Science.gov

Sample records for active thiol metabolite

  1. Structure-activity studies in E. coli strains on ochratoxin A (OTA) and its analogues implicate a genotoxic free radical and a cytotoxic thiol derivative as reactive metabolites.

    PubMed

    Malaveille, C; Brun, G; Bartsch, H

    1994-05-01

    Ochratoxin A (OTA), its major metabolite in rodents, ochratoxin alpha, and seven structurally related substances were assayed for SOS DNA repair inducing activity in Escherichia coli strain PQ37. At concentrations of 0.1-4 mM, OTA, chloroxine, 5-chloro-8-quinolinol, 4-chloro-meta-cresol and chloroxylenol induced SOS DNA repair in the absence of an exogenous metabolic activation system. Ochratoxin B, ochratoxin alpha, 5-chlorosalicylic acid and citrinin were inactive, but all except ochratoxin alpha were cytotoxic. Thus, the presence of chlorine at C-5 appears to be one determinant of genotoxicity in these substances. Amino oxyacetic acid, an inhibitor of the cysteine conjugate beta-lyase, decreased the cytotoxicity of OTA but did not alter its genotoxic activity, suggesting the formation of a cytotoxic thiol-containing derivative. The mechanisms by which OTA and some of its active analogues induce SOS DNA repair activity was further investigated in E. coli PQ37 and in three derived strains (PQ300, OG100 and OG400), containing deletions within the oxy R regulon. The response in strain PQ37 was measured in the absence and presence of Trolox C, a water-soluble form of vitamin E. Trolox C completely quenched the genotoxicity of OTA, and the effect was similar in the mutant and wild-type strains. These results implicate an OTA-derived free radical rather than reduced oxygen species as genotoxic intermediate(s) in bacteria.

  2. Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer.

    PubMed

    Dansette, Patrick M; Rosi, Julien; Bertho, Gildas; Mansuy, Daniel

    2012-02-20

    The mechanism generally admitted for the bioactivation of the antithrombotic prodrug, clopidogrel, is its two-step enzymatic conversion into a biologically active thiol metabolite. The first step is a classical cytochrome P450 (P450)-dependent monooxygenation of its thiophene ring leading to 2-oxo-clopidogrel, a thiolactone metabolite. The second step was described as a P450-dependent oxidative opening of the thiolactone ring of 2-oxo-clopidogrel, with intermediate formation of a reactive sulfenic acid metabolite that is eventually reduced to the corresponding thiol 4b. A very recent paper published in Nat. Med. (Bouman et al., (2011) 17, 110) reported that the second step of clopidogrel bioactivation was not catalyzed by P450 enzymes but by paraoxonase-1(PON-1) and that PON-1 was a major determinant of clopidogrel efficacy. The results described in the present article show that there are two metabolic pathways for the opening of the thiolactone ring of 2-oxo-clopidogrel. The major one, that was previously described, results from a P450-dependent redox bioactivation of 2-oxo-clopidogrel and leads to 4b cis, two previously reported thiol diastereomers bearing an exocyclic double bond. The second, minor one, results from a hydrolysis of 2-oxo-clopidogrel, which seems to be dependent on PON-1, and leads to an isomer of 4b cis, 4b "endo", in which the double bond has migrated from an exocyclic to an endocyclic position in the piperidine ring. These results were obtained from a detailed study of the metabolism of 2-oxo-clopidogrel by human liver microsomes and human sera and analysis by HPLC-MS under conditions allowing a complete separation of the thiol metabolite isomers, either as such or after derivatization with 3'-methoxy phenacyl bromide or N-ethyl maleimide (NEM). These results also show that the major bioactive thiol isomer found in the plasma of clopidogrel-treated patients derives from 2-oxo-clopidogrel by the P450-dependent pathway. Finally, chemical

  3. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of

  4. Conjugation of glutathione and other thiols with bioreductively activated mitomycin C. Effect of thiols on the reductive activation rate.

    PubMed

    Sharma, M; Tomasz, M

    1994-01-01

    Mitomycin C (MC), a clinically used natural antitumor agent, was shown to form three monoconjugates (11a-13a) and two bisconjugates (14a, 15a) with GSH upon reductive activation by rat liver microsomes, purified NADPH-cytochrome c reductase, or NADH-cytochrome c reductase or chemical reduction using H2/PtO2. Rat liver cytosol/NADH activated MC only at acidic pH (5.8), resulting in the formation of a single GSH-MC monoconjugate, 13a. The reductase responsible for cytosolic activation of MC to form this conjugate was DT-diaphorase. GSH itself did not reduce MC, and unreduced MC did not form conjugates with GSH. A moderate catalytic effect by glutathione S-transferase was demonstrated on the cytosol-activated reaction. Mercaptoethanol and N-acetylcysteine gave analogous sets of five MC-thiol conjugates under cytochrome c reductase or H2/PtO2 activation conditions. The structures of all 15 MC-thiol conjugates (five each with GSH, mercaptoethanol, and N-acetylcysteine, respectively) were determined, using 1H-NMR, UV, and mass spectroscopies, combined with analytical chemical and radiolabeling methods. The mechanism of formation of the conjugates features SN2 displacement of the carbamate of the reduced MC by GS-. The MC-GSH conjugates were noncytotoxic to the tumor cells tested. The conjugation of GSH with activated MC is likely to represent detoxication in mammalian cells. As another effect, GSH accelerates the rate of reduction of MC by "slow" reducing agents such as cytochrome c reductases and H2/PtO2. A mechanism is proposed to explain this effect, which involves further reduction of the initially formed MC semiquinone free radical by GSH.

  5. Fungal metabolites with anticancer activity.

    PubMed

    Evidente, Antonio; Kornienko, Alexander; Cimmino, Alessio; Andolfi, Anna; Lefranc, Florence; Mathieu, Véronique; Kiss, Robert

    2014-05-01

    Covering: 1964 to 2013. Natural products from bacteria and plants have played a leading role in cancer drug discovery resulting in a large number of clinically useful agents. In contrast, the investigations of fungal metabolites and their derivatives have not led to a clinical cancer drug in spite of significant research efforts revealing a large number of fungi-derived natural products with promising anticancer activity. Many of these natural products have displayed notable in vitro growth-inhibitory properties in human cancer cell lines and select compounds have been demonstrated to provide therapeutic benefits in mouse models of human cancer. Many of these compounds are expected to enter human clinical trials in the near future. The present review discusses the reported sources, structures and biochemical studies aimed at the elucidation of the anticancer potential of these promising fungal metabolites.

  6. Serum thiols as a biomarker of disease activity in lupus nephritis.

    PubMed

    Lalwani, Pritesh; de Souza, Giselle Katiane Bonfim Bacelar; de Lima, Domingos Savio Nunes; Passos, Luiz Fernando Souza; Boechat, Antonio Luiz; Lima, Emerson Silva

    2015-01-01

    Lupus Nephritis (LN) develops in more than half of the Systemic Lupus Erythematous (SLE) patients. However, lack of reliable, specific biomarkers for LN hampers clinical management of patients and impedes development of new therapeutics. The goal of this study was to investigate whether oxidative stress biomarkers in patients with SLE is predictive of renal pathology. Serum biochemical and oxidative stress markers were measured in patients with inactive lupus, active lupus with and without nephritis and compared to healthy control group. To assess the predictive performance of biomarkers, Receiver Operating Characteristic (ROC) curves were constructed and cut-offs were used to identify SLE patients with nephritis. We observed an increased oxidative stress response in all SLE patients compared to healthy controls. Among the several biomarkers tested, serum thiols had a significant inverse association with SLE Disease Activity Index (SLEDAI). Interestingly, thiols were able too aptly differentiate between SLE patients with and without renal pathology, and serum thiol levels were not affected by immunosuppressive drug therapy. The decreased thiols in SLE correlated significantly with serum creatinine and serum C3 levels. Further retrospective evaluation using serum creatinine or C3 levels in combination with thiol's cutoff values from ROC analysis, we could positively predict chronicity of renal pathology in SLE patients. In summary, serum thiols emerge as an inexpensive and reliable indicator of LN, which may not only help in early identification of renal pathology but also aid in the therapeutic management of the disease, in developing countries with resource poor settings.

  7. Active Metabolites of Isoxazolylpenicillins in Humans

    PubMed Central

    Thijssen, H. H. W.; Mattie, H.

    1976-01-01

    Metabolites of the isoxazolylpenicillins that still possessed antibacterial activity were shown to be present in urine and serum. In healthy subjects, the amounts excreted in urine were low; 10 to 23% of the excreted penicillin activities represented the metabolites. The highest amount of metabolite in urine was found for oxacillin, and the lowest was found for flucloxacillin. No extreme differences in the amounts of metabolite excreted were observed when the compounds were administered orally or intravenously. In one healthy subject metabolite levels were estimated for cloxacillin in serum. Very low levels were found, i.e., about 9% of the activity. In subjects with highly impaired renal function, the metabolite may represent up to 50% of the total level of penicillin in serum. The antibacterial activities of the different metabolites were of the same order of magnitude as those of the respective parent compounds. Also, the activity against benzylpenicillin-resistant staphylococci was retained. It is not likely that the formation of the active metabolites should influence therapeutic results. PMID:825029

  8. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    PubMed Central

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines. PMID:26888486

  9. Determination of thiol metabolites in human urine by stable isotope labeling in combination with pseudo-targeted mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Qi, Chu-Bo; Zhu, Quan-Fei; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-02-01

    Precursor ion scan and multiple reaction monitoring scan (MRM) are two typical scan modes in mass spectrometry analysis. Here, we developed a strategy by combining stable isotope labeling (IL) with liquid chromatography-mass spectrometry (LC-MS) under double precursor ion scan (DPI) and MRM for analysis of thiols in 5 types of human cancer urine. Firstly, the IL-LC-DPI-MS method was applied for non-targeted profiling of thiols from cancer samples. Compared to traditional full scan mode, the DPI method significantly improved identification selectivity and accuracy. 103 thiol candidates were discovered in all cancers and 6 thiols were identified by their standards. It is worth noting that pantetheine, for the first time, was identified in human urine. Secondly, the IL-LC-MRM-MS method was developed for relative quantification of thiols in cancers compared to healthy controls. All the MRM transitions of light and heavy labeled thiols were acquired from urines by using DPI method. Compared to DPI method, the sensitivity of MRM improved by 2.1–11.3 folds. In addition, the concentration of homocysteine, γ-glutamylcysteine and pantetheine enhanced more than two folds in cancer patients compared to healthy controls. Taken together, the method demonstrated to be a promising strategy for identification and comprehensive quantification of thiols in human urines.

  10. [Biologically active metabolites of the marine actinobacteria].

    PubMed

    Sobolevskaia, M P; Kuznetsova, T A

    2010-01-01

    This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.

  11. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides

    SciTech Connect

    Brodie, A.E.; Reed, D.J. )

    1990-01-01

    The activity of the thiol-dependent enzyme glyceraldehyde-3-phosphate dehydrogenase (GPD), in vertebrate cells, was modulated by a change in the intracellular thiol:disulfide redox status. Human lung carcinoma cells (A549) were incubated with 1-120 mM H2O2, 1-120 mM t-butyl hydroperoxide, 1-6 mM ethacrynic acid, or 0.1-10 mM N-ethylmaleimide for 5 min. Loss of reduced protein thiols, as measured by binding of the thiol reagent iodoacetic acid to GPD, and loss of GPD enzymatic activity occurred in a dose-dependent manner. Incubation of the cells, following oxidative treatment, in saline for 30 min or with 20 mM dithiothreitol (DTT) partially reversed both changes in GPD. The enzymatic recovery of GPD activity was observed either without addition of thiols to the medium or by incubation of a sonicated cell mixture with 2 mM cysteine, cystine, cysteamine, or glutathione (GSH); GSSG had no effect. Treatment of cells with buthionine sulfoximine (BSO) to decrease cellular GSH by varying amounts caused a dose-related increase in sensitivity of GPD activity to inactivation by H2O2 and decreased cellular ability for subsequent recovery. GPD responded in a similar fashion with oxidative treatment of another lung carcinoma cell line (A427) as well as normal lung tissue from human and rat. These findings indicate that the cellular thiol redox status can be important in determining GPD enzymatic activity.

  12. Thiol activated prodrugs of sulfur dioxide (SO2) as MRSA inhibitors.

    PubMed

    Pardeshi, Kundansingh A; Malwal, Satish R; Banerjee, Ankita; Lahiri, Surobhi; Rangarajan, Radha; Chakrapani, Harinath

    2015-07-01

    Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2.

  13. Reactions of oxidatively activated arylamines with thiols: reaction mechanisms and biologic implications. An overview.

    PubMed Central

    Eyer, P

    1994-01-01

    Aromatic amines belong to a group of compounds that exert their toxic effects usually after oxidative biotransformation, primarily in the liver. In addition, aromatic amines also undergo extrahepatic activation to yield free arylaminyl radicals. The reactive intermediates are potential promutagens and procarcinogens, and responsible for target tissue toxicity. Since thiols react with these intermediates at high rates, it is of interest to know the underlying reaction mechanisms and the toxicologic implications. Phenoxyl radicals from aminophenols and aminyl radicals from phenylenediamines quickly disproportionate to quinone imines and quinone diimines. Depending on the structure, Michael addition or reduction reactions with thiols may prevail. Products of sequential oxidation/addition reactions (e.g., S-conjugates of aminophenols) are occasionally more toxic than the parent compounds because of their higher autoxidizability and their accumulation in the kidney. Even after covalent binding of quinone imines to protein SH groups, the resulting thioethers are able to autoxidize. The quinoid thioethers can then cross-link the protein by addition to neighboring nucleophiles. The reactions of nitrosoarenes with thiols yield a so-called "semimercaptal" from which various branching reactions detach, depending on substituents. Compounds with strong pi-donors, like 4-nitrosophenetol, give a resonance-stabilized N-(thiol-S-yl)-arylamine cation that may lead to bicyclic products, thioethers, and DNA adducts. Examples of toxicologic implications of the interactions of nitroso compounds with thiols are given for nitrosoimidazoles, heterocyclic nitroso compounds from protein pyrolysates, and nitrosoarenes. These data indicate that interactions of activated arylamines with thiols may not be regarded exclusively as detoxication reactions. PMID:7889834

  14. Reductive activation of mitomycin C by thiols: kinetics, mechanism, and biological implications.

    PubMed

    Paz, Manuel M

    2009-10-01

    The clinically used antitumor antibiotic mitomycin C requires a reductive activation to be converted to a bis-electrophile that forms several covalent adducts with DNA, including an interstrand cross-link which is considered to be the lesion responsible for the cytotoxic effects of the drug. Enzymes such as cytochrome P450 reductase and DT-diaphorase have traditionally been implicated in the bioreduction of mitomycin C, but recent reports indicate that enzymes containing a dithiol active site are also involved in the metabolism of mitomycin C. The reductive activation can also be effected in vitro with chemical reductants, but until now, mitomycin C was considered to be inert to thiols. We report here that mitomycin C can, in fact, be reductively activated by thiols. We show that the reaction is autocatalytic and that the end product is a relatively stable aziridinomitosene that can be trapped by adding several nucleophiles after the activation reaction. Kinetic studies show that the reaction is highly sensitive to pH and does not proceed or proceeds very slowly at neutral pH, an observation that explains the unsuccessful results on previous attempts to activate mitomycin C with thiols. The optimum pH for the reactions is around the pK(a) values of the thiols used in the activation. A mechanism for the reaction is hypothesized, involving the initial formation of a thiolate-mitomycin adduct, that then evolves to give the hydroquinone of mitomycin C and disulfide. The results presented here provide a chemical mechanism to explain how some biological dithiols containing an unusually acidic thiol group (deprotonated at physiological pH) participate in the modulation of mitomycin C cytotoxicity.

  15. KNApSAcK Metabolite Activity Database for retrieving the relationships between metabolites and biological activities.

    PubMed

    Nakamura, Yukiko; Afendi, Farit Mochamad; Parvin, Aziza Kawsar; Ono, Naoaki; Tanaka, Ken; Hirai Morita, Aki; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2014-01-01

    Databases (DBs) are required by various omics fields because the volume of molecular biology data is increasing rapidly. In this study, we provide instructions for users and describe the current status of our metabolite activity DB. To facilitate a comprehensive understanding of the interactions between the metabolites of organisms and the chemical-level contribution of metabolites to human health, we constructed a metabolite activity DB known as the KNApSAcK Metabolite Activity DB. It comprises 9,584 triplet relationships (metabolite-biological activity-target species), including 2,356 metabolites, 140 activity categories, 2,963 specific descriptions of biological activities and 778 target species. Approximately 46% of the activities described in the DB are related to chemical ecology, most of which are attributed to antimicrobial agents and plant growth regulators. The majority of the metabolites with antimicrobial activities are flavonoids and phenylpropanoids. The metabolites with plant growth regulatory effects include plant hormones. Over half of the DB contents are related to human health care and medicine. The five largest groups are toxins, anticancer agents, nervous system agents, cardiovascular agents and non-therapeutic agents, such as flavors and fragrances. The KNApSAcK Metabolite Activity DB is integrated within the KNApSAcK Family DBs to facilitate further systematized research in various omics fields, especially metabolomics, nutrigenomics and foodomics. The KNApSAcK Metabolite Activity DB could also be utilized for developing novel drugs and materials, as well as for identifying viable drug resources and other useful compounds.

  16. Pharmaceutically active secondary metabolites of marine actinobacteria.

    PubMed

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future.

  17. Evaluation of thiol Raman activities and pKa values using internally referenced Ramanbased pH titration

    NASA Astrophysics Data System (ADS)

    Suwandaratne, Nuwanthi

    Thiols are one of the most important classes of chemicals used broadly in organic synthesis, biological chemistry, and nanosciences. Thiol pKa values are key indicators of thiol reactivity and functionality. This study is an internally-referenced Raman-based pH titration method that enables reliable quantification of thiol pKa values for both mono- and di-thiols in water. The degree of thiol ionization is monitored directly using the peak intensity of the S-H stretching feature relative to an internal reference peak as a function of solution pH. The thiol pKa values and Raman activity relative to its internal reference were then determined by curve-fitting the experimental data with equations derived on the basis of the Henderson-Hasselbalch equation. Using this Raman titration method, first and second thiol pKa values for 1,2-benzenedithol in water were determined for the first time. This method is convenient to implement and its underlying theory is easy to follow.

  18. [Simultaneous determination of erdosteine and its active metabolite in human plasma by liquid chromatography-tandem mass spectrometry with pre-column derivatization].

    PubMed

    Jin, Jing; Chen, Xiao-Yan; Zhang, Yi-Fan; Ma, Zhi-Yu; Zhong, Da-Fang

    2013-03-01

    A sensitive, rapid and accurate liquid chromatography-tandem mass spectrometric (LC-MS/MS) method with pre-column derivatization was developed for the simultaneous determination of erdosteine and its thiol-containing active metabolite in human plasma. Paracetamol and captopril were chosen as the internal standard of erdosteine and its active metabolite, respectively. Aliquots of 100 microL plasma sample were derivatized by 2-bromine-3'-methoxy acetophenone, then separated on an Agilent XDB-C18 (50 mm x 4.6 mm ID, 1.8 microm) column using 0.1% formic acid methanol--0.1% formic acid 5 mmol x L(-1) ammonium acetate as mobile phase, in a gradient mode. Detection of erdosteine and its active metabolite were achieved by ESI MS/MS in the positive ion mode. The linear calibration curves for erdosteine and its active metabolite were obtained in the concentration ranges of 5-3 000 ng x mL(-1) and 5-10 000 ng x mL(-1), respectively. The lower limit of quantification of erdosteine and its active metabolite were both 5.00 ng x mL(-1). The pharmacokinetic results of erdosteine and its thiol-containing active metabolite showed that the area under curve (AUC) of the thiol-containing active metabolite was 6.2 times of that of erdosteine after a single oral dose of 600 mg erdosteine tables in 32 healthy volunteers, The mean residence time (MRT) of the thiol-containing active metabolite was (7.51 +/- 0.788) h, which provided a pharmacokinetic basis for the rational dosage regimen.

  19. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  20. Chemical modification of the RTEM-1 thiol beta-lactamase by thiol-selective reagents: evidence for activation of the primary nucleophile of the beta-lactamase active site by adjacent functional groups.

    PubMed

    Knap, A K; Pratt, R F

    1989-01-01

    The RTEM-1 thiol beta-lactamase (Sigal, I.S., Harwood, B.G., Arentzen, R., Proc. Natl. Acad. Sci. U.S.A. 79:7157-7160, 1982) is inactivated by thiol-selective reagents such as iodoacetamide, methyl methanethiosulfonate, and 4,4'-dipyridyldisulfide, which modify the active site thiol group. The pH-rate profiles of these inactivation reactions show that there are two nucleophilic forms of the enzyme, EH2 and EH, both of which, by analogy with the situation with cysteine proteinases, probably contain the active site nucleophile in the thiolate form. The pKa of the active site thiol is therefore shown by the data to be below 4.0. This low pKa is thought to reflect the presence of adjacent functionality which stabilizes the thiolate anion. The low nucleophilicity of the thiolate in both EH2 and EH, with respect to that of cysteine proteinases and model compounds, suggests that the thiolate of the thiol beta-lactamase is stabilized by two hydrogen-bond donors. One of these, of pKa greater than 9.0, is suggested to be the conserved and essential Lys-73 ammonium group, while the identity of the other group, of pKa around 6.7, is less clear, but may be the conserved Glu-166 carboxylic acid. beta-Lactamase activity is associated with the EH2 form, and thus the beta-lactamase active site is proposed to contain one basic or nucleophilic group (the thiolate in the thiol beta-lactamase) and two acidic (hydrogen-bond donor) groups (one of which is likely to be the above-mentioned lysine ammonium group).

  1. Sensitive, coupled assay for plasminogen activator using a thiol ester substrate for plasmin

    SciTech Connect

    Coleman, P L; Green, G D.J.

    1980-01-01

    Several assays for plasminogen activator employ a direct assay method. These are remarkably sensitive methods, yet they suffer in comparison to the sensitivity of coupled methods. Coupling the assay with plasminogen not only amplifies the sensitivity by the multiplicative effect of plasmin, but insures that only those proteases specific for plasminogen are assayed. The choice of substrate for plasmin is critical. A thiol ester substrate, thiobenzyl benzyloxy-carbonyl-L-lysinate (Z-Lys-SBzl), has been synthesized which combines high k/sub cat/ with alkaline stability. In an effort to characterize the plasminogen activator from hepatoma tissue culture (HTC) and its hormonally-controlled inhibitor, Z-Lys-SBzl was used in a coupled approach providing an assay which is superior to the /sup 125/I-fibrinolytic assay. It is also extremely sensitive to plasminogen activator and can be used for routine analysis of purification as well as kinetic and binding studies. (ERB)

  2. Transcriptional activation by heat and cold of a thiol protease gene in tomato. [Lycopersicon esculentum

    SciTech Connect

    Schaffer, M.A.; Fischer, R.L. )

    1990-08-01

    We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.

  3. Individual interferon regulatory factor-3 thiol residues are not critical for its activation following virus infection.

    PubMed

    Zucchini, Nicolas; Williams, Virginie; Grandvaux, Nathalie

    2012-09-01

    The interferon regulatory factor (IRF)-3 transcription factor plays a central role in the capacity of the host to mount an efficient innate antiviral immune defense, mainly through the regulation of type I Interferon genes. A tight regulation of IRF-3 is crucial for an adapted intensity and duration of the response. Redox-dependent processes are now well known to regulate signaling cascades. Recent reports have revealed that signaling molecules upstream of IRF-3, including the mitochondrial antiviral-signalling protein (MAVS) and the TNF receptor associated factors (TRAFs) adaptors, are sensitive to redox regulation. In the present study, we assessed whether redox regulation of thiol residues contained in IRF-3, which are priviledged redox sensors, play a role in its regulation following Sendai virus infection, using a combination of mutation of Cysteine (Cys) residues into Alanine and thiols alkylation using N-ethyl maleimide. Alkylation of IRF-3 on Cys289 appears to destabilize IRF-3 dimer in vitro. However, a detailed analysis of IRF-3 phosphorylation, dimerization, nuclear accumulation, and induction of target gene promoter in vivo led us to conclude that IRF-3 specific, individual Cys residues redox status does not play an essential role in its activation in vivo.

  4. Individual Interferon Regulatory Factor-3 Thiol Residues Are Not Critical for Its Activation Following Virus Infection

    PubMed Central

    Zucchini, Nicolas; Williams, Virginie

    2012-01-01

    The interferon regulatory factor (IRF)-3 transcription factor plays a central role in the capacity of the host to mount an efficient innate antiviral immune defense, mainly through the regulation of type I Interferon genes. A tight regulation of IRF-3 is crucial for an adapted intensity and duration of the response. Redox-dependent processes are now well known to regulate signaling cascades. Recent reports have revealed that signaling molecules upstream of IRF-3, including the mitochondrial antiviral-signalling protein (MAVS) and the TNF receptor associated factors (TRAFs) adaptors, are sensitive to redox regulation. In the present study, we assessed whether redox regulation of thiol residues contained in IRF-3, which are priviledged redox sensors, play a role in its regulation following Sendai virus infection, using a combination of mutation of Cysteine (Cys) residues into Alanine and thiols alkylation using N-ethyl maleimide. Alkylation of IRF-3 on Cys289 appears to destabilize IRF-3 dimer in vitro. However, a detailed analysis of IRF-3 phosphorylation, dimerization, nuclear accumulation, and induction of target gene promoter in vivo led us to conclude that IRF-3 specific, individual Cys residues redox status does not play an essential role in its activation in vivo. PMID:22817838

  5. Creatine kinase is modified by 2-chloromercuri-4-nitrophenol at the active site thiols with complete inactivation.

    PubMed

    Wu, H; Yao, Q Z; Tsou, C L

    1989-07-27

    Creatine kinase modified by mercurials has been reported to be fully reactive as the native enzyme. This was ascribed to the modification of a second class of thiol groups instead of the reactive thiols at the active site (Laue, M.C. and Quiocho, F.A. (1977) Biochemistry 16, 3838-3845). It has now been shown by spectrophotometric titration and fluorescence studies that 2-chloromercuri-4-nitrophenol (MNP) reacts preferentially with the active-site thiol. Moreover, if the activity of the modified enzyme is determined in the absence of added bovine serum albumin or other enzymes, as usually employed in coupled activity assay systems for creatine kinase, the modified enzyme is completely inactive. Addition of an excess of bovine serum albumin or rabbit muscle glyceraldehyde-3-phosphate dehydrogenase restores the activity of the enzyme to over 80% of its original level. It appears that the active thiol groups at the active site of creatine kinase are after all modified by MNP with complete inactivation.

  6. Biologically active secondary metabolites from Asphodelus microcarpus.

    PubMed

    Ghoneim, Mohammed M; Ma, Guoyi; El-Hela, Atef A; Mohammad, Abd-Elsalam I; Kottob, Saeid; El-Ghaly, Sayed; Cutler, Stephen J; Ross, Samir A

    2013-08-01

    Bioassay guided fractionation of the ethanolic extract of Asphodelus microcarpus Salzm.et Vivi (Asphodelaceae) resulted in the isolation of one new metabolite, 1,6-dimethoxy-3-methyl-2-naphthoic acid (1) as well as nine known compounds: asphodelin (2), chrysophanol (3), 8-methoxychrysophanol (4), emodin (5), 2-acetyl-1,8-dimethoxy-3-methylnaphthalene (6), 10-(chrysophanol-7'-yl)-10-hydroxychrysophanol-9-anthrone (7), aloesaponol-III-8-methyl ether (8), ramosin (9) and aestivin (10). The compounds were identified by 1D and 2D NMR and HRESIMS. Compounds 3, 6 and 10 were isolated for the first time from this species. Compounds 3 and 4 showed moderate to weak antileishmanial activity with IC50 values of 14.3 and 35.1 microg/mL, respectively. Compound 4 exhibited moderate antifungal activity against Cryptococcus neoformans with an IC50 value of 15.0 microg/mL, while compounds 5, 7 and 10 showed good to potent activity against methicillin resistant Staphylococcus aureus (MRSA) with IC50 values of 6.6, 9.4 microg/mL and 1.4 microg/mL respectively. Compounds 5, 8 and 9 displayed good activity against S. aureus with IC50 values of 3.2, 7.3 and 8.5 microg/mL, respectively. Compounds 7 and 9 exhibited a potent cytotoxic activity against leukemia LH60 and K562 cell lines. Compound 10 showed potent antimalarial activities against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum with IC50 values in the range of 0.8-0.7 microg/mL without showing any cytotoxicity to mammalian cells.

  7. Simultaneous Activation of Iron- and Thiol-Based Sensor-Regulator Systems by Redox-Active Compounds

    PubMed Central

    Lee, Kang-Lok; Yoo, Ji-Sun; Oh, Gyeong-Seok; Singh, Atul K.; Roe, Jung-Hye

    2017-01-01

    Bacteria in natural habitats are exposed to myriad redox-active compounds (RACs), which include producers of reactive oxygen species (ROS) and reactive electrophile species (RES) that alkylate or oxidize thiols. RACs can induce oxidative stress in cells and activate response pathways by modulating the activity of sensitive regulators. However, the effect of a certain compound on the cell has been investigated primarily with respect to a specific regulatory pathway. Since a single compound can exert multiple chemical effects in the cell, its effect can be better understood by time-course monitoring of multiple sensitive regulatory pathways that the compound induces. We investigated the effect of representative RACs by monitoring the activity of three sensor-regulators in the model actinobacterium Streptomyces coelicolor; SoxR that senses reactive compounds directly through oxidation of its [2Fe–2S] cluster, CatR/PerR that senses peroxides through bound iron, and an anti-sigma factor RsrA that senses RES via disulfide formation. The time course and magnitude of induction of their target transcripts were monitored to predict the chemical activities of each compound in S. coelicolor. Phenazine methosulfate (PMS) was found to be an effective RAC that directly activated SoxR and an effective ROS-producer that induced CatR/PerR with little thiol-perturbing activity. p-Benzoquinone was an effective RAC that directly activated SoxR, with slower ROS-producing activity, and an effective RES that induced the RsrA-SigR system. Plumbagin was an effective RAC that activated SoxR, an effective ROS-producer, and a less agile but effective RES. Diamide was an RES that effectively formed disulfides and a weak RAC that activated SoxR. Monobromobimane was a moderately effective RES and a slow producer of ROS. Interestingly, benzoquinone induced the SigR system by forming adducts on cysteine thiols in RsrA, revealing a new pathway to modulate RsrA activity. Overall, this study showed

  8. Designing Visible Light-Cured Thiol-Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells.

    PubMed

    Lin, Tsai-Yu; Bragg, John C; Lin, Chien-Chi

    2016-04-01

    Various polymerization mechanisms have been developed to prepare peptide-immobilized poly(ethylene glycol) (PEG) hydrogels, a class of biomaterials suitable for studying cell biology in vitro. Here, a visible light mediated thiol-acrylate photopolymerization scheme is reported to synthesize dually degradable PEG-peptide hydrogels with controllable crosslinking and degradability. The influence of immobilized monothiol pendant peptide is systematically evaluated on the crosslinking of these hydrogels. Further, methods are proposed to modulate hydrogel crosslinking, including adjusting concentration of comonomer or altering the design of multifunctional peptide crosslinker. Due to the formation of thioether ester bonds, these hydrogels are hydrolytically degradable. If the dithiol peptide linkers used are susceptible to protease cleavage, these thiol-acrylate hydrogels can be designed to undergo partial proteolysis. The differences between linear and multiarm PEG-acrylate (i.e., PEGDA vs PEG4A) are also evaluated. Finally, the use of the mixed-mode thiol-acrylate PEG4A-peptide hydrogels is explored for in situ encapsulation of hepatocellular carcinoma cells (Huh7). The effects of matrix stiffness and integrin binding motif (e.g., RGDS) on Huh7 cell growth and HIPPO pathway activation are studied using PEG4A-peptide hydrogels. This visible light poly-merized thiol-acrylate hydrogel system represents an alternative to existing light-cured hydrogel platforms and shall be useful in many biomedical applications.

  9. Cysteamine, the natural metabolite of pantetheinase, shows specific activity against Plasmodium.

    PubMed

    Min-Oo, Gundula; Ayi, Kodjo; Bongfen, Silayuv E; Tam, Mifong; Radovanovic, Irena; Gauthier, Susan; Santiago, Helton; Rothfuchs, Antonio Gigliotti; Roffê, Ester; Sher, Alan; Mullick, Alaka; Fortin, Anny; Stevenson, Mary M; Kain, Kevin C; Gros, Philippe

    2010-08-01

    In mice, loss of pantetheinase activity causes susceptibility to infection with Plasmodium chabaudi AS. Treatment of mice with the pantetheinase metabolite cysteamine reduces blood-stage replication of P. chabaudi and significantly increases survival. Similarly, a short exposure of Plasmodium to cysteamine ex vivo is sufficient to suppress parasite infectivity in vivo. This effect of cysteamine is specific and not observed with a related thiol (dimercaptosuccinic acid) or with the pantethine precursor of cysteamine. Also, cysteamine does not protect against infection with the parasite Trypanosoma cruzi or the fungal pathogen Candida albicans, suggesting cysteamine acts directly against the parasite and does not modulate host inflammatory response. Cysteamine exposure also blocks replication of P. falciparum in vitro; moreover, these treated parasites show higher levels of intact hemoglobin. This study highlights the in vivo action of cysteamine against Plasmodium and provides further evidence for the involvement of pantetheinase in host response to this infection.

  10. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis

    PubMed Central

    Harbut, Michael B.; Vilchèze, Catherine; Luo, Xiaozhou; Hensler, Mary E.; Guo, Hui; Yang, Baiyuan; Chatterjee, Arnab K.; Nizet, Victor; Jacobs, William R.; Schultz, Peter G.; Wang, Feng

    2015-01-01

    Infections caused by antibiotic-resistant bacteria are a rising public health threat and make the identification of new antibiotics a priority. From a cell-based screen for bactericidal compounds against Mycobacterium tuberculosis under nutrient-deprivation conditions we identified auranofin, an orally bioavailable FDA-approved antirheumatic drug, as having potent bactericidal activities against both replicating and nonreplicating M. tuberculosis. We also found that auranofin is active against other Gram-positive bacteria, including Bacillus subtilis and Enterococcus faecalis, and drug-sensitive and drug-resistant strains of Enterococcus faecium and Staphylococcus aureus. Our biochemical studies showed that auranofin inhibits the bacterial thioredoxin reductase, a protein essential in many Gram-positive bacteria for maintaining the thiol-redox balance and protecting against reactive oxidative species. Auranofin decreases the reducing capacity of target bacteria, thereby sensitizing them to oxidative stress. Finally, auranofin was efficacious in a murine model of methicillin-resistant S. aureus infection. These results suggest that the thioredoxin-mediated redox cascade of Gram-positive pathogens is a valid target for the development of antibacterial drugs, and that the existing clinical agent auranofin may be repurposed to aid in the treatment of several important antibiotic-resistant pathogens. PMID:25831516

  11. Medicinal chemistry of drugs with active metabolites following conjugation.

    PubMed

    Kalász, Huba; Petroianu, Georg; Hosztafi, Sándor; Darvas, Ferenc; Csermely, Tamás; Adeghate, Ernest; Siddiq, Afshan; Tekes, Kornélia

    2013-10-01

    Authorities of Drug Administration in the United States of America approved about 5000 drugs for use in the therapy or management of several diseases. About two hundred of these drugs have active metabolites and the knowledge of their medicinal chemistry is important both in medical practice and pharmaceutical research. This review gives a detailed description of the medicinal chemistry of drugs with active metabolites generated after conjugation. This review focused on glucuronide-, acetyl-, sulphate- and phosphate-conjugation of drugs, converting the drug into an active metabolite. This conversion essentially changed the lipophilicity of the drug.

  12. Thiol-addition reactions and their applications in thiol recognition.

    PubMed

    Yin, Caixia; Huo, Fangjun; Zhang, Jingjing; Martínez-Máñez, Ramón; Yang, Yutao; Lv, Haigang; Li, Sidian

    2013-07-21

    Because of the biological importance of thiols, the development of probes for thiols has been an active research area in recent years. In this review, we summarize the results of recent exciting reports regarding thiol-addition reactions and their applications in thiol recognition. The examples reported can be classified into four reaction types including 1,1, 1,2, 1,3, 1,4 addition reactions, according to their addition mechanisms, based on different Michael acceptors. In all cases, the reactions are coupled to color and/or emission changes, although some examples dealing with electrochemical recognition have also been included. The use of thiol-addition reactions is a very simple and straightforward procedure for the preparation of thiol-sensing probes.

  13. Biologically active secondary metabolites from Asphodelus microcarpus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay guided fractionation of the ethanolic extract of Asphodelus microcarpus Salzm.et Vivi (Asphodelaceae) resulted in the isolation of one new metabolite, 1,6-dimethoxy-3-methyl-2-naphthoic acid (1) as well as nine known compounds: asphodelin (2), chrysophanol (3), 8-methoxychrysophanol (4), em...

  14. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution

    PubMed Central

    Cha, Joon-Yung; Kim, Mi R.; Jung, In J.; Kang, Sun B.; Park, Hee J.; Kim, Min G.; Yun, Dae-Jin; Kim, Woe-Yeon

    2016-01-01

    Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OXC85S plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OXC85S plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability. PMID:27242830

  15. Juvenile and adult metachromatic leukodystrophy: partial restoration of arylsulfatase A (cerebroside sulfatase) activity by inhibitors of thiol proteinases.

    PubMed Central

    von Figura, K; Steckel, F; Hasilik, A

    1983-01-01

    Arylsulfatase A polypeptides were examined in cultured fibroblasts from a patient with juvenile metachromatic leukodystrophy and three patients with the adult form of the disease, with the aid of metabolic labeling and immunoprecipitation. The mutant cells were severely deficient in the arylsulfatase polypeptides. The apparent rate of synthesis, however, as estimated from the secretion of polypeptides or activity by cells incubated in the presence of 10 mM NH4Cl was 20-50% of control. In the absence of NH4Cl, the mutant enzyme was rapidly degraded upon transport into lysosomes. In the presence of inhibitors of thiol proteinases arylsulfatase A polypeptides were partially protected from degradation, and the catalytic activity of arylsulfatase A was increased. In addition, the treatment partially corrected the capacity of the cells to degrade cerebroside sulfates. Inhibitors of thiol proteinases may be of therapeutic value in variants of metachromatic leukodystrophy, in which an unstable arylsulfatase A is synthesized. Images PMID:6136972

  16. Monocatenary, branched, double-headed, and bolaform surface active carbohydrate esters via photochemical thiol-ene/-yne reactions.

    PubMed

    Boyère, Cédric; Broze, Guy; Blecker, Christophe; Jérôme, Christine; Debuigne, Antoine

    2013-10-18

    An original and versatile method for the synthesis of a range of novel mannose-based surfactants was developed via metal-free photo-induced thiol-ene/-yne 'click' reactions. This light-mediated hydrothiolation reaction involving a thiolated mannose was successfully applied to terminal and internal alkenes, dienes, and alkynes, leading to monocatenary, branched, double-headed, and bolaform amphiphilic carbohydrate esters, respectively. A surface activity study showed that these new compounds possess valuable properties and display specific behavior at the air-water interface. It also demonstrated the greater flexibility of the thioether moiety in the spacer of the surfactants produced via a thiol-ene reaction in comparison with the triazole heterocyclic rings in similar glucose-based surfactants synthesized elsewhere by the alkyne-azide 1,3-dipolar addition.

  17. Immobilization of proteins in their physiological active state at functionalized thiol monolayers on ATR-germanium crystals.

    PubMed

    Schartner, Jonas; Gavriljuk, Konstantin; Nabers, Andreas; Weide, Philipp; Muhler, Martin; Gerwert, Klaus; Kötting, Carsten

    2014-11-24

    Protein immobilization on solid surfaces has become a powerful tool for the investigation of protein function. Physiologically relevant molecular reaction mechanisms and interactions of proteins can be revealed with excellent signal-to-noise ratio by vibrational spectroscopy (ATR-FTIR) on germanium crystals. Protein immobilization by thiol chemistry is well-established on gold surfaces, for example, for surface plasmon resonance. Here, we combine features of both approaches: a germanium surface functionalized with different thiols to allow specific immobilization of various histidine-tagged proteins with over 99% specific binding. In addition to FTIR, the surfaces were characterized by XPS and fluorescence microscopy. Secondary-structure analysis and stimulus-induced difference spectroscopy confirmed protein activity at the atomic level, for example, physiological cation channel formation of Channelrhodopsin 2.

  18. [Thiol peroxidase activities in rat blood plasma determined with hydrogen peroxide and 5,5`-dithio-bis(2-nitrobenzoic acid)].

    PubMed

    Razygraev, A V; Taborskaya, K I; Petrosyan, M A; Tumasova, Zh N

    2016-05-01

    Earlier it has been shown that extracellular glutathione peroxidase (GPx3) from human plasma is able to use cysteine (Cys-SH) instead of glutathione (GSH) as a thiol substrate. In the present study, the ability of rat plasma to utilize not only GSH, but also Cys-SH and homocysteine (Hcy-SH), in the thiol peroxidase reaction has been confirmed. The molar ratio between thiol and H2O2 in the catalyzed reaction was 2:1. The specific activity increased with fractionation of proteins. At a fixed thiol concentration of 0.23 mM, the saturation by H2O2 with vmax app of 100, 128, and 132 nmol H2O2 / s per 1 ml of plasma was found for DL-Cys-SH, L-GSH, and DL-Hcy-SH, respectively. Rank distributions of activities towards all three thiol substrates within plasma protein fractions are fully identical (the probability of random full coincidence was less than 0.01). The statistical analysis confirms that Cys-SH peroxidase, Hcy-SH peroxidase, and GSH peroxidase activities are closely associated with each other. The most probable outcome of this result is the ability of rat GPx3 to utilize all three thiols as substrates for oxidation. Probably, thiol peroxidase is a participant of formation of plasma cystine (Cys-SS-Cys) from Cys-SH in plasma. If the forms of Hcy exhibit different toxic effects, it can be suggested that thiol peroxidase regulates Hcy toxicity in hyperhomocysteinemia through Hcy-SH oxidation to homocystine (Hcy-SS-Hcy).

  19. Activation of Heat Shock and Antioxidant Responses by the Natural Product Celastrol: Transcriptional Signatures of a Thiol-targeted Molecule

    PubMed Central

    Trott, Amy; West, James D.; Klaić, Lada; Westerheide, Sandy D.; Silverman, Richard B.; Morimoto, Richard I.

    2008-01-01

    Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product. PMID:18199679

  20. Secondary metabolites from three Florida sponges with antidepressant activity.

    PubMed

    Kochanowska, Anna J; Rao, Karumanchi V; Childress, Suzanne; El-Alfy, Abir; Matsumoto, Rae R; Kelly, Michelle; Stewart, Gina S; Sufka, Kenneth J; Hamann, Mark T

    2008-02-01

    Brominated indole alkaloids are a common class of metabolites reported from sponges of the order Verongida. Herein we report the isolation, structure determination, and activity of metabolites from three Florida sponges, namely, Verongula rigida (order Verongida, family Aplysinidae), Smenospongia aurea, and S. cerebriformis (order Dictyoceratida, family Thorectidae). All three species were investigated chemically, revealing similarities in secondary metabolites. Brominated compounds, as well as sesquiterpene quinones and hydroquinones, were identified from both V. rigida and S. aurea despite their apparent taxonomic differences at the ordinal level. Similar metabolites found in these distinct sponge species of two different genera provide evidence for a microbial origin of the metabolites. Isolated compounds were evaluated in the Porsolt forced swim test (FST) and the chick anxiety-depression continuum model. Among the isolated compounds, 5,6-dibromo- N,N-dimethyltryptamine ( 1) exhibited significant antidepressant-like action in the rodent FST model, while 5-bromo- N,N-dimethyltryptamine ( 2) caused significant reduction of locomotor activity indicative of a potential sedative action. The current study provides ample evidence that marine natural products with the diversity of brominated marine alkaloids will provide potential leads for antidepressant and anxiolytic drugs.

  1. Effects of metronidazole and its metabolites on histamine immunosuppression activity.

    PubMed

    Elizondo, G; Ostrosky-Wegman, P

    1996-01-01

    We have previously reported that metronidazole treatment increases human lymphocyte proliferation showing individual differences. This drug and its metabolites are imidazole compounds like histamine and cimetidine. The first is an endogenous amine that inhibits T-helper lymphocyte proliferation, and the second is a histamine antagonist. We presently report the in vitro effects of histamine, cimetidine, imidazole, metronidazole and its two principal metabolites (the acetic acid and hydroxy forms), on the mitogenic response to phytohemagglutinin (PHA) stimulation of human peripheral blood lymphocytes. Histamine decreased lymphocyte proliferation while (in order of potency) cimetidine, the hydroxy metabolite of metronidazole, imidazole and metronidazole, increased the mitogenic response to PHA in a dose-response fashion. The acetic acid metabolite lacked immunomodulatory effects. Competitive studies showed that cimetidine, metronidazole, and the hydroxy metabolite blocked the inhibitory effect of histamine on lymphocyte proliferation in a dose-related manner. This blockage was non-competitive, suggesting that the target of the imidazole compounds was not the active site of the H2 receptor.

  2. Thiol-beta-lactamase: replacement of the active-site serine of RTEM beta-lactamase by a cysteine residue.

    PubMed

    Sigal, I S; Harwood, B G; Arentzen, R

    1982-12-01

    We describe a procedure by which the codon (AGC) for the active-site serine-70 of pBR322 beta-lactamase (penicillinase, penicillin amido-beta-lactamhydrolase, EC 3.5.2.6) is altered to that for cysteine (TGC). The pertinent nucleotide bases, A-G-C-A, positions 410-413, of pBR322 are excised by treating a limited HgiAI digest of pBR322 with the 3' leads to 5' exonuclease of T4 DNA polymerase. The new sequence, T-G-C-A, is inserted in two steps. First, the Kpn I molecular linker d(T-G-G-T-A-C-C-A) is ligated into the gap described above. The internal sequence G-T-A-C is then excised enzymatically with Kpn I and T4 DNA polymerase and the molecule is recircularized. This mutant gene, which codes for a thiol-beta-lactamase, confers on Escherichia coli K-12 hosts an ampicillin resistance that is reduced compared with that given by pBR322 yet is greater than that of E. coli lacking any intact beta-lactamase gene. Cell-free extracts of E. coli strains hosting the thiol-beta-lactamase gene possess a p-chloromercuribenzoate-sensitive beta-lactamase activity.

  3. Effect of silver nanomaterials on the activity of thiol-containing antioxidants.

    PubMed

    Zhou, Yu-Ting; He, Weiwei; Lo, Y Martin; Hu, Xiaona; Wu, Xiaochun; Yin, Jun-Jie

    2013-08-14

    The use of nanomaterials in consumer products is rapidly expanding. In most studies, nanomaterials are examined as isolated ingredients. However, consumer products such as foods, cosmetics, and dietary supplements are complex chemical matrixes. Therefore, interactions between nanomaterials and other components of the product must be investigated to ensure the product's performance and safety. Silver nanomaterials are increasingly being used in food packaging as antimicrobial agents. Thiol-containing compounds, such as reduced glutathione (GSH), cysteine, and dihydrolipoic acid, are used as antioxidants in many consumer products. In the current study, we have investigated the interaction between silver nanomaterials and thiol-containing antioxidants. The selected Ag nanomaterials were Ag coated with citrate, Ag coated with poly(vinylpyrrolidone), and Au nanorods coated with Ag in a core/shell structure. We observed direct quenching of the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) by all three Ag nanomaterials to varying degrees. The Ag nanomaterials also reduced the quenching of DPPH by GSH to varying degrees. In addition, we determined that the mixture of GSH and Au@Ag nanorods held at 37 °C was less effective at quenching azo radical than at ambient temperature. Furthermore, we determined that Au@Ag nanorods significantly reduced the ability of GSH and cysteine to quench hydroxyl and superoxide radicals. The work presented here demonstrates the importance of examining the chemical interactions between nanomaterials used in products and physiologically important antioxidants.

  4. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death.

    PubMed

    Martin Muñoz, Patricia; Ortega Ferrusola, Cristina; Vizuete, Guillermo; Plaza Dávila, Maria; Rodriguez Martinez, Heriberto; Peña, Fernando J

    2015-12-01

    Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted.

  5. Metabolism of mometasone furoate and biological activity of the metabolites.

    PubMed

    Sahasranaman, S; Issar, M; Hochhaus, G

    2006-02-01

    To better evaluate the pharmacokinetic and pharmacodynamic properties of the new inhaled glucocorticoid mometasone furoate (MF), the metabolism of MF was evaluated in rat and human tissues and in rat after i.v. administration. Metabolic studies with 3H-MF in human and rat plasma and S9 fractions of human and rat lung showed relatively high stability and a degradation pattern similar to that seen in buffer systems. MF was efficiently metabolized into at least five metabolites in S9 fractions of both rat and human liver. There were, however, quantitative differences in the metabolites between the two species. The apparent half-life of MF in the S9 fraction of human liver was found to be 3 times greater compared with that in rat. MET1, the most polar metabolite, was the major metabolite in rat liver fractions, whereas both MET1 and MET2 were formed to an equal extent in human liver. Metabolism and distribution studies in rats after intravenous and intratracheal administration of [1,2-(3)H]MF revealed that most of the radioactivity (approximately 90%) was present in the stomach, intestines, and intestinal contents, suggesting biliary excretion of MF and its metabolites. Radiochromatography showed that most radioactivity was associated with MET1, MET2, and MET 3. Fractionation of the high-performance liquid chromatography eluate (MET1-5) revealed that only MF [relative binding affinity (RBA) 2900] and MET2 (RBA 700) had appreciable glucocorticoid receptor binding affinity. These results suggest that MF undergoes distinct extrahepatic metabolism but generates active metabolites that might be in part responsible for the systemic side effects of MF.

  6. Monascus secondary metabolites: production and biological activity.

    PubMed

    Patakova, Petra

    2013-02-01

    The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.

  7. Identification of the Thiol Isomerase-binding Peptide, Mastoparan, as a Novel Inhibitor of Shear-induced Transforming Growth Factor β1 (TGF-β1) Activation*

    PubMed Central

    Brophy, Teresa M.; Coller, Barry S.; Ahamed, Jasimuddin

    2013-01-01

    TGF-β1 is a disulfide-bonded homodimeric protein produced by platelets and other cells that plays a role in many physiologic and pathologic processes. TGF-β1 is secreted as an inactive large latent complex (LLC) comprised of TGF-β1, latency-associated peptide, and latent TGF-β binding protein 1. We previously demonstrated that shear force can activate LLC and that thiol-disulfide exchange contributes to the process. We have now investigated the role of thiol isomerases in the activation of LLC in platelet releasates (PR) and recombinant LLC. The wasp venom peptide mastoparan, which inhibits the chaperone activity of PDI, inhibited stirring- and shear-induced activation of latent TGF-β1 by 90 and 75% respectively. To identify the proteins that bind to mastoparan either directly or indirectly, PR were chromatographed on a mastoparan affinity column. Latent TGF-β binding protein 1, latency-associated peptide, TGF-β1, clusterin, von Willebrand factor, multimerin-1, protein disulfide isomerase (PDI), ERp5, ERp57, and ERp72 eluted specifically from the column. Anti-PDI RL90 attenuated the inhibitory effect of mastoparan on LLC activation. Furthermore, reduced PDI inhibited activation of PR LLC, whereas oxidized PDI had no effect. We conclude that thiol isomerases and thiol-disulfide exchange contribute to TGF-β1 activation and identify a number of molecules that may participate in the process. PMID:23463512

  8. Investigations of fungal secondary metabolites with potential anticancer activity.

    PubMed

    Balde, ElHadj Saidou; Andolfi, Anna; Bruyère, Céline; Cimmino, Alessio; Lamoral-Theys, Delphine; Vurro, Maurizio; Damme, Marc Van; Altomare, Claudio; Mathieu, Véronique; Kiss, Robert; Evidente, Antonio

    2010-05-28

    Fourteen metabolites, isolated from phytopathogenic and toxigenic fungi, were evaluated for their in vitro antigrowth activity for six distinct cancer cell lines, using the MTT colorimetric assay. Bislongiquinolide (1) and dihydrotrichodimerol (5), which belong to the bisorbicillinoid structural class, displayed significant growth inhibitory activity against the six cancer cell lines studied, while the remaining compounds displayed weak or no activity. The data show that 1 and 5 have similar growth inhibitory activities with respect to those cancer cell lines that display certain levels of resistance to pro-apoptotic stimuli or those that are sensitive to apoptosis. Quantitative videomicroscopy analysis revealed that 1 and 5 exert their antiproliferative effect through cytostatic and not cytotoxic activity. The preliminary results from the current study have stimulated further structure-activity investigations with respect to the growth inhibitory activity of compounds belonging to the bisorbicillinoid group.

  9. Carotenoid derivatives inhibit nuclear factor kappa B activity in bone and cancer cells by targeting key thiol groups.

    PubMed

    Linnewiel-Hermoni, Karin; Motro, Yair; Miller, Yifat; Levy, Joseph; Sharoni, Yoav

    2014-10-01

    Aberrant activation of the nuclear factor kappa B (NFkB) transcription system contributes to cancer progression, and has a harmful effect on bone health. Several major components of the NFkB pathway such as IkB Kinase (IKK) and the NFkB subunits contain cysteine residues that are critical for their activity. The interaction of electrophiles with these cysteine residues results in NFkB inhibition. Carotenoids, hydrophobic plant pigments, are devoid of electrophilic groups, and we have previously demonstrated that carotenoid derivatives, but not the native compounds activate the Nrf2 transcription system. The aim of the current study was to examine whether carotenoid derivatives inhibit NFkB, and, if so, to determine the molecular mechanism underpinning the inhibitory action. We report in the present study that a mixture of oxidized derivatives, prepared by ethanol extraction from partially oxidized lycopene preparation, inhibited NFkB reporter gene activity. In contrast, the intact carotenoid was inactive. A series of synthetic dialdehyde carotenoid derivatives inhibited reporter activity as well as several stages of the NFkB pathway in both cancer and bone cells. The activity of the carotenoid derivatives depended on the reactivity of the electrophilic groups in reactions such as Michael addition to sulfhydryl groups of proteins. Specifically, carotenoid derivatives directly interacted with two key proteins of the NFkB pathway: the IKKβ and the p65 subunit. Direct interaction with IKKβ was found in an in vitro kinase assay with a recombinant enzyme. The inhibition by carotenoid derivatives of p65 transcriptional activity was observed in a reporter gene assay performed in the presence of excess p65. This inhibition action resulted, at least in part, from direct interaction of the carotenoid derivative with p65 leading to reduced binding of the protein to DNA as evidenced by electrophoretic mobility shift assay (EMSA) experiments. Importantly, we found by using

  10. Pharmacologically active plant metabolites as survival strategy products.

    PubMed

    Attardo, C; Sartori, F

    2003-01-01

    The fact that plant organisms produce chemical substances that are able to positively or negatively interfere with the processes which regulate human life has been common knowledge since ancient times. One of the numerous possible examples in the infusion of Conium maculatum, better known as Hemlock, a plant belonging to the family umbelliferae, used by the ancient Egyptians to cure skin diseases. The current official pharmacopoeia includes various chemical substances produced by secondary plant metabolisms. For example, the immunosuppressive drugs used to prevent organ transplant rejection and the majority of antibiotics are metabolites produced by fungal organisms, pilocarpin, digitalis, strophantus, salicylic acid and curare are examples of plant organism metabolites. For this reason, there has been an increase in research into plants, based on information on their medicinal use in the areas where they grow. The study of plants in relation to local culture and traditions is known as "ethnobotany". Careful study of the behaviour of sick animals has also led to the discovery of medicinal plants. The study of this subject is known as "zoopharmacognosy". The aim of this article is to discuss the fact that "ad hoc" production of such chemical substances, defined as "secondary metabolites", is one of the modes in which plant organisms respond to unfavourable environmental stimuli, such as an attack by predatory phytophagous animals or an excessive number of plant individuals, even of the same species, in a terrain. In the latter case, the plant organisms produce toxic substances, called "allelopathic" which limit the growth of other individuals. "Secondary metabolites" are produced by metabolic systems that are shunts of the primary systems which, when required, may be activated from the beginning, or increased to the detriment of others. The study of the manner in which such substances are produced is the subject of a new branch of learning called "ecological

  11. Biological activity of secondary metabolites from Peltostigma guatemalense.

    PubMed

    Cuca Suarez, Luis Enrique; Pattarroyo, Manuel Elkin; Lozano, Jose Manuel; Delle Monache, Franco

    2009-01-01

    Leaves and wood of Peltostigma guatemalense, a novel species of the family Rutaceae, yielded a total of 14 secondary metabolites, i.e. methyl p-hydroxy benzoate, phenylacetic acid, beta-sitosterol, lupeol, syringaresinol, scopoletin, gardenin B (1), and seven alkaloids: gamma-fagarine (2), skimmianine (3), kokusaginine (4), 7-O-isopentenyl-gamma-fagarine (5), anhydro-evoxine (6), evoxine (7) and 4-methoxy-1-methyl-quinolin-2-one (8). The compounds have been identified by spectroscopic methods. Antibacterial and antimalarial in vitro activity of the isolated compounds were also determined. Methyl p-hydroxy benzoate and quinolone (8) were the most effective on Plasmodium falciparium strains.

  12. Potential anticancer activity of lichen secondary metabolite physodic acid.

    PubMed

    Cardile, V; Graziano, A C E; Avola, R; Piovano, M; Russo, A

    2017-02-01

    Secondary metabolites present in lichens, which comprise aliphatic, cycloaliphatic, aromatic and terpenic compounds, are unique with respect to those of higher plants and show interesting biological and pharmacological activities. However, only a few of these compounds, have been assessed for their effectiveness against various in vitro cancer models. In the present study, we investigated the cytotoxicity of three lichen secondary metabolites (atranorin, gyrophoric acid and physodic acid) on A375 melanoma cancer cell line. The tested compounds arise from different lichen species collected in different areas of Continental and Antarctic Chile. The obtained results confirm the major efficiency of depsidones. In fact, depsides atranorin and gyrophoric acid, showed a lower activity inhibiting the melanoma cancer cells only at more high concentrations. Whereas the depsidone physodic acid, showed a dose-response relationship in the range of 6.25-50 μM concentrations in A375 cells, activating an apoptotic process, that probably involves the reduction of Hsp70 expression. Although the molecular mechanism, by which apoptosis is induced by physodic acid remains unclear, and of course further studies are needed, the results here reported confirm the promising biological properties of depsidone compounds, and may offer a further impulse to the development of analogues with more powerful efficiency against melanoma cells.

  13. Pharmacokinetic profiles of the active metamizole metabolites in healthy horses.

    PubMed

    Giorgi, M; Aupanun, S; Lee, H-K; Poapolathep, A; Rychshanova, R; Vullo, C; Faillace, V; Laus, F

    2017-04-01

    Metamizole (MT) is an analgesic and antipyretic drug labelled for use in humans, horses, cattle, swine and dogs. MT is rapidly hydrolysed to the active primary metabolite 4-methylaminoantipyrine (MAA). MAA is formed in much larger amounts compared with other minor metabolites. Among the other secondary metabolites, 4-aminoantipyrine (AA) is also relatively active. The aim of this research was to evaluate the pharmacokinetic profiles of MAA and AA after dose of 25 mg/kg MT by intravenous (i.v.) and intramuscular (i.m.) routes in healthy horses. Six horses were randomly allocated to two equally sized treatment groups according to a 2 × 2 crossover study design. Blood was collected at predetermined times within 24 h, and plasma was analysed by a validated HPLC-UV method. No behavioural changes or alterations in health parameters were observed in the i.v. or i.m. groups of animals during or after (up to 7 days) drug administration. Plasma concentrations of MAA after i.v. and i.m. administrations of MT were detectable from 5 min to 10 h in all the horses. Plasma concentrations of AA were detectable in the same range of time, but in smaller amounts. Maximum concentration (Cmax ), time to maximum concentration (Tmax ) and AUMC0-last of MAA were statistically different between the i.v. and i.m. groups. The AUCIM /AUCIV ratio of MAA was 1.06. In contrast, AUC0-last of AA was statistically different between the groups (P < 0.05) with an AUCIM /AUCIV ratio of 0.54. This study suggested that the differences in the MAA and AA plasma concentrations found after i.m. and i.v. administrations of MT might have minor consequences on the pharmacodynamics of the drug.

  14. Antitumor and antimetastatic activities of a novel benzothiazole-2-thiol derivative in a murine model of breast cancer.

    PubMed

    Hu, XiaoLin; Li, Sen; He, Yan; Ai, Ping; Wu, Shaoyong; Su, Yonglin; Li, Xiaolin; Cai, Lei; Peng, Xingchen

    2017-01-02

    The prognosis of metastatic breast cancer is always very poor. Thus, it is urgent to develop novel drugs with less toxicity against metastatic breast cancer. A new drug (XC-591) derived from benzothiazole-2-thiol was designed and synthesized in our lab. In this study, we tried to assess effects of XC-591 treatment on primary breast cancer and pulmonary metastasis in 4T1 mice model. Furthermore, we tried to discover its possible molecular mechanism of action. MTT experiment showed XC-591 had significant anti-cancer activity on diverse cancer cells. Furthermore, XC-591 significantly suppressed the proliferation of 4T1 cells by colony formation assay. The in vivo results displayed that XC-591 could inhibit the growth and metastasis in 4T1 model. Moreover, histological analysis revealed that XC-591 treatment increased apoptosis, inhibited proliferation and angiogenesis in vivo. In addition, XC-591 did not contribute to obvious drug associated toxicity during the whole study. Molecular mechanism showed XC-591 could inhibit RhoGDI, activate caspase-3 and decrease phosphorylated Akt. The present data may be important to further explore this kind of new small-molecule inhibitor.

  15. Cyclic metabolites: chemical and biological considerations.

    PubMed

    Erve, John C L

    2008-02-01

    Metabolism of xenobiotics can sometimes generate cyclic metabolites. Such metabolites are usually the result of intramolecular reactions occurring within a primary or secondary metabolite and this chemistry may lead to unexpected structures. Intramolecular chemistry is often driven by nucleophilic groups reacting with electrophilic atoms, often carbon, although radical processes also occur. Conjugation of xenobiotics or their metabolites with endogenous thiols, such as glutathione or cysteine, introduce a reactive amino group that can lead to the formation of cyclic structures. Less common than chemically driven cyclizations are enzymatically mediated ring-closures, although this may reflect our incomplete recognition of enzymatic involvement in this step of cyclic metabolite formation. While some cyclic metabolites are biologically inactive, others are biologically active. Thus, a cyclic metabolite may display desirable pharmacology, or, contribute to toxicology. When a cyclic metabolite is identified, it is important to consider the possibility that it is an artifact, i.e. metabonate, that was formed during processing of the sample, for example, through degradation or by chemical reactions with other components present in the matrix. From a medicinal chemistry perspective, a cyclic metabolite with a different chemical scaffold from the parent structure may lead to a new series of structurally novel, biologically active molecules with the same, or different, pharmacology from the parent. This review will cover a selection of cyclic metabolites from a mechanistic point of view, and when possible, discuss their biological relevance.

  16. Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity.

    PubMed

    Dumoulin, Alexis; Grauschopf, Ulla; Bischoff, Markus; Thöny-Meyer, Linda; Berger-Bächi, Brigitte

    2005-11-01

    DsbA proteins, the primary catalysts of protein disulfide bond formation, are known to affect virulence and penicillin resistance in Gram-negative bacteria. We identified a putative DsbA homologue in the Gram-positive pathogen Staphylococcus aureus that was able to restore the motility phenotype of an Escherichia coli dsbA mutant and thus demonstrated a functional thiol oxidoreductase activity. The staphylococcal DsbA (SaDsbA) had a strong oxidative redox potential of -131 mV. The persistence of the protein throughout the growth cycle despite its predominant transcription during exponential growth phase suggested a rather long half-life for the SaDsbA. SaDsbA was found to be a membrane localised lipoprotein, supporting a role in disulfide bond formation. But so far, neither in vitro nor in vivo phenotype could be identified in a staphylococcal dsbA mutant, leaving its physiological role unknown. The inability of SaDsbA to interact with the E. coli DsbB and the lack of an apparent staphylococcal DsbB homologue suggest an alternative re-oxidation pathway for the SaDsbA.

  17. Mutagenic activity of austocystins - secondary metabolites of Aspergillus ustus

    SciTech Connect

    Kfir, R.; Johannsen, E.; Vleggaar, R.

    1986-11-01

    Mycotoxins constitute a group of toxic secondary fungal metabolites. Fungi that produce these toxins frequently contaminate food and feed, creating a potential threat to human and animal health. Biological activities of mycotoxins include, amongst others: toxicity, mutagenicity and carcinogenicity, which can be expressed with or without metabolic activation. Austocystins are similar in structure to aflatoxin B/sup 1/ and are probably synthesized in a similar manner. The Ames Salmonella test, a widely accepted method employed for the detection of mutagenic activity of various chemical compounds was used for testing the mutagenic activity of different mycotoxins. As aflatoxin B/sup 1/ was found by the Ames test to be highly mutagenic, the same test was applied for the study of possible mutagenicity of the austocystins. The mutagenic activity of these compounds was studied with and without metabolic activation using two tester strains of S. typhimurium, one capable of detecting frame shift mutation (strain TA98) and the other capable of detecting base pair substitution (strain TA100).

  18. Isolation of botulinolysin, a thiol-activated hemolysin, from serotype D Clostridium botulinum: A species-specific gene duplication in Clostridia.

    PubMed

    Suzuki, Tomonori; Nagano, Thomas; Niwa, Koichi; Mutoh, Shingo; Uchino, Masataka; Tomizawa, Motohiro; Sagane, Yoshimasa; Watanabe, Toshihiro

    2016-12-01

    Botulinolysin (BLY) is a toxin produced by Clostridium botulinum that belongs to a group of thiol-activated hemolysins. In this study, a protein exhibiting hemolytic activity was purified from the culture supernatant of C. botulinum serotype D strain 4947. The purified protein displayed a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis with a molecular mass of 55kDa, and its N-terminal and internal amino acid sequences exhibited high similarity to a group of thiol-activated hemolysins produced by gram-positive bacteria. Thus, the purified protein was identified as the BLY. Using the nucleotide sequences of previously cloned genes for hemolysins, two types of genes encoding BLY-like proteins were cloned unexpectedly. Molecular modeling analysis indicated that the products of both genes displayed very similar structures, despite the low sequence similarity. In silico screening revealed a specific duplication of the hemolysin gene restricted to serotypes C and D of C. botulinum and their related species among thiol-activated hemolysin-producing bacteria. Our findings provide important insights into the genetic characteristics of pathogenic bacteria.

  19. Antifouling activity of secondary metabolites isolated from chinese marine organisms.

    PubMed

    Li, Yong-Xin; Wu, Hui-Xian; Xu, Ying; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2013-10-01

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml(-1). Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml(-1) and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity.

  20. Biologically Active Metabolites Produced by the Basidiomycete Quambalaria cyanescens

    PubMed Central

    Stodůlková, Eva; Císařová, Ivana; Kolařík, Miroslav; Chudíčková, Milada; Novák, Petr; Man, Petr; Kuzma, Marek; Pavlů, Barbora; Černý, Jan; Flieger, Miroslav

    2015-01-01

    Four strains of the fungus Quambalaria cyanescens (Basidiomycota: Microstromatales), were used for the determination of secondary metabolites production and their antimicrobial and biological activities. A new naphthoquinone named quambalarine A, (S)-(+)-3-(5-ethyl-tetrahydrofuran-2-yliden)-5,7,8-trihydroxy-2-oxo-1,4-naphthoquinone (1), together with two known naphthoquinones, 3-hexanoyl-2,5,7,8-tetrahydroxy-1,4-naphthoquinone (named here as quambalarine B, 2) and mompain, 2,5,7,8-tetrahydroxy-1,4-naphthoquinone (3) were isolated. Their structures were determined by single-crystal X-ray diffraction crystallography, NMR and MS spectrometry. Quambalarine A (1) had a broad antifungal and antibacterial activity and is able inhibit growth of human pathogenic fungus Aspergillus fumigatus and fungi co-occurring with Q. cyanescens in bark beetle galleries including insect pathogenic species Beauveria bassiana. Quambalarine B (2) was active against several fungi and mompain mainly against bacteria. The biological activity against human-derived cell lines was selective towards mitochondria (2 and 3); after long-term incubation with 2, mitochondria were undetectable using a mitochondrial probe. A similar effect on mitochondria was observed also for environmental competitors of Q. cyanescens from the genus Geosmithia. PMID:25723150

  1. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol.

    PubMed

    Goedken, Eric R; Argiriadi, Maria A; Banach, David L; Fiamengo, Bryan A; Foley, Sage E; Frank, Kristine E; George, Jonathan S; Harris, Christopher M; Hobson, Adrian D; Ihle, David C; Marcotte, Douglas; Merta, Philip J; Michalak, Mark E; Murdock, Sara E; Tomlinson, Medha J; Voss, Jeffrey W

    2015-02-20

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.

  2. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*

    PubMed Central

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.

    2015-01-01

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479

  3. Effects of lead on K(+)-para-nitrophenyl phosphatase activity and protection by thiol reagents.

    PubMed

    Rajanna, B; Chetty, C S; McBride, V; Rajanna, S

    1990-01-01

    Lead (Pb) inhibited K(+)-stimulated para-nitrophenyl phosphatase (K(+)-PNPPase) of rat brain P2 fraction in a concentration-dependent manner with IC50 3.5 microM. Altered pH versus activity demonstrated comparable inhibitions by Pb in buffered acidic, neutral and alkaline pH ranges. Inhibition of enzyme activity was higher at lower temperatures (17-27 degrees C) compared to 37 degrees C. Preincubation of enzyme with sulfhydryl (-SH) agents such as cysteine (Cyst) and dithiothreitol (DTT) but not glutathione (GSH) protected against Pb-inhibition. Uncompetitive type of inhibition with respect to the activation of K+ was indicated by a decrease in Vmax from 16.2 to 8.37 mumoles of para-nitrophenol (PNP)/mg protein/hr and Km from 18.99 to 12.39 mM. Kinetic studies on substrate (p-nitrophenyl phosphate) activation in the presence of Pb (3.5 microM) indicated a significant decrease in Vmax from 8.94 to 4.69 mumoles of PNP/mg protein/hr with no change in Km. Cyst (3 microM) and DTT (10 microM) reversed the Pb-inhibited Vmax from 4.69 to 8.38 and 7.24 mumoles of PNP/mg protein/hr respectively. These results suggest that the critical conformational property of K(+)-PNPPase is sensitive to Pb. The data also indicates that the Pb inhibits Na(+)-K+ ATPase system by interacting with dephosphorylation of the enzyme-phosphoryl complex, while Cyst and DTT protected against Pb-inhibition.

  4. Ergosteroids. II: Biologically active metabolites and synthetic derivatives of dehydroepiandrosterone.

    PubMed

    Lardy, H; Kneer, N; Wei, Y; Partridge, B; Marwah, P

    1998-03-01

    An improved procedure for the synthesis of 3 beta-hydroxyandrost-5-ene-7,17-dione, a natural metabolite of dehydroepiandrosterone (DHEA) is described. The synthesis and magnetic resonance spectra of several other related steroids are presented. Feeding dehydroepiandrosterone to rats induces enhanced formation of several liver enzymes among which are mitochondrial sn-glycerol 3-phosphate dehydrogenase (GPDH) and cytosolic malic enzyme. The induction of these two enzymes, that complete a thermogenic system in rat liver, was used as an assay to search for derivatives of DHEA that might be more active than the parent steroid. Activity is retained in steroids that are reduced to the corresponding 17 beta-hydroxy derivative, or hydroxylated at 7 alpha or 7 beta, and is considerably enhanced when the 17-hydroxy or 17-carbonyl steroid is converted to the 7-oxo derivative. Several derivatives of DHEA did not induce the thermogenic enzymes whereas the corresponding 7-oxo compounds did. Both short and long chain acyl esters of DHEA and of 7-oxo-DHEA are active inducers of the liver enzymes when fed to rats. 7-Oxo-DHEA-3-sulfate is as active as 7-oxo-DHEA or its 3-acetyl ester, whereas DHEA-3-sulfate is much less active than DHEA. Among many steroids tested, those possessing a carbonyl group at position 3, a methyl group at 7, a hydroxyl group at positions 1, 2, 4, 11, or 19, or a saturated B ring, with or without a 4-5 double bond, were inactive.

  5. Role of thiols in cellular response to radiation and drugs. Symposium: thiols

    SciTech Connect

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-09-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme. A GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells.

  6. Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases.

    PubMed

    Sun, Dongxiao; Sharma, Arun K; Dellinger, Ryan W; Blevins-Primeau, Andrea S; Balliet, Renee M; Chen, Gang; Boyiri, Telih; Amin, Shantu; Lazarus, Philip

    2007-11-01

    Tamoxifen (TAM) is an antiestrogen that has been widely used in the treatment and prevention of breast cancer in women. One of the major mechanisms of metabolism and elimination of TAM and its major active metabolites 4-hydroxytamoxifen (4-OH-TAM) and 4-OH-N-desmethyl-TAM (endoxifen; 4-hydroxy-N-desmethyl-tamoxifen) is via glucuronidation. Although limited studies have been performed characterizing the glucuronidation of 4-OH-TAM, no studies have been performed on endoxifen. In the present study, characterization of the glucuronidating activities of human UDP glucuronosyltransferases (UGTs) against isomers of 4-OH-TAM and endoxifen was performed. Using homogenates of individual UGT-overexpressing cell lines, UGTs 2B7 approximately 1A8 > UGT1A10 exhibited the highest overall O-glucuronidating activity against trans-4-OH-TAM as determined by Vmax/K(M), with the hepatic enzyme UGT2B7 exhibiting the highest binding affinity and lowest K(M) (3.7 microM). As determined by Vmax/K(M), UGT1A10 exhibited the highest overall O-glucuronidating activity against cis-4-OH-TAM, 10-fold higher than the next-most active UGTs 1A1 and 2B7, but with UGT1A7 exhibiting the lowest K(M). Although both N- and O-glucuronidation occurred for 4-OH-TAM in human liver microsomes, only O-glucuronidating activity was observed for endoxifen; no endoxifen-N-glucuronidation was observed for any UGT tested. UGTs 1A10 approximately 1A8 > UGT2B7 exhibited the highest overall glucuronidating activities as determined by Vmax/K(M) for trans-endoxifen, with the extrahepatic enzyme UGT1A10 exhibiting the highest binding affinity and lowest K(M) (39.9 microM). Similar to that observed for cis-4-OH-TAM, UGT1A10 also exhibited the highest activity for cis-endoxifen. These data suggest that several UGTs, including UGTs 1A10, 2B7, and 1A8 play an important role in the metabolism of 4-OH-TAM and endoxifen.

  7. The versatile low-molecular-weight thiols: Beyond cell protection.

    PubMed

    Wang, Min; Zhao, Qunfei; Liu, Wen

    2015-12-01

    Low-molecular-weight (LMW) thiols are extensively involved in the maintenance of cellular redox potentials and the protection of cells from a variety of reactive chemical and electrophilic species. However, we recently found that the metabolic coupling of two LMW thiols - mycothiol (MSH) and ergothioneine (EGT) - programs the biosynthesis of the anti-infective agent lincomycin A. Remarkably, such a constructive role of the thiols in the biosynthesis of natural products has so far received relatively little attention. We speculate that the unusual thiol EGT might function as a chiral thiolation carrier (for modification) and a novel activator (for glycosylation) of sugar. Additionally, we examine recent evidence for LMW thiols (MSH and others) as sulfur donors of sulfur-containing natural products. Clearly, the LMW thiols have more diverse activities beyond cell protection, and more attention should be paid to the correlation of their functions with thiol-dependent enzymes.

  8. Antioxidant activities of the synthesized thiol-contained peptides derived from computer-aided pepsin hydrolysis of yam tuber storage protein, dioscorin.

    PubMed

    Han, Chuan-Hsiao; Liu, Ju-Chi; Fang, Sheng-Uei; Hou, Wen-Chi

    2013-06-01

    Our previous report showed that yam dioscorin and its peptic hydrolysates exhibit radical scavenging activities; however, the functions of these peptic hydrolases are still under investigation. In this study, the thiol-containing peptides derived from computer-aided simulation of pepsin hydrolysis of dioscorin, namely, KTCGNGME (diotide1), PPCSE (diotide2), CDDRVIRTPLT (diotide3), KTCGY (diotide4), and PPCTE (diotide5) were synthesized to compare their antioxidant activities with GSH and/or carnosine by examining hydroxyl radical scavenging activity by electron spin resonance spectrometry, anti-low-density lipoprotein peroxidation, anti-AAPH-induced hemolysis, and oxygen radical absorbance capacity activity. We found that while all the synthesized diotides showed antioxidant activity, diotide4 exhibited the highest levels. Moreover, all diotides (100 μM) showed protective effects against methylglyoxal-induced human umbilical vein endothelial cell death. These results suggest that thiol-containing diotides derived from dioscorin hydrolysis exhibit antioxidant activities and reveal the benefits of yam tuber as an antioxidant-rich food.

  9. Serum metabolites related to cardiorespiratory fitness, physical activity energy expenditure, sedentary time and vigorous activity.

    PubMed

    Wientzek, Angelika; Floegel, Anna; Knüppel, Sven; Vigl, Matthaeus; Drogan, Dagmar; Adamski, Jerzy; Pischon, Tobias; Boeing, Heiner

    2014-04-01

    The aim of our study was to investigate the relationship between objectively measured physical activity (PA) and cardiorespiratory fitness (CRF) and serum metabolites measured by targeted metabolomics in a population- based study. A total of 100 subjects provided 2 fasting blood samples and engaged in a CRF and PA measurement at 2 visits 4 months apart. CRF was estimated from a step test, whereas physical activity energy expenditure (PAEE), time spent sedentary and time spend in vigorous activity were measured by a combined heart rate and movement sensor for a total of 8 days. Serum metabolite concentrations were determined by flow injection analysis tandem mass spectrometry (FIA-MS/MS). Linear mixed models were applied with multivariable adjustment and p-values were corrected for multiple testing. Furthermore, we explored the associations between CRF, PA and two metabolite factors that have previously been linked to risk of Type 2 diabetes. CRF was associated with two phosphatidylcholine clusters independently of all other exposures. Lysophosphatidylcholine C14:0 and methionine were significantly negatively associated with PAEE and sedentary time. CRF was positively associated with the Type 2 diabetes protective factor. Vigorous activity was positively associated with the Type 2 diabetes risk factor in the mutually adjusted model. Our results suggest that CRF and PA are associated with serum metabolites, especially CRF with phosphatidylcholines and with the Type 2 diabetes protective factor. PAEE and sedentary time were associated with methionine. The identified metabolites could be potential mediators of the protective effects of CRF and PA on chronic disease risk.

  10. Thiol biochemistry of prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  11. Maillard reaction products derived from thiol compounds as inhibitors of enzymatic browning of fruits and vegetables: the structure-activity relationship.

    PubMed

    Billaud, C; Maraschin, C; Peyrat-Maillard, M-N; Nicolas, J

    2005-06-01

    Some thiol-derived Maillard reaction products (MRPs) may exert antioxidant activity, depending on the reaction conditions as well as on the sugar and the sulphydryl compound. Recently, we reported that MRPs derived from glucose or fructose with cysteine (CSH) or glutathione (GSH) mixtures greatly inhibited polyphenoloxidases (PPOs), oxidoreductases responsible for discoloration of fresh or minimally processed fruits and vegetables. Glucose and GSH were shown to be the most active in producing inhibitory MRPs. Therefore, we examined the way in which the nature of the reactants affected their synthesis, in order to establish a structure-activity relationship for the inhibitory products. Various aqueous (0.083 M, 0.125 M, or 0.25 M) mixtures of a sugar (hexose, pentose, or diholoside) with either a CSH-related compound (CSH, GSH, N-acetyl-cysteine, cysteamine, cysteic acid, methyl-cysteine, cysteine methyl ester), an amino acid (gamma-glutamic acid, glycine, methionine), or other sulfur compound (thiourea, 1,4-dithiothreitol, 2-mercaptoethanol) were heated at 103 degrees C for 14 h. Soluble MRPs were compared for their ability to inhibit apple PPO activity. In the presence of CSH, the rated sugars (same molar concentration) ranked as to inhibitory effect were pentoses > sucrose > hexoses > or = maltose. In the presence of glucose, the simultaneous presence of an amino group, a carboxyl group, and a free thiol group on the same molecule seemed essential for the production of highly inhibitory compounds.

  12. The influence of the protector thiol L-cystein on the toxic and therapeutic responses of stabilized "activated" cyclophosphamide (4-(S-ethanol)-sulfido-cyclophosphamide).

    PubMed

    Voelcker, G; Laber, P; Rockinger, H; Wientzek, C; Hohorst, H J

    1984-01-01

    The influence of L-cystein on the toxic and therapeutic responses of 4-(S-ethanol)-sulfido-cyclophosphamide (P1), a stabilized "activated" cyclophosphamide, was investigated. Stabilized "activated" cyclophosphamides hydrolyze under physiological conditions to 4-hydroxycyclophosphamide (4-OH-CP). The antitumor activity of P1 was investigated on a heterotransplanted human bladder sarcoma in nude mice and in perfusion experiments carried out on the isolated tumor bearing limb in rats. Due to its rapid hydrolysis to 4-OH-CP, P1 exhibits severe local toxicity which is decreased by the protector thiol L-cystein. Simultaneous application of double molar amounts of L-cystein reduces toxicity in nude mice to approximately one-third. Therapeutic activity is not affected by this ratio of L-cystein so that the protector thiol increases the therapeutic efficacy of P1. Higher amounts of L-cystein reduce both the acute toxicity in nude mice and the therapeutic efficacy against the human xenograft. The perfusion experiments demonstrate that a P1 concentration necessary to cure rats with tumor bearing limb is only tolerated in combination with L-cystein.

  13. Antibacterial Activity of Metabolites Products of Vibrio Alginolyticus Isolated from Sponge Haliclona sp. Against Staphylococcus Aureus

    PubMed Central

    Nursyam, Happy

    2017-01-01

    The objective of this study was to investigate the antibacterial activity of primary and secondary metabolites from Vibrio alginoliticus isolated from sponge Haliclona sp. against Staphylococcus aureus. A descriptive method was used in this research. The antibacterial activity was analysed by paper disk method. The results showed that the primary metabolites produced by Vibrio alginoliticus that is in symbiosis with sponge Haliclona sp. were able to effectively inhibit Staphylococcus aureus growth with an inhibition zone diameter of 12.9 mm, while the secondary metabolites of 9.9 mm. Electrophoresis analysis of the primary metabolites showed that there were 11 protein bands which were not found in secondary metabolites. Protein bands with low molecular weights presumably had an inhibiting effect on the growth of Staphylococcus aureus. PMID:28299291

  14. Protein Thiol Oxidation in Murine Airway Epithelial Cells in Response to Naphthalene or Diethyl Maleate

    PubMed Central

    Spiess, Page C.; Morin, Dexter; Williams, Chase R.; Buckpitt, Alan R.

    2010-01-01

    Naphthalene (NA) is a semivolatile aromatic hydrocarbon to which humans are exposed from a variety of sources. NA results in acute cytotoxicity to respiratory epithelium in rodents. Cytochrome P450-dependent metabolic activation to form reactive intermediates and loss of soluble cellular thiols (glutathione) are critical steps in NA toxicity, but the precise mechanisms by which this chemical results in cellular injury remain unclear. Protein thiols are likely targets of reactive NA metabolites. Loss of these, through adduction or thiol oxidation mechanisms, may be important underlying mechanisms for NA toxicity. To address the hypothesis that loss of thiols on specific cellular proteins is critical to NA-induced cytotoxicity, we compared reduced to oxidized thiol ratios in airway epithelial cell proteins isolated from lungs of mice treated with NA or the nontoxic glutathione depletor, diethyl maleate (DEM). At 300 mg/kg doses, NA administration resulted in a greater than 85% loss of glutathione levels in the airway epithelium, which is similar to the loss observed after DEM treatment. Using differential fluorescent maleimide labeling followed by 2DE separation of proteins, we identified more than 35 unique proteins that have treatment-specific differential sulfhydryl oxidation. At doses of NA and DEM that produce similar levels of glutathione depletion, Cy3/Cy5 labeling ratios were statistically different for 16 nonredundant proteins in airway epithelium. Proteins identified include a zinc finger protein, several aldehyde dehydrogenase variants, β-actin, and several other structural proteins. These studies show distinct patterns of protein thiol alterations with the noncytotoxic DEM and the cytotoxic NA. PMID:19843705

  15. Thiol-Based Redox Switches

    PubMed Central

    Groitl, Bastian; Jakob, Ursula

    2014-01-01

    Regulation of protein function through thiol-based redox switches plays an important role in the response and adaptation to local and global changes in the cellular levels of reactive oxygen species (ROS). Redox regulation is used by first responder proteins, such as ROS-specific transcriptional regulators, chaperones or metabolic enzymes to protect cells against mounting levels of oxidants, repair the damage and restore redox homeostasis. Redox regulation of phosphatases and kinases is used to control the activity of select eukaryotic signaling pathways, making reactive oxygen species important second messengers that regulate growth, development and differentiation. In this review we will compare different types of reversible protein thiol modifications, elaborate on their structural and functional consequences and discuss their role in oxidative stress response and ROS adaptation. PMID:24657586

  16. Octadecyl Chains Immobilized onto Hyaluronic Acid Coatings by Thiol-ene "Click Chemistry" Increase the Surface Antimicrobial Properties and Prevent Platelet Adhesion and Activation to Polyurethane.

    PubMed

    Felgueiras, Helena P; Wang, L M; Ren, K F; Querido, M M; Jin, Q; Barbosa, M A; Ji, J; Martins, M C L

    2017-03-08

    Infection and thrombus formation are still the biggest challenges for the success of blood contact medical devices. This work aims the development of an antimicrobial and hemocompatible biomaterial coating through which selective binding of albumin (passivant protein) from the bloodstream is promoted and, thus, adsorption of other proteins responsible for bacterial adhesion and thrombus formation can be prevented. Polyurethane (PU) films were coated with hyaluronic acid, an antifouling agent, that was previously modified with thiol groups (HA-SH), using polydopamine as the binding agent. Octadecyl acrylate (C18) was used to attract albumin since it resembles the circulating free fatty acids and albumin is a fatty acid transporter. Thiol-ene "click chemistry" was explored for C18 immobilization on HA-SH through a covalent bond between the thiol groups from the HA and the alkene groups from the C18 chains. Surfaces were prepared with different C18 concentrations (0, 5, 10, and 20%) and successful immobilization was demonstrated by scanning electron microscopy (SEM), water contact angle determinations, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The ability of surfaces to bind albumin selectively was determined by quartz crystal microbalance with dissipation (QCM-D). Albumin adsorption increased in response to the hydrophobic nature of the surfaces, which augmented with C18 saturation. HA-SH coating reduced albumin adsorption to PU. C18 immobilized onto HA-SH at 5% promoted selective binding of albumin, decreased Staphylococcus aureus adhesion and prevented platelet adhesion and activation to PU in the presence of human plasma. C18/HA-SH coating was established as an innovative and promising strategy to improve the antimicrobial properties and hemocompatibility of any blood contact medical device.

  17. Role of reactive metabolites in drug-induced hepatotoxicity.

    PubMed

    Srivastava, A; Maggs, J L; Antoine, D J; Williams, D P; Smith, D A; Park, B K

    2010-01-01

    Drugs are generally converted to biologically inactive forms and eliminated from the body, principally by hepatic metabolism. However, certain drugs undergo biotransformation to metabolites that can interfere with cellular functions through their intrinsic chemical reactivity towards glutathione, leading to thiol depletion, and functionally critical macromolecules, resulting in reversible modification, irreversible adduct formation, and irreversible loss of activity. There is now a great deal of evidence which shows that reactive metabolites are formed from drugs known to cause hepatotoxicity, such as acetaminophen, tamoxifen, isoniazid, and amodiaquine. The main theme of this article is to review the evidence for chemically reactive metabolites being initiating factors for the multiple downstream biological events culminating in toxicity. The major objectives are to understand those idiosyncratic hepatotoxicities thought to be caused by chemically reactive metabolites and to define the role of toxic metabolites.

  18. Thermospray liquid-chromatography mass spectrometry of thiol radioprotective agents: Characteristics spectra. Scientific report

    SciTech Connect

    Walden, T.L.; Buchner, J.; Pizzitola, V.; Blakeley, W.F.

    1988-01-01

    Ethiofos (S-2(3-aminopropylamino)ethylphosphorothioic acid or WR-2721) is currently being evaluated in clinical radiotherapy trials (Kligerman et al., 1980) because of its potential for enhancing the efficacy of radiotherapy (Kligerman et al., 1980; Yuhas and Storer, 1969). For proper drug usage and pharmacological studies, it is necessary to assess the stability of the aminothiol and the presence of impurities or decomposition products. In addition, monitoring the plasma levels of WR-2721 and its metabolites should improve the therapeutic usefulness of WR-2721. Several high-performance liquid chromatography (HPLC) methodologies have been developed that are applicable for routine analysis of aminothiols and endogeneous cellular thiols (Newton et al., 1981; Swynnerton et al., 1984). One of these methodologies, electrochemical detection, permits the simultaneous detection of the free thiol and the disulfides (Swynnerton et al. 1984). Mass spectrometry (MS) is a sensitive technique that can confirm purity and provide useful structural information. Using a thermospray interface, samples can be introduced into the mass spectrometer from a liquid chromatograph (LC) (Vestal, 1984). The interface thermally nebulizes the eluant into a high-pressure region of the mass spectrometer where a variety of soft-ionization techniques may be used to ionize the analyte molecules. The feasibility of LC coupled to MS-detection was studied for the analysis of thiol-containing radioprotective agents, including glutathione, WR-2721, and WR-1065, the dephosphorylated sulfhydryl form of WR-2721, which has been shown to be its active radioprotective metabolite (Calabro-Jones et al., 1983).

  19. Theoretical estimation of the aqueous pKas of thiols

    NASA Astrophysics Data System (ADS)

    Hunter, Nora E.; Seybold, Paul G.

    2014-02-01

    The ionisation state of a compound is a key parameter influencing the compound's activity as a drug, metabolite, pollutant, or other active chemical agent. Sulfhydrol compounds (thiols) tend to be considerably more acidic than their hydroxyl (alcohol) analogues. In this report, quantum chemical approaches previously used for the estimation of the aqueous pKas of alcohols are applied to the estimation of the acidities of thiols. Acidity estimates obtained from the general-purpose SPARC calculational programme (S.H. Hilal, S.W. Karickhoff, and L.A. Carreira, Quant. Struct.-Act. Relat. 14, 348 (1995)) and the ACD/Labs PhysChem Suite v12 programme package are employed as benchmarks. Quantum chemical calculations were performed using both the semiempirical RM1 method and the density functional theory B3LYP/6-31+G* method. The effectiveness of the SM5.4 and SM8 solvent models in estimating the aqueous-phase acidities was also evaluated. All of the approaches examined demonstrated strong correlations with the experimental acidity values.

  20. Purification and properties of thiol beta-lactamase. A mutant of pBR322 beta-lactamase in which the active site serine has been replaced with cysteine.

    PubMed

    Sigal, I S; DeGrado, W F; Thomas, B J; Petteway, S R

    1984-04-25

    The specifically mutated enzyme thiol beta-lactamase has been expressed in Escherichia coli by means of the trp promoter and purified to homogeneity. The gene for this enzyme results from a single base change N410 A----T in the gene of pBR322 RTEM beta-lactamase (EC 3.5.2.6, penicillinase, penicillin amido-beta-lactamhydrolase) which alters the codon for the active site Ser 70 to that for Cys. Precursor thiol beta-lactamase is processed to give the same NH2-terminal sequence as that for wild type enzyme. In contrast to the wild type enzyme, thiol beta-lactamase contains one free titratable thiol group/molecule. Thiol beta-lactamase catalyzes the hydrolysis of beta-lactams with a substrate specificity that is distinct from that of wild type enzyme. For benzyl-penicillin and ampicillin, the Km values are similar to wild type values although the kcat values are 1-2% that of wild type enzyme. For the cephalosporin nitrocefin, the Km is greater than 10-fold that of the wild type and the kcat is at least as large as the kcat for the wild type enzyme. Thiol beta-lactamase is different from wild type beta-lactamase in that it is not competitively inhibited by boric acid although a small degree of noncompetitive inhibition does occur. Whereas the circular dichroism spectra of both enzymes are nearly identical, thiol beta-lactamase at 40 degrees C is 3-fold more resistant to trypsin than is the wild type enzyme.

  1. Larvicidal activity of some secondary lichen metabolites against the mosquito Culiseta longiareolata Macquart (Diptera: Culicidae).

    PubMed

    Cetin, H; Tufan-Cetin, O; Turk, A O; Tay, T; Candan, M; Yanikoglu, A; Sumbul, H

    2012-01-01

    The larvicidal activity of some lichen metabolites, (+)-usnic acid, atranorin, 3-hydroxyphysodic acid and gyrophoric acid, against the second and third instar larvae of the mosquito Culiseta longiareolata were studied. All metabolites caused high larvicidal activities. When metabolites were compared on the basis of their LC(50) values, the order of increasing toxicity was as follows: gyrophoric acid (0.41 ppm) > (+)-usnic acid (0.48 ppm) > atranorin (0.52 ppm) > 3-hydroxyphysodic acid (0.97 ppm). However, when LC(90) values were compared, the order of toxicity was (+)-usnic acid (1.54 ppm) > gyrophoric acid (1.93 ppm) > 3-hydroxyphysodic acid (4.33 ppm) > atranorin (5.63 ppm). In conclusion, our results found that lichen secondary metabolites may have a promising role as potential larvicides.

  2. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH.

    PubMed

    Bobyk, Kostyantyn D; Kim, Sang Gon; Kumar, Vidya Prasanna; Kim, Sung-Kun; West, Ann H; Cook, Paul F

    2011-09-15

    Saccharopine dehydrogenase catalyzes the NAD-dependent conversion of saccharopine to generate L-lysine and α-ketoglutarate. A disulfide bond between cysteine 205 and cysteine 249, in the vicinity of the dinucleotide-binding site, is observed in structures of the apoenzyme, while a dithiol is observed in a structure with AMP bound, suggesting preferential binding of the dinucleotide to reduced enzyme. Mutation of C205 to S gave increased values of V/E(t) and V/KE(t) at pH 7 compared to wild type. Primary deuterium and solvent deuterium kinetic isotope effects suggest the catalytic pathway, which includes the hydride transfer and hydrolysis steps, contributes more to rate limitation in C205S, but the rates of the two steps relative to one another remain the same. There is a large increase in the rate constants V₁/E(t) and V₁/K(NAD)Et at pH values below 7 compared to WT. Data indicate the low pH increase in activity results from a decreased sensitivity of the C205S mutant enzyme to the protonation state of an enzyme group with a pK(a) of about 7, likely responsible for a pH-dependent conformational change. Reduction of WT and C205S mutant enzymes with TCEP gives equal activities at pH 6, consistent with the increased activity observed for the C205S mutant enzyme.

  3. SKLB-163, a new benzothiazole-2-thiol derivative, exhibits potent anticancer activity by affecting RhoGDI/JNK-1 signaling pathway.

    PubMed

    Peng, X; Xie, G; Wang, Z; Lin, H; Zhou, T; Xiang, P; Jiang, Y; Yang, S; Wei, Y; Yu, L; Zhao, Y

    2014-03-27

    Small-molecule inhibitors are an attractive therapeutic approach for most types of human cancers. SKLB-163, a novel benzothiazole-2-thiol derivative, was developed via computer-aided drug design and de novo synthesis. MTT assay showed it had potent anti-proliferative activity on various human cancer cells. Treatment of cancer cells with SKLB-163 induced obvious apoptosis and inhibited proliferation in vitro. SKLB-163 administered p.o. showed a marked antitumor activity in vivo. Proteomic techniques were employed to identify possible drug target proteins. The data showed molecular mechanism of action might be involved in downregulation of RhoGDI, which finally contributed to increased apoptosis and inhibited proliferation. These findings provided the potential value of SKLB-163 as a novel candidate antitumor drug.

  4. Thiol-based redox switches in prokaryotes

    PubMed Central

    Hillion, Melanie; Antelmann, Haike

    2015-01-01

    Summary Bacteria encounter reactive oxygen species (ROS) as consequence of the aerobic life or as oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds including hypochloric acid (HOCl) and reactive electrophilic species (RES), such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys-phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense. PMID:25720121

  5. Thiol-based redox switches in prokaryotes.

    PubMed

    Hillion, Melanie; Antelmann, Haike

    2015-05-01

    Bacteria encounter reactive oxygen species (ROS) as a consequence of the aerobic life or as an oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds, including hypochloric acid (HOCl) and reactive electrophilic species (RES) such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense.

  6. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors.

    PubMed

    Kojima, Hiroyuki; Takeuchi, Shinji; Van den Eede, Nele; Covaci, Adrian

    2016-03-14

    Organophosphate flame retardants (OPFRs) have been used in a wide variety of applications and detected in several environmental matrices, including indoor air and dust. Continuous human exposure to these chemicals is of growing concern. In this study, the agonistic and/or antagonistic activities of 12 primary OPFR-metabolites against ten human nuclear receptors were examined using cell-based transcriptional assays, and compared to those of their parent compounds. As a result, 3-hydroxylphenyl diphenyl phosphate and 4-hydroxylphenyl diphenyl phosphate showed more potent estrogen receptor α (ERα) and ERβ agonistic activity than did their parent, triphenyl phosphate (TPHP). In addition, these hydroxylated TPHP-metabolites also showed ERβ antagonistic activity at higher concentrations and exhibited pregnane X receptor (PXR) agonistic activity as well as androgen receptor (AR) and glucocorticoid receptor (GR) antagonistic activities at similar levels to those of TPHP. Bis(2-butoxyethyl) 3'-hydroxy-2-butoxyethyl phosphate and 2-hydroxyethyl bis(2-butoxyethyl) phosphate act as PXR agonists at similar levels to their parent, tris(2-butoxyethyl) phosphate. On the other hand, seven diester OPFR-metabolites and 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate did not show any receptor activity. Taken together, these results suggest that hydroxylated TPHP-metabolites show increased estrogenicity compared to the parent compound, whereas the diester OPFR-metabolites may have limited nuclear receptor activity compared to their parent triester OPFRs.

  7. Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile.

    PubMed

    Zakarova, Alexandra; Seo, Ji Yeon; Kim, Hyang Yeon; Kim, Jeong Hwan; Shin, Jung-Hye; Cho, Kye Man; Lee, Choong Hwan; Kim, Jong-Sang

    2014-02-26

    Although garlic (Allium sativum) has been extensively studied for its health benefits, sprouted garlic has received little attention. We hypothesized that sprouting garlic would stimulate the production of various phytochemicals that improve health. Ethanolic extracts from garlic sprouted for different periods had variable antioxidant activities when assessed with in vitro assays, including the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity assay and the oxygen radical absorbance capacity assay. Extracts from garlic sprouted for 5 days had the highest antioxidant activity, whereas extracts from raw garlic had relatively low antioxidant activity. Furthermore, sprouting changed the metabolite profile of garlic: the metabolite profile of garlic sprouted for 5-6 days was distinct from the metabolite profile of garlic sprouted for 0-4 days, which is consistent with the finding that garlic sprouted for 5 days had the highest antioxidant activity. Therefore, sprouting may be a useful way to improve the antioxidant potential of garlic.

  8. New brominated flame retardants and their metabolites as activators of the pregnane X receptor.

    PubMed

    Gramec Skledar, Darja; Tomašič, Tihomir; Carino, Adriana; Distrutti, Eleonora; Fiorucci, Stefano; Peterlin Mašič, Lucija

    2016-09-30

    The present study investigated the activities on different nuclear receptors of the new brominated flame retardants 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH), and their main carboxylic acid metabolites 2,3,4,5-tetrabromobenzoic acid (TBBA) and mono(2-ethylhexyl) tetrabromophthalate (TBMEPH). None of selected chemicals exhibited marked activity towards PPARα and PPARγ by the use of transactivation assays in HepG2 cells transfected with peroxisome proliferator-activated receptors. In contrast, selected flame retardants all exhibited potent agonist activity on pregnane X receptor (PXR), with EC50 values of 5.5μM for TBPH and 2.0μM for its metabolite TBMEPH. Molecular docking of TBPH and TBMEPH to the PXR ligand binding site revealed similar interactions, with differences only for conformation and orientation of the alkyl chains. Additionally, TBPH showed antagonist activity on PXR (IC50, 13.9μM). Moreover, there was significant up-regulation of CYP3A4 expression via PXR activation for TBB and TBPH and their metabolites. Induction of CYP3A4 might cause undesired drug-drug interactions, lower bioavailability of pharmaceutical drugs, higher formation of reactive toxic metabolites, or enhanced elimination of endogenous hormones, such as T3/T4, to lead to endocrine disruption. These data provide new and important insights into the toxicity of these new polybrominated flame retardants, TBB and TBPH, and their metabolites.

  9. O-Methylated Metabolite of 7,8-Dihydroxyflavone Activates TrkB Receptor and Displays Antidepressant Activity

    PubMed Central

    Liu, Xia; Qi, Qi; Xiao, Ge; Li, Jingyu; Luo, Hongbo R.; Ye, Keqiang

    2016-01-01

    7,8-Dihydroxyflavone (7,8-DHF) acts as a TrkB receptor-specific agonist. It mimics the physiological actions of brain-derived neurotrophic factor (BDNF) and demonstrates remarkable therapeutic efficacy in animal models of various neurological diseases. Nonetheless, its in vivo pharmacokinetic profiles and metabolism remain unclear. Here we report that 7,8-DHF and its O-methylated metabolites distribute in mouse brain after oral administration. Both hydroxy groups can be mono-methylated, and the mono-methylated metabolites activate TrkB in vitro and in vivo. Blocking methylation, using COMT inhibitors, diminishes the agonistic effect of TrkB activation by 7,8-DHF or 4′-dimethylamino-7,8-DHF, supporting the contribution of the methylated metabolite to TrkB activation in mouse brain. Moreover, we have synthesized several methylated metabolite derivatives, and they also potently activate the TrkB receptor and reduce immobility in both forced swim test and tail suspension test, indicating that these methylated metabolites may possess antidepressant activity. Hence, our data demonstrate that 7,8-DHF is orally bioavailable and can penetrate the brain-blood barrier. The O-methylated metabolites are implicated in TrkB receptor activation in the brain. PMID:23445871

  10. Membrane-active metabolites produced by soil actinomycetes using chromatic phospholipid/polydiacetylene vesicles.

    PubMed

    Mehravar, Maryam; Sardari, Soroush; Owlia, Parviz

    2011-12-01

    Increased resistance of pathogens toward existing antibiotics has compelled the research efforts to introduce new antimicrobial substances. Drugs with new and less resistant-prone targets to antimicrobial activity have a high priority for drug development activities. Cell membrane seems to be a potential target for new antibiotic agent development to overcome resistance. In this study, A total number of 67 actinomycetes were isolated from the soil samples collected from desert, farming and mineral parts of Iran. We used a chromatic sensor as a membrane model that was set up for the target of antimicrobial metabolites of actinomycetes isolated from the soil. The sensors particles were composed of phospholipid and polymerized polydiacetylene (PDA) lipids. These polymers exhibited color change following interaction with membrane-active metabolites. The color change was due to structural disorder in the lipids following their interaction with membrane-active metabolites. The resultant color change was recorded by fluorescent microscope and easily recognizable by naked eye as well. Sixteen strains were isolated which produced antimicrobial metabolites and were effective against test microorganisms (Escherichia coli, Candida albicans and Saccharomyces cerevisiae ). A total number of 3 out of 16 strains produced membrane-active metabolites. These 3 strains were identified using 16s rRNA as Streptomyces sp and submitted to GenBank (accession no. JN180853; JN180854; JN180855).

  11. Synthesis, Characterization and Antibacterial Activity of some Novel Thiosemicarbazides, 1,2,4-Triazol-3-thiols and their S-substituted Derivatives

    PubMed Central

    Kalhor, Mehdi; Shabani, Mahboobeh; Nikokar, Iraj; Reyhaneh Banisaeed, Seyedeh

    2015-01-01

    The thiosemicarbazides 3a-c were appeared by reaction of the corresponding substituted hydrazides 1a-c with allylisothiocyanate 2. Synthesis of some novel 1,2,4-triazole-thiols 4a-c bearing a pyridyl unit using 1-(x-picolinoyl)-4-allyl-thiosemicarbazides (x = 2,3,4) in an alkaline solution, is reported. Also, the S-alkylation of triazole derivatives 5-7a-c is described. The structure of the synthesized compounds resulted from the IR, 1H and -13C NMR spectroscopy and elemental analysis data. The antibacterial studies to all of the synthesized compounds against B. cereus, E. coli, P. aeroginosa, S. aureus and E. faecalis as MIC values are reported. Some of these compounds such as 7a, 4a and 3a exhibited a good to significant antibacterial activity. PMID:25561913

  12. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  13. Selective activation of mitomycin A by thiols to form DNA cross-links and monoadducts: biochemical basis for the modulation of mitomycin cytotoxicity by the quinone redox potential.

    PubMed

    Paz, M M; Das, A; Palom, Y; He, Q Y; Tomasz, M

    2001-08-16

    Mitomycin A (MA) but not mitomycin C (MC) cross-linked linearized (32)P-pBR322 DNA in the presence of dithiothreitol (DTT) or glutathione (GSH), as shown by a sensitive DNA cross-link assay. Incubation of calf-thymus DNA with MA and DTT or mercaptoethanol (MER) resulted in the formation of MA-DNA adducts, which were isolated from nuclease digests of the drug-DNA complexes by HPLC. The adducts were characterized by their UV absorption spectra, electrospray ionization mass spectrometry (ESIMS), and facile conversion from 7-methoxy- to 7-amino-substituted mitosene type adducts upon 10% NH(4)OH treatment, which were identical with known adducts of MC. Both DNA interstrand and intrastrand cross-link adducts, linking two deoxyguanosine residues at N(2), as well as several deoxyguanosine-N(2) monoadducts of MA, were identified. No DNA adducts were formed with MC under the same conditions. A specificity of DNA cross-link formation for the CpG sequence was observed using 12-mer synthetic oligodeoxyribonucleotides as substrates and as DNA sequence models, in analogy to the known CpG sequence specificity of MC-induced DNA cross-links. MA is known to be more cytotoxic by 2-3 orders of magnitude than MC, and this property correlates with redox potentials of MA (-0.19 V) and MA analogues that are higher than those of MC (-0.40 V) and its analogues. It is suggested that the biochemical basis for the higher cytotoxic potency of MA is MA's propensity to be reductively activated by cellular thiols while MC is resistant to thiol activation. This distinction is probably derived from the large difference between the quinone redox potentials of the two drugs.

  14. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation.

    PubMed

    Cho, Joo-Youn; Kang, Dong Wook; Ma, Xiaochao; Ahn, Sung-Hoon; Krausz, Kristopher W; Luecke, Hans; Idle, Jeffrey R; Gonzalez, Frank J

    2009-05-01

    Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.

  15. Thiol-Activated HNO Release from a Ruthenium Antiangiogenesis Complex and HIF-1α Inhibition for Cancer Therapy

    PubMed Central

    2016-01-01

    Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO– (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the RuII complex [Ru(bpy)2(SO3)(NO)]+ (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents. Characteristic absorption spectroscopic profiles for HNO reactions with met-myoglobin were obtained, as well as EPR evidence from carboxy-PTIO experiments. Importantly, the product HNO counteracted NO-induced as well as hypoxia-induced stabilization of the tumor-suppressor HIF-1α in cancer cells. The functional disruption of neovascularization by HNO produced by this metallonitrosyl complex was demonstrated in an in vitro angiogenesis model. This behavior is consistent with HNO biochemistry and contrasts with NO-mediated stabilization of HIF-1α. Together, these results demonstrate for the first time thiol-dependent production of HNO by a ruthenium complex and subsequent destabilization of HIF-1α. This work suggests that the complex warrants further investigation as a promising antiangiogenesis agent for the treatment of cancer. PMID:27191177

  16. Evaluation of Bacillus cereus and Bacillus pumilus metabolites for anthelmintic activity

    PubMed Central

    Kumar, M. L. Vijaya; Thippeswamy, B.; Kuppust, I. L.; Naveenkumar, K. J.; Shivakumar, C. K.

    2015-01-01

    Objective: To assess the anthelmintic acivity of Bacillus cereus and Bacillus pumilus metabolites. Materials and Methods: The successive solvent extractions with petroleum ether, ethyl acetate and methanol. The solvent extracts were tested for anthelmintic activity against Pheretima posthuma at 20 mg/ml concentration. The time of paralysis and time of death of the worms was determined for all the extracts. Albendazole was taken as a standard reference and sterile water as a control. Results: All the sample extracts showed significant anthelmintic activity in paralyzing the worms comparable with that of the standard drug. The time of death exhibited by BP metabolites was close to the time exhibited by standard. Conclusion: The study indicates both bacteria Bacillus cereus and Bacillus pumilus have anthelmintic activity indicating potential metabolites in them. PMID:25598639

  17. Phase I metabolites of mephedrone display biological activity as substrates at monoamine transporters

    PubMed Central

    Mayer, F P; Wimmer, L; Dillon‐Carter, O; Partilla, J S; Burchardt, N V; Mihovilovic, M D; Baumann, M H

    2016-01-01

    Background and Purpose 4‐Methyl‐N‐methylcathinone (mephedrone) is a synthetic stimulant that acts as a substrate‐type releaser at transporters for dopamine (DAT), noradrenaline (NET) and 5‐HT (SERT). Upon systemic administration, mephedrone is metabolized to several phase I compounds: the N‐demethylated metabolite, 4‐methylcathinone (nor‐mephedrone); the ring‐hydroxylated metabolite, 4‐hydroxytolylmephedrone (4‐OH‐mephedrone); and the reduced keto‐metabolite, dihydromephedrone. Experimental Approach We used in vitro assays to compare the effects of mephedrone and synthetically prepared metabolites on transporter‐mediated uptake and release in HEK293 cells expressing human monoamine transporters and in rat brain synaptosomes. In vivo microdialysis was employed to examine the effects of i.v. metabolite injection (1 and 3 mg·kg−1) on extracellular dopamine and 5‐HT levels in rat nucleus accumbens. Key Results In cells expressing transporters, mephedrone and its metabolites inhibited uptake, although dihydromephedrone was weak overall. In cells and synaptosomes, nor‐mephedrone and 4‐OH‐mephedrone served as transportable substrates, inducing release via monoamine transporters. When administered to rats, mephedrone and nor‐mephedrone produced elevations in extracellular dopamine and 5‐HT, whereas 4‐OH‐mephedrone did not. Mephedrone and nor‐mephedrone, but not 4‐OH‐mephedrone, induced locomotor activity. Conclusions and Implications Our results demonstrate that phase I metabolites of mephedrone are transporter substrates (i.e. releasers) at DAT, NET and SERT, but dihydromephedrone is weak in this regard. When administered in vivo, nor‐mephedrone increases extracellular dopamine and 5‐HT in the brain whereas 4‐OH‐mephedrone does not, suggesting the latter metabolite does not penetrate the blood–brain barrier. Future studies should examine the pharmacokinetics of nor‐mephedrone to determine its possible

  18. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    USGS Publications Warehouse

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that

  19. Examination of microsomal cytochrome P450-catalyzed in vitro activation of o-phenylphenol to DNA binding metabolite(s) by 32P-postlabeling technique.

    PubMed

    Pathak, D N; Roy, D

    1992-09-01

    It has been previously reported that the reactive metabolites phenylsemiquinone and phenylbenzoquinone are generated during microsomal cytochrome P450-catalyzed redox cycling of o-phenylphenol (OPP). However, covalent modification of DNA by OPP-reactive metabolites has yet not been demonstrated. In the present study we have investigated the covalent binding in DNA by OPP-reactive metabolites using 32P-postlabeling. Analysis of adducts by 32P-postlabeling in products of chemical reaction of DNA with phenylbenzoquinone revealed four major and several minor adducts. The chemical reaction of deoxyguanosine 3'-phosphate with phenylbenzoquinone also showed four major adducts. The chromatographic mobility of major adducts of deoxyguanosine 3'-phosphate-phenylbenzoquinone was identical to that of major adducts of DNA-phenylbenzoquinone. The major adducts are demonstrated to be stable. The total covalent binding in deoxyguanosine 3'-phosphate by phenylbenzoquinone (686,000-687,000 amol/nmol nucleotide) was higher than that observed in DNA (26,500-28,000 amol/nmol nucleotides). Reaction of DNA with OPP or a hydroxylated metabolite of OPP, phenylhydroquinone, in the presence of microsomes and NADPH or cumene hydroperoxide showed four major adducts. Adduct formation in DNA by OPP or phenylhydroquinone in the presence of the microsomal activation system was drastically decreased by known inhibitors of cytochrome P450. The chromatographic mobility of major adducts in DNA by OPP or phenylhydroquinone in the presence of microsomal activation system matched with those major adducts observed in deoxyguanosine 3'-phosphate or DNA reacted with pure phenylbenzoquinone. These data demonstrate that OPP or phenylhydroquinone, a hydroxylated metabolite of OPP, is able to bind covalently to DNA in the presence of a microsomal cytochrome P450 activation system. Phenylbenzoquinone is one of the DNA-binding metabolite(s) of OPP. It is concluded that OPP is genotoxic in an in vitro system and

  20. Transition-metal-catalyzed synthesis of phenols and aryl thiols

    PubMed Central

    Liu, Shasha

    2017-01-01

    Phenols and aryl thiols are fundamental building blocks in organic synthesis and final products with interesting biological activities. Over the past decades, substantial progress has been made in transition-metal-catalyzed coupling reactions, which resulted in the emergence of new methods for the synthesis of phenols and aryl thiols. Aryl halides have been extensively studied as substrates for the synthesis of phenols and aryl thiols. In very recent years, C–H activation represents a powerful strategy for the construction of functionalized phenols directly from various arenes. However, the synthesis of aryl thiols through C–H activation has not been reported. In this review, a brief overview is given of the recent advances in synthetic strategies for both phenols and aryl thiols.

  1. Effects of omeprazole and genetic polymorphism of CYP2C19 on the clopidogrel active metabolite.

    PubMed

    Boulenc, Xavier; Djebli, Nassim; Shi, Juan; Perrin, Laurent; Brian, William; Van Horn, Robert; Hurbin, Fabrice

    2012-01-01

    Clopidogrel is an antiplatelet agent widely used in cardiovascular diseases and an inactive prodrug that needs to be converted to an active metabolite in two sequential metabolic steps. Several CYP450 isoforms involved in these two steps have been described, although the relative contribution in vivo of each enzyme is still under debate. CYP2C19 is considered to be the major contributor to active metabolite formation. In the current study, net CYP2C19 contribution to the active metabolite formation was determined from exposure of the active metabolite in two clinical studies (one phase I study with well balanced genetic polymorphic populations and a meta-analysis with a total of 396 healthy volunteers) at different clopidogrel doses. CYP2C19 involvements were estimated to be from 58 to 67% in intermediate metabolizers (IMs), from 58 to 72% in extensive metabolizers (EMs), and from 56 to 74% in ultrarapid metabolizers (UMs), depending on the study and the dose. For this purpose, a static model was proposed to estimate the net contribution of a given enzyme to the secondary metabolite formation. This static model was compared with a dynamic approach (Simcyp model) and showed good consistency. In parallel, in vitro investigations showed that omeprazole is a mechanism-based inhibitor of CYP2C19 with K(I) of 8.56 μM and K(inact) of 0.156 min(-1). These values were combined with the net CYP2C19 contribution to the active metabolite formation, through a static approach, to predict the inhibitory effect at 80-mg omeprazole doses in EM, IM, and UM CYP2C19 populations, with good consistency, compared with observed clinical values.

  2. Anti-Oxidative Activity of Mytiloxanthin, a Metabolite of Fucoxanthin in Shellfish and Tunicates

    PubMed Central

    Maoka, Takashi; Nishino, Azusa; Yasui, Hiroyuki; Yamano, Yumiko; Wada, Akimori

    2016-01-01

    Anti-oxidative activities of mytiloxanthin, a metabolite of fucoxanthin in shellfish and tunicates, were investigated. Mytiloxanthin showed almost the same activities for quenching singlet oxygen and the inhibition of lipid peroxidation as those of astaxanthin, which is a well-known singlet oxygen quencher. Furthermore, mytiloxanthin showed excellent scavenging activity for hydroxyl radicals and this activity was markedly higher than that of astaxanthin. PMID:27187417

  3. Antifeedant Activity of Ginkgo biloba Secondary Metabolites against Hyphantria cunea Larvae: Mechanisms and Applications.

    PubMed

    Pan, Long; Ren, Lili; Chen, Fang; Feng, Yuqian; Luo, Youqing

    2016-01-01

    Ginkgo biloba is a typical relic plant that rarely suffers from pest hazards. This study analyzed the pattern of G. biloba pest hazards in Beijing; tested the antifeedant activity of G. biloba extracts, including ginkgo flavonoids, ginkgolide, and bilobalide, against Hyphantria cunea larvae; determined the activities of glutathione transferase (GSTs), acetylcholinesterase (AChE), carboxylesterase (CarE) and mixed-functional oxidase (MFO), in larvae after feeding on these G. biloba secondary metabolites; and screened for effective botanical antifeedants in the field. In this study, no indicators of insect infestation were found for any of the examined leaves of G. biloba; all tested secondary metabolites showed significant antifeedant activity and affected the activity of the four larval detoxifying enzymes. Ginkgolide had the highest antifeedant activity and the most significant effect on the detoxifying enzymes (P<0.05). Spraying leaves with G. biloba extracts or ginkgolide both significantly repelled H. cunea larvae in the field (P<0.05), although the former is more economical and practical. This study investigated the antifeedant activity of G. biloba secondary metabolites against H. cunea larvae, and the results provide new insights into the mechanism of G. biloba pest resistance. This study also developed new applications of G. biloba secondary metabolites for effective pest control.

  4. Manipulation of thiol contents in plants.

    PubMed

    Höfgen, R; Kreft, O; Willmitzer, L; Hesse, H

    2001-01-01

    lyase (OAS-TL) forming cysteine. Cysteine is the central precursor of all organic molecules containing reduced sulfur ranging from the amino acid methionine to peptides as glutathione or phytochelatines, proteines, vitamines, cofactors as SAM and hormones. Cysteine and derived metabolites display essential roles within plant metabolism such as protein stabilisation through disulfide bridges, stress tolerance to active oxygen species and metals, cofactors for enzymatic reactions as e.g. SAM as major methylgroup donor and plant development and signalling through the volatile hormone ethylene. Cysteine and other metabolites carrying free sulfhydryl groups are commonly termed thioles (confer Fig. 1). The physiological control of the sulfate reduction pathway in higher plants is still not completely understood in all details. The objective of this paper is to summarise the available data on the molecular analysis and control of cysteine biosynthesis in plants, and to discuss potentials for manipulating the pathway using transgenic approaches.

  5. Tamoxifen metabolites as active inhibitors of aromatase in the treatment of breast cancer.

    PubMed

    Lu, Wenjie Jessie; Desta, Zeruesenay; Flockhart, David A

    2012-01-01

    The mechanism of tamoxifen action in the treatment of breast cancer is believed to be via active metabolites that act as potent estrogen receptor antagonists. Attempts to identify relationships between active metabolite concentrations and clinical outcomes have produced mixed results. Since anti-estrogenic effects may be brought about not only by estrogen antagonism, but also by reduced estrogen synthesis, we tested the ability of tamoxifen and its principal metabolites to inhibit aromatase in vitro. The activity of human aromatase in both recombinant and placental microsomal preparations was measured using the rate of generation of a fluorescent metabolite in the presence and absence of multiple concentrations of tamoxifen, endoxifen, N-desmethyl-tamoxifen, and Z-4-hydroxy-tamoxifen. Aromatase inhibition was further characterized by measuring the inhibition of testosterone metabolism to estradiol. The biochemical mechanisms of inhibition were documented and their inhibitory potency was compared. Using recombinant human aromatase, endoxifen, and N-desmethyl-tamoxifen were able to inhibit aromatase activity with K (i) values of 4.0 and 15.9 μM, respectively. Detailed characterization of inhibition by endoxifen and N-desmethyl-tamoxifen indicated non-competitive kinetics for both inhibitors. Similarly, endoxifen-inhibited testosterone metabolism via a non-competitive mechanism. No appreciable inhibition by tamoxifen or Z-4-hydroxy-tamoxifen was observed at similar concentrations. The relative inhibitory potency was: endoxifen > N-desmethyl-tamoxifen > Z-4-hydroxy-tamoxifen > tamoxifen. Similar data were obtained in human placental microsomes. Endoxifen and N-desmethyl-tamoxifen were found to be potent inhibitors of aromatase. Inhibition by these tamoxifen metabolites may contribute to the variability in clinical effects of tamoxifen in patients with breast cancer. Relationships between tamoxifen metabolite concentrations and clinical outcomes may be complex

  6. Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR.

    PubMed Central

    Kitareewan, S; Burka, L T; Tomer, K B; Parker, C E; Deterding, L J; Stevens, R D; Forman, B M; Mais, D E; Heyman, R A; McMorris, T; Weinberger, C

    1996-01-01

    RXR is a nuclear receptor that plays a central role in cell signaling by pairing with a host of other receptors. Previously, 9-cis-retinoic acid (9cRA) was defined as a potent RXR activator. Here we describe a unique RXR effector identified from organic extracts of bovine serum by following RXR-dependent transcriptional activity. Structural analyses of material in active fractions pointed to the saturated diterpenoid phytanic acid, which induced RXR-dependent transcription at concentrations between 4 and 64 microM. Although 200 times more potent than phytanic acid, 9cRA was undetectable in equivalent amounts of extract and cannot be present at a concentration that could account for the activity. Phytanic acid, another phytol metabolite, was synthesized and stimulated RXR with a potency and efficacy similar to phytanic acid. These metabolites specifically displaced [3H]-9cRA from RXR with Ki values of 4 microM, indicating that their transcriptional effects are mediated by direct receptor interactions. Phytol metabolites are compelling candidates for physiological effectors, because their RXR binding affinities and activation potencies match their micromolar circulating concentrations. Given their exclusive dietary origin, these chlorophyll metabolites may represent essential nutrients that coordinate cellular metabolism through RXR-dependent signaling pathways. PMID:8856661

  7. In Vitro Effect of Sulfasalazine and Its Metabolites on Human T Lymphocyte Activation

    DTIC Science & Technology

    1994-08-01

    sulfonamide used in the treatment of rheumatoid arthritis, ulcerative colitis and ankylosing spondylitis . Its mechanism of action is not fully...interventions for immune- mediated diseases . One such therapy invoivt %j,_ sulfonamide, sulfasalazine, an -- 4- 4-inflammatory drug used in the treatment of...rheumatoid arthritis, ulcerative colitis, and ankylosing spondylitis2 . The exact mode of action of sulfasalazine and its active metabolites, 5

  8. Rapidly Probing Antibacterial Activity of Graphene Oxide by Mass Spectrometry-based Metabolite Fingerprinting

    PubMed Central

    Zhang, Ning; Hou, Jian; Chen, Suming; Xiong, Caiqiao; Liu, Huihui; Jin, Yulong; Wang, Jianing; He, Qing; Zhao, Rui; Nie, Zongxiu

    2016-01-01

    Application of nanomaterials as anti-bacteria agents has aroused great attention. To investigate the antibacterial activity and antibacterial mechanism of nanomaterials from a molecular perspective is important for efficient developing of nanomaterial antibiotics. In the current work, a new mass spectrometry-based method was established to investigate the bacterial cytotoxicity of graphene oxide (GO) by the metabolite fingerprinting of microbes. The mass spectra of extracted metabolites from two strains DH5α and ATCC25922 were obtained before and after the incubation with nanomaterials respectively. Then principal component analysis (PCA) of these spectra was performed to reveal the relationship between the metabolism disorder of microbes and bactericidal activity of GO. A parameter “D” obtained from PCA scores was proposed that is capable to quantitatively evaluate the antibacterial activity of GO in concentration and time-dependent experiments. Further annotation of the fingerprinting spectra shows the variabilities of important metabolites such as phosphatidylethanolamine, phosphatidylglycerol and glutathione. This metabolic perturbation of E. coli indicates cell membrane destruction and oxidative stress mechanisms for anti-bacteria activity of graphene oxide. It is anticipated that this mass spectrometry-based metabolite fingerprinting method will be applicable to other antibacterial nanomaterials and provide more clues as to their antibacterial mechanism at molecular level. PMID:27306507

  9. CHARACTERIZATION ADN BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM ARMILLARIA TABESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethyl acetate extracts from liquid cultures of Armillaria tabescens showed good antimicrobial activity against Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analyses of extract constituents led to the isolation and identification of two new co...

  10. Developing Activity Localization Fluorescence Peptide Probe Using Thiol-Ene Click Reaction for Spatially Resolved Imaging of Caspase-8 in Live Cells.

    PubMed

    Liu, Wei; Liu, Si-Jia; Kuang, Yong-Qing; Luo, Feng-Yan; Jiang, Jian-Hui

    2016-08-02

    Small molecule probes suitable for high-resolution fluorescence imaging of enzyme activity pose a challenge in chemical biology. We developed a novel design of activity localization fluorescence (ALF) peptide probe, which enables spatially resolved, highly sensitive imaging of peptidase in live cells. The ALF probe was synthesized by a facile thiol-ene click reaction of a cysteine-appended peptide with an acryloylated fluorophore. Upon cleavage by peptidase, the probe undergoes a seven-membered intramolecular cyclization and releases the fluorophore with the excited-state intramolecular photon transfer (ESIPT) effect. A highly fluorescent, insoluble aggregate was formed around the enzyme, which facilitates high-sensitivity and high-resolution imaging. This design is demonstrated for detection of caspase-8 activation. The results show that our design allows easy, high-yield synthesis of the probe, and the probe affords high sensitivity for caspase-8 detection. Live cell imaging reveals that the probe is able to render highly localized and high-contrast fluorescence signal for caspase-8. Our design holds the potential as a generally applicable strategy for developing high-sensitivity and high-resolution imaging peptide probes in cell biology and diagnostics.

  11. Effects of Catechol O-Methyl Transferase Inhibition on Anti-Inflammatory Activity of Luteolin Metabolites.

    PubMed

    Ha, Sang Keun; Lee, Jin-Ah; Cho, Eun Jung; Choi, Inwook

    2017-02-01

    Although luteolin is known to have potent anti-inflammatory activities, much less information has been provided on such activities of its hepatic metabolites. Luteolin was subjected to hepatic metabolism in HepG2 cells either without or with catechol O-methyl transferase (COMT) inhibitor. To identify hepatic metabolites of luteolin without (luteolin metabolites, LMs) or with COMT inhibitor (LMs+CI), metabolites were treated by β-glucuronidase and sulfatase, and found that they were composed of glucuronide and sulfate conjugates of diosmetin in LMs or these conjugates of luteolin in LMs+CI. LMs and LMs+CI were examined for their anti-inflammatory activities on LPS stimulated Raw 264.7 cells. Expression of iNOS and production of nitric oxide and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 were suppressed more effectively by the treatment with LMs+CI than LMs. Our data provide a new insight on possible improvement in functional properties of luteolin on target cells by modifying their metabolic pathway in hepatocytes.

  12. Bioequivalence of Two Intravenous Artesunate Products with Its Active Metabolite Following Single and Multiple Injections

    PubMed Central

    Li, Qigui; Xie, Lisa; Melendez, Victor; Weina, Peter

    2011-01-01

    In animal species and humans, artesunate (AS) undergoes extensive and complex biotransformation to an active metabolite, dihydroartemisinin (DHA). The bioequivalence of two intravenous AS pharmaceutical products with 5% NaHCO3 (China Formulation) or 0.3 M PBS (WRAIR Formulation) was determined in rats in a two-formulation, two-period, and two-sequence crossover experimental design. Following single and multiple intravenous administrations, a series of blood samples was collected by using an automated blood sampler and drug concentrations were analyzed by LC-MS/MS. The 90% CI of the difference between the two intravenous formulations was contained within 80–125% of the geometric mean of pharmacokinetic parameters for AS and DHA in all animals dosed. Hematological effects were studied on days 1 and 3 after the final dosing, and a rapidly reversible hematological toxicity (significant reductions in reticulocyte levels) was seen in the peripheral blood of the rats treated with each formulation. The results showed that bioequivalence with the parent compound and active metabolite was fulfilled in the 82.3–117.7% ranges of all parameters (AUC0−t, Cmax, concentration average and degree of fluctuation) in the two-period and two-sequence crossover studies following single and repeated intravenous injections. For the metabolite, the equivalence was satisfied in most pharmacokinetic parameters tested due to the variability in the hydrolysis rate of AS to DHA. The WRAIR formulation of AS was considered to be bioequivalent to the Chinese formulation at steady-state according to the total drug exposure, in terms of both parent drug and active metabolite, rapidly reversal in reticulocyte decline, and extension of single and multiple administrations. Therefore, the parent drug and active metabolites should play similar important roles in the determination of efficacy and safety of the drug.

  13. Electroanalysis of Plant Thiols

    PubMed Central

    Supalkova, Veronika; Huska, Dalibor; Diopan, Vaclav; Hanustiak, Pavel; Zitka, Ondrej; Stejskal, Karel; Baloun, Jiri; Pikula, Jiri; Havel, Ladislav; Zehnalek, Josef; Adam, Vojtech; Trnkova, Libuse; Beklova, Miroslava; Kizek, Rene

    2007-01-01

    Due to unique physico-chemical properties of –SH moiety thiols comprise wide group of biologically important compounds. A review devoted to biological functions of glutathione and phytochelatins with literature survey of methods used to analysis of these compounds and their interactions with cadmium(II) ions and Murashige-Skoog medium is presented. For these purposes electrochemical techniques are used. Moreover, we revealed the effect of three different cadmium concentrations (0, 10 and 100 μM) on cadmium uptake and thiols content in maize plants during 192 hours long experiments using differential pulse anodic stripping voltammetry to detect cadmium(II) ions and high performance liquid chromatography with electrochemical detection to determine glutathione. Cadmium concentration determined in tissues of the plants cultivated in nutrient solution containing 10 μM Cd was very low up to 96 hours long exposition and then the concentration of Cd markedly increased. On the contrary, the addition of 100 μM Cd caused an immediate sharp increase in all maize plant parts to 96 hours Cd exposition but subsequently the Cd concentration increased more slowly. A high performance liquid chromatography with electrochemical detection was used for glutathione determination in treated maize plants after 96 and 192 hours of treatment. The highest total content of glutathione per one plant was 6 μg (96 h, 10 μM Cd) in comparison with non-treated plant (control) where glutathione content was 1.5 μg. It can be concluded that electrochemical techniques have proved to be useful to analyse plant thiols.

  14. The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity.

    PubMed

    Tsakiris, Stylianos; Giannoulia-Karantana, Aglaia; Simintzi, Irene; Schulpis, Kleopatra H

    2006-01-01

    Studies have implicated aspartame (ASP) with neurological problems. The aim of this study was to evaluate acetylcholinesterase (AChE) activity in human erythrocyte membranes after incubation with the sum of ASP metabolites, phenylalanine (Phe), methanol (met) and aspartic acid (aspt), or with each one separately. Erythrocyte membranes were obtained from 12 healthy individuals and were incubated with ASP hydrolysis products for 1 h at 37 degrees C. AChE was measured spectrophotometrically. Incubation of membranes with ASP metabolites corresponding with 34 mg/kg, 150 mg/kg or 200 mg/kg of ASP consumption resulted in an enzyme activity reduction by -33%, -41%, and -57%, respectively. Met concentrations 0.14 mM, 0.60 mM, and 0.80 mM decreased the enzyme activity by -20%, -32% or -40%, respectively. Aspt concentrations 2.80 mM, 7.60 mM or 10.0 mM inhibited membrane AChE activity by -20%, -35%, and -47%, respectively. Phe concentrations 0.14 mM, 0.35 mM or 0.50mM reduced the enzyme activity by -11%, -33%, and -35%, respectively. Aspt or Phe concentrations 0.82 mM or 0.07 mM, respectively, did not alter the membrane AChE activity. It is concluded that low concentrations of ASP metabolites had no effect on the membrane enzyme activity, whereas high or toxic concentrations partially or remarkably decreased the membrane AChE activity, respectively. Additionally, neurological symptoms, including learning and memory processes, may be related to the high or toxic concentrations of the sweetener metabolites.

  15. Direct evidence of plant-pathogenic activity of fungal metabolites of Trichothecium roseum on apple.

    PubMed

    Zabka, Martin; Drastichová, Kamila; Jegorov, Alexandr; Soukupová, Julie; Nedbal, Ladislav

    2006-07-01

    Apples were exposed to various concentrations of roseotoxins - metabolites of Trichothecium roseum and kinetic fluorescence imaging was used to detect the area influenced by the phytotoxin. Contrast was quantified within these images between the areas exposed to roseotoxins and the untreated areas. It was proved that roseotoxin B is able to penetrate apple peel and produce chlorotic lesions. Activity of roseotoxin B is similar as the activity of destruxins, host specific phytotoxins of Alternaria brassicae parasitic on canola.

  16. Participation of covalent modification of Keap1 in the activation of Nrf2 by tert-butylbenzoquinone, an electrophilic metabolite of butylated hydroxyanisole

    SciTech Connect

    Abiko, Yumi; Miura, Takashi; Phuc, Bui Hoang; Shinkai, Yasuhiro; Kumagai, Yoshito

    2011-08-15

    Butylated hydroxyanisole (BHA) is an antioxidant and class-2B carcinogen. It is biotransformed to tert-butylhydroquinone (TBHQ), which readily auto-oxidizes to the electrophilic metabolite tert-butylbenzoquinone (TBQ). BHA and TBHQ activate Nrf2, a transcription factor that is negatively regulated by Keap1 and plays a role in the initial response to chemicals causing oxidative or electrophilic stress, although, the exact mechanism of Nrf2 activation remains unclear. Here, we examined the role of TBQ in Nrf2 activation. Exposure of RAW264.7 cells to TBQ activated Nrf2 and up-regulated its downstream proteins; under these conditions, TBQ produced cellular reactive oxygen species (ROS). However, while pretreatment with catalase conjugated with polyethylene glycol (PEG-CAT) did not affect the TBQ-induced activation of Nrf2, the ROS generation caused by TBQ was entirely abolished by PEG-CAT, suggesting that ROS is not the dominant factor for TBQ-dependent Nrf2 activation. A click chemistry technique indicated that TBQ chemically modifies Keap1. Furthermore, ultrahigh performance liquid chromatography-tandem mass spectrometry analysis with purified Keap1 revealed that TBQ covalently binds to Keap1 through Cys23, Cys151, Cys226, and Cys368. These results suggest that TBQ derived from BHA activates Nrf2 through electrophilic modification of Keap1 rather than ROS formation. - Research Highlights: > tert-Butylbenzoquinone (TBQ) activates Nrf2 in RAW264.7 cells. > ROS is not essential factor for Nrf2 activation caused by TBQ. > TBQ covalently binds to Keap1 through reactive thiols, resulting in Nrf2 activation.

  17. Activity-Independent Discovery of Secondary Metabolites Using Chemical Elicitation and Cheminformatic Inference.

    PubMed

    Pimentel-Elardo, Sheila M; Sørensen, Dan; Ho, Louis; Ziko, Mikaela; Bueler, Stephanie A; Lu, Stella; Tao, Joe; Moser, Arvin; Lee, Richard; Agard, David; Fairn, Greg; Rubinstein, John L; Shoichet, Brian K; Nodwell, Justin R

    2015-11-20

    Most existing antibiotics were discovered through screens of environmental microbes, particularly the streptomycetes, for the capacity to prevent the growth of pathogenic bacteria. This "activity-guided screening" method has been largely abandoned because it repeatedly rediscovers those compounds that are highly expressed during laboratory culture. Most of these metabolites have already been biochemically characterized. However, the sequencing of streptomycete genomes has revealed a large number of "cryptic" secondary metabolic genes that are either poorly expressed in the laboratory or that have biological activities that cannot be discovered through standard activity-guided screens. Methods that reveal these uncharacterized compounds, particularly methods that are not biased in favor of the highly expressed metabolites, would provide direct access to a large number of potentially useful biologically active small molecules. To address this need, we have devised a discovery method in which a chemical elicitor called Cl-ARC is used to elevate the expression of cryptic biosynthetic genes. We show that the resulting change in product yield permits the direct discovery of secondary metabolites without requiring knowledge of their biological activity. We used this approach to identify three rare secondary metabolites and find that two of them target eukaryotic cells and not bacterial cells. In parallel, we report the first paired use of cheminformatic inference and chemical genetic epistasis in yeast to identify the target. In this way, we demonstrate that oxohygrolidin, one of the eukaryote-active compounds we identified through activity-independent screening, targets the V1 ATPase in yeast and human cells and secondarily HSP90.

  18. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    PubMed

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.

  19. Discovery of microsomal triglyceride transfer protein (MTP) inhibitors with potential for decreased active metabolite load compared to dirlotapide.

    PubMed

    Robinson, Ralph P; Bartlett, Jeremy A; Bertinato, Peter; Bessire, Andrew J; Cosgrove, Judith; Foley, Patrick M; Manion, Tara B; Minich, Martha L; Ramos, Brenda; Reese, Matthew R; Schmahai, Theodore J; Swick, Andrew G; Tess, David A; Vaz, Alfin; Wolford, Angela

    2011-07-15

    Analogues related to dirlotapide (1), a gut-selective inhibitor of microsomal triglyceride transfer protein (MTP) were prepared with the goal of further reducing the potential for unwanted liver MTP inhibition and associated side-effects. Compounds were designed to decrease active metabolite load: reducing MTP activity of likely human metabolites and increasing metabolite clearance to reduce exposure. Introduction of 4'-alkyl and 4'-alkoxy substituents afforded compounds exhibiting improved therapeutic index in rats with respect to liver triglyceride accumulation and enzyme elevation. Likely human metabolites of select compounds were prepared and characterized for their potential to inhibit MTP in vivo. Based on preclinical efficacy and safety data and its potential for producing short-lived, weakly active metabolites, compound 13 (PF-02575799) advanced into phase 1 clinical studies.

  20. In Vitro Cytochrome P450 Formation of a Mono-Hydroxylated Metabolite of Zearalenone Exhibiting Estrogenic Activities: Possible Occurrence of This Metabolite in Vivo

    PubMed Central

    Bravin, Frederique; Duca, Radu C.; Balaguer, Patrick; Delaforge, Marcel

    2009-01-01

    The mycoestrogen zearalenone (ZEN), as well as its reduced metabolites, which belong to the endocrine disruptor bio-molecule family, are substrates for various enzymes involved in steroid metabolism. In addition to its reduction by the steroid dehydrogenase pathway, ZEN also interacts with hepatic detoxification enzymes, which convert it into hydroxylated metabolites (OH-ZEN). Due to their structures to that of estradiol, ZEN and its derived metabolites bind to the estrogen receptors and are involved in endocrinal perturbations and are possibly associated with estrogen-dependent cancers. The primary aim of this present study was to identify the enzymatic cytochrome P450 isoforms responsible for the formation of the most abundant OH-ZEN. We thus studied its in vitro formation using hepatic microsomes in a range of animal model systems including man. OH-ZEN was also recovered in liver and urine of rats treated orally with ZEN. Finally we compared the activity of ZEN and its active metabolites (α-ZAL and OH-ZEN) on estrogen receptors using HeLa ER-α and ER-β reporter cell lines as reporters. OH-ZEN estrogenic activities were revealed to be limited and not as significant as those of ZEN or α-ZAL. PMID:19468341

  1. Bioactivation of dibrominated biphenyls by cytochrome P450 activity to metabolites with estrogenic activity and estrogen sulfotransferase inhibition capacity.

    PubMed

    van Lipzig, Marola M H; Commandeur, Jan N; de Kanter, Frans J J; Damsten, Micaela C; Vermeulen, Nico P E; Maat, Evelina; Groot, Ed J; Brouwer, Abraham; Kester, Monique H A; Visser, Theo J; Meerman, John H N

    2005-11-01

    Exposure of humans and wildlife to xenobiotics, such as halogenated biphenyls, that interfere with the endogenous estrogen balance may lead to endocrine disruption. Such compounds may either mimic or block estradiol's action by agonistic or antagonistic action, respectively. They may also affect endogenous estradiol concentrations by induction or inhibition of enzymes that metabolize estradiol. In the present study, we demonstrate that estrogenic metabolites of two brominated biphenyls, 2,2'-dibromobiphenyl (2,2'-DBB) and 4,4'-dibromobiphenyl (4,4'-DBB), are formed by rat liver microsomal cytochrome P450 (CYP) activity. Bioactivation of 2,2'-DBB and 4,4'-DBB yielded various mono- and dihydroxylated bromobiphenyl metabolites, which were collected by preparative HPLC and analyzed by LC/MS. Several of the metabolites bound to the estrogen receptor (ER) activated the ER and inhibited human estrogen sulfotransferase (hEST). Seven monohydroxylated metabolites were positively identified using synthetic monohydroxylated reference compounds. These synthetic monohydroxylated bromobiphenyls also bound to and activated the ER and inhibited hEST. The highest ER affinity was observed for 4-OH-2,2'-DBB, with an EC50 of 6.6 nM. The highest ER activation was observed for 4-OH-3,4'-DBB (EC50 of 74 nM) while 4-OH-4'-MBB and 4-OH-2,2'-DBB induced a supramaximal (as compared to estradiol) ER activation. The strongest hEST inhibition was found with 4-OH-3,4'-DBB (EC50 = 40 nM). In conclusion, we show that two dibrominated biphenyls are bioactivated by CYP activity into very potent estrogenic metabolites and inhibitors of hEST. These findings are of vital importance for accurate risk assessment of exposure to environmental contaminants, such as halogenated biphenyls. Neglecting bioactivation through biotransformation will lead to underestimation of health risks of this class of xenobiotics.

  2. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex.

    PubMed

    Azarkan, Mohamed; Matagne, André; Wattiez, Ruddy; Bolle, Laetitia; Vandenameele, Julie; Baeyens-Volant, Danielle

    2011-10-01

    The latex of Ficus carica constitutes an important source of many proteolytic components known under the general term of ficin (EC 3.4.22.3) which belongs to the cysteine proteases of the papain family. So far, no data on the purification and characterization of individual forms of these proteases are available. An effective strategy was used to fractionate and purify to homogeneity five ficin forms, designated A, B, C, D1 and D2 according to their sequence of elution from a cation-exchange chromatographic support. Following rapid fractionation on a SP-Sepharose Fast Flow column, the different ficin forms were chemically modified by a specific and reversible monomethoxypolyethylene glycol (mPEG) reagent. In comparison with their un-derivatized counterparts, the mPEG-protein derivatives behaved differently on the ion-exchanger, allowing us for the first time to obtain five highly purified ficin molecular species titrating 1mol of thiol group per mole of enzyme. The purified ficins were characterized by de novo peptide sequencing and peptide mass fingerprinting analyzes, using mass spectrometry. Circular dichroism measurements indicated that all five ficins were highly structured, both in term of secondary and tertiary structure. Furthermore, analysis of far-UV CD spectra allowed calculation of their secondary structural content. Both these data and the molecular masses determined by MS reinforce the view that the enzymes belong to the family of papain-like proteases. The five ficin forms also displayed different specific amidase activities against small synthetic substrates like dl-BAPNA and Boc-Ala-Ala-Gly-pNA, suggesting some differences in their active site organization. Enzymatic activity of the five ficin forms was completely inhibited by specific cysteine and cysteine/serine proteases inhibitors but was unaffected by specific serine, aspartic and metallo proteases inhibitors.

  3. Reproductive activity in the peninsular pronghorn determined from excreted gonadal steroid metabolites.

    PubMed

    Kersey, David C; Holland, Jeff; Eng, Curtis

    2015-01-01

    Fecal hormone monitoring was employed to better define annual patterns of reproductive steroid metabolites from a breeding pair of peninsular pronghorn (Antilocapra americana peninsularis) maintained at the Los Angeles Zoo. Notably in the female, increased excretion of estrogen metabolites occurred during the breeding season (Jun-Aug), and a biphasic pattern in progestagen activity was measured during gestation. Of additional interest, a preterm increase in estrogen that continued for an additional 64 days post partum. Male androgen activity correlated with the female estrogen patterns, with a single successful copulation occurring during the breeding season; interestingly however, the male exhibited no reproductive behaviors during the female's preterm/post partum estrogen increase. These data are the first reproductive steroid profiles for the peninsular pronghorn and provide valuable insight that will aid efforts that link the species' reproductive physiology with conservation management.

  4. New metabolic and pharmacokinetic characteristics of thiocolchicoside and its active metabolite in healthy humans.

    PubMed

    Trellu, M; Filali-Ansary, A; Françon, D; Adam, R; Lluel, P; Dubruc, C; Thénot, J P

    2004-08-01

    Thiocolchicoside (TCC) has been prescribed for several years as a muscle relaxant drug, but its pharmacokinetic (PK) profile and metabolism still remain largely unknown. Therefore, we re-investigated its metabolism and PK, and we assessed the muscle relaxant properties of its metabolites. After oral administration of 8 mg (a therapeutic dose) of 14C-labelled TCC to healthy volunteers, we found no detectable TCC in plasma, urine or faeces. On the other hand, the aglycone derivative obtained after de-glycosylation of TCC (M2) was observed and, in addition, we identified, as the major circulating metabolic entity, 3-O-glucuronidated aglycone (M1) obtained after glucuro-conjugation of M2. One hour after oral administration, M1 plus M2 accounted for more than 75% of the circulating total radioactivity. The pharmacological activity of these metabolites was assessed using a rat model, the muscle relaxant activity of M1 was similar to that of TCC whereas M2 was devoid of any activity. Subsequently, to investigate the PK profile of TCC in human PK studies, we developed and validated a specific bioanalytical method that combines liquid chromatography and ultraviolet detection to assay both active entities. After oral administration, TCC was not quantifiable with an lower limit of quantification set at 1 ng/mL, whereas its active metabolite M1 was detected. M1 appeared rapidly in plasma (tmax=1 h) and was eliminated with an apparent terminal half-life of 7.3 h. In contrast, after intramuscular administration both active entities (TCC and M1) were present; TCC was rapidly absorbed (tmax=0.4 h) and eliminated with an apparent terminal half-life of 1.5 h. M1 concentration peaked at 5 h and this metabolite was eliminated with an apparent terminal half-life of 8.6 h. As TCC and M1 present an equipotent pharmacological activity, the relative oral pharmacological bioavailability of TCC vs. intramuscular administration was calculated and represented 25%. Therefore, to correctly

  5. Selective surface activation of a functional monolayer for the fabrication of nanometer scale thiol patterns and directed self-assembly of gold nanoparticles.

    PubMed

    Fresco, Zachary M; Fréchet, Jean M J

    2005-06-15

    Application of a voltage bias between the tip of an atomic force microscope (AFM) and a silicon substrate causes the localized modification of a specially designed self-assembled monolayer (SAM), transforming a surface-bound thiocarbonate into a surface-bound thiol. The resulting surface-bound thiols are used to direct the patternwise self-assembly of gold nanoparticles (AuNPs). This methodology is applied to deposit individual AuNPs onto a surface with nanometer precision and to produce 10 nm lines of closely spaced AuNPs that are a single nanoparticle in width.

  6. Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembles the active-site sequence of thiol-disulfide exchange enzymes.

    PubMed Central

    Pinter, A; Kopelman, R; Li, Z; Kayman, S C; Sanders, D A

    1997-01-01

    Previous studies have indicated that the surface (SU) and transmembrane (TM) subunits of the envelope protein (Env) of murine leukemia viruses (MuLVs) are joined by a labile disulfide bond that can be stabilized by treatment of virions with thiol-specific reagents. In the present study this observation was extended to the Envs of additional classes of MuLV, and the cysteines of SU involved in this linkage were mapped by proteolytic fragmentation analyses to the CWLC sequence present at the beginning of the C-terminal domain of SU. This sequence is highly conserved across a broad range of distantly related retroviruses and resembles the CXXC motif present at the active site of thiol-disulfide exchange enzymes. A model is proposed in which rearrangements of the SU-TM intersubunit disulfide linkage, mediated by the CWLC sequence, play roles in the assembly and function of the Env complex. PMID:9311907

  7. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity.

    PubMed

    Omotayo, T I; Akinyemi, G S; Omololu, P A; Ajayi, B O; Akindahunsi, A A; Rocha, J B T; Kade, I J

    2015-01-01

    The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe(2+)-mediated in vitro oxidative stress model. The results show that Fe(2+) inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe(2+) inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA) inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe(2+) may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe(2+) and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  8. Aldosterone Increases Oxidant Stress to Impair Guanylyl Cyclase Activity by Cysteinyl Thiol Oxidation in Vascular Smooth Muscle Cells*S⃞

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; Handy, Diane E.; Beuve, Annie; Tang, Shiow-Shih; Loscalzo, Joseph; Leopold, Jane A.

    2009-01-01

    Hyperaldosteronism is associated with impaired endothelium-dependent vascular reactivity owing to increased reactive oxygen species and decreased bioavailable nitric oxide (NO·); however, the effects of aldosterone on vasodilatory signaling pathways in vascular smooth muscle cells (VSMC) remain unknown. Soluble guanylyl cyclase (GC) is a heterodimer that is activated by NO· to convert cytosolic GTP to cGMP, a second messenger required for normal VSMC relaxation. Here, we show that aldosterone (10-9-10-7 mol/liter) diminishes GC activity by activating NADPH oxidase in bovine aortic VSMC to increase reactive oxygen species levels and induce oxidative posttranslational modification(s) of Cys-122, a β1-subunit cysteinyl residue demonstrated previously to modulate NO· sensing by GC. In VSMC treated with aldosterone, Western immunoblotting detected evidence of GC β1-subunit disulfide bonding, whereas mass spectrometry analysis of a homologous peptide containing the Cys-122-bearing sequence exposed to conditions of increased oxidant stress confirmed cysteinyl sulfinic acid (m/z 435), sulfonic acid (m/z 443), and disulfide (m/z 836) bond formation. The functional effect of these modifications was examined by transfecting COS-7 cells with wild-type GC or mutant GC containing an alanine substitution at Cys-122 (C122A). Exposure to aldosterone or hydrogen peroxide (H2O2) significantly decreased cGMP levels in cells expressing wild-type GC. In contrast, aldosterone or H2O2 did not influence cGMP levels in cells expressing the mutant C122A GC, confirming that oxidative modification of Cys-122 specifically impairs GC activity. These findings demonstrate that pathophysiologically relevant concentrations of aldosterone increase oxidant stress to convert GC to an NO·-insensitive state, resulting in disruption of normal vasodilatory signaling pathways in VSMC. PMID:19141618

  9. Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models.

    PubMed

    Larrosa, Mar; Luceri, Cristina; Vivoli, Elisa; Pagliuca, Chiara; Lodovici, Maura; Moneti, Gloriano; Dolara, Piero

    2009-08-01

    The polyphenols in fruits and vegetables may be partly responsible for the health-promoting effects attributed to fruit and vegetable intake. Although their properties have been relatively well studied, the activity of their metabolites, produced after ingestion, has been poorly investigated. Thus, the aim of this work was to study the potential anti-inflammatory effect of 18 polyphenol metabolites, derived from colon microbiota. They were screened by measuring prostaglandin E(2) (PGE(2)) production by CCD-18 colon fibroblast cells stimulated with IL-1beta. Metabolites that inhibited more than 50% PGE(2) production were hydrocaffeic (HCAF), dihydroxyphenyl acetic (dOHPA), and hydroferulic acid (HFER), that subsequently were tested with the writhing and paw pressure test in rodents where all three compounds showed an anti-inflammatory effect. The effect of HCAF administered orally (50 mg/kg) was also tested in the dextran sodium sulfate (DSS)-induced colitis model. Weight loss and fecal water content were more pronounced in DSS rats than in DSS-HCAF treated rats. HCAF treatment diminished the expression of the cytokines IL-1beta, IL-8, and TNF-alpha, reduced malonyldialdehyde (MDA) levels and oxidative DNA damage (measured as 8-oxo-2'-deoxyguanosine levels) in distal colon mucosa. These results indicate that HCAF, dOHPA, and HFER have anti-inflammatory activity in vitro and in vivo.

  10. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  11. Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites.

    PubMed

    Gliszczyńska, Anna; Łysek, Agnieszka; Janeczko, Tomasz; Świtalska, Marta; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2011-04-01

    Six metabolites were obtained as a result of microbial transformation of (+)-nootkatone (1) by the fungal strains: Botrytis, Didymosphaeria, Aspergillus, Chaetomium and Fusarium. Their structure were established as (+)-(4R,5S,7R,9R)-9α-hydroxynootkatone (2), (+)-(4R,5S,7R)-13-hydroxynootkatone (3) and (+)-(4R,5S,7R,9R,11S)-11,12-epoxy-9α-hydroxynootkatone (4), (+)-(4R,5S,7R,11S)-11,12-epoksynootkatone (5), (+)-(4R,5S,7R)-11,12-dihydroxynootkatone (6) and (+)-(4R,5S,7R)-7,11,12-trihydroxynootkatone (7) on the basis of their spectral data. Two products: (4) and (7) were not previously reported in the literature. The antiproliferative activity of (+)-nootkatone (1) and isolated metabolites (2-7) of its biotransformation has been evaluated.

  12. Inhibition of cytochrome P450 activity enhances the systemic availability of triclabendazole metabolites in sheep.

    PubMed

    Virkel, G; Lifschitz, A; Sallovitz, J; Ballent, M; Scarcella, S; Lanusse, C

    2009-02-01

    Understanding the disposition kinetics and the pattern of metabolism is critical to optimise the flukicidal activity of triclabendazole (TCBZ) in ruminants. TCBZ is metabolised by both flavin-monooxygenase (FMO) and cytochrome P450 (P450) in the liver. Interference with these metabolic pathways may be useful to increase the systemic availabilities of TCBZ metabolites, which may improve the efficacy against Fasciola hepatica. The plasma disposition of TCBZ metabolites was evaluated following TCBZ co-administration with FMO [methimazole (MTZ)] and P450 [piperonyl butoxyde (PB) and ketoconazole (KTZ)] inhibitors in sheep. Twenty (20) healthy Corriedale x Merino weaned female lambs were randomly allocated into four experimental groups. Animals of each group were treated as follow: Group A, TCBZ alone (5 mg/kg, IV route); Group B, TCBZ (5 mg/kg, IV) + MTZ (3 mg/kg, IV); Group C, TCBZ (5 mg/kg, IV) + PB (30 mg/kg, IV) and Group D, TCBZ (5 mg/kg, IV) + KTZ (10 mg/kg, orally). Blood samples were taken over 240 h post-treatment and analysed by HPLC. TCBZ sulphoxide and sulphone were the main metabolites recovered in plasma. MTZ did not affect TCBZ disposition kinetics. TCBZ sulphoxide Cmax values were significantly increased (P < 0.05) after the TCBZ + PB (62%) and TCBZ + KTZ (37%) treatments compared to those measured in the TCBZ alone treatment. TCBZ sulphoxide plasma AUCs were higher (P < 0.05) in the presence of both PB (99%) and KTZ (41%). Inhibition of TCBZ P450-mediated oxidation in the liver accounted for the increased systemic availability of its active metabolite TCBZ sulphoxide. This work contributes to the search of different strategies to improve the use of this flukicidal drug in ruminants.

  13. Evaluation of the pharmacological activity of the major mexiletine metabolites on skeletal muscle sodium currents

    PubMed Central

    De Bellis, M; De Luca, A; Rana, F; Cavalluzzi, M M; Catalano, A; Lentini, G; Franchini, C; Tortorella, V; Conte Camerino, D

    2006-01-01

    Background and purpose: Mexiletine (Mex), an orally effective antiarrhythmic agent used to treat ventricular arrhythmias, has also been found to be effective for myotonia and neuropathic pain. It is extensively metabolized in humans but little information exists about the pharmacodynamic properties of its metabolites. Experimental approach: To determine their contribution to the clinical activity of Mex, p-hydroxy-mexiletine (PHM), hydroxy-methyl-mexiletine (HMM), N-hydroxy-mexiletine (NHM) (phase I reaction products) and N-carbonyloxy β-D-glucuronide (NMG) (phase II reaction product) were tested on sodium currents (INa) of frog skeletal muscle fibres. Sodium currents were elicited with depolarizing pulses from different holding potentials (HP=−140, −100, −70 mV) and stimulation frequencies (0.25, 0.5, 1, 2, 5, 10 Hz) using the vaseline-gap voltage-clamp method. Key results: All the hydroxylated derivatives blocked the sodium channel in a voltage- and use-dependent manner. The PHM, HMM and NHM metabolites were up to 10-fold less effective than the parent compound. However, HMM showed a greater use-dependent behaviour (10 Hz), compared to Mex and the other metabolites. Similar to Mex, these products behaved as inactivating channel blockers. Conjugation with glucuronic acid (NMG) resulted in almost complete abolition of the pharmacological activity of the parent compound. Conclusions and Implications: Thus, although less potent, the phase I metabolites tested demonstrated similar pharmacological behaviour to Mex and might contribute to its clinical profile. PMID:16921388

  14. Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment.

    PubMed

    Ferrando-Climent, Laura; Collado, Neus; Buttiglieri, Gianluigi; Gros, Meritxell; Rodriguez-Roda, Ignasi; Rodriguez-Mozaz, Sara; Barceló, Damià

    2012-11-01

    Even though Ibuprofen is one of the most studied pharmaceutical in the aquatic environment, there is still a lack of information about its fate and the generation of different transformation products along wastewater treatment plants (WWTPs). Ibuprofen biotransformation products can be generated by human metabolism or by microorganisms present in WWTPs and in natural waters, soils, and sediments, which increase the probability to find them in environment. In this work, the presence of ibuprofen and its main metabolites: ibuprofen carboxylic acid (CBX IBU), 2-hydroxylated ibuprofen (2-OH IBU) and 1-hydroxylated ibuprofen (1-OH IBU), was monitored quantitatively along the biodegradation processes occurring in different batch activated sludge (BAS) experiments under different working conditions. Total ibuprofen removal, achieved in almost all the experiments, was related in part to the formation of the metabolites mentioned. Another ibuprofen metabolite, 1,2-dihydroxy ibuprofen, was detected in BAS experiments for the first time. The metabolites 2-OH IBU and 1-OH IBU remained in solution at the end of ibuprofen biodegradation experiments whereas CBX IBU disappeared faster than hydroxylated metabolites. In addition, also the biodegradation of 1-OH IBU, 2-OH IBU and CBX IBU was evaluated in batch experiments: CBX IBU removal occurred at the highest rate followed by IBU, 2-OH IBU, and 1-OH IBU, which exhibited the lowest removal rate. Finally, Ibuprofen and ibuprofen metabolites were monitored in sewage and natural water samples, where they were found at higher levels than expected: the maximum concentration in influent wastewater samples were 13.74, 5.8, 38.4, 94.0μg/L for IBU, 1-OH IBU, CBX IBU and 2-OH IBU respectively; whereas maximum levels in effluent wastewater samples were 1.9, 1.4, 10.7, 5.9 μg/L for IBU, 1-OH IBU, CBX IBU and 2-OH IBU respectively. High levels of the compounds were also found in river samples, in particular for CBX IBU, which was detected up

  15. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes S-methylation of thiols and has a role in detoxification.

    PubMed

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S; Kapteyn, Jeremy; Zhuang, Xiaofeng; Hasebe, Mitsuyasu; Stewart, C Neal; Gang, David R; Chen, Feng

    2012-09-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5μM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC-MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  16. A 14.7 kDa protein from Francisella tularensis subsp. novicida (named FTN_1133), involved in the response to oxidative stress induced by organic peroxides, is not endowed with thiol-dependent peroxidase activity.

    PubMed

    Meireles, Diogo de Abreu; Alegria, Thiago Geronimo Pires; Alves, Simone Vidigal; Arantes, Carla Rani Rocha; Netto, Luis Eduardo Soares

    2014-01-01

    Francisella genus comprises Gram-negative facultative intracellular bacteria that are among the most infectious human pathogens. A protein of 14.7 KDa named as FTN_1133 was previously described as a novel hydroperoxide resistance protein in F. tularensis subsp. novicida, implicated in organic peroxide detoxification and virulence. Here, we describe a structural and biochemical characterization of FTN_1133. Contrary to previous assumptions, multiple amino acid sequence alignment analyses revealed that FTN_1133 does not share significant similarity with proteins of the Ohr/OsmC family or any other Cys-based, thiol dependent peroxidase, including conserved motifs around reactive cysteine residues. Circular dichroism analyses were consistent with the in silico prediction of an all-α-helix secondary structure. The pKa of its single cysteine residue, determined by a monobromobimane alkylation method, was shown to be 8.0±0.1, value that is elevated when compared with other Cys-based peroxidases, such as peroxiredoxins and Ohr/OsmC proteins. Attempts to determine a thiol peroxidase activity for FTN_1133 failed, using both dithiols (DTT, thioredoxin and lipoamide) and monothiols (glutathione or 2-mercaptoethanol) as reducing agents. Heterologous expression of FTN_1133 gene in ahpC and oxyR mutants of E. coli showed no complementation. Furthermore, analysis of FTN_1133 protein by non-reducing SDS-PAGE showed that an inter-molecular disulfide bond (not detected in Ohr proteins) can be generated under hydroperoxide treatment, but the observed rates were not comparable to those observed for other thiol-dependent peroxidases. All the biochemical and structural data taken together indicated that FTN_1133 displayed distinct characteristics from other thiol dependent peroxidases and, therefore, suggested that FTN_1133 is not directly involved in hydroperoxide detoxification.

  17. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi--Metabolites, enzymes and residual antibacterial activity.

    PubMed

    Čvančarová, Monika; Moeder, Monika; Filipová, Alena; Cajthaml, Tomáš

    2015-10-01

    A group of white rot fungi (Irpex lacteus, Panus tigrinus, Dichomitus squalens, Trametes versicolor and Pleurotus ostreatus) was investigated for the biodegradation of norfloxacin (NOR), ofloxacin (OF) and ciprofloxacin (CIP). The selected fluoroquinolones were readily degraded almost completely by I. lacteus and T. versicolor within 10 and 14 d of incubation in liquid medium, respectively. The biodegradation products were identified by liquid chromatography-mass spectrometry. The analyses indicated that the fungi use similar mechanisms to degrade structurally related antibiotics. The piperazine ring of the molecules is preferably attacked via either substitution or/and decomposition. In addition to the degradation efficiency, attention was devoted to the residual antibiotic activities estimated using Gram-positive and Gram-negative bacteria. Only I. lacteus was able to remove the antibiotic activity during the course of the degradation of NOR and OF. The product-effect correlations evaluated by Principal Component Analysis (PCA) enabled elucidation of the participation of the individual metabolites in the residual antibacterial activity. Most of the metabolites correlated with the antibacterial activity, explaining the rather high residual activity remaining after the biodegradation. PCA of ligninolytic enzyme activities indicated that manganese peroxidase might participate in the degradation.

  18. Rapid and thiol-specific high-throughput assay for simultaneous relative quantification of total thiols, protein thiols, and nonprotein thiols in cells.

    PubMed

    Yang, Yang; Guan, Xiangming

    2015-01-06

    Thiol groups in biological molecules play a significant role in various physiological functions and pathological conditions. Thiols are divided into two major groups: protein thiols and nonprotein thiols. Numerous methods have been reported for thiol assays. Most of these methods have been developed for glutathione, the principal nonprotein thiol, despite the fact that cellular protein thiols are more abundant than glutathione. Further, these methods usually involve a process of biological sample preparation followed by a separation method, and they are time-consuming. We reported previously a series of thiol-specific fluorogenic benzofurazan sulfides. These nonfluorescent benzofurazan sulfides react rapidly and specifically with a thiol to form a strong fluorescent thiol adduct. The rapid reaction, thiol-specific and fluorogenic nature of the sulfides successfully yielded an application of one of the sulfides for relative quantitation of total thiols in live cells through fluorescence microscopy. In this work, we employed the same compound to develop the first high-throughput method for simultaneous monitoring of protein thiols, nonprotein thiols, and total thiols in cells in a 96-well plate on a fluorescence microplate reader at λ(ex) = 430 nm and λ(em) = 520 nm, respectively. The method is rapid and sensitive, and has been validated by an HPLC thiol assay method. The method can detect thiols with cell concentrations as low as 500 cells/well. We also demonstrated that the method can readily monitor changes in cellular thiol levels. Although the method cannot provide an absolute quantification for thiols because fluorescence intensity of different thiol adducts varies, it provides an accurate measurement of relative quantification, relative to the control. The method will be a valuable tool in thiol-related biomedical/pharmaceutical research.

  19. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities.

  20. Reversible inactivation of CO dehydrogenase with thiol compounds

    SciTech Connect

    Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.; Marx, Christian; Meyer-Klaucke, Wolfram; Meyer, Ortwin

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  1. Comparison of the circulating metabolite profile of PF-04991532, a hepatoselective glucokinase activator, across preclinical species and humans: potential implications in metabolites in safety testing assessment.

    PubMed

    Sharma, Raman; Litchfield, John; Bergman, Arthur; Atkinson, Karen; Kazierad, David; Gustavson, Stephanie M; Di, Li; Pfefferkorn, Jeffrey A; Kalgutkar, Amit S

    2015-02-01

    A previous report from our laboratory disclosed the identification of PF-04991532 [(S)-6-(3-cyclopentyl-2-(4-trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid] as a hepatoselective glucokinase activator for the treatment of type 2 diabetes mellitus. Lack of in vitro metabolic turnover in microsomes and hepatocytes from preclinical species and humans suggested that metabolism would be inconsequential as a clearance mechanism of PF-04991532 in vivo. Qualitative examination of human circulating metabolites using plasma samples from a 14-day multiple ascending dose clinical study, however, revealed a glucuronide (M1) and monohydroxylation products (M2a and M2b/M2c) whose abundances (based on UV integration) were greater than 10% of the total drug-related material. Based on this preliminary observation, mass balance/excretion studies were triggered in animals, which revealed that the majority of circulating radioactivity following the oral administration of [¹⁴C]PF-04991532 was attributed to an unchanged parent (>70% in rats and dogs). In contrast with the human circulatory metabolite profile, the monohydroxylated metabolites were not detected in circulation in either rats or dogs. Available mass spectral evidence suggested that M2a and M2b/M2c were diastereomers derived from cyclopentyl ring oxidation in PF-04991532. Because cyclopentyl ring hydroxylation on the C-2 and C-3 positions can generate eight possible diastereomers, it was possible that additional diastereomers may have also formed and would need to be resolved from the M2a and M2b/M2c peaks observed in the current chromatography conditions. In conclusion, the human metabolite scouting study in tandem with the animal mass balance study allowed early identification of PF-04991532 oxidative metabolites, which were not predicted by in vitro methods and may require additional scrutiny in the development phase of PF-04991532.

  2. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    PubMed

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons.

  3. Biotransformation of dianabol with the filamentous fungi and β-glucuronidase inhibitory activity of resulting metabolites.

    PubMed

    Khan, Naik T; Zafar, Salman; Noreen, Shagufta; Al Majid, Abdullah M; Al Othman, Zeid A; Al-Resayes, Saud Ibrahim; Atta-ur-Rahman; Choudhary, M Iqbal

    2014-07-01

    Biotransformation of the anabolic steroid dianabol (1) by suspended-cell cultures of the filamentous fungi Cunninghamella elegans and Macrophomina phaseolina was studied. Incubation of 1 with C. elegans yielded five hydroxylated metabolites 2-6, while M. phaseolina transformed compound 1 into polar metabolites 7-11. These metabolites were identified as 6β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (2), 15α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (3), 11α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (4), 6β,12β,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (5), 6β,15α,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (6), 17β-hydroxy-17α-methylandrost-1,4-dien-3,6-dione (7), 7β,17β,-dihydroxy-17α-methylandrost-1,4-dien-3-one (8), 15β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (9), 17β-hydroxy-17α-methylandrost-1,4-dien-3,11-dione (10), and 11β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (11). Metabolite 3 was also transformed chemically into diketone 12 and oximes 13, and 14. Compounds 6 and 12-14 were identified as new derivatives of dianabol (1). The structures of all transformed products were deduced on the basis of spectral analyses. Compounds 1-14 were evaluated for β-glucuronidase enzyme inhibitory activity. Compounds 7, 13, and 14 showed a strong inhibition of β-glucuronidase enzyme, with IC50 values between 49.0 and 84.9 μM.

  4. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi.

    PubMed

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2010-12-27

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity.

  5. Low Water Activity Induces the Production of Bioactive Metabolites in Halophilic and Halotolerant Fungi

    PubMed Central

    Sepcic, Kristina; Zalar, Polona; Gunde-Cimerman, Nina

    2011-01-01

    The aim of the present study was to investigate indigenous fungal communities isolated from extreme environments (hypersaline waters of solar salterns and subglacial ice), for the production of metabolic compounds with selected biological activities: hemolysis, antibacterial, and acetylcholinesterase inhibition. In their natural habitats, the selected fungi are exposed to environmental extremes, and therefore the production of bioactive metabolites was tested under both standard growth conditions for mesophilic microorganisms, and at high NaCl and sugar concentrations and low growth temperatures. The results indicate that selected halotolerant and halophilic species synthesize specific bioactive metabolites under conditions that represent stress for non-adapted species. Furthermore, adaptation at the level of the chemical nature of the solute lowering the water activity of the medium was observed. Increased salt concentrations resulted in higher hemolytic activity, particularly within species dominating the salterns. The appearance of antibacterial potential under stress conditions was seen in the similar pattern of fungal species as for hemolysis. The active extracts exclusively affected the growth of the Gram-positive bacterium tested, Bacillus subtilis. None of the extracts tested showed inhibition of acetylcholinesterase activity. PMID:21339946

  6. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  7. Quantification of Thiols and Disulfides

    PubMed Central

    Winther, Jakob R.; Thorpe, Colin

    2013-01-01

    Background Disulfide bond formation is a key posttranslational modification, with implications for structure, function and stability of numerous proteins. While disulfide bond formation is a necessary and essential process for many proteins, it is deleterious and disruptive for others. Cells go to great lengths to regulate thiol-disulfide bond homeostasis, typically with several, apparently redundant, systems working in parallel. Dissecting the extent of oxidation and reduction of disulfides is an ongoing challenge due, in part, to the facility of thiol/disulfide exchange reactions. Scope of the review In the present account, we briefly survey the toolbox available to the experimentalist for the chemical determination of thiols and disulfides. We have chosen to focus on the key chemical aspects of current methodology, together with identifying potential difficulties inherent in their experimental implementation. Major conclusions While many reagents have been described for the measurement and manipulation of the redox status of thiols and disulfides, a number of these methods remain underutilized. The ability to effectively quantify changes in redox conditions in living cells presents a continuing challenge. General Significance Many unresolved questions in the metabolic interconversion of thiols and disulfides remain. For example, while pool sizes of redox pairs and their intracellular distribution are being uncovered, very little is known about the flux in thiol-disulfide exchange pathways. New tools are needed to address this important aspect of cellular metabolism. PMID:23567800

  8. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites 1

    PubMed Central

    Schrader, L. E.; Hageman, R. H.

    1967-01-01

    Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings. Secondary metabolites, derived from phenylalanine and tyrosine, were tested as inhibitors of induction of nitrate reductase. Of the 9 different phenylpropanoid compounds tested, only coumarin, trans-cinnamic and trans-o-hydroxycinnamic acids inhibited induction of nitrate reductase. While coumarin alone exhibited a relatively greater inhibitory effect on enzyme induction than on general protein synthesis (the latter measured by incorporation of labeled amino acids), this differential effect may have been dependent upon unequal rates of synthesis and accumulation with respect to the initial levels of nitrate reductase and general proteins. Because of the short half-life of nitrate reductase, inhibitors of protein synthesis in general could still achieve differential regulation of nitrogen metabolism. Coumarin did not inhibit nitrate reductase activity when added directly to the assay mixture at 5 mm. Carbamyl phosphate and its chemical derivative, cyanate, were found to be competitive (with nitrate) inhibitors of nitrate reductase. The data suggest that cyanate is the active inhibitor in the carbamyl phosphate preparations. PMID:16656715

  9. Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity.

    PubMed

    Wardecki, Tina; Brötz, Elke; De Ford, Christian; von Loewenich, Friederike D; Rebets, Yuriy; Tokovenko, Bogdan; Luzhetskyy, Andriy; Merfort, Irmgard

    2015-08-01

    Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.

  10. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.

    PubMed

    Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

    2015-01-01

    This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations.

  11. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    PubMed

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.

  12. [The pharmacokinetics of the dipeptide analog of piracetam with nootropic activity GVS-111 and of its basic metabolites].

    PubMed

    Boĭko, S S; Zherdev, V P; Dvorianinov, A A; Gudasheva, T A; Ostrovskaia, R U; Voronina, T A; Rozantsev, G G; Seredenin, S B

    1997-01-01

    The pharmacokinetics of a new nootropic dipeptide analog of piracetam-N-phenylacetyl-L-prolylglycine (GWS-111) and its main metabolites were studied in rats by means of high performance liquid chromatography and gas-liquid chromatography. The compound under study showed a greater resistance to an enzymatic effect than natural neuropeptides. In addition to an unchanged compound three of its metabolites were found in the blood plasma of the rats. One of them, cyclo-Pro-Gly was an active metabolite of GWS-111.

  13. Antistaphylococcal activity and metabolite profiling of manuka honey (Leptospermum scoparium L.) after in vitro simulated digestion.

    PubMed

    Mannina, Luisa; Sobolev, Anatoly P; Coppo, Erika; Di Lorenzo, Arianna; Nabavi, Seyed Mohammad; Marchese, Anna; Daglia, Maria

    2016-03-01

    The antistaphylococcal activity against methicillin-susceptible and -resistant Staphylococcus aureus and the metabolite profiling of manuka honey (MH) were investigated before and after in vitro simulated gastric (GD) and gastroduodenal (GDD) digestions. Undigested manuka honey showed antibacterial activity against all the tested strains, the GD sample showed no activity against S. aureus, and the GDD honey showed an antistaphylococcal activity, which was slightly reduced in comparison with the undigested sample. To explain these results, methylglyoxal (MGO), to which most of the antibacterial activity of MH is ascribed, was subjected to in vitro simulated GD and GDD. After digestion, MGO showed antibacterial activity at concentrations definitively higher than those registered in digested MH samples. These results showed that the antistaphylococcal activity registered after digestion cannot be ascribed to MGO. Thus metabolite analysis, carried out using an explorative untargeted NMR-based approach and a targeted RP-HPLC-PAD-ESI-MSn analysis focused on bio-active substances, was used to highlight the chemical modifications occurring from digestion. The results showed that (1) the level of MGO decreases and (2) the content of aromatic compounds, such as leptosin and methyl syringate, markers of manuka honey, was stable under gastric and gastroduodenal conditions, whereas (3) the levels of acetic and lactic acids increase in particular after gastroduodenal digestion, being 1.5 and 2.8 times higher in GDD-MH than in UND-MH, respectively. Overall, the results obtained from chemical analysis provide at least a partial explanation of the registered antibacterial activity observed after gastroduodenal digestion.

  14. Quantifying Reversible Oxidation of Protein Thiols in Photosynthetic Organisms

    NASA Astrophysics Data System (ADS)

    Slade, William O.; Werth, Emily G.; McConnell, Evan W.; Alvarez, Sophie; Hicks, Leslie M.

    2015-04-01

    Photosynthetic organisms use dynamic post-translational modifications to survive and adapt, which include reversible oxidative modifications of protein thiols that regulate protein structure, function, and activity. Efforts to quantify thiol modifications on a global scale have relied upon peptide derivatization, typically using isobaric tags such as TMT, ICAT, or iTRAQ that are more expensive, less accurate, and provide less proteome coverage than label-free approaches—suggesting the need for improved experimental designs for studies requiring maximal coverage and precision. Herein, we present the coverage and precision of resin-assisted thiol enrichment coupled to label-free quantitation for the characterization of reversible oxidative modifications on protein thiols. Using C. reinhardtii and Arabidopsis as model systems for algae and plants, we quantified 3662 and 1641 unique cysteinyl peptides, respectively, with median coefficient of variation (CV) of 13% and 16%. Further, our method is extendable for the detection of protein abundance changes and stoichiometries of cysteine oxidation. Finally, we demonstrate proof-of-principle for our method, and reveal that exogenous hydrogen peroxide treatment regulates the C. reinhardtii redox proteome by increasing or decreasing the level of oxidation of 501 or 67 peptides, respectively. As protein activity and function is controlled by oxidative modifications on protein thiols, resin-assisted thiol enrichment coupled to label-free quantitation can reveal how intracellular and environmental stimuli affect plant survival and fitness through oxidative stress.

  15. Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana.

    PubMed

    Howlett, A C

    1987-05-01

    delta 9Tetrahydrocannabinol (THC) has been shown to inhibit the activity of adenylate cyclase in the N18TG2 clone of murine neuroblastoma cells. The concentration of delta 9THC exhibiting half-maximal inhibition was 500 nM. delta 8Tetrahydrocannabinol was less active, and cannabinol was only partially active. Cannabidiol, cannabigerol, cannabichromene, olivetol and compounds having a reduced length of the C3 alkyl side chain were inactive. The metabolites of delta 8THC and delta 9THC hydroxylated at the C11 position were more potent than the parent drugs. However, hydroxylation at the C8 position of the terpenoid ring resulted in loss of activity. Compounds hydroxylated along the C3 alkyl side chain were equally efficacious but less potent than delta 9THC. These findings are compared to the pharmacology of cannabinoids reported for psychological effects in humans and behavioral effects in a variety of animal models.

  16. Free radical scavenging activity of erdosteine metabolite I investigated by electron paramagnetic resonance spectroscopy.

    PubMed

    Braga, Pier Carlo; Culici, Maria; Dal Sasso, Monica; Falchi, Mario; Spallino, Alessandra

    2010-01-01

    The aim of this study was to explore the antiradical activity of Met I (an active metabolite of erdosteine) containing a pharmacologically active sulphydryl group, by means of electron paramagnetic resonance (EPR) spectroscopy which has not previously been used to characterize the antiradical activity of Met I. The effects of concentrations of 20, 10, 5, 2.5, 1.25 and 0.625 microg/ml of Met I were tested against: (a) the Fenton reaction model system with EPR detection of HO.; (b) the KO2-crown ether system with EPR detection of O2-.; (c) the EPR assay based on the reduction of the Tempol radical, and (d) the EPR assay based on the reduction of Fremy's salt radical. Our findings show that the intensity of 4 different free radicals was significantly reduced in the presence of Met I, thus indicating the presence of a termination reaction between the free radicals and Met I.

  17. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites.

    PubMed

    Blevins-Primeau, Andrea S; Sun, Dongxiao; Chen, Gang; Sharma, Arun K; Gallagher, Carla J; Amin, Shantu; Lazarus, Philip

    2009-03-01

    Tamoxifen (TAM) is a selective estrogen receptor modulator widely used in the prevention and treatment of breast cancer. A major mode of metabolism of the major active metabolites of TAM, 4-OH-TAM and endoxifen, is by glucuronidation via the UDP-glucuronosyltransferase (UGT) family of enzymes. To examine whether polymorphisms in the UGT enzymes responsible for the glucuronidation of active TAM metabolites play an important role in interindividual differences in TAM metabolism, cell lines overexpressing wild-type or variant UGTs were examined for their activities against TAM metabolites in vitro. For variants of active extrahepatic UGTs, the UGT1A8(173Ala/277Tyr) variant exhibited no detectable glucuronidation activity against the trans isomers of either 4-OH-TAM or endoxifen. Little or no difference in TAM glucuronidating activity was observed for the UGT1A8(173Gly/277Cys) or UGT1A10(139Lys) variants compared with their wild-type counterparts. For active hepatic UGTs, the UGT2B7(268Tyr) variant exhibited significant (P < 0.01) 2- and 5-fold decreases in activity against the trans isomers of 4-OH-TAM and endoxifen, respectively, compared with wild-type UGT2B7(268His). In studies of 111 human liver microsomal specimens, the rate of O-glucuronidation against trans-4-OH-TAM and trans-endoxifen was 28% (P < 0.001) and 27% (P = 0.002) lower, respectively, in individuals homozygous for the UGT2B7 Tyr(268)Tyr genotype compared with subjects with the UGT2B7 His(268)His genotype, with a significant (P < 0.01) trend of decreasing activity against both substrates with increasing numbers of the UGT2B7(268His) allele. These results suggest that functional polymorphisms in TAM-metabolizing UGTs, including UGT2B7 and potentially UGT1A8, may be important in interindividual variability in TAM metabolism and response to TAM therapy.

  18. Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro.

    PubMed

    Tronina, Tomasz; Bartmańska, Agnieszka; Filip-Psurska, Beata; Wietrzyk, Joanna; Popłoński, Jarosław; Huszcza, Ewa

    2013-04-01

    Xanthohumol (1) and xanthohumol D (2) were isolated from spent hops. Isoxanthohumol (3) was obtained from xanthohumol by isomerisation in alkaline solution. Six metabolites were obtained as a result of transformation of xanthohumol (1) by selected fungal cultures. Their structures were established on the basis of their spectral data. One of them: 2″-(2'''-hydroxyisopropyl)-dihydrofurano-[4″,5″:3',4']-4',2-dihydroxy-6'-methoxy-α,β-dihydrochalcone (6) has not been previously reported in the literature. The antioxidant properties of hops flavonoids and xanthohumol derivatives were investigated using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The effects of these compounds on proliferation of MCF-7, PC-3 and HT-29 human cancer cell lines were determined by the SRB assay. With the exception of one metabolite, all tested compounds showed antiproliferative activity against the tested human cancer lines. α,β-Dihydroxanthohumol (4), obtained through the biotransformation of xanthohumol, showed higher antiproliferative activity against MCF-7 human breast carcinoma cell line than cisplatin, a widely used anticancer therapeutic agent, and a comparably high activity against PC-3 human prostate cancer cell line.

  19. Visible-Light-Initiated Thiol-Michael Addition Polymerizations with Coumarin-Based Photobase Generators: Another Photoclick Reaction Strategy.

    PubMed

    Zhang, Xinpeng; Xi, Weixian; Wang, Chen; Podgórski, Maciej; Bowman, Christopher N

    2016-02-16

    An efficient visible-light-sensitive photobase generator for thiol-Michael addition reactions was synthesized and evaluated. This highly reactive catalyst was designed by protecting a strong base (tetramethyl guanidine, TMG) with a visible-light-responsive group which was a coumarin derivative. The coumarin-coupled TMG was shown to exhibit extraordinary catalytic activity toward initiation of the thiol-Michael reaction, including thiol-Michael addition-based polymerization, upon visible-light irradiation, leading to a stoichiometric reaction of both thiol and vinyl functional groups. Owing to its features, this visible-light photobase generator enables homogeneous network formation in thiol-Michael polymerizations and also has the potential to be exploited in other visible-light-induced, base-catalyzed thiol-click processes such as thiol-isocynate and thiol-epoxy network-forming reactions.

  20. Estrogenic activity of estradiol and its metabolites in the ER-CALUX assay with human T47D breast cells.

    PubMed

    Hoogenboom LAP; de Haan, L; Hooijerink, D; Bor, G; Murk, A J; Brouwer, A

    2001-02-01

    A number of metabolites of 17beta-estradiol were tested for their estrogenic activity using the ER-CA-LUX assay based on the increased expression of luciferase in exposed T47D breast cancer cells. E2beta and estrone showed similar potencies in the test, whereas E2alpha was 100 times less active. Incubation of cells with estrone (0.35 microM) resulted in the formation of E2beta, whereas the reverse reaction was observed for E2beta. The resulting equilibrium may explain the similar estrogenic potency of estrone in the test. The synthetic 17-hydroxy benzoate ester of E2beta was 3 times less active than the parent compound. The 17-hydroxy palmitate and oleate esters of E2beta, were respectively 25 and 200 times less active than the parent compound. The 2-hydroxy metabolites of E2beta and estrone showed a 5,000 to 10,000 fold lower activity. The 4-hydroxy metabolites were more potent than the 2-hydroxy metabolites, showing only a 20-200 times lower activity. The 2- and 4-methoxyesters of estrone were 700 times less active. It is concluded that the estrogenic potency of metabolites formed in cattle after treatment with E2beta, like estrone, E2alpha and especially the esters of E2beta, may be significant with respect to the potential risk of the use of estradiol for growth promotion in domestic animals in certain countries.

  1. Detection of thiol modifications by hydrogen sulfide.

    PubMed

    Williams, E; Pead, S; Whiteman, M; Wood, M E; Wilson, I D; Ladomery, M R; Teklic, T; Lisjak, M; Hancock, J T

    2015-01-01

    Hydrogen sulfide (H2S) is an important gasotransmitter in both animals and plants. Many physiological events, including responses to stress, have been suggested to involve H2S, at least in part. On the other hand, numerous responses have been reported following treatment with H2S, including changes in the levels of antioxidants and the activities of transcription factors. Therefore, it is important to understand and unravel the events that are taking place downstream of H2S in signaling pathways. H2S is known to interact with other reactive signaling molecules such as reactive oxygen species (ROS) and nitric oxide (NO). One of the mechanisms by which ROS and NO have effects in a cell is the modification of thiol groups on proteins, by oxidation or S-nitrosylation, respectively. Recently, it has been reported that H2S can also modify thiols. Here we report a method for the determination of thiol modifications on proteins following the treatment with biological samples with H2S donors. Here, the nematode Caenorhabditis elegans is used as a model system but this method can be used for samples from other animals or plants.

  2. Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass.

    PubMed

    Song, Qiu-Yan; Nan, Zhi-Biao; Gao, Kun; Song, Hui; Tian, Pei; Zhang, Xing-Xu; Li, Chun-Jie; Xu, Wen-Bo; Li, Xiu-Zhang

    2015-10-14

    The development of high-quality herbage is an important aspect of animal husbandry. Inoculating beneficial fungi onto inferior grass is a feasible strategy for producing new varieties of high-quality herbage. Epichloë bromicola is a candidate fungus that is isolated from Elymus tangutorum. A total of 17 metabolites, 1-17, were obtained from E. bromicola, and their biological activities were assayed. Metabolite 1 exhibited antifungal activities against Alternaria alternata, Fusarium avenaceum, Bipolaris sorokiniana, and Curvularia lunata. EC50 values ranged from 0.7 to 5.3 μM, which were better than the positive control, chlorothalonil. Metabolite 8 displayed obvious phytotoxic effects toward Lolium perenne and Poa crymophila seedlings, and it was as active as glyphosate. None of these isolated metabolites displayed cytotoxicity against Madin-Darby bovine kidney cells. The IC50 values were greater than 100 μM, and the metabolites increased the growth of the cells at a concentration of 12.5 μM. The bioassay indicated that E. bromicola may be a beneficial fungus for producing new varieties of herbage with various resistances. Additionally, metabolite 7, 3-(2'-(4″-hydroxyphenyl)acetoxy)-2S-methylpropanoic acid, is a new natural product, and its stereochemistry was determined by means of optical rotation computation and chemical reactions.

  3. In vitro metabolism of pyripyropene A and ACAT inhibitory activity of its metabolites.

    PubMed

    Matsuda, Daisuke; Ohshiro, Taichi; Ohtawa, Masaki; Yamazaki, Hiroyuki; Nagamitsu, Tohru; Tomoda, Hiroshi

    2015-01-01

    Pyripyropene A (PPPA, 1) of fungal origin, a selective inhibitor of acyl-CoA:cholesterol acyltransferase 2 (ACAT2), proved orally active in atherogenic mouse models. The in vitro metabolites of 1 in liver microsomes and plasma of human, rabbit, rat and mouse were analyzed by ultra fast liquid chromatography and liquid chromatography/tandem mass spectrometry. In the liver microsomes from all species, successive hydrolysis occurred at the 1-O-acetyl residue, then at the 11-O-acetyl residue of 1, while the 7-O-acetyl residue was resistant to hydrolysis. Furthermore, dehydrogenation of the newly generated 11-alcoholic hydroxyl residue occurred in human and mouse-liver microsomes, while oxidation of the pyridine ring occurred in human and rabbit liver microsomes. On the other hand, hydrolysis of the 7-O-acetyl residue proceeded only in the mouse plasma. These data indicated that the in vitro metabolic profiles of 1 have subtle differences among animal species. All of the PPPA metabolites observed in liver microsomes and plasma markedly decreased ACAT2 inhibitory activity. These findings will help us to synthesize new PPPA derivatives more effective in in vivo study than 1.

  4. Enantioselective determination of sibutramine and its active metabolites in human plasma.

    PubMed

    Kang, Wonku; Bae, Kyoungjin; Noh, Keumhan

    2010-01-05

    Although racemic sibutramine has been widely used for the treatment of obesity, its enantioselective detection method has not been elucidated in human plasma. In this report we introduce a validated analytical method for the determination of sibutramine and its two active metabolites, desmethylsibutramines using LC-MS/MS. R- and S-isomers of those compounds in human plasma were extracted using diethyl ether-hexane (4:1, v/v) followed by an addition of NaOH solution. After removing the organic layer, the residue was reconstituted in the mobile phase 10mM ammonium acetate solution adjusted to pH 4.0 with acetic acid-acetonitrile (94:6, v/v). Both isomers in the extract were separated on a Chiralcel AGP chiral stationary-phase column and were quantified in a tandem mass spectrometry. The assay method was in accordance with FDA regulations for the validation of bioanalytical methods. This method was successfully used to profile the plasma concentrations of the stereoisomers of sibutramine and its two active metabolites with time in healthy volunteers.

  5. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. ex Heuff. and Its Metabolites.

    PubMed

    Pavlović, Ivan; Petrović, Silvana; Milenković, Marina; Stanojković, Tatjana; Nikolić, Dejan; Krunić, Aleksej; Niketić, Marjan

    2015-10-01

    The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75μM).

  6. Seasonal profiles of ovarian activity in Iberian lynx (Lynx pardinus) based on urinary hormone metabolite analyses.

    PubMed

    Jewgenow, K; Göritz, F; Vargas, A; Dehnhard, M

    2009-07-01

    The Iberian Lynx Ex-Situ Conservation Programme is an essential part of a co-ordinated action plan to conserve the most endangered felid species of the world. Successful captive breeding demands reliable methods for reproduction monitoring including reliable non-invasive pregnancy diagnosis. During a 3-year study, urine samples from six captive Iberian lynx females were obtained (one non-pregnant, one pseudo-pregnant and 11 pregnant cycles). Progesterone, pregnanediol and oestradiol were determined in urinary extracts and relevant urinary oestrogen metabolites were characterized by high-performance liquid chromatography (HPLC). Urinary progestins did not follow the typical pregnancy-related course of felids. In the lynx, we failed to demonstrate an urinary progestin elevation during pregnancy. In contrast, urinary oestrogens increased from 3.8 +/- 0.6 to 8.6 +/- 0.5 ng/mg creatinine (p < 0.001) during the pregnancy. A comparison of pseudo-pregnant with pregnant cycles revealed a further increase of oestrogens caused by implantation (p < 0.05). In one female, which refused to mate, no difference was estimated between oestrogens levels during the breeding and non-breeding seasons. Almost 10-fold higher oestrogen concentrations were measured in urines of females that shared enclosures with males. HPLC analysis of oestrogens in urine samples collected from Iberian lynx during the pregnancy revealed that lynx urine is composed of two polar oestrogen metabolites in addition to oestrone and minor amounts of oestradiol. Oestrone was detectable in all urinary extracts (8-12% of metabolites), whereas oestradiol was elevated only during late pregnancy (18%). Thus, seasonal luteal activity in Iberian lynx can be monitored by urinary oestrogens. The increase of urinary oestradiol during late pregnancy might indicate an oestradiol secretion by the lynx placenta.

  7. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

    PubMed

    Kumar, Rakesh; Hazan, Adina; Geron, Matan; Steinberg, Rebbeca; Livni, Lital; Matzner, Henry; Priel, Avi

    2017-03-01

    Peripheral neuronal activation by inflammatory mediators is a multifaceted physiological response that involves a multitude of regulated cellular functions. One key pathway that has been shown to be involved in inflammatory pain is Gq/GPCR, whose activation by inflammatory mediators is followed by the regulated response of the cation channel transient receptor potential vanilloid 1 (TRPV1). However, the mechanism that underlies TRPV1 activation downstream of the Gq/GPCR pathway has yet to be fully defined. In this study, we employ pharmacological and molecular biology tools to dissect this activation mechanism via perforated-patch recordings and calcium imaging of both neurons and a heterologous system. We showed that TRPV1 activity downstream of Gq/GPCR activation only produced a subdued current, which was noticeably different from the robust current that is typical of TRPV1 activation by exogenous stimuli. Moreover, we specifically demonstrated that 2 pathways downstream of Gq/GPCR signaling, namely endovanilloid production by lipoxygenases and channel phosphorylation by PKC, converge on TRPV1 to evoke a tightly regulated response. Of importance, we show that only when both pathways are acting on TRPV1 is the inflammatory-mediated response achieved. We propose that the requirement of multiple signaling events allows subdued TRPV1 activation to evoke regulated neuronal response during inflammation.-Kumar R., Hazan, A., Geron, M., Steinberg, R., Livni, L., Matzner, H., Priel, A. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

  8. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health.

    PubMed

    Lv, Xinmiao; Zhao, Siyu; Ning, Zhangchi; Zeng, Honglian; Shu, Yisong; Tao, Ou; Xiao, Cheng; Lu, Cheng; Liu, Yuanyan

    2015-01-01

    Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced.

  9. Estrogenic activity in vivo and in vitro of some diethylstilbestrol metabolites and analogs

    PubMed Central

    Korach, Kenneth S.; Metzler, Manfred; McLachlan, John A.

    1978-01-01

    The diethylstilbestrol (DES) metabolite (β-dienestrol), which had been identified in mouse, rat, monkey, and human urine, and two proposed metabolic intermediates (diethylstilbestrol α,α′-epoxide and α,α′-dihydroxy DES) were synthesized and their estrogenic activities determined. In addition, three DES analogs, α-dienestrol, DES-dihydroxy diethyl phenanthrene (DES-phenanthrene), and 1-(α-ethyl, 4α-hydroxyphenyl)indanyl-5-ol (indanyl-DES), were studied. Estrogenic activities of the compounds in vivo were determined by the immature mouse uterine weight bioassay; in vitro, their estradiol receptor binding activity (competitive equilibrium binding, sucrose gradient analysis, and association rate inhibition assays) was determined. Results of the mouse uterine weight bioassay gave the following order of estrogenicity: DES > α-dienestrol ≥ DES-epoxide > indanyl-DES > dihydroxy DES > β-dienestrol > DES-phenanthrene. Results of competitive equilibrium binding analyses of these compounds with estradiol-17β for the mouse uterine cytosol receptor followed the same order seen for the bioassay, except for indanyl-DES. DES, indanyl-DES, and α-dienestrol had the greatest affinities (Ka values approximately 0.5-19.1 × 1010 M-1), while DES-phenanthrene had the lowest (Ka = 3.5 × 107 M-1 ± 1.2). Sucrose gradient analysis of the above competition preparations illustrated the displacement of [3H]estradiol from the receptor peak. This displacement was receptor specific and concentration dependent and correlated with the equilibrium binding concentrations. In addition, the most hormonally active substances demonstrated the greatest rate inhibition in the estradiol cytosol receptor association rate reaction (V0). The rank order of estrogenicity of the compounds determined in this study should be useful in evaluating alternative metabolic pathways of DES as well as distinguishing biologically active metabolites from relatively inactive ones. PMID:272664

  10. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  11. In-stream attenuation of neuro-active pharmaceuticals and their metabolites.

    PubMed

    Writer, Jeffrey H; Antweiler, Ronald C; Ferrer, Imma; Ryan, Joseph N; Thurman, E Michael

    2013-09-03

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  12. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    PubMed

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  13. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio).

    PubMed

    Liu, Zhenzhen; Wang, Yueyi; Zhu, Zhihong; Yang, Enlu; Feng, Xiayan; Fu, Zhengwei; Jin, Yuanxiang

    2016-04-01

    Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish.

  14. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites.

    PubMed

    Masand, Meeta; Jose, Polpass Arul; Menghani, Ekta; Jebakumar, Solomon Robinson David

    2015-12-01

    Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.

  15. Structure-Odor Activity Studies on Monoterpenoid Mercaptans Synthesized by Changing the Structural Motifs of the Key Food Odorant 1-p-Menthene-8-thiol.

    PubMed

    Schoenauer, Sebastian; Schieberle, Peter

    2016-05-18

    1-p-Menthene-8-thiol (1) has been discovered as the key odorant in grapefruit juice several decades ago and contributes to the overall odor of the fruit with an extremely low odor threshold of 0.000034 ng/L in air. This value is among the lowest odor thresholds ever reported for a food odorant. To check whether modifications in the structure of 1 would lead to changes in odor threshold and odor quality, 34 mercapto-containing p-menthane and 1-p-menthene derivatives as well as several aromatic and open-chain mercapto monoterpenoids were synthesized. Eighteen of them are reported for the first time in the literature, and their odor thresholds and odor qualities as well as analytical data are supplied. A comparison of the sensory data with those of 1 showed that hydrogenation of the double bond led to a clear increase in the odor threshold. Furthermore, moving the mercapto group into the ring always resulted in higher odor thresholds compared to thiols with a mercapto group in the side chains. Although all tertiary thiols always exhibited low odor thresholds, none of the 31 compounds reached the extremely low threshold of 1. Also, none of the synthesized mercapto monoterpenoids showed a similar odor quality resembling grapefruit. Although the saturated and aromatic analogues exhibited similar scents as 1, the aromas of the majority of the other compounds were described as sulfury, rubber-like, burned, soapy, or even mushroom-like. NMR and MS data as well as retention indices of the 23 newly reported sulfur-containing compounds might aid in future research to identify terpene-derived mercaptans possibly present in trace levels in foods.

  16. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro

    PubMed Central

    Subedi, Lalita; Ji, Eunhee; Shin, Dongyun; Jin, Jongsik; Yeo, Joo Hong; Kim, Sun Yeou

    2017-01-01

    Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max) as primary isoflavones, possess anti-inflammatory activity, but the effect of its active metabolite Equol (7-hydroxy-3-(4′-hydroxyphenyl)-chroman) has not been well established. In this study, we investigated the anti-neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS) cells, including microglia (BV-2), astrocytes (C6), and neurons (N2a), were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), Mitogen activated protein kinase (MAPK) signaling proteins, and apoptosis-related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS)-induced TLR4 activation, MAPK activation, NF-kB-mediated transcription of inflammatory mediators, production of nitric oxide (NO), release of prostaglandin E2 (PGE-2), secretion of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), in Lipopolysaccharide (LPS)-activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS-activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF) production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti-neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration. PMID:28264445

  17. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations.

    PubMed

    Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan

    2016-06-01

    An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions.

  18. The antitumor activity study of ginsenosides and metabolites in lung cancer cell

    PubMed Central

    Xu, Feng-Yuan; Shang, Wen-Qing; Yu, Jia-Jun; Sun, Qian; Li, Ming-Qing; Sun, Jian-Song

    2016-01-01

    Ginseng and its components exert various biological effects, including antioxidant, anti-carcinogenic, anti-mutagenic, and antitumor activity. Ginsenosides are the main biological components of ginseng. Protopanaxadiol (PPD) and protopanaxatriol (PPT) are two metabolites of ginsenosides. However, the difference between these compounds in anti-lung cancer is unclear. The present study aimed to evaluate the antitumor activity of PPD, PPT, Ginsenosides-Rg3 (G-Rg3) and Ginsenosides-Rh2 (G-Rh2) in lung cancer cell. After treatment with cisplatin, PPD, PPT, G-Rg3 or G-Rh2, the viability, apoptosis level and invasiveness of lung cell lines (A549 cell, a lung adenocarcinoma cell line and SK-MES-1 cell, a lung squamous cell line) in vitro were analyzed by Cell Counting Kit-8 (CCK8), Annexin V/PI apoptosis and Matrigel invasion assays, respectively. Here we found that all these compounds led to significant decreases of viability and invasiveness and an obvious increase of apoptosis of A549 and SK-MES-1 cells. Among these, the viability of SK-MES-1 cell treated with PPT was decreased to 66.8%, and this effect was closest to Cisplatin. G-Rg3 had the highest stimulatory effect on apoptosis, and PTT had the highest inhibitory effect on cell invasiveness in A549 and SK-MES-1 cells. These results indicate that both ginsenosides and two metabolites have antitumor activity on lung cancer cell in vitro. However, PPT is more powerful for inhibiting the viability and invasiveness of lung cancer cell, especially lung squamous cell. G-Rg3 has the best pro-apoptosis effects. This study provides a scientific basis for potential therapeutic strategies targeted to lung cancer by further structure modification. PMID:27186294

  19. Firefighters' exposure biomonitoring: Impact of firefighting activities on levels of urinary monohydroxyl metabolites.

    PubMed

    Oliveira, Marta; Slezakova, Klara; Alves, Maria José; Fernandes, Adília; Teixeira, João Paulo; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone

    2016-11-01

    The concentrations of six urinary monohydroxyl metabolites (OH-PAHs) of polycyclic aromatic hydrocarbons, namely 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene (1OHPy), and 3-hydroxybenzo[a]pyrene, were assessed in the post-shift urine of wildland firefighters involved in fire combat activities at six Portuguese fire corporations, and compared with those of non-exposed subjects. Overall, median levels of urinary individual and total OH-PAHs (ΣOH-PAHs) suggest an increased exposure to polycyclic aromatic hydrocarbons during firefighting activities with ΣOH-PAH levels in exposed firefighters 1.7-35 times higher than in non-exposed ones. Urinary 1-hydroxynaphthalene and/or 1-hydroxyacenapthene were the predominant compounds, representing 63-98% of ΣOH-PAHs, followed by 2-hydroxyfluorene (1-17%), 1-hydroxyphenanthrene (1-13%), and 1OHPy (0.3-10%). A similar profile was observed when gender discrimination was considered. Participation in fire combat activities promoted an increase of the distribution percentage of 1-hydroxynaphthalene and 1-hydroxyacenaphthene, while contributions of 1-hydroxyphenanthrene and 1OHPy decreased. The detected urinary 1OHPy concentrations (1.73×10(-2) to 0.152μmol/mol creatinine in exposed subjects versus 1.21×10(-2) to 5.44×10(-2)μmol/mol creatinine in non-exposed individuals) were lower than the benchmark level (0.5μmol/mol creatinine) proposed by the American Conference of Governmental Industrial Hygienists. This compound, considered the biomarker of exposure to PAHs, was the less abundant one from the six analyzed biomarkers. Thus the inclusion of other metabolites, in addition to 1OHPy, in future studies is suggested to better estimate firefighters' occupational exposure to PAHs. Moreover, strong to moderate Spearman correlations were observed between individual compounds and ΣOH-PAHs corroborating the prevalence of an emission source.

  20. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  1. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study

    PubMed Central

    Floegel, A; Wientzek, A; Bachlechner, U; Jacobs, S; Drogan, D; Prehn, C; Adamski, J; Krumsiek, J; Schulze, M B; Pischon, T; Boeing, H

    2014-01-01

    Objective: It is not yet resolved how lifestyle factors and intermediate phenotypes interrelate with metabolic pathways. We aimed to investigate the associations between diet, physical activity, cardiorespiratory fitness and obesity with serum metabolite networks in a population-based study. Methods: The present study included 2380 participants of a randomly drawn subcohort of the European Prospective Investigation into Cancer and Nutrition-Potsdam. Targeted metabolomics was used to measure 127 serum metabolites. Additional data were available including anthropometric measurements, dietary assessment including intake of whole-grain bread, coffee and cake and cookies by food frequency questionnaire, and objectively measured physical activity energy expenditure and cardiorespiratory fitness in a subsample of 100 participants. In a data-driven approach, Gaussian graphical modeling was used to draw metabolite networks and depict relevant associations between exposures and serum metabolites. In addition, the relationship of different exposure metabolite networks was estimated. Results: In the serum metabolite network, the different metabolite classes could be separated. There was a big group of phospholipids and acylcarnitines, a group of amino acids and C6-sugar. Amino acids were particularly positively associated with cardiorespiratory fitness and physical activity. C6-sugar and acylcarnitines were positively associated with obesity and inversely with intake of whole-grain bread. Phospholipids showed opposite associations with obesity and coffee intake. Metabolite networks of coffee intake and obesity were strongly inversely correlated (body mass index (BMI): r=−0.57 and waist circumference: r=−0.59). A strong positive correlation was observed between metabolite networks of BMI and waist circumference (r=0.99), as well as the metabolite networks of cake and cookie intake with cardiorespiratory fitness and intake of whole-grain bread (r=0.52 and r=0

  2. Structural characterization of metabolites of the X-ray contrast agent iopromide in activated sludge using ion trap mass spectrometry.

    PubMed

    Pérez, Sandra; Eichhorn, Peter; Celiz, Mary Dawn; Aga, Diana S

    2006-03-15

    Identification of degradation products of environmental contaminants is a challenging task because not only are they present in very low concentrations but they are also mixed with complex matrixes that interfere with detection. This work illustrates a simple approach using ion trap mass spectrometry combined with H/D-exchange experiments to elucidate the structures of iopromide metabolites formed during biodegradation in activated sludge. Iopromide is an X-ray contrast agent that has been detected frequently in effluents of wastewater treatment plants and in surface waters due to its persistence and high usage. Three metabolites produced by oxidation of the primary alcohols (forming carboxylates) on the side chains of iopromide were identified in a batch reactor with mixed liquor from a conventional activated sludge. Derivatization of the carboxylic acid to form a methyl ester and interpretation of the MS2 data of this derivative aided in the confirmation of the identities of these metabolites. Furthermore, one metabolite formed by dehydroxylation at the two side chains was identified in a batch reactor with mixed liquor from a nitrifying activated sludge. The MS2 fragmentation pattern of iopromide and its metabolites revealed that the iodinated ring remains intact and that minor transformations in the structure occur during biodegradation of iopromide in biological wastewater treatment plants.

  3. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet.

  4. Secondary Metabolites from the Marine-Derived Fungus Dichotomomyces sp. L-8 and Their Cytotoxic Activity.

    PubMed

    Huang, Li-Hong; Chen, Yan-Xiu; Yu, Jian-Chen; Yuan, Jie; Li, Hou-Jin; Ma, Wen-Zhe; Watanapokasin, Ramida; Hu, Kun-Chao; Niaz, Shah Iram; Yang, De-Po; Lan, Wen-Jian

    2017-03-11

    Bioassay-guided isolation of the secondary metabolites from the fungus Dichotomomyces sp. L-8 associated with the soft coral Lobophytum crassum led to the discovery of two new compounds, dichotones A and B (1 and 2), together with four known compounds including dichotocejpin C (3), bis-N-norgliovictin (4), bassiatin (5) and (3R,6R)-bassiatin (6). The structures of these compounds were determined by 1D, 2D NMR and mass spectrometry. (3R,6R)-bassiatin (6) displayed significant cytotoxic activities against the human breast cancer cell line MDA-MB-435 and the human lung cancer cell line Calu3 with IC50 values of 7.34 ± 0.20 and 14.54 ± 0.01 μM, respectively, while bassiatin (5), the diastereomer of compound 6, was not cytotoxic.

  5. Contamination of honey by the herbicide asulam and its antibacterial active metabolite sulfanilamide.

    PubMed

    Kaufmann, A; Kaenzig, A

    2004-06-01

    A number of antibacterial drugs (antibiotics) like sulfonamides, tetracyclines and streptomycin are used for the treatment of bacterial diseases in beehives. Yet, the finding of sulfanilamide residues in some 15 Swiss honeys out of some 350 samples could not be explained by such apicultural practice. Bees occasionally collect nectar from meadows treated with the herbicide asulam. Such honey is not only contaminated by asulam, but also by its degradation product sulfanilamide. This is the first report that the use of a herbicide causes the appearance of residues of an antibacterial active metabolite belonging to the category of sulfonamide drugs in food. The relevance of this finding lies in the fact that the use of the herbicide asulam might cause unacceptable residue levels of sulfanilamide in a product fbr human consumption.

  6. Isolation, antimicrobial activity, and metabolites of fungus Cladosporium sp. associated with red alga Porphyra yezoensis.

    PubMed

    Ding, Ling; Qin, Song; Li, Fuchao; Chi, Xiaoyuan; Laatsch, Hartmut

    2008-03-01

    Cladosporium sp. isolate N5 was isolated as a dominant fungus from the healthy conchocelis of Porphyra yezoensis. In the re-infection test, it did not cause any pathogenic symptoms in the alga. Twenty-one cultural conditions were chosen to test its antimicrobial activity in order to obtain the best condition for large-scale fermentation. Phenylacetic acid, p-hydroxyphenylethyl alcohol, and L-beta-phenyllactic acid were isolated from the crude extract as strong antimicrobial compounds and they are the first reported secondary metabolites for the genus Cladosporium. In addition, the Cladosporium sp. produced the reported Porphyra yezoensis growth regulators phenylacetic acid and p-hydroxyphenylacetic acid. No cytotoxicity was found in the brine shrimp lethality test, which indicated that the environmental-friendly Cladosporium sp. could be used as a potential biocontrol agent to protect the alga from pathogens.

  7. Secondary metabolites from Sida rhombifolia L. (Malvaceae) and the vasorelaxant activity of cryptolepinone.

    PubMed

    Chaves, Otemberg Souza; Gomes, Roosevelt Albuquerque; Tomaz, Anna Cláudia de Andrade; Fernandes, Marianne Guedes; das Graças Mendes, Leônidas; de Fátima Agra, Maria; Braga, Valdir Andrade; de Fátima Vanderlei de Souza, Maria

    2013-03-01

    The phytochemical study of Sida rhombifolia L. (Malvaceae) led to the isolation through chromatographic techniques of eleven secondary metabolites: sitosterol (1a) and stigmasterol (1b), sitosterol-3-O-b-D-glucopyranoside (2a) and stigmasterol-3-O-b-D-glucopyranoside (2b), phaeophytin A (3), 17³-ethoxypheophorbide A (4), 13²-hydroxy phaeophytin B (5), 17³-ethoxypheophorbide B (6), 5,7-dihydroxy-4'-methoxyflavone (7), cryptolepinone (8) and a salt of cryptolepine (9). Their structures were identified by ¹H- and ¹³C-NMR using one- and two-dimensional techniques. In addition, the vasorelaxant activity of cryptolepinone in rat mesenteric artery rings is reported herein for the first time.

  8. Biotransformation of finasteride by Ocimum sanctum L., and tyrosinase inhibitory activity of transformed metabolites: experimental and computational insights.

    PubMed

    Ali, Sajid; Nisar, Muhammad; Iriti, Marcello; Shah, Mohammad Raza; Mahmud, Maqsood; Ali, Ihsan; Khan, Inamullah

    2014-12-01

    Transformation of Finasteride (I) by cell suspension cultures of Ocimum sanctum L. was investigated. Fermentation of compound (I) with O. sanctum afforded three oxidized derivatives, 16β-hydroxyfinasteride (II), 11α-hydroxyfinasteride (III) and 15β-hydroxyfinasteride (IV). Among these metabolites, compound (II) was a new metabolite. Compound (I) and its derivatives were studied for their tyrosinase inhibition assay. All test compounds exhibited significant activity compared to standard drug kojic acid, with compound IV being the most potent member with an IC50 of 1.87μM. Molecular docking revealed significant molecular interactions behind the potent tyrosinase inhibitory activity of the tested compounds.

  9. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    PubMed Central

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-01-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography–mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos. PMID:25711705

  10. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    DOE PAGES

    Tsogtbaatar, Enkhtuul; Cocuron, Jean -Christophe; Sonera, Marcos Corchado; ...

    2015-02-22

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oilmore » synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. In conclusion, this study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.« less

  11. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.

    PubMed

    Tsogtbaatar, Enkhtuul; Cocuron, Jean-Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-07-01

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. This study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.

  12. Laccase- and electrochemically mediated conversion of triclosan: Metabolite formation and influence on antibacterial activity.

    PubMed

    Jahangiri, Elham; Seiwert, Bettina; Reemtsma, Thorsten; Schlosser, Dietmar

    2017-02-01

    Metabolite formation from radical-based oxidation of the environmental pollutant triclosan (TCS) was compared using an ascomycete (Phoma sp. UHH 5-1-03) and a basidiomycete (Trametes versicolor) laccase, laccase-redox mediator systems, and electrochemical oxidation (EC). Laccase oxidation predominantly yielded TCS di- and trimers, but notably also caused TCS ether bond cleavage. The latter was more prominent during EC-catalysed TCS oxidation, which generally resulted in a broader and more divergent product spectrum. By contrast, only quantitative but not qualitative differences in TCS metabolite formation were observed for the two laccases. Application of the presumable natural laccase redox mediator syringaldehyde (SYD) shifted the TCS-transforming reactions of laccase systems from oligomerization more towards ether bond cleavage. However, the observed rapid removal of SYD from reaction systems caused by predominant adduct formation from SYD and TCS, and concomitant conversion of SYD into 2,6-dimethoxy-1,4-benzoquinone (DMBQ) clearly demonstrates that SYD does not function as a "true" laccase redox mediator in the sense of being recycled during TCS oxidation. Laccase treatment of TCS without SYD decreased the anti-bacterial TCS activity more than treatment employing SYD in addition, indicating that SYD and/or its transformation products contribute to bacterial toxicity. DMBQ was found to be about 80% more active in a bacterial growth inhibition test than its parent compound SYD in terms of IC20 values. These observations establish DMBQ as a potential cause of toxicity effects of SYD-laccase systems. They further illustrate that a natural origin of a redox mediator does not automatically qualify its use as environmentally benign or non-hazardous.

  13. 7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity.

    PubMed

    Endo-Umeda, Kaori; Yasuda, Kaori; Sugita, Kazuyuki; Honda, Akira; Ohta, Miho; Ishikawa, Minoru; Hashimoto, Yuichi; Sakaki, Toshiyuki; Makishima, Makoto

    2014-03-01

    7-Dehydrocholesterol (7-DHC) is a common precursor of vitamin D3 and cholesterol. Although various oxysterols, oxygenated cholesterol derivatives, have been implicated in cellular signaling pathways, 7-DHC metabolism and potential functions of its metabolites remain poorly understood. We examined 7-DHC metabolism by various P450 enzymes and detected three metabolites produced by sterol 27-hydroxylase (CYP27A1) using high-performance liquid chromatography. Two were further identified as 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC. These 7-DHC metabolites were detected in serum of a patient with Smith-Lemli-Opitz syndrome. Luciferase reporter assays showed that 25-hydroxy-7-DHC activates liver X receptor (LXR) α, LXRβ and vitamin D receptor and that 26/27-hydroxy-7-DHC induces activation of LXRα and LXRβ, although the activities of both compounds on LXRs were weak. In a mammalian two-hybrid assay, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC induced interaction between LXRα and a coactivator fragment less efficiently than a natural LXR agonist, 22(R)-hydroxycholesterol. These 7-DHC metabolites did not oppose agonist-induced LXR activation and interacted directly to LXRα in a manner distinct from a potent agonist. These findings indicate that the 7-DHC metabolites are partial LXR activators. Interestingly, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC suppressed mRNA expression of sterol regulatory element-binding protein 1c, an LXR target gene, in HepG2 cells and HaCaT cells, while they weakly increased mRNA levels of ATP-binding cassette transporter A1, another LXR target, in HaCaT cells. Thus, 7-DHC is catabolized by CYP27A1 to metabolites that act as selective LXR modulators.

  14. The impact of thiol peroxidases on redox regulation.

    PubMed

    Flohé, Leopold

    2016-01-01

    The biology of glutathione peroxidases and peroxiredoxins is reviewed with emphasis on their role in metabolic regulation. Apart from their obvious function in balancing oxidative challenge, these thiol peroxidases are not only implicated in orchestrating the adaptive response to oxidative stress, but also in regulating signaling triggered by hormones, growth factors and cytokines. The mechanisms presently discussed comprise dampening of redox-sensitive regulatory processes by elimination of hydroperoxides, suppression of lipoxygenase activity, committing suicide to save H2O2 for signaling, direct binding to receptors or regulatory proteins in a peroxidase activity-independent manner, or acting as sensors for hydroperoxides and as transducers of oxidant signals. The various mechanistic proposals are discussed in the light of kinetic data, which unfortunately are scarce. Taking into account pivotal criteria of a meaningful regulatory circuit, kinetic plausibility and specificity, the mechanistic concepts implying a direct sensor/transducer function of the thiol peroxidases appear most appealing. With rate constants for the reaction with hydroperoxide of 10(5)-10(8) M(-1) s(-1), thiol peroxidases are qualified as kinetically preferred hydroperoxide sensors, and the ability of the oxidized enzymes to react with defined protein thiols lends specificity to the transduction process. The versatility of thiol peroxidases, however, allows multiple ways of interaction with regulatory pathways.

  15. Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases

    SciTech Connect

    Drotar, A.; Burton, G.A. Jr.; Tavernier, J.E.; Fall, R.

    1987-07-01

    A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated (i) with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and (ii) in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers.

  16. Widespread occurrence of bacterial thiol methyltransferases and the biogenic emission of methylated sulfur gases.

    PubMed Central

    Drotar, A; Burton, G A; Tavernier, J E; Fall, R

    1987-01-01

    A majority of heterotrophic bacteria isolated from soil, water, sediment, vegetation, and marine algae cultures methylated sulfide, producing methanethiol. This was demonstrated with intact cells by measuring the emission of methanethiol with a sulfur-selective chemiluminescence detector, and in cell extracts by detection of sulfide-dependent thiol methyltransferase activity. Extracts of two Pseudomonas isolates were fractionated by gel-filtration and ion-exchange chromatography, and with sulfide as the substrate a single peak of thiol methyltransferase activity was seen in each case. Extracts of several bacterial strains also contained thiol methyltransferase activity with organic thiols as substrates. Thus, S-adenosylmethionine-dependent thiol methyltransferase activities are widespread in bacteria and may contribute to biogenic emissions of methylated sulfur gases and to the production of methyl thioethers. PMID:3662509

  17. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin.

    PubMed

    Wang, Chong-Zhi; Zhang, Chun-Feng; Chen, Lina; Anderson, Samantha; Lu, Fang; Yuan, Chun-Su

    2015-11-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal microbiota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anticancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis.

  18. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin

    PubMed Central

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-01-01

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances. PMID:25860944

  19. Peripheral distribution of kynurenine metabolites and activity of kynurenine pathway enzymes in renal failure.

    PubMed

    Pawlak, D; Tankiewicz, A; Matys, T; Buczko, W

    2003-06-01

    We investigated L-kynurenine distribution and metabolism in rats with experimental chronic renal failure of various severity, induced by unilateral nephrectomy and partial removal of contralateral kidney cortex. In animals with renal insufficiency the plasma concentration and the content of L-tryptophan in homogenates of kidney, liver, lung, intestine and spleen were significantly decreased. These changes were accompanied by increase activity of liver tryptophan 2,3-dioxygenase, the rate-limiting enzyme of kynurenine pathway in rats, while indoleamine 2,3-dioxygenase activity was unchanged. Conversely, the plasma concentration and tissue content of L-kynurenine, 3-hydroxykynurenine, and anthranilic, kynurenic, xanthurenic and quinolinic acids in the kidney, liver, lung, intestine, spleen and muscles were increased. The accumulation of L-kynurenine and the products of its degradation was proportional to the severity of renal failure and correlated with the concentration of renal insufficiency marker, creatinine. Kynurenine aminotransferase, kynureninase and 3-hydroxyanthranilate-3,4-dioxygenase activity was diminished or unchanged, while the activity of kynurenine 3-hydroxylase was significantly increased. We conclude that chronic renal failure is associated with the accumulation of L-kynurenine metabolites, which may be involved in the pathogenesis of certain uremic syndromes.

  20. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR

    PubMed Central

    Fedorova, Elena V.; Krylova, Julia V.

    2016-01-01

    The paper focuses on the assessment of the spectrum of biological activities (antineoplastic, anti-inflammatory, antifungal, and antibacterial) with PASS (Prediction of Activity Spectra for Substances) for the major components of three macrophytes widespread in the Holarctic species of freshwater, emergent macrophyte with floating leaves, Nuphar lutea (L.) Sm., and two species of submergent macrophyte groups, Ceratophyllum demersum L. and Potamogeton obtusifolius (Mert. et Koch), for the discovery of their ecological and pharmacological potential. The predicted probability of anti-inflammatory or antineoplastic activities above 0.8 was observed for twenty compounds. The same compounds were also characterized by high probability of antifungal and antibacterial activity. Six metabolites, namely, hexanal, pentadecanal, tetradecanoic acid, dibutyl phthalate, hexadecanoic acid, and manool, were a part of the major components of all three studied plants, indicating their high ecological significance and a certain universalism in their use by various species of water plants for the implementation of ecological and biochemical functions. This report underlines the role of identified compounds not only as important components in regulation of biochemical and metabolic pathways and processes in aquatic ecological systems, but also as potential pharmacological agents in the fight against different diseases. PMID:27200207

  1. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin.

    PubMed

    Basile, Adriana; Rigano, Daniela; Loppi, Stefano; Di Santi, Annalisa; Nebbioso, Angela; Sorbo, Sergio; Conte, Barbara; Paoli, Luca; De Ruberto, Francesca; Molinari, Anna Maria; Altucci, Lucia; Bontempo, Paola

    2015-04-09

    Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.

  2. Sequential first-pass metabolism of nortilidine: the active metabolite of the synthetic opioid drug tilidine.

    PubMed

    Hajda, Jacek Piotr; Jähnchen, Eberhard; Oie, Svein; Trenk, Dietmar

    2002-11-01

    The disposition of nortildine, the active metabolite of the synthetic opioid drug tilidine, was investigated in healthy volunteers in a randomized, single-dose, three-way crossover design. Three different treatments were administered: tilidine 50 mg intravenously, tilidine 50 mg orally, and nortilidine 10 mg intravenously. The plasma concentrations of tilidine, nortilidine, and bisnortilidine were determined and subjected to pharmacokinetic analysis using noncompartmental methods. The systemic bioavailability of tilidine was low (7.6% +/- 5.3%) due to a pronounced first-pass metabolism. The areas under the plasma concentration versus time curves (A UC) of nortilidine were similar following either oral or intravenous administration of tilidine 50 mg (375 +/- 184 vs. 364 +/- 124 ng.h.ml(-1)). AUC of nortilidine was 229 +/- 42 ng.h.ml(-1) after IV infusion of nortilidine 10 mg and thus much greater than after IV tilidine corrected for differences in dose. Nortilidine had a much lower volume of distribution (275 +/- 79 vs. 1326 +/- 477 L) and a somewhat lower clearance (749 +/- 119 vs. 1198 +/- 228 ml/min) than tilidine. About two-thirds of the dose of tilidine was metabolized to nortilidine, although only half of the latter fraction was available in the peripheral circulation. Nortilidine was subsequently metabolized to bisnortilidine. The mean ratio of the AUC of bisnortilidine to nortilidine was 0.65 +/- 0.14 following IV administration of nortilidine but 1.69 +/- 0.38 and 1.40 +/- 0.27 following oral and intravenous administration of tilidine, respectively. The shapes of the plasma concentration-time curves of the metabolites and parent drug declined in parallel, indicating that the disposition of the metabolites is formation rate limited. Thus, although two-thirds of the dose of tilidine is metabolized to nortilidine, only one-third of the dose is available systemically as nortilidine for interaction with the opiate receptors after both intravenous and oral dosing

  3. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2014-06-17

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

  4. Formation of estrogenic metabolites of benzo[a]pyrene and chrysene by cytochrome P450 activity and their combined and supra-maximal estrogenic activity.

    PubMed

    van Lipzig, Marola M H; Vermeulen, Nico P E; Gusinu, Renato; Legler, Juliette; Frank, Heinz; Seidel, Albrecht; Meerman, John H N

    2005-01-01

    Metabolism of polycyclic aromatic hydrocarbons (PAHs) has been studied intensively, and potential metabolites with estrogenic activity have been identified previously. However, little attention has been paid to the metabolic pathways in mammalians and to the combined effect of individual metabolites. Several hydroxylated metabolites of benzo[a]pyrene (BaP) and chrysene (CHN) were formed by rat liver microsomal cytochrome P450 (CYP) activity, some of which possess estrogenic activity. All mono- and several dihydroxylated metabolites of BaP and CHN were tested for ER affinity and estrogenic activity in a proliferation assay (E-screen) and in a reporter-gene assay (ER-CALUX). Twelve estrogenic metabolites were identified with EC50 values ranging from 40nM to 0.15mM. The combined effect of a mixture of seven PAH-metabolites was also studied in the ER binding assay. At concentrations that show little activity themselves, their joint action clearly exhibited significant estrogenic activity. BaP itself exhibited estrogenicity in the ER-CALUX assay due to bio-activation into estrogenic metabolites, probably via aryl hydrocarbon receptor (AhR) induced CYP activity. Furthermore, 2-hydroxy-CHN (2-OHCHN) induced supra-maximal (400%) estrogenic effects in the ER-CALUX assay. This effect was entirely ER-mediated, since the response was completely blocked with the ER-antagonist ICI182,780. We showed that 2-OHCHN increased ER-concentration, using ELISA techniques, which may explain the observed supra-maximal effects. Co-treatment with the AhR-antagonist 3',4'-dimethoxyflavone (DMF) enhanced ER-signaling, possibly via blockage of AhR-ER inhibitory cross-talk.

  5. Structural characterization of a therapeutic anti-methamphetamine antibody fragment: oligomerization and binding of active metabolites.

    PubMed

    Peterson, Eric C; Celikel, Reha; Gokulan, Kuppan; Varughese, Kottayil I

    2013-01-01

    Vaccines and monoclonal antibodies (mAb) for treatment of (+)-methamphetamine (METH) abuse are in late stage preclinical and early clinical trial phases, respectively. These immunotherapies work as pharmacokinetic antagonists, sequestering METH and its metabolites away from sites of action in the brain and reduce the rewarding and toxic effects of the drug. A key aspect of these immunotherapy strategies is the understanding of the subtle molecular interactions important for generating antibodies with high affinity and specificity for METH. We previously determined crystal structures of a high affinity anti-METH therapeutic single chain antibody fragment (scFv6H4, K(D) = 10 nM) in complex with METH and the (+) stereoisomer of 3,4-methylenedioxymethamphetamine (MDMA, or "ecstasy"). Here we report the crystal structure of scFv6H4 in homo-trimeric unbound (apo) form (2.60Å), as well as monomeric forms in complex with two active metabolites; (+)-amphetamine (AMP, 2.38Å) and (+)-4-hydroxy methamphetamine (p-OH-METH, 2.33Å). The apo structure forms a trimer in the crystal lattice and it results in the formation of an intermolecular composite beta-sheet with a three-fold symmetry. We were also able to structurally characterize the coordination of the His-tags with Ni(2+). Two of the histidine residues of each C-terminal His-tag interact with Ni(2+) in an octahedral geometry. In the apo state the CDR loops of scFv6H4 form an open conformation of the binding pocket. Upon ligand binding, the CDR loops adopt a closed formation, encasing the drug almost completely. The structural information reported here elucidates key molecular interactions important in anti-methamphetamine abuse immunotherapy.

  6. Liquid chromatography-mass spectrometric determination of losartan and its active metabolite on dried blood spots.

    PubMed

    Rao, R Nageswara; Raju, S Satyanarayana; Vali, R Mastan; Sankar, G Girija

    2012-08-01

    A simple and rapid quantitative bioanalytical liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneous determination of losartan and its active metabolite, losartan carboxylic acid on rat dried blood spots was developed and validated as per regulatory guidelines. Losartan and its metabolite were extracted from dried blood spots using 50% aqueous methanol and separated on Waters XTerra(®) RP18 (250 mm × 4.6 mm, 5 μm) column using mobile phase composed of 40% acetonitrile and 60% aqueous ammonium acetate (10mM). The eluents were monitored using ESI tandem mass spectrometric detection with negative polarity in MRM mode using ion transitions m/z 421.2→179.0, m/z 435.3→157.0 and m/z 427.3→193.0 for losartan, losartan carboxylic acid and Irbesartan (internal standard), respectively. The method was validated over the linear range of 1-200 ng/mL and 5-1000 ng/mL with lower limits of quantification of 1.0 ng/mL and 5.0 ng/mL for losartan and losartan carboxylic acid, respectively. Inter and intra-day precision and accuracy (Bias) were below 5.96% and between -2.8 and 1.5%, respectively. The mean recoveries of the analytes from dried blood spots were between 89% and 97%. No significant carry over and matrix effects were observed. The stability of stock solution, whole blood, dried blood spot and processed samples were tested under different conditions and the results were found to be well within the acceptable limits. Additional validation parameters such as influence of hematocrit and spot volume were also evaluated and found to be well within the acceptable limits.

  7. Lithium BINOL Phosphate Catalyzed Desymmetrization of meso-Epoxides with Aromatic Thiols

    PubMed Central

    2015-01-01

    A highly enantioselective method for desymmetrization of meso-epoxides using thiols is reported. This is the first example of epoxide activation achieved using metal BINOL phosphates. The reaction has a broad scope in terms of epoxide substrates and aromatic thiol nucleophiles. The resulting β-hydroxyl sulfides are obtained in excellent yield and enantioselectivity. PMID:25317934

  8. Metabolism of 20(S)-Ginsenoside Rg₂ by Rat Liver Microsomes: Bioactivation to SIRT1-Activating Metabolites.

    PubMed

    Ma, Li-Yuan; Zhou, Qi-Le; Yang, Xin-Bao; Wang, Hong-Ping; Yang, Xiu-Wei

    2016-06-10

    20(S)-Ginsenoside Rg₂ (1) has recently become a hot research topic due to its potent bioactivities and abundance in natural sources such as the roots, rhizomes and stems-leaves of Panax ginseng. However, due to the lack of studies on systematic metabolic profiles, the prospects for new drug development of 1 are still difficult to predict, which has become a huge obstacle for its safe clinical use. To solve this problem, investigation of the metabolic profiles of 1 in rat liver microsomes was first carried out. To identify metabolites, a strategy of combined analyses based on prepared metabolites by column chromatography and ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was performed. As a result, four metabolites M1-M4, including a rare new compound named ginsenotransmetin A (M1), were isolated and the structures were confirmed by spectroscopic analyses. A series of metabolites of 1, MA-MG, were also tentatively identified by UPLC-Q-TOF/MS in rat liver microsomal incubate of 1. Partial metabolic pathways were proposed. Among them, 1 and its metabolites M1, M3 and M4 were discovered for the first time to be activators of SIRT1. The SIRT1 activating effects of the metabolite M1 was comparable to those of 1, while the most interesting SIRT1 activatory effects of M3 and M4 were higher than that of 1 and comparable with that of resveratrol, a positive SIRT1 activator. These results indicate that microsome-dependent metabolism may represent a bioactivation pathway for 1. This study is the first to report the metabolic profiles of 1 in vitro, and the results provide an experimental foundation to better understand the in vivo metabolic fate of 1.

  9. Monascus secondary metabolites monascin and ankaflavin inhibit activation of RBL-2H3 cells.

    PubMed

    Chang, Yu-Ying; Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2015-01-14

    Monascus-fermented products have been used as dietary food and traditional medicine due to their beneficial effects on circulation and digestive systems in Asia for thousands of years. Besides, monascin and ankaflavin, secondary metabolites from Monascus-fermented products, have proven anti-inflammatory and immunomodulatory effects. In previous research, monascin and ankaflavin ameliorated ovalbumin-induced airway allergic reaction often used as a type I allergy asthma model. Additionally, mast cells play critical roles in type I allergy. Therefore, RBL-2H3 cells were used as the mast cell model to determine whether the improving effects on asthma of monascin and ankaflavin came from influencing mast cells. PMA and ionomycin are common activators of mast cells because they stimulate the main signaling molecules during mast cell activation. Forty micromolar monascin and ankaflavin inhibited PMA/ionomycin-induced mast cell degranulation and TNF-α secretion through suppressing the phosphorylation of PKC and MAPK family ERK, JNK, and p38. Consequently, monascin and ankaflavin affected the activation of mast cells and may have the potential to improve type I allergy.

  10. Antifungal activity of metabolites of the endophytic fungus Trichoderma brevicompactum from garlic

    PubMed Central

    Shentu, Xuping; Zhan, Xiaohuan; Ma, Zheng; Yu, Xiaoping; Zhang, Chuanxi

    2014-01-01

    The endophytic fungus strain 0248, isolated from garlic, was identified as Trichoderma brevicompactum based on morphological characteristics and the nucleotide sequences of ITS1-5.8S- ITS2 and tef1. The bioactive compound T2 was isolated from the culture extracts of this fungus by bioactivity-guided fractionation and identified as 4β-acetoxy-12,13- epoxy-Δ9-trichothecene (trichodermin) by spectral analysis and mass spectrometry. Trichodermin has a marked inhibitory activity on Rhizoctonia solani, with an EC50 of 0.25 μgmL−1. Strong inhibition by trichodermin was also found for Botrytis cinerea, with an EC50 of 2.02 μgmL−1. However, a relatively poor inhibitory effect was observed for trichodermin against Colletotrichum lindemuthianum (EC50 = 25.60 μgmL−1). Compared with the positive control Carbendazim, trichodermin showed a strong antifungal activity on the above phytopathogens. There is little known about endophytes from garlic. This paper studied in detail the identification of endophytic T. brevicompactum from garlic and the characterization of its active metabolite trichodermin. PMID:24948941

  11. Thiol/disulfide redox states in signaling and sensing

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  12. Endoxifen, the active metabolite of tamoxifen, inhibits cloned hERG potassium channels.

    PubMed

    Chae, Yun Ju; Lee, Keon Jin; Lee, Hong Joon; Sung, Ki-Wug; Choi, Jin-Sung; Lee, Eun Hui; Hahn, Sang June

    2015-04-05

    The effects of tamoxifen, and its active metabolite endoxifen (4-hydroxy-N-desmethyl-tamoxifen), on hERG currents stably expressed in HEK cells were investigated using the whole-cell patch-clamp technique and an immunoblot assay. Tamoxifen and endoxifen inhibited hERG tail currents at -50mV in a concentration-dependent manner with IC50 values of 1.2 and 1.6μM, respectively. The steady-state activation curve of the hERG currents was shifted to the hyperpolarizing direction in the presence of endoxifen. The voltage-dependent inhibition of hERG currents by endoxifen increased steeply in the voltage range of channel activation. The inhibition by endoxifen displayed a shallow voltage dependence (δ=0.18) in the full activation voltage range. A fast application of endoxifen induced a reversible block of hERG tail currents during repolarization in a concentration-dependent manner, which suggested an interaction with the open state of the channel. Endoxifen also decreased the hERG current elicited by a 5s depolarizing pulse to +60mV to inactivate the hERG currents, suggesting an interaction with the activated (open and/or inactivated) states of the channels. Tamoxifen and endoxifen inhibited the hERG channel protein trafficking to the plasma membrane in a concentration-dependent manner with endoxifen being more potent than tamoxifen. These results indicated that tamoxifen and endoxifen inhibited the hERG current by direct channel blockage and by the disruption of channel trafficking to the plasma membrane in a concentration-dependent manner. A therapeutic concentration of endoxifen inhibited the hERG current by preferentially interacting with the activated (open and/or inactivated) states of the channel.

  13. Plasma concentrations of amino acid and nicotinamide metabolites in rheumatoid arthritis--potential biomarkers of disease activity and drug treatment.

    PubMed

    Smolenska, Zaneta; Smolenski, Ryszard T; Zdrojewski, Zbigniew

    2016-01-01

    This study aimed to evaluate changes in plasma amino acid and nicotinamide metabolites concentrations in rheumatoid arthritis (RA) in a search for potential biomarkers of the disease activity and the effect treatment. Analysis of plasma metabolite patterns with liquid chromatography/mass spectrometry revealed specific changes in RA as well as correlations with clinical parameters. Combined concentration parameter calculated as [aspartic acid] + [threonine] + [tryptophan] - [histidine] - [phenylalanine] offered the strongest correlation (p < 0.001) with pain joint count, swollen joint count and DAS 28. Such analysis of amino acid and related metabolite pattern offers potential for diagnosis as well as for monitoring disease progression and therapy in RA.

  14. Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum

    PubMed Central

    Abdel-Azeem, Ahmed M.; Zaki, Sherif M.; Khalil, Waleed F.; Makhlouf, Noha A.; Farghaly, Lamiaa M.

    2016-01-01

    The aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1–CG7), being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half – strength potato dextrose broth for 21 days at 28°C on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA) rat model were examined and compared with the effects of methotrexate (MTX) as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM) were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05) in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6) and MTX treatment groups 6 days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82) compared to (13.8 ± 0.98) in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55) was significantly lower than that of the positive control group (3.33 ± 0.82). In contrast, the ethyl acetate extract of CG6 (EACG6) treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number KC

  15. Monitoring testicular activity of male Eurasian (Lynx lynx) and Iberian (Lynx pardinus) lynx by fecal testosterone metabolite measurement.

    PubMed

    Jewgenow, K; Naidenko, S V; Goeritz, F; Vargas, A; Dehnhard, M

    2006-11-01

    The aim of the present study was to identify relevant fecal testosterone metabolites in the Eurasian lynx (Lynx lynx) using HPLC analysis and to evaluate the specificity of two testosterone immunoassays against these fecal metabolites. Finally, fecal hormone analysis was used to characterize seasonal reproductive activity of captive male Eurasian and Iberian (Lynx pardinus) lynx. Fecal samples from a male Eurasian lynx who received an i.v. injection of [3H]testosterone were subjected to HPLC analysis. All HPLC fractions were analyzed for radioactivity and androgen content by two testosterone immune assays (EIA and Testosterone-Immulite kits, DPC Biermann, Germany). Furthermore, fecal samples from four Eurasian lynx males (n=174) and three Iberian lynx (n=52) were collected throughout the year and fecal testosterone metabolites were determined with Testosterone-Immulite assay. HPLC separation of radiolabeled Eurasian lynx fecal extract indicated that the majority of testosterone metabolites are substances with a higher polarity than testosterone. Only minor proportion of radioactivity co-eluted with authentic testosterone and dihydrotestosterone. Enzymatic hydrolysis and solvolysis of the fecal extract were insufficient to liberate testosterone. After solvolysis relatively more activity was eluated the position of DHT, but the majority of metabolites remained unaffected. The EIA measured substantial amount of immunoreactivity, which corresponded with two radioactive peaks. Additionally, both immunoassays recognized two metabolites, which were only minor components according to their radioactivity. The Immulite assay was able to recognize a metabolite at the position of dihydrotestosterone. HPLC separation of Iberian lynx feces extracts revealed a similar metabolite pattern determined by EIA that were typical for Eurasian lynx fecal extracts. Simultaneous analyses of fecal samples with both testosterone assays provided comparative results for both lynx species

  16. Radicals Are Required for Thiol Etching of Gold Particles.

    PubMed

    Dreier, Timothy A; Ackerson, Christopher J

    2015-08-03

    Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process.

  17. Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites

    PubMed Central

    Chen, Xiao-Jia; Zhang, Xiao-Jing; Shui, Yan-Mei; Wan, Jian-Bo

    2016-01-01

    Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer. PMID:27446225

  18. Antiproliferative activity of phenylbutyrate ester of haloperidol metabolite II [(±)-MRJF4] in prostate cancer cells.

    PubMed

    Marrazzo, Agostino; Fiorito, Jole; Zappalà, Laura; Prezzavento, Orazio; Ronsisvalle, Simone; Pasquinucci, Lorella; Scoto, Giovanna M; Bernardini, Renato; Ronsisvalle, Giuseppe

    2011-01-01

    Complex mechanisms of prostate cancer progression prompt to novel therapeutic strategies concerning a combination of drugs or of single molecules able to interact with more crucial targets. Histone deacetylase inhibitors and sigma ligands with mixed σ(1) antagonist and σ(2) agonist properties were proposed as new potential tools for treatment of prostate cancer. (±)-MRJF4 was synthesized as phenylbutyrate ester of haloperidol metabolite II, which is a molecule consisting of a histone deacetilase inhibitor (4-phenylbutyric acid) and a sigma ligand (haloperidol metabolite II). Antiproliferatives activities of 4-phenylbutyric acid, haloperidol metabolite II, equimolar mixture of both compounds and (±)-MRJF4 were evaluated in vitro on LNCaP and PC3 prostate cancer cells. Preliminary binding studies of (±)-MRJF4 for σ(1), σ(2), D(2) and D(3) receptors and inhibition HDAC activity were reported. MTT cell viability assays highlighted a notable increase of antiproliferative activity of (±)-MRJF4 (IC(50) = 11 and 13 μM for LNCaP and PC3, respectively) compared to 4-phenylbutyric acid, haloperidol metabolite II and the respective equimolar pharmacological association. (±)-MRJF4 was also used in combination with σ(1) agonist (+)-pentazocine and σ(2) antagonist AC927 in order to evaluate the role of σ receptor subtypes in prostate cancer cell death.

  19. The TLR4-Active Morphine Metabolite Morphine-3-Glucuronide Does Not Elicit Macrophage Classical Activation In Vitro

    PubMed Central

    Khabbazi, Samira; Xie, Nan; Pu, Wenjun; Goumon, Yannick; Parat, Marie-Odile

    2016-01-01

    Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages. PMID:27909407

  20. The TLR4-Active Morphine Metabolite Morphine-3-Glucuronide Does Not Elicit Macrophage Classical Activation In Vitro.

    PubMed

    Khabbazi, Samira; Xie, Nan; Pu, Wenjun; Goumon, Yannick; Parat, Marie-Odile

    2016-01-01

    Macrophages are abundant in the tumor microenvironment where they adopt a pro-tumor phenotype following alternative polarization induced by paracrine factors from cancer and stromal cells. In contrast, classically activated macrophages have tumoricidal activities, such that the polarization of tumor-associated macrophages has become a novel therapeutic target. Toll-like receptor 4 engagement promotes classical activation of macrophages, and recent literature suggests TLR4 agonism to prevent metastasis and promote survival in experimental metastasis models. A growing number of studies indicate that TLR4 can respond to opioids, including the opioid receptor-inactive morphine metabolite morphine-3-glucuronide (M3G). We measured the activation of TLR4 in a reporter cell line exogenously expressing TLR4 and TLR4 co-receptors, and confirmed that M3G weakly but significantly activates TLR4. We hypothesized that M3G would promote the expression of classical activation signature genes in macrophages in vitro. We exposed mouse and human macrophage cell lines to M3G or the TLR4 activator lipopolysaccharide (LPS), alone or in combination with interferon gamma (IFN-γ). The classical macrophage activation markers tested were iNOS, CD86, IL-6, or TNF-α in RAW 264.7 cells and IL-6, IL-12, IL-23, TNF-α, CXCL10, and CXCL11 in THP1 cells. Our results show that despite exhibiting TLR4-activation ability, M3G does not elicit the expression of classical activation markers in LPS-responsive macrophages.

  1. 3D-QSAR Studies on a Series of Dihydroorotate Dehydrogenase Inhibitors: Analogues of the Active Metabolite of Leflunomide

    PubMed Central

    Li, Shun-Lai; He, Mao-Yu; Du, Hong-Guang

    2011-01-01

    The active metabolite of the novel immunosuppressive agent leflunomide has been shown to inhibit the enzyme dihydroorotate dehydrogenase (DHODH). This enzyme catalyzes the fourth step in de novo pyrimidine biosynthesis. Self-organizing molecular field analysis (SOMFA), a simple three-dimensional quantitative structure-activity relationship (3D-QSAR) method is used to study the correlation between the molecular properties and the biological activities of a series of analogues of the active metabolite. The statistical results, cross-validated rCV2 (0.664) and non cross-validated r2 (0.687), show a good predictive ability. The final SOMFA model provides a better understanding of DHODH inhibitor-enzyme interactions, and may be useful for further modification and improvement of inhibitors of this important enzyme. PMID:21686163

  2. An Invasive Plant Promotes Its Arbuscular Mycorrhizal Symbioses and Competitiveness through Its Secondary Metabolites: Indirect Evidence from Activated Carbon

    PubMed Central

    Yuan, Yongge; Tang, Jianjun; Leng, Dong; Hu, Shuijin; Yong, Jean W. H.; Chen, Xin

    2014-01-01

    Secondary metabolites released by invasive plants can increase their competitive ability by affecting native plants, herbivores, and pathogens at the invaded land. Whether these secondary metabolites affect the invasive plant itself, directly or indirectly through microorganisms, however, has not been well documented. Here we tested whether activated carbon (AC), a well-known absorbent for secondary metabolites, affect arbuscular mycorrhizal (AM) symbioses and competitive ability in an invasive plant. We conducted three experiments (experiments 1–3) with the invasive forb Solidago canadensis and the native Kummerowia striata. Experiment 1 determined whether AC altered soil properties, levels of the main secondary metabolites in the soil, plant growth, and AMF communities associated with S. canadensis and K. striata. Experiment 2 determined whether AC affected colonization of S. canadensis by five AMF, which were added to sterilized soil. Experiment 3 determined the competitive ability of S. canadensis in the presence and absence of AMF and AC. In experiment 1, AC greatly decreased the concentrations of the main secondary metabolites in soil, and the changes in concentrations were closely related with the changes of AMF in S. canadensis roots. In experiment 2, AC inhibited the AMF Glomus versiforme and G. geosporum but promoted G. mosseae and G. diaphanum in the soil and also in S. canadensis roots. In experiment 3, AC reduced S. canadensis competitive ability in the presence but not in the absence of AMF. Our results provided indirect evidence that the secondary metabolites (which can be absorbed by AC) of the invasive plant S. canadensis may promote S. canadensis competitiveness by enhancing its own AMF symbionts. PMID:24817325

  3. Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity.

    PubMed

    Suh, Dong Ho; Lee, Sunmin; Heo, Do Yeon; Kim, Young-Suk; Cho, Somi Kim; Lee, Sarah; Lee, Choong Hwan

    2014-08-27

    Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) was performed using gas chromatography-time-of-flight-mass spectrometry and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry with multivariate analysis. Different species and parts of pitayas (red peel, RP; white peel, WP; red flesh, RF; and white flesh, WF) were clearly separated by partial least-squares discriminate analysis. Furthermore, betalain-related metabolites, such as betacyanins and betaxanthins, or their precursors were described on the basis of their metabolites. The results of antioxidant activity tests [1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing ability of plasma (FRAP)], total phenolic contents (TPC), total flavonoid contents (TFC), and total betacyanin contents (TBC) showed the following: RP ≥ WP > RF > WF. TPC, TFC, TBC, and betalain-related metabolites were higher in the peel than in the flesh and suggested to be the main contributors to antioxidant activity in pitayas. Therefore, peels as well as pulp of pitaya could beneficially help in the food industry.

  4. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling.

    PubMed

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-04-07

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.

  5. Determination of the active metabolite of sibutramine by liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Chen, Jun; Lu, Wei; Zhang, Qizhi; Jiang, Xinguo

    2003-03-05

    A sensitive and specific method for the determination of the active primary amine metabolite of sibutramine, N-di-desmethylsibutramine (BTS 54,505), in human plasma was developed, based on high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS). The samples were extracted from plasma with methyl tert.-butyl ether, followed by separation and evaporation after addition of the internal standard, propranolol, and basification with sodium hydroxide. The residue was reconstituted in mobile phase and injected into the HPLC-MS-MS system. Chromatography was performed on an ODS MS column with a mobile phase consisting of acetonitrile (containing 0.1% trifluoroacetic acid, v/v)-0.1% trifluoroacetic acid (55:45, v/v) at a flow-rate of 0.3 ml/min. Multiple reaction monitoring using precursor-->product ion combinations at m/z 252.00-->125.00 and 260.00-->115.70 was applied to determine BTS 54,505 and propranolol, respectively. Linearity was confirmed in the concentration range 0.328-32.8 ng/ml in human plasma and the imprecision of this assay was less than 19.90% over the entire concentration range. The method is sufficiently sensitive and repeatable to be used in pharmacokinetic studies.

  6. Luteolibacter yonseiensis sp. nov., isolated from activated sludge using algal metabolites.

    PubMed

    Park, Joonhong; Baek, Gyu Seok; Woo, Sung-Geun; Lee, Jangho; Yang, Jihoon; Lee, Juyoun

    2013-05-01

    A Gram-negative, rod-shaped, aerobic bacterial strain, designated EBTL01(T), was isolated from activated sludge by using metabolites of microalgae Ankistrodesmus gracilis SAG278-2. Phylogenetic analyses based on 16S rRNA gene sequence showed that strain EBTL01(T) belongs to the family Verrucomicrobiaceae, class Verrucomicrobiae, and is related most closely to Luteolibacter pohnpeiensis A4T-83(T) (95.5 % sequence similarity) and Luteolibacter algae A5J-41-2(T) (95.2 %). The G+C content of the genomic DNA of strain EBTL01(T) was 56.3 mol% and the menaquinone MK-9 was detected as the predominant quinone. Major fatty acid components were iso-C14 : 0, C16 : 1ω7c and C16 : 0. The amino acids of the cell-wall peptidoglycan contained muramic acid and meso-diaminopimelic acid. These profile results supported the affiliation of strain EBTL01(T) to the genus Luteolibacter. On the other hand, based on chemotaxonomic properties and phenotypic characteristics, strain EBTL01(T) could be clearly differentiated from its phylogenetic neighbours. Therefore, strain EBTL01(T) represents a novel species of the genus Luteolibacter, for which the name Luteolibacter yonseiensis sp. nov. is proposed. The type strain is EBTL01(T) ( = KCTC 23678(T) = JCM 18052(T)).

  7. Prosthecobacter algae sp. nov., isolated from activated sludge using algal metabolites.

    PubMed

    Lee, Jangho; Park, Banghyo; Woo, Sung-Geun; Lee, Juyoun; Park, Joonhong

    2014-02-01

    A Gram-stain-negative, fusiform-shaped, facultatively anaerobic bacterial strain, designated EBTL04(T), was isolated from activated sludge using algal metabolites and taxonomically characterized through polyphasic investigation. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain EBTL04(T) belongs to the family Verrucomicrobiaceae, class Verrucomicrobiae, and is closely related to Prosthecobacter dejongeii DSM 12251(T) (98.6 % sequence similarity), Prosthecobacter fusiformis ATCC 25309(T) (97.9 %), Prosthecobacter debontii DSM 14044(T) (97.5%), Prosthecobacter vanneervenii DSM 12252(T) (94.7%) and Prosthecobacter fluviatilis KCTC 22182(T) (93.7%). The G+C content of the genomic DNA of strain EBTL04(T) was 62.7 mol%. The menaquinone MK-6 was detected as the predominant quinone. Strain EBTL04(T) contained phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine as major polar lipids. A fatty acid profile with C(16 : 1)ω5c, iso-C(14 : 0), C(16 : 0), anteiso-C(15 : 0) and C(14 : 0) as the major components supported the classification of strain EBTL04(T) in the genus Prosthecobacter. Based on several phenotypic, genotypic and chemotaxonomic features, strain EBTL04(T) was clearly differentiated from its phylogenetic neighbours. Therefore, strain EBTL04(T) should be considered to represent a novel species of the genus Prosthecobacter, for which the name Prosthecobacter algae sp. nov. is proposed. The type strain is EBTL04(T) ( = KCTC 23681(T) = JCM 18053(T)).

  8. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling

    PubMed Central

    Huang, Lulu; Tang, Xuemei; Zhang, Wenyang; Jiang, Ruowei; Chen, Disong; Zhang, Juan; Zhong, Hongying

    2016-01-01

    A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions. PMID:27053227

  9. Modification of a thiol at the active site of the Ascaris suum NAD-malic enzyme results in changes in the rate-determining steps for oxidative decarboxylation of L-malate

    SciTech Connect

    Gavva, S.R.; Harris, B.G.; Cook, P.F. ); Weiss, P.M. )

    1991-06-11

    A thiol group at the malate-binding site of the NAD-malic enzyme from Ascaris suum has been modified to thiocyanate. The modified enzyme generally exhibits slight increases in K{sub NAD} and K{sub i metal} and decreases in V{sub max} as the metal size increases from Mg{sup 2+} to Mn{sup 2+} to Cd{sup 2+}, indicative of crowding in the site. The K{sub malate} value increases 10- to 30-fold, suggesting that malate does not bind optimally to the modified enzyme. Deuterium isotope effects on V and V/K{sub malate} increase with all three metal ions compared to the native enzyme concomitant with a decrease in the {sup 13}C isotope effect, suggesting a switch in the rate limitation of the hydride transfer and decarboxylation steps with hydride transfer becoming more rate limiting. The {sup 13}C effect decreases only slightly when obtained with deuterated malate, suggestive of the presence of a secondary {sup 13}C effect in the hydride transfer step, similar to data obtained with non-nicotinamide-containing dinucleotide substrates for the native enzyme (see the preceding paper in this issue). The native enzyme is inactivated in a time-dependent manner by Cd{sup 2+}. This inactivation occurs whether the enzyme alone is present or whether the enzyme is turning over with Cd{sup 2+} as the divalent metal activator. Upon inactivation, only Cd{sup 2+} ions are bound at high stoichiometry to the enzyme, which eventually becomes denatured. Conversion of the active-site thiol to thiocyanate makes it more difficult to inactivate the enzyme by treatment with Cd{sup 2+}.

  10. Evaluation of benzofuroxan as a chromophoric oxidizing agent for thiol groups by using its reactions with papain, ficin, bromelain and low-molecular-weight thiols.

    PubMed Central

    Shipton, M; Stuchbury, T; Brocklehurst, K

    1977-01-01

    1. Benzofuroxan (benzofurazan 1-oxide, benzo-2-oxa-1,3-diazole N-oxide) was evaluated as a specific chromophoric oxidizing agent for thiol groups. 2. Aliphatic thiol groups both in low-molecular-weight molecules and in the enzymes papain (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4) readily reduce benzofuroxan to o-benzoquinone dixime; potential competing reactions of amino groups are negligibly slow. 3. The fate of the thiol depends on its structure: a mechanism is proposed in which the thiol and benzofuroxan form an adduct which, if steric factors permit, reacts with another molecule of thiol to form a disulphide; when the thiol is located in the active site of a thiol proteinase and steric factors preclude enzyme dinner formation, the adduct reacts instead with water or HO- to form a sulphenic acid; attack on the sulphur atom of the adduct by either a sulphur or oxygen nucleophile releases o-benzoquinone dioxine. 4. Benzofuroxan contains n o proton-binding sites with pKa values in the range 3-10 and probably none in the range 0-14; o-benzoquinone dioxine undergoes a one-proton ionization with pKa=6.75.5. o-benzoquinone dioxime absorbs strongly at wavelengths greater than 410nm, where absorption by benzofuroxan, proteins and simple thiol compounds is negligible; 416 nm is an isosbestic point (epsilon 416 = 5110 litre. mol-1-cm-1); epsilon430=3740+[1460/(1+[H+]/Ka)] where pKa=6.75. 6. The possibility of acid-base catalysis of the oxidation by active-centre histidine residues of the thiol proteinases is discussed. PMID:851434

  11. Evaluation of benzofuroxan as a chromophoric oxidizing agent for thiol groups by using its reactions with papain, ficin, bromelain and low-molecular-weight thiols.

    PubMed

    Shipton, M; Stuchbury, T; Brocklehurst, K

    1977-03-01

    1. Benzofuroxan (benzofurazan 1-oxide, benzo-2-oxa-1,3-diazole N-oxide) was evaluated as a specific chromophoric oxidizing agent for thiol groups. 2. Aliphatic thiol groups both in low-molecular-weight molecules and in the enzymes papain (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4) readily reduce benzofuroxan to o-benzoquinone dixime; potential competing reactions of amino groups are negligibly slow. 3. The fate of the thiol depends on its structure: a mechanism is proposed in which the thiol and benzofuroxan form an adduct which, if steric factors permit, reacts with another molecule of thiol to form a disulphide; when the thiol is located in the active site of a thiol proteinase and steric factors preclude enzyme dinner formation, the adduct reacts instead with water or HO- to form a sulphenic acid; attack on the sulphur atom of the adduct by either a sulphur or oxygen nucleophile releases o-benzoquinone dioxine. 4. Benzofuroxan contains n o proton-binding sites with pKa values in the range 3-10 and probably none in the range 0-14; o-benzoquinone dioxine undergoes a one-proton ionization with pKa=6.75.5. o-benzoquinone dioxime absorbs strongly at wavelengths greater than 410nm, where absorption by benzofuroxan, proteins and simple thiol compounds is negligible; 416 nm is an isosbestic point (epsilon 416 = 5110 litre. mol-1-cm-1); epsilon430=3740+[1460/(1+[H+]/Ka)] where pKa=6.75. 6. The possibility of acid-base catalysis of the oxidation by active-centre histidine residues of the thiol proteinases is discussed.

  12. Effects of 3-O-methyldopa, L-3,4-dihydroxyphenylalanine metabolite, on locomotor activity and dopamine turnover in rats.

    PubMed

    Onzawa, Yoritaka; Kimura, Yasuhiro; Uzuhashi, Kengo; Shirasuna, Megumi; Hirosawa, Tasuku; Taogoshi, Takanori; Kihira, Kenji

    2012-01-01

    It has been well known that 3-O-methyldopa (3-OMD) is a metabolite of L-3,4-dihydroxyphenylalanine (L-DOPA) formed by catechol O-methyltransferase (COMT), and 3-OMD blood level often reaches higher than physiological level in Parkinson's disease (PD) patients receiving long term L-DOPA therapy. However, the physiological role of 3-OMD has not been well understood. Therefore, in order to clarify the effects of 3-OMD on physiological function, we examined the behavioral alteration in rats based on locomotor activity, and measured dopamine (DA) and its metabolites levels in rats at the same time after 3-OMD subchronic administration. The study results showed that repeated administrations of 3-OMD increased its blood and the striatum tissue levels in those rats, and decreased locomotor activity in a dose dependent manner. Although 3-OMD subchronic administration showed no significant change in DA level in the striatum, DA metabolite levels, such as 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA) were significantly decreased. After 3-OMD washout period (7 d), locomotor activity and DA turnover in those rats returned to normal levels. Furthermore, locomotor activity and DA turnover decreased by 3-OMD administration were recovered to normal level by acute L-DOPA administration. These results suggested that 3-OMD affect to locomotor activity via DA neuron system. In conclusion, 3-OMD itself may have a disadvantage in PD patients receiving L-DOPA therapy.

  13. [Secondary metabolites, lethality and antimicrobial activity of extracts from three corals and three marine mollusks from Sucre, Venezuela].

    PubMed

    Ordaz, Gabriel; D'Armas, Haydelba; Yáñez, Dayanis; Hernández, Juan; Camacho, Angel

    2010-06-01

    The study of biochemical activity of extracts obtained from marine organisms is gaining interest as some have proved to have efficient health or industrial applications. To evaluate lethality and antimicrobial activities, some chemical tests were performed on crude extracts of the octocorals Eunicea sp., Muricea sp. and Pseudopterogorgia acerosa and the mollusks Pteria colymbus, Phyllonotus pomum and Chicoreus brevifrons, collected in Venezuelan waters. The presence of secondary metabolites like alkaloids, unsaturated sterols and pentacyclic triterpenes in all invertebrates, was evidenced. Additionally, sesquiterpenlactones, saponins, tannins, cyanogenic and cardiotonic glycosides were also detected in some octocoral extracts, suggesting that biosynthesis of these metabolites is typical in this group. From the lethality bioassays, all extracts resulted lethal to Artemia salina (LC50<1000 microg/ml) with an increased of lethal activity with exposition time. P. pomum extract showed the highest lethality rate (LC50=46.8 microg/ml). Compared to the octocorals, mollusks extracts displayed more activity and a greater action spectrum against different bacterial strains, whereas octocorals also inhibited some fungi strains growth. Staphylococcus aureus was the most susceptible to the antimicrobial power of the extracts (66.7%), whereas Pseudomonas aeruginosa, Candida albicans and Aspergillus niger were not affected. The antibiosis shown by marine organisms extracts indicates that some of their biosynthesized metabolites are physiologically active, and may have possible cytotoxic potential or as a source of antibiotic components.

  14. Immunodetection of thiol proteinase levels in various populations of Artemia cysts and during development.

    PubMed

    Lu, J; Warner, A H

    1991-01-01

    An immunodetection assay on Western blots has been used to determine the thiol proteinase content and composition in cysts from 12 populations of the brine shrimp Artemia. Our results showed no differences in the subunit composition of the thiol proteinase among cysts from eight bisexual strains and four parthenogenic strains, and confirmed an earlier finding that the proteinase is composed of two subunits of 25.9 and 31.5 kilodaltons. In contrast, we found that Artemia cysts from parthenogenic strains contain 17.1 ng/cyst of the thiol proteinase, while cysts from bisexual strains contain 8.2 ng/cyst of the thiol proteinase. Also, there was a good linear correlation (r = 0.863; p less than 0.001) between the thiol proteinase content and cyst mass. Embryo fractionation experiments showed that 82% of the thiol proteinase was in the cytosol, while 14 and 4%, respectively, were in the nuclei/yolk platelets and mitochondria/lysosome fractions. Measurements of the thiol proteinase content of developing Artemia embryos showed that the proteinase content was relatively constant during early development, suggesting that the activity of the thiol proteinase gene(s) may be constitutive and not developmentally regulated in Artemia embryos.

  15. The role of thiols in cellular response to radiation and drugs

    SciTech Connect

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-09-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole.

  16. Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1.

    PubMed

    Materazzi, Serena; Nassini, Romina; Andrè, Eunice; Campi, Barbara; Amadesi, Silvia; Trevisani, Marcello; Bunnett, Nigel W; Patacchini, Riccardo; Geppetti, Pierangelo

    2008-08-19

    Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ(2), PGA(2), and PGA(1), formed by dehydration of their respective parent PGs, PGD(2), PGE(2), and PGE(1), possess a highly reactive alpha,beta-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. Here, by using TRPA1 wild-type (TRPA1(+/+)) or deficient (TRPA1(-/-)) mice, we show that cyclopentenone PGs produce pain by direct stimulation of nociceptors via TRPA1 activation. Cyclopentenone PGs caused a robust calcium response in dorsal root ganglion (DRG) neurons of TRPA1(+/+), but not of TRPA1(-/-) mice, and a calcium-dependent release of sensory neuropeptides from the rat dorsal spinal cord. Intraplantar injection of cyclopentenone PGs stimulated c-fos expression in spinal neurons of the dorsal horn and evoked an instantaneous, robust, and transient nociceptive response in TRPA1(+/+) but not in TRPA1(-/-) mice. The classical proalgesic PG, PGE(2), caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1(+/+) and TRPA1(-/-) mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases.

  17. CSF Biomarkers of Monocyte Activation and Chemotaxis correlate with Magnetic Resonance Spectroscopy Metabolites during Chronic HIV Disease

    PubMed Central

    Anderson, Albert M.; Fennema-Notestine, Christine; Umlauf, Anya; Taylor, Michael J.; Clifford, David B.; Marra, Christina M.; Collier, Ann C.; Gelman, Benjamin B.; McArthur, Justin C.; McCutchan, J. Allen; Simpson, David M.; Morgello, Susan; Grant, Igor; Letendre, Scott L.

    2015-01-01

    Background HIV-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. Methods A multicenter cross-sectional study involving five sites in the United States was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein 1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM) and frontal gray matter (FGM): N-acetyl-aspartate (NAA), Myo-inositol (MI), Choline (Cho), and Creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Results 83 HIV-infected individuals were included, 78% on cART and 37% with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R2 0.179, p<0.001) as well as MCP-1 and MI in FWM (R2 0.137, p=0.002). Higher Cr levels in FWM were associated with MCP-1 (R2 0. 075, p=0.01) and IP-10 (R2 0.106, p=0.003). Comparing biomarkers to MRS metabolite/Cr ratios impacted some relationships, e.g., higher sCD14 levels were associated with lower Cho/Cr ratios in FGM (R2 0.224, p<0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. Conclusion These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals. PMID:26069183

  18. The Relationship between Mitochondrial Respiratory Chain Activities in Muscle and Metabolites in Plasma and Urine: A Retrospective Study

    PubMed Central

    Alban, Corinne; Fatale, Elena; Joulani, Abed; Ilin, Polina; Saada, Ann

    2017-01-01

    The relationship between 114 cases with decreased enzymatic activities of mitochondrial respiratory chain (MRC) complexes I-V (C I-V) in muscle and metabolites in urine and plasma was retrospectively examined. Less than 35% disclosed abnormal plasma amino acids and acylcarnitines, with elevated alanine and low free carnitine or elevated C4-OH-carnitine as the most common findings, respectively. Abnormal urine organic acids (OA) were detected in 82% of all cases. In CI and CII defects, lactic acid (LA) in combination with other metabolites was the most common finding. 3-Methylglutaconic (3MGA) acid was more frequent in CIV and CV, while Tyrosine metabolites, mainly 4-hydroxyphenyllactate, were common in CI and IV defects. Ketones were present in all groups but more prominent in combined deficiencies. There was a significant strong correlation between elevated urinary LA and plasma lactate but none between urine Tyrosine metabolites and plasma Tyrosine or urinary LA and plasma Alanine. All except one of 14 cases showed elevated FGF21, but correlation with urine OA was weak. Although this study is limited, we conclude that urine organic acid test in combination with plasma FGF21 determination are valuable tools in the diagnosis of mitochondrial diseases. PMID:28287425

  19. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, Aspergillus versicolor ZBY-3.

    PubMed

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-07-29

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(D-Pro-D-Phe) (1), cyclo(D-Tyr-D-Pro) (2), phenethyl 5-oxo-L-prolinate (3), cyclo(L-Ile-L-Pro) (4), cyclo(L-Leu-L-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1-6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent fungal

  20. Activation of Dormant Secondary Metabolite Production by Introducing Neomycin Resistance into the Deep-Sea Fungus, Aspergillus versicolor ZBY-3

    PubMed Central

    Dong, Yuan; Cui, Cheng-Bin; Li, Chang-Wei; Hua, Wei; Wu, Chang-Jing; Zhu, Tian-Jiao; Gu, Qian-Qun

    2014-01-01

    A new ultrasound-mediated approach has been developed to introduce neomycin-resistance to activate silent pathways for secondary metabolite production in a bio-inactive, deep-sea fungus, Aspergillus versicolor ZBY-3. Upon treatment of the ZBY-3 spores with a high concentration of neomycin by proper ultrasound irradiation, a total of 30 mutants were obtained by single colony isolation. The acquired resistance of the mutants to neomycin was confirmed by a resistance test. In contrast to the ZBY-3 strain, the EtOAc extracts of 22 of the 30 mutants inhibited the human cancer K562 cells, indicating that these mutants acquired a capability to produce antitumor metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses of the EtOAc extracts of seven bioactive mutants and the ZBY-3 strain indicated that diverse secondary metabolites have been newly produced in the mutant extracts in contrast to the ZBY-3 extract. The followed isolation and characterization demonstrated that six metabolites, cyclo(d-Pro-d-Phe) (1), cyclo(d-Tyr-d-Pro) (2), phenethyl 5-oxo-l-prolinate (3), cyclo(l-Ile-l-Pro) (4), cyclo(l-Leu-l-Pro) (5) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6), were newly produced by the mutant u2n2h3-3 compared to the parent ZBY-3 strain. Compound 3 was a new compound; 2 was isolated from a natural source for the first time, and all of these compounds were also not yet found in the metabolites of other A. versicolor strains. Compounds 1–6 inhibited the K562 cells, with inhibition rates of 54.6% (1), 72.9% (2), 23.5% (3), 29.6% (4), 30.9% (5) and 51.1% (6) at 100 μg/mL, and inhibited also other human cancer HL-60, BGC-823 and HeLa cells, to some extent. The present study demonstrated the effectiveness of the ultrasound-mediated approach to activate silent metabolite production in fungi by introducing acquired resistance to aminoglycosides and its potential for discovering new compounds from silent

  1. Pre-systemic elimination of tilidine: localization and consequences for the formation of the active metabolite nortilidine.

    PubMed

    Eichbaum, Christine; Mathes, Kristin; Burhenne, Jürgen; Markert, Christoph; Blank, Antje; Mikus, Gerd

    2015-02-01

    The therapeutic activity of tilidine, an opioid analgesic, is mainly related to its active metabolite nortilidine. Nortilidine formation mainly occurs during the high intestinal first-pass metabolism of tilidine by N-demethylation. Elimination of the active nortilidine to the inactive bisnortilidine is also mediated by N-demethylation and is supposed to take place in the liver, probably at a smaller rate. The aim of this study was the investigation of the pre-systemic elimination of tilidine using grapefruit juice (GFJ) as an intestinal CYP3A4 inhibitor and efavirenz (EFV) as a CYP3A4 activator. A randomized, open, placebo-controlled, cross-over study was conducted in 12 healthy volunteers using 100 mg tilidine solution p.o., regular strength GFJ 250 mL (3 times at 12-hr intervals) and EFV 400 mg (12 hr before tilidine administration). Tilidine, nortilidine and bisnortilidine in plasma and urine were quantified by a validated LC/MS/MS analysis. GFJ did not change any pharmacokinetic parameter of tilidine and its metabolites, which suggests that intestinal CYP3A4 does not contribute to the first-pass metabolism of tilidine. No effect of EFV on the pharmacokinetics of the active nortilidine was observed except a significant reduction of the terminal elimination half-life by 15%. Overall elimination (renal and metabolic clearances) was unaffected by every treatment. CYP3A4 does not seem to play a major role in tilidine first-pass and overall metabolism. Other unknown metabolites and their enzymes responsible for their formation have to be investigated as they account for the majority of renally excreted metabolites.

  2. The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells.

    PubMed

    Rath, Alexander G; Rehberg, Markus; Janke, Robert; Genzel, Yvonne; Scholz, Sebastian; Noll, Thomas; Rose, Thomas; Sandig, Volker; Reichl, Udo

    2014-05-20

    Optimization of bioprocesses with mammalian cells mainly concentrates on cell engineering, cell screening and medium optimization to achieve enhanced cell growth and productivity. For improving cell lines by cell engineering techniques, in-depth understandings of the regulation of metabolism and product formation as well as the resulting demand for the different medium components are needed. In this work, the relationship of cell specific growth and uptake rates and of changes in maximum in vitro enzyme activities with intracellular metabolite pools of glycolysis, pentose phosphate pathway, citric acid cycle and energy metabolism were determined for batch cultivations with AGE1.HN.AAT cells. Results obtained by modeling cell growth and consumption of main substrates showed that the dynamics of intracellular metabolite pools is primarily linked to the dynamics of specific glucose and glutamine uptake rates. By analyzing maximum in vitro enzyme activities we found low activities of pyruvate dehydrogenase and pyruvate carboxylase which suggest a reduced metabolite transfer into the citric acid cycle resulting in lactate release (Warburg effect). Moreover, an increase in the volumetric lactate production rate during the transition from exponential to stationary growth together with a transient accumulation of fructose 1,6-bisphosphate, fructose 1-phosphate and ribose 5-phosphate point toward an upregulation of PK via FBP. Glutaminase activity was about 44-fold lower than activity of glutamine synthetase. This seemed to be sufficient for the supply of intermediates for biosynthesis but might lead to unnecessary dissipation of ATP. Taken together, our results elucidate regulation of metabolic networks of immortalized mammalian cells by changes of metabolite pools over the time course of batch cultivations. Eventually, it enables the use of cell engineering strategies to improve the availability of building blocks for biomass synthesis by increasing glucose as well as

  3. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    PubMed

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  4. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression inJurkat Cells

    PubMed Central

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-01-01

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells. PMID:26343699

  5. Metabolites analysis, metabolic enzyme activities and bioaccumulation in the clam Ruditapes philippinarum exposed to benzo[a]pyrene.

    PubMed

    Liu, Dong; Pan, Luqing; Li, Zhen; Cai, Yuefeng; Miao, Jingjing

    2014-09-01

    A study was performed on clams (Ruditapes philippinarum) exposed to 0.03, 0.3 and 3μg/L benzo[a]pyrene (B[a]P) for 21 days. B[a]P metabolite contents, activities of aryl hydrocarbon hydroxylase (AHH), 7-ethoxyresorufin O-deethylase (EROD), epoxide hydrolase (EH), dihydrodiol dehydrogenase (DD), glutathione-S-transferase (GST), sulfotransferase (SULT) and uridinediphosphate glucuronyltransferase (UGT) and B[a]P bioaccumulation were assayed in gills and digestive glands. Results showed that the order of B[a]P phase I metabolite contents was 9-hydroxy-B[a]P>B[a]P-1,6-dione>B[a]P-7,8-dihydrodiol, and the concentration of B[a]P-7,8-dihydrodiol sulfate conjugates was higher than that of B[a]P-7,8-dihydrodiol glucuronide conjugates. B[a]P accumulation and the activities of AHH, EROD, EH, DD, SULT and UGT increased first and then reached equilibrium. GST activity was induced first and then depressed. The concentration of B[a]P was far higher than that of its metabolites. Besides, there were no significant differences between enzyme activities in gills and those in digestive glands. These results provided information on B[a]P metabolic mechanism in bivalve and scientific data for pollution monitoring and food security.

  6. High-Tg Thiol-Click Thermoset Networks via the Thiol-Maleimide Michael Addition.

    PubMed

    Parker, Shelbi; Reit, Radu; Abitz, Haley; Ellson, Gregory; Yang, Kejia; Lund, Benjamin; Voit, Walter E

    2016-07-01

    Thiol-click reactions lead to polymeric materials with a wide range of interesting mechanical, electrical, and optical properties. However, this reaction mechanism typically results in bulk materials with a low glass transition temperature (Tg ) due to rotational flexibility around the thioether linkages found in networks such as thiol-ene, thiol-epoxy, and thiol-acrylate systems. This report explores the thiol-maleimide reaction utilized for the first time as a solvent-free reaction system to synthesize high-Tg thermosetting networks. Through thermomechanical characterization via dynamic mechanical analysis, the homogeneity and Tg s of thiol-maleimide networks are compared to similarly structured thiol-ene and thiol-epoxy networks. While preliminary data show more heterogeneous networks for thiol-maleimide systems, bulk materials exhibit Tg s 80 °C higher than other thiol-click systems explored herein. Finally, hollow tubes are synthesized using each thiol-click reaction mechanism and employed in low- and high-temperature environments, demonstrating the ability to withstand a compressive radial 100 N deformation at 100 °C wherein other thiol-click systems fail mechanically.

  7. Population pharmacokinetic modeling of oxcarbazepine active metabolite in Chinese patients with epilepsy.

    PubMed

    Yu, Yunli; Zhang, Quanying; Xu, Wenjun; Lv, Chengzhe; Hao, Gang

    2016-08-01

    The aim of the study was to develop a population pharmacokinetic (PPK) model of oxcarbazepine and optimize the treatment of oxcarbazepine in Chinese patients with epilepsy. A total of 108 oxcarbazepine therapeutic drug monitoring samples from 78 patients with epilepsy were collected in this study. The pharmacologically active metabolite 10,11-dihydro-10-hydrocarbamazepine (MHD) was used as the analytical target for monitoring therapy of oxcarbazepine. Patients' clinical data were retrospectively collected. The PPK model for MHD was developed using Phoenix NLME 1.2 with a non-linear mixed-effect model. MHD pharmacokinetics obeys a one-compartment model with first-order absorption and elimination. The effect of age, gender, red blood cell count, red blood cell specific volume, hemoglobin (HGB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatine were analyzed. Bootstrap and data splitting were used simultaneously to validate the final PPK models. The mean values of volume of distribution and clearance of MHD in the patients were 14.2 L and 2.38 L h(-1), respectively. BUN and HGB influenced the MHD volume of distribution according to the following equation: V = tvV × (BUN/4.76)(-0.007) × (HGB/140)(-0.001) × e (ηV) . The MHD clearance was dependent on ALT and gender as follows: CL = tvCL × (ALT/30)(0.181) × (gender) × 1.083 × e (ηCL). The final PPK model was demonstrated to be suitable and effective and it can be used to evaluate the pharmacokinetic parameters of MHD in Chinese patients with epilepsy and to choose an optimal dosage regimen of oxcarbazepine on the basis of these parameters.

  8. Antinociceptive activity of extracts and secondary metabolites from wild growing and micropropagated plants of Renealmia alpinia

    PubMed Central

    Gómez-Betancur, Isabel; Cortés, Natalie; Benjumea, Dora; Osorio, Edison; León, Francisco; Cutler, Stephen J.

    2015-01-01

    Ethnopharmacological relevance Renealmia alpinia is native to the American continent and can be found from Mexico to Brazil, and in the Caribbean islands. It is known as “matandrea” in Colombia, and it has been commonly used in traditional medicine to treat painful diseases and ailments. Based on its traditional uses, it is of interest to evaluate the pharmacologic effects of this plant and its secondary metabolites. Materials and methods Methanol and aqueous extracts of wild and micropropagated R. alpinia (leaves) were obtained and chemically compared by High Performance Thin Layer Chromatography (HPTLC). The antinociceptive activity of these extracts was examined using an in vivo assay (Siegmund test). Additionally, the dichloromethane extract of R. alpinia was fractionated and pure compounds were isolated by chromatographic methods. The structure elucidation of isolated compounds was performed by NMR experiments and spectroscopic techniques and comparison with the literature data. Purified compounds were evaluated for their in vitro binding affinity for opioids and cannabinoids receptors. Results The dichloromethane extract of the plant’s aerial part afforded sinostrobin (1), naringenin 7,4′-dimethyl ether (2), 2′,6′-dihydroxy-4′-methoxychalcone (3), 4-methoxy-6-(2-phenylethenyl)-2H-pyran-2-one (4), naringenin 7-methyl ether (5) and 3,5-heptanediol, 1,7-diphenyl (6), which were isolated using chromatographic methods. Their chemical structures were established by physical and spectroscopic techniques. The antinociceptive effects observed in mice by extracts of wild and micropropagated plants were similar. The compounds isolated from R. alpinia do not show affinity to opioid or cannabinoid receptors. Conclusion Aqueous and methanol extracts of R. alpinia provide antinociceptive and analgesic effects in an in vivo model. These results contribute additional insight as to why this plant is traditionally used for pain management. Also, this is the first

  9. Controversial alkoxyl and peroxyl radical scavenging activity of the tryptophan metabolite 3-hydroxy-anthranilic acid.

    PubMed

    Dorta, E; Aspée, A; Pino, E; González, L; Lissi, E; López-Alarcón, C

    2017-04-01

    3-Hydroxy-anthranilic acid (3-OHAA), a tryptophan metabolite produced in the kynurenine pathway, is an efficient antioxidant towards peroxyl radicals (ROO) derived from the AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride) thermolysis. However, self-reactions of ROO can give rise to alkoxyl radicals (RO), which could strongly affect the fate of scavenging reactions. In the present work, we studied the influence of RO in the scavenging activity of 3-OHAA in three different systems: i) Monitoring of the direct reaction between 3-OHAA and AAPH-derived free radicals (kinetic studies); ii) Evaluation of the protective effect of 3-OHAA on the AAPH-induced consumption of fluorescein; and, iii) Inhibition, given by 3-OHAA, of the AAPH-initiated lipid peroxidation of both, rat brain synaptosomes and homogenate preparations (assessed by chemiluminescence). For such purposes, the fraction of free radicals (f) trapped per 3-OHAA molecule was determined in each system. Kinetic results show that the oxidation of 3-OHAA follows a process dominated by ROO with a zero order kinetic limit in 3-OHAA, and a fraction (fri) equal to 0.88. From the induction times, elicited by 3-OHAA in the kinetic profiles of fluorescein consumption, a fraction (fT) of 0.28 was determined. 3-OHAA also generated induction times in the kinetic profiles of light emission during the AAPH-initiated lipid peroxidation of rat brain synaptosomes and homogenates. From such induction times, fractions of 0.61 and 0.63 were determined for rat brain synaptosomes (fsyn) and homogenates (fhom), respectively. These results show that during the incubation of 3-OHAA and AAPH, a low fraction of ROO self-reacts to generate RO. Nevertheless, when 3-OHAA is employed to protect particular targets, such as fluorescein, rat brain synaptosomes and homogenates, reactions of ROO and/or RO should be considered.

  10. DNA damage and estrogenic activity induced by the environmental pollutant 2-nitrotoluene and its metabolite

    PubMed Central

    Watanabe, Chigusa; Egami, Takashi; Midorikawa, Kaoru; Hiraku, Yusuke; Oikawa, Shinji; Kawanishi, Shosuke

    2010-01-01

    Objectives The environmental pollutant 2-nitrotoluene (2-NO2-T) is carcinogenic and reproductively toxic in animals. In this study, we elucidated the mechanisms of its carcinogenicity and reproductive toxicity. Methods We examined DNA damage induced by 2-NO2-T and its metabolite, 2-nitrosotoluene (2-NO-T), using 32P-5′-end-labeled DNA. We measured 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA and cellular DNA in cultured human leukemia (HL-60) cells treated with 2-NO2-T and 2-NO-T. 8-Oxoguanine DNA glycosylase (OGG1) gene expression in HL-60 cells was measured by real-time polymerase chain reaction (PCR). We examined estrogenic activity using an E-screen assay and a surface plasmon resonance (SPR) sensor. Results In experiments with isolated DNA fragments, 2-NO-T induced oxidative DNA damage in the presence of Cu (II) and β-nicotinamide adenine dinucleotide disodium salt (reduced form) (NADH), while 2-NO2-T did not. 2-NO-T significantly increased levels of 8-oxodG in HL-60 cells. Real-time polymerase chain reaction (PCR) analysis revealed upregulation of OGG1 gene expression induced by 2-NO-T. An E-screen assay using the human breast cancer cell line MCF-7 revealed that 2-NO2-T induced estrogen-dependent cell proliferation. In contrast, 2-NO-T decreased the cell number and suppressed 17β-estradiol-induced cell proliferation. The data obtained with the SPR sensor using estrogen receptor α and the estrogen response element supported the results of the E-screen assay. Conclusions Oxidative DNA damage caused by 2-NO-T and estrogen-disrupting effects caused by 2-NO2-T and 2-NO-T may play a role in the reproductive toxicity and carcinogenicity of these entities. PMID:21432561

  11. Activity of benzo[a]pyrene and its hydroxylated metabolites in an estrogen receptor-alpha reporter gene assay.

    PubMed

    Charles, G D; Bartels, M J; Zacharewski, T R; Gollapudi, B B; Freshour, N L; Carney, E W

    2000-06-01

    A human breast cancer cell line, MCF-7, transiently transfected with a chimeric estrogen receptor (Gal4-HEG0) and a luciferase reporter plasmid (17m5-G-Luc), was used to investigate the estrogenic activity of benzo[a]pyrene (B[a]P), a prototypical polyaromatic hydrocarbon (PAH). B[a]P at concentrations > or = 1 microM produced responses comparable to that of 0.1 nM 17beta-estradiol (E2). The ER antagonist ICI 182,780 (ICI) completely inhibited the response to both E2 and B[a]P, indicating that the responses were ER-mediated. However, 2 microM alpha-napthoflavone (alpha-NF), an Ah receptor antagonist and P450 inhibitor, also decreased the response to B[a]P but not to E2. Analysis of the profile of B[a]P metabolites in the transfected MCF-7 cultures indicated that alpha-NF inhibited the production of the 3- and 9-hydroxy (3-OH and 9-OH), as well as the 7, 8- and 9,10-dihydroxy (7,8-OH and 9,10-OH) B[a]P species. In the ER-alpha reporter assay, the 3-OH and 9-OH metabolites produced maximal responses comparable to E2, with EC50 values of 1.2 microM and 0.7 microM, respectively. The 9,10-OH metabolite exhibited minimal activity in the assay. These responses were inhibited by ICI for both the 3-OH and the 9-OH species; however, alpha-NF inhibited only the response to the 9-OH metabolite. The 7,8-OH metabolite did not exhibit significant estrogenic activity. Furthermore, 7,8-OH B[a]P displayed observable cytotoxicity at concentrations > or = 10(-7) M. This cytotoxic response was completely inhibited by alpha-NF, suggesting that 7,8-OH B[a]P was being further metabolized to one or more cytotoxic metabolites.

  12. Ester-free Thiol-ene Dental Restoratives – Part A: Resin Development

    PubMed Central

    Podgórski, Maciej; Becka, Eftalda; Claudino, Mauro; Flores, Alexander; Shah, Parag K.; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2015-01-01

    Objectives To detail the development of ester-free thiol-ene dental resins with enhanced mechanical performance, limited potential for water uptake/leachables/degradation and low polymerization shrinkage stress. Methods Thiol-terminated oligomers were prepared via a thiol-Michael reaction and a bulky tetra-allyl monomer containing urethane linkages was synthesized. The experimental oligomers and/or monomers were photopolymerized using visible light activation. Several thiol-ene formulations were investigated and their performance ranked by comparisons of the thermo-mechanical properties, polymerization shrinkage stress, water sorption/solubility, and reactivity with respect to a control comprising a conventional BisGMA/TEGDMA dental resin. Results The ester-free thiol-ene formulations had significantly lower viscosities, water sorption and solubility than the BisGMA/TEGDMA control. Depending on the resin, the limiting functional conversions were equivalent to or greater than that of BisGMA/TEGDMA. At comparable conversions, lower shrinkage stress values were achieved by the thiol-ene systems. The polymerization shrinkage stress was dramatically reduced when the tetra-allyl monomer was used as the ene in ester-free thiol-ene mixtures. Although exhibiting lower Young’s modulus, flexural strength, and glass transition temperatures, the toughness values associated with thiol-ene resins were greater than that of the BisGMA/TEGDMA control. In addition, the thiol-ene polymerization resulted in highly uniform polymer networks as indicated by the narrow tan delta peak widths. Significance Employing the developed thiol-ene resins in dental composites will reduce shrinkage stress and moisture absorption and form tougher materials. Furthermore, their low viscosities are expected to enable higher loadings of functionalized micro/nano-scale filler particles relevant for practical dental systems. PMID:26360013

  13. Non-targeted Metabolite Profiling and Scavenging Activity Unveil the Nutraceutical Potential of Psyllium (Plantago ovata Forsk)

    PubMed Central

    Patel, Manish K.; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Non-targeted metabolomics implies that psyllium (Plantago ovata) is a rich source of natural antioxidants, PUFAs (ω-3 and ω-6 fatty acids) and essential and sulfur-rich amino acids, as recommended by the FAO for human health. Psyllium contains phenolics and flavonoids that possess reducing capacity and reactive oxygen species (ROS) scavenging activities. In leaves, seeds, and husks, about 76, 78, 58% polyunsaturated, 21, 15, 20% saturated, and 3, 7, 22% monounsaturated fatty acids were found, respectively. A range of FAs (C12 to C24) was detected in psyllium and among different plant parts, a high content of the nutritive indicators ω-3 alpha-linolenic acid (57%) and ω-6 linoleic acid (18%) was detected in leaves. Similarly, total content of phenolics and the essential amino acid valine were also detected utmost in leaves followed by sulfur-rich amino acids and flavonoids. In total, 36 different metabolites were identified in psyllium, out of which 26 (13 each) metabolites were detected in leaves and seeds, whereas the remaining 10 were found in the husk. Most of the metabolites are natural antioxidants, phenolics, flavonoids, or alkaloids and can be used as nutrient supplements. Moreover, these metabolites have been reported to have several pharmaceutical applications, including anti-cancer activity. Natural plant ROS scavengers, saponins, were also detected. Based on metabolomic data, the probable presence of a flavonoid biosynthesis pathway was inferred, which provides useful insight for metabolic engineering in the future. Non-targeted metabolomics, antioxidants and scavenging activities reveal the nutraceutical potential of the plant and also suggest that psyllium leaves can be used as a green salad as a dietary supplement to daily food. PMID:27092153

  14. Are free radicals involved in thiol-based redox signaling?

    PubMed

    Winterbourn, Christine C

    2015-03-01

    Cells respond to many stimuli by transmitting signals through redox-regulated pathways. It is generally accepted that in many instances signal transduction is via reversible oxidation of thiol proteins, although there is uncertainty about the specific redox transformations involved. The prevailing view is that thiol oxidation occurs by a two electron mechanism, most commonly involving hydrogen peroxide. Free radicals, on the other hand, are considered as damaging species and not generally regarded as important in cell signaling. This paper examines whether it is justified to dismiss radicals or whether they could have a signaling role. Although there is no direct evidence that radicals are involved in transmitting thiol-based redox signals, evidence is presented that they are generated in cells when these signaling pathways are activated. Radicals produce the same thiol oxidation products as two electron oxidants, although by a different mechanism, and at this point radical-mediated pathways should not be dismissed. There are unresolved issues about how radical mechanisms could achieve sufficient selectivity, but this could be possible through colocalization of radical-generating and signal-transducing proteins. Colocalization is also likely to be important for nonradical signaling mechanisms and identification of such associations should be a priority for advancing the field.

  15. Asymmetric synthesis of tertiary thiols and thioethers

    PubMed Central

    MacLellan, Paul

    2011-01-01

    Summary Enantiomerically pure tertiary thiols provide a major synthetic challenge, and despite the importance of chiral sulfur-containing compounds in biological and medicinal chemistry, surprisingly few effective methods are suitable for the asymmetric synthesis of tertiary thiols. This review details the most practical of the methods available. PMID:21647256

  16. Mixture toxicity of the antiviral drug Tamiflu((R)) (oseltamivir ethylester) and its active metabolite oseltamivir acid.

    PubMed

    Escher, Beate I; Bramaz, Nadine; Lienert, Judit; Neuwoehner, Judith; Straub, Jürg Oliver

    2010-02-18

    Tamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems. A previous environmental risk assessment has concluded that there is no bioaccumulation potential of either of the compounds. However, little was known about the ecotoxicity of the metabolite. Ester hydrolysis typically reduces the hydrophobicity and thus the toxicity of a compound. In this case, a zwitterionic, but overall neutral species is formed from the charged parent compound. If the speciation and predicted partitioning into biological membranes is considered, the metabolite may have a relevant contribution to the overall toxicity. These theoretical considerations triggered a study to investigate the toxicity of oseltamivir acid (OA), alone and in binary mixtures with its parent compound oseltamivir ethylester (OE). OE and OA were found to be baseline toxicants in the bioluminescence inhibition test with Vibrio fischeri. Their mixture effect lay between predictions for concentration addition and independent action for the mixture ratio excreted in urine and nine additional mixture ratios of OE and OA. In contrast, OE was an order of magnitude more toxic than OA towards algae, with a more pronounced effect when the direct inhibition of photosystem II was used as toxicity endpoint opposed to the 24h growth rate endpoint. The binary mixtures in this assay yielded experimental mixture effects that agreed with predictions for independent action. This is consistent with the finding that OE exhibits slightly enhanced toxicity, while OA acts as baseline toxicant. Therefore, with respect to mixture classification, the two compounds can be considered as acting according to different modes of toxic action, although there are

  17. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.

    PubMed

    Li, Xiao-Jun; Zhang, Qiang; Zhang, An-Ling; Gao, Jin-Ming

    2012-04-04

    Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed.

  18. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    PubMed

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  19. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    PubMed Central

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163

  20. The neurosteroid dehydroepiandrosterone (DHEA) and its metabolites alter 5-HT neuronal activity via modulation of GABAA receptors.

    PubMed

    Gartside, S E; Griffith, N C; Kaura, V; Ingram, C D

    2010-11-01

    Dehydroepiandrosterone (DHEA) and its metabolites, DHEA-sulphate (DHEA-S) and androsterone, have neurosteroid activity. In this study, we examined whether DHEA, DHEA-S and androsterone, can influence serotonin (5-HT) neuronal firing activity via modulation of γ-aminobutryic acid (GABA(A)) receptors. The firing of presumed 5-HT neurones in a slice preparation containing rat dorsal raphe nucleus was inhibited by the GABA(A) receptor agonists 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridinyl-3-ol (THIP) (25 μM) and GABA (100 μM). DHEA (100 and 300 μM) and DHEA-S (1, 10 and 100 μM) caused a rapid and reversible attenuation of the response to THIP. DHEA (100 μM) and DHEA-S (100 μM) also attenuated the effect of GABA. Androsterone (10 and 30 μM) markedly enhanced the inhibitory response to THIP (25 μM). The effect was apparent during androsterone administration but persisted and even increased in magnitude after drug wash-out. The data indicate that GABA(A) receptor-mediated regulation of 5-HT neuronal firing is sensitive to negative modulation by DHEA and its metabolite DHEA-S is sensitive to positive modulation by the metabolite androsterone. The effects of these neurosteroids on GABA(A) receptor-mediated regulation of 5-HT firing may underlie some of the reported behavioural and psychological effects of endogenous and exogenous DHEA.

  1. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    NASA Astrophysics Data System (ADS)

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-02-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. ‘Images’ over a 3.25 × 0.9 mm2 area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  2. Thiol/disulfide homeostasis in asphalt workers.

    PubMed

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric

    2016-09-02

    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  3. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine

    NASA Astrophysics Data System (ADS)

    Zaazaa, Hala E.; Mohamed, Afaf O.; Hawwam, Maha A.; Abdelkawy, Mohamed

    2015-01-01

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance.

  4. Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine.

    PubMed

    Zaazaa, Hala E; Mohamed, Afaf O; Hawwam, Maha A; Abdelkawy, Mohamed

    2015-01-05

    A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance.

  5. Solving the Jigsaw Puzzle of Wound-Healing Potato Cultivars: Metabolite Profiling and Antioxidant Activity of Polar Extracts

    PubMed Central

    2015-01-01

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding. PMID:24998264

  6. Solving the jigsaw puzzle of wound-healing potato cultivars: metabolite profiling and antioxidant activity of polar extracts.

    PubMed

    Dastmalchi, Keyvan; Cai, Qing; Zhou, Kevin; Huang, Wenlin; Serra, Olga; Stark, Ruth E

    2014-08-06

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding.

  7. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  8. Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis.

    PubMed Central

    Ye, J J; Neal, J W; Cui, X; Reizer, J; Saier, M H

    1994-01-01

    Lactobacillus brevis takes up glucose and the nonmetabolizable glucose analog 2-deoxyglucose (2DG), as well as lactose and the nonmetabolizable lactose analoge thiomethyl beta-galactoside (TMG), via proton symport. Our earlier studies showed that TMG, previously accumulated in L. brevis cells via the lactose:H+ symporter, rapidly effluxes from L. brevis cells or vesicles upon addition of glucose and that glucose inhibits further accumulation of TMG. This regulation was shown to be mediated by a metabolite-activated protein kinase that phosphorylase serine 46 in the HPr protein. We have now analyzed the regulation of 2DG uptake and efflux and compared it with that of TMG. Uptake of 2DG was dependent on an energy source, effectively provided by intravesicular ATP or by extravesicular arginine which provides ATP via an ATP-generating system involving the arginine deiminase pathway. 2DG uptake into these vesicles was not inhibited, and preaccumulated 2DG did not efflux from them upon electroporation of fructose 1,6-diphosphate or gluconate 6-phosphate into the vesicles. Intravesicular but not extravesicular wild-type or H15A mutant HPr of Bacillus subtilis promoted inhibition (53 and 46%, respectively) of the permease in the presence of these metabolites. Counterflow experiments indicated that inhibition of 2DG uptake is due to the partial uncoupling of proton symport from sugar transport. Intravesicular S46A mutant HPr could not promote regulation of glucose permease activity when electroporated into the vesicles with or without the phosphorylated metabolites, but the S46D mutant protein promoted regulation, even in the absence of a metabolite. The Vmax but not the Km values for both TMG and 2DG uptake were affected. Uptake of the natural, metabolizable substrates of the lactose, glucose, mannose, and ribose permeases was inhibited by wild-type HPr in the presence of fructose 1,6-diphosphate or by S46D mutant HPr. These results establish that HPr serine

  9. Novel tryptophan metabolites, chromoazepinone A, B and C, produced by a blocked mutant of Chromobacterium violaceum, the biosynthetic implications and the biological activity of chromoazepinone A and B.

    PubMed

    Mizuoka, Takaaki; Toume, Kazufumi; Ishibashi, Masami; Hoshino, Tsutomu

    2010-07-21

    Chromobacterium violaceum produces tryptophan metabolites, purple pigments of violacein and deoxyviolacein. A blocked mutant was prepared with N-methyl-N'-nitrosoguanidine to gain insights into the biosynthetic mechanisms of the pigments. Five tryptophan metabolites were isolated: three novel compounds, named chromoazepinone A, B and C and two known compounds, chromopyrrolic acid and arcyriarubin A. The structure determinations of the three novel compounds are described. The biosynthetic pathways of these metabolites are proposed on the basis of the findings about violacein biosynthesis. Chromoazepinone A and B were found to have an interesting effect of inhibition of Wnt signal transcriptional activity, which is implicated in the formation of numerous tumors when aberrantly activated.

  10. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics.

    PubMed

    Adomako-Bonsu, Amma G; Chan, Sue Lf; Pratten, Margaret; Fry, Jeffrey R

    2017-04-01

    Persistent accumulation of reactive oxygen species causes cellular oxidative stress which contributes strongly towards the induction and progression of various diseases. Therapeutic focus has therefore shifted towards the use of antioxidants, with recent interest in those of plant origin. In the current study, rosmarinic acid (RA) and its key metabolites were evaluated in non-cellular and cellular antioxidant assays, using quercetin (Q) as a positive control. The non-cellular assay was performed as scavenging of DPPH radical, whilst the cellular assay was performed as protection from an oxidant stress. Radical-scavenging activity of RA and two of its primary metabolites, CA and DHPLA, were comparable to that of Q, whilst FA was of lower potency and m-CoA was inactive. In the cellular assay, RA and CA were markedly less potent than Q, with DHPLA, FA and m-CoA being inactive, this being true in short-term (5-h) or long-term (20-h) exposure conditions. However, antioxidant potency of Q and methyl rosmarinate, a non-ionisable ester of RA, was similar in the non-cellular and short-term cellular assays. It is proposed that marked ionisation of organic acids such as RA and its metabolites at physiological pH greatly limits their intracellular accumulation, and so attenuates intrinsic antioxidant ability demonstrated in the non-cellular assay. This study demonstrates some of the factors that prevent well-known phytochemicals from progressing further along the drug discovery chain.

  11. Peroxisome Proliferator-Activated Receptor Activation is Associated with Altered Plasma One-Carbon Metabolites and B-Vitamin Status in Rats.

    PubMed

    Lysne, Vegard; Strand, Elin; Svingen, Gard F T; Bjørndal, Bodil; Pedersen, Eva R; Midttun, Øivind; Olsen, Thomas; Ueland, Per M; Berge, Rolf K; Nygård, Ottar

    2016-01-05

    Plasma concentrations of metabolites along the choline oxidation pathway have been linked to increased risk of major lifestyle diseases, and peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of key enzymes along this pathway. In this study, we investigated the effect of PPAR activation on circulating and urinary one-carbon metabolites as well as markers of B-vitamin status. Male Wistar rats (n = 20) received for 50 weeks either a high-fat control diet or a high-fat diet with tetradecylthioacetic acid (TTA), a modified fatty acid and pan-PPAR agonist with high affinity towards PPARα. Hepatic gene expression of PPARα, PPARβ/δ and the enzymes involved in the choline oxidation pathway were analyzed and concentrations of metabolites were analyzed in plasma and urine. TTA treatment altered most biomarkers, and the largest effect sizes were observed for plasma concentrations of dimethylglycine, nicotinamide, methylnicotinamide, methylmalonic acid and pyridoxal, which were all higher in the TTA group (all p < 0.01). Hepatic Pparα mRNA was increased after TTA treatment, but genes of the choline oxidation pathway were not affected. Long-term TTA treatment was associated with pronounced alterations on the plasma and urinary concentrations of metabolites related to one-carbon metabolism and B-vitamin status in rats.

  12. Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea).

    PubMed

    Wessel, N; Santos, R; Menard, D; Le Menach, K; Buchet, V; Lebayon, N; Loizeau, V; Burgeot, T; Budzinski, H; Akcha, F

    2010-01-01

    Polycylic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in the marine environment. Their toxicity is mainly linked to the ability of marine species to biotransform them into reactive metabolites. PAHs are thus often detected at trace levels in animal tissues. For biomonitoring purposes, this findings have two main consequences, (i) the determination of the PAH tissue concentration is not suitable for the evaluation of individual exposure to PAHs (ii) it can explain sometimes the lack of correlations obtained with relevant markers of toxicity such as genotoxicity biomarkers. The aim of the present study was to better investigate the link between PAH exposure and genotoxicity in marine flatfish. During a laboratory experiment, juvenile soles were exposed for four weeks to a mixture of three PAHs, namely benzo[a]pyrene, fluoranthene and pyrene, followed by one week of depuration. Fish were exposed via the trophic route to a daily PAH concentration of 120 μg/g food. Fish were sampled at different time points. The bioavailability and the biotransformation of PAHs were assessed by the measurement of biliary metabolites using a sensitive UPLC MS/MS method. The 7-ethoxyresorufine-O-deethylase was also measured in liver subcellular fractions as a biomarker of phase I biotransformation activities. Genotoxicity was assessed in parallel by the measurement of DNA strand breaks in fish erythrocytes by the alkaline comet assay. During this study, the high amount of PAH metabolites produced in sole demonstrated the bioavailability of PAHs and their biotransformation by fish enzymes. A positive correlation was observed between the level of hydroxylated PAH metabolites and genotoxicity as measured by the alkaline comet assay.

  13. Influence of the microenvironment of thiol groups in low molecular mass thiols and serum albumin on the reaction with methylglyoxal.

    PubMed

    Aćimović, Jelena M; Stanimirović, Bojana D; Todorović, Nina; Jovanović, Vesna B; Mandić, Ljuba M

    2010-10-06

    Methylglyoxal (MG), a reactive alpha-oxoaldehyde that is produced in higher quantities in diabetes, uremia, oxidative stress, aging and inflammation, reacts with the thiol groups (in addition to the amino and guanidino groups) of proteins. This causes protein modification, formation of advanced glycated end products (AGEs) and cross-linking. Low molecular mass thiols can be used as competitive targets for MG, preventing the reactions mentioned above. Therefore, this paper investigated how the microenvironment of the thiol group in low molecular mass thiols (cysteine, N-acetylcysteine (NAcCys), carboxymethylcysteine (CMC) and glutathione (GSH)) and human serum albumin (HSA) affected the thiol reaction with MG. The SH group reaction course was monitored by (1)H-NMR spectroscopy and spectrophotometric quantification. Changes in the HSA molecules were monitored by SDS-PAGE. The microenvironment of the SH group had a major effect on its reactivity and on the product yield. The reactivity of SH groups decreased in the order Cys>GSH>NAcCys. CMC did not react. The percentages of the reacted SH groups in the equilibrium state were almost equal, regardless of the ratio of thiol compound/MG (1:1, 1:2, 1:5): 38.1 + or - 0.9%; 38.2 + or - 0.7% and 39.0 + or - 0.8% for Cys; 26.5 + or - 0.6%; 26.6 + or - 2.6% and 27.4 + or - 2.5% for GSH; 10.8 + or - 0.9%; and 11.2 + or - 0.7% and 12.2 + or - 0.9% for NAcCys, respectively. Our results explain why substances containing alpha-amino-beta-mercapto-ethane as a pharmacophore are successful scavengers of MG. In equilibrium, HSA SH reacted in high percentages both with an insufficient amount and with an excess of MG (55% and 65%, respectively). An analysis of the hydrophobicity of the microenvironment of the SH group on the HSA surface showed that it could contribute to high levels of SH modification, leading to an increase in the scavenging activity of the albumin thiol.

  14. Visualizing and quantifying oxidized protein thiols in tissue sections: a comparison of dystrophic mdx and normal skeletal mouse muscles.

    PubMed

    Iwasaki, Tomohito; Terrill, Jessica; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2013-12-01

    Reactive oxygen species (ROS) are not only a cause of oxidative stress in a range of disease conditions but are also important regulators of physiological pathways in vivo. One mechanism whereby ROS can regulate cell function is by modification of proteins through the reversible oxidation of their thiol groups. An experimental challenge has been the relative lack of techniques to probe the biological significance of protein thiol oxidation in complex multicellular tissues and organs. We have developed a sensitive and quantitative fluorescence labeling technique to detect and localize protein thiol oxidation in histological tissue sections. In our technique, reduced and oxidized protein thiols are visualized and quantified on two consecutive tissue sections and the extent of protein thiol oxidation is expressed as a percentage of total protein thiols (reduced plus oxidized). We tested the application of this new technique using muscles of dystrophic (mdx) and wild-type C57Bl/10Scsn (C57) mice. In mdx myofibers, protein thiols were consistently more oxidized (19 ± 3%) compared with healthy myofibers (10 ± 1%) in C57 mice. A striking observation was the localization of intensive protein thiol oxidation (70 ± 9%) within myofibers associated with necrotic damage. Oxidative stress is an area of active investigation in many fields of research, and this technique provides a useful tool for locating and further understanding protein thiol oxidation in normal, damaged, and diseased tissues.

  15. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor

    PubMed Central

    2017-01-01

    Abstract Significance: Soluble guanylyl cyclase (sGC), which produces the second messenger cyclic guanosine 3′, 5′-monophosphate (cGMP), is at the crossroads of nitric oxide (NO) signaling: sGC catalytic activity is both stimulated by NO binding to the heme and inhibited by NO modification of its cysteine (Cys) thiols (S-nitrosation). Modulation of sGC activity by thiol oxidation makes sGC a therapeutic target for pathologies originating from oxidative or nitrosative stress. sGC has an unusually high percentage of Cys for a cytosolic protein, the majority solvent exposed and therefore accessible modulatory targets for biological and pathophysiological signaling. Recent Advances: Thiol oxidation of sGC contributes to the development of cardiovascular diseases by decreasing NO-dependent cGMP production and thereby vascular reactivity. This thiol-based resistance to NO (e.g., increase in peripheral resistance) is observed in hypertension and hyperaldosteronism. Critical Issues: Some roles of specific Cys thiols have been identified in vitro. So far, it has not been possible to pinpoint the roles of specific Cys of sGC in vivo and to investigate the molecular mechanisms in an animal model. Future Directions: The role of Cys as redox sensors, intermediates of activation, and mediators of change in sGC conformation, activity, and dimerization remains largely unexplored. To understand modulation of sGC activity, it is critical to investigate the roles of specific oxidative thiol modifications that are formed during these processes. Where the redox state of sGC thiols contribute to pathologies (vascular resistance and sGC desensitization by NO donors), it becomes crucial to design therapeutic strategies to restore sGC to its normal, physiological thiol redox state. Antioxid. Redox Signal. 26, 137–149. PMID:26906466

  16. Thiol Dioxygenases: Unique Families of Cupin Proteins

    PubMed Central

    Simmons, C. R.; Karplus, P. A.; Dominy, J. E.

    2011-01-01

    Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a 6-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative

  17. Activation of 3-nitrobenzanthrone and its metabolites to DNA-damaging species in human B lymphoblastoid MCL-5 cells.

    PubMed

    Arlt, Volker M; Cole, Kathleen J; Phillips, David H

    2004-03-01

    3-Nitrobenzanthrone (3-NBA) is one of the most potent mutagens in the Ames Salmonella typhimurium assay and a suspected human carcinogen recently identified in diesel exhaust and in airborne particulate matter. 3-Aminobenzanthrone (3-ABA), 3-acetylaminobenzanthrone (3-Ac-ABA) and N-acetyl-N-hydroxy-3-aminobenzanthrone (N-Ac-N-OH-ABA) have been identified as 3-NBA metabolites. In the present study we investigated the genotoxic effects of 3-NBA and its metabolites in the human B lymphoblastoid cell line MCL-5. DNA strand breaks were measured using the Comet assay, chromosomal damage was assessed using the micronucleus assay and DNA adduct formation was determined by 32P-post-labelling analysis. DNA strand-breaking activity was observed with each compound in a concentration-dependent manner (1-50 microM, 2 h incubation time). At 50 microM median comet tail lengths (CTLs) were 25.0 microm for 3-NBA, 48.0 microm for 3-ABA, 54.5 microm for 3-Ac-ABA and 65.0 microm for N-Ac-N-OH-ABA. Median CTLs in control incubations were in the range 7.7-13.1 micro m. Moreover, the strand-breaking activity of 3-NBA was more pronounced in the presence of a DNA repair inhibitor, hydroxyurea. Depending on the concentration used (1-20 microM, 24 h incubation time), 3-NBA and its metabolites also showed clastogenic activity in the micronucleus assay. 3-NBA and N-Ac-N-OH-ABA were the most active at low concentrations; at 1 microM the total number of micronuclei per 500 binucleate cells was 4.7 +/- 0.6 in both cases, compared with 1.7-3.0 for controls (P < 0.05). Furthermore, multiple DNA adducts were detected with each compound (1 microM, 24 h incubation time), essentially similar to those found recently in vivo in rats treated with 3-NBA or its metabolites. DNA adduct levels ranged from 1.3 to 42.8 and from 2.0 to 39.8 adducts/10(8) nt using the nuclease P1 and butanol enrichment procedures, respectively. DNA binding was highest for N-Ac-N-OH-ABA, followed by 3-NBA, and much lower for 3-ABA

  18. Role of copper and ceruloplasmin in oxidative mutagenesis induced by the gluthathione-{gamma}-glutamyl transpeptidase system and by other thiols

    SciTech Connect

    Stark, A.A.; Glass, G.A.

    1997-10-01

    Glutathione is activated to a mutagen by {gamma}-glutamyl transpeptidase. Other thiols, such as cysteine, penicillamine, cysteine ethylester, and cysteinylglycine, are direct mutagens in the Ames Salmonella mutagenicity test. Thiol mutagenesis is oxidative in nature and involves H{sub 2}O{sub 2} and possibly hydroxyl radicals. Transition metals are crucial for thiol autoxidation. The role of copper and ceruloplasmin (CP) in thiol-dependent mutagenesis was studied in Salmonella typhimurium strain TA 102. Cu and CP at low concentrations enhanced thiol-dependent mutagenesis in the presence, but not in the absence, and added Fe. The degree of enhancement depended on the type of thiol. At high Cu or CP concentrations, thiol mutagenesis was inhibited. Cu also decreased the mutagenicity of H{sub 2}O{sub 2}. Cu- and CP-enhanced mutagenesis were inhibited by radical scavengers, catalase, and peroxidase but not by superoxide dismutase. The effects of Cu and CP on thiol-dependent mutagenesis were similar to their effects on thiol-driven lipid peroxidation. The results indicate that the role of Cu and CP in the enhancement of thiol mutagenesis is the facilitation of the transfer of electrons from a thiol to iron, rather than in catalysis of the Fenton reaction. 34 refs., 7 figs., 2 tabs.

  19. Role of copper and ceruloplasmin in oxidative mutagenesis induced by the glutathione-gamma-glutamyl transpeptidase system and by other thiols.

    PubMed

    Stark, A A; Glass, G A

    1997-01-01

    Glutathione is activated to a mutagen by gamma-glutamyl transpeptidase. Other thiols, such as cysteine, penicillamine, cysteine ethylester, and cysteinylglycine, are direct mutagens in the Ames Salmonella mutagenicity test. Thiol mutagenesis is oxidative in nature and involves H2O2 and possibly hydroxyl radicals. Transition metals are crucial for thiol autoxidation. The role of copper and ceruloplasmin (CP) in thiol-dependent mutagenesis was studied in Salmonella typhimurium strain TA102. Cu and CP at low concentrations enhanced thiol-dependent mutagenesis in the presence, but not in the absence, of added Fe. The degree of enhancement depended on the type of thiol. At high Cu or CP concentrations, thiol mutagenesis was inhibited. Cu also decreased the mutagenicity of H2O2. Cu- and CP-enhanced mutagenesis were inhibited by radical scavengers, catalase, and peroxidase but not by superoxide dismutase. The effects of Cu and CP on thiol-dependent mutagenesis were similar to their effects on thiol-driven lipid peroxidation. The results indicate that the role of Cu and CP in the enhancement of thiol mutagenesis is the facilitation of the transfer of electrons from a thiol to iron, rather than in catalysis of the Fenton reaction.

  20. Cloning and expression in Escherichia coli of the streptolysin O determinant from Streptococcus pyogenes: characterization of the cloned streptolysin O determinant and demonstration of the absence of substantial homology with determinants of other thiol-activated toxins.

    PubMed Central

    Kehoe, M; Timmis, K N

    1984-01-01

    A gene bank of Streptococcus pyogenes Richards was constructed in Escherichia coli by using the bacteriophage replacement vector lambda L47.1, and hybrid phage expressing streptolysin O (SLO) were identified among the recombinants. DNA sequences encoding SLO were subcloned from an slo+ hybrid phage into a low-copy-number vector plasmid to yield an slo+ hybrid plasmid, pMK157. This plasmid contains 5.6 kilobase pairs of cloned streptococcal DNA sequences, is stable, and expresses SLO at easily detectable levels in E. coli. Transposon gamma delta insertion mutants and in vitro-generated deletion mutants of pMK157 were isolated and analyzed. This analysis showed that a single gene is sufficient for production of SLO in E. coli and allowed this slo gene to be mapped to within +/- 100 base pairs. Two forms of the slo gene product, with molecular weights of 68,000 and 61,000, were detected in E. coli minicells harboring slo+ plasmids and by immunoblotting of E. coli whole cells harboring slo+ plasmids. Southern blotting hybridization experiments with the cloned SLO DNA sequences as probes failed to demonstrate homology between the cloned SLO determinant and DNA isolated from bacteria expressing thiol-activated cytolysins related to SLO. Images PMID:6321351

  1. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  2. 100% thiol-functionalized ethylene PMOs prepared by "thiol acid-ene" chemistry.

    PubMed

    Esquivel, Dolores; van den Berg, Otto; Romero-Salguero, Francisco J; Du Prez, Filip; Van der Voort, Pascal

    2013-03-21

    A novel thiol functionalized bis-silane PMO precursor was synthesized by highly efficient thiol acid-ene chemistry between the double bonds of 1,2-(E)-bis(triethoxysilyl)ethene and thioacetic acid. After aminolysis the self-assembly process of the formed SH-precursor with Pluronic P123 under acidic conditions yields the first 100% thiol-PMO material with good structural ordering.

  3. Comparison of prorenoate potassium and spironolactone after repeated doses and steady state plasma levels of active metabolites.

    PubMed Central

    McInnes, G T; Shelton, J R; Harrison, I R; Perkins, R M; Palmer, R F

    1982-01-01

    1 After repeated single daily doses, the aldosterone antagonists prorenoate potassium and spironolactone were compared with regard to renal antimineralocorticoid activity, plasma potassium concentration and steady state plasma levels of their active metabolites, prorenone and canrenone respectively, in a balanced crossover study of twelve healthy subjects. 2 Following challenge with the mineralocorticoid, fludrocortisone, best estimates of the potency of prorenoate potassium relative to spironolactone were 3.6 (95% confidence limits 1.6-10.4) for urinary sodium excretion and 3.4 (95% confidence limits 2.0-6.5) for urinary log10 10Na/K. Estimates with respect to urinary potassium excretion and plasma potassium concentration were imprecise, confirming the limitations of the fludrocortisone model in the evaluation of aldosterone antagonists at steady state. 3 Both compounds exhibited directly proportional relationships between daily dose and steady state plasma levels of active metabolites. The approximate mean terminal elimination half-life of prorenone at steady state was 32.6 h (range 18-80 h). PMID:7059416

  4. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    PubMed Central

    Groh, Isabel Anna Maria; Chen, Chen; Lüske, Claudia; Cartus, Alexander Thomas; Esselen, Melanie

    2013-01-01

    Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. PMID:23476753

  5. Evolution of thiol protective systems in prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Newton, G. L.

    1986-01-01

    Biological thiols are essential elements in most aspects of cell function but undergo rapid oxidation to disulfides in the presence of oxygen. The evolution of systems to protect against such oxygen toxicity was essential to the emergence of aerobic life. The protection system used by eukaryotes is based upon glutathione (GSH) and GSH-dependent enzymes but many bacteria lack GSH and apparently use other mechanisms. The objective of this research is to elaborate the thiol protective mechanisms employed by prokaryotes of widely divergent evolutionary origin and to understand why GSH became the central thiol employed in essentially all higher organisms. Thiol-selective fluorescent labeling and HPLC analysis has been used to determine key monothiol components.

  6. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis.

    PubMed

    Nakabayashi, Ryo; Yang, Zhigang; Nishizawa, Tomoko; Mori, Tetsuya; Saito, Kazuki

    2015-05-22

    The discovery of bioactive natural compounds containing sulfur, which is crucial for inhibitory activity against angiotensin-converting enzyme (ACE), is a challenging task in metabolomics. Herein, a new S-containing metabolite, asparaptine (1), was discovered in the spears of Asparagus officinalis by targeted metabolomics using mass spectrometry for S-containing metabolites. The contribution ratio (2.2%) to the IC50 value in the crude extract showed that asparaptine (1) is a new ACE inhibitor.

  7. Interaction of bismuth subsalicylate with fruit juices, ascorbic acid, and thiol-containing substrates to produce soluble bismuth products active against Clostridium difficile.

    PubMed

    Mahony, D E; Woods, A; Eelman, M D; Burford, N; Veldhuyzen van Zanten, S J O

    2005-01-01

    Bismuth subsalicylate (BSS), the active ingredient of Pepto-Bismol, has been used for many years to treat various disorders of the gastrointestinal tract. Using mass spectrometry and the agar dilution method, we determined that insoluble BSS interacts with certain dietary components and organic substrates to produce water-soluble products with activity against Clostridium difficile.

  8. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases.

    PubMed

    Ko, Wen-Hsiung; Tsou, Yi-Jung; Lin, Mei-Ju; Chern, Lih-Ling

    2010-09-30

    Microorganisms capable of utilizing vegetable tissues for growth in soils were isolated and their vegetable broth cultures were individually sprayed directly on leaves to test their ability to control Phytophthora blight of bell pepper caused by Phytophthora capsici. Liquid culture of Streptomyces strain TKA-5, a previously undescribed species obtained in this study, displayed several desirable disease control characteristics in nature, including high potency, long lasting and ability to control also black leaf spot of spoon cabbage caused by Alternaria brassicicolca. The extract was fungicidal to P. capsici but fungistatic to A. brassicicola. It was stable at high temperature and high pH. However, after exposure to pH 2 for 24h, the extract was no longer inhibitory to P. capsici although it was still strongly inhibitory to A. brassicicola. After treatment with cation or anion exchange resins, the extract lost its inhibitory effect against P. capsici but not A. brassicicola. The results suggest that the extract contained two different kinds of inhibitory metabolites, one against P. capsici with both positive and negative charges on its molecule and another against A. brassicicola with no charges on its molecule. The inhibitory metabolites were soluble in ethanol or methanol but not in water, ether or chloroform. They were dialyzable in the membrane tubing with molecular weight cut-off of 10,000, 1000 or 500 but not 100, indicating that the inhibitors have a molecular weight between 500 and 100. Results also showed that both inhibitors are not proteins.

  9. Anticholestatic activity of flavonoids from artichoke (Cynara scolymus L.) and of their metabolites.

    PubMed

    Gebhardt, R

    2001-05-01

    It is well known that water-soluble extracts of artichoke (Cynara scolymus L.) leaves exert choleresis. When studying this effect in vitro using primary cultured rat hepatocytes and cholephilic fluorescent compounds, it was noticed that the artichoke leaf extracts not only stimulated biliary secretion, but that they also reestablished it when secretion was inhibited by addition of taurolithocholate to the culture medium. Furthermore, taurolithocholate-induced bizarre bile canalicular membrane distortions detectable by electron microscopy could be prevented by artichoke leaf extracts in a dose-dependent manner when added simultaneously with the bile acid. These effects were exerted by the flavonol luteolin and, to a lesser extent, by luteolin-7-O-glucoside, while chlorogenic acid and 1.5-dicaffeoyl quinic acid were almost ineffective. Surprisingly, metabolites produced by the cultured hepatocytes were able to stimulate biliary secretion substantially as well as prevent canalicular membrane deformation. These results demonstrate that artichoke leaf extracts exert a potent anticholestatic action at least in the case of taurolithocholate-induced cholestasis. Flavonoids and their metabolites may contribute significantly to this effect.

  10. Characterization of in vivo metabolites of WR319691, a novel compound with activity against Plasmodium falciparum.

    PubMed

    Milner, Erin; Sousa, Jason; Pybus, Brandon; Melendez, Victor; Gardner, Sean; Grauer, Kristina; Moon, Jay; Carroll, Dustin; Auschwitz, Jennifer; Gettayacamin, Montip; Lee, Patricia; Leed, Susan; McCalmont, William; Norval, Suzanne; Tungtaeng, Anchalee; Zeng, Qiang; Kozar, Michael; Read, Kevin D; Li, Qigui; Dow, Geoffrey

    2011-09-01

    WR319691 has been shown to exhibit reasonable Plasmodium falciparum potency in vitro and exhibits reduced permeability across MDCK cell monolayers, which as part of our screening cascade led to further in vivo analysis. Single-dose pharmacokinetics was evaluated after an IV dose of 5 mg/kg in mice. Maximum bound and unbound brain levels of WR319691 were 97 and 0.05 ng/g versus approximately 1,600 and 3.2 ng/g for mefloquine. The half-life of WR319691 in plasma was approximately 13 h versus 23 h for mefloquine. The pharmacokinetics of several N-dealkylated metabolites was also evaluated. Five of six of these metabolites were detected and maximum total and free brain levels were all lower after an IV dose of 5 mg/kg WR319691 compared to mefloquine at the same dose. These data provide proof of concept that it is feasible to substantially lower the brain levels of a 4-position modified quinoline methanol in vivo without substantially decreasing potency against P. falciparum in vitro.

  11. Activation of soluble guanylate cyclase by NO donors--S-nitrosothiols, and dinitrosyl-iron complexes with thiol-containing ligands.

    PubMed

    Severina, Irina S; Bussygina, Olga G; Pyatakova, Natalya V; Malenkova, Irina V; Vanin, Anatoly F

    2003-05-01

    We studied the capability of dimeric forms of dinitrosyl-iron complexes and S-nitrosothiols to activate soluble guanylate cyclase (sGC) from human platelet cytosol. The dinitrosyl-iron complexes had the ligands glutathione (DNIC-GS) or N-acetylcysteine (DNIC-NAC). The S-nitrosothiols were S-nitrosoglutathione (GS-NO) or S-nitrosoacetylcysteine (SNAC). For both glutathione and N-acetylcysteine, the DNIC and S-nitrosothiol forms are equally effective activators of sGC. The activation mechanism is strongly affected by the presence of intrinsic metal ions. Pretreatment with the potent iron chelator, disodium salt of bathophenanthroline disulfonic acid (BPDS), suppressed sGC activation by GS-NO: the concentration of GS-NO producing maximal sGC activation was increased by two orders of magnitude. In contrast, activation by DNIC-GS is strongly enhanced by BPDS. When BPDS was added 10 min after supplementation of DNIC-GS or GS-NO at 4 degrees C, it exerted a similar effect on sGC activation by either NO donor: BPDS only enhanced the sGC stimulation at low concentrations of the NO donors. Our experiments demonstrated that both Fe(2+) and Cu(2+) ions contribute to the decomposition of GS-NO in the presence of ascorbate. The decomposition of GS-NO induced by Fe(2+) ions was accompanied by formation of DNIC. BPDS protected GS-NO against the destructive action of Fe(2+) but not Cu(2+) ions. Additionally, BPDS is a sufficiently strong chelator to remove the iron from DNIC-GS complexes. Based on our data, we propose that S-nitrosothiols activate sGC via a two-step iron-mediated process: In the first step, intrinsic Fe(2+) ions catalyze the formation of DNICs from S-nitrosothiols. In the secondary step, these newly formed DNICs act as the real NO donors responsible for sGC activation.

  12. Inhibition of the Vacuolar-like ATPase from Halobacterium saccharovorum by Thiol Reagents: Evidence for Different Functional Thiols

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Stanlotter, H.; Emrich, E.; Morrison, David (Technical Monitor)

    1994-01-01

    N-Ethylmaleimide (NEM) inhibited the vacuolar-like ATPase from Halobacterium saccharovorum (K(sub i) approximately 1 mM) by modifying one or more of the thiols located on the largest of the subunit. ATP protected against inhibition and coincidentally prevented NEM binding which suggested that NEM acts at or near the catalytic site. p-Chloromercuriphenylsulfonate (PCMS) also inhibited this ATPase (K(sub i) approximately 90 microM). ATP did not protect against PCMS inhibition. Dithiothreitol (DTT) partially reversed PCMS inhibition and restored approximately half of the initial activity of 90% inhibited enzyme. DTT did not restore activity of the NEM-inhibited enzyme or the PCMS-inhibited enzyme when it was subsequently incubated with NEM. The failure of ATP to protect against PCMS inhibition and the inability of DTT to restore activity of enzyme incubated in the presence of PCMS and NEM suggests these reagents react with different thiols and that the PCMS-sensitive thiol may have a structural role.

  13. Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora.

    PubMed

    Choo, Min-Kyung; Park, Eun-Kyung; Yoon, Hae-Kyung; Kim, Dong-Hyun

    2002-10-01

    To evaluate the antithrombotic activities of puerarin and daidzin from the rhizome of Pueraria lobata, in vitro and ex vivo inhibitory activities of these compounds and their metabolite, daidzein, were measured. These compounds inhibited ADP- and collagen-induced platelet aggregation. Daidzein was the most potent. However, when puerarin and daidzin were intraperitoneally administered, their antiaggregation activities were weaker than when these compounds were administered orally. When in vivo antithrombotic activities of these compounds against collagen and epinephrine were measured, these compounds showed significant protection from death due to pulmonary thrombosis in mice. To evaluate the antiallergic activity of puerarin, daidzin, and daidzein, their inhibitory effects on the release of beta-hexosaminidase from RBL 2H3 cells and on the passive cutaneous anaphylaxis (PCA) reaction in mice were examined. Daidzein exhibited potent inhibitory activity on the beta-hexosaminidase release induced by DNP-BSA and potently inhibited the PCA reaction in rats. Daidzein administered intraperitoneally showed the strongest inhibitory activity and significantly inhibited the PCA reaction at doses of 25 and 50mg/kg with inhibitory activity of 37 and 73%, respectively. The inhibitory activity of intraperitoneally administered daidzein was stronger than those of intraperitoneally and orally administered puerarin and daidzin. Therefore we believe that puerarin and daidzin in the rhizome of Pueraria lobata are prodrugs, which have antiallergic and antithrombotic activities, produced by intestinal microflora.

  14. Modulation of macrophage activity by aflatoxins B1 and B2 and their metabolites aflatoxins M1 and M2.

    PubMed

    Bianco, G; Russo, R; Marzocco, S; Velotto, S; Autore, G; Severino, L

    2012-05-01

    Aflatoxins are natural contaminants frequently found both in food and feed. Many of them exert immunomodulatory properties in mammals; therefore, the aim of the current study was to investigate immune-effects of AFB1, AFB2, AFM1 and AFM2, alone and differently combined, in J774A.1 murine macrophages. MTT assay showed that AFB1, alone and combined with AFB2, possess antiproliferative activity only at the highest concentration; such effect was not shown by their hydroxylated metabolites, AFM1 and AFM2, respectively. However, the immunotoxic effects of the aflatoxins evaluated in the current study may be due to the inhibition of production of active oxygen metabolites such as NO. Cytofluorimetric assay in macrophages exposed to aflatoxins (10-100 μM) revealed that their cytoxicity is not related to apoptotic pathways. Nevertheless, a significant increase of the S phase cell population accompanied by a decrease in G0/G1 phase cell population was observed after AFB1 treatment. In conclusion, the results of the current study suggest that aflatoxins could compromise the macrophages functions; in particular, co-exposure to AFB1, AFB2, AFM1 and AFM2 may exert interactions which can significantly affect immunoreactivity.

  15. Possibility of influence of midazolam sedation on the diagnosis of brain death: concentrations of active metabolites after cessation of midazolam.

    PubMed

    Hirata, Kiyotaka; Matsumoto, Yoshiaki; Kurokawa, Akira; Onda, Miho; Shimizu, Makiko; Fukuoka, Masamichi; Hirano, Masaaki; Yamamoto, Yasuhiro

    2003-09-01

    Midazolam and its active metabolites have a depressant effect on respiration and consciousness level, and therefore their effects should be considered in all patients for whom brain death testing is contemplated. The concentrations of midazolam and its active metabolites were measured in critically ill patients on a ventilator during and after continuous intravenous infusion of midazolam. Three days after cessation of midazolam infusion, the concentrations of midazolam and 1-hydroxymidazolam decreased to below the therapeutic range (100-1000 ng/ml) in all patients, although the concentrations of 1-hydroxymidazolam glucuronide remained extremely high in a patient who showed deteriorating renal function. The concentrations of 1-hydroxymidazolam glucuronide (19,497-29,761 ng/ml) were measured in this patient. When it is impossible to confirm factors consistent with irreversible brain death, such as the lack of cerebral blood flow, until 3 days after cessation of midazolam infusion, monitoring of the concentration of these substances should be carried out in all patients in whom suspicion exists prior to the evaluation of brain death. It is particularly imperative that monitoring of the 1-hydroxymidazolam glucuronide concentration be carried out in patients with poor renal function.

  16. Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera ( Aloe barbadensis Miller) in different growth stages.

    PubMed

    Lee, Sarah; Do, Seon-Gil; Kim, Sun Yeou; Kim, Jinwan; Jin, Yoojeong; Lee, Choong Hwan

    2012-11-14

    Metabolite profiling of four different-sized Aloe vera plants was performed using gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) with multivariate analysis. Amino acids, sugars, and organic acids related to growth and development were identified by sizes. In particular, the relative contents of glucose, fructose, alanine, valine, and aspartic acid increased gradually as the size of the aloe increased. Anthraquinone derivatives such as 7-hydroxy-8-O-methylaloin, 7-hydroxyaloin A, and 6'-malonylnataloins A and B increased gradually, whereas chromone derivatives decreased continuously as the size of the aloe increased. The A30 aloe (size = 20-30 cm) with relatively high contents of aloins A and B, was suggested to have antioxidant components showing the highest antioxidant activity among the four different sizes of aloe. These data suggested that MS-based metabolomic approaches can illuminate metabolite changes associated with growth and development and can explain their change of antioxidant activity.

  17. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and CNS inflammation via the aryl hydrocarbon receptor

    PubMed Central

    Rothhammer, Veit; Mascanfroni, Ivan D.; Bunse, Lukas; Takenaka, Maisa C.; Kenison, Jessica E.; Mayo, Lior; Chao, Chun-Cheih; Patel, Bonny; Yan, Raymond; Blain, Manon; Alvarez, Jorge I.; Kébir, Hania; Anandasabapathy, Niroshana; Izquierdo, Guillermo; Jung, Steffen; Obholzer, Nikolaus; Pochet, Nathalie; Clish, Clary B.; Prinz, Marco; Prat, Alexandre; Antel, Jack; Quintana, Francisco J.

    2016-01-01

    Astrocytes play important roles in the central nervous system (CNS) during health and disease. Through genome-wide analyses we detected a transcriptional response to type I interferons (IFN-I) in astrocytes during experimental CNS autoimmunity and also in CNS lesions from multiple sclerosis (MS) patients. IFN-I signaling in astrocytes reduces inflammation and experimental autoimmune encephalomyelitis (EAE) disease scores via the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) and suppressor of cytokine signaling 2 (SOCS2). The anti-inflammatory effects of nasally administered IFN-β are partly mediated by AhR. Dietary tryptophan is metabolized by the gut microbiota into AhR agonists that act on astrocytes to limit CNS inflammation. EAE scores were increased following ampicillin treatment during the recovery phase, and CNS inflammation was reduced in antibiotic-treated mice by supplementation with the tryptophan metabolites indole, indoxyl-3-sulfate (I3S), indole-3-propionic acid (IPA) and indole-3-aldehyde (IAld), or the bacterial enzyme tryptophanase. In individuals with MS, the circulating levels of AhR agonists were decreased. These findings suggest that IFN-I produced in the CNS act in combination with metabolites derived from dietary tryptophan by the gut flora to activate AhR signaling in astrocytes and suppress CNS inflammation. PMID:27158906

  18. Activation of the silent secondary metabolite production by introducing neomycin-resistance in a marine-derived Penicillium purpurogenum G59.

    PubMed

    Wu, Chang-Jing; Yi, Le; Cui, Cheng-Bin; Li, Chang-Wei; Wang, Nan; Han, Xiao

    2015-04-22

    Introduction of neomycin-resistance into a marine-derived, wild-type Penicillium purpurogenum G59 resulted in activation of silent biosynthetic pathways for the secondary metabolite production. Upon treatment of G59 spores with neomycin and dimethyl sulfoxide (DMSO), a total of 56 mutants were obtained by single colony isolation. The acquired resistance of mutants to neomycin was testified by the resistance test. In contrast to the G59 strain, the EtOAc extracts of 28 mutants inhibited the human cancer K562 cells, indicating that the 28 mutants have acquired the capability to produce bioactive metabolites. HPLC-photodiode array detector (PDAD)-UV and HPLC-electron spray ionization (ESI)-MS analyses further indicated that diverse secondary metabolites have been newly produced in the bioactive mutant extracts. Followed isolation and characterization demonstrated that five bioactive secondary metabolites, curvularin (1), citrinin (2), penicitrinone A (3), erythro-23-O-methylneocyclocitrinol (4) and 22E-7α-methoxy-5α, 6α-epoxyergosta-8(14),22-dien-3β-ol (5), were newly produced by a mutant, 4-30, compared to the G59 strain. All 1-5 were also not yet found in the secondary metabolites of other wild type P. purpurogenum strains. Compounds 1-5 inhibited human cancer K562, HL-60, HeLa and BGC-823 cells to varying extents. Both present bioassays and chemical investigations demonstrated that the introduction of neomycin-resistance into the marine-derived fungal G59 strain could activate silent secondary metabolite production. The present work not only extended the previous DMSO-mediated method for introducing drug-resistance in fungi both in DMSO concentrations and antibiotics, but also additionally exemplified effectiveness of this method for activating silent fungal secondary metabolites. This method could be applied to other fungal isolates to elicit their metabolic potentials to investigate secondary metabolites from silent biosynthetic pathways.

  19. Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity

    PubMed Central

    Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali

    2014-01-01

    A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μmol/mol) and four levels of light intensity (225, 500, 625, and 900 μmol/m2/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μmol/mol + light intensity at 225 μmol/m2/s. Meanwhile, at 400 μmol/mol CO2 + 900 μmol/m2/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μmol/mol the photosynthesis, stomatal conductance, fv/fm (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336

  20. Biologically active new metabolites from a Florida collection of Moorea producens.

    PubMed

    Sabry, Omar M; Goeger, Douglas E; Gerwick, William H

    2017-03-01

    A bioassay-guided investigation (cancer cell cytotoxicity) of a Moorea producens collection from Key West, Florida, led to the discovery of two new bioactive natural products [(+)-malyngamide Y and a cyclic depsipeptide, (+)-floridamide]. Their planar structures were deduced through extensive analysis of 1D and 2D NMR spectroscopic data and supported by HRFAB mass spectrometry. The new cyclic depsipeptide contains four amino acids units, including N-methyl phenylalanine, proline, valine and alanine, beside the unique unit, 2,2-dimethyl-3-hydroxy-octanoic acid. In addition to the discovery of these two new compounds, two previously reported metabolites were also isolated and identified from this cyanobacterial collection; (-)-C-12 lyngbic acid and the antibacterial agent (-)-malyngolide.

  1. The structure of anticapsin, a new biologically active metabolite of Streptomyces griseoplanus

    PubMed Central

    Neuss, N.; Molloy, B. B.; Shah, R.; DeLaHiguera, N.

    1970-01-01

    1. Physical and analytical data obtained on crystalline anticapsin indicated the empirical formula C9H13NO4. Spectral data (u.v., i.r. and proton magnetic resonance) and formation of l-tyrosine on hydrolysis revealed the functionalities and carbon skeleton of the new epoxy keto amino acid. 2. The optical properties of anticapsin (optical rotatory dispersion and circular dichroism) permitted assignment of absolute configuration to the new metabolite. 3. Treatment of anticapsin with hot methanolic hydrochloric acid followed by acetylation gave C18H19NO5, the α-alkoxycyclohexenone derivative. Analysis of the nuclear-magnetic-resonance and mass spectra of the latter allowed its structure to be determined and confirmed the assigned structure of anticapsin. PMID:5481496

  2. A new natural spiro heterocyclic compound and the cytotoxic activity of the secondary metabolites from Juniperus brevifolia leaves.

    PubMed

    Moujir, Laila M; Seca, Ana M L; Araujo, Liliana; Silva, Artur M S; Barreto, M Carmo

    2011-03-01

    A new natural spiro compound 3,4-dehydrotheaspirone and the known arctiol [1β,6α-dihydroxy-4(14)-eudesmene] were isolated from Juniperus brevifolia. Arctiol is reported for the first time in the Juniperus genus. Their structures were established by 1D, and 2D NMR and MS spectra. Antimicrobial and cytotoxic activities of 1 and several secondary metabolites 3,4,5,6,7,8,9,10,11,12 previously isolated by our group from J. brevifolia were evaluated and some SAR has been established. The 18-hydroxydehydroabietane (4) displayed great antiproliferative activity against cancer cell lines tested, namely HeLa, A-549 and MCF-7. Compound 4 also presented a significant bactericidal effect against Bacillus cereus at different concentrations tested.

  3. A thiol-activated lipase from Trichosporon asahii MSR 54: detergent compatibility and presoak formulation for oil removal from soiled cloth at ambient temperature.

    PubMed

    Kumar, S Suresh; Kumar, Lalit; Sahai, Vikram; Gupta, Rani

    2009-03-01

    An alkaline lipase from Trichosporon asahii MSR 54 was used to develop presoak formulation for removing oil stains at ambient temperature. The lipase was produced in a reactor followed by concentration by ultrafiltration and then it was dried with starch. The biochemical characteristics of enzyme showed that it was an alkaline lipase having pH activity in the range of pH 8.0-10.0 and temperature in the range of 25-50 degrees C. The present lipase was active >80% at 25 degrees C. The lipase was cystein activated with fourfold enhancement in presence of 5 mM cystein and likewise the activity was also stimulated in presence of papain hydrolysate which served as source of cystein. The presoak formulation consisted of two components A and B, component A was enzyme additive and B was a mixture of carbonate/bicarbonate source of alkali and papain hydrolysate as source of cystein. The results indicated that the presoaking in enzyme formulation followed by detergent washing was a better strategy for stain removal than direct washing with detergent in presence of lipase. Further, it was observed that 0.25% presoak component B in presence of 100 U enzyme component A (0.1 g) was the best formulation in removing maximum stain from mustard oil/triolein soiled clothes as indicated by increase in reflectance which was found equal to that of control cloth. The lipase action in presoaked formulation was clearly indicated by quantitated fatty acid release and also the TLC results of wash water, where oil hydrolytic products were visible only in presence of enzyme in the treatment. The wash performance carried at 25 degrees C indicated that washing at 25 degrees C was at par with that at 40 degrees C as indicated by similar reflectance of the washed cloth piece though qualitative fatty acid release was higher at 40 degrees C.

  4. Synthesis, antimicrobial, and anti-inflammatory activity, of novel S-substituted and N-substituted 5-(1-adamantyl)-1,2,4-triazole-3-thiols

    PubMed Central

    Al-Abdullah, Ebtehal S; Asiri, Hanadi H; Lahsasni, Siham; Habib, Elsayed E; Ibrahim, Tarek M; El-Emam, Ali A

    2014-01-01

    The reaction of 5-(1-adamantyl)-4-phenyl-1,2,4-triazoline-3-thione (compound 5) with formaldehyde and 1-substituted piperazines yielded the corresponding N-Mannich bases 6a–f. The reaction of 5-(1-adamantyl)-4-methyl-1,2,4-triazoline-3-thione 8 with various 2-aminoethyl chloride yielded separable mixtures of the S-(2-aminoethyl) 9a–d and the N-(2-aminoethyl) 10a–d derivatives. The reaction of compound 5 with 1-bromo-2-methoxyethane, various aryl methyl halides, and ethyl bromoacetate solely yielded the S-substituted products 11, 12a–d, and 13. The new compounds were tested for activity against a panel of Gram-positive and Gram-negative bacteria and the pathogenic fungus Candida albicans. Compounds 6b, 6c, 6d, 6e, 6f, 10b, 10c, 10d, 12c, 12d, 12e, 13, and 14 displayed potent antibacterial activity. Meanwhile, compounds 13 and 14 produced good dose-dependent anti-inflammatory activity against carrageenan-induced paw edema in rats. PMID:24872681

  5. Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: The link with enteric microbiota.

    PubMed

    Wan, Jin-Yi; Wang, Chong-Zhi; Zhang, Qi-Hui; Liu, Zhi; Musch, Mark W; Bissonnette, Marc; Chang, Eugene B; Li, Ping; Qi, Lian-Wen; Yuan, Chun-Su

    2017-04-01

    After ingestion of ginseng, the bioavailability of its parent compounds is low and enteric microbiota plays an important role in parent compound biotransformation to their metabolites. Diet type can influence the enteric microbiota profile. When human subjects on different diets ingest ginseng, their different gut microbiota profiles may influence the metabolism of ginseng parent compounds. In this study, the effects of different diet type on gut microbiota metabolism of American ginseng saponins were investigated. We recruited six healthy adults who regularly consumed different diet types. These subjects received 7 days' oral American ginseng, and their biological samples were collected for LC-Q-TOF-MS analysis. We observed significant ginsenoside Rb1 (a major parent compound) and compound K (a major active metabolite) level differences in the samples from the subjects consuming different diets. Subjects on an Asian diet had much higher Rb1 levels but much lower compound K levels compared with those on a Western diet. Since compound K possesses much better cancer chemoprevention potential, our data suggested that consumers on a Western diet should obtain better cancer prevention effects with American ginseng intake compared with those on an Asian diet. Ginseng compound levels could be enhanced or reduced via gut microbiota manipulation for clinical utility.

  6. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments

    PubMed Central

    Musilova, Lucie; Ridl, Jakub; Polivkova, Marketa; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the “secondary compound hypothesis” and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes. PMID:27483244

  7. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    PubMed

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana.

  8. Validation of the protective Ostertagia ostertagi ES-thiol antigens with different adjuvantia.

    PubMed

    Geldhof, P; Vercauteren, I; Vercruysse, J; Knox, D P; Van Den Broeck, W; Claerebout, E

    2004-01-01

    Intramuscular immunization of calves with an excretory-secretory antigen fraction enriched for cysteine proteinase activity (ES-thiol) and QuilA as adjuvant induces a protective immune response against the abomasal nematode Ostertagia ostertagi. The objectives of the present study were to confirm the protective capacity of ES-thiol in combination with QuilA, to test Al(OH)(3) as adjuvant for vaccination against O. ostertagi and to look for correlations between protection and immunological effector responses. Calves(seven animals/group) were vaccinated three times intramuscularly with 100 micro g antigen and/or adjuvant (ES-thiol with QuilA, ES-thiol with Al(OH)(3), QuilA alone and Al(OH)(3) alone) and subsequently challenged with a trickled oral infection of 25 000 infective larvae in total over 25 days. Faecal egg counts in the ES-thiol QuilA group were reduced by 56% during the two-month period of the trial compared to the QuilA control group (P < 0.002). Calves immunized with ES-thiol QuilA had significantly smaller adult worms (P < 0.002) and less eggs/female worm (P < 0.05) compared to the QuilA control group. No differences in egg output, worm counts or parameters of worm fitness were observed in the ES-thiol Al(OH)(3) group compared to the Al(OH)(3) control group. Although the protective immune mechanism against O. ostertagi remains unknown, protection in the ES-thiol QuilA group was associated with high levels of parasite-specific antibodies in the abomasal mucosa.

  9. Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays.

    PubMed

    Svobodová, K; Placková, M; Novotná, V; Cajthaml, T

    2009-11-01

    Investigations of environmental pollution by endocrine-disrupting chemicals are now in progress. Up to now, several in vitro bioassays have been developed for evaluation of the endocrine disruptive activity; however, there is still a lack of comparative studies of their sensitivity. In this work comparison of the estrogen screening assay based on beta-galactosidase expression and a bioluminescent estrogen screen revealed differences in the sensitivity and specificity of the two tests. With the beta-galactosidase screen a slight estrogen-like activity of Delor 103, a commercial mixture of PCB congeners, and a fungicide triclosan was measured whereas no activity was detected using the bioluminescent assay. A bioluminescent androgen test negated previously suggested androgenic potential of triclosan. Further, this work demonstrates the androgenic activity of Delor 103, with an EC(50) value of 2.29 x 10(-2)mg/L. On the other hand, chlorobenzoic acids (CBAs), representing potential PCB degradation metabolites, exhibited no androgenic activity but were slightly estrogenic. Their estrogenicity varied with their chemical structure, with 2,3-CBA, 2,3,6-CBA, 2,4,6-CBA and monochlorinated compounds exhibiting the highest activity. Thus the results indicated possible transitions of the hormonal activity of PCBs during bacterial degradation.

  10. The reaction of iodine and thiol-blocking reagents with human complement components C2 and factor B. Purification and N-terminal amino acid sequence of a peptide from C2a containing a free thiol group.

    PubMed Central

    Parkes, C; Gagnon, J; Kerr, M A

    1983-01-01

    Human complement components C2 and Factor B each contain one free thiol group/molecule. Reaction with p-chloromercuribenzoate destroyed the haemolytic activity of C2 but had no effect on Factor B. Reaction of C2 with I2 gave a 16-fold enhancement of its haemolytic activity. The pH optimum for the reaction was 7.0. The I2 reacted at the thiol group in C2 with a stoicheiometry of 1 mol of I2/mol of C2. The product of the reaction was unaffected by millimolar concentrations of dithiothreitol; however, azide and cyanide were inhibitory. Reaction with azide did not result in re-expression of the thiol group. Mild oxidation of the thiol group with m-chloroperbenzoic acid did not enhance the haemolytic activity. The results suggest that reaction with I2 causes intramolecular covalent, but not disulphide, bond formation. I2 reacted with Factor B at the free thiol group without affecting the haemolytic activity. A CNBr-cleavage peptide from C2a (obtained by cleavage of C2 by subcomponent C1s) containing the free thiol group was isolated. Automated Edman degradation of the peptide showed that it was the N-terminal peptide of C2a. The free thiol group was identified at position 18. PMID:6555044

  11. Aldosterone Inactivates the Endothelin-B Receptor via a Cysteinyl Thiol Redox Switch to Decrease Pulmonary Endothelial Nitric Oxide Levels and Modulate Pulmonary Arterial Hypertension

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; White, Kevin; Chan, Stephen Y.; Handy, Diane E.; Mahoney, Christopher E.; Loscalzo, Joseph; Leopold, Jane A.

    2012-01-01

    Background Pulmonary arterial hypertension (PAH) is characterized, in part, by decreased endothelial nitric oxide (NO•) production and elevated levels of endothelin-1. Endothelin-1 is known to stimulate endothelial nitric oxide synthase (eNOS) via the endothelin-B receptor (ETB), suggesting that this signaling pathway is perturbed in PAH. Endothelin-1 also stimulates adrenal aldosterone synthesis; in systemic blood vessels, hyperaldosteronism induces vascular dysfunction by increasing endothelial reactive oxygen species (ROS) generation and decreasing NO• levels. We hypothesized that aldosterone modulates PAH by disrupting ETB-eNOS signaling through a mechanism involving increased pulmonary endothelial oxidant stress. Methods and Results In rats with PAH, elevated endothelin-1 levels were associated with elevated aldosterone levels in plasma and lung tissue and decreased lung NO• metabolites in the absence of left heart failure. In human pulmonary artery endothelial cells (HPAECs), endothelin-1 increased aldosterone levels via PGC-1α/steroidogenesis factor-1-dependent upregulation of aldosterone synthase. Aldosterone also increased ROS production, which oxidatively modified cysteinyl thiols in the eNOS-activating region of ETB to decrease endothelin-1-stimulated eNOS activity. Substitution of ETB-Cys405 with alanine improved ETB-dependent NO• synthesis under conditions of oxidant stress, confirming that Cys405 is a redox sensitive thiol that is necessary for ETB-eNOS signaling. In HPAECs, mineralocorticoid receptor antagonism with spironolactone decreased aldosterone-mediated ROS generation and restored ETB-dependent NO• production. Spironolactone or eplerenone prevented or reversed pulmonary vascular remodeling and improved cardiopulmonary hemodynamics in two animal models of PAH in vivo. Conclusions Our findings demonstrate that aldosterone modulates an ETB cysteinyl thiol redox switch to decrease pulmonary endothelium-derived NO• and promote PAH

  12. The interference of ethanol with heroin-stimulated psychomotor activation in mice is not related to changed brain concentrations of the active metabolites 6MAM or morphine.

    PubMed

    Andersen, Jannike M; Haugen, Karianne S; Ripel, Ase; Mørland, Jørg

    2014-02-01

    It has been suggested that the potentiating effect observed in human beings when combining alcohol and heroin may be due to an interference of ethanol with the pharmacokinetics of heroin, leading to accumulation of the biologically active metabolites, 6-monoacetylmorphine (6MAM) and morphine. However, experimental evidence for this hypothesis is lacking. In this study, we used mice and examined the effect of ethanol on the metabolism of heroin by combining a locomotor activity test, which is a behaviour model representative of psychomotor stimulation, with pharmacokinetic studies in blood and brain tissue. Pre-treatment with ethanol (1 and 2.5 g/kg, po) affected heroin-stimulated (2.5 and 15 μmol/kg, sc) locomotor activation significantly, resulting in a dose-dependent reduction in run distance. However, the change in the activity profiles did not indicate any increase in the concentration of active metabolites. Pharmacokinetic studies in blood and brain supported the behavioural findings, showing no change in the time-versus-concentration curves of either 6MAM or morphine after administration of heroin (15 μmol/kg, sc) to mice pre-treated with ethanol (2.5 g/kg, po). The concentration of heroin itself was elevated, but is probably of minor importance because heroin has low biological activity by itself. The in vivo pharmacokinetic findings were supported by experiments in vitro. In conclusion, studies in mice do not support the hypothesis from epidemiological studies of a pharmacokinetic interaction between alcohol and heroin.

  13. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.

    PubMed

    Summa, Domenico; Spiga, Ottavia; Bernini, Andrea; Venditti, Vincenzo; Priora, Raffaella; Frosali, Simona; Margaritis, Antonios; Di Giuseppe, Danila; Niccolai, Neri; Di Simplicio, Paolo

    2007-11-01

    Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.

  14. Characterization of plasma thiol redox potential in a common marmoset model of aging.

    PubMed

    Roede, James R; Uppal, Karan; Liang, Yongliang; Promislow, Daniel E L; Wachtman, Lynn M; Jones, Dean P

    2013-01-01

    Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus) is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys), cystine (CySS), glutathione (GSH) and glutathione disulfide (GSSG). Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (E hCySS) is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (E h) to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS) to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging.

  15. Observation of an Unusual Electronically Distorted Semiquinone Radical of PCB Metabolites in the Active Site of Prostaglandin H Synthase-2

    PubMed Central

    Wangpradit, Orarat; Moman, Edelmiro; Nolan, Kevin B.; Buettner, Garry R.; Robertson, Larry W.; Luthe, Gregor

    2013-01-01

    The activation of the metabolites of airborne polychlorinated biphenyls (PCBs) into highly reactive radicals is of fundamental importance. We found that human recombinant prostaglandin H synthase-2 (hPGHS-2) biotransforms dihydroxy-PCBs, such as 4-chlorobiphenyl-2′,5′-hydroquinone (4-CB-2′,5′H2Q), into semiquinone radicals via one-electron oxidation. Using electron paramagnetic resonance (EPR) spectroscopy, we observed the formation of the symmetric quartet spectrum (1:3:3:1 by area) of 4-chlorobiphenyl-2′,5′-semiquinone radical (4-CB-2′,5′-SQ•−) from 4-CB-2′,5′H2Q. This spectrum changed to an asymmetric spectrum with time: the change can be explained as the overlap of two different semiquinone radical species. Hindered rotation of the 4-CB-2′,5′-SQ•− appears not to be a major factor for the change in lineshape because increasing the viscosity of the medium with glycerol produced no significant change in lineshape. Introduction of a fluorine, which increases the steric hindrance for rotation of the dihydroxy-PCB studied, also produced no significant changes. An in silico molecular docking model of 4-CB-2′,5′H2Q in the peroxidase site of hPGHS-2 together with ab initio quantum mechanical studies indicate that the close proximity of a negatively charged carboxylic acid in the peroxidase active site may be responsible for the observed perturbation in the spectrum. This study provides new insights into the formation of semiquinones from PCB metabolites and underscores the potential role of PGHS-2 in the metabolic activation of PCBs. PMID:20843536

  16. Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae).

    PubMed

    Zhao, Yunhe; Xu, Chunmei; Wang, Qiuhong; Wei, Yan; Liu, Feng; Xu, Shuangyu; Zhang, Zhengqun; Mu, Wei

    2016-05-01

    Bradysia odoriphaga (Diptera: Sciaridae) is the major pest that damages Chinese chive production. As a volatile compound derived from microbial secondary metabolites, benzothiazole has been determined to possess fumigant activity against B. odoriphaga. However, the mechanism of action of benzothiazole is not well understood. In the present study, fourth-instar larvae of B. odoriphaga were exposed to LC10 and LC30 of benzothiazole. Sublethal concentrations (LC10 and LC30) of benzothiazole significantly reduced the food consumption of the larvae on the second day after treatment (2 DAT). However, there were no significant changes in pupal weight among the different treatments. We also measured the protein, lipid, carbohydrate, and trehalose contents and the digestive enzyme activities of the larvae, and the results suggest that benzothiazole reduced the nutrient accumulation and decreased the digestive enzyme activities of B. odoriphaga. In addition, the activity of glutathione S-transferase was significantly decreased at 6h after treatment with benzothiazole, whereas general esterase activities were significantly increased at 6 and 24h after treatment. The results of this study indicate that benzothiazole interferes in the normal food consumption and digestion process by decreasing the activities of digestive enzymes. These results provide valuable information for understanding the toxicity of benzothiazole and for exploring volatile compound for the control of this pest.

  17. Histopathology, enzyme activities, and PAH metabolites in English sole collected near coastal pulp mills

    SciTech Connect

    Brand, D.G.

    1995-12-31

    The bottom-feeding flatfish, English sole (Pleuronectes vetulus), is widely distributed along the B.C. Pacific coast and fulfills a majority of the requirements as a sentinel species for environmental effects monitoring programs. Studies involving the use of histopathological, biochemical, and chemical tools with English sole collected near the vicinity of B.C. pulp mills are currently being conducted. Analysis, to date, has revealed idiopathic liver lesions to be strongly dependent on location of capture with a prevalence of 30% preneoplastic and neoplastic lesions found in fish collected near pulp mills. All fish residing near pulp mills show hepatocellular hemosiderosis, an iron storage disorder. The mixed-function oxidizing enzyme, EROD, was found to be induced in fish collected near pulp mills. However, the levels of conjugating enzymes, GST and UDP-GT, were found to be unchanged when compared with reference fish. PAH metabolites, measured as FACs in bile, are also present in English sole collected from the mill sites and the conjugated derivatives are presently being identified by HPLC/ES-MS techniques, The relationships between these observations will be discussed.

  18. Interaction of thiols and non-thiol {center_dot}OH scavengers in the modification of radiation-induced DNA damage

    SciTech Connect

    Krisch, R.E.; Ayene, I.S.; Koch, C.J.

    1995-12-31

    Oxygen has long been known to sensitize cells to the lethal effects of ionizing radiation and is widely believed to do so by the fixation of potentially reversible radical damage to cellular DNA. A number of studies have suggested that this widely observed oxygen enhancement of cell killing requires the presence of reduced thiols. Published in vitro studies of the modification of DNA damage by glutathione or other thiols have generally shown peak oxygen enhancement ratios (OERs) much higher than those observed for cell killing. However, these studies measured loss of DNA transforming activity or induction of single-strand DNA breaks (SSBs), related endpoints which are not thought to represent lethal lesions, rather than double-strand breaks (DSBs), which are generally believed to be the dominant lethal lesions from ionizing radiation. In addition, non-thiol scavengers of OH radicals were not generally present. There is also evidence that, in addition to their protective effects, some non-thiol {center_dot}OH scavengers can produce radicals which are damaging to DNA under anoxic conditions. In the present investigation, the authors have adapted a previously used in vitro model system to simultaneously investigate the effects on radiation-induced single- and double-strand DNA breaks of various combinations of glutathione and glycerol, a widely used non-thiol scavenger, in the presence and absence of oxygen.

  19. In vitro estrogen receptor binding of PCBs: measured activity and detection of hydroxylated metabolites in a recombinant yeast assay.

    PubMed

    Layton, Alice C; Sanseverino, John; Gregory, Betsy W; Easter, James P; Sayler, Gary S; Schultz, T Wayne

    2002-05-01

    The estrogenic activities of 17beta-estradiol, biphenyl, chlorinated biphenyls, and Aroclor mixtures 1221, 1242, and 1248 were measured with a modified recombinant yeast estrogen assay (i.e., a Saccharomyces cerevisiae-based lac-Z (beta-galactosidase) reporter assay). Modifications of the assay included the use of glass vials instead of plastic microtiter plates and the addition of the medium and yeast before the test substrate. 14C-labeled compounds were used to follow improvements in the assay procedures. 14C-17beta-estradiol recovery from plastic microtiter plates and glass vials using the standard or the modified procedure was approximately 89%. However, 14C-4-CB (4-chlorobiphenyl) recovery was considerably less, ranging from 3% in plastic microtiter plates using the standard procedure to 26% in vials using the modified procedure. These results suggest that the toxicity of strongly hydrophobic chemicals may be underestimated. Using the modified yeast estrogen assay, full agonist activity was observed for 4-CB, 2,4,6-CB, and 2,5-CB while each of the Aroclor mixtures were only partial agonists. The equivalent EC50 values in ppm were in environmentally relevant concentrations for biphenyl (19 ppm), 4-CB (4.5 ppm), 2,5-CB (21 ppm), 2,4,6-CB (0.8 ppm), Aroclor 1221 (2.9 ppm), Aroclor 1242 (0.65 ppm), and Aroclor 1248 (2.3 ppm). Estrogen receptor binding for the individual PCB congeners was 25- to 650-fold less than the reported estrogen binding for the corresponding hydroxylated PCB metabolite. Gas chromatographic/mass spectrometric analysis of yeast extracts indicated that S. cerevisiae hydroxylated the individual PCB congeners in the ppb range. With the exception of biphenyl, the concentration of hydroxylated metabolites obtained from incubation of S. cerevisiae with PCB congeners was consistent with the concentration necessary to elicit a positive estrogen receptor-binding response. This work provides evidence that S. cerevisiae are capable of metabolic

  20. Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects.

    PubMed

    Liu, Xiaoyan; Ruan, Lifang; Peng, Donghai; Li, Lin; Sun, Ming; Yu, Ziniu

    2014-07-25

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided.

  1. Thuringiensin: A Thermostable Secondary Metabolite from Bacillus thuringiensis with Insecticidal Activity against a Wide Range of Insects

    PubMed Central

    Liu, Xiaoyan; Ruan, Lifang; Peng, Donghai; Li, Lin; Sun, Ming; Yu, Ziniu

    2014-01-01

    Thuringiensin (Thu), also known as β-exotoxin, is a thermostable secondary metabolite secreted by Bacillus thuringiensis. It has insecticidal activity against a wide range of insects, including species belonging to the orders Diptera, Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, and Isoptera, and several nematode species. The chemical formula of Thu is C22H32O19N5P, and it is composed of adenosine, glucose, phosphoric acid, and gluconic diacid. In contrast to the more frequently studied insecticidal crystal protein, Thu is not a protein but a small molecule oligosaccharide. In this review, a detailed and updated description of the characteristics, structure, insecticidal mechanism, separation and purification technology, and genetic determinants of Thu is provided. PMID:25068925

  2. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation.

    PubMed

    Garcia, Gonçalo; Nanni, Sara; Figueira, Inês; Ivanov, Ines; McDougall, Gordon J; Stewart, Derek; Ferreira, Ricardo B; Pinto, Paula; Silva, Rui F M; Brites, Dora; Santos, Cláudia N

    2017-01-15

    Neuroinflammation is an integral part of the neurodegeneration process inherent to several aging dysfunctions. Within the central nervous system, microglia are the effective immune cells, responsible for neuroinflammatory responses. In this study, raspberries were subjected to in vitro digestion simulation to obtain the components that result from the gastrointestinal (GI) conditions, which would be bioaccessible and available for blood uptake. Both the original raspberry extract and the gastrointestinal bioaccessible (GIB) fraction protected neuronal and microglia cells against H2O2-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation, at low concentrations. Furthermore, this neuroprotective capacity was independent of intracellular ROS scavenging mechanisms. We show for the first time that raspberry metabolites present in the GIB fraction significantly inhibited microglial pro-inflammatory activation by LPS, through the inhibition of Iba1 expression, TNF-α release and NO production. Altogether, this study reveals that raspberry polyphenols may present a dietary route to the retardation or amelioration of neurodegenerative-related dysfunctions.

  3. Irreversible Inhibition of EGFR: Modeling the Combined Pharmacokinetic-Pharmacodynamic Relationship of Osimertinib and Its Active Metabolite AZ5104.

    PubMed

    Yates, James W T; Ashton, Susan; Cross, Darren; Mellor, Martine J; Powell, Steve J; Ballard, Peter

    2016-10-01

    Osimertinib (AZD9291) is a potent, selective, irreversible inhibitor of EGFR-sensitizing (exon 19 and L858R) and T790M-resistant mutation. In vivo, in the mouse, it is metabolized to an active des-methyl metabolite, AZ5104. To understand the therapeutic potential in patients, this study aimed to assess the relationship between osimertinib pharmacokinetics, the pharmacokinetics of the active metabolite, the pharmacodynamics of phosphorylated EGFR reduction, and efficacy in mouse xenograft models of EGFR-driven cancers, including two NSCLC lines. Osimertinib was dosed in xenografted models of EGFR-driven cancers. In one set of experiments, changes in phosphorylated EGFR were measured to confirm target engagement. In a second set of efficacy studies, the resulting changes in tumor volume over time after repeat dosing of osimertinib were observed. To account for the contributions of both molecules, a mathematical modeling approach was taken to integrate the resulting datasets. The model was able to describe the pharmacokinetics, pharmacodynamics, and efficacy in A431, PC9, and NCI-H1975 xenografts, with the differences in sensitivity described by the varying potency against wild-type, sensitizing, and T790M-mutant EGFR and the phosphorylated EGFR reduction required to reduce tumor volume. It was inferred that recovery of pEGFR is slower after chronic dosing due to reduced resynthesis. It was predicted and further demonstrated that although inhibition is irreversible, the resynthesis of EGFR is such that infrequent intermittent dosing is not as efficacious as once daily dosing. Mol Cancer Ther; 15(10); 2378-87. ©2016 AACR.

  4. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor

    PubMed Central

    Chennupati, Ramesh; Nüsing, Rolf M.; Offermanns, Stefan

    2016-01-01

    19(S)-hydroxy-eicosatetraenoic acid (19(S)-HETE) belongs to a family of arachidonic acid metabolites produced by cytochrome P450 enzymes, which play critical roles in the regulation of cardiovascular, renal and pulmonary functions. Although it has been known for a long time that 19(S)-HETE has vascular effects, its mechanism of action has remained unclear. In this study we show that 19(S)-HETE induces cAMP accumulation in the human megakaryoblastic leukemia cell line MEG-01. This effect was concentration-dependent with an EC50 of 520 nM, insensitive to pharmacological inhibition of COX-1/2 and required the expression of the G-protein Gs. Systematic siRNA-mediated knock-down of each G-protein coupled receptor (GPCR) expressed in MEG-01 followed by functional analysis identified the prostacyclin receptor (IP) as the mediator of the effects of 19(S)-HETE, and the heterologously expressed IP receptor was also activated by 19(S)-HETE in a concentration-dependent manner with an EC50 of 567 nM. Pretreatment of isolated murine platelets with 19(S)-HETE blocked thrombin-induced platelets aggregation, an effect not seen in platelets from mice lacking the IP receptor. Furthermore, 19(S)-HETE was able to relax mouse mesenteric artery- and thoracic aorta-derived vessel segments. While pharmacological inhibition of COX-1/2 enzymes had no effect on the vasodilatory activity of 19(S)-HETE these effects were not observed in vessels from mice lacking the IP receptor. These results identify a novel mechanism of action for the CYP450-dependent arachidonic acid metabolite 19(S)-HETE and point to the existence of a broader spectrum of naturally occurring prostanoid receptor agonists. PMID:27662627

  5. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis

    SciTech Connect

    Tsogtbaatar, Enkhtuul; Cocuron, Jean -Christophe; Sonera, Marcos Corchado; Alonso, Ana Paula

    2015-02-22

    Pennycress (Thlaspi arvense L.), a plant naturalized to North America, accumulates high levels of erucic acid in its seeds, which makes it a promising biodiesel and industrial crop. The main carbon sinks in pennycress embryos were found to be proteins, fatty acids, and cell wall, which respectively represented 38.5, 33.2, and 27.0% of the biomass at 21 days after pollination. Erucic acid reached a maximum of 36% of the total fatty acids. Together these results indicate that total oil and erucic acid contents could be increased to boost the economic competitiveness of this crop. Understanding the biochemical basis of oil synthesis in pennycress embryos is therefore timely and relevant to guide future breeding and/or metabolic engineering efforts. For this purpose, a combination of metabolomics approaches was conducted to assess the active biochemical pathways during oil synthesis. First, gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites highlighted three main families of compounds: organic acids, amino acids, and sugars/sugar alcohols. Secondly, these intermediates were quantified in developing pennycress embryos by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Finally, partitional clustering analysis grouped the intracellular metabolites that shared a similar pattern of accumulation over time into eight clusters. In conclusion, this study underlined that: (i) sucrose might be stored rather than cleaved into hexoses; (ii) glucose and glutamine would be the main sources of carbon and nitrogen, respectively; and (iii) glycolysis, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and the Calvin cycle were active in developing pennycress embryos.

  6. Oxidative inactivation of brain ecto-5'-nucleotidase by thiols/Fe2+ system.

    PubMed

    Liu, X W; Sok, D E

    2000-11-01

    5'-Nucleotidase, responsible for the conversion of adenosine-5'-monophosphate into adenosine, was purified from bovine brain membranes, and subjected to oxidative inactivation. The 5'-nucleotidase activity decreased slightly after the exposure to either glutathione or Fe2+. The glutathione-mediated inactivation of 5'-nucleotidase was potentiated remarkably by Fe2+, but not Cu2+, in a concentration-dependent manner. Similarly, glutathione exhibited a concentration-dependent enhancement of the Fe2+-mediated inactivation. In comparison, the glutathione/Fe2+ system was much more effective than the ascorbate/Fe2+ system in inactivating the enzyme. In support of an intermediary role of superoxide ions or H2O2 in the action of glutathione/Fe2+ system, superoxide dismutase and catalase expressed a substantial protection against the inactivation by the glutathione/Fe2+ system. Meanwhile, hydroxyl radical scavengers such as mannitol, benzoate or ethanol were incapable of preventing the inactivation, excluding the participation of extraneous hydroxyl radicals. Whereas adenosine 5'-monophosphate as substrate exhibited a modest protection against the glutathione/Fe2+ action, a remarkable protection was expressed by divalent metal ions such as Zn2+ or Mn2+. Structure-activity study with a variety of thiols indicates that the inactivating action of thiols in combination with Fe2+ resides in the free sulfhydryl group and amino group of thiols. Overall, thiols, expressing more inhibitory effect on the activity of 5'-nucleotidase, were found to be more effective in potentiating the Fe2+-mediated inactivation. Further, kinetic analyses indicate that Fe2+ and thiols inhibit the 5'-nucleotidase in a competitive or uncompetitive manner, respectively. These results suggest that ecto-5'-nucleotidase from brain membrane is one of proteins susceptible to thiols/Fe2+-catalyzed oxidation, and the oxidative inactivation may be related to the selective association of Fe2+ and thiols to the

  7. Synthesis of soybean oil-based thiol oligomers.

    PubMed

    Wu, Jennifer F; Fernando, Shashi; Weerasinghe, Dimuthu; Chen, Zhigang; Webster, Dean C

    2011-08-22

    Industrial grade soybean oil (SBO) and thiols were reacted to generate thiol-functionalized oligomers via a thermal, free radical initiated thiol-ene reaction between the SBO double bond moieties and the thiol functional groups. The effect of the reaction conditions, including thiol concentration, catalyst loading level, reaction time, and atmosphere, on the molecular weight and the conversion to the resultant soy-thiols were examined in a combinatorial high-throughput fashion using parallel synthesis, combinatorial FTIR, and rapid gel permeation chromatography (GPC). High thiol functionality and concentration, high thermal free radical catalyst concentration, long reaction time, and the use of a nitrogen reaction atmosphere were found to favor fast consumption of the SBO, and produced high molecular weight products. The thiol conversion during the reaction was inversely affected by a high thiol concentration, but was favored by a long reaction time and an air reaction atmosphere. These experimental observations were explained by the initial low affinity of the SBO and thiol, and the improved affinity between the generated soy-thiol oligomers and unreacted SBO during the reaction. The synthesized soy-thiol oligomers can be used for renewable thiol-ene UV curable materials and high molecular solids and thiourethane thermal cure materials.

  8. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    SciTech Connect

    Ribeiro, Mariana P.C.; Nunes-Correia, Isabel; Santos, Armanda E.; Custódio, José B.A.

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  9. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    PubMed

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety.

  10. Changes in protein and nonprotein thiol contents in bladder, kidney and liver of mice by the pesticide sodium-o-phenylphenol and their possible role in cellular toxicity.

    PubMed

    Narayan, S; Roy, D

    1992-02-01

    Acute treatment of mice with Na-o-phenylphenol or phenylbenzoquinone, an electrophilic metabolite of o-phenylphenol, resulted in differential depletion of contents of protein and nonprotein thiols in bladder, kidney and liver. Maximum decrease in the levels of protein and nonprotein reduced thiols was observed in bladder (by both agents) and was followed by kidney (by both agents) and liver (phenylbenzoquinone only). The reason for this differential changes in reduced thiol contents remains to be understood. The content of protein and nonprotein disulfides was higher in bladder of mice treated with Na-o-phenylphenol compared to that observed in untreated mice bladder. Phenyl 2,5'-p-benzoquinone mediated in vivo depletion of nonprotein and protein thiols suggests that Na-o-phenylphenol treatment may decrease in vivo thiols via the formation of phenylbenzoquinone. Increased disulfide formation is considered to represent an index of oxidative stress produced by chemical. Increases in the level of protein and nonprotein disulfides in bladder suggest as observed in this study that administration of Na-o-phenylphenol to mice produced oxidative stress in bladder. Products of redox cycling of xenobiotics are known to cause cellular toxicity via altering the homeostasis of thiol status. Therefore, it is concluded that decreases in protein thiol contents either via alkylation and/or oxidation of sulfhydryl groups of proteins and increases in disulfide contents presumably by products of redox cycling of Na-o-phenylphenol may play a role in Na-o-phenylphenol-induced cellular toxicity.

  11. In silico Identification of Ergosterol as a Novel Fungal Metabolite Enhancing RuBisCO Activity in Lycopersicum esculentum.

    PubMed

    Mitra, Joyeeta; Narad, Priyanka; Sengupta, Abhishek; Sharma, P D; Paul, P K

    2016-09-01

    RuBisCO (EC 4.1.1.39), a key enzyme found in stroma of chloroplast, is important for fixing atmospheric CO2 in plants. Alterations in the activity of RuBisCO could influence photosynthetic yield. Therefore, to understand the activity of the protein, knowledge about its structure is pertinent. Though the structure of Nicotiana RuBisCO has been modeled, the structure of tomato RuBisCO is still unknown. RuBisCO extracted from chloroplasts of tomato leaves was subjected to MALDI-TOF-TOF followed by Mascot Search. The protein sequence based on gene identification numbers was subjected to in silico model construction, characterization and docking studies. The primary structure analysis revealed that protein was stable, neutral, hydrophilic and has an acidic pI. The result though indicates a 90 % homology with other members of Solanaceae but differs from the structure of Arabidopsis RuBisCO. Different ligands were docked to assess the activity of RuBisCO against these metabolite components. Out of the number of modulators tested, ergosterol had the maximum affinity (E = -248.08) with RuBisCO. Ergosterol is a major cell wall component of fungi and has not been reported to be naturally found in plants. It is a known immune elicitor in plants. The current study throws light on its role in affecting RuBisCO activity in plants, thereby bringing changes in the photosynthetic rate.

  12. Proteinase from germinating bean cotyledons. Evidence for involvement of a thiol group in catalysis.

    PubMed

    Csoma, C; Polgár, L

    1984-09-15

    To degrade storage proteins germinating seeds synthesize proteinases de novo that can be inhibited by thiol-blocking reagents [Baumgartner & Chrispeels (1977) Eur. J. Biochem. 77, 223-233]. We have elaborated a procedure for isolation of such a proteinase from the cotyledons of Phaseolus vulgaris. The purification procedure involved fractionation of the cotyledon homogenate with acetone and with (NH4)2SO4 and successive chromatographies on DEAE-cellulose, activated thiol-Sepharose Sepharose and Sephacryl S-200. The purified enzyme has an Mr of 23,400, proved to be highly specific for the asparagine side chain and blocking of its thiol group resulted in loss of the catalytic activity. The chemical properties of the thiol group of the bean enzyme were investigated by acylation with t-butyloxycarbonyl-L-asparagine p-nitro-phenyl ester and by alkylations with iodoacetamide and iodoacetate. Deviations from normal pH-rate profile were observed, which indicated that the thiol group is not a simple functional group, but constitutes a part of an interactive system at the active site. The pKa value for acylation and the magnitude of the rate constant for alkylation with iodoacetate revealed that the bean proteinase possesses some properties not shared by papain and the other cysteine proteinases studied to date.

  13. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents.

    PubMed

    Pardo, Marta; Betz, Adrienne J; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D; Correa, Mercè

    2013-01-01

    IT HAS BEEN POSTULATED THAT A NUMBER OF THE CENTRAL EFFECTS OF ETHANOL ARE MEDIATED VIA ETHANOL METABOLITES: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7-2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25-100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression.

  14. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  15. A Search for Interstellar Monohydric Thiols

    NASA Astrophysics Data System (ADS)

    Gorai, Prasanta; Das, Ankan; Das, Amaresh; Sivaraman, Bhalamurugan; Etim, Emmanuel E.; Chakrabarti, Sandip K.

    2017-02-01

    It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.

  16. Oxidative metabolism of dehydroepiandrosterone (DHEA) and biologically active oxygenated metabolites of DHEA and epiandrosterone (EpiA)--recent reports.

    PubMed

    El Kihel, Laïla

    2012-01-01

    Dehydroepiandrosterone (DHEA) is a multifunctional steroid with a broad range of biological effects in humans and animals. DHEA can be converted to multiple oxygenated metabolites in the brain and peripheral tissues. The mechanisms by which DHEA exerts its effects are not well understood. However, evidence that the effects of DHEA are mediated by its oxygenated metabolites has accumulated. This paper will review the panel of oxygenated DHEA metabolites (7, 16 and 17-hydroxylated derivatives) including a number of 5α-androstane derivatives, such as epiandrosterone (EpiA) metabolites. The most important aspects of the oxidative metabolism of DHEA in the liver, intestine and brain are described. Then, this article reviews the reported biological effects of oxygenated DHEA metabolites from recent findings with a specific focus on cancer, inflammatory and immune processes, osteoporosis, thermogenesis, adipogenesis, the cardiovascular system, the brain and the estrogen and androgen receptors.

  17. Antioxidant activity and metabolite profile of quercetion in vitamin E depleted rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary antioxidants interact in a dynamic fashion, including recycling and sparing one another, to decrease oxidative stress. Limited information is available regarding the interrelationships in vivo between quercetin and vitamin E. We investigated the antioxidant activity and metabolism of querc...

  18. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus.

    PubMed

    Miao, Fang; Yang, Rui; Chen, Dong-Dong; Wang, Ying; Qin, Bao-Fu; Yang, Xin-Juan; Zhou, Le

    2012-11-28

    From the ethyl acetate extract of the culture broth of Talaromyces verruculosus, a rhizosphere fungus of Stellera chamaejasme L., (-)-8-hydroxy-3-(4-hydroxypentyl)-3,4-dihydroisocoumarin (1) and (E)-3-(2,5-dioxo-3-(propan-2-ylidene)pyrrolidin-1-yl)acrylic acid (2) were isolated and evaluated for their antimicrobial activities. Their structures were elucidated by UV, IR, MS, 1H-NMR, 13C-NMR and 2D NMR spectra. Compound 1 exhibited the significant activities in vitro against two strains of bacteria and four strains of fungi. Compound 2 gave slight activities on the fungi at 100 µg mL(-1), but no activities on the bacteria. Compound 1 should be considered as a new lead or model compound to develop new isocoumarin antimicrobial agents.

  19. Comparative proteomic analysis of thiol proteins in the liver after oxidative stress induced by diethylnitrosamine.

    PubMed

    Aparicio-Bautista, Diana I; Pérez-Carreón, Julio I; Gutiérrez-Nájera, Nora; Reyes-Grajeda, Juan P; Arellanes-Robledo, Jaime; Vásquez-Garzón, Verónica R; Jiménez-García, Mónica N; Villa-Treviño, Saúl

    2013-12-01

    Conversion of protein -SH groups to disulfides is an early event during protein oxidation, which has prompted great interest in the study of thiol proteins. Chemical carcinogenesis is strongly associated with the formation of reactive oxygen species (ROS). The goal of this study was to detect thiol proteins that are sensitive to ROS generated during diethylnitrosamine (DEN) metabolism in the rat liver. DEN has been widely used to induce experimental hepatocellular carcinoma. We used modified redox-differential gel electrophoresis (redox-DIGE method) and mass spectrometry MALDI-TOF/TOF to identify differential oxidation protein profiles associated with carcinogen exposure. Our analysis revealed a time-dependent increase in the number of oxidized thiol proteins after carcinogen treatment; some of these proteins have antioxidant activity, including thioredoxin, peroxirredoxin 2, peroxiredoxin 6 and glutathione S-transferase alpha-3. According to functional classifications, the identified proteins in our study included chaperones, oxidoreductases, activity isomerases, hydrolases and other protein-binding partners. This study demonstrates that oxidative stress generated by DEN tends to increase gradually through DEN metabolism, causes time-dependent necrosis in the liver and has an oxidative effect on thiol proteins, thereby increasing the number of oxidized thiol proteins. Furthermore, these events occurred during the hepatocarcinogenesis initiation period.

  20. Structural characteristics of compounds that can be activated to chemically reactive metabolites: use for a prediction of a carcinogenic potential.

    PubMed

    Lutz, W K

    1984-01-01

    Many mutagens and carcinogens act via covalent interaction of metabolic intermediates with DNA in the target cell. This report groups those structural elements which are often found to form the basis for a metabolism to such chemically reactive metabolites. Compounds which are chemically reactive per se and which do not require metabolic activation form group 1. Group 2 comprises of olefins and aromatic hydrocarbons where the oxidation via an epoxide can be responsible for the generation of reactive species. Aromatic amines, hydrazines, and nitrosamines form group 3 requiring an oxidation of a nitrogen atom or of a carbon atom in alpha position to a nitrosated amine. Group 4 compounds are halogenated hydrocarbons which can either give rise to radicals or can form an olefin (group 2) upon dehydrohalogenation. Group 5 compounds depend upon some preceding enzymatic activity either not available in the target cell or acting on positions in the molecule which are not directly involved in the subsequent formation of electrophilic atoms. Examples for each group are taken from the "List of Chemicals and Industrial Processes Associated with Cancer in Humans" as compiled by the International Agency for the Research on Cancer, and it is shown that 91% of the organic carcinogens would have been detected on the basis of structural elements characteristic for group 1-5. As opposed to this very high sensitivity, the specificity (the true negative fraction) of using this approach as a short-term test for carcinogenicity is shown to be bad because detoxification pathways have so far not been taken into account. These competing processes are so complex, however, that either only very extensive knowledge about pharmacokinetics, stability, and reactivity will be required or that in vivo systems have to be used to predict, on a quantitative basis, the damage expected on the DNA. DNA-binding experiments in vivo are presented with benzene and toluene to demonstrate one possible way for

  1. Microfluidic devices using thiol-ene polymers

    NASA Astrophysics Data System (ADS)

    Bou, Simon J. M. C.; Ellis, Amanda V.

    2013-12-01

    Here, a new polymeric microfluidic platform using off-stoichiometric thiol-ene (OSTE) polymers was developed. Thiolene polymers were chosen as they afford rapid UV curing, low volume shrinkage and optical transparency for use in microfluidic devices. Three different off-stoichiometric thiol-ene polymers with 30% excess allyl, 50% excess thiol and a 90% excess thiol (OSTE Allyl-30, OSTE-50 and OSTE-90, respectively) were fabricated. Attenuated reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and solid-state cross polarisation-magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy confirmed which functional groups (thiol or allyl) were present in excess in the OSTE polymers. The polymers were shown to have a more hydrophilic surface (water contact angle of 65°+/- 3) compared to polydimethylsiloxane (water contact angle of 105° +/- 5). Testing of the mechanical properties showed the glass transition temperatures to be 15.09 °C, 43.15 °C and, 57.48 °C for OSTE-90, OSTE Allyl-30 and, OSTE-50, respectively. The storage modulus was shown to be less than 10 MPa for the OSTE-90 polymer and approximately 1750 MPa for the OSTE Allyl-30 and OSTE-50 polymers. The polymers were then utilised to fabricate microfluidic devices via soft lithography practices and devices sealed using a one-step UV lamination "click" reaction technique. Finally, gold nanoparticles were used to form gold films on the OSTE-90 and OSTE-50 polymers as potential electrodes. Atomic force microscopy and sheet resistances were used to characterise the films.

  2. Photo-initiated thiol-ene click reactions as a potential strategy for incorporation of [M(I)(CO)3]+ (M = Re, (99m)Tc) complexes.

    PubMed

    Hayes, Thomas R; Lyon, Patrice A; Silva-Lopez, Elsa; Twamley, Brendan; Benny, Paul D

    2013-03-18

    Click reactions offer a rapid technique to covalently assemble two molecules. In radiopharmaceutical construction, these reactions can be utilized to combine a radioactive metal complex with a biological targeting molecule to yield a potent tool for imaging or therapy applications. The photo-initiated radical thiol-ene click reaction between a thiol and an alkene was examined for the incorporation of [M(I)(CO)3](+) (M = Re, (99m)Tc) systems for conjugating biologically active targeting molecules containing a thiol. In this strategy, a potent chelate system, 2,2'-dipicolylamine (DPA), for [M(I)(CO)3](+) was functionalized at the central amine with a terminal alkene linker that was explored with two synthetic approaches, click then chelate and chelate then click, to determine the flexibility and applicability of the thiol-ene click reaction to specifically incorporate ligand systems and metal complexes with a thiol containing molecule. In the click then chelate approach, the thiol-ene click reaction was carried out with the DPA chelate followed by complexation with [M(I)(CO)3](+). In the chelate then click approach, the alkene functionalized DPA chelate was first complexed with [M(I)(CO)3](+) followed by the conduction of the thiol-ene click reaction. Initial studies utilized benzyl mercaptan as a model thiol for both strategies to generate the identical product from either route to provide information on reactivity and product formation. DPA ligands functionalized with two unique linker systems (allyl and propyl allyl ether) were prepared to examine the effect of the proximity of the chelate or complex on the thiol-ene click reaction. Both the thiol-ene click and coordination reactions with Re, (99m)Tc were performed in moderate to high yields demonstrating the potential of the thiol-ene click reaction for [M(I)(CO)3](+) incorporation into thiol containing biomolecules.

  3. Antimicrobial and antioxidant activities of a new metabolite from Quercus incana.

    PubMed

    Gul, Farah; Khan, Khalid Mohammed; Adhikari, Achyut; Zafar, Salman; Akram, Muhammad; Khan, Haroon; Saeed, Muhammad

    2016-12-21

    Phytochemical investigations of Quercus incana led to the isolation of a new catechin derivative quercuschin (1), along with six known compounds: quercetin (2), methyl gallate (3), gallic acid (4), betulinic acid (5), (Z)-9-octadecenoic acid methyl ester (6) and β-sitosterol glucoside (7) from the ethyl acetate fraction of methanolic extract of the bark. Compound 1 was screened for its antibacterial, antifungal and antioxidant potential. Antibacterial and antifungal activities of the compound were tested against different bacterial and fungal strains, employing the agar well diffusion methods. The antibacterial activity was the highest against Streptococcus pyogenes with 80.0% inhibition, while the antifungal activity of the compound was the highest against Candida glabrata with 80.5% inhibition. The results of the antioxidant activity indicated that the compound exhibited antioxidant activity comparable to that of standard, butylated hydroxyanisole (51.2 μg/10 μl versus 45.9 μg/10 μl).

  4. Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein.

    PubMed

    Kwak, Mi-Kyoung; Kensler, Thomas W; Casero, Robert A

    2003-06-06

    The naturally occurring polycationic polyamines including putrescine, spermidine, and spermine play an important role in cell growth, differentiation, and gene expression. However, circulating polyamines are potential substrates for several oxidizing enzymes including copper-containing serum amine oxidase. These enzymes are capable of oxidizing serum polyamines to several toxic metabolites including aldehydes and H(2)O(2). In this study, we investigated the effects of polyamines as inducers of phase 2 enzymes and other genes that promote cell survival in a cell culture system in the presence of bovine serum. Spermidine and spermine (50 microM) increased NAD(P)H quinone oxidoreductase (NQO1) activity up to 3-fold in murine keratinocyte PE cells. Transcript levels for glutathione S-transferase (GST) A1, GST M1, NQO1, gamma-glutamylcysteine ligase regulatory subunit, and UDP-glucuronyltransferase 1A6 were significantly increased by spermidine and this effect was mediated through the antioxidant response element (ARE). The ARE from the mouse GST A1 promoter was activated about 9-fold by spermine and 5-fold by spermidine treatment, but could be inhibited by the amine oxidase inhibitor, aminoguanidine, suggesting that acrolein or hydrogen peroxide generated from polyamines by serum amine oxidase may be mediators for phase 2 enzyme induction. Elevations of ARE-luciferase expression and NQO1 enzyme activity by spermidine were not affected by catalase, while both were completely repressed by aldehyde dehydrogenase treatment. Direct addition of acrolein to PE cells induced multiple phase 2 genes and elevated nuclear levels of Nrf2, a transcription factor that binds to the ARE. Expression of mutant Nrf2 repressed the activation of the ARE-luciferase reporter by polyamines and acrolein. These results indicate that spermidine and spermine increase the expression of phase 2 genes in cells grown in culture through activation of the Nrf2-ARE pathway by generating the sulfhydryl

  5. Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats.

    PubMed Central

    Benavides, J; Gimenez, C; Valdivieso, F; Mayor, F

    1976-01-01

    1. The effects of phenylalanine and its metabolites (phenylacetate, phenethylamine, phenyl-lactate, o-hydroxyphenylacetate and phenylpyruvate) on the activity of 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) 3-oxo acid CoA-transferase (EC 2.8.3.5) and acetoacetyl-CoA thiolase (EC 2.3.1.9) in brain of suckling rats were investigated. 2. The 3-hydroxybutyrate dehydrogenase from the brain of suckling rats had a Km for 3-hydroxybutyrate of 1.2 mM. Phenylpyruvate, phenylacetate and o-hydroxyphenylacetate inhibited the enzyme activity with Ki values of 0.5, 1.3 and 4.7 mM respectively. 3. The suckling-rat brain 3-oxo acid CoA-transferase activity had a Km for acetoacetate of 0.665 mM and for succinyl (3-carboxypropionyl)-CoA of 0.038 mM. The enzyme was inhibited with respect to acetoacetate by phenylpyruvate (Ki equals 1.3 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). The reaction in the direction of acetoacetate was also inhibited by phenylpyruvate (Ki equals 1.6 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). 4. Phenylpyruvate inhibited with respect to acetoacetyl-CoA both the mitochondrial (Ki equals 3.2 mM) and cytoplasmic (Ki equals 5.2 mM) acetoacetyl-CoA thiolase activities. 5. The results suggest that inhibition of 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase activities may impair ketone-body utilization and hence lipid synthesis in the developing brain. This suggestion is discussed with reference to the pathogenesis of mental retardation in phenylketonuria. PMID:12750

  6. Thiolated pyrimidine nucleotides may interfere thiol groups concentrated at lipid rafts of HIV-1 infected cells.

    PubMed

    Kanizsai, Szilvia; Ongrádi, Joseph; Aradi, János; Nagy, Károly

    2014-12-01

    Upon HIV infection, cells become activated and cell surface thiols are present in increased number. Earlier we demonstrated in vitro anti-HIV effect of thiolated pyrimidine nucleotide UD29, which interferes thiol function. To further analyse the redox processes required for HIV-1 entry and infection, toxicity assays were performed using HIV-1 infected monolayer HeLaCD4-LTR/ β-gal cells and suspension H9 T cells treated with several thiolated nucleotide derivatives of UD29. Selective cytotoxicity of thiolated pyrimidines on HIV-1 infected cells were observed. Results indicate that thiolated pyrimidine derivates may interfere with -SH (thiol) groups concentrated in lipid rafts of cell membrane and interacts HIV-1 infected (activated) cells resulting in a selective cytotoxicity of HIV-1 infected cells, and reducing HIV-1 entry.

  7. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats.

    PubMed

    Takagaki, Akiko; Nanjo, Fumio

    2015-09-23

    Inhibitory activity of angiotensin I-converting enzyme (ACE) was examined with (-)-epigallocatechin gallate (EGCG) metabolites produced by intestinal bacteria, together with tea catechins. All of the metabolites showed ACE inhibitory activities and the order of IC50 was hydroxyphenyl valeric acids > 5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (1) > trihydroxyphenyl 4-hydroxyvaleric acid ≫ dihydroxyphenyl 4-hydroxyvaleric acid ≫ 5-(3,5-dihydroxyphenyl)-γ-valerolactone (2). Among the catechins, galloylated catechins exhibited stronger ACE inhibitory activity than nongalloylated catechins. Furthermore, the effects of a single oral intake of metabolites 1 and 2 on systolic blood pressure (SBP) were examined with spontaneously hypertensive rats (SHR). Significant decreases in SBP were observed between 2 h after oral administration of 1 (150 mg/kg in SHR) and the control group (p = 0.002) and between 4 h after administration of 2 (200 mg/kg in SHR) and the control group (p = 0.044). These results suggest that the two metabolites have hypotensive effects in vivo.

  8. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  9. In vitro biological activity of secondary metabolites from Seseli rigidum Waldst. et Kit. (Apiaceae).

    PubMed

    Jakovljević, Dragana; Vasić, Sava; Stanković, Milan; Čomić, Ljiljana; Topuzović, Marina

    2015-12-01

    The antioxidant, antimicrobial activity, total phenolic content and flavonoid concentration of Seseli rigidum Waldst. et Kit. were evaluated. Five different extracts of the aboveground plant parts were obtained by extraction with distilled water, methanol, acetone, ethyl acetate and petroleum ether. Total phenols were determined using the Folin-Ciocalteu's reagent, with the highest values obtained in the acetone extract (102.13 mg GAE/g). The concentration of flavonoids, determined by using a spectrophotometric method with aluminum chloride and expressed in terms of rutin equivalent, was also highest in the acetone extracts (291.58 mg RUE/g). The antioxidant activity was determined in vitro using DPPH reagent. The greatest antioxidant activity was expressed in the aqueous extract (46.15 μg/ml). In vitro antimicrobial activities were determined using a microdilution analysis method; minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC) were determined. Methanolic extract had the greatest influence on bacilli (MIC at 0.0391 mg/ml), but the best antimicrobial effect had acetone and ethyl acetate extracts considering their broad impact on bacteria. According to our research, S. rigidum can be regarded as promising candidate for natural plant source with high value of biological compounds.

  10. Antioxidant and anti-acetylcholinesterase activities of extracts and secondary metabolites from Acacia cyanophylla

    PubMed Central

    Ghribia, Lotfi; Ghouilaa, Hatem; Omrib, Amel; Besbesb, Malek; Janneta, Hichem Ben

    2014-01-01

    Objective To investigate the antioxidant potential and anti-acetycholinesterase activity of compounds and extracts from Acacia cyanophylla (A. cyanophylla). Methods Three polyphenolic compounds were isolated from ethyl acetate extract of A. cyanophylla flowers. They have been identified as isosalipurposide 1, quercetin 2 and naringenin 3. Their structures were elucidated by extensive spectroscopic methods including 1D and 2D NMR experiments as well as ES-MS. The prepared extracts and the isolated compounds 1-3 were tested for their antioxidant activity using 1′-1′-diphenylpicrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays and reducing power. They have been also investigated for inhibitory effect against acetylcholinesterase using the microplate assay. Results In the DPPH test, the EtOAc extract of flowers exhibited the highest antioxidant effect (67.26 µg/mL). Isosalipurposide 1 showed a significant antiradical power against DPPH (81.9 µg/mL). All extracts showed a dose-dependent acetylcholinesterase inhibition. In terms of the IC50 value, the butanolic extract (16.03 µg/mL) was the most potent sample. Isosalipurposide 1 was found to be active against AChE with an IC50 value of 52.04 µg/mL. Conclusions The results demonstrated the important antioxidant and anti-acetylcholinesterase activity of pure compounds and extracts from A. cyanophylla. PMID:25183120

  11. Agropyrenol, a phytotoxic fungal metabolite, and its derivatives: a structure-activity relationship study.

    PubMed

    Cimmino, Alessio; Zonno, Maria Chiara; Andolfi, Anna; Troise, Ciro; Motta, Andrea; Vurro, Maurizio; Evidente, Antonio

    2013-02-27

    Agropyrenol is a phytotoxic substituted salicylic aldehyde produced in liquid culture by Ascochyta agropyrina var. nana , a potential mycoherbicide proposed for the control of the perennial weed Elytrigia repens. In this study, six derivatives obtained by chemical modifications of the toxin were assayed for phytotoxic, antimicrobial, and zootoxic activities, and the structure-activity relationships were examined. Each compound was tested on non-host weedy and agrarian plants, fungi, Gram-positive and Gram-negative bacteria, and brine shrimp larvae. The results provide insights into the structure-activity relationships of agropyrenol. Both the double bond and the diol system of the 3,4-dihydroxypentenyl side chain as well as the aldehyde group at C-1 of the phenolic ring of agropyrenol proved to be important for the phytotoxicity. The lesser polar 3',4'-O,O'-isopropylidene of agropyrenol also showed significant zootoxic and slight antimicrobial activities. This finding could be useful in devising new natural herbicides for practical application in agriculture.

  12. Non-invasive monitoring of adrenocortical activity in captive African Penguin (Spheniscus demersus) by measuring faecal glucocorticoid metabolites.

    PubMed

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2015-12-01

    Measurement of faecal glucocorticoid metabolites (FGMs) has become a useful and widely-accepted method for the non-invasive evaluation of stress in vertebrates. In this study we assessed the adrenocortical activity of five captive African Penguins (Spheniscus demersus) by means of FGM evaluation following a biological stressor, i.e. capture and immobilization. In addition, we detected individual differences in secretion of FGMs during a stage of the normal biological cycle of penguins, namely the breeding period, without any external or induced causes of stress. Our results showed that FGM concentrations peaked 5.5-8h after the induced stress in all birds, and significantly decreased within 30 h. As predictable, the highest peak of FGMs (6591 ng/g) was reached by the youngest penguin, which was at its first experience with the stressor. This peak was 1.8-2.7-fold higher compared to those of the other animals habituated to the stimulus. For the breeding period, our results revealed that the increase in FGMs compared to ordinary levels, and the peaks of FGMs, varied widely depending on the age and mainly on the reproductive state of the animal. The bird which showed the lowest peak (2518 ng/g) was an old male that was not in a reproductive state at the time of the study. Higher FGM increases and peaks were reached by the two birds which were brooding (male: 5552%, 96,631 ng/g; female: 1438%, 22,846 ng/g) and by the youngest bird (1582%, 39,700 ng/g). The impact of the reproductive state on FGM levels was unexpected compared to that produced by the induced stress. The EIA used in this study to measure FGM levels proved to be a reliable tool for assessing individual and biologically-relevant changes in FGM concentrations in African Penguin. Moreover, this method allowed detection of physiological stress during the breeding period, and identification of individual differences in relation to the reproductive status. The increase in FGM levels as a response to capture and

  13. Coumarin-based thiol chemosensor: synthesis, turn-on mechanism, and its biological application.

    PubMed

    Jung, Hyo Sung; Ko, Kyoung Chul; Kim, Gun-Hee; Lee, Ah-Rah; Na, Yun-Cheol; Kang, Chulhun; Lee, Jin Yong; Kim, Jong Seung

    2011-03-18

    A new chemodosimetric probe (1) is reported that selectively detects thiols over other relevant biological species by the turning on of its fluorescence through a Michael type reaction. The fluorogenic process upon its reaction was revealed to be mediated by intramolecular charge transfer, as confirmed by time-dependent density functional theory calculations. The application of probe 1 to cells is also examined by confocal microscopy, and its cysteine preference was observed by an ex vivo LC-MS analysis of the cellular metabolite.

  14. Estrogenic and androgenic activities of TBBA and TBMEPH, metabolites of novel brominated flame retardants, and selected bisphenols, using the XenoScreen XL YES/YAS assay.

    PubMed

    Fic, Anja; Žegura, Bojana; Gramec, Darja; Mašič, Lucija Peterlin

    2014-10-01

    The present study investigated and compared the estrogenic and androgenic activities of the three different classes of environmental pollutants and their metabolites using the XenoScreen XL YES/YAS assay, which has advantages compared with the original YES/YAS protocol. Contrary to the parent brominated flame retardants TBB and TBPH, which demonstrated no or very weak (anti)estrogenic or (anti)androgenic activities, their metabolites, TBBA and TBMEPH, exhibited anti-estrogenic (IC50 for TBBA=31.75 μM and IC50 for TBMEPH=0.265 μM) and anti-androgenic (IC50 for TBBA=73.95 μM and IC50 for TBMEPH=2.92 μM) activities. These results reveal that metabolism can enhance the anti-estrogenic and anti-androgenic effects of these two novel brominated flame retardants. Based on the activities of BPAF, BPF, BPA and MBP, we can conclude that the XenoScreen XL YES/YAS assay gives comparable results to the (anti)estrogenic or (anti)androgenic assays that are reported in the literature. For BPA, it was confirmed previously that the metabolite formed after an ipso-reaction (hydroxycumyl alcohol) exhibited higher estrogenic activity compared with the parent BPA, but this was not confirmed for BPAF and BPF ipso-metabolites, which were not active in the XenoScreen YES/YAS assay. Among the substituted BPA analogues, bis-GMA exhibited weak anti-estrogenic activity, BADGE demonstrated weak anti-estrogenic and anti-androgenic activities (IC50=13.73 μM), and the hydrolysed product BADGE·2H2O demonstrated no (anti)estrogenic or (anti)androgenic activities.

  15. Secondary metabolites from the unripe pulp of Persea americana and their antimycobacterial activities.

    PubMed

    Lu, Ying-Chen; Chang, Hsun-Shuo; Peng, Chien-Fang; Lin, Chu-Hung; Chen, Ih-Sheng

    2012-12-15

    The fruits of Persea americana (Avocado) are nowadays used as healthy fruits in the world. Bioassay-guided fractionation of the active ethyl acetate soluble fraction has led to the isolation of five new fatty alcohol derivatives, avocadenols A-D (1-4) and avocadoin (5) from the unripe pulp of P. americana, along with 12 known compounds (6-17). These structures were elucidated by spectroscopic analysis. Among the isolates, avocadenol A (1), avocadenol B (2), (2R,4R)-1,2,4-trihydroxynonadecane (6), and (2R,4R)-1,2,4-trihydroxyheptadec-16-ene (7) showed antimycobacterial activity against Mycobacterium tuberculosis H(37)R(V)in vitro, with MIC values of 24.0, 33.8, 24.9, and 35.7 μg/ml, respectively.

  16. INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity.

    PubMed

    Gaudet, Ryan G; Sintsova, Anna; Buckwalter, Carolyn M; Leung, Nelly; Cochrane, Alan; Li, Jianjun; Cox, Andrew D; Moffat, Jason; Gray-Owen, Scott D

    2015-06-12

    Host recognition of pathogen-associated molecular patterns (PAMPs) initiates an innate immune response that is critical for pathogen elimination and engagement of adaptive immunity. Here we show that mammalian cells can detect and respond to the bacterial-derived monosaccharide heptose-1,7-bisphosphate (HBP). A metabolic intermediate in lipopolysaccharide biosynthesis, HBP is highly conserved in Gram-negative bacteria, yet absent from eukaryotic cells. Detection of HBP within the host cytosol activated the nuclear facto κB pathway in vitro and induced innate and adaptive immune responses in vivo. Moreover, we used a genome-wide RNA interference screen to uncover an innate immune signaling axis, mediated by phosphorylation-dependent oligomerization of the TRAF-interacting protein with forkhead-associated domain (TIFA) that is triggered by HBP. Thus, HBP is a PAMP that activates TIFA-dependent immunity to Gram-negative bacteria.

  17. Differential thiol-based switches jumpstart Vibrio cholerae pathogenesis

    PubMed Central

    Liu, Zhi; Wang, Hui; Zhou, Zhigang; Naseer, Nawar; Xiang, Fu; Kan, Biao; Goulian, Mark; Zhu, Jun

    2015-01-01

    Bacterial pathogens utilize gene expression versatility to adapt to environmental changes. Vibrio cholerae, the causative agent of cholera, encounters redox potential changes when it transitions from oxygen-rich aquatic reservoirs to the oxygen-limiting human gastrointestinal tract. We previously showed that the virulence regulator AphB uses thiol-based switches to sense the anoxic host environment and transcriptionally activate the key virulence activator tcpP. Here, by performing a high-throughput transposon sequencing screen in vivo, we identified OhrR as another regulator that enables V. cholerae rapid anoxic adaptation. Like AphB, reduced OhrR binds to and regulates the tcpP promoter. OhrR and AphB displayed differential dynamics in response to redox potential changes: OhrR is reduced more rapidly than AphB. Furthermore, OhrR thiol modification is required for rapid activation of virulence and successful colonization. This reveals a mechanism whereby bacterial pathogens employ posttranslational modifications of multiple transcription factors to sense and adapt to dynamic environmental changes. PMID:26748713

  18. Trypanocidal activity of a new pterocarpan and other secondary metabolites of plants from Northeastern Brazil flora.

    PubMed

    Vieira, Nashira Campos; Espíndola, Laila Salmen; Santana, Jaime Martins; Veras, Maria Leopoldina; Pessoa, Otília Deusdênia Loiola; Pinheiro, Sávio Moita; de Araújo, Renata Mendonça; Lima, Mary Anne Sousa; Silveira, Edilberto Rocha

    2008-02-15

    Two hundred fifteen compounds isolated from plants of Northeastern Brazil flora have been assayed against epimastigote forms of Trypanosoma cruzi, using the tetrazolium salt MTT as an alternative method. Eight compounds belonging to four different species: Harpalyce brasiliana (Fabaceae), Acnistus arborescens and Physalis angulata (Solanaceae), and Cordia globosa (Boraginaceae) showed significant activity. Among them, a novel and a known pterocarpan, a chalcone, four withasteroids, and a meroterpene benzoquinone were the represented chemical classes.

  19. A Central Role for Thiols in Plant Tolerance to Abiotic Stress

    PubMed Central

    Zagorchev, Lyuben; Seal, Charlotte E.; Kranner, Ilse; Odjakova, Mariela

    2013-01-01

    Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance. PMID:23549272

  20. Antibacterial Activities of Metabolites from Platanus occidentalis (American sycamore) against Fish Pathogenic Bacteria

    PubMed Central

    Schrader, Kevin K; Hamann, Mark T; McChesney, James D; Rodenburg, Douglas L; Ibrahim, Mohamed A

    2016-01-01

    One approach to the management of common fish diseases in aquaculture is the use of antibiotic-laden feed. However, there are public concerns about the use of antibiotics in agriculture and the potential development of antibiotic resistant bacteria. Therefore, the discovery of other environmentally safe natural compounds as alternatives to antibiotics would benefit the aquaculture industries. Four natural compounds, commonly called platanosides, [kaempferol 3-O-α-L-(2″,3″-di-E-p-coumaroyl)rhamnoside (1), kaempferol 3-O-α-L-(2″-E-p-coumaroyl-3″-Z-p-coumaroyl)rhamnoside (2), kaempferol 3-O-α-L-(2″-Z-p-coumaroyl-3″-E-p-coumaroyl)rhamnoside (3), and kaempferol 3-O-α-L-(2″,3″-di-Z-p-coumaroyl)rhamnoside (4)] isolated from the leaves of the American sycamore (Platanus occidentalis) tree were evaluated using a rapid bioassay for their antibacterial activities against common fish pathogenic bacteria including Flavobacterium columnare, Edwardsiella ictaluri, Aeromonas hydrophila, and Streptococcus iniae. The four isomers and a mixture of all four isomers were strongly antibacterial against isolates of F. columnare and S. iniae. Against F. columnare ALM-00-173, 3 and 4 showed the strongest antibacterial activities, with 24-h 50% inhibition concentration (IC50) values of 2.13 ± 0.11 and 2.62 ± 0.23 mg/L, respectively. Against S. iniae LA94-426, 4 had the strongest antibacterial activity, with 24-h IC50 of 1.87 ± 0.23 mg/L. Neither a mixture of the isomers nor any of the individual isomers were antibacterial against isolates of E. ictaluri and A. hydrophila at the test concentrations used in the study. Several of the isomers appear promising for the potential management of columnaris disease and streptococcosis in fish. PMID:27790379

  1. New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers.

    PubMed

    Al-Massarani, Shaza M; El Gamal, Ali A; Abd El Halim, Mohamed F; Al-Said, Mansour S; Abdel-Kader, Maged S; Basudan, Omer A; Alqasoumi, Saleh I

    2017-01-01

    The total extract of Albizia lebbeck flowers was examined in vivo for its possible hepatoprotective activity in comparison with the standard drug silymarin at two doses. The higher dose expressed promising activity especially in reducing the levels of AST, ALT and bilirubin. Fractionation via liquid-liquid partition and reexamination of the fractions revealed that the n-butanol fraction was the best in improving liver biochemical parameters followed by the n-hexane fraction. However, serum lipid parameters were best improved with CHCl3 fraction. The promising biological activity results initiated an intensive chromatographic purification of A. lebbeck flowers fractions. Two compounds were identified from natural source for the first time, the acyclic farnesyl sesquiterpene glycoside1-O-[6-O-α-l-arabinopyranosyl-β-d-glucopyranoside]-(2E,6E-)-farnesol (6) and the squalene derivative 2,3-dihydroxy-2,3-dihydrosqualene (9), in addition to eight compounds reported here for the first time from the genus Albizia; two benzyl glycosides, benzyl 1-O-β-d-glucopyranoside (1) and benzyl 6-O-α-l-arabinopyranosyl β-d-glucopyranoside (2); three acyclic monoterpene glycosides, linalyl β-d-glucopyranoside (3) and linalyl 6-O-α-l-arabinopyranosyl-β-d-glucopyranoside (4); (2E)-3,7-dimethylocta-2,6-dienoate-6-O-α-l arabinopyranosyl-β-d-glucopyranoside (5), two oligoglycosides, n-hexyl-α-l arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (creoside) (7) and n-octyl α-l-arabinopyranosyl-(1 → 6)-β-d-glucopyranoside (rhodiooctanoside) (8); and ethyl fructofuranoside (10). The structures of the isolated compounds were elucidated based on extensive examination of their spectroscopic 1D and 2D-NMR, MS, UV, and IR data. It is worth mentioning that, some of the isolated linalol glycoside derivatives were reported as aroma precursors.

  2. Secondary metabolites from the stems of Engelhardia roxburghiana and their antitubercular activities.

    PubMed

    Wu, Ho-Chen; Cheng, Ming-Jen; Peng, Chien-Fang; Yang, Shyh-Chyun; Chang, Hsun-Shuo; Lin, Chu-Hung; Wang, Chyi-Jia; Chen, Ih-Sheng

    2012-10-01

    Bioassay-guided fractionation of stems of Engelhardia roxburghiana led to isolation of: four diarylheptanoids, engelheptanoxides A-D (1-4); two cyclic diarylheptanoids, engelhardiols A (5) and B (6); one naphthoquinone dimer, engelharquinonol (7); and one 1-tetralone, (4S)-4,6-dihydroxy-1-tetralone (8), along with 24 known compounds (9-32). The structures of 1-8 were by spectroscopic analysis. Compounds 5, 6, 13, 22, and 23 showed antitubercular activity against Mycobacterium tuberculosis H(37)Rv with MIC values of 72.7, 62.1, 9.1, 15.3, and 70.1μM, respectively.

  3. Lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells

    SciTech Connect

    Zhao, Yu; Wang, Wenhui; Wang, Qi; Zhang, Xiaodong; Ye, Lihong

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer 5-LOX is able to upregulate expression of NF-{kappa}B p65. Black-Right-Pointing-Pointer 5-LOX enhances nuclear translocation of NF-{kappa}B p65 via increasing p-I{kappa}B-{alpha} level. Black-Right-Pointing-Pointer 5-LOX stimulates transcriptional activity of NF-{kappa}B in hepatoma cells. Black-Right-Pointing-Pointer LTB4 activates transcriptional activity of NF-{kappa}B in hepatoma cells. -- Abstract: The issue that lipid metabolism enzyme and its metabolites regulate transcription factors in cancer cell is not fully understood. In this study, we first report that the lipid metabolism enzyme 5-Lipoxygenase (5-LOX) and its metabolite leukotriene B4 (LTB4) are capable of activating nuclear factor-{kappa}B (NF-{kappa}B) in hepatoma cells. We found that the treatment of MK886 (an inhibitor of 5-LOX) or knockdown of 5-LOX was able to downregulate the expression of NF-{kappa}B p65 at the mRNA level and decreased the phosphorylation level of inhibitor {kappa}B{alpha} (I{kappa}B{alpha}) in the cytoplasm of hepatoma HepG2 or H7402 cells, which resulted in the decrease of the level of nuclear NF-{kappa}B p65. These were confirmed by immunofluorescence staining in HepG2 cell. Moreover, the above treatments were able to decrease the transcriptional activity of NF-{kappa}B in the cells. The LTB4, one of metabolites of 5-LOX, is responsible for 5-LOX-activated NF-{kappa}B in a dose-dependent manner. Thus, we conclude that the lipid metabolism enzyme 5-LOX and its metabolite LTB4 are capable of activating transcription factor NF-{kappa}B in hepatoma cells. Our finding provides new insight into the significance of lipid metabolism in activation of transcription factors in cancer.

  4. Metabolites of ginger component [6]-shogaol remain bioactive in cancer cells and have low toxicity in normal cells: chemical synthesis and biological evaluation.

    PubMed

    Zhu, Yingdong; Warin, Renaud F; Soroka, Dominique N; Chen, Huadong; Sang, Shengmin

    2013-01-01

    Our previous study found that [6]-shogaol, a major bioactive component in ginger, is extensively metabolized in cancer cells and in mice. It is unclear whether these metabolites retain bioactivity. The aim of the current study is to synthesize the major metabolites of [6]-shogaol and evaluate their inhibition of growth and induction of apoptosis in human cancer cells. Twelve metabolites of [6]-shogaol (M1, M2, and M4-M13) were successfully synthesized using simple and easily accessible chemical methods. Growth inhibition assays showed that most metabolites of [6]-shogaol had measurable activities against human cancer cells HCT-116 and H-1299. In particular, metabolite M2 greatly retained the biological activities of [6]-shogaol, with an IC(50) of 24.43 µM in HCT-116 human colon cancer cells and an IC(50) of 25.82 µM in H-1299 human lung cancer cells. Also exhibiting a relatively high potency was thiol-conjugate M13, with IC(50) values of 45.47 and 47.77 µM toward HCT-116 and H-1299 cells, respectively. The toxicity evaluation of the synthetic metabolites (M1, M2, and M4-M13) against human normal fibroblast colon cells CCD-18Co and human normal lung cells IMR-90 demonstrated a detoxifying metabolic biotransformation of [6]-shogaol. The most active metabolite M2 had almost no toxicity to CCD-18Co and IMR-90 normal cells with IC(50)s of 99.18 and 98.30 µM, respectively. TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay indicated that apoptosis was triggered by metabolites M2, M13, and its two diastereomers M13-1 and M13-2. There was no significant difference between the apoptotic effect of [6]-shogaol and the effect of M2 and M13 after 6 hour treatment.

  5. Natural phenolic metabolites from endophytic Aspergillus sp. IFB-YXS with antimicrobial activity.

    PubMed

    Zhang, Wenjing; Wei, Wei; Shi, Jing; Chen, Chaojun; Zhao, Guoyan; Jiao, Ruihua; Tan, Renxiang

    2015-07-01

    Prompted by the pressing necessity to conquer phytopathogenic infections, the antimicrobial compounds were characterized with bioassay-guided method from the ethanol extract derived from the solid-substrate fermentation of Aspergillus sp. IFB-YXS, an endophytic fungus residing in the apparently healthy leave of Ginkgo biloba L. The aim of this work was to evaluate the antimicrobial activity and mechanism(s) of these bioactive compounds against phytopathogens. Among the compounds, xanthoascin (1) is significantly inhibitory on the growth of the phytopathogenic bacterium Clavibacter michiganense subsp. Sepedonicus with a minimum inhibitory concentration (MIC) value of 0.31μg/ml, which is more potent than streptomycin (MIC 0.62μg/ml), an antimicrobial drug co-assayed herein as a positive reference. Moreover, terphenyl derivatives 3, 5 and 6 are also found to be active against other phytopathogens including Xanthomonas oryzae pv. oryzae Swings, Xanthomonas oryzae pv. oryzicola Swings, Erwinia amylovora and Pseudomonas syringae pv. lachrymans etc. The antibacterial mechanism of xanthoascin (1) was addressed to change the cellular permeability of the phytopathogens, leading to the remarkable leakage of nucleic acids out of the cytomembrane. The work highlights the possibility that xanthoascin (1), an analogue of xanthocillin which is used to be an approved antibiotic, may find its renewed application as a potent antibacterial agrichemical. This study contributes to the development of new antimicrobial drugs, especially against C. michiganense subsp. Sepedonicus.

  6. Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus.

    PubMed

    Wang, Qingjie; Mu, Haibo; Zhang, Lin; Dong, Dongqi; Zhang, Wuxia; Duan, Jinyou

    2015-03-01

    The chaga mushroom, Inonotus obliquus has long been recognized as a remedy for cancer, gastritis, ulcers, and tuberculosis of the bones since the 16th century. Herein we reported the identification of two homogenous biological macromolecules, designated as IOW-S-1 and IOW-S-2 with anti-tumor activities from the hot-water extract of I. obliquus. Their molecular weights were determined to be 37.9 and 24.5kDa by high performance gel permeation chromatography (HPGPC) respectively. Chemical and spectral analysis indicated that both IOW-S-1 and IOW-S-2 were predominant in lignin, along with ∼20% carbohydrates. Examination of cytotoxicity showed that these two lignin-carbohydrate complexes induced cell death in a concentration dependent manner, while this apoptosis induction was largely cell-cycle independent. Further investigation demonstrated that IOW-S-1 or IOW-S-2 inhibited the activation of the nuclear transcription factor in cancer cells. These findings implied that soluble lignin derivatives were one of bioactive components in I. obliquus, and further provided insights into the understanding of molecular basis for diverse medicinal and nutritional values of this mushroom.

  7. Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities.

    PubMed

    Hamdan, Dalia; El-Readi, Mahmoud Zaki; Tahrani, Ahmad; Herrmann, Florian; Kaufmann, Dorothea; Farrag, Nawal; El-Shazly, Assem; Wink, Michael

    2011-01-01

    Column chromatography of the dichloromethane fraction from an aqueous methanolic extract of fruit peel of Citrus pyriformis Hassk. (Rutaceae) resulted in the isolation of seven compounds including one coumarin (citropten), two limonoids (limonin and deacetylnomilin), and four sterols (stigmasterol, ergosterol, sitosteryl-3-beta-D-glucoside, and sitosteryl-6'-O-acyl-3-beta-D-glucoside). From the ethyl acetate fraction naringin, hesperidin, and neohesperidin were isolated. The dichloromethane extract of the defatted seeds contained three additional compounds, nomilin, ichangin, and cholesterol. The isolated compounds were identified by MS (EI, CI, and ESI), 1H, 13C, and 2D-NMR spectral data. The limonoids were determined qualitatively by LC-ESI/MS resulting in the identification of 11 limonoid aglycones. The total methanolic extract of the peel and the petroleum ether, dichloromethane, and ethyl acetate fractions were screened for their antioxidant and anti-inflammatory activities. The ethyl acetate fraction exhibited a significant scavenging activity for DPPH free radicals (IC50 = 132.3 microg/mL). The petroleum ether fraction inhibited 5-lipoxygenase with IC50 = 30.6 microg/mL indicating potential anti-inflammatory properties. Limonin has a potent cytotoxic effect against COS7 cells [IC50 = (35.0 +/- 6.1) microM] compared with acteoside as a positive control [IC50 = (144.5 +/- 10.96) microM].

  8. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    PubMed

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  9. Acetate as an active metabolite of ethanol: studies of locomotion, loss of righting reflex, and anxiety in rodents

    PubMed Central

    Pardo, Marta; Betz, Adrienne J.; San Miguel, Noemí; López-Cruz, Laura; Salamone, John D.; Correa, Mercè

    2013-01-01

    It has been postulated that a number of the central effects of ethanol are mediated via ethanol metabolites: acetaldehyde and acetate. Ethanol is known to produce a large variety of behavioral actions such anxiolysis, narcosis, and modulation of locomotion. Acetaldehyde contributes to some of those effects although the contribution of acetate is less known. In the present studies, rats and mice were used to assess the acute and chronic effects of acetate after central or peripheral administration. Male Sprague-Dawley rats were used for the comparison between central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of acute doses of acetate on locomotion. CD1 male mice were used to study acute IP effects of acetate on locomotion, and also the effects of chronic oral consumption of acetate (0, 500, or 1000 mg/l, during 7, 15, 30, or 60 days) on ethanol- (1.0, 2.0, 4.0, or 4.5 g/kg, IP) induced locomotion, anxiolysis, and loss of righting reflex (LORR). In rats, ICV acetate (0.7–2.8 μmoles) reduced spontaneous locomotion at doses that, in the case of ethanol and acetaldehyde, had previously been shown to stimulate locomotion. Peripheral acute administration of acetate also suppressed locomotion in rats (25–100 mg/kg), but not in mice. In addition, although chronic administration of acetate during 15 days did not have an effect on spontaneous locomotion in an open field, it blocked ethanol-induced locomotion. However, ethanol-induced anxiolysis was not affected by chronic administration of acetate. Chronic consumption of acetate (up to 60 days) did not have an effect on latency to, or duration of LORR induced by ethanol, but significantly increased the number of mice that did not achieve LORR. The present work provides new evidence supporting the hypothesis that acetate should be considered a centrally-active metabolite of ethanol that contributes to some behavioral effects of this alcohol, such as motor suppression. PMID:23847487

  10. First syntheses of the biologically active fungal metabolites pestalotiopsones A, B, C and F.

    PubMed

    Beekman, Andrew Michael; Castillo Martinez, Edwin; Barrow, Russell Allan

    2013-02-21

    A synthetic approach accessing the pestalotiopsones, fungal chromones possessing a rare skeletal subtype, is reported for the first time. The synthesis of pestalotiopsone A (1) has been achieved in 7 linear steps (28%), from commercially available 3,5-dimethoxybenzoic acid and subsequently the first syntheses of pestalotiopsone B (2), C (3) and F (4) were performed utilising this chemistry. The key steps include a newly described homologation of a substituted benzoic acid to afford phenylacetate derivatives utilising Birch reductive alkylation conditions, a microwave mediated chromanone formation proceeding through an oxa-Michael cyclisation, and an IBX induced dehydrogenation to the desired chromone skeleton. The synthetic natural products were completely characterised for the first time, confirming their structures and their biological activities evaluated against a panel of bacterial pathogens.

  11. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  12. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action?

    SciTech Connect

    Canton, Rocio F. . E-mail: r.Fernandezcanton@iras.uu.nl; Sanderson, J. Thomas; Nijmeijer, Sandra; Bergman, Ake; Letcher, Robert J.; Berg, Martin van den

    2006-10-15

    Fire incidents have decreased significantly over the last 20 years due, in part, to regulations requiring addition of flame retardants (FRs) to consumer products. Five major classes of brominated flame retardants (BFRs) are hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol-A (TBBPA) and three commercial mixtures of penta-, octa- and deca-polybrominated diphenyl ether (PBDE) congeners, which are used extensively as commercial FR additives. Furthermore, concentrations of PBDEs have been rapidly increasing during the 1999s in human breast milk and a number of endocrine effects have been reported. We used the H295R human adrenocortical carcinoma cell line to assess possible effects of some of these BFRs (PBDEs and several of their hydroxylated (OH) and methoxylated (CH{sub 3}O) metabolites or analogues), TBBPA and brominated phenols (BPs) on the combined 17{alpha}-hydroxylase and 17,20-lyase activities of CYP17. CYP17 enzyme catalyzes an important step in sex steroidogenesis and is responsible for the biosynthesis of dehydroepiandrosterone (DHEA) and androstenedione in the adrenals. In order to study possible interactions with BFRs, a novel enzymatic method was developed. The precursor substrate of CYP17, pregnenolone, was added to control and exposed H295R cells, and enzymatic production of DHEA was measured using a radioimmunoassay. In order to avoid pregnenolone metabolism via different pathways, specific chemical inhibitor compounds were used. None of the parent/precursor BFRs had a significant effect (P < 0.05) on CYP17 activity except for BDE-183, which showed significant inhibition of CYP17 activity at the highest concentration tested (10 {mu}M), with no signs of cytotoxicity as measured by mitochondrial toxicity tests (MTT). A strong inhibition of CYP17 activity was found for 6-OH-2,2',4,4'-tetrabromoDE (6-OH-BDE47) with a concentration-dependent decrease of almost 90% at 10 {mu}M, but with a concurrent decrease in cell viability at the higher

  13. Thiol-ene click reaction as a general route to functional trialkoxysilanes for surface coating applications.

    PubMed

    Tucker-Schwartz, Alexander K; Farrell, Richard A; Garrell, Robin L

    2011-07-27

    Functionalized trialkoxysilanes are widely used to modify the surface properties of materials and devices. It will be shown that the photoinitiated radical-based thiol-ene "click" reaction provides a simple and efficient route to diverse trialkoxysilanes. A total of 15 trialkoxysilanes were synthesized by reacting either alkenes with 3-mercaptopropyltrialkoxysilane or thiols with allyltrialkoxysilanes in the presence of a photoinitiator. The functionalized trialkoxysilanes were obtained in quantitative to near-quantitative yields with high purity. The photochemical reactions can be run neat in standard borosilicate glassware using a low power 15-W blacklight. A wide range of functional groups is tolerated in this approach, and even complex alkenes click with the silane precursors. To demonstrate that these silanes can be used as surface coating agents, several were reacted with iron oxide superparamagnetic nanoparticles and the loadings quantified. The photoinitiated thiol-ene reaction thus offers a facile and efficient method for preparing surface-active functional trialkoxysilanes.

  14. The Ratio of a Urinary Tobacco-Specific Lung Carcinogen Metabolite to Cotinine is Significantly Higher in Passive than in Active Smokers

    PubMed Central

    Vogel, Rachel Isaksson; Carmella, Steven G.; Stepanov, Irina; Hatsukami, Dorothy K.; Hecht, Stephen S.

    2011-01-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol plus its glucuronides (total NNAL), metabolites of the lung carcinogen NNK, and total cotinine, metabolites of nicotine, are biomarkers of active and passive cigarette smoking. We calculated the total NNAL: total cotinine (× 103) ratio in 408 passive (infants, children, adults) and 1088 active smokers. The weighted averages were 0.73 (95% CI 0.71, 0.76) for passive smokers and 0.07 (0.06, 0.08) for active smokers (p<0.0001). These results demonstrate that cotinine measurements may underestimate exposure of passive smokers to the lung carcinogen NNK in secondhand cigarette smoke. The total NNAL:total cotinine (× 103) ratio may provide an improved biomarker for evaluating the health effects of passive smoking. PMID:21812592

  15. Methylphenidate and its ethanol transesterification metabolite ethylphenidate: brain disposition, monoamine transporters and motor activity.

    PubMed

    Williard, Robin L; Middaugh, Lawrence D; Zhu, Hao-Jie B; Patrick, Kennerly S

    2007-02-01

    Ethylphenidate is formed by metabolic transesterification of methylphenidate and ethanol. Study objectives were to (a) establish that ethylphenidate is formed in C57BL/6 (B6) mice; (b) compare the stimulatory effects of ethylphenidate and methylphenidate enantiomers; (c) determine methylphenidate and ethylphenidate plasma and brain distribution and (d) establish in-vitro effects of methylphenidate and ethylphenidate on monoamine transporter systems. Experimental results were that: (a) coadministration of ethanol with the separate methylphenidate isomers enantioselectively produced l-ethylphenidate; (b) d and dl-forms of methylphenidate and ethylphenidate produced dose-responsive increases in motor activity with stimulation being less for ethylphenidate; (c) plasma and whole-brain concentrations were greater for ethylphenidate than methylphenidate and (d) d and DL-methylphenidate and ethylphenidate exhibited comparably potent low inhibition of the dopamine transporter, whereas ethylphenidate was a less potent norepinephrine transporter inhibitor. These experiments establish the feasibility of the B6 mouse model for examining the interactive effects of ethanol and methylphenidate. As reported for humans, concurrent exposure of B6 mice to methylphenidate and ethanol more readily formed l-ethylphenidate than d-ethylphenidate, and the l-isomers of both methylphenidate and ethylphenidate were biologically inactive. The observed reduced stimulatory effect of d-ethylphenidate relative to d-methylphenidate appears not to be the result of brain dispositional factors, but rather may be related to its reduced inhibition of the norepinephrine transporter, perhaps altering the interaction of dopaminergic and noradrenergic neural systems.

  16. Pathways of peroxynitrite oxidation of thiol groups.

    PubMed

    Quijano, C; Alvarez, B; Gatti, R M; Augusto, O; Radi, R

    1997-02-15

    Peroxynitrite mediates the oxidation of the thiol group of both cysteine and glutathione. This process is associated with oxygen consumption. At acidic pH and a cysteine/peroxynitrite molar ratio of < or = 1.2, there was a single fast phase of oxygen consumption, which increased with increasing concentrations of both cysteine and oxygen. At higher molar ratios the profile of oxygen consumption became biphasic, with a fast phase (phase I) that decreased with increasing cysteine concentration, followed by a slow phase (phase II) whose rate of oxygen consumption increased with increasing cysteine concentration. Oxygen consumption in phase I was inhibited by desferrioxamine and 5,5-dimethyl-1-pyrroline N-oxide, but not by mannitol; superoxide dismutase also inhibited oxygen consumption in phase I, while catalase added during phase II decreased the rate of oxygen consumption. For both cysteine and glutathione, oxygen consumption in phase I was maximal at neutral to acidic pH: in contrast, total thiol oxidation was maximal at alkaline pH. EPR spin-trapping studies using N-tert-butyl-alpha-phenylnitrone indicated that the yield of thiyl radical adducts had a pH profile comparable with that found for oxygen consumption. The apparent second-order rate constants for the reactions of peroxynitrite with cysteine and glutathione were 1290 +/- 30 M-1.S-1 and 281 +/- 6 M-1.S-1 respectively at pH 5.75 and 37 degrees C. These results are consistent with two different pathways participating in the reaction of peroxynitrite with low-molecular-mass thiols: (a) the reaction of the peroxynitrite anion with the protonated thiol group, in a second-order process likely to involve a two-electron oxidation, and (b) the reaction of peroxynitrous acid, or a secondary species derived from it, with the thiolate in a one-electron transfer process that yields thiyl radicals capable of initiating an oxygen-dependent radical chain reaction.

  17. Pathways of peroxynitrite oxidation of thiol groups.

    PubMed Central

    Quijano, C; Alvarez, B; Gatti, R M; Augusto, O; Radi, R

    1997-01-01

    Peroxynitrite mediates the oxidation of the thiol group of both cysteine and glutathione. This process is associated with oxygen consumption. At acidic pH and a cysteine/peroxynitrite molar ratio of < or = 1.2, there was a single fast phase of oxygen consumption, which increased with increasing concentrations of both cysteine and oxygen. At higher molar ratios the profile of oxygen consumption became biphasic, with a fast phase (phase I) that decreased with increasing cysteine concentration, followed by a slow phase (phase II) whose rate of oxygen consumption increased with increasing cysteine concentration. Oxygen consumption in phase I was inhibited by desferrioxamine and 5,5-dimethyl-1-pyrroline N-oxide, but not by mannitol; superoxide dismutase also inhibited oxygen consumption in phase I, while catalase added during phase II decreased the rate of oxygen consumption. For both cysteine and glutathione, oxygen consumption in phase I was maximal at neutral to acidic pH: in contrast, total thiol oxidation was maximal at alkaline pH. EPR spin-trapping studies using N-tert-butyl-alpha-phenylnitrone indicated that the yield of thiyl radical adducts had a pH profile comparable with that found for oxygen consumption. The apparent second-order rate constants for the reactions of peroxynitrite with cysteine and glutathione were 1290 +/- 30 M-1.S-1 and 281 +/- 6 M-1.S-1 respectively at pH 5.75 and 37 degrees C. These results are consistent with two different pathways participating in the reaction of peroxynitrite with low-molecular-mass thiols: (a) the reaction of the peroxynitrite anion with the protonated thiol group, in a second-order process likely to involve a two-electron oxidation, and (b) the reaction of peroxynitrous acid, or a secondary species derived from it, with the thiolate in a one-electron transfer process that yields thiyl radicals capable of initiating an oxygen-dependent radical chain reaction. PMID:9078258

  18. Reactions of nitrosonitrobenzenes with biological thiols: identification and reactivity of glutathion-S-yl conjugates.

    PubMed

    Ellis, M K; Hill, S; Foster, P M

    1992-04-15

    1,3-Dinitrobenzene (1,3-DNB) but not 1,2-dinitrobenzene (1,2-DNB) or 1,4-dinitrobenzene (1,4-DNB) is a potent testicular toxicant in rats. In vitro metabolism studies have established that 1,3-DNB is reduced to 3-nitroso-nitrobenzene (3-NNB), 3-nitrophenylhydroxylamine (3-NP) and 3-nitroaniline (3-NA) in testicular cytosol and Sertoli cell cultures. To establish a potential role for endogenous glutathione (GSH) in the detoxification of the electrophilic metabolite 3-NNB, we examined the chemical reaction of this compound with biological thiols, including GSH. The effect of pH and thiol concentration upon the reaction were studied. The reaction of GSH with 3-NNB was complex and gave three distinct products. These were identified as 3-NP, 3-NA and a glutathionyl derivative containing a covalently linked S-N bond. The hydroxyl amine and the amine were isolated and fully characterised. The glutathion-S-yl derivative was characterised in solution by proton NMR (400 MHz), infra-red and mass spectroscopy to establish its structure as the semimercaptal, N-(glutathion-S-yl)-N-hydroxy-3-nitroaniline (GSNOH-3NA). Similar reactions were performed with 4-nitrosonitrobenzene (4-NNB) to ascertain the reactivity of this chemical towards thiols. The addition of GSH to 4-NNB resulted in the rapid formation of 4-nitrophenylhydroxylamine (4-NP) and an adduct that was identified as the semimercaptal N-(glutathion-S-yl)-N-hydroxy-4-nitroaniline (GSNOH-4NA).

  19. Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya.

    PubMed

    Braña, Alfredo F; Rodríguez, Miriam; Pahari, Pallab; Rohr, Jurgen; García, Luis A; Blanco, Gloria

    2014-05-01

    Activation and silencing of antibiotic production was achieved in Streptomyces albus J1074 and Streptomyces lividans TK21 after introduction of genes within the thienamycin cluster from S. cattleya. Dramatic phenotypic and metabolic changes, involving activation of multiple silent secondary metabolites and silencing of others normally produced, were found in recombinant strains harbouring the thienamycin cluster in comparison to the parental strains. In S. albus, ultra-performance liquid chromatography purification and NMR structural elucidation revealed the identity of four structurally related activated compounds: the antibiotics paulomycins A, B and the paulomenols A and B. Four volatile compounds whose biosynthesis was switched off were identified by gas chromatography-mass spectrometry analyses and databases comparison as pyrazines; including tetramethylpyrazine, a compound with important clinical applications to our knowledge never reported to be produced by Streptomyces. In addition, this work revealed the potential of S. albus to produce many others secondary metabolites normally obtained from plants, including compounds of medical relevance as dihydro-β-agarofuran and of interest in perfume industry as β-patchoulene, suggesting that it might be an alternative model for their industrial production. In S. lividans, actinorhodins production was strongly activated in the recombinant strains whereas undecylprodigiosins were significantly reduced. Activation of cryptic metabolites in Streptomyces species might represent an alternative approach for pharmaceutical drug discovery.

  20. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma.

    PubMed

    Swiegers, Jan H; Capone, Dimitra L; Pardon, Kevin H; Elsey, Gordon M; Sefton, Mark A; Francis, I Leigh; Pretorius, Isak S

    2007-07-01

    Volatile thiols, such as 4-mercapto-4-methylpentan-2-one (4MMP), 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), are among the most potent aroma compounds found in wine and can have a significant effect on wine quality and consumer preferences. At optimal concentrations in wine, these compounds impart flavours of passionfruit, grapefruit, gooseberry, blackcurrant, lychee, guava and box hedge. The enzymatic release of aromatic thiols from grape-derived, non-volatile cysteinylated precursors (Cys-4MMP and Cys-3MH) and the further modification thereof (conversion of 3MH into 3MHA) during fermentation, enhance the varietal characters of wines such as Sauvignon Blanc. Wine yeast strains have limited and varying capacities to produce aroma-enhancing thiols from their non-volatile counterparts in grape juice. Even under optimal fermentation conditions, the most efficient thiol-releasing Saccharomyces cerevisiae wine strain known realizes less than 5% of the thiol-related flavour potential of grape juice. The objective of this study was to develop a wine yeast able to unleash the untapped thiol aromas in grape juice during winemaking. To achieve this goal, the Escherichia coli tnaA gene, encoding a tryptophanase with strong cysteine-beta-lyase activity, was cloned and overexpressed in a commercial wine yeast strain under the control of the regulatory sequences of the yeast phosphoglycerate kinase I gene (PGK1). This modified strain expressing carbon-sulphur lyase activity released up to 25 times more 4MMP and 3MH in model ferments than the control host strain. Wines produced with the engineered strain displayed an intense passionfruit aroma. This yeast offers the potential to enhance the varietal aromas of wines to predetermined market specifications.

  1. Algicidal Activity of Streptomyces eurocidicus JXJ-0089 Metabolites and Their Effects on Microcystis Physiology

    PubMed Central

    Zhang, Bing-Huo; Ding, Zhang-Gui; Li, Han-Quan; Zhang, Yu-Qin; Yang, Jian-Yuan; Zhou, En-Min

    2016-01-01

    ABSTRACT Copper sulfate (CuSO4) has been widely used as an algicide to control harmful cyanobacterial blooms (CyanoHABs) in freshwater lakes. However, there are increasing concerns about this application, due mainly to the general toxicity of CuSO4 to other aquatic species and its long-term persistence in the environment. This study reported the isolation and characterization of two natural algicidal compounds, i.e., tryptamine and tryptoline, from Streptomyces eurocidicus JXJ-0089. At a concentration of 5 μg/ml, both compounds showed higher algicidal efficiencies than CuSO4 on Microcystis sp. FACHB-905 and some other harmful cyanobacterial strains. Tryptamine and tryptoline treatments induced a degradation of chlorophyll and cell walls of cyanobacteria. These two compounds also significantly increased the intracellular oxidant content, i.e., superoxide anion radical (O2−) and malondialdehyde (MDA), but reduced the activity of intracellular reductants, i.e., superoxide dismutase (SOD), of cyanobacteria. Moreover, tryptamine and tryptoline treatments significantly altered the internal and external contents of microcystin-LR (MC-LR), a common cyanotoxin. Like CuSO4, tryptamine and tryptoline led to releases of intracellular MC-LR from Microcystis, but with lower rates than CuSO4. Tryptamine and tryptoline (5 μg/ml) in cyanobacterial cultures were completely degraded within 8 days, while CuSO4 persisted for months. Overall, our results suggest that tryptamine and tryptoline could potentially serve as more efficient and environmentally friendly alternative algicides than CuSO4 in controlling harmful cyanobacterial blooms. IMPORTANCE Cyanobacterial harmful algal blooms (CyanoHABs) in aquatic environments have become a worldwide problem. Numerous efforts have been made to seek means to prevent, control, and mitigate CyanoHABs. Copper sulfate (CuSO4), was once a common algicide to treat and control CyanoHABs. However, its application has become limited due to concerns

  2. Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation

    PubMed Central

    Liu, Y. F.; Zhao, H. B.; Liu, X. M.; You, W.; Cheng, H. J.; Wan, F. C.; Liu, G. F.; Tan, X. W.; Song, E. L.; Zhang, X. L.

    2016-01-01

    The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle. PMID:26954111

  3. Isothermal microcalorimetry to study the activity of triclabendazole and its metabolites on juvenile and adult Fasciola hepatica.

    PubMed

    Keiser, Jennifer; Manneck, Theresia; Kirchhofer, Carla; Braissant, Olivier

    2013-03-01

    Isothermal microcalorimetry (IMC) is an analytical tool that continuously measures the heat flow generated by chemical, physical or biological processes. We have demonstrated that IMC is a useful tool to analyze drug effects on helminths, including adult Fasciola hepatica. Here, we used IMC to examine the activity of triclabendazole and its metabolites triclabendazole sulphone and triclabendazole sulphoxide on juvenile and adult F. hepatica. Worms (one adult or 2-3 juveniles) were placed in 4 or 20 ml glass ampoules containing RPMI 1640 and the test compound (25-100 μg/ml) and the heat flow and motility of worms was examined with TAM48 and TAMIII isothermal microcalorimetry instruments. IMC was found to be precisely document drug effects on juvenile F. hepatica and confirmed the pronounced effect of the benzimidazole derivatives on the motor activity of F. hepatica. Juvenile F. hepatica incubated with 100 μg/ml triclabendazole, triclabendazole sulphone and triclabendazole sulphoxide showed no movements 8.3, 35 and 6h post-incubation (all p<0.001). The metabolic heat of triclabendazole sulphoxide treated worms (100 μg/ml) was reduced by 50% and 76% 24 and 120 h post-incubation, respectively. Limitations of calorimetric measurements were observed using adult F. hepatica as only three worms could be measured simultaneously and also control worms showed a considerable decrease in heat flow. Adult F. hepatica exposed to triclabendazole, triclabendazole sulphone and triclabendazole sulphoxide showed no movements after 31 (p=0.009), 49 (p>0.05) and 88 (p>0.05)h. In conclusion, IMC is useful to document drug effects on juvenile F. hepatica and since rapid technological developments in this field are occurring IMC might also hold promise to study adult F. hepatica in the near future.

  4. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats

    PubMed Central

    Wong, Richard G.; Norman, Anthony W.; Reddy, Chilumula R.; Coburn, Jack W.

    1972-01-01

    The development of a vitamin D-resistant state in the course of renal failure may be responsible for reduced intestinal absorption of calcium and an impaired response of skeletal tissue. Moreover, the kidney has been shown to carry out the conversion of 25-hydroxycholecalciferol (25-OH-CC) to a highly biologically active metabolite, 1,25-dihydroxycholecalciferol (1,25-diOH-CC). In the present studies, vitamin D-deficient rats, made acutely uremic by either bilateral nephrectomy or urethral ligation, received physiological doses of cholecalciferol (vitamin D3) (CC), 25-OH-CC or 1,25-diOH-CC; 24 hr later intestinal calcium transport, in vitro, and bone calcium mobilization, in vivo, were assessed. Whereas CC and 25-OH-CC stimulated calcium transport in sham-operated controls, they were without effect in the uremic animals. In contrast, administration of 1,25-diOH-CC stimulated calcium transport in both groups of uremic animals. Administration of 1,25-diOH-CC also stimulated calcium mobilization from bone in each group of animals. However, CC and 25-OH-CC were only effective in the sham controls and the uremic group produced by urethral ligation and had little or no effect in animals without kidneys. These results indicate that renal conversion of calciferol to a more biologically active form is necessary for the stimulation of intestinal calcium absorption and calcium mobilization from bone, and that 1,25-diOH-CC may bypass a possible defect in vitamin D metabolism in uremia. From these studies it is likely that uremia, per se, may also impair intestinal calcium transport. PMID:4341503

  5. Effects of chloro-s-triazine herbicides and metabolites on aromatase activity in various human cell lines and on vitellogenin production in male carp hepatocytes.

    PubMed Central

    Sanderson, J T; Letcher, R J; Heneweer, M; Giesy, J P; van den Berg, M

    2001-01-01

    We investigated a potential mechanism for the estrogenic properties of three chloro-s-triazine herbicides and six metabolites in vitro in several cell systems. We determined effects on human aromatase (CYP19), the enzyme that converts androgens to estrogens, in H295R (adrenocortical carcinoma), JEG-3 (placental choriocarcinoma), and MCF-7 (breast cancer) cells; we determined effects on estrogen receptor-mediated induction of vitellogenin in primary hepatocyte cultures of adult male carp (Cyprinus carpio). In addition to atrazine, simazine, and propazine, two metabolites--atrazine-desethyl and atrazine-desisopropyl--induced aromatase activity in H295R cells concentration-dependently (0.3-30 microM) and with potencies similar to those of the parent triazines. After a 24-hr exposure to 30 microM of the triazines, an apparent maximum induction of about 2- to 2.5-fold was achieved. The induction responses were confirmed by similar increases in CYP19 mRNA levels, determined by reverse-transcriptase polymerase chain reaction. In JEG-3 cells, where basal aromatase expression is about 15-fold greater than in H295R cells, the induction responses were similar but less pronounced; aromatase expression in MCF-7 cells was neither detectable nor inducible under our culture conditions. The fully dealkylated metabolite atrazine-desethyl-desisopropyl and the three hydroxylated metabolites (2-OH-atrazine-desethyl, -desisopropyl, and -desethyl-desisopropyl) did not induce aromatase activity. None of the triazine herbicides nor their metabolites induced vitellogenin production in male carp hepatocytes; nor did they antagonize the induction of vitellogenin by 100 nM (EC(50) 17beta-estradiol. These findings together with other reports indicate that the estrogenic effects associated with the triazine herbicides in vivo are not estrogen receptor-mediated, but may be explained partly by their ability to induce aromatase in vitro. PMID:11675267

  6. Annual ovarian activity monitored by the noninvasive measurement of fecal concentrations of progesterone and 17β-estradiol metabolites in rusa deer (Rusa timorensis)

    PubMed Central

    SUDSUKH, Apichaya; TAYA, Kazuyoshi; WATANABE, Gen; WAJJWALKU, Worawidh; THONGPHAKDEE, Ampika; THONGTIP, Nikorn

    2016-01-01

    To clarify the reproductive cycle of female Rusa deer (Rusa timorensis), the fecal concentrations of progesterone and 17β-estradiol metabolites were measured. Fecal samples were collected on a weekly basis for one year (between October, 2012 and September, 2013) from five healthy adult hinds in Thailand. At the beginning of the study, three hinds were pregnant. Two hinds delivered one healthy offspring, and one hind delivered a stillborn calf. The mating period of Rusa hinds in Thailand is from November to April. In pregnant hinds, fecal progesterone metabolite concentration was high in late pregnancy and abruptly declined to the baseline around parturition, suggesting that the placenta secretes a large amount of progesterone. Fecal 17β-estradiol metabolite concentration remained elevated around the day of parturition. Both concentrations of fecal progesterone and 17β-estradiol metabolites in non-lactating hinds were significantly higher than those in lactating hinds, indicating that ovarian activity of lactating hinds is suppressed by the suckling stimulus of fawn during lactation. The present study demonstrated that monitoring of fecal steroid hormones is useful method for assessing ovarian function in this species. PMID:27570098

  7. Arsenolysis and Thiol-Dependent Arsenate Reduction

    EPA Science Inventory

    Conversion of arsenate to arsenite is a critical event in the pathway that leads from inorganic arsenic to a variety of methylated metabolites. The formation of methylated metabolites influences distribution and retention of arsenic and affects the reactivity and toxicity of thes...

  8. Nuclear Hormone Receptor Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Metabolites in Transactivation Assays Using Chinese Hamster Ovary Cells

    PubMed Central

    Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Sugihara, Kazumi; Yoshida, Takahiko; Kitamura, Shigeyuki

    2009-01-01

    Background An increasing number of studies are reporting the existence of polybrominated diphenyl ethers (PBDEs) and their hydroxylated (HO) and methoxylated (MeO) metabolites in the environment and in tissues from wildlife and humans. Objective Our aim was to characterize and compare the agonistic and antagonistic activities of principle PBDE congeners and their HO and MeO metabolites against human nuclear hormone receptors. Methods We tested the hormone receptor activities of estrogen receptor α (ERα), ERβ, androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor α1 (TRα1), and TRβ1 against PBDE congeners BDEs 15, 28, 47, 85, 99, 100, 153, and 209, four para-HO-PBDEs, and four para-MeO-PBDEs by highly sensitive reporter gene assays using Chinese hamster ovary cells. Results Of the 16 compounds tested, 6 and 2 showed agonistic activities in the ERα and ERβ assays, respectively, and 6 and 6 showed antagonistic activities in these assays. 4′-HO-BDE-17 showed the most potent estrogenic activity via ERα/β, and 4′-HO-BDE-49 showed the most potent anti estrogenic activity via ERα/β. In the AR assay, 13 compounds showed antagonistic activity, with 4′-HO-BDE-17 in particular inhibiting AR-mediated transcriptional activity at low concentrations in the order of 10−8 M. In the GR assay, seven compounds, including two HO-PBDEs and two MeO-PBDEs, showed weak antagonistic activity. In the TRα1 and TRβ1 assays, only 4-HO-BDE-90 showed weak antagonistic activity. Conclusions Taken together, these results suggest that PBDEs and their metabolites might have multiple endocrine-disrupting effects via nuclear hormone receptors, and para-HO-PBDEs, in particular, possess more potent receptor activities compared with those of the parent PBDEs and corresponding para-MeO-PBDEs. PMID:19672399

  9. Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of Arabidopsis Accessions[C][W][OA

    PubMed Central

    Sulpice, Ronan; Trenkamp, Sandra; Steinfath, Matthias; Usadel, Bjorn; Gibon, Yves; Witucka-Wall, Hanna; Pyl, Eva-Theresa; Tschoep, Hendrik; Steinhauser, Marie Caroline; Guenther, Manuela; Hoehne, Melanie; Rohwer, Johann M.; Altmann, Thomas; Fernie, Alisdair R.; Stitt, Mark

    2010-01-01

    Natural genetic diversity provides a powerful resource to investigate how networks respond to multiple simultaneous changes. In this work, we profile maximum catalytic activities of 37 enzymes from central metabolism and generate a matrix to investigate species-wide connectivity between metabolites, enzymes, and biomass. Most enzyme activities change in a highly coordinated manner, especially those in the Calvin-Benson cycle. Metabolites show coordinated changes in defined sectors of metabolism. Little connectivity was observed between maximum enzyme activities and metabolites, even after applying multivariate analysis methods. Measurements of posttranscriptional regulation will be required to relate these two functional levels. Individual enzyme activities correlate only weakly with biomass. However, when they are used to estimate protein abundances, and the latter are summed and expressed as a fraction of total protein, a significant positive correlation to biomass is observed. The correlation is additive to that obtained between starch and biomass. Thus, biomass is predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and optimization of carbon use. PMID:20699391

  10. 15-Deoxy-Δ12,14-prostaglandin J2-Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor γ

    PubMed Central

    Raman, Priyadarshini; Kaplan, Barbara L. F.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2011-01-01

    2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative capable of suppressing interleukin (IL)-2 production by activated T cells. 2-AG-mediated IL-2 suppression is dependent on cyclooxygenase-2 (COX-2) metabolism and peroxisome proliferator activated receptor γ (PPARγ) activation. The objective of the present studies was to examine whether 15-deoxy-Δ12,14-PGJ2-glycerol ester (15d-PGJ2-G), a putative metabolite of 2-AG, can mimic the actions of 2-AG on IL-2 regulation through PPARγ activation. 15d-PGJ2-G bound PPARγ-ligand binding domain in a PPARγ competitive binding assay. 15d-PGJ2-G treatment activated PPARγ in a reporter assay, and PPARγ activation was attenuated when a PPARγ antagonist, 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907), was present. 15d-PGJ2-G treatment suppressed IL-2 production by activated Jurkat cells, which was partially attenuated when pretreated with T0070907. Moreover, IL-2 suppression was pronounced when 15d-PGJ2-G was present 30 min before or after T-cell activation. Concordant with IL-2 suppression, 15d-PGJ2-G treatment decreased nuclear factor of activated T cells (NFAT) transcriptional activity in transiently transfected Jurkat cells. It is noteworthy that T0070907 alone markedly increased NFAT reporter activity, suggesting the existence of endogenous PPARγ activation and modulation of NFAT. Because COX-2 metabolism of 2-AG is important for IL-2 suppression, the effect of 2-AG on COX-2 and PPARγ mRNA expression was investigated. 2-AG treatment decreased the up-regulation of COX-2 mRNA after T-cell activation, which suggests negative feedback limiting COX-2-mediated metabolism of 2-AG. PPARγ mRNA expression was increased upon activation, and 2-AG treatment produced a modest decrease in PPARγ mRNA expression. Collectively, our findings suggest that 15d-PGJ2-G activates PPARγ to decrease NFAT transcriptional activity and IL-2 expression in activated T cells. PMID:21511917

  11. Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling.

    PubMed

    Hurd, Thomas R; Prime, Tracy A; Harbour, Michael E; Lilley, Kathryn S; Murphy, Michael P

    2007-07-27

    Reactive oxygen species (ROS) produced by the mitochondrial respiratory chain can be a redox signal, but whether they affect mitochondrial function is unclear. Here we show that low levels of ROS from the respiratory chain under physiological conditions reversibly modify the thiol redox state of mitochondrial proteins involved in fatty acid and carbohydrate metabolism. As these thiol modifications were specific and occurred without bulk thiol changes, we first had to develop a sensitive technique to identify the small number of proteins modified by endogenous ROS. In this technique, redox difference gel electrophoresis, control, and redox-challenged samples are labeled with different thiol-reactive fluorescent tags and then separated on the same two-dimensional gel, enabling the sensitive detection of thiol redox modifications by changes in the relative fluorescence of the two tags within a single protein spot, followed by protein identification by mass spectrometry. Thiol redox modification affected enzyme activity, suggesting that the reversible modification of enzyme activity by ROS from the respiratory chain may be an important and unexplored mode of mitochondrial redox signaling.

  12. Comparison of Self-Assembled Monolayers on Gold: Coadsorption of Thiols and Disulfides

    DTIC Science & Technology

    1989-02-15

    self-assembled monolayers of thiols and disulfides. Previous studies by Dubois et alt t of the adsorption of dimethyl disulfide and methanethiol on...with an activation energy of desorption of 28 kcal/mol of disulfide, but the methanethiol was only physisorbed on the gold surface and desorbed intact

  13. A structurally driven analysis of thiol reactivity in mammalian albumins.

    PubMed

    Spiga, Ottavia; Summa, Domenico; Cirri, Simone; Bernini, Andrea; Venditti, Vincenzo; De Chiara, Matteo; Priora, Raffaella; Frosali, Simona; Margaritis, Antonios; Di Giuseppe, Danila; Di Simplicio, Paolo; Niccolai, Neri

    2011-04-01

    Understanding the structural basis of protein redox activity is still an open question. Hence, by using a structural genomics approach, different albumins have been chosen to correlate protein structural features with the corresponding reaction rates of thiol exchange between albumin and disulfide DTNB. Predicted structures of rat, porcine, and bovine albumins have been compared with the experimentally derived human albumin. High structural similarity among these four albumins can be observed, in spite of their markedly different reactivity with DTNB. Sequence alignments offered preliminary hints on the contributions of sequence-specific local environments modulating albumin reactivity. Molecular dynamics simulations performed on experimental and predicted albumin structures reveal that thiolation rates are influenced by hydrogen bonding pattern and stability of the acceptor C34 sulphur atom with donor groups of nearby residues. Atom depth evolution of albumin C34 thiol groups has been monitored during Molecular Dynamic trajectories. The most reactive albumins appeared also the ones presenting the C34 sulphur atom on the protein surface with the highest accessibility. High C34 sulphur atom reactivity in rat and porcine albumins seems to be determined by the presence of additional positively charged amino acid residues favoring both the C34 S⁻ form and the approach of DTNB.

  14. Coronary Artery Spasm Related to Thiol Oxidation and Senescence Marker Protein-30 in Aging

    PubMed Central

    Yamada, Shinya; Machii, Hirofumi; Mizukami, Hiroyuki; Hoshino, Yasuto; Misaka, Tomofumi; Ishigami, Akihito; Takeishi, Yasuchika

    2013-01-01

    Abstract Background: Senescence marker protein-30 (SMP30) decreases with aging, and SMP30 knockout (KO) mice show a short life with increased oxidant stress. Aims: We assessed the effect of oxidant stress with SMP30 deficiency in coronary artery spasm and clarify its underlying mechanisms. Results: We measured vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) of isolated coronary arteries from SMP30 KO and wild-type (WT) mice. In SMP30 KO mice, ACh-induced vasoconstriction occurred, which was changed to vasodilation by dithiothreitol (DTT), a thiol-reducing agent. However, Nω-nitro-l-arginine-methyl ester, nitric oxide (NO) synthase inhibitor, or tetrahydrobiopterin did not change the ACh response. In isolated coronary arteries of WT mice, ACh-induced vasodilation occurred. Inhibition of glutathione reductase by 1, 3-bis(2-chloroethyl)-1-nitrosourea decreased ACh-induced vasodilation (n=10, p<0.01), which was restored by DTT. To evaluate the thiol oxidation, we measured the fluorescence of monochlorobimane (MCB) in coronary arteries, which covalently labels the total. The fluorescence level to MCB decreased in SMP30 KO mice, but with DTT treatment restored to a level comparable to that of WT mice. The reduced glutathione and total thiol levels were also low in the aorta of SMP30 KO mice compared with those of WT mice. Administration of ACh into the aortic sinus in vivo of SMP30 KO mice induced coronary artery spasm. Innovation: The thiol redox state is a key regulator of endothelial NO synthase activity, and thiol oxidation was associated with endothelial dysfunction in the SMP30 deficiency model. Conclusion: These results suggest that chronic thiol oxidation by oxidant stress is a trigger of coronary artery spasm, resulting in impaired endothelium-dependent vasodilation. Antioxid. Redox Signal. 19, 1063–1073. PMID:23320823

  15. Stretching of BDT-gold molecular junctions: thiol or thiolate termination?

    NASA Astrophysics Data System (ADS)

    Souza, Amaury De Melo; Rungger, Ivan; Pontes, Renato Borges; Rocha, Alexandre Reily; da Silva, Antônio José Roque; Schwingenschlöegl, Udo; Sanvito, Stefano

    2014-11-01

    It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.

  16. Bioanalytical Method to Determine the Effects of Cyanide, Cyanide Metabolites and Cyanide Antidotes on the Activity of Cytochrome C Oxidase Immobilized in an Electrode Supported Lipid Bilayer Membrane

    DTIC Science & Technology

    2006-06-01

    relation to their toxicity and antidotal activity against hydrocyanic acid . Archs. int. Pharmacodyn. 1962, 139, 99-108. 42. Evans, C. L., Cobalt...compounds as antidotes for hydrocyanic acid . Brit. J. Pharmac. Chemother. 1964, 23, 455-475. 43. Friedberg, K. D.; Shukla, U. R., The efficiency of...affected by cyanide,9, 19, 20 and there is recent evidence that the cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA) is also toxic. ATCA is

  17. Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor.

    PubMed

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K; Gil, José P; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.

  18. Effect of bovine ABCG2 Y581S polymorphism on concentrations in milk of enrofloxacin and its active metabolite ciprofloxacin.

    PubMed

    Otero, J A; García-Mateos, D; de la Fuente, A; Prieto, J G; Álvarez, A I; Merino, G

    2016-07-01

    The ATP-binding cassette transporter G2 (ABCG2) is involved in the secretion of several drugs into milk. The bovine Y581S ABCG2 polymorphism increases the secretion into milk of the fluoroquinolone danofloxacin in Holstein cows. Danofloxacin and enrofloxacin are the fluoroquinolones most widely used in veterinary medicine. Both enrofloxacin (ENRO) and its active metabolite ciprofloxacin (CIPRO) reach milk at relatively high concentrations. The aim of this work was to study the effect of the bovine Y581S ABCG2 polymorphism on in vitro transport as well as on concentrations in plasma and in milk of ENRO and CIPRO. Experiments using cells overexpressing bovine ABCG2 showed the effects of ABCG2 on the transport of CIPRO, demonstrating more efficient in vitro transport of this antimicrobial by the S581 variant as compared with the Y581 variant. Animal studies administering 2.5mg/kg of ENRO subcutaneously to Y/Y 581 and Y/S 581 cows revealed that concentrations in plasma of ENRO and CIPRO were significantly lower in Y/S animals. Regardless of the genotype, the antimicrobial profile in milk after the administration of ENRO was predominantly of CIPRO. With respect to the genotype effects on the amounts of drugs present in milk, AUC0-24 values were more than 1.2 times higher in Y/S cows for ENRO and 2.2 times for CIPRO, indicating a greater capacity of Y581S to transfer these drugs into milk. These results emphasize the clinical relevance of this polymorphism as a factor affecting the concentrations in plasma and in milk of drugs of importance in veterinary medicine.

  19. Cangrelor inhibits the binding of the active metabolites of clopidogrel and prasugrel to P2Y12 receptors in vitro.

    PubMed

    Judge, Heather M; Buckland, Robert J; Jakubowski, Joseph A; Storey, Robert F

    2016-01-01

    Cangrelor is a rapid-acting, direct-binding, and reversible P2Y12 antagonist which has been studied for use during percutaneous coronary intervention (PCI) in patients with or without pretreatment with an oral P2Y12 antagonist. As cangrelor is administered intravenously, it is necessary to switch to an oral P2Y12 antagonist following PCI, such as the thienopyridines clopidogrel, and prasugrel or the non-pyridine ticagrelor. Previous studies have suggested a negative pharmacodynamic interaction between cangrelor and thienopyridines. This in vitro study evaluated the receptor-level interaction between cangrelor and the active metabolite (AM) of clopidogrel or prasugrel by assessing functional P2Y12 receptor number using a (33)P-2MeSADP binding assay. All P2Y12 antagonists studied resulted in strong P2Y12 receptor blockade (cangrelor: 93.6%; clopidogrel AM: 93.0%; prasugrel AM: 97.9%). Adding a thienopyridine AM in the presence of cangrelor strongly reduces P2Y12 receptor blockade by the AM (clopidogrel AM: 7%, prasugrel AM: 3.2%). The thienopyridine AMs had limited ability to compete with cangrelor for binding to P2Y12 (% P2Y12 receptor blockade after co-incubation with cangrelor 1000 nmol/L: 11.7% for clopidogrel AM 3 µmol/L; 34.1% for prasugrel AM 3 µmol/L). In conclusion, in vitro cangrelor strongly inhibits the binding of clopidogrel and prasugrel AMs to the P2Y12 receptor, consistent with the previous observation of a negative pharmacodynamic interaction. Care may need to be taken to not overlap exposure to thienopyridine AMs and cangrelor in order to reduce the risk of thrombotic complications following PCI.

  20. Assessment of adrenocortical activity by non-invasive measurement of faecal cortisol metabolites in dromedary camels (Camelus dromedarius).

    PubMed

    Sid-Ahmed, Omer-Elfaroug; Sanhouri, Ahmed; Elwaseela, Badr-Eldin; Fadllalah, Imad; Mohammed, Galal-Eldin Elazhari; Möstl, Erich

    2013-08-01

    The aim of this study was to determine whether glucocorticoid production could be monitored non-invasively in dromedary camels by measuring faecal cortisol metabolites (FCMs). Five Sudanese dromedaries, two males and three females, were injected with a synthetic adrenocorticotropic hormone (ACTH) analogue. Blood samples were collected pre- and post-ACTH injection. Faeces were sampled after spontaneous defecation for five consecutive days (2 days before and 3 days after ACTH injection). Baseline plasma cortisol values ranged from 0.6 to 10.8 ng/ml in males and from 1.1 to 16.6 ng/ml in females, while peak values after ACTH injection were 10.9-41.9 in males and 10-42.2 ng/ml in females. Peak blood cortisol values were reached between 1.5 and 2.0 h after ACTH injection. The concentration of FCMs increased after ACTH injection in the faeces of both sexes, although steroid levels peaked earlier in males [24 h; (286.7-2,559.7 ng/g faeces)] than in females [36-48 h; (1,182.6-5,169.1 ng/g faeces)], reflecting increases of 3.1-8.3- and 4.3-8-fold above baseline levels. To detect chromatographic patterns of immunoreactive FCMs, faecal samples with high FCM concentrations from both sexes were pooled and subjected to reverse phase high performance liquid chromatography (RP-HPLC). RP-HPLC analysis revealed sex differences in the polarity of FCMs, with females showing more polar FCMs than males. We concluded that stimulation of adrenocortical activity by ACTH injection resulted in a measurable increase in blood cortisol that was reliably paralleled by increases in FCM levels. Thus, measurement of FCMs is a powerful tool for monitoring the adrenocortical responses of dromedaries to stressors in field conditions.

  1. Which platelet function test best reflects the in vivo plasma concentrations of ticagrelor and its active metabolite? The HARMONIC study.

    PubMed

    Koziński, Marek; Ostrowska, Małgorzata; Adamski, Piotr; Sikora, Joanna; Sikora, Adam; Karczmarska-Wódzka, Aleksandra; Marszałł, Michał Piotr; Boinska, Joanna; Laskowska, Ewa; Obońska, Ewa; Fabiszak, Tomasz; Kubica, Jacek

    2016-11-30

    Aim of this study was assessment of the relationship between concentrations of ticagrelor and its active metabolite (AR-C124910XX) and results of selected platelet function tests. In a single-centre, cohort study, patients with myocardial infarction underwent blood sampling following a 180 mg ticagrelor loading dose intake (predose, 1, 2, 3, 4, 6, 12, 24 hours postdose) to perform pharmacokinetic and pharmacodynamic assessments. Platelet reactivity was evaluated using the VASP-assay, the VerifyNow device and the Multiplate analyzer. Analysis of 36 patients revealed high negative correlations between ticagrelor concentrations and platelet reactivity evaluated with all three platelet function tests (the VASP-assay: RS=-0.722; p<0.0001; the VerifyNow device: RS=-0.715; p<0.0001; the Multiplate analyzer: RS=-0.722; p<0.0001), with no significant differences between correlation coefficients. Similar results were found for AR-C124910XX. Platelet reactivity values assessed with all three methods generally correlated well with each other; however, a significantly higher correlation (p<0.02) was demonstrated between the VerifyNow and Multiplate tests (RS=0.707; p<0.0001) than in other assay combinations (the VASP-assay and the VerifyNow device: RS=0.595; p<0.0001; the VASP-assay and the Multiplate analyzer: RS=0.588; p<0.0001). With respect to the recognition of high platelet reactivity, we found higher measurement concordance between the VerifyNow and Multiplate tests compared with other assay combinations, while for low platelet reactivity, only results of the VerifyNow and Multiplate assay were related to each other. Platelet reactivity measurements performed with the VASP, VerifyNow and Multiplate tests show comparably strong negative correlations with ticagrelor and AR-C124910XX concentrations.

  2. Relation between clopidogrel active metabolite levels and different platelet aggregation methods in patients receiving clopidogrel and aspirin.

    PubMed

    Liang, Yan; Johnston, Marilyn; Hirsh, Jack; Pare, Guillaume; Li, Chunjian; Mehta, Shamir; Teo, Koon K; Sloane, Debi; Yi, Qilong; Zhu, Jun; Eikelboom, John W

    2012-11-01

    Clopidogrel is a prodrug that undergoes bioconversion via cytochrome P450 system to form an active metabolite (AM) that binds to the platelet ADP receptor. The antiplatelet effect of clopidogrel is commonly assessed by measuring the aggregatory response to 5 μM ADP by light transmission aggregation (LTA) or multiple electrode aggregometry (MEA) or by the vasodilator-stimulated phosphoprotein platelet reactivity index (VASP-PRI). To determine which of these three tests of platelet ADP receptor pathway inhibition most closely correlates with clopidogrel AM levels. We analyzed blood samples from 82 patients with coronary artery disease who were randomized to receive double-dose or standard dose clopidogrel for 2 weeks. We measured peak clopidogrel AM levels, platelet aggregation in response to ADP and VASP-PRI on days 1, and repeated all the measures on days 7 and 14. Linear regression analysis was used to examine the correlation between clopidogrel AM and LTA, MEA and VASP-PRI. Bland-Altman plots were used to explore the agreement between tests of the antiplatelet effects of clopidogrel. Clopidogrel AM on day 1 correlated most closely with VASP-PRI (r = -0.5767) and demonstrated weaker correlations with LTA (r = -0.4656) and MEA (r = -0.3384) (all p < 0.01). Intra-class correlation (ICC) between VASP-PRI and LTA was 0.6446; VASP-PRI and MEA was 0.4720; and LTA and MEA was 0.4693. Similar results were obtained on days 7 and 14. Commonly used pharmacodynamic measures of clopidogrel response are only moderately correlated with clopidogrel AM levels and may not be suitable to measure the adequacy of clopidogrel therapy.

  3. Determination of loratadine and its active metabolite in human plasma by high-performance liquid chromatography with mass spectrometry detection.

    PubMed

    Vlase, Laurian; Imre, Silvia; Muntean, Dana; Leucuta, Sorin E

    2007-07-27

    A new sensitive and selective liquid chromatography coupled with mass spectrometry (LC/MS/MS) method for quantification of loratadine (LOR) and its active metabolite descarboethoxyloratadine (DSL) in human plasma was validated. After addition of the internal standard, metoclopramide, the human plasma samples (0.3 ml) were precipitated using acetonitrile (0.75 ml) and the centrifuged supernatants were partially evaporated under nitrogen at 37 degrees C at approximately 0.3 ml volume. The LOR, DSL and internal standard were separated on a reversed phase column (Zorbax SB-C18, 100 mmx3.0 mm i.d., 3.5 microm) under isocratic conditions using a mobile phase of an 8:92(v/v) mixture of acetonitrile and 0.4% (v/v) formic acid in water. The flow rate was 1 ml/min and the column temperature 45 degrees C. The detection of LOR, DSL and internal standard was in MRM mode using an ion trap mass spectrometer with electrospray positive ionisation. The ion transitions were monitored as follows: 383-->337 for LOR, 311-->(259+294+282) for DSL and 300-->226.8 for internal standard. Calibration curves were generated over the range of 0.52-52.3 ng/ml for both LOR and DSL with values for coefficient of determination greater than 0.994 by using a weighted (1/y) quadratic regression. The lower limits of quantification were established at 0.52 ng/ml LOR and DSL, respectively, with an accuracy and precision less than 20%. Both analytes demonstrated good short-term, long-term, post-preparative and freeze-thaw stability. Besides its simplicity, the sample treatment allows obtaining a very good recovery of both analytes, around 100%. The validated LC/MS/MS method has been applied to a pharmacokinetic study of loratadine tablets on healthy volunteers.

  4. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  5. Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094

    PubMed Central

    Ehteshami, Maryam; Tao, Sijia; Ozturk, Tugba; Zhou, Longhu; Cho, Jong Hyun; Zhang, Hongwang; Amiralaei, Sheida; Shelton, Jadd R.; Lu, Xiao; Khalil, Ahmed; Domaoal, Robert A.; Stanton, Richard A.; Suesserman, Justin E.; Lin, Biing; Lee, Sam S.; Amblard, Franck; Whitaker, Tony; Coats, Steven J.

    2016-01-01

    Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2′-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2′-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2′-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo. Finally, we found that although both 2′-C-methyl-GTP and 2′-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2′-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2′-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites. PMID:27216050

  6. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production.

    PubMed

    Zheng, Weifa; Miao, Kangjie; Liu, Yubing; Zhao, Yanxia; Zhang, Meimei; Pan, Shenyuan; Dai, Yucheng

    2010-07-01

    Inonotus obliquus (Fr.) Pilat is a white rot fungus belonging to the family Hymenochaetaceae in the Basidiomycota. In nature, this fungus rarely forms a fruiting body but usually an irregular shape of sclerotial conk called 'Chaga'. Characteristically, I. obliquus produces massive melanins released to the surface of Chaga. As early as in the sixteenth century, Chaga was used as an effective folk medicine in Russia and Northern Europe to treat several human malicious tumors and other diseases in the absence of any unacceptable toxic side effects. Chemical investigations show that I. obliquus produces a diverse range of secondary metabolites including phenolic compounds, melanins, and lanostane-type triterpenoids. Among these are the active components for antioxidant, antitumoral, and antiviral activities and for improving human immunity against infection of pathogenic microbes. Geographically, however, this fungus is restricted to very cold habitats and grows very slowly, suggesting that Chaga is not a reliable source of these bioactive compounds. Attempts for culturing this fungus axenically all resulted in a reduced production of bioactive metabolites. This review examines the current progress in the discovery of chemical diversity of Chaga and their biological activities and the strategies to modulate the expression of desired pathways to diversify and up-regulate the production of bioactive metabolites by the fungus grown in submerged cultures for possible drug discovery.

  7. Loss of Thiol Repair Systems in Human Cataractous Lenses

    PubMed Central

    Wei, Min; Xing, Kui-Yi; Fan, Yin-Chuan; Libondi, Teodosio; Lou, Marjorie F.

    2015-01-01

    Purpose. The purpose of this study was to investigate the thiol repair systems of thioltransferase (TTase) and thioredoxin (Trx) and oxidation-damaged proteins in human cataractous lenses. Methods. Cataractous lenses in humans (57–85 years of age) were classified into cortical, nuclear, mixed, mature, and hypermature cataract types by using a lens opacity classification system, and were obtained by extracapsular cataract extraction (ECCE) procedure. Cortical and nuclear cataracts were grouped by decreasing order of visual acuity into optical chart reading (R), counting fingers (CF), hand motion (HM), and light perception (LP). ECCE lens homogenate was analyzed for glutathione (GSH) level and enzyme activities of TTase, glutathione reductase (GR), Trx, and thioredoxin reductase (TR). Cortical and nuclear cataractous lenses (8 of each) with visual acuity better than HM were each dissected into cortical and nuclear portions for measurement of glyceraldehyde 3-phosphate dehydrogenase (G3PD) activity. Clear lenses (in humans 49–71 years of age) were used as control. Results. Compared with control, all cataractous lenses lost more than 80% GSH and 70% GR; TR and Trx activity; and 40% to 70% TTase activity, corroborated with the loss in visual acuity. Among cataracts with R and CF visual acuity, cortical cataract lost more cortical G3PD activity (18% of control) than that of nuclear cataract (50% of control), whereas GSH depletion and TTase inactivation were similar in both cataracts. Conclusions. Thiol repair systems were damaged in all types of cataracts. Cortical and nuclear cataracts showed differential G3PD inactivation in the cortex, implying those 2 type of cataracts might be formed through different mechanisms. PMID:25537203

  8. Estrogenic activity of 7-hydroxymatairesinol potassium acetate (HMR/lignan) from Norway spruce (Picea abies) knots and of its active metabolite enterolactone in MCF-7 cells.

    PubMed

    Cosentino, Marco; Marino, Franca; Ferrari, Marco; Rasini, Emanuela; Bombelli, Raffaella; Luini, Alessandra; Legnaro, Massimiliano; Delle Canne, Marco Gioacchino; Luzzani, Marcello; Crema, Francesca; Paracchini, Silvano; Lecchini, Sergio

    2007-08-01

    Lignans are plant polyphenols which may possess anticancer, antioxidant, antimicrobial, anti-inflammatory and immunomodulatory activities. In particular, the lignan 7-hydroxymatairesinol (HMR/lignan, HMR) is a novel precursor of the mammalian lignan enterolactone (EL). In the present study, we investigated the estrogenicity of HMR and of EL in comparison to estradiol (E2), by measuring their effects on growth and apoptotic markers in the human estrogen-sensitive cell line MCF-7. HMR, EL and E2 concentration-dependently increased the percentage of MCF-7 cells in the S phase of the cell cycle, with the following relative potencies: E2 congruent with EL>HMR, and efficacies: E2>HMR>EL. Treatment of MCF-7 cells with either HMR, EL or E2 also increased the Bcl-2/Bax mRNA ratio. The effects of HMR and EL were reduced in the presence of the estrogen receptor (ER) antagonist tamoxifene. We conclude that both HMR and its metabolite EL are endowed with estrogenic activity, which is likely to be exerted through the contribution of ER-dependent pathways and to target the same intracellular mechanisms acted upon by E2. The estrogenicity of HMR and EL is however milder than that of E2, as indicated by the lower potencies and efficacies of both lignans. The present results support the notion that dietary supplementation with HMR may result in a mild estrogenic activity, both directly and by providing a suitable source for endogenous EL.

  9. Fabrication and bonding of thiol-ene-based microfluidic devices

    NASA Astrophysics Data System (ADS)

    Sikanen, Tiina M.; Lafleur, Josiane P.; Moilanen, Maria-Elisa; Zhuang, Guisheng; Jensen, Thomas G.; Kutter, Jörg P.

    2013-03-01

    In this work, the bonding strength of microchips fabricated by thiol-ene free-radical polymerization was characterized in detail by varying the monomeric thiol/allyl composition from the stoichiometric ratio (1:1) up to 100% excess of thiol (2:1) or allyl (1:2) functional groups. Four different thiol-ene to thiol-ene bonding combinations were tested by bonding: (i) two stoichiometric layers, (ii) two layers bearing complementary excess of thiols and allyls, (iii) two layers both bearing excess of thiols, or (iv) two layers both bearing excess of allyls. The results showed that the stiffness of the cross-linked polymer plays the most crucial role regarding the bonding strength. The most rigid polymer layers were obtained by using the stoichiometric composition or an excess of allyls, and thus, the bonding combinations (i) and (iv) withstood the highest pressures (up to the cut-off value of 6 bar). On the other hand, excess of thiol monomers yielded more elastic polymer layers and thus decreased the pressure tolerance for bonding combinations (ii) and (iii). By using monomers with more thiol groups (e.g. tetrathiol versus trithiol), a higher cross-linking ratio, and thus, greater stiffness was obtained. Surface characterization by infrared spectroscopy confirmed that the changes in the monomeric thiol/allyl composition were also reflected in the surface chemistry. The flexibility of being able to bond different types of thiol-enes together allows for tuning of the surface chemistry to yield the desired properties for each application. Here, a capillary electrophoresis separation is performed to demonstrate the attractive properties of stoichiometric thiol-ene microchips.

  10. Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites.

    PubMed

    Shahbaz, M; Stuiver, C E E; Posthumus, F S; Parmar, S; Hawkesford, M J; De Kok, L J

    2014-01-01

    The toxicity of high copper (Cu) concentrations in the root environment of Chinese cabbage (Brassica pekinensis) was little influenced by the sulphur nutritional status of the plant. However, Cu toxicity removed the correlation between sulphur metabolism-related gene expression and the suggested regulatory metabolites. At high tissue Cu levels, there was no relation between sulphur metabolite levels viz. total sulphur, sulphate and water-soluble non-protein thiols, and the expression and activity of sulphate transporters and expression of APS reductase under sulphate-sufficient or-deprived conditions, in the presence or absence of H2 S. This indicated that the regulatory signal transduction pathway of sulphate transporters was overruled or by-passed upon exposure to elevated Cu concentrations.

  11. Tissue factor de-encryption, thrombus formation, and thiol-disulfide exchange.

    PubMed

    Chen, Vivien M Y

    2013-02-01

    Tissue factor (TF) by forming a complex with factor VIIa (FVIIa) initiates blood coagulation. It was traditionally believed that the separation of FVIIa in circulation from subendothelial TF was the main control that was preventing spontaneous initiation of thrombosis and that circulating cells and endothelium did not express TF protein at rest in healthy individuals. However, TF has been detected in healthy human plasma and animal models of thrombosis, which indicate that TF in circulation can contribute to thrombin generation and fibrin formation after an activation event. Circulating TF-and indeed, most of the TF on the cell surface-is "encrypted" or coagulation inactive. The de-encryption step involves exposure of phosphatidylserine (PS), but PS exposure alone is insufficient for full TF activity. Allosteric disulfide bonds control protein function by mediating conformal change through the formation and breaking of disulfide bonds. TF contains a typical surface exposed allosteric bond in the membrane proximal fibronectin type III domain. Thiol-disulfide exchange involving this disulfide is implicated in TF activation with the formation of the disulfide bond corresponding with the active conformation of TF and free thiol or thiol-modified forms corresponding with encryption. Although the exact mechanism by which TF de-encryption occurs remains a subject of debate, thiol blockade and inhibition of oxidoreductases show an important role for thiol-disulfide reactions in platelet-independent pathways of coagulation in vitro and in vivo. In particular, redox active extracellular protein disulfide isomerase is involved in the earliest stages of thrombus initiation and has proven to be a potential target for antithrombotic drug development.

  12. [Chemical approaches for trapping protein thiols and their oxidative modification].

    PubMed

    Huang, Chu-Sen; Zhu, Wei-Ping; Xu, Yu-Fang; Qian, Xu-Hong

    2012-03-01

    Redox signal transduction, especially the oxidative modification of proein thiols, correlates with many diseases and becomes an expanding research area. However, there was rare method for quick and specific detection of protein thiols and their oxidative modification in living cells. In this article, we review the current chemical strategies for the detection and quantification of protein thiols and related cysteine oxidation. We also look into the future of the development of fluorescent probes for protein thiols and their potential application in the research of reactive cysteine proteomes and early detection of redox-related diseases.

  13. Recent advances in thiol and sulfide reactive probes.

    PubMed

    Wang, Ke; Peng, Hanjing; Wang, Binghe

    2014-06-01

    Because of the biological relevance of thiols and sulfides such as cysteine, homocysteine, glutathione and hydrogen sulfide, their detection has attracted a great deal of research interest. Fluorescent probes are emerging as a new strategy for thiol and hydrogen sulfide analysis due to their high sensitivity, low cost, and ability to detect and image thiols in biological samples. In this short review, we have summarized recent advances in the development of thiol and hydrogen sulfide reactive fluorescent probes. These probes are compared and contrasted with regard to their designing strategies, mechanisms, photophysical properties, and/or reaction kinetics. Biological applications of these probes are also discussed.

  14. In vivo estrogenic potential of 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, an active metabolite of bisphenol A, in uterus of ovariectomized rat.

    PubMed

    Okuda, Katsuhiro; Takiguchi, Masufumi; Yoshihara, Shin'ichi

    2010-08-01

    4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A (BPA), has more potent estrogenic activity than BPA in vitro, but its activity in vivo is not established. Here, we examined in vivo estrogenic activity of MBP by means of uterotrophic assay in ovariectomized (OVX) female rats. MBP exhibited dose-dependent estrogenic activity, as evaluated in terms of effects on uterus weight, uterine luminal epithelial cell height and myometrium thickness. The highest concentration of MBP (10 mg/kg/day) completely reversed the changes caused by OVX, and its activity was equivalent to that of 5 microg/kg/day 17beta-estradiol (E2). We also investigated the effects of MBP on transcription of several estrogen-related genes. The changes of mRNA levels of estrogen receptors alpha and beta, c-fos and insulin-like growth factor 1 in MBP-treated OVX rats were qualitatively similar to those in E2-treated rats. BPA did not show any significant effect on OVX rat in these conditions. This study is the first to demonstrate that MBP, an active metabolite of BPA, has potent in vivo estrogenic activity, being about 500-fold more potent than BPA in OVX rats.

  15. In vitro hepatic biotransformation of aspalathin and nothofagin, dihydrochalcones of rooibos (Aspalathus linearis), and assessment of metabolite antioxidant activity.

    PubMed

    van der Merwe, J Debora; Joubert, Elizabeth; Manley, Marena; de Beer, Dalene; Malherbe, Christiaan J; Gelderblom, Wentzel C A

    2010-02-24

    Aspalathin (2',3,4,4',6'-pentahydroxy-3'-C-beta-d-glucopyranosyldihydrochalcone) is the major flavonoid present in the South African herbal tea rooibos. In vitro metabolism of aspalathin and a structural analogue nothofagin, lacking the A ring catechol group, was investigated by monitoring the formation of glucuronyl and sulfate conjugates using Aroclor 1254 induced and uninduced rat liver microsomal and cytosolic subcellular fractions. Following glucuronidation of both aspalathin and nothofagin, HPLC-DAD, LC-MS, and LC-MS/MS analyses indicated the presence of two metabolites: one major and one minor. Only one aspalathin metabolite was obtained after sulfation, while no metabolites were observed for nothofagin. Two likely sites of conjugation for aspalathin are 4-OH or 3-OH on the A-ring. For nothofagin, the 4-OH (A-ring) and 6'-OH (B-ring) seem to be involved. The glucuronyl conjugates of aspalathin lack any radical scavenging properties in online postcolumn DPPH radical and ABTS radical cation assays. Deconjugation assays utilizing glucuronidase and sulfatase resulted in the disappearance of the metabolites, with the concomitant formation of the unconjugated form in the case of the glucuronidated product. The balance between conjugated and unconjugated forms of aspalathin could have important implications regarding its role in affecting oxidative status in intra- and extracellular environments in vivo.

  16. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats.

    PubMed

    Jimenez, R; Lopez-Sepulveda, R; Romero, M; Toral, M; Cogolludo, A; Perez-Vizcaino, F; Duarte, J

    2015-02-01

    Quercetin, the most abundant dietary flavonol, exerts antioxidant effects reducing vascular superoxide (O2(-)) and improving endothelial function in animal models of cardiovascular disease. Herein we evaluated the effects of quercetin, and its plasma metabolites, on the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity, the main source of O2(-) in the vessel wall, in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Quercetin and its metabolites isorhamnetin and kaempferol inhibited the NADPH-stimulated lucigenin-chemiluminescence signal in VSMCs from both strains. The inhibitory effect of quercetin-3-glucuronide increased after prolonged incubation and was inhibited in the presence of the β-glucuronidase inhibitor saccharolactone. These effects were unrelated to their O2(-) scavenging properties, since they induced only a small inhibition of the rate of pyrogallol autoxidation at high concentrations. All bioflavonoids tested acted as non-competitive inhibitors with respect to NADPH. In conclusion, quercetin and its metabolites inhibit the NADPH oxidase activity in VSMCs reducing O2(-) generation more efficiently than their effect as O2(-) scavengers. The effect of quercetin-3-glucuronide was due to deconjugation and release of free quercetin. The effect is similar in VSMCs from normotensive and hypertensive animals.

  17. In vitro fermentation of prebiotics by Lactobacillus plantarum CFR 2194: selectivity, viability and effect of metabolites on β-glucuronidase activity.

    PubMed

    Arenahalli Ningegowda, Madhu; Siddalingaiya Gurudutt, Prapulla

    2012-03-01

    Prebiotic Fructooligosaccharides (FOS) escape metabolism in upper GI tract undergo microbial metabolism in colon and thereby influence the nature, type and number of intestinal microbiota to improve host's health. The present study focuses on the ability of Lactobacillus plantarum CFR 2194 to utilize FOS as a selective carbon and energy source. The effect of fermentative metabolites of L. plantarum on the β-glucuronidase was also investigated. A total of 16 strains of lactobacilli were assessed for their ability to ferment oligosaccharides. L. plantarum CFR 2194, an isolate from kanjika was found to utilize FOS effectively. Lactic acid was the main metabolic end product, followed by acetic acid, butyric acid, formic acid and ethanol. The inhibitory effects of these metabolites have been confirmed through the reduction of β-glucuronidase activity. L. plantarum when co-cultured with β-glucuronidase producing E. coli, in a basal media containing FOS as an energy source, could inhibit the growth of the pathogen during the course of fermentation. The results showed that L. plantarum CFR 2194 has the ability to utilize the prebiotic FOS as a selective carbon and energy source. The organism could inhibit the growth of the pathogen which produces β-glucuronidase and lowered its activity by the metabolites of FOS which indicates the probable use of L. plantarum through dietary intervention in combating colon carcinogenesis.

  18. Monitoring of cytochrome P-450 1A activity by determination of the urinary pattern of caffeine metabolites in Wistar and hyperbilirubinemic Gunn rats.

    PubMed

    Jorritsma, U; Schrader, E; Klaunick, G; Kapitulnik, J; Hirsch-Ernst, K I; Kahl, G F; Foth, H

    2000-04-03

    Various studies suggest that induction of cytochrome P-450 1A (CYP1A) might be a valuable therapeutic modality for reducing the hyperbilirubinemia of infants with Crigler-Najjar syndrome type I (CNS-I), a severe form of congenital jaundice. To evaluate inducers of CYP1A as possible tools in the treatment of hyperbilirubinemia, a novel assay was established, based on the analysis of the urinary pattern of caffeine metabolites in rats. Wistar rats received [1-Me-(14)C]-caffeine (10 mg/kg i.p.), before and 48h after administration of the potent CYP1A inducer 5,6-benzoflavone (BNF) (80 mg/kg, i.p.). A substantial increase in the fractions of the terminal caffeine metabolites 1-methyluric acid (1-U), 1-methylxanthine (1-X), and a concomitant decrease in the caffeine demethylation product 1,7-dimethylxanthine (1,7-X) was observed after application of BNF. The ratio of the caffeine metabolites (1-U+1-X)/1,7-X may serve as an index of CYP1A activity in rats in vivo. Hyperbilirubinemic, homozygous (jj) Gunn rats are an accepted model for human CNS-I. In male jj Gunn rats treated with BNF or with indole-3-carbinol (I3C, 80 mg/kg, oral gavage), the inducing effect of BNF and 13C on CYP1A activity was confirmed by the urinary pattern of caffeine metabolites, and was parallelled by a decrease in plasma bilirubin levels. These data demonstrate the usefulness of the established caffeine assay for the evaluation of inducers of CYP1A as tools for reducing hyperbilirubinemia and further confirm the potential value of I3C in the treatment of CNS-I.

  19. Identification of aspirinase with one of the carboxylesterases requiring a thiol group.

    PubMed Central

    White, K N; Hope, D B

    1981-01-01

    Aspirin-hydrolysing activity in guinea-pig liver is located mainly in the microsomal fraction. This activity was found by electrophoresis to be due to a single carboxylesterase band, out of 12 bands revealed with alpha-naphthyl acetate as substrate. The activity is inhibited completely and irreversibly by the carboxylesterase inhibitor bis-(-4-nitrophenyl) hydrogen phosphate, and also by thiol-blocking reagents. Images Fig. 2. PMID:7325988

  20. A Novel Oxidative Stress Mediator in Acute Appendicitis: Thiol/Disulphide Homeostasis

    PubMed Central

    Turan, Umit; Kuvvetli, Adnan; Kilavuz, Huseyin; Karakaya, Burak; Ozaltun, Pınar; Alısık, Murat; Erel, Ozcan

    2016-01-01

    Aim. To investigate the role of a novel oxidative stress marker, thiol/disulphide homeostasis, in patients diagnosed with acute appendicitis (AA). Methods. In this study, seventy-one (43 male and 28 female) patients diagnosed with AA and 71 (30 male and 41 female) healthy volunteers were included. Age, gender, body mass index (BMI), haemoglobin (Hb), white blood cell (WBC), c-reactive protein (CRP), and thiol/disulphide homeostasis parameters (native thiol, total thiol, disulphide, disulphide/native thiol, native thiol/total thiol, and disulphide/total thiol ratios) were compared between the groups. Thiol/disulphide homeostasis was determined by a newly developed method by Erel and Neselioglu. Results. The native thiol, total thiol, and the native thiol/total thiol ratio levels were statistically significantly decreased in the AA compared with the control group (p < 0.001). Disulphide level and the ratios of disulphide/native thiol and disulphide/total thiol were higher in the AA group than in the control group (p < 0.001). There was a negative correlation of CRP with native thiol, total thiol, and native thiol/total thiol ratio while there was a positive correlation of CRP with disulphide/native thiol and disulphide/total thiol in the AA group. In the stepwise regression model, risk factors as disulphide/native thiol (OR = 1.368; p = 0.018) and CRP (OR = 1.635; p = 0.003) were determined as predictors of perforated appendicitis compared to the nonperforated group. Conclusion. This is the first study examining the thiol/disulphide homeostasis as a diagnostic aid in AA and establishing thiol/disulphide homeostatis balance shifted towards the disulphide formation due to thiol oxidation. Further studies are needed to optimize the use of this novel oxidative stress marker in AA. PMID:27642237

  1. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones

    PubMed Central

    Clemente, Maria R.; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K.; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-01-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1–48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24–48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses. PMID:22442424

  2. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

    PubMed

    Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-06-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.

  3. Definitive Metabolite Identification Coupled with Automated Ligand Identification System (ALIS) Technology: A Novel Approach to Uncover Structure-Activity Relationships and Guide Drug Design in a Factor IXa Inhibitor Program.

    PubMed

    Zhang, Ting; Liu, Yong; Yang, Xianshu; Martin, Gary E; Yao, Huifang; Shang, Jackie; Bugianesi, Randal M; Ellsworth, Kenneth P; Sonatore, Lisa M; Nizner, Peter; Sherer, Edward C; Hill, Susan E; Knemeyer, Ian W; Geissler, Wayne M; Dandliker, Peter J; Helmy, Roy; Wood, Harold B

    2016-03-10

    A potent and selective Factor IXa (FIXa) inhibitor was subjected to a series of liver microsomal incubations, which generated a number of metabolites. Using automated ligand identification system-affinity selection (ALIS-AS) methodology, metabolites in the incubation mixture were prioritized by their binding affinities to the FIXa protein. Microgram quantities of the metabolites of interest were then isolated through microisolation analytical capabilities, and structurally characterized using MicroCryoProbe heteronuclear 2D NMR techniques. The isolated metabolites recovered from the NMR experiments were then submitted directly to an in vitro FIXa enzymatic assay. The order of the metabolites' binding affinity to the Factor IXa protein from the ALIS assay was completely consistent with the enzymatic assay results. This work showcases an innovative and efficient approach to uncover structure-activity relationships (SARs) and guide drug design via microisolation-structural characterization and ALIS capabilities.

  4. Photoinduced formation of thiols in human hair.

    PubMed

    Fedorkova, M V; Brandt, N N; Chikishev, A Yu; Smolina, N V; Balabushevich, N G; Gusev, S A; Lipatova, V A; Botchey, V M; Dobretsov, G E; Mikhalchik, E V

    2016-11-01

    Raman, scanning electron, and optical microscopy of hair and spectrophotometry of soluble hair proteins are used to study the effect of UV-vis radiation on white hair. The samples of a healthy subject are irradiated using a mercury lamp and compared with non-irradiated (control) hair. The cuticle damage with partial exfoliation is revealed with the aid of SEM and optical microscopy of semifine sections. Gel filtration chromatography shows that the molecular weight of soluble proteins ranges from 5 to 7kDa. Absorption spectroscopy proves an increase in amount of thiols in a heavier fraction of the soluble proteins of irradiated samples under study. Raman data indicate a decrease in the amount of SS and CS bonds in cystines and an increase in the amount of SH bonds due to irradiation. Such changes are more pronounced in peripheral regions of hair. Conformational changes of hair keratins presumably related to the cleavage of disulfide bonds, follow from variations in amide I and low-frequency Raman bands. An increase in the content of thiols in proteins revealed by both photometric data on soluble proteins and Raman microspectroscopy of hair cuts can be used to develop a protocol of the analysis of photoinduced hair modification.

  5. Role of endogenous thiols in protection

    NASA Astrophysics Data System (ADS)

    Vos, O.

    Aminothiols represent the most important group of radioprotective compounds. The most effective compounds administered at an optimal dose and time before irradiation are able to provide a protection in mice with a dose reduction factor (DRF) of about 2-2.5. The working mechanism can partly be explained as a scavenging process of radicals induced in water and partly as a chemical repair process of injured DNA. The endogenous aminothiol which has far-out the highest intracellular concentration is glutathione (GSH). The importance of intracellular GSH in determining cellular radiosensitivity has been shown by irradiating cells that had very low GSH levels. Such cells appear to have a high radiosensitivity, especially in hypoxic conditions. On the other hand, it has been demonstrated that induction of a high GSH level (100-200% above the normal level) provides only a small protection. In vitro experiments with DNA indicate that thiols with a high positive charge condense in the vicinity of DNA and are effective protectors, whereas thiols with a negative charge are kep away from it and are poor protectors. In comparison with the most effective exogenous aminothiols like cysteamine and WR1065, GSH is not an effective radioprotector. Putative explanations for this relatively poor protective ability of GSH are presented.

  6. Ginsenoside Metabolite Compound K Promotes Recovery of Dextran Sulfate Sodium-Induced Colitis and Inhibits Inflammatory Responses by Suppressing NF-κB Activation

    PubMed Central

    Li, Juan; Zhong, Wei; Wang, Weiwei; Hu, Shaoping; Yuan, Jiahui; Zhang, Bing; Hu, Tianhui; Song, Gang

    2014-01-01

    Phytogenic compounds with anti-oxidant and anti-inflammatory properties, such as ginsenoside metabolite compound K (CK) or berberine (BBR), are currently discussed as promising complementary agents in the prevention and treatment of cancer and inflammation. The latest study showed that ginsenoside Rb1 and its metabolites could inhibit TNBS-induced colitis injury. However, the functional mechanisms of anti-inflammation effects of ginsenoside, particularly its metabolite CK are still not clear. Here, using dextran sulfate sodium (DSS)-induced colitis in mice, clinical parameters, intestinal integrity, pro-inflammatory cytokines production, and signaling pathways in colonic tissues were determined. In mild and sever colitis mice, CK and BBR (as a positive agent) alleviated colitis histopathology injury, ameliorated myeloperoxidase (MPO) activity, reduced pro-inflammatory cytokines production, such as, IL-6, IL-1β, TNF-α, and increased anti-inflammatory cytokine IL-10 production in both mice colon tissues and blood. Nevertheless, the results revealed that CK and BBR inhibited NF-κB p65 nuclear translocation, downregulated p-IκBα and upregulated IκBα, indicating that CK, as well as BBR, suppressed the activation of the NF-κB pathway in the progression of colitis with immunofluorescence, immunohistochemical and western blotting analysis. Furthermore, CK inhibited pro-inflammatory cytokines production in LPS-activated macrophages via down-regulation of NF-κB signaling pathway. Taken together, our results not only reveal that CK promotes the recovery of the progression of colitis and inhibits the inflammatory responses by suppressing NF-κB activation, but also suggest that CK downregulates intestinal inflammation through regulating the activation of macrophages and pro-inflammatory cytokines production. PMID:24504372

  7. Development, validation and clinical application of a LC-MS/MS method for the simultaneous quantification of hydroxychloroquine and its active metabolites in human whole blood.

    PubMed

    Soichot, Marion; Mégarbane, Bruno; Houzé, Pascal; Chevillard, Lucie; Fonsart, Julien; Baud, Frédéric J; Laprévote, Olivier; Bourgogne, Emmanuel

    2014-11-01

    A rapid, sensitive and specific method using liquid chromatography coupled to tandem mass spectrometry was developed for the simultaneous quantification of hydroxychloroquine (HCQ) and its three major metabolites in human whole blood. The assay, using a sample volume of 100μL, was linear in a dynamic 25-2000ng/mL range (R(2)>0.99) for all four compounds and suitable for the determination of elevated HCQ concentrations up to 20,000ng/mL, after appropriate sample dilution. Inter- and intra-assay precisions were <18.2% and accuracies were between 84% and 113% for any analyte. No matrix effects were observed. The assay was successfully applied to a blood sample obtained from one poisoned patient following a massive HCQ self-ingestion resulting in an estimated concentration of 19,500ng/mL on hospital admission. In this patient, HCQ metabolites were identified and quantified at 1123, 465 and 91ng/mL for monodesethylhydroxychloroquine, desethylchloroquine and bisdesethylchloroquine, respectively. Further investigations are still required to assess the usefulness of the simultaneous measurement of blood concentrations of HCQ and its three active metabolites for monitoring HCQ treatment and managing HCQ poisoning.

  8. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro.

    PubMed

    Kim, Tae-Kang; Lin, Zongtao; Tidwell, William J; Li, We; Slominski, Andrzej T

    2015-03-15

    Melatonin and its metabolites including 6-hydroxymelatonin (6(OH)M), N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) and 5-methoxytryptamine (5MT) are endogenously produced in human epidermis. This production depends on race, gender and age. The highest melatonin levels are in African-Americans. In each racial group they are highest in young African-Americans [30-50 years old (yo)], old Caucasians (60-90 yo) and Caucasian females. AFMK levels are the highest in African-Americans, while 6(OH)M and 5MT levels are similar in all groups. Testing of their phenotypic effects in normal human melanocytes show that melatonin and its metabolites (10(-5) M) inhibit tyrosinase activity and cell growth, and inhibit DNA synthesis in a dose dependent manner with 10(-9) M being the lowest effective concentration. In melanoma cells, they inhibited cell growth but had no effect on melanogenesis, except for 5MT which enhanced L-tyrosine induced melanogenesis. In conclusion, melatonin and its metabolites [6(OH)M, AFMK and 5MT] are produced endogenously in human epidermis and can affect melanocyte and melanoma behavior.

  9. Marine-derived myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites

    PubMed Central

    Schäberle, Till F

    2016-01-01

    Summary Myxobacteria are famous for their ability to produce most intriguing secondary metabolites. Till recently, only terrestrial myxobacteria were in the focus of research. In this review, however, we discuss marine-derived myxobacteria, which are particularly interesting due to their relatively recent discovery and due to the fact that their very existence was called into question. The to-date-explored members of these halophilic or halotolerant myxobacteria are all grouped into the suborder Nannocystineae. Few of them were chemically investigated revealing around 11 structural types belonging to the polyketide, non-ribosomal peptide, hybrids thereof or terpenoid class of secondary metabolites. A most unusual structural type is represented by salimabromide from Enhygromyxa salina. In silico analyses were carried out on the available genome sequences of four bacterial members of the Nannocystineae, revealing the biosynthetic potential of these bacteria. PMID:27340488

  10. Resveratrol protects against peroxynitrite-induced thiol oxidation in blood platelets.

    PubMed

    Olas, Beata; Nowak, Paweł; Wachowicz, Barbara

    2004-01-01

    The peroxynitrite anion (ONOO-) is a reactive species produced in the reaction between the superoxide anion (O2*-) and nitric oxide (*NO). ONOO- is involved in several pathological conditions such as inflammation, arteriosclerosis, and neurodegenerative and cardiovascular disorders. Our earlier results showed that ONOO- inhibits different steps of blood platelet activation and causes the depletion of platelet thiols. In this study, we investigated the effects of resveratrol (3, 4', 5-trihydroxystilbene) and other antioxidants (uric acid and deferoxamine (DFO)) on the level of low molecular thiols such as glutathione, cysteine and cysteinylglycine (in reduced and oxidized form) in blood platelets treated with ONOO-. Our results showed that ONOO- (100 microM, 2 min) induces changes in these thiols (measured by HPLC method); these changes are diminished in the presence of resveratrol. Preincubation of human platelets with resveratrol at a concentration of 100 microM (30 min) has a protective effect against the oxidation of platelet thiols induced by ONOO- or its intermediate. The other tested antioxidants also have a protectory action. In conclusion, we suggest that the resveratrol present in the human diet may partially protect -SH groups from oxidation and may be responsible for redox regulation and control in platelets.

  11. Thiol-Ene Induced Diphosphonic Acid Functionalization of Superparamagnetic Iron Oxide Nanoparticles

    SciTech Connect

    Rutledge, Ryan D.; Warner, Cynthia L.; Pittman, Jonathan W.; Addleman, Raymond S.; Engelhard, Mark H.; Chouyyok, Wilaiwan; Warner, Marvin G.

    2010-07-20

    Multi-functional organic molecules represent an interesting challenge for nanoparticle functionalization due to the potential for undesirable interactions between the substrate material and the variable functionalities, making it difficult to control the final orientation of the ligand. In the present study, UV-induced thiol-ene click chemistry has been utilized as a means of directed functionalization of bifunctional ligands on an iron oxide nanoparticle surface. Allyl diphosphonic acid ligand was covalently deposited on the surface of thiol-presenting iron oxide nanoparticles via the formation of a UV-induced thioether. This method of thiol-ene click chemistry offers a set of reaction conditions capable of controlling the ligand deposition and circumventing the natural affinity exhibited by the phosphonic acid moiety for the iron oxide surface. These claims are supported via a multimodal characterization platform which includes thermogravimetric analysis, x-ray photoelectron spectroscopy, and metal contact analysis and are consistent with a properly oriented, highly active ligand on the nanoparticle surface. These experiments suggest thiol-ene click chemistry as both a practical and generally applicable strategy for the directed deposition of multi-functional ligands on metal oxide nanoparticle surfaces.

  12. Introduction: What we do and do not know regarding redox processes of thiols in signaling pathways

    PubMed Central

    Poole, Leslie B.; Schöneich, Christian

    2015-01-01

    Due to their susceptibility towards redox modification, protein thiols represent primary targets for the modulation of protein activity, conformation and oligomerization. Until fairly recently, such modifications were considered “damage” as a result of oxidative stress, before researchers recognized their physiological importance for biologic signaling. This paradigm shift, and the associated necessity to accurately characterize and quantify the various pathways of thiol redox modifications not only for specific proteins, but also within the cellular environment, has enticed researchers to take a close look at the impact of environment and molecular (protein) structure on these reactions. This Special Issue on Redox Biology of Thiols in Signaling Pathways is the result of a workshop organized at the 2013 Annual Meeting of the Society for Free Radical Biology and Medicine in San Antonio, Texas, summarizing the contributions from many of the presenters. It will provide a stimulating synopsis on what is known, and what is not known, about the reaction mechanisms which underlie the role of thiols and oxidative processes in signaling pathways. PMID:25746478

  13. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    PubMed

    Agarwal, Varsha; Kommaddi, Reddy P; Valli, Khader; Ryder, Daniel; Hyde, Thomas M; Kleinman, Joel E; Strobel, Henry W; Ravindranath, Vijayalakshmi

    2008-06-11

    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  14. Metabolism of the vitamin D analog EB 1089: identification of in vivo and in vitro liver metabolites and their biological activities.

    PubMed

    Kissmeyer, A M; Binderup, E; Binderup, L; Mørk Hansen, C; Andersen, N R; Makin, H L; Schroeder, N J; Shankar, V N; Jones, G

    1997-04-25

    1(S),3(R)-dihydroxy-20(R)-(5'-ethyl-5'-hydroxy-hepta-1'(E),3'(E)-dien -1'-yl)-9,10-secopregna-5(Z),7(E),10(19)-triene (EB 1089) is a novel analog of the vitamin D hormone, calcitriol that has been modified in the side-chain resulting in an increased metabolic stability relative to other side-chain modified analogs (e.g. calcipotriol and 22-oxacalcitriol). To further investigate the metabolism of EB 1089, we set out to study this metabolism both in the rat in vivo as well as in the postmitochondrial liver fractions from rat, man, and minipig in vitro. The same pattern of metabolism was observed in all biological systems employed, both in vivo and in vitro, namely 26- and 26a-hydroxylation of EB 1089. The same metabolites were produced using cultured cell systems (Shankar et al., see this issue). All the possible isomers of 26- and 26a-hydroxy EB 1089 were synthesised and these were compared to biologically generated material using HPLC, NMR, and GC-MS techniques. The predominant natural isomer observed in vitro and in vivo in rats as well as in vitro in humans was identified to be (25S),26R-hydroxy EB 1089. The biological activities of the EB 1089 metabolites on cell growth regulation were 10- to 100-fold lower than that of EB 1089. The effects of the metabolites on calcium metabolism in vivo were comparable to the effect of EB 1089; however, these effects were reduced for the major metabolite in rat and man and for the isomers of 26a-hydroxy EB 1089. We conclude that EB 1089 is metabolised by a different route of side-chain metabolism than calcitriol and that this may explain its relative metabolic stability in pharmacokinetic experiments in vivo compared to that of other vitamin D analogs.

  15. Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404.

    PubMed

    van Cleef, Koen W R; Overheul, Gijs J; Thomassen, Michael C; Marjakangas, Jenni M; van Rij, Ronald P

    2016-04-01

    Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug development.

  16. Metabolites related to gut bacterial metabolism, peroxisome proliferator-activated receptor-alpha activation, and insulin sensitivity are associated with physical function in functionally-limited older adults

    PubMed Central

    Lustgarten, Michael S; Price, Lori L; Chalé, Angela; Fielding, Roger A

    2014-01-01

    Identification of mechanisms underlying physical function will be important for addressing the growing challenge that health care will face with physical disablement in the expanding aging population. Therefore, the goals of the current study were to use metabolic profiling to provide insight into biologic mechanisms that may underlie physical function by examining the association between baseline and the 6-month change in serum mass spectrometry-obtained amino acids, fatty acids, and acylcarnitines with baseline and the 6-month change in muscle strength (leg press one repetition maximum divided by total lean mass, LP/Lean), lower extremity function [short physical performance battery (SPPB)], and mobility (400 m gait speed, 400-m), in response to 6 months of a combined resistance exercise and nutritional supplementation (whey protein or placebo) intervention in functionally-limited older adults (SPPB ≤ 10; 70–85 years, N = 73). Metabolites related to gut bacterial metabolism (cinnamoylglycine