248571

  7. First syntheses of the biologically active fungal metabolites pestalotiopsones A, B, C and F.

    PubMed

    Beekman, Andrew Michael; Castillo Martinez, Edwin; Barrow, Russell Allan

    2013-02-21

    A synthetic approach accessing the pestalotiopsones, fungal chromones possessing a rare skeletal subtype, is reported for the first time. The synthesis of pestalotiopsone A (1) has been achieved in 7 linear steps (28%), from commercially available 3,5-dimethoxybenzoic acid and subsequently the first syntheses of pestalotiopsone B (2), C (3) and F (4) were performed utilising this chemistry. The key steps include a newly described homologation of a substituted benzoic acid to afford phenylacetate derivatives utilising Birch reductive alkylation conditions, a microwave mediated chromanone formation proceeding through an oxa-Michael cyclisation, and an IBX induced dehydrogenation to the desired chromone skeleton. The synthetic natural products were completely characterised for the first time, confirming their structures and their biological activities evaluated against a panel of bacterial pathogens.

  8. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation.

    PubMed

    Zhu, Yingdong; Warin, Renaud F; Soroka, Dominique N; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4-M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC(50) of 24.43 µM in HCT-116 human colon cancer cells and an IC(50) of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC(50) values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4-M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC(50)s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment. PMID:23382939

  9. Metabolites of Ginger Component [6]-Shogaol Remain Bioactive in Cancer Cells and Have Low Toxicity in Normal Cells: Chemical Synthesis and Biological Evaluation

    PubMed Central

    Zhu, Yingdong; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4–M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC50 of 24.43 µM in HCT-116 human colon cancer cells and an IC50 of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC50 values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4–M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC50s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment. PMID:23382939

  10. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-01

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  11. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    PubMed

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  12. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action?

    SciTech Connect

    Canton, Rocio F. . E-mail: r.Fernandezcanton@iras.uu.nl; Sanderson, J. Thomas; Nijmeijer, Sandra; Bergman, Ake; Letcher, Robert J.; Berg, Martin van den

    2006-10-15

    Fire incidents have decreased significantly over the last 20 years due, in part, to regulations requiring addition of flame retardants (FRs) to consumer products. Five major classes of brominated flame retardants (BFRs) are hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol-A (TBBPA) and three commercial mixtures of penta-, octa- and deca-polybrominated diphenyl ether (PBDE) congeners, which are used extensively as commercial FR additives. Furthermore, concentrations of PBDEs have been rapidly increasing during the 1999s in human breast milk and a number of endocrine effects have been reported. We used the H295R human adrenocortical carcinoma cell line to assess possible effects of some of these BFRs (PBDEs and several of their hydroxylated (OH) and methoxylated (CH{sub 3}O) metabolites or analogues), TBBPA and brominated phenols (BPs) on the combined 17{alpha}-hydroxylase and 17,20-lyase activities of CYP17. CYP17 enzyme catalyzes an important step in sex steroidogenesis and is responsible for the biosynthesis of dehydroepiandrosterone (DHEA) and androstenedione in the adrenals. In order to study possible interactions with BFRs, a novel enzymatic method was developed. The precursor substrate of CYP17, pregnenolone, was added to control and exposed H295R cells, and enzymatic production of DHEA was measured using a radioimmunoassay. In order to avoid pregnenolone metabolism via different pathways, specific chemical inhibitor compounds were used. None of the parent/precursor BFRs had a significant effect (P < 0.05) on CYP17 activity except for BDE-183, which showed significant inhibition of CYP17 activity at the highest concentration tested (10 {mu}M), with no signs of cytotoxicity as measured by mitochondrial toxicity tests (MTT). A strong inhibition of CYP17 activity was found for 6-OH-2,2',4,4'-tetrabromoDE (6-OH-BDE47) with a concentration-dependent decrease of almost 90% at 10 {mu}M, but with a concurrent decrease in cell viability at the higher

  13. Phase I Hydroxylated Metabolites of the K2 Synthetic Cannabinoid JWH-018 Retain In Vitro and In Vivo Cannabinoid 1 Receptor Affinity and Activity

    PubMed Central

    Brents, Lisa K.; Reichard, Emily E.; Zimmerman, Sarah M.; Moran, Jeffery H.; Fantegrossi, William E.; Prather, Paul L.

    2011-01-01

    Background K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R). Methods/Principal Findings JWH-018, five potential monohydroxylated metabolites (M1–M5), and one carboxy metabolite (M6) were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [3H]CP-55,940, and then for CB1R intrinsic efficacy using an [35S]GTPγS binding assay. JWH-018 and M1–M5 bound CB1Rs with high affinity, exhibiting Ki values that were lower than or equivalent to Δ9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251. Conclusions/Significance Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher

  14. Methylphenidate and its ethanol transesterification metabolite ethylphenidate: brain disposition, monoamine transporters and motor activity.

    PubMed

    Williard, Robin L; Middaugh, Lawrence D; Zhu, Hao-Jie B; Patrick, Kennerly S

    2007-02-01

    Ethylphenidate is formed by metabolic transesterification of methylphenidate and ethanol. Study objectives were to (a) establish that ethylphenidate is formed in C57BL/6 (B6) mice; (b) compare the stimulatory effects of ethylphenidate and methylphenidate enantiomers; (c) determine methylphenidate and ethylphenidate plasma and brain distribution and (d) establish in-vitro effects of methylphenidate and ethylphenidate on monoamine transporter systems. Experimental results were that: (a) coadministration of ethanol with the separate methylphenidate isomers enantioselectively produced l-ethylphenidate; (b) d and dl-forms of methylphenidate and ethylphenidate produced dose-responsive increases in motor activity with stimulation being less for ethylphenidate; (c) plasma and whole-brain concentrations were greater for ethylphenidate than methylphenidate and (d) d and DL-methylphenidate and ethylphenidate exhibited comparably potent low inhibition of the dopamine transporter, whereas ethylphenidate was a less potent norepinephrine transporter inhibitor. These experiments establish the feasibility of the B6 mouse model for examining the interactive effects of ethanol and methylphenidate. As reported for humans, concurrent exposure of B6 mice to methylphenidate and ethanol more readily formed l-ethylphenidate than d-ethylphenidate, and the l-isomers of both methylphenidate and ethylphenidate were biologically inactive. The observed reduced stimulatory effect of d-ethylphenidate relative to d-methylphenidate appears not to be the result of brain dispositional factors, but rather may be related to its reduced inhibition of the norepinephrine transporter, perhaps altering the interaction of dopaminergic and noradrenergic neural systems.

  15. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides.

    PubMed

    Wang, Xiaoning; Radwan, Mohamed M; Taráwneh, Amer H; Gao, Jiangtao; Wedge, David E; Rosa, Luiz H; Cutler, Horace G; Cutler, Stephen J

    2013-05-15

    Bioassay-guided fractionation of Cladosporium cladosporioides (Fresen.) de Vries extracts led to the isolation of four compounds, including cladosporin, 1; isocladosporin, 2; 5'-hydroxyasperentin, 3; and cladosporin-8-methyl ether, 4. An additional compound, 5',6-diacetylcladosporin, 5, was synthesized by acetylation of compound 3. Compounds 1-5 were evaluated for antifungal activity against plant pathogens. Phomopsis viticola was the most sensitive fungus to the tested compounds. At 30 μM, compound 1 exhibited 92.7, 90.1, 95.4, and 79.9% growth inhibition against Colletotrichum acutatum , Colletotrichum fragariae , Colletotrichum gloeosporioides , and P. viticola, respectively. Compound 2 showed 50.4, 60.2, and 83.0% growth inhibition at 30 μM against Co. fragariae, Co. gloeosporioides, and P. viticola, respectively. Compounds 3 and 4 were isolated for the first time from Cl. cladosporioides. Moreover, the identification of essential structural features of the cladosporin nuclei has also been evaluated. These structures provide new templates for the potential treatment and management of plant diseases.

  16. Purification and characterization of a pineapple crown leaf thiol protease.

    PubMed

    Singh, L Rupachandra; Devi, Th Premila; Devi, S Kunjeshwori

    2004-02-01

    A thiol protease was isolated and purified from the crown leaf of pineapple, Ananas comosus (L.) Merr. cv. Queen, by an immunoaffinity procedure. After the purification to electrophoretic homogeneity, the enzyme was characterized with respect to some of its physico-chemical and kinetic properties. The molecular weight of the protease (22.4-22.9 kDa), Km (97 microM) and kcat (8.8 s(-1)) for its esterolytic cleavage of the synthetic protease substrate N(alpha)-CBZ-L-lysine p-nitrophenyl ester, the concentration of its thiol activator L-cysteine required for half maximal activation A0.5 (9.9 microM), optimum pH (6.5) for its proteolytic action on azocasein, T(1/2) (60 degrees C) for inactivation by heating the enzyme (35.5 microg protein/mL) in citrate buffer pH 6.0 for 15 min, and SH-group content (0.98 mol/mol enzyme) were determined. Most of these physicochemical and kinetic properties were found to be similar to those of the already well-characterized stem bromelain (EC 3.4.22.32). Thus, the immunoaffinity purified crown leaf protease appeared to be closely related to stem bromelain.

  17. Thiol redox state and related enzymes in sclerotium-forming filamentous phytopathogenic fungi.

    PubMed

    Patsoukis, Nikolaos; Georgiou, D Christos

    2008-05-01

    Thiol redox state (TRS) reduced and oxidized components form profiles characteristic of each of the four main types of differentiation in the sclerotiogenic phytopathogenic fungi: loose, terminal, lateral-chained, and lateral-simple, represented by Rhizoctonia solani, Sclerotinia sclerotiorum, Sclerotium rolfsii, and Sclerotinia minor, respectively. A common feature of these fungi is that as their undifferentiated mycelium enters the differentiated state, it is accompanied by a decrease in the low oxidative stress-associated total reduced thiols and/or by an increase of the high oxidative stress-associated total oxidized thiols either in the sclerotial mycelial substrate or in its corresponding sclerotium, indicating a relationship between TRS-related oxidative stress and sclerotial differentiation. Moreover, the four studied sclerotium types exhibit high activities of TRS-related antioxidant enzymes, indicating the existence of antioxidant protection of the hyphae of the sclerotium medulla until conditions become appropriate for sclerotium germination. PMID:18400483

  18. Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya.

    PubMed

    Braña, Alfredo F; Rodríguez, Miriam; Pahari, Pallab; Rohr, Jurgen; García, Luis A; Blanco, Gloria

    2014-05-01

    Activation and silencing of antibiotic production was achieved in Streptomyces albus J1074 and Streptomyces lividans TK21 after introduction of genes within the thienamycin cluster from S. cattleya. Dramatic phenotypic and metabolic changes, involving activation of multiple silent secondary metabolites and silencing of others normally produced, were found in recombinant strains harbouring the thienamycin cluster in comparison to the parental strains. In S. albus, ultra-performance liquid chromatography purification and NMR structural elucidation revealed the identity of four structurally related activated compounds: the antibiotics paulomycins A, B and the paulomenols A and B. Four volatile compounds whose biosynthesis was switched off were identified by gas chromatography-mass spectrometry analyses and databases comparison as pyrazines; including tetramethylpyrazine, a compound with important clinical applications to our knowledge never reported to be produced by Streptomyces. In addition, this work revealed the potential of S. albus to produce many others secondary metabolites normally obtained from plants, including compounds of medical relevance as dihydro-β-agarofuran and of interest in perfume industry as β-patchoulene, suggesting that it might be an alternative model for their industrial production. In S. lividans, actinorhodins production was strongly activated in the recombinant strains whereas undecylprodigiosins were significantly reduced. Activation of cryptic metabolites in Streptomyces species might represent an alternative approach for pharmaceutical drug discovery.

  19. Relationship between cerebral pharmacokinetics and anxiolytic activity of diazepam and its active metabolites after a single intra-peritoneal administration of diazepam in mice.

    PubMed

    Dailly, E; Hascoët, M; Colombel, M C; Jolliet, P; Bourin, M

    2002-07-01

    The relationship between the cerebral pharmacokinetics of diazepam and its active metabolites (desmethyldiazepam, oxazepam) and the anxiolytic effect evaluated by the four-plates test and the light/dark test were investigated after a single intra-peritoneal injection of diazepam (1 mg/kg or 1.5 mg/kg). For up to 30 min after administration, the sedative effect interfered with the anxiolytic effect, thus the results of the anxiolytic effect were not interpretable. From 30 min to 60 min after administration, this interference disappeared, the cerebral level of benzodiazepines was stable (the brain elimination of diazepam was compensated for by the appearance of desmethyldiazepam followed by oxazepam) but the anxiolytic effect decreased dramatically in all the tests with diazepam 1 mg/kg or 1.5 mg/kg. The acute tolerance to benzodiazepines and the difference of affinity for subtypes of GABA(A) receptors between diazepam, desmethyldiazepam, oxazepam could explain this result.

  20. Influence of gut microbiota-derived ellagitannins' metabolites urolithins on pro-inflammatory activities of human neutrophils.

    PubMed

    Piwowarski, Jakub P; Granica, Sebastian; Kiss, Anna K

    2014-07-01

    Ellagitannin-rich products exhibit beneficial influence in the case of inflammation-associated diseases. Urolithins, metabolites of ellagitannins produced by gut microbiota, in contrary to high molecular weight hydrophilic parental polyphenols, possess well established bioavailability. Because of the important role of neutrophils in progression of inflammation, the influence of urolithins on their pro-inflammatory functions was tested. Urolithin B at a concentration of 20 µM showed significant inhibition of interleukin 8 and extracellular matrix-degrading enzyme MMP-9 production. It was also significantly active in prevention of cytochalasin A/formyl-met-leu-phenylalanine-triggered selectin CD62L shedding. Urolithin C was the only active compound towards inhibition of elastase release from cytochalasin A/formyl-met-leu-phenylalanine-stimulated neutrophils with 39.0 ± 15.9% inhibition at a concentration of 5 µM. Myeloperoxidase release was inhibited by urolithins A and C (at 20 µM by 46.7 ± 16.1 and 63.8 ± 8.6%, respectively). Urolithin A was the most potent reactive oxygen species release inhibitor both in formyl-met-leu-phenylalanine and 4β-phorbol-12β-myristate-R13-acetate-stimulated neutrophils. At the concentration of 1 µM, it caused reactive oxygen species level decrease by 42.6 ± 26.6 and 53.7 ± 16.0%, respectively. Urolithins can specifically modulate inflammatory functions of neutrophils, and thus could contribute to the beneficial health effects of ellagitannin-rich medicinal plant materials and food products.

  1. Enhanced active metabolite generation and platelet inhibition with prasugrel compared to clopidogrel regardless of genotype in thienopyridine metabolic pathways.

    PubMed

    Braun, Oscar Ö; Angiolillo, Dominick J; Ferreiro, Jose L; Jakubowski, Joseph A; Winters, Kenneth J; Effron, Mark B; Duvvuru, Suman; Costigan, Timothy M; Sundseth, Scott; Walker, Joseph R; Saucedo, Jorge F; Kleiman, Neal S; Varenhorst, Christoph

    2013-12-01

    Clopidogrel response varies according to the presence of genetic polymorphisms. The CYP2C19*2 allele has been associated with impaired response; conflicting results have been reported for CYP2C19*17, ABCB1, and PON1 genotypes. We assessed the impact of CYP2C19, PON1, and ABCB1 polymorphisms on clopidogrel and prasugrel pharmacodynamic (PD) and pharmacokinetic (PK) parameters. Aspirin-treated patients (N=194) with coronary artery disease from two independent, prospective, randomised, multi-centre studies comparing clopidogrel (75 mg) and prasugrel (10 mg) were genotyped and classified by predicted CYP2C19 metaboliser phenotype (ultra metabolisers [UM] = *17 carriers; extensive metabolisers [EM] = *1/1 homozygotes; reduced metabolisers [RM] = *2 carriers). ABCB1 T/T and C/T polymorphisms and PON1 A/A, A/G and G/G polymorphisms were also genotyped. PD parameters were assessed using VerifyNow® P2Y12 and vasodilator stimulated phosphoprotein (VASP) expressed as platelet reactivity index (PRI) after 14 days of maintenance dosing. Clopidogrel and prasugrel active metabolite (AM) exposure was calculated in a cohort of 96 patients. For clopidogrel, genetic variants in CYP2C19, but not ABCB1 or PON1, affected PK and PD. For prasugrel, none of the measured genetic variants affected PK or PD. Compared with clopidogrel, platelet inhibition with prasugrel was greater even in the CYP2C19 UM phenotype. Prasugrel generated more AM and achieved greater platelet inhibition than clopidogrel irrespective of CYP2C19, ABCB1, and PON1 polymorphisms. The lack of effect from genetic variants on prasugrel AM generation or antiplatelet activity is consistent with previous studies in healthy volunteers and is consistent with improved efficacy in acute coronary syndrome patients managed with percutaneous coronary intervention. PMID:24009042

  2. Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity

    PubMed Central

    Bootorabi, Fatemeh; Jänis, Janne; Valjakka, Jarkko; Isoniemi, Sari; Vainiotalo, Pirjo; Vullo, Daniela; Supuran, Claudiu T; Waheed, Abdul; Sly, William S; Niemelä, Onni; Parkkila, Seppo

    2008-01-01

    Background Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications of proteins and cellular constituents. However, functional consequences of such modification remain poorly defined. In the present study, we examined acetaldehyde reaction with human carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic properties are known, and it contains 24 lysine residues, which are accessible sites for aldehyde reaction. Results Acetaldehyde treatment in the absence and presence of a reducing agent (NaBH3(CN)) caused shifts in the pI values of CA II. SDS-PAGE indicated a shift toward a slightly higher molecular mass. High-resolution mass spectra of CA II, measured with and without NaBH3(CN), indicated the presence of an unmodified protein, as expected. Mass spectra of CA II treated with acetaldehyde revealed a modified protein form (+26 Da), consistent with a "Schiff base" formation between acetaldehyde and one of the primary NH2 groups (e.g., in lysine side chain) in the protein structure. This reaction was highly specific, given the relative abundance of over 90% of the modified protein. In reducing conditions, each CA II molecule had reacted with 9–19 (14 on average) acetaldehyde molecules (+28 Da), consistent with further reduction of the "Schiff bases" to substituted amines (N-ethyllysine residues). The acetaldehyde-modified protein showed decreased CA enzymatic activity. Conclusion The acetaldehyde-derived modifications in CA II molecule may have physiological consequences in alcoholic patients. PMID:19036170

  3. Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation

    PubMed Central

    Liu, Y. F.; Zhao, H. B.; Liu, X. M.; You, W.; Cheng, H. J.; Wan, F. C.; Liu, G. F.; Tan, X. W.; Song, E. L.; Zhang, X. L.

    2016-01-01

    The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle. PMID:26954111

  4. Cardiac Energy Dependence on Glucose Increases Metabolites Related to Glutathione and Activates Metabolic Genes Controlled by Mechanistic Target of Rapamycin

    PubMed Central

    Schisler, Jonathan C.; Grevengoed, Trisha J.; Pascual, Florencia; Cooper, Daniel E.; Ellis, Jessica M.; Paul, David S.; Willis, Monte S.; Patterson, Cam; Jia, Wei; Coleman, Rosalind A.

    2015-01-01

    Background Long chain acyl‐CoA synthetases (ACSL) catalyze long‐chain fatty acids (FA) conversion to acyl‐CoAs. Temporal ACSL1 inactivation in mouse hearts (Acsl1H−/−) impaired FA oxidation and dramatically increased glucose uptake, glucose oxidation, and mTOR activation, resulting in cardiac hypertrophy. We used unbiased metabolomics and gene expression analyses to elucidate the cardiac cellular response to increased glucose use in a genetic model of inactivated FA oxidation. Methods and Results Metabolomics analysis identified 60 metabolites altered in Acsl1H−/− hearts, including 6 related to glucose metabolism and 11 to cysteine and glutathione pathways. Concurrently, global cardiac transcriptional analysis revealed differential expression of 568 genes in Acsl1H−/− hearts, a subset of which we hypothesized were targets of mTOR; subsequently, we measured the transcriptional response of several genes after chronic mTOR inhibition via rapamycin treatment during the period in which cardiac hypertrophy develops. Hearts from Acsl1H−/− mice increased expression of several Hif1α‐responsive glycolytic genes regulated by mTOR; additionally, expression of Scl7a5, Gsta1/2, Gdf15, and amino acid‐responsive genes, Fgf21, Asns, Trib3, Mthfd2, were strikingly increased by mTOR activation. Conclusions The switch from FA to glucose use causes mTOR‐dependent alterations in cardiac metabolism. We identified cardiac mTOR‐regulated genes not previously identified in other cellular models, suggesting heart‐specific mTOR signaling. Increased glucose use also changed glutathione‐related pathways and compensation by mTOR. The hypertrophy, oxidative stress, and metabolic changes that occur within the heart when glucose supplants FA as a major energy source suggest that substrate switching to glucose is not entirely benign. PMID:25713290

  5. Double mode of inhibition-inducing interactions of 1,4-naphthoquinone with urease: arylation versus oxidation of enzyme thiols.

    PubMed

    Krajewska, Barbara; Zaborska, Wiesława

    2007-06-15

    In their inhibition-inducing interactions with enzymes, quinones primarily utilize two mechanisms, arylation and oxidation of enzyme thiol groups. In this work, we investigated the interactions of 1,4-naphthoquinone with urease in an effort to estimate the contribution of the two mechanisms in the enzyme inhibition. Jack bean urease, a homohexamer, contains 15 thiols per enzyme subunit, six accessible under non-denaturing conditions, of which Cys592 proximal to the active site indirectly participates in the enzyme catalysis. Unlike by 1,4-benzoquinone, a thiol arylator, the inactivation of urease by 1,4-naphthoquinone under aerobic conditions was found to be biphasic, time- and concentration-dependent with a non-linear residual activity-modified thiols dependence. DTT protection studies and thiol titration with DTNB suggest that thiols are the sites of enzyme interactions with the quinone. The inactivated enzyme had approximately 40% of its activity restored by excess DTT supporting the presence of sulfenic acid resulting from the oxidation of enzyme thiols by ROS. Furthermore, the aerobic inactivation was prevented in approximately 30% by catalase, proving the involvement of hydrogen peroxide in the process. When H2O2 was directly applied to urease, the enzyme showed susceptibility to this inactivation in a time- and concentration-dependent manner with the inhibition constant of H2O2 Ki = 3.24 mM. Additionally, anaerobic inactivation of urease was performed and was found to be weaker than aerobic. The results obtained are consistent with a double mode of 1,4-naphthoquinone inhibitory action on urease, namely through the arylation of the enzyme thiol groups and ROS generation, notably H2O2, resulting in the oxidation of the groups. PMID:17416528

  6. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes.

    PubMed Central

    Sanderson, J T; Letcher, R J; Heneweer, M; Giesy, J P; van den Berg, M

    2001-01-01

    We investigated a potential mechanism for the estrogenic properties of three chloro-s-triazine herbicides and six metabolites in vitro in several cell systems. We determined effects on human aromatase (CYP19), the enzyme that converts androgens to estrogens, in H295R (adrenocortical carcinoma), JEG-3 (placental choriocarcinoma), and MCF-7 (breast cancer) cells; we determined effects on estrogen receptor-mediated induction of vitellogenin in primary hepatocyte cultures of adult male carp (Cyprinus carpio). In addition to atrazine, simazine, and propazine, two metabolites--atrazine-desethyl and atrazine-desisopropyl--induced aromatase activity in H295R cells concentration-dependently (0.3-30 microM) and with potencies similar to those of the parent triazines. After a 24-hr exposure to 30 microM of the triazines, an apparent maximum induction of about 2- to 2.5-fold was achieved. The induction responses were confirmed by similar increases in CYP19 mRNA levels, determined by reverse-transcriptase polymerase chain reaction. In JEG-3 cells, where basal aromatase expression is about 15-fold greater than in H295R cells, the induction responses were similar but less pronounced; aromatase expression in MCF-7 cells was neither detectable nor inducible under our culture conditions. The fully dealkylated metabolite atrazine-desethyl-desisopropyl and the three hydroxylated metabolites (2-OH-atrazine-desethyl, -desisopropyl, and -desethyl-desisopropyl) did not induce aromatase activity. None of the triazine herbicides nor their metabolites induced vitellogenin production in male carp hepatocytes; nor did they antagonize the induction of vitellogenin by 100 nM (EC(50) 17beta-estradiol. These findings together with other reports indicate that the estrogenic effects associated with the triazine herbicides in vivo are not estrogen receptor-mediated, but may be explained partly by their ability to induce aromatase in vitro. PMID:11675267

  7. Arsenolysis and Thiol-Dependent Arsenate Reduction

    EPA Science Inventory

    Conversion of arsenate to arsenite is a critical event in the pathway that leads from inorganic arsenic to a variety of methylated metabolites. The formation of methylated metabolites influences distribution and retention of arsenic and affects the reactivity and toxicity of thes...

  8. Secondary metabolites from Ganoderma.

    PubMed

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites.

  9. Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of Arabidopsis Accessions[C][W][OA

    PubMed Central

    Sulpice, Ronan; Trenkamp, Sandra; Steinfath, Matthias; Usadel, Bjorn; Gibon, Yves; Witucka-Wall, Hanna; Pyl, Eva-Theresa; Tschoep, Hendrik; Steinhauser, Marie Caroline; Guenther, Manuela; Hoehne, Melanie; Rohwer, Johann M.; Altmann, Thomas; Fernie, Alisdair R.; Stitt, Mark

    2010-01-01

    Natural genetic diversity provides a powerful resource to investigate how networks respond to multiple simultaneous changes. In this work, we profile maximum catalytic activities of 37 enzymes from central metabolism and generate a matrix to investigate species-wide connectivity between metabolites, enzymes, and biomass. Most enzyme activities change in a highly coordinated manner, especially those in the Calvin-Benson cycle. Metabolites show coordinated changes in defined sectors of metabolism. Little connectivity was observed between maximum enzyme activities and metabolites, even after applying multivariate analysis methods. Measurements of posttranscriptional regulation will be required to relate these two functional levels. Individual enzyme activities correlate only weakly with biomass. However, when they are used to estimate protein abundances, and the latter are summed and expressed as a fraction of total protein, a significant positive correlation to biomass is observed. The correlation is additive to that obtained between starch and biomass. Thus, biomass is predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and optimization of carbon use. PMID:20699391

  10. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth

    PubMed Central

    Peter, Barbara; Winter, Georg E.; Blatt, Katharina; Bennett, Keiryn L.; Stefanzl, Gabriele; Rix, Uwe; Eisenwort, Gregor; Hadzijusufovic, Emir; Gridling, Manuela; Dutreix, Catherine; Hoermann, Gregor; Schwaab, Juliana; Radia, Deepti; Roesel, Johannes; Manley, Paul W.; Reiter, Andreas; Superti-Furga, Giulio; Valent, Peter

    2016-01-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multi-kinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction-profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC50 values. Midostaurin and CGP62221 also produced growth-inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, that accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug-competition experiments revealed that midostaurin interacts with KIT and several additional kinase-targets. The key downstream-regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE-receptor-downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs. PMID:26349526

  11. Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor.

    PubMed

    Shu, Tong; Su, Lei; Wang, Jianxing; Lu, Xin; Liang, Feng; Li, Chenzhong; Zhang, Xueji

    2016-06-01

    Chemical etching of gold by thiols has been known to be capable of generating nonluminescent gold(I) complexes, e.g., in size-focusing synthesis of atomically precise gold nanoclusters (GNCs). These nonluminescent gold(I) complexes have usually been considered as useless or worthless byproducts. This study shows a promising potential of thiol etching of GNCs to prepare novel water-soluble and phosphorescent gold(I) materials for sensing application. First, cysteamine-induced etching of GNCs is used to produce nonluminescent oligomeric gold(I)-thiolate complexes. Then, cadmium ion induces the aggregation of these oligomeric complexes to produce highly water-soluble ultrasmall intra-aggregates. These intra-aggregates can phosphoresce both in dilute aqueous solutions and in the solid phase. Studies on the effect of pH on their phosphorescent emission reveal the importance of the interaction between the amino groups of the ligands and cadmium ion for their phosphorescent emission property. Furthermore, Cu(2+) ion is found to quickly quench the phosphorescent emission of the intra-aggregates and simultaneously cause a Cu(2+)-concentration-dependent peak wavelength shift, enabling the establishment of a novel colorimetric sensor for sensitive and selective visual sensing of Cu(2+). PMID:27175974

  12. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  13. An active metabolite of oltipraz (M2) increases mitochondrial fuel oxidation and inhibits lipogenesis in the liver by dually activating AMPK

    PubMed Central

    Kim, Tae Hyun; Eom, Jeong Sik; Lee, Chan Gyu; Yang, Yoon Mee; Lee, Yong Sup; Kim, Sang Geon

    2013-01-01

    Background and Purpose Oltipraz, a cancer chemopreventive agent, has an anti-steatotic effect via liver X receptor-α (LXRα) inhibition. Here we have assessed the biological activity of a major metabolite of oltipraz (M2) against liver steatosis and steatohepatitis and the underlying mechanism(s). Experimental Approach Blood biochemistry and histopathology were assessed in high-fat diet (HFD)-fed mice treated with M2. An in vitroHepG2 cell model was used to study the mechanism of action. Immunoblotting, real-time PCR and luciferase reporter assays were performed to measure target protein or gene expression levels. Key Results M2 treatment inhibited HFD-induced steatohepatitis and diminished oxidative stress in liver. It increased expression of genes encoding proteins involved in mitochondrial fuel oxidation. Mitochondrial DNA content and oxygen consumption rate were enhanced. Moreover, M2 treatment repressed activity of LXRα and induction of its target genes, indicating anti-lipogenic effects. M2 activated AMP-activated protein kinase (AMPK). Inhibition of AMPK by over-expression of dominant negative AMPK (DN-AMPK) or by Compound C prevented M2 from inducing genes for fatty acid oxidation and repressed sterol regulatory element binding protein-1c (SREBP-1c) expression. M2 activated liver kinase B1 (LKB1) and increased the AMP/ATP ratio. LKB1 knockdown failed to reverse target protein modulations or AMPK activation by M2, supporting the proposal that both LKB1 and increased AMP/ATP ratio contribute to its anti-steatotic effect. Conclusion and Implications M2 inhibited liver steatosis and steatohepatitis by enhancing mitochondrial fuel oxidation and inhibiting lipogenesis. These effects reflected activation of AMPK elicited by increases in LKB1 activity and AMP/ATP ratio. PMID:23145499

  14. Effects of woohwangcheongsimwon suspension on the pharmacokinetics of bupropion and its active metabolite, 4-hydroxybupropion, in healthy subjects

    PubMed Central

    Kim, Hyunmi; Bae, Soo Kyung; Park, Soo-Jin; Shim, Eon-Jeong; Kim, Ho-Sook; Shon, Ji-Hong; Liu, Kwang-Hyeon; Shin, Jae-Gook

    2010-01-01

    AIMS To examine the effects of woohwangcheongsimwon suspension on the pharmacokinetics of bupropion and its active metabolite, 4-hydroxybupropion, formed via CYP2B6 in vivo. METHODS A two-way crossover clinical trial with a 2 week washout period was conducted in 14 healthy volunteers. In phases I and II, subjects received 150 mg bupropion with or without woohwangcheongsimwon suspension four times (at −0.17, 3.5, 23.5 and 47.5 h, with the time of bupropion administration taken as 0 h) in a randomized balanced crossover order. Bupropion and 4-hydroxybupropion plasma concentrations were measured for up to 72 h by LC-MS/MS. Urine was collected up to 24 h to calculate the renal clearance. In addition, the CYP2B6*6 genotype was also analyzed. RESULTS The geometric mean ratios and 90% confidence interval of bupropion with woohwangcheongsimwon suspension relative to bupropion alone were 0.976 (0.917, 1.04) for AUC(0,∞) and 0.948 (0.830,1.08) for Cmax, respectively. The corresponding values for 4-hydroxybupropion were 0.856 (0.802, 0.912) and 0.845 (0.782, 0.914), respectively. The tmax values of bupropion and 4-hydroxybupropion were not significantly different between the two groups (P > 0.05). The pharmacokinetic parameters of bupropion and 4-hydroxybupropion were unaffected by woohwangcheongsimwon suspension. CONCLUSIONS These results indicate that woohwangcheongsimwon suspension has a negligible effect on the disposition of a single dose of bupropion in vivo. As a result, temporary co-administration with woohwangcheongsimwon suspension does not seem to require a dosage adjustment of bupropion. PMID:20642555

  15. Relation between clopidogrel active metabolite levels and different platelet aggregation methods in patients receiving clopidogrel and aspirin.

    PubMed

    Liang, Yan; Johnston, Marilyn; Hirsh, Jack; Pare, Guillaume; Li, Chunjian; Mehta, Shamir; Teo, Koon K; Sloane, Debi; Yi, Qilong; Zhu, Jun; Eikelboom, John W

    2012-11-01

    Clopidogrel is a prodrug that undergoes bioconversion via cytochrome P450 system to form an active metabolite (AM) that binds to the platelet ADP receptor. The antiplatelet effect of clopidogrel is commonly assessed by measuring the aggregatory response to 5 μM ADP by light transmission aggregation (LTA) or multiple electrode aggregometry (MEA) or by the vasodilator-stimulated phosphoprotein platelet reactivity index (VASP-PRI). To determine which of these three tests of platelet ADP receptor pathway inhibition most closely correlates with clopidogrel AM levels. We analyzed blood samples from 82 patients with coronary artery disease who were randomized to receive double-dose or standard dose clopidogrel for 2 weeks. We measured peak clopidogrel AM levels, platelet aggregation in response to ADP and VASP-PRI on days 1, and repeated all the measures on days 7 and 14. Linear regression analysis was used to examine the correlation between clopidogrel AM and LTA, MEA and VASP-PRI. Bland-Altman plots were used to explore the agreement between tests of the antiplatelet effects of clopidogrel. Clopidogrel AM on day 1 correlated most closely with VASP-PRI (r = -0.5767) and demonstrated weaker correlations with LTA (r = -0.4656) and MEA (r = -0.3384) (all p < 0.01). Intra-class correlation (ICC) between VASP-PRI and LTA was 0.6446; VASP-PRI and MEA was 0.4720; and LTA and MEA was 0.4693. Similar results were obtained on days 7 and 14. Commonly used pharmacodynamic measures of clopidogrel response are only moderately correlated with clopidogrel AM levels and may not be suitable to measure the adequacy of clopidogrel therapy. PMID:22797934

  16. Determination of loratadine and its active metabolite in human plasma by high-performance liquid chromatography with mass spectrometry detection.

    PubMed

    Vlase, Laurian; Imre, Silvia; Muntean, Dana; Leucuta, Sorin E

    2007-07-27

    A new sensitive and selective liquid chromatography coupled with mass spectrometry (LC/MS/MS) method for quantification of loratadine (LOR) and its active metabolite descarboethoxyloratadine (DSL) in human plasma was validated. After addition of the internal standard, metoclopramide, the human plasma samples (0.3 ml) were precipitated using acetonitrile (0.75 ml) and the centrifuged supernatants were partially evaporated under nitrogen at 37 degrees C at approximately 0.3 ml volume. The LOR, DSL and internal standard were separated on a reversed phase column (Zorbax SB-C18, 100 mmx3.0 mm i.d., 3.5 microm) under isocratic conditions using a mobile phase of an 8:92(v/v) mixture of acetonitrile and 0.4% (v/v) formic acid in water. The flow rate was 1 ml/min and the column temperature 45 degrees C. The detection of LOR, DSL and internal standard was in MRM mode using an ion trap mass spectrometer with electrospray positive ionisation. The ion transitions were monitored as follows: 383-->337 for LOR, 311-->(259+294+282) for DSL and 300-->226.8 for internal standard. Calibration curves were generated over the range of 0.52-52.3 ng/ml for both LOR and DSL with values for coefficient of determination greater than 0.994 by using a weighted (1/y) quadratic regression. The lower limits of quantification were established at 0.52 ng/ml LOR and DSL, respectively, with an accuracy and precision less than 20%. Both analytes demonstrated good short-term, long-term, post-preparative and freeze-thaw stability. Besides its simplicity, the sample treatment allows obtaining a very good recovery of both analytes, around 100%. The validated LC/MS/MS method has been applied to a pharmacokinetic study of loratadine tablets on healthy volunteers.

  17. Microbial transformation of 20(S)-protopanaxadiol by Absidia corymbifera. Cytotoxic activity of the metabolites against human prostate cancer cells.

    PubMed

    Chen, Guangtong; Yang, Min; Nong, Shaojun; Yang, Xue; Ling, Yong; Wang, Donggeng; Wang, Xinyang; Zhang, Wei

    2013-01-01

    Biotransformation of 20(S)-protopanaxadiol (1) by the fungus Absidia corymbifera AS 3.3387 yielded five metabolites (2-6). On the basis of spectroscopic data analyses, the metabolites were identified as 26-hydroxyl-20(S)-protopanaxadiol (2), 23, 24-en-25-hydroxyl-20(S)-protopanaxadiol (3), 25-hydroxyl-20(S)-protopanaxadiol (4), 7β-hydroxyl-20(S)-protopanaxatriol (5), and 7-oxo-20(S)-protopanaxatriol (6), respectively. Among them, 5 and 6 are new compounds. These results indicated that A. corymbifera AS 3.3387 could catalyze the side-chain oxidation-reduction, 7β hydroxylation, and the specific C-7 dehydrogenation of derivatives of 20(S)-protopanaxadiol. The metabolites 2, 5, and 6 showed the more potent inhibitory effects against DU-145 and PC-3 cell lines than the substrate. PMID:23022533

  18. Physiologically based pharmacokinetic modeling for sequential metabolism: effect of CYP2C19 genetic polymorphism on clopidogrel and clopidogrel active metabolite pharmacokinetics.

    PubMed

    Djebli, Nassim; Fabre, David; Boulenc, Xavier; Fabre, Gérard; Sultan, Eric; Hurbin, Fabrice

    2015-04-01

    Clopidogrel is a prodrug that needs to be converted to its active metabolite (clopi-H4) in two sequential cytochrome P450 (P450)-dependent steps. In the present study, a dynamic physiologically based pharmacokinetic (PBPK) model was developed in Simcyp for clopidogrel and clopi-H4 using a specific sequential metabolite module in four populations with phenotypically different CYP2C19 activity (poor, intermediate, extensive, and ultrarapid metabolizers) receiving a loading dose of 300 mg followed by a maintenance dose of 75 mg. This model was validated using several approaches. First, a comparison of predicted-to-observed area under the curve (AUC)0-24 obtained from a randomized crossover study conducted in four balanced CYP2C19-phenotype metabolizer groups was performed using a visual predictive check method. Second, the interindividual and intertrial variability (on the basis of AUC0-24 comparisons) between the predicted trials and the observed trial of individuals, for each phenotypic group, were compared. Finally, a further validation, on the basis of drug-drug-interaction prediction, was performed by comparing observed values of clopidogrel and clopi-H4 with or without dronedarone (moderate CYP3A4 inhibitor) coadministration using a previously developed and validated physiologically based PBPK dronedarone model. The PBPK model was well validated for both clopidogrel and its active metabolite clopi-H4, in each CYP2C19-phenotypic group, whatever the treatment period (300-mg loading dose and 75-mg last maintenance dose). This is the first study proposing a full dynamic PBPK model able to accurately predict simultaneously the pharmacokinetics of the parent drug and of its primary and secondary metabolites in populations with genetically different activity for a metabolizing enzyme.

  19. Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094.

    PubMed

    Ehteshami, Maryam; Tao, Sijia; Ozturk, Tugba; Zhou, Longhu; Cho, Jong Hyun; Zhang, Hongwang; Amiralaei, Sheida; Shelton, Jadd R; Lu, Xiao; Khalil, Ahmed; Domaoal, Robert A; Stanton, Richard A; Suesserman, Justin E; Lin, Biing; Lee, Sam S; Amblard, Franck; Whitaker, Tony; Coats, Steven J; Schinazi, Raymond F

    2016-08-01

    Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2'-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2'-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2'-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo Finally, we found that although both 2'-C-methyl-GTP and 2'-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2'-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2'-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites. PMID:27216050

  20. The Expanding Landscape of the Thiol Redox Proteome.

    PubMed

    Yang, Jing; Carroll, Kate S; Liebler, Daniel C

    2016-01-01

    Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sulfonylation (-SO(3)H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications.

  1. Application of liquid chromatographic/tandem mass spectrometric method to a urinary excretion study of subutinib and active metabolite in human urine.

    PubMed

    Ding, Li-kun; Yang, Lin; Gao, Xiao-hua; Chen, Su-ning; Jia, Na; Li, Xue-qing; Zhou, Lun; Hang, Tai-jun; Wen, Ai-dong

    2016-04-01

    A novel and selective liquid chromatographic-mass spectrometric method (LC-MS/MS) has been established and validated for simultaneous determination of subutinib and active metabolite in human urine. Urine samples were extracted by liquid-liquid extraction with ethyl acetate and separated on a Wondasil C18 (150 × 2.1 mm, 3.5 µm), with methanol-0.2% formic acid solution (73:27, v/v) as mobile phase at flow rate of 0.2 mL/min. The linear range was 0.5000-200.0 ng/mL for subutinib and active metabolite, with a lower limit of quantitation of 0.5000 ng/mL. Intra- and inter-run precisions were all <11.8 and 14.3%, and the accuracies were all <4.5 and 5.4%, with the extraction recoveries 88.8-97.5 and 93.8-99.4% for the two analytes, respectively. The carryover values were all <15% for the two anayltes. The method was successfully applied to study urinary excretion of subutinib and active metabolite in human after oral administration of subutinib maleate capsules in fed and fasting states.

  2. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production.

    PubMed

    Zheng, Weifa; Miao, Kangjie; Liu, Yubing; Zhao, Yanxia; Zhang, Meimei; Pan, Shenyuan; Dai, Yucheng

    2010-07-01

    Inonotus obliquus (Fr.) Pilat is a white rot fungus belonging to the family Hymenochaetaceae in the Basidiomycota. In nature, this fungus rarely forms a fruiting body but usually an irregular shape of sclerotial conk called 'Chaga'. Characteristically, I. obliquus produces massive melanins released to the surface of Chaga. As early as in the sixteenth century, Chaga was used as an effective folk medicine in Russia and Northern Europe to treat several human malicious tumors and other diseases in the absence of any unacceptable toxic side effects. Chemical investigations show that I. obliquus produces a diverse range of secondary metabolites including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are the active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Geographically, however, this fungus is restricted to very cold habitats and grows very slowly, suggesting that Chaga is not a reliable source of these bioactive compounds. Attempts for culturing this fungus axenically all resulted in a reduced production of bioactive metabolites. This review examines the current progress in the discovery of chemical diversity of Chaga and their biological activities and the strategies to modulate the expression of desired pathways to diversify and up-regulate the production of bioactive metabolites by the fungus grown in submerged cultures for possible drug discovery. PMID:20532760

  3. Calcium transport, thiol status, and hepatotoxicity following N-nitrosodimethylamine exposure in mice

    SciTech Connect

    Reitman, F.A.; Berger, M.L.; Minnema, D.J.; Shertzer, H.G.

    1988-01-01

    The hepatotoxicant N-nitrosodimethylamine (NDMA) is presumed to exert toxicity through reactive metabolites. NDMA is similar in this respect to numerous other hepatotoxicants, for which hepatotoxicity is also associated with a rapid depletion of soluble and/or protein thiols, and an inhibition of calcium transport systems. The authors examined the hypothesis that hepatotoxicity for NDMA is preceded by thiol depletion and/or inhibition of calcium transport in isolated liver subcellular fractions. Centrizonal liver necrosis in mice was evident at 24 but not at 12 h subsequent to intraperitoneal administration of 40 mg NDMA/kg. Hepatotoxicity was not preceded by depletion of liver protein-free sulfhydryls, nor by protein sulfhydryl depletion in liver whole homogenate, microsomal, or plasma membrane fractions. NDMA-mediated toxicity was also not preceded by inhibition of calcium uptake capability by microsomal, mitochondrial, or plasma membrane fractions. In contrast, carbon tetrachloride produced the expected rapid decrease in microsomal calcium uptake capability, followed by a centrizonal necrosis that was maximal at about 24 h. These studies suggest that the mechanism of NDMA hepatotoxicity may differ from that of a number of other hepatotoxicants (e.g., carbon tetrachloride, acetaminophen, bromobenzene) for which toxicity is also mediated through reactive metabolites.

  4. Distribution of topical ocular nepafenac and its active metabolite amfenac to the posterior segment of the eye.

    PubMed

    Chastain, James E; Sanders, Mark E; Curtis, Michael A; Chemuturi, Nagendra V; Gadd, Martha E; Kapin, Michael A; Markwardt, Kerry L; Dahlin, David C

    2016-04-01

    Nepafenac ophthalmic suspensions, 0.1% (NEVANAC(®)) and 0.3% (ILEVRO™), are topical nonsteroidal anti-inflammatory drug (NSAID) products approved in the United States, Europe and various other countries to treat pain and inflammation associated with cataract surgery. NEVANAC is also approved in Europe for the reduction in the risk of postoperative macular edema (ME) associated with cataract surgery in diabetic patients. The efficacy against ME suggests that topical administration leads to distribution of nepafenac or its active metabolite amfenac to the posterior segment of the eye. This article evaluates the ocular distribution of nepafenac and amfenac and the extent of local delivery to the posterior segment of the eye, following topical ocular instillation in animal models. Nepafenac ophthalmic suspension was instilled unilaterally in New Zealand White rabbits as either a single dose (0.1%; one drop) or as multiple doses (0.3%, one drop, once-daily for 4 days, or 0.1% one drop, three-times daily for 3 days and one morning dose on day 4). Nepafenac (0.3%) was also instilled unilaterally in cynomolgus monkeys as multiple doses (one drop, three-times daily for 7 days). Nepafenac and amfenac concentrations in harvested ocular tissues were measured using high-performance liquid chromatography/mass spectrometry. Locally-distributed compound concentrations were determined as the difference in levels between dosed and undosed eyes. In single-dosed rabbit eyes, peak concentrations of locally-distributed nepafenac and amfenac showed a trend of sclera > choroid > retina. Nepafenac peak levels in sub-samples posterior to the eye equator and inclusive of the posterior pole (E-PP) were 55.1, 4.03 and 2.72 nM, respectively, at 0.25 or 0.50 h, with corresponding amfenac peak levels of 41.9, 3.10 and 0.705 nM at 1 or 4 h. By comparison, peak levels in