Science.gov

Sample records for active thunderstorms originating

  1. The atmospheric electric global circuit. [thunderstorm activity

    NASA Technical Reports Server (NTRS)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  2. Positrons observed to originate from thunderstorms

    NASA Astrophysics Data System (ADS)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  3. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms

    NASA Astrophysics Data System (ADS)

    Shao, Xuan-Min; Lay, Erin H.

    2016-07-01

    Thunderstorms have been observed to introduce infrasonic oscillations in the ionosphere, but it is not clear what processes or which parts of the thunderstorm generate the oscillations. In this paper, we present a new technique that uses an array of ground-based GPS total electron content (TEC) measurements to locate the source of the infrasonic oscillations and compare the source locations with thunderstorm features to understand the possible source mechanisms. The location technique utilizes instantaneous phase differences between pairs of GPS-TEC measurements and an algorithm to best fit the measured and the expected phase differences for assumed source positions and other related parameters. In this preliminary study, the infrasound waves are assumed to propagate along simple geometric raypaths from the source to the measurement locations to avoid extensive computations. The located sources are compared in time and space with thunderstorm development and lightning activity. Sources are often found near the main storm cells, but they are more likely related to the downdraft process than to the updraft process. The sources are also commonly found in the convectively quiet stratiform regions behind active cells and are in good coincidence with extensive lightning discharges and inferred high-altitude sprites discharges.

  4. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms

    SciTech Connect

    Shao, Xuan -Min; Lay, Erin Hoffmann

    2016-07-01

    Thunderstorms have been observed to introduce infrasonic oscillations in the ionosphere, but it is not clear what processes or which parts of the thunderstorm generate the oscillations. In this paper, we present a new technique that uses an array of ground-based GPS total electron content (TEC) measurements to locate the source of the infrasonic oscillations and compare the source locations with thunderstorm features to understand the possible source mechanisms. The location technique utilizes instantaneous phase differences between pairs of GPS-TEC measurements and an algorithm to best fit the measured and the expected phase differences for assumed source positions and other related parameters. In this preliminary study, the infrasound waves are assumed to propagate along simple geometric raypaths from the source to the measurement locations to avoid extensive computations. The located sources are compared in time and space with thunderstorm development and lightning activity. Sources are often found near the main storm cells, but they are more likely related to the downdraft process than to the updraft process. As a result, the sources are also commonly found in the convectively quiet stratiform regions behind active cells and are in good coincidence with extensive lightning discharges and inferred high-altitude sprites discharges.

  5. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms

    DOE PAGES

    Shao, Xuan -Min; Lay, Erin Hoffmann

    2016-07-01

    Thunderstorms have been observed to introduce infrasonic oscillations in the ionosphere, but it is not clear what processes or which parts of the thunderstorm generate the oscillations. In this paper, we present a new technique that uses an array of ground-based GPS total electron content (TEC) measurements to locate the source of the infrasonic oscillations and compare the source locations with thunderstorm features to understand the possible source mechanisms. The location technique utilizes instantaneous phase differences between pairs of GPS-TEC measurements and an algorithm to best fit the measured and the expected phase differences for assumed source positions and othermore » related parameters. In this preliminary study, the infrasound waves are assumed to propagate along simple geometric raypaths from the source to the measurement locations to avoid extensive computations. The located sources are compared in time and space with thunderstorm development and lightning activity. Sources are often found near the main storm cells, but they are more likely related to the downdraft process than to the updraft process. As a result, the sources are also commonly found in the convectively quiet stratiform regions behind active cells and are in good coincidence with extensive lightning discharges and inferred high-altitude sprites discharges.« less

  6. Using multiple linear regression model to estimate thunderstorm activity

    NASA Astrophysics Data System (ADS)

    Suparta, W.; Putro, W. S.

    2017-03-01

    This paper is aimed to develop a numerical model with the use of a nonlinear model to estimate the thunderstorm activity. Meteorological data such as Pressure (P), Temperature (T), Relative Humidity (H), cloud (C), Precipitable Water Vapor (PWV), and precipitation on a daily basis were used in the proposed method. The model was constructed with six configurations of input and one target output. The output tested in this work is the thunderstorm event when one-year data is used. Results showed that the model works well in estimating thunderstorm activities with the maximum epoch reaching 1000 iterations and the percent error was found below 50%. The model also found that the thunderstorm activities in May and October are detected higher than the other months due to the inter-monsoon season.

  7. Spatial and temporal variations of thunderstorm activities over Sri Lanka

    NASA Astrophysics Data System (ADS)

    Sonnadara, Upul

    2016-05-01

    Spatial and temporal variation of frequencies of thunderstorms over Sri Lanka using thunder day data is presented. A thunder day is simply a calendar day in which thunder is heard at least once at a given location. Two sets of data were collected and analyzed: annual totals for 10 climatological stations for a period of 50 years and monthly totals for 20 climatological stations for a period of 20 years. The average annual thunder days over Sri Lanka was found to be 76. Among the climatological stations considered, a high number of annual thunder days was recorded in Ratnapura (150 days/year), followed by Colombo (108 days/year) and Bandarawela (106 days/year). It appears that there are no widespread long-term increasing or decreasing trends in thunderstorm frequencies. However, Colombo, the capital of Sri Lanka which has over two million people shows an increasing trend of 0.8 thunder days per year. Although there is a high variability between stations reporting the number of thunder days, the overall pattern within a year is clear. Thunderstorm frequencies are high during two periods: March-May and September-November, which coincide with the first inter-monsoon and second inter-monsoon periods. Compared to the dry zone, the wet zone, especially the southwestern region, has high thunderstorm activity. There is a clear spatial difference in thunderstorm activities during the southwest and northeast monsoon seasons. During both these seasons, enhanced thunderstorm activities are reported on the leeward side of the mountain range. A slight reduction in the thunderstorm activities was found in the high elevation areas of the hill country compared to the surrounding areas. A lightning ground flash density map derived using annual thunder days is also presented.

  8. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and {gt} 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  9. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and [gt] 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  10. Hands-On Thunderstorms.

    ERIC Educational Resources Information Center

    Palmer, Mark H.

    2000-01-01

    Introduces activities published by the National Oceanic and Atmospheric Administration (NOAA) that can be used to explain the physical properties of a thunderstorm. Activities include cloud formation and the first step of thunderstorm development, cycle of a thunderstorm, the nature of lightning, ice in a thunderstorm, and tornado warning. Lists…

  11. Radio detection of thunderstorm activity with an earth-orbiting satellite

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Stone, R. G.; Caruso, J. A.

    1975-01-01

    A study was made to determine the feasibility of using artificial earth satellites to monitor thunderstorm activity. The nighttime noise-temperature measurements made with the earth-oriented vee antenna of the Radio Astronomy Explorer (RAE 1) satellite in the frequency range 0.2-9.2 MHz were correlated with reported surface thunderstorm activity. Analysis shows that the minimum nighttime HF noise level (in the absence of surface thunderstorms) at an altitude of 5850 km over the United States is fixed by man-made noise. When thunderstorms are active below the satellite, the noise level is increased by about 6-12 dB. The highest level is associated with the most intense storms. It is concluded that thunderstorm regions can be detected by an orbiting satellite using HF radio techniques, but ionospheric effects must be taken into account.

  12. The Behavior of Total Lightning Activity in Severe Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark; Hodanish, Steve; Sharp, Dave; Goodman, Steve; Raghavan, Ravi; Buechler, Dennis

    1998-01-01

    The development of a new observational system called LISDAD (Lightning Imaging Sensor Demonstration and Display) has enabled a study of severe weather in central Florida. The total flash rates for storms verified to be severe are found to exceed 60 flashes/min, with some values reaching 500 flashes/min. Similar to earlier results for thunderstorm microbursts, the peak flash rate precedes the severe weather at the ground by 5-20 minutes. A distinguishing feature of severe storms is the presence of lightning "jumps"-abrupt increases in flash rate in advance of the maximum rate for the storm. ne systematic total lightning precursor to severe weather of all kinds-wind, hail, tornadoes-is interpreted in terms of the updraft that sows the seeds aloft for severe weather at the surface and simultaneously stimulates the ice microphysics that drives the lightning activity.

  13. Dancing red sprites and the lightning activity in their parent thunderstorm

    NASA Astrophysics Data System (ADS)

    Bór, József; Zelkó, Zoltán; Hegedüs, Tibor; Jäger, Zoltán; Mlynarczyk, Janusz; Popek, Martin; Betz, Hans-Dieter

    2016-04-01

    Red sprites are brief optical emissions initiated in the mesosphere by intense tropospheric lightning discharges. A group of red sprites, in which the elements appear in rapid succession with some lateral offset from one another is referred to as a dancing sprite event. The occurrence of such events implies that significant and sequential charge removal extending to large regions of the thunderstorm can take place in the underlying cloud system. In this work, we examine the relation of the locations and observation times of appearing sprite elements to the temporal and spatial distribution of the lightning activity in a specific sprite-active thunderstorm. The selected mesoscale convective system (MCS) composed of several extremely active thundercloud cells crossed Central Europe from South-West to North-East through Germany, Austria, the Czech Republic, and Poland on the night of 6 August, 2013. This MCS has triggered over one hundred sprites including several dancing sprite events. Video recordings of sprites captured from Sopron, Hungary (16.6°E, 47.7°N) and Nydek, Czech Republic (18.8°E, 49.7°N) were used to identify dancing sprite events and to determine the exact locations of the appearing sprite elements by a triangulation technique used originally to analyze meteor observations. Lightning activity in the MCS can be reviewed using the database of LINET lightning detection network which fully covers the region of interest (ROI). The poster demonstrates how cases of sequential charge removal in the thunderstorm can be followed by combining the available information on the occurrence time, location, polarity, and type (CG/IC) of detected lightning strokes in the ROI on one hand and the occurrence time and location of elements in dancing sprite events on the other hand.

  14. Temporal Characteristics of Impulsive Electron Precipitation Associated with Thunderstorm Activity

    NASA Astrophysics Data System (ADS)

    McCarthy, M.; Smith, D. M.; Bowers, G. S.; Millan, R. M.; Holzworth, R. H.

    2013-12-01

    The precipitation of energetic electrons from the magnetosphere through interactions with VLF radiation, launched by lightning discharges, has been studied both directly, using electron instruments on spacecraft, and indirectly, through consequent modification of the Earth-ionosphere waveguide. This work addresses the question of the time profile of lightning-induced electron precipitation (LEP). While satellite motion combines spatial and temporal effects into precipitation observations, and RF methods convolve ionospheric response processes with precipitation time scales, balloon observations of bremsstrahlung x-rays from LEP provide a clean measurement of the precipitation time profile. We report on observations of impulsive energetic electron precipitation, identified as LEP, made from a balloon platform over Antarctica during the BARREL campaign of 2013, and compare with earlier observations. Because thunderstorm activity is a strong and ever-present source of VLF power into the magnetosphere, it is believed that LEP processes play an important role in adjusting radiation belt fluxes. An accurate description of LEP's time development is important because this information constrains theories and parameters of the causative processes for LEP.

  15. Profuse activity of blue electrical discharges at the tops of thunderstorms

    NASA Astrophysics Data System (ADS)

    Chanrion, Olivier; Neubert, Torsten; Mogensen, Andreas; Yair, Yoav; Stendel, Martin; Singh, Rajesh; Siingh, Devendraa

    2017-01-01

    Thunderstorm clouds may reach the lower stratosphere, affecting the exchange of greenhouse gases between the troposphere and stratosphere. This region of the atmosphere is difficult to access experimentally, and our knowledge of the processes taking place here is incomplete. We recently recorded color video footage of thunderstorms over the Bay of Bengal from the International Space Station. The observations show a multitude of blue, kilometer-scale, discharges at the cloud top layer at 18 km altitude and a pulsating blue discharge propagating into the stratosphere reaching 40 km altitude. The emissions are related to the so-called blue jets, blue starters, and possibly pixies. The observations are the first of their kind and give a new perspective on the electrical activity at the top of tropical thunderstorms; further, they underscore that thunderstorm discharges directly perturb the chemistry of the stratosphere with possible implications for the Earth's radiation balance.

  16. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  17. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world

    PubMed Central

    Dowdy, Andrew J.

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  18. On the production of active nitrogen by thunderstorms over New Mexico

    NASA Astrophysics Data System (ADS)

    Ridley, B. A.; Dye, J. E.; Walega, J. G.; Zheng, J.; Grahek, F. E.; Rison, W.

    1996-09-01

    In July and August of 1989 the National Center for Atmospheric Research (NCAR) Sabreliner jet aircraft was used to probe electrically active and inactive convective storms over west central New Mexico to examine the production of odd nitrogen in the middle and upper troposphere by thunderstorms. In the anvil outflow or cloud top region of active and nonactive storms, the majority of flights showed that O3 was reduced relative to the extracloud air owing to transport of ozone-poor air from lower altitudes. A similar result was found for active nitrogen (NOx) and total odd nitrogen (NOy) in nonelectrically active storms, but the reduction in NOy was also enhanced by removal of soluble constituents during convective transport. Examples of efficient removal from the gas phase are described. There was no evidence of O3 production by lightning discharges. Indeed, O3 was a good tracer over the lifetime (˜1 hour) of the storms. During the active-to-mature stage of air mass thunderstorms, large enhancements in active nitrogen were observed in the anvil altitude region (9-11.8 km) and, in one case, in the midlevel outflow (near 7 km) of a dissipating thunderstorm. Two thunderstorms allow good estimates of the NOx production by lightning within or transport to the upper altitude region (8-11.8 km). Thunderstorms of August 12 and August 19 yield amounts in the range of 253-296 kg(N) and 263-305 kg(N), respectively. If, as an exercise, these amounts are extrapolated to the global scale on the basis of the number of cloud-to-ground and intracloud lightning flashes counted or estimated for each storm and a global flash frequency of 100 s-1 the result is 2.4-2.7 and 2.0-2.2 Tg(N)/yr. Alternatively, an estimate for the two storms made on the basis of the average number of thunderstorms that occur per day globally (44,000) yields amounts in the range of 4.1-4.7 and 4.2-4.9 Tg(N)/yr, respectively. These estimates only apply to the production or transport of lightning-generated NOx

  19. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    NASA Astrophysics Data System (ADS)

    Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.

    2011-12-01

    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  20. On the origin of pronounced O3 gradients in the thunderstorm outflow region during DC3

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Fütterer, D.; Rappenglück, B.; Ackermann, L.; Pickering, K. E.; Cummings, K. A.; Biggerstaff, M. I.; Betten, D. P.; Honomichl, S.; Barth, M. C.

    2016-06-01

    Unique in situ measurements of CO, O3, SO2, CH4, NO, NOx, NOy, VOC, CN, and rBC were carried out with the German Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon aircraft in the central U.S. thunderstorms during the Deep Convective Clouds and Chemistry experiment in summer 2012. Fresh and aged anvil outflow (9-12 km) from supercells, mesoscale convective systems, mesoscale convective complexes, and squall lines were probed over Oklahoma, Texas, Colorado, and Kansas. For three case studies (30 May and 8 and 12 June) a combination of trace species, radar, lightning, and satellite information, as well as model results, were used to analyze and design schematics of major trace gas transport pathways within and in the vicinity of the probed thunderstorms. The impact of thunderstorms on the O3 composition in the upper troposphere/lower stratosphere (LS) region was analyzed. Overshooting cloud tops injected high amounts of biomass burning and lightning-produced NOx emissions into the LS, in addition to low O3 mixing ratios from the lower troposphere. As a dynamical response, O3-rich air from the LS was transported downward into the anvil and also surrounded the outflow. The ΔO3/ΔCO ratio was determined in the anvil outflow region. A pronounced in-mixing of O3-rich stratospheric air masses was observed in the outflow indicated by highly positive or even negative ΔO3/ΔCO ratios (+1.4 down to -3.9). Photochemical O3 production (ΔO3/ΔCO = +0.1) was found to be minor in the recently lofted pollution plumes. O3 mixing ratios within the aged anvil outflow were mainly enhanced due to dynamical processes.

  1. Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NOx production

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Schumann, U.; Schlager, H.; Höller, H.; Giez, A.; Betz, H.-D.; Brunner, D.; Forster, C.; Pinto, O., Jr.; Calheiros, R.

    2007-10-01

    .6 and 3.1 Tg a-1, respectively. By use of LINET observations in Germany in July 2005, a comparison with the lightning activity in mid-latitude thunderstorms was also performed. In general, the same frequency distribution of stroke peak currents as for tropical thunderstorms over Brazil was found. The different LNOx production rates per stroke in tropical thunderstorms compared with subtropical and mid-latitude thunderstorms seem to be related to the different stroke lengths (inferred from comparison with laboratory data and observed lengths). In comparison, the impact of other lightning parameters as stroke peak current and stroke release height was assessed to be minor. The results from TROCCINOX suggest that the different vertical wind shear may be responsible for the different stroke lengths.

  2. Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NOx production

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Schumann, U.; Schlager, H.; Höller, H.; Giez, A.; Betz, H.-D.; Brunner, D.; Forster, C.; Pinto, O., Jr.; Calheiros, R.

    2008-02-01

    .6 and 3.1 Tg a-1, respectively. By use of LINET observations in Germany in July 2005, a comparison with the lightning activity in mid-latitude thunderstorms was also performed. In general, the same frequency distribution of stroke peak currents as for tropical thunderstorms over Brazil was found. The different LNOx production rates per stroke in tropical thunderstorms compared with subtropical and mid-latitude thunderstorms seem to be related to the different stroke lengths (inferred from comparison with laboratory data and observed lengths). In comparison, the impact of other lightning parameters as stroke peak current and stroke release height was assessed to be minor. The results from TROCCINOX suggest that the different vertical wind shear may be responsible for the different stroke lengths.

  3. Simulation of the impact of thunderstorm activity on atmospheric gas composition

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.

    2010-08-01

    A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

  4. Number of transients/Q-bursts in ELF-band as possible criterion for global thunderstorm activity estimation.

    NASA Astrophysics Data System (ADS)

    Ondraskova, Adriena; Sevcik, Sebastian

    2015-04-01

    Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance (SOD). Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - December 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Limits (min-max) for the width of primary spike, time difference between primary and secondary spike and the amplitude of the spike were chosen as criteria for the identification of the burst. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients can be a suitable criterion for the quantification of global lightning activity.

  5. Influence of spring snowpack melting on thunderstorm activity in the Catalan Pyrenees

    NASA Astrophysics Data System (ADS)

    Pascual, R.; Callado, A.; Terradelles, E.; Téllez, B.

    2009-09-01

    Catalan Pyrenees, the eastern half of the Pyrenees range, is a very popular area for tourism, hiking and climbing. This sector of the range is 200 km long and, on average, 80 km wide. Its highest peaks reach 3000 m ASL and there are many summits above 2500 m ASL. Two of the main climatic characteristics of the region are the very frequent summer convective storms and the late autumn, winter and spring snow-cover. Both characteristics have normally been studied from different points of view, and weather forecasts in late spring have not normally considered the plausible relationship between them. The snowpack melting from April to June, especially rapid in May, leads to important changes on the surface energy balance since the evolution from snow-covered ground to bare soil or canopy, significantly alters the surface albedo and the turbulent, latent and sensible, heat fluxes. These modifications have a noticeable influence in developing or inhibiting thermally-induced mesoscale circulations such as upslope winds, valley breezes or plane-mountain breezes, and could condition the triggering of convection, showers and storm activity. In order to gain insight into the relationship between the spring snowpack melting and the location of thunderstorm activity, a comparison between seasonal snow-cover and thunderstorm frequency evolution (using lightning network data) for a period of 5 years has been carried out, showing a progressive transition from a non-convective to a convective precipitation regime in areas where the snowpack has melted recently Furthermore, a meso-beta scale non-hydrostatic numerical weather prediction model at a 2.5-km horizontal resolution is used to study the sensitivity of snowpack extension on the thunderstorms development over the complex orography of the Catalan Pyrenees. A spring case with thunderstorm activity restricted to snow-free areas has been selected and accurately simulated. A number of sensitivity runs with different initial snow

  6. Nighttime observations of thunderstorm electrical activity from a high altitude airplane

    NASA Technical Reports Server (NTRS)

    Brook, M.; Vonnegut, B.; Orville, R. E.; Vaughan, O. H., Jr.

    1984-01-01

    Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes.

  7. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    NASA Astrophysics Data System (ADS)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  8. Thunderstorm asthma.

    PubMed

    Taylor, Philip E; Jonsson, Haflidi

    2004-09-01

    Thunderstorms have often been linked to epidemics of asthma, especially during the grass flowering season; however, the precise mechanisms explaining this phenomenon are unknown. Evidence of high respirable allergen loadings in the air associated with specific meteorologic events combined with an analysis of pollen physiology suggests that rupture of airborne pollen can occur. Strong downdrafts and dry, cold outflows distinguish thunderstorm rain from frontal rain. The weather system of a mature thunderstorm likely entrains grass pollen into the cloud base, where pollen rupture would be enhanced, then transports the respirable-sized fragments of pollen debris to ground level where outflows distribute them ahead of the rain. The conditions occurring at the onset of a thunderstorm might expose susceptible people to a rapid increase in concentrations of pollen allergens in the air that can readily deposit in the lower airways and initiate asthmatic reactions.

  9. Thunderstorm asthma.

    PubMed

    2014-10-01

    AN ASSOCIATION between asthma and thunderstorms based on retrospective data has been noted in several papers. This study, however, draws on almost-real-time, anonymised attendance data from 35 emergency departments (EDs) in the UK, and lightning-strike plots from the Met Office.

  10. Nighttime observations of thunderstorm electrical activity from a high altitude airplane

    NASA Technical Reports Server (NTRS)

    Brook, M.; Rhodes, C.; Vaughan, O. H., Jr.; Orville, R. E.; Vonnegut, B.

    1984-01-01

    Photographs from a NASA U-2 airplane flying over nocturnal thunderstorms show frequent lightning activity in the upper part of the cloud. In some cases, unobscured segments of lightning channels 1 km or longer are visible in clear air around and above the cloud. Multiple images of lightning channels indicate multiple discharges in the same channel. Photographs taken through a diffraction grating show that the lightning has a spectrum similar to that observed in the lower troposphere. Lightning spectra obtained with a slitless line-scan spectrometer show strong singly ionized nitrogen emissions at 463.0 and 500.5 nm. Field changes measured with an electric field-change meter correlate with pulses measured with a photocell optical system. Optical signals corresponding to dart leader, return stroke, and continuing current events are readily distinguished in the scattered light emerging from the cloud surface. The variation of light intensity with time in lightning events is consistent with predicted modification of optical lightning signals by clouds. It appears that satellite based optical sensor measurements cannot provide reliable information on current rise times in return strokes. On the other hand, discrimination between cloud-to-ground and intracloud flashes and the counting of ground strokes is possible using the optical pulse pairs which have been identified with leader, return-stroke events in the cloud-to-ground flashes studied.

  11. Dynamics of Saturnian thunderstorms

    NASA Astrophysics Data System (ADS)

    Fischer, Georg; Pagaran, Joseph; Dyudina, Ulyana; Delcroix, Marc

    2016-04-01

    Thunderstorms on Saturn usually last much longer than their terrestrial counterparts. The Cassini spacecraft has observed Saturnian lightning storms with durations of a few days up to several months. During these long storms the lightning flash rate measured by the Cassini RPWS (Radio and Plasma Wave Science) instrument is waxing and waning or sometimes even going down to zero for a few days before rising up again. Dyudina et al. (2007, Icarus 190, 545-555) observed three bright storm cloud eruptions in 2004 correlating with high Saturnian lightning flash rates. To gain more insight into the dynamics of the thunderstorms we will further compare the distance-normalized lightning flash rate with contemporaneous images from the Cassini camera complemented with images of Saturn storms from amateur astronomers taken on Earth. We will show that the decrease of lightning flash rates in late January 2008 can be explained by a corresponding splitting of the thunderstorm cell. This led to two storm cells, a weaker one with probably no lightning activity that drifted westward, and a stronger one that kept its drift rate and developed large lightning activity again by mid-February 2008. We will show other examples of storm cell splitting suggesting that this process might be an important factor in the dynamics of Saturnian thunderstorms.

  12. Evidence for synchronicity of lightning activity in networks of spatially remote thunderstorms

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Aviv, Reuven; Ravid, Gilad; Yaniv, Roy; Ziv, Baruch; Price, Colin

    2006-08-01

    Visual observations by space shuttle astronauts have described a phenomenon in which spatially distant thunderstorm cells seem to reciprocally “ignite” lightning flashes in a semi-cyclic sequence. Lightning occurring in one cell is immediately followed by lightning in other cells, separated by tens or hundreds of kilometers. We present quantitative analysis of lightning observations conducted within the framework of the MEIDEX-sprite campaign on board the space shuttle Columbia in January 2003 [Yair, Y., Israelevich, P., Devir, A., Moalem, M., Price, C., Joseph, J., Levin, Z., Ziv, B., Teller, A., 2004. New sprites observations from the space shuttle. Journal of Geophysical Research 109, D15201/10.1029/2003JD004497]. Video footage of 6 storm systems with varying flash rates, which occurred over Africa, South America, Australia and the Pacific Ocean were analyzed. It is found that when the storm flash rate was high, lightning activity in horizontally remote electrically active cells became clustered, with bursts of nearly simultaneous activity separated by quiet periods. The recurrence time was ˜2.5 s, close to the previously reported time delay between consecutive ELF transient signals in the Schumann resonance range [Füllekrug, M., 1995. Schumann resonances in magnetic filed components. Journal of Atmospheric and Terresterial Physics 57, 479 484]. We propose that this behavior is similar to the collective dynamics of a network of weakly coupled limit-cycle oscillators [Strogatz, S.H., 2000, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica, D, 1 20]. Thunderstorm cells embedded within a mesoscale convective system (MCS) constitute such a network, and their lightning frequency is best described in terms of phase-locking of a globally coupled array [Kourtchatov, S.Y., Yu, V.V., Likhanskii, V.V., Napartovitch, A.P., Arecchi, F.T., Lapucci, A., 1995 Theory of phase locking of globally coupled laser

  13. A Correlation Study of Meteorological Dynamics and Thunderstorm Activity Leading to Terrestrial Gamma-Ray Flashes

    NASA Astrophysics Data System (ADS)

    Barnes, Daniel Edward

    The Terrestrial Gamma-ray Flash (TGF) was first discovered by Fishman et al. in 1994. The TGF is an emission of highly energetic radiation produced by or at least in close association with lightning. Fishman theorized that the TGFs were spawned at Sprite altitudes, however, Dwyer and Smith, utilizing detailed Monte Carlo calculations found the production level was within the troposphere, particularly in the altitude range of 15-21 km. This altitude places the TGF generating mechanism within thunderstorm cloud height. Current investigations tend to study the TGF itself in an attempt to isolate the production mechanism and production level while the thunderstorm characteristics have largely been ignored. The investigation into thunderstorms and their characteristics will utilize temporal and spatial coincident passes between the Ramatay High-energy Solar Spectroscopic Imager (RHESSI) and the Tropical Rainfall Measuring Mission (TRMM) in order to ascertain the bulk or footprint overlap fundamental storm properties of two types of events, the TGF generating thunderstorm (Yes case) and the non-TGF generating thunderstorm (Null case). Common components to each case are the presence of lightning during the coincident pass, spatial overlap of sub-satellite footprint within 500km and temporal difference of no more than one-hour. The defining difference is the Yes case has a RHESSI recorded TGF event while the Null case has no RHESSI recorded TGF event. Data presented will show that TGF storms possesses identifiable differences in the hydrometeor concentrations at different levels of the atmosphere. The Yes storm possesses elevated zero-degree isotherms, storm tops, increased occurrence of lower flash rates, low flash rate density and fairly uniform occurrence of lower optical radiance. These properties have statistically significant differences from their Null counterparts. It may be possible to identify potential TGF storms utilizing these storm characteristics and ground

  14. Thunderstorm Hypothesis Reasoner

    NASA Technical Reports Server (NTRS)

    Mulvehill, Alice M.

    1994-01-01

    THOR is a knowledge-based system which incorporates techniques from signal processing, pattern recognition, and artificial intelligence (AI) in order to determine the boundary of small thunderstorms which develop and dissipate over the area encompassed by KSC and the Cape Canaveral Air Force Station. THOR interprets electric field mill data (derived from a network of electric field mills) by using heuristics and algorithms about thunderstorms that have been obtained from several domain specialists. THOR generates two forms of output: contour plots which visually describe the electric field activity over the network and a verbal interpretation of the activity. THOR uses signal processing and pattern recognition to detect signatures associated with noise or thunderstorm behavior in a near real time fashion from over 31 electrical field mills. THOR's AI component generates hypotheses identifying areas which are under a threat from storm activity, such as lightning. THOR runs on a VAX/VMS at the Kennedy Space Center. Its software is a coupling of C and FORTRAN programs, several signal processing packages, and an expert system development shell.

  15. Are there physical links between Saturn's magnetospheric planetary period oscillations, neutral atmosphere circulation, and thunderstorm activity? (Invited)

    NASA Astrophysics Data System (ADS)

    Provan, G.; Cowley, S. W.

    2013-12-01

    Suggestions that the planetary period oscillations (PPOs) observed in Saturn's magnetosphere may be driven or influenced by neutral atmospheric perturbations, motivates an exploratory comparison of PPO rotation periods with available tropospheric and stratospheric determinations. Non-polar atmospheric rotation periods occupy the range ~10.2-10.7 h associated with the latitudinal jet structure, are similar north and south, and independent of season, while PPO periods lie in a narrower partly overlapping range ~10.6-10.8 h, are persistently shorter north than south, and undergo a seasonal cycle. In this cycle, widely-separated north-south PPO periods during southern summer converge across equinox to values lying within the atmospheric west jet band, remaining well-separated from east jet periods. Closest convergence occurred one year post-equinox, contemporaneously with the switch in seasonal thunderstorm activity from southern to northern hemispheres. Since most large-scale atmospheric phenomena are related to the west jets, rotating with closely similar periods, they also rotate with periods close to the PPOs under post-equinoctial conditions, but not otherwise. Specifically, post-equinox northern PPOs rotate with a period close to the southern thunderstorms, as well as the north polar spot and hexagon features, while the post equinox southern PPOs rotate with a period close to the pre-equinox northern ';string of pearls' and the first co-located post-equinox northern thunderstorm, the Great White Spot event. However, even under these conditions no consistent correspondences in period are found at a detailed level, which taken together with the lack of correspondence at other times, does not suggest a direct physical link exists between these phenomena.

  16. Saturn's magnetospheric planetary period oscillations, neutral atmosphere circulation, and thunderstorm activity: Implications, or otherwise, for physical links

    NASA Astrophysics Data System (ADS)

    Cowley, S. W. H.; Provan, G.

    2013-11-01

    that the planetary period oscillations (PPOs) observed in Saturn's magnetosphere may be driven or influenced by neutral atmospheric perturbations motivate an exploratory comparison of PPO rotation periods with available tropospheric and stratospheric determinations. Nonpolar atmospheric rotation periods occupy the range ~10.2-10.7 h associated with the latitudinal jet structure, are similar north and south, and are independent of season, while PPO periods lie in a narrower partly overlapping range ~10.6-10.8 h, are persistently shorter north than south, and undergo a seasonal cycle. In this cycle, widely separated north-south PPO periods during southern summer converge across equinox to values lying within the atmospheric west jet band, remaining well-separated from east jet periods. Closest convergence occurred 1 year post equinox, contemporaneously with the switch in seasonal thunderstorm activity from Southern to Northern Hemispheres. Since most large-scale atmospheric phenomena are related to the west jets, rotating with closely similar periods, they also rotate with periods close to the PPOs under post equinoctial conditions but not otherwise. Specifically, post equinox northern PPOs rotate with a period close to the southern thunderstorms, as well as the north polar spot and hexagon features, while the post equinox southern PPOs rotate with a period close to the pre-equinox northern "string of pearls" and the first colocated post equinox northern thunderstorm, the Great White Spot event. However, even under these conditions, no consistent correspondences in period are found at a detailed level, which taken together with the lack of correspondence at other times does not suggest a direct physical link exists between these phenomena.

  17. Relationship between solar activities and thunderstorm activities in the Beijing area and the northeast region of China

    NASA Technical Reports Server (NTRS)

    Zhuang, Hong C.; Lu, Xi C.

    1989-01-01

    An analysis of the relationship between the IMF section boundary crossing, solar flares, the sunspot 11 year cycle variation and the thunderstorm index is given, using the superposition epoch method, for data from more than 13,000 thunderstorms from 10 meteorological stations in the Beijing area and the Northeast region during 1957 to 1978. The results show that for some years a correlation exists between the thunderstorm index and the positive IMF section boundary crossing. The thunderstorm index increases obviously within three days near the crossing and on the seventh day after the crossing. The influence of the crossing on thunderstorms is stronger in the first half year than the latter half year. For different classes of solar flares, the influences are not equally obvious. The solar flares which appeared on the west side, especially in the western region (from 0 to 30 deg) have the most obvious influence. There is no discernible correlation between the thunderstorm index and the sunspot eleven-year cycle.

  18. The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images

    NASA Astrophysics Data System (ADS)

    Wang, Pao K.; Cheng, Kai-Yuan; Setvak, Martin; Wang, Chen-Kang

    2016-04-01

    Gullwing-shaped cirrus layers are observed on an image above a severe thunderstorm occurred in Argentina taken by the instrument CALIOP on board of the CALIPSO satellite. The cirrus layers extended into a level in the stratosphere even higher than the above-anvil cirrus plumes that had been studied previously. This paper utilized the cloud model simulation results of a similar storm to explain the formation of such gullwing cirrus. It is shown that these cirrus layers can form from the moisture transported upward by successive internal gravity wave breaking at levels higher than the above-anvil plumes. The vertical locus of the wave crests where wave breaking occurs is itself gullwing-shaped which is the main reason why the thin cirrus layers are also gullwing shaped. Model results indicate that wave breaking can transport materials irreversibly into higher stratospheric layers and the gullwing-shaped cirrus is an evidence of this transport process.

  19. Ionospheric VLF waves and optical phenomena over active thunderstorms. [VLF (very low frequency)

    SciTech Connect

    Li, Y.Q.

    1993-01-01

    In 1987 and 1988, two campaigns, the Wave Induced Particle Precipitation campaign and the Thunderstorm II campaign, were conducted to investigate lightning-generated effects in the upper atmosphere and ionosphere. Two rockets and 6 balloons were launched near thunderstorms in these campaigns. Optical and electrical signals from hundreds of lightning strokes were recorded. The author has been able to study some problems about lightning-generated VLF waves in the ionosphere which have not been well investigated previously. This dissertation reports the following: (1) The downward-looking optical detector on the rocket recorded some anomalous characteristic optical phenomena. (2) The author studied the relation between the amplitude of lightning-generated VLF waves in the ionosphere and the lightning current recorded by the SUNYA lightning network. This study shows that the amplitude of waves at frequencies below 5 kHz has linear response to the lightning current. (3) The author has been able to determine the propagation path of the lightning-generated VLF waves from the source to the rocket. The path is consistent with the leaky waveguide hypothesis. (4) The amplitude of lightning-generated VLF waves has been found to have maxima and minima at different altitudes, instead of being attenuated monotonically with altitude as expected. A theoretical model has been proposed which shows that the wave amplitude profiles are the result of interference between waves from an aperture area below the rocket. (5) The author numerically calculated the absorption of VLF waves at the bottom of the ionosphere. The electron density gradient of the ionosphere was taken into account. The characteristics of the absorption, such as the frequency dependence, were investigated. The author deduced that significant heating of the ionosphere is caused by lightning-generated VLF waves.

  20. Ionospheric VLF waves and optical phenomena over active thunderstorms. Ph.D. Thesis

    SciTech Connect

    Li, Y.Q.

    1993-01-01

    In 1987 and 1988, two campaigns, the Wave Induced Particle Precipitation campaign and the Thunderstorm 2 campaign, were conducted to investigate lightning-generated effects in the upper atmosphere and ionosphere. Two rockets (apogees 420km and 330km) and 6 balloons (float altitudes 30km) were launched near thunderstorms in these campaigns. Optical and electric signals from hundreds of lightning strokes were recorded by both the rockets and balloons. Using the data obtained in these two campaigns, the author has been able to study some problems about lightning-generated VLF waves in the ionosphere which have not been well investigated previously. In this dissertation, the author reports the following: the downward-looking optical detector on the rocket recorded some anomalous characteristic optical phenomena which had not been reported previously. This study shows that they occurred above the balloon altitude (30km), and the results are interpreted in terms of discharges at high altitudes. The author studied the relation between the amplitude of lightning-generated VLF waves in the ionosphere and the lightning current recorded by the SUNYA lightning network. This study shows that the amplitude of waves at frequencies below 5 kHz has linear response to the lightning current. Above 5 kHz, there is not a significant linear correlation between the wave amplitude and the lightning current. The author has been able to determine the propagation path of the lightning-generated VLF waves from the source to the rocket. The path is consistent with the leaky waveguide hypothesis in which waves travel in the waveguide to the vicinity of the rockets, and then propagate vertically through the ionosphere. The author has found that the amplitude of lightning generated VLF waves have maxima and minima at different altitudes instead of being attenuated monotonically with altitude as expected.

  1. Radiation environment in the region of thunderstorm neutrons generation

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Grigoriev, A. V.; Malyshkin, Y.

    2011-12-01

    There exist a number of experimental data favoring the idea of the connection between thunderstorm activity and rises of neutron count rate, registered in on-ground [1,2] as well as space experiments [3]. Recent investigations in this area showed that the observation of thunderstorm neutrons onboard low-orbiting satellites is in principal possible [4]. The current view on the problem of thunderstorm neutrons origin assumes their generation in photonuclear reactions of the TGF radiation and atmosphere components [5]. Such neutron radiation has almost no effect on the dosimetric environment in low orbits due to dispersion in the atmosphere [6]. However it could be of considerable importance in the region of the neutrons generation (on altitudes of 10 - 20 km). The indicated values match altitudes of aviation flights so that, taking into account high penetration power of neutron radiation, one may expect some connected hazard. In the present study we perform a numerical simulation of the thunderstorm neutron radiation near the generation area. The modeling includes generation of the neutrons from TGF and further propagation with account of interaction with background nuclei. On the basis of modeling results we obtain estimates of the absorbed dose for various configurations and altitudes of the neutrons source.

  2. Thunderstorm activity in early Earth: same estimations from point of view a role of electric discharges in formation of prebiotic conditions

    NASA Astrophysics Data System (ADS)

    Serozhkin, Yu.

    2008-09-01

    Introduction The structure and the physical parameters of an early Earth atmosphere [1], most likely, played a determining role in formation of conditions for origin of life. The estimation of thunderstorm activity in atmosphere of the early Earth is important for understanding of the real role of electrical discharges during formation of biochemical compounds. The terrestrial lightning a long time are considered as one of components determining a physical state and chemical structure of an atmosphere. Liebig in 1827 has considered a capability of nitrogen fixation at discharges of lightning [2]. Recent investigations (Lamarque et al. 1996) have achieved that production rate of NOx due to lightning at 3·106 ton/year [3]. The efficiency of electric discharges as energy source for synthesis of low molecular weight organic compounds is explained by the several factors. To them concern effect of optical radiation, high temperature, shock waves and that is especially important, pulse character of these effects. The impulse impact is essentially reduced the probability of destruction of the formed compounds. However, for some reasons is not clear the real role of electric discharges in synthesis of biochemical compounds. The discharges used in experiments on synthesis of organic substances, do not remind the discharges observable in a nature. One more aspect of a problem about a role of electric discharges in forming pre-biotic conditions on the Earth is connected with the thunderstorm activity in a modern atmosphere. This activity is connected with the presence in an atmosphere of ice crystals and existing gradient of temperature. To tell something about a degree of thunderstorm activity during the early Earth, i.e. that period, when formed pre-biotic conditions were is very difficult. Astrobiological potential of various discharges First of all the diversity of electric discharges in terrestrial atmosphere (usual lightning, lightning at eruption of volcanoes

  3. Thunderstorm risk monitoring service

    NASA Astrophysics Data System (ADS)

    Brovelli, P.; Arbogast, E.; Bouzom, M.; Reynaud, J.; Autones, F.; Guillou, Y.; Bernard-Bouissières, I.; Sénési, S.

    2009-09-01

    The SIGnificant weather Object Oriented Nowcasting System (SIGOONS) is based on a scheme combining forecaster's expertise and observation data advanced automated processing ; it is an object oriented system for detection and forecasting significant phenomena at a few hours range. Downstream, SIGOONS feed warnings automated generation. Today, SIGOONS manages thunderstorms only. SIGOONS development follows two streams: o Operating a "fully automated” SIGOONS to produce thunderstorm risk warnings, in order to demonstrate the capability of warnings service for Météo-France customers at the short nowcasting range. At this stage of automation, warnings are limited to a range of one hour. o Ensure interaction feasibility and efficiency to match forecaster's expertise on thunderstorms forecasting, for improving warnings timeliness, intensity and location. The 2009 SIGOONS schedule was populated by the marketing of the thunderstorms warnings service named "Thunderstorm risk monitoring service” and by experiments with the seven regional forecasting services in real-time to assess adding expert value to warnings. Beyond, the goals are to operate thunderstorms expertise routinely using SIGOONS, to improve automation in thunderstorms description using new radar data (3D, doppler, polarization data) and mesoscale numerical weather prediction data, to introduce a probabilistic description of warnings location and intensity, and to manage another phenomena, namely the strong wind events.

  4. Thunderstorm Program General Overview

    DTIC Science & Technology

    2014-12-19

    government laboratories and commercial vendors with an enduring multi-Intelligence technology demonstration venue . New and existing ISR technologies can...Thunderstorm Program Methodology & Venues 2 Conducts a series of events each fiscal year for DoD selected areas of interest Tabletop Experiment (TTX) o...Architectures and Interagency Collaboration • Best match Key Operational/Supporting Partnerships, Venues and Technologies within Thunderstorm based on Strategic

  5. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  6. Thunderstorm distribution and frequency in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Shwehdi, M. H.

    2005-09-01

    A new average annual thunder day map for Saudi Arabia is presented. Based on this map, the distribution of thunderstorms over Saudi Arabia is analysed in terms of the factors related to the lightning performance of transmission lines such as thunderstorm days per year (Td/yr). Lightning activity continues for the present to be represented by thunderstorm frequency, which is routinely recorded at meteorological observation sites. Thunderstorm occurrence at a particular location is usually expressed as the number of days in a calendar year when thunder was heard, averaged over several years. This paper examines thunderstorm days in different areas of Saudi Arabia and specifically those areas where lightning strikes are more frequent; for this purpose, the software ArcGIS is used to produce contour maps which demonstrate areas of concern in Saudi Arabia in the period 1985-2003. Establishing the annual and seasonal Td/yr for Saudi Arabia enables transmission and distribution line engineers to calculate and better design a lightning protection system. Maps of thunder days/year (Td/yr) were constructed on the basis of the database records available on lightning incidence in Saudi Arabia at the Presidency of Meteorology and Environment (PME) (http://www.pme.gov.sa/). Annual thunderstorms are most frequent over the southwestern parts of the country, and generally decrease towards the west and east. Due to its low latitude and less temporal change, the west coast of the Red Sea recorded the lowest Td/yr. A secondary maximum Td/yr is apparent in the southeast to central part of the country. Thunderstorm frequency does not, in general, appear to vary in any consistent way with rainfall. There appears to be no evidence of any widespread temporal trend in thunderstorm frequency. The southern region in general, and especially the cities of Abha, Taif and Al-Baha, has shown greater numbers of thunderstorm days all year round. Similarly, this variation did show higher frequency

  7. Summertime Thunderstorms Prediction in Belarus

    NASA Astrophysics Data System (ADS)

    Lapo, Palina; Sokolovskaya, Yaroslava; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    Mesoscale modeling with the Weather Research & Forecasting (WRF) system makes it possible to predict thunderstorm formation events by direct numerical simulation. In the present study, we analyze the feasibility and quality of thunderstorm prediction on the territory of Belarus for the summer period of 2014 based on analysis of several characteristic parameters in WRF modeling results that can serve as indicators of thunderstorms formation. These parameters include vertical velocity distribution, convective available potential energy (CAPE), K-index, SWEAT-index, Thompson index, lifted condensation level (LCL), and others, all of them being indicators of favorable atmospheric conditions for thunderstorms development. We perform mesoscale simulations of several cases of thunderstorm development in Belarus with WRF-ARW modeling system using 3 km grid spacing, WSM6 microphysics parameterization and explicit convection (no convective parameterization). Typical modeling duration makes 48 hours, which is equivalent to next-day thunderstorm prediction in operational use. We focus our attention to most prominent cases of intense thunderstorms in Minsk. For validation purposes, we use radar and satellite data in addition to surface observations. In summertime, the territory of Belarus is quite often under the influence of atmospheric fronts and stationary anticyclones. In this study, we subdivide thunderstorm cases under consideration into 2 categories: thunderstorms related to free convection and those related to forced convection processes. Our aim is to study the differences in thunderstorm indicator parameters between these two categories of thunderstorms in order to elaborate a set of parameters that can be used for operational thunderstorm forecasting. For that purpose, we analyze characteristic features of thunderstorms development on cold atmospheric fronts as well as thunderstorms formation in stable air masses. Modeling results demonstrate good predictive skill

  8. Allergens and thunderstorm asthma.

    PubMed

    Nasser, Shuaib M; Pulimood, Thomas B

    2009-09-01

    Thunderstorm-related asthma is increasingly recognized in many parts of the world. This review focuses on important advances in the understanding of the mechanism of the role of allergens, in particular fungal spores such as Alternaria, in asthma epidemics associated with thunderstorms. From our observations, we have proposed that the prerequisites for this phenomenon are as follows: 1) a sensitized, atopic, asthmatic individual; 2) prior airway hyperresponsiveness before a sudden, large allergen exposure; 3) a large-scale thunderstorm with cold outflow occurring at a time and location during an allergen season in which large numbers of asthmatics are outdoors; and 4) sudden release of large amounts of respirable allergenic fragments, particularly fungal spores such as Alternaria.

  9. What Happens during a Thunderstorm?

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    2004-01-01

    A thunderstorm is a localized storm accompanied by lightning and thunder. It may also have gusty winds and often brings heavy rain. Some thunderstorms can also bring tornadoes and/or hail. During winter, localized heavy snow showers may also have thunder and lightning. And, in the western United States in summer, thunderstorms may be…

  10. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  11. Far from thunderstorm UV transient events in the atmosphere measured by Vernov satellite

    NASA Astrophysics Data System (ADS)

    Morozenko, Violetta; Klimov, Pavel; Khrenov, Boris; Gali, Garipov; Margarita, Kaznacheeva; Mikhail, Panasyuk; Sergei, Svertilov; Robert, Holzworth

    2016-04-01

    The steady self-contained classification of events such as sprites, elves, blue jets emerged for the period of transient luminous events (TLE) observation. In accordance with TLE origin theories the presence of the thunderstorm region where the lightnings with the large peak current generating in is necessary. However, some far-from-thunderstorm region events were also detected and revealed to us another TLE generating mechanisms. For the discovering of the TLE nature the Universitetsky-Tatiana-2 and Vernov satellites were equipped with ultraviolet (240-400 nm) and red-infrared ( >610 nm) detectors. In both detector it was carried out regardless the lightnings with the guidance by the flashes in the UV wavelength where lightning's emitting is quite faint. The lowered threshold on the Vernov satellite allowed to select the great amount of TLE with the numerous far-from-thunderstorm region events examples. such events were not conjuncted with lightning activity measured by global lightning location network (WWLLN) on the large area of approximately 107 km2 for 30 minutes before and after the time of registration. The characteristic features of this type of event are: the absence of significant signal in the red-infrared detector's channel; a relatively small number of photons (less than 5 ṡ 1021). A large number of without lightning flash were detected at high latitudes over the ocean (30°S - 60°S). Lightning activity in the magnetic conjugate point also was analyzed. The relationship of far-from-thunderstorm region events with the specific lightning discharges didn't confirmed. Far-from-thunderstorm events - a new type of transient phenomena in the upper atmosphere is not associated with the thunderstorm activity. The mechanism of such discharges is not clear, though it was accumulated a sufficient amount of experimental facts of the existence of such flashes. According to the data of Vernov satellite the temporal profile, duration, location with earth

  12. Initiation Locations of Lightning Flashes in Two Florida Thunderstorms

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Karunarathna, N.; Stolzenburg, M.; Karunarathne, S.

    2015-12-01

    In this presentation we investigate the initiation locations of all intracloud (IC) and cloud-to-ground (CG) lightning flashes in two small thunderstorms which occurred over NASA/Kennedy Space Center on July 22, 2011. Initiation points of 47 of the 58 lightning flashes (19 IC and 28 CG) were identified using the first initial breakdown (IB) pulse of each flash measured with E-change data. In this study 32 of the flashes had an LDAR2 (VHF) location coincident with the first IB pulse. For 15 flashes we used Position By Fast Antenna or PBFA [Karunarathne et al., 2013, JGR Atmospheres] to determine the location of the first IB pulse. (The remaining flashes had neither LDAR2 nor PBFA locations of the first IB pulse.) All these initiation points were then mapped onto radar reflectivity of the parent thundercloud. The initiation points of the flashes tend to cluster in specific regions in thundercloud. Lightning activity in both thunderstorms lasted 35 minutes, and all the flash initiation points in each storm occurred within a horizontal region of 4 km by 8 km. Flash initiation altitudes for IC flashes of the two thunderstorms ranged from 5.1 km to 12.1 km altitude while for CG flashes the altitude ranged from 4.6 km to 8.1 km. Based on available radar data for 14 IC flashes and 27 CG flashes, all but one of the IC flashes originated in 10 dBZ - 30 dBZ reflectivity regions while 22 of the CG flashes originated in 30 dBZ - 40 dBZ reflectivities. During the lifetimes of these two storms, no Narrow Bipolar Events occurred.

  13. Study of stratospheric-ionospheric coupling during thunderstorms and tornadoes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1977-01-01

    A continuous-wave-spectrum high-frequency Doppler sounder array with three transmitters at each of three sites was used to observe the dynamics of the coupling of energy between the stratosphere and the ionosphere. During times of severe weather activity wavelike disturbances have been detected on ground-based ionospheric sounding records as perturbations in electron densities. Infrasonic waves with wave periods of 3-7 min and with horizontal phase velocities of 600-800 m/s were observed when there was thunderstorm activity; gravity waves with wave periods of 10-15 min and horizontal phase velocities of 100-200 m/s were detected when there was tornado activity. Both triangulations from the cross correlation functions of the Doppler records based on an assumption of no background wind shear and ray-tracing computations including an assumed background wind shear indicate that the waves originated in the vicinity of the thunderstorms and tornadoes. A comparison of the wavelengths of the infrasonic and gravity waves observed at ionospheric heights and those in cloud-top pictures from satellites show that they are all of the order of 100-300 km.

  14. Electrical structure in two thunderstorm anvil clouds

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.

    1989-01-01

    Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.

  15. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  16. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    NASA Astrophysics Data System (ADS)

    Lay, Erin H.; Shao, Xuan-Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-01

    Acoustic waves with periods of 2-4 min and gravity waves with periods of 6-16 min have been detected at ionospheric heights (250-350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May-July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  17. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore » disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  18. On the role of thermodynamics and cloud-aerosol-precipitation interactions over thunderstorm activity during GoAmazon and ACRIDICON-CHUVA field experiments

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Morales, C. A.; Hoeller, H.; Braga, R. C.; Machado, L.; Wendisch, M.; Andreae, M. O.; Rosenfeld, D.; Poeschl, U.; Biscaro, T.; Lima, W.; Eichholz, C.; Oliveira, R. A. J.; Sperling, V.; Carvalho, I.; Calheiros, A. J. P.; Amaral, L. F.; Cecchin, M.; Saraiva, J.; Saraiva, I.; Schumacher, C.; Funk, A. B.

    2015-12-01

    Based on satellite data, total (intracloud and cloud-to-ground) lightning activity climatological annual cycle over the GoAmazon area of interest (from T0 to T3 sites) shows that lightning activity is moderate (up to 10 flashes per day - fl day-1) throughout the wet (December-March) and dry (April-August) seasons, with T3 always being a little greater than T1 and T0 sites, respectively. During the dry-to-wet transition season (September-October), however, lightning activity peaks up to 25 fl day-1 at T1, followed by T3 (20 fl day-1) and T0 (15 fl day-1). The diurnal cycle reveals that the onset of deep convection during this same season starts one hour and peaks two hours earlier than the wet season. In the Amazon, cloud updrafts are primarily controlled by the local environment thermodynamics. During the dry-to-wet transition season, thermodynamics is significantly changed by land cover land cover where cloud base heights are elevated over deforested areas potentially increasing the strength of updrafts due to a better processing of the convective available potential energy, and therefore also increasing cloud electrification. The total (intracloud and cloud-to-ground) LIghtning NET(LINET - Nowcast) installed in September-October 2014 for GoAmazon IOP2 and ACRIDICON-CHUVA field experiments and the set of weather radars revealed that the thunderstorm enhancement over T1 (Manaus) during the dry-to-wet season is driven by the interaction between river breeze and the main easterly winds over Amazon basin, resulting in a locally forced convergent flow on the east side of Rio Negro which drives deep afternoon convection. In terms of atmospheric pollution, the dry-to-wet season is also marked by increased biomass burning, and the city of Manaus (T1) is a local polluted heat island. We will also present quantified thermodynamical and microphysical differences between the thunderstorms that developed over T0, T1 and T2. Our hypothesis is that cloud charge centers, total

  19. The physics of a thunderstorm

    NASA Astrophysics Data System (ADS)

    Mason, John; Mason, Nigel

    2003-09-01

    The salient facts concerning the dynamical, physical and electrical properties of a thunderstorm, and of the detailed structure and associated electric field-changes of lightning flashes, are marshalled to deduce the criteria for a satisfactory quantitative theory of charge generation and separation leading to the growth of electric fields strong enough to initiate and to sustain lightning activity. A quantitative theory is presented of how charges are generated and separated when supercooled cloud droplets make grazing contact with the undersides of hail pellets (graupel) polarized initially by the Earth's fine-weather electric field. The rebounding droplets acquire a positive charge and are carried by the convective updraught towards the top of the cloud, while the hail pellets carrying a net negative charge fall towards cloud base. This creates a vertical dipole field which increases the polarizing charges on the hail pellets and so accelerates the rates of charge generation and separation, and so reinforces the vertical electrical field, which grows exponentially until insulation of the air breaks down and triggers a lightning flash. It is demonstrated that a thunderstorm cell, 2 km in diameter, producing small hail falling at 30 mm h-1 can produce vertical electric fields of ~5000 V cm-1 in about 10 min involving the separation of ~50 C of charge, enough to initiate a lightning flash which, on average, neutralizes about 20 C. As long as the hail persists, it continues to generate and separate sufficient charge to produce a succession of lightning flashes at about 30 s intervals. More frequent discharges at say 10 s intervals would require high rates of hail production in larger cells but are more likely to be produced by large multi-cellular storms sustained by strong convective currents for perhaps several hours.

  20. Thunderstorms over Brazil

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph, acquired in February 1984 by an astronaut aboard the space shuttle, shows a series of mature thunderstorms located near the Parana River in southern Brazil. With abundant warm temperatures and moisture-laden air in this part of Brazil, large thunderstorms are commonplace. A number of overshooting tops and anvil clouds are visible at the tops of the clouds. Storms of this magnitude can drop large amounts of rainfall in a short period of time, causing flash floods. However, a NASA-funded researcher has discovered that tiny airborne particles of pollution may modify developing thunderclouds by increasing the quantity and reducing the size of the ice crystals within them. These modifications may affect the clouds' impact on the Earth's 'radiation budget,' or the amount of radiation that enters and leaves our planet. Steven Sherwood, a professor at Yale University, found that airborne aerosols reduce the size of ice crystals in thunderclouds and may reduce precipitation as well. Using several satellites and instruments including NASA's Total Ozone Mapping Spectrometer (TOMS) and NASA's Tropical Rainfall Measuring Mission (TRMM) satellite, Sherwood observed how airborne pollution particles (aerosols) affect large thunderstorms, or cumulonimbus clouds in the tropics. Common aerosols include mineral dust, smoke, and sulfates. An increased number of these particles create a larger number of smaller ice crystals in cumulonimbus clouds. As a result of their smaller size, the ice crystals evaporate from a solid state directly into a gas, instead of falling as rain. Sherwood noted that this effect is more prevalent over land than open ocean areas. Previous research by Daniel Rosenfeld of Hebrew University revealed that aerosols and pollution reduced rainfall in shallow cumulus clouds of liquid water, which do not have the capability to produce as much rainfall. Sherwood expanded on that research by looking at cumulonimbus clouds with more ice particles. Studies

  1. VHF Doppler Radar Observations of Buoyancy Waves Associated with Thunderstorms.

    NASA Astrophysics Data System (ADS)

    Lu, Daren; Vanzandt, T. E.; Clark, W. L.

    1984-01-01

    The Platteville VHF Doppler radar, located on the Colorado piedmont near Platteville, Colorado, continuously measured the vertical wind velocity during a 12-day period in late July and early August 1981. Measurements were made every 2.5 min on the average with range gates centered at 3.3, 5.7, 8.1, 10.5, 12.9, 15.3, 17.7, and 20.1 km above sea level.Periods of active thunderstorms were identified from the PPI maps from the National Weather Service 10 cm weather radar at Limon, Colorado. When no thunderstorm activity was present, the vertical velocity fluctuations were small and erratic. But a few hours after strong thunderstorm activity began, large quasi-sinusoidal wave trains with periods of about 40 min were observed. Power spectra of the vertical velocity time series showed enhancements at all frequencies during thunderstorm activity, but for periods longer than 30 min the enhancements were larger, particularly for the mid-tropospheric range gates from 5.7 to 12.9 km.Some of the implications of these observations on the relations between thunderstorms and buoyancy waves in the free atmosphere are discussed.

  2. A study of lightning in winter thunderstorms and the analysis of thunderstorm overflight data

    NASA Technical Reports Server (NTRS)

    Brook, Marx

    1995-01-01

    Thunderstorms and the activities associated with them was the emphasis of this final report. The primary goal of the investigation of the dynamics, microphysics, and the electrical properties of tropical thunderstorms, was to understand the process or processes which initiate the precipitation in various convective clouds. A concept that the degree of atmospheric instability that determines the updraft velocity is different between those storms that generate electrical activity and those that do not. This is apparent in temperate latitudes, but in tropical regions, little knowledge of these interactions is available. Several ground monitoring stations have been set up and, along with a waveform recorder at one of the stations, the data collected from these stations will be analyzed in conjunction with other data collected from ship and airborne radars and airborne in situ measurements of electrical activity in coordination with the TOGA-COARE program.

  3. Thunderstorms Increase Mercury Wet Deposition.

    PubMed

    Holmes, Christopher D; Krishnamurthy, Nishanth P; Caffrey, Jane M; Landing, William M; Edgerton, Eric S; Knapp, Kenneth R; Nair, Udaysankar S

    2016-09-06

    Mercury (Hg) wet deposition, transfer from the atmosphere to Earth's surface by precipitation, in the United States is highest in locations and seasons with frequent deep convective thunderstorms, but it has never been demonstrated whether the connection is causal or simple coincidence. We use rainwater samples from over 800 individual precipitation events to show that thunderstorms increase Hg concentrations by 50% relative to weak convective or stratiform events of equal precipitation depth. Radar and satellite observations reveal that strong convection reaching the upper troposphere (where high atmospheric concentrations of soluble, oxidized mercury species (Hg(II)) are known to reside) produces the highest Hg concentrations in rain. As a result, precipitation meteorology, especially thunderstorm frequency and total rainfall, explains differences in Hg deposition between study sites located in the eastern United States. Assessing the fate of atmospheric mercury thus requires bridging the scales of global transport and convective precipitation.

  4. Ion density variation at upper ionosphere during thunderstorm

    NASA Astrophysics Data System (ADS)

    Mangla, Bindu; Sharma, D. K.; Rajput, Anupama

    2017-03-01

    Ionosphere is found to be affected by phenomenon taking place above and below it. Troposphere incidents of thunderstorm and lightning, influence ionospheric temperatures and ion density, from D region to a region of high altitude. Low latitude upper ionosphere in the altitude range of 425-625 km over Indian subcontinent is studied for ion density variation during the event of active thunderstorm. Study is done with the help of ionospheric data obtained from in situ measurements made by Indian satellite SROSS C2, and thunderstorm and other related data obtained from Indian Meteorological Department. Ion density in this region found to show a regular fall from 5 to 65% during the event of thunderstorm over normal day values but consistent heating of ions takes place. O+ being the main part of the composition of ionosphere at this altitude so total ion density variation show a similar trend as that of O+ ion, while other ions like O2+, He+ and H+ do not follow any regular trend with the activity of thunderstorm.

  5. Outflow from a Nocturnal Thunderstorm.

    DTIC Science & Technology

    1980-11-01

    P AD-A093 796 ILLINOIS STATE WATER SURVEY URBANAF/ .2 OUTFLOW FROM A NOCTURNAL THUNDERSTORM. (U) NOV a0 R W SCOTT NSF-ATHN78-0a865 UNCLASSIFIED SWS...CR-242 ARO-15529.5-6S N I muuuuuuuuuuuu iDA0937 9 6 State Water Survey Division k istitute of METEOROLOGY SECTION 0 uJD AT THE UNIVERSITY OF ILLINOIS...SWS Contract Report 242 / F OUTFLOW FROM A NOCTURNAL THUNDERSTORM Robert W. Scott Meteorology Section Illinois State Water Survey -- DTIC ELECTE CD

  6. The Electrical Structure of Thunderstorms

    NASA Technical Reports Server (NTRS)

    Workman, E J; Helzer, R E; Pelsor, G T

    1942-01-01

    The time histories of thunderstorm charge distribution during three storms occurring during the summer of 1940 in the vicinity of the Albuquerque Airport were investigated by the use of eight synchronized recording electrometers arranged in a particular pattern over a field 1.6 kilometers above sea level.

  7. Generation of Runaway Electrons Induced by Cosmic-Ray Muons in Thunderstorm Electric Fields

    NASA Astrophysics Data System (ADS)

    Torii, T.; Nishijima, T.; Sugita, T.; Kawasaki, Z.

    2004-05-01

    Gamma ray dose-rate increases associated with winter thunderstorm activities have been observed in the coastal areas facing the Sea of Japan [1]. In order to investigate the generation of energetic photons which originate in thunderstorm electric fields, we have calculated the behavior of secondary cosmic ray electrons and photons in electric fields with Monte Carlo method. In the calculation, the electron and photon fluxes have increased greatly in the region where the field strength exceeds about 280 P(z) kV/m-atm, and these energy spectra show a large increase in the energy region up to several MeV [2]. In addition to the analysis of the electromagnetic component of cosmic rays, we have carried out the Monte Carlo transport calculations of the cosmic-ray muons and associated particles (e.g. knock-on electrons and bremsstrahlung photons) in thunderstorm electric fields, using GEANT4 code [3]. Muons form a large part of the secondary cosmic-rays and directly reach the regions of strong electric fields owing to their high penetrability in the atmosphere. Therefore, they can serve as the source of a considerable amount of runaway electrons, through their ionization process with air molecules, and their decay into energetic electrons. The electron and photon fluxes show notable increases in the strong electric field, while the muon flux does not fluctuate significantly. These results indicate that the production of energetic electrons by cosmic ray muons plays an important role in the enhancement of electron and photon fluxes in thunderstorm electric fields. Finally, we discuss a feasibility of muon-triggered lightning deduced from the muon transport calculation inside thunderstorm electric fields. From the calculation results, we estimate that the irradiation of muon beams rapidly increases energy deposition in the region of strong electric fields, and produce numerous electron - ion pairs. These productions may induce the lightning discharge by the runaway

  8. Electric fields produced by Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Livingston, J. M.; Krider, E. P.

    1978-01-01

    Twenty-five field mill sites provided data on the electric fields produced during both the intense and the final, less active periods of summer air mass thunderstorms in east central Florida. During the periods of intense lightning activity, time- and area-averaged fields were usually -0.8 to -2.1 kV/m, while for the less active periods, the field values were typically in the range of -2.3 to -4.3 kV/m. Furthermore, during the active storm periods, which represented about 27% of the total storm durations, about 71% of all lightning discharges occurred. Also, fewer lightning discharges in the final storm period than in the active period reached the ground.

  9. Thunderstorm observations from Space Shuttle

    NASA Technical Reports Server (NTRS)

    Vonnegut, B.; Vaughan, O. H., Jr.; Brook, M.

    1983-01-01

    Results of the Nighttime/Daytime Optical Survey of Lightning (NOSL) experiments done on the STS-2 and STS-4 flights are covered. During these two flights of the Space Shuttle Columbia, the astronaut teams of J. Engle and R. Truly, and K. Mattingly II and H. Hartsfield took motion pictures of thunderstorms with a 16 mm cine camera. Film taken during daylight showed interesting thunderstorm cloud formations, where individual frames taken tens of seconds apart, when viewed as stereo pairs, provided information on the three-dimensional structure of the cloud systems. Film taken at night showed clouds illuminated by lightning with discharges that propagated horizontally at speeds of up to 10 to the 5th m/sec and extended for distances on the order of 60 km or more.

  10. Asthma outbreak during a thunderstorm.

    PubMed

    Packe, G E; Ayres, J G

    1985-07-27

    An outbreak of acute asthma occurred in Birmingham and the surrounding area on July 6 and 7, 1983. In most patients symptoms began at the time of sudden climatic changes associated with a thunderstorm. Air pollution was not a factor. The large and sudden increase in numbers of airborne fungal spores, especially Didymella exitialis and Sporobolomyces, around the time of the outbreak suggests that they may have been partly contributory, although a direct causal effect has not yet been established.

  11. Thunderstorm off Florida coast, USA

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This cumulonimbus thunderhead with its towering anvil was photographed just north of Cape Canaveral and the Kennedy Space Center, Florida (28.5N, 80.5W). Cumulonimbus clouds are the familiar thunderheads that can tower up to as much as 75,000 ft. producing thunderstorms and sometimes tornadoes as well. Inland from the cape, Orlando in the center of the state, can be seen.

  12. A giant thunderstorm on Saturn.

    PubMed

    Fischer, G; Kurth, W S; Gurnett, D A; Zarka, P; Dyudina, U A; Ingersoll, A P; Ewald, S P; Porco, C C; Wesley, A; Go, C; Delcroix, M

    2011-07-06

    Lightning discharges in Saturn's atmosphere emit radio waves with intensities about 10,000 times stronger than those of their terrestrial counterparts. These radio waves are the characteristic features of lightning from thunderstorms on Saturn, which last for days to months. Convective storms about 2,000 kilometres in size have been observed in recent years at planetocentric latitude 35° south (corresponding to a planetographic latitude of 41° south). Here we report observations of a giant thunderstorm at planetocentric latitude 35° north that reached a latitudinal extension of 10,000 kilometres-comparable in size to a 'Great White Spot'-about three weeks after it started in early December 2010. The visible plume consists of high-altitude clouds that overshoot the outermost ammonia cloud layer owing to strong vertical convection, as is typical for thunderstorms. The flash rates of this storm are about an order of magnitude higher than previous ones, and peak rates larger than ten per second were recorded. This main storm developed an elongated eastward tail with additional but weaker storm cells that wrapped around the whole planet by February 2011. Unlike storms on Earth, the total power of this storm is comparable to Saturn's total emitted power. The appearance of such storms in the northern hemisphere could be related to the change of seasons, given that Saturn experienced vernal equinox in August 2009.

  13. Global Lightning Variations Caused by Changes in Thunderstorm Flash Rate and by Changes in Number of Thunderstorms

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Rothkin, K.; Stevenson, D.; Boccippio, D.

    2000-01-01

    Global lightning activity is highly variable on many time scales. This variability is attributable to changes in the flash rate per thunderstorm, the number of thunderstorms, or a combination. The TRMM Mission offers lightning observations from the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) in space. Both are used to examine the response of these parameters to thermodynamic forcing of deep convection on the diurnal and annual time scales. On both time scales, the changes in the number of storms dominate the variations in total lightning activity. On the diurnal time scale, the mean flash rate appears to vary with cloud buoyancy, peaking in early afternoon and declining in late afternoon, but the contribution of number of thunderstorms is 2-3 times greater that the mean storm flash rate. On the annual time scale, almost all of the total lightning response is due to changes in the number of storms, with a negligible contribution from flash rate. Evidence is presented that the LIS/OTD 'area' is a meaningful objective identifier for a thunderstorm.

  14. Finite element simulation of thunderstorm electrodynamics in the proximity of the storm

    NASA Technical Reports Server (NTRS)

    Baginski, Michael Edward

    1988-01-01

    Observations of electric fields, Maxwell current density, and air conductivity over thunderstorms were presented. The measurements were obtained using electric field mils and conductivity probes installed on a U2 aircraft as the aircraft passed approximately directly over an active thunderstorm at an altitude of 18 to 20 km. Accurate electrical observations of this type are rare and provide important information to those involved in numerically modeling a thunderstorm. A preliminary set of computer simulations based on this data were conducted and are described. The simulations show good agreement with measurements and are used to infer the thundercloud's charging current and amount of charge exchanged per flash.

  15. A Mesoscale Study of Sea Breeze Enhanced Summer Thunderstorms in the Florida Panhandle

    DTIC Science & Technology

    1992-01-01

    the average number of thunderstorms per year in the United States (After Lutgens and Tarbuck , 1989) .................................... 2 2 GOES 1 km...of Florida has the largest concentration of thunderstorm activity of any state in the nation (Lutgens and Tarbuck 1989). Locations in the Florida...activity in south Florida. Mon. Wea. Rev., 11 2, 686-703. Lutgens, F. K., and E. J. Tarbuck , 1989, The Atmosphere: An Introduction to Meteorology

  16. Modelling Discharge Inception in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Rutjes, C.; Dubinova, A.; Ebert, U.; Buitink, S.; Scholten, O.; Trinh, G. T. N.

    2014-12-01

    The electric fields in thunderstorms can exceed the breakdown value locally near hydrometeors. But are fields high enough and the regions large enough to initiate a streamer discharge? And where would a sufficient density of free electrons come from to start the discharge in the humid air that rapidly binds electrons in water-clusters? To analyse these questions, we investigate the interaction of extensive air showers (created by high energy cosmic particles) with the hydrometeors in a thunderstorm. The extensive air showers are modelled in full detail with CORSIKA (https://web.ikp.kit.edu/corsika/). As extensive air showers are occurring with a frequency that strongly depends on their size, proper stochastics are derived to cope with the large number of random variables in the system, such as: occurrence, primary energy, altitude of first interaction and inclination. These variables are important factors that determine the extremes of the high energy particle flux passing through a hydrometeor at a given altitude. In addition, the interaction of the high energy particle flux with the hydrometeor is modelled with EGS5 (http://rcwww.kek.jp/research/egs/egs5.html). Finally the streamer initiation and evolution is modelled by our 2.5D streamer fluid code that now can include dielectric bodies; here we used the frequency dependent dielectric permittivity of ice, accounting for the fact that ice can not polarise instantaneously.

  17. Depth of origin of solar active regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    Observations show that the individual bipolar magnetic regions on the sun remain confined during their decay phase, with much of the magnetic field pulling back under the surface, in reverse of the earlier emergence. This suggests that the magnetic field is held on a short rein by subsurface forces, for otherwise the region would decay entirely by dispersing across the face of the sun. With the simple assumption that the fields at the surface are controlled from well-defined anchor points at a depth h, it is possible to relate the length l of the bipolar region at the surface to the depth h, with h about equal to l. The observed dimensions l about equal to 100,000 km for normal active regions, and l about equal to 10,000 km for the ephemeral active regions, indicate comparable depths of origin. More detailed observational studies of the active regions may be expected to shed further light on the problem.

  18. The Relationship Between Total Cloud Lightning Behavior and Radar Derived Thunderstorm Structure

    DTIC Science & Technology

    2010-03-01

    the Dallas-Fort Worth, Texas and the Tucson, Arizona areas from 2006– 2009 , was used to relate lightning to other thunderstorm parameters. A...Lightning and thunderstorm data from the Dallas-Fort Worth, Texas and the Tucson, Arizona areas from 2006– 2009 , was used to relate lightning to...deviations of lightning activity was compared to the rate of change in the flash rate (Schultz et al. 2009 ). The algorithms Schultz used showed

  19. Thunderstorm-asthma and pollen allergy.

    PubMed

    D'Amato, G; Liccardi, G; Frenguelli, G

    2007-01-01

    Thunderstorms have been linked to asthma epidemics, especially during the pollen seasons, and there are descriptions of asthma outbreaks associated with thunderstorms, which occurred in several cities, prevalently in Europe (Birmingham and London in the UK and Napoli in Italy) and Australia (Melbourne and Wagga Wagga). Pollen grains can be carried by thunderstorm at ground level, where pollen rupture would be increased with release of allergenic biological aerosols of paucimicronic size, derived from the cytoplasm and which can penetrate deep into lower airways. In other words, there is evidence that under wet conditions or during thunderstorms, pollen grains may, after rupture by osmotic shock, release into the atmosphere part of their content, including respirable, allergen-carrying cytoplasmic starch granules (0.5-2.5 microm) or other paucimicronic components that can reach lower airways inducing asthma reactions in pollinosis patients. The thunderstorm-asthma outbreaks are characterized, at the beginning of thunderstorms by a rapid increase of visits for asthma in general practitioner or hospital emergency departments. Subjects without asthma symptoms, but affected by seasonal rhinitis can experience an asthma attack. No unusual levels of air pollution were noted at the time of the epidemics, but there was a strong association with high atmospheric concentrations of pollen grains such as grasses or other allergenic plant species. However, subjects affected by pollen allergy should be informed about a possible risk of asthma attack at the beginning of a thunderstorm during pollen season.

  20. JSC thunderstorm experiment results. [electric fields, lightning, and effects on space shuttle operations

    NASA Technical Reports Server (NTRS)

    1977-01-01

    To gain more insight into the various effects of lightning and thunderstorms on future shuttle vehicle launch and landing operations, an experiment was conducted to obtain data on the nature of electric fields in the vicinity of thunderstorms and particularly in the region of cumulonimbus cloud anvils during their various stages of build-up, maturity, and dissipation. These data supplement the airborne electric field data collected during the summer of 1975 in support of the Apollo Soyuz Test Project and the Viking launches. A Learjet aircraft was outfitted with four special electric field meters for collecting data. The onboard aircraft radar was also used to investigate cells embedded in large thunderstorm systems such as those found in frontal and squall line activities. Data were collected from 33 storm cells and used to establish a launch criteria to preclude triggering lightning during shuttle vehicle operations in close proximity to thunderstorms.

  1. Distinct weekly cycles of thunderstorms and a potential connection with aerosol type in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Li, Zhanqing; Liu, Lin; Zhou, Lijing; Cribb, Maureen; Zhang, Fang

    2016-08-01

    This study identified distinct weekly cycles in thunderstorm activities and convection-associated variables in two regions of China dominated by different types of aerosol during the summers of 1983-2005. In both regions, visibility has similar weekly cycle: lower on weekdays than on weekends. Barring any possible "natural" weekly cycles, the findings of the poorest and best visibility on Friday and Monday, respectively, point to the weekly variations in anthropogenic emissions. However, the phases of the thunderstorm cycles between the two regions were different. In central China, thunderstorms occurred more frequently from Saturday to Monday than on other days. The cycles were out of phase in southeast China. It is hypothesized that the phase difference is associated with aerosol type. In central China aerosol absorption is strong, which suppresses convection more on weekdays. In southeast China aerosols are less absorbing but more hygroscopic, which helps invigorate thunderstorms more on weekdays.

  2. Clustering and synchronization of lightning flashes in adjacent thunderstorm cells from lightning location networks data

    NASA Astrophysics Data System (ADS)

    Yair, Yoav Y.; Aviv, Reuven; Ravid, Gilad

    2009-05-01

    We analyzed sequences of lightning flashes in several thunderstorms on the basis of data from various ground-based lightning location systems. We identified patterns of clustering and synchronicity of flashes in separate thunderstorm cells, distanced by tens to hundreds of kilometers from each other. This is in-line with our early findings of lightning synchronicity based on space shuttle images (Yair et al., 2006), hinting at a possible mutual electromagnetic coupling of remote thunderstorms. We developed a theoretical model that is based on the leaky integrate-and-fire concept commonly used in models of neural activity, in order to simulate the flashing behavior of a coupled network of thunderstorm cells. In this type of network, the intensity of the electric field Ei within a specific region of thunderstorm (i) grows with time until it reaches the critical breakdown value and generates a lightning flash while its electric field drops to zero, simultaneously adding a delta E to the intensity of the internal electric field in all thundercloud cells (Ej,k,l…) that are linked to it. The value of ΔE is inversely proportional to the distance between the "firing" cell i and its neighbors j, k, l; we assumed that thunderstorm cells are not identical and occupy a grid with random spacing and organization. Several topologies of the thunderstorm network were tested with varying degrees of coupling, assuming a predetermined probability of links between active cells. The results suggest that when the group coupling in the network is higher than a certain threshold value, all thunderstorm cells will flash in a synchronized manner.

  3. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  4. TRMM Satellite Sees Thunderstorms in the South

    NASA Video Gallery

    The TRMM satellite flew above tornado spawning thunderstorms in the southern United States on May 9, 2014 at 0115 UTC. This simulated 3-D TRMM animation shows the location of intense radar echoes w...

  5. Fermi Sees Antimatter-Hurling Thunderstorms

    NASA Video Gallery

    NASA's Fermi Gamma-ray Space Telescope has detected beams of antimatter launched by thunderstorms. Acting like enormous particle accelerators, the storms can emit gamma-ray flashes, called TGFs, an...

  6. Towering Thunderstorms Seen in Typhoon Neoguri

    NASA Video Gallery

    On July 8, NASA's TRMM satellite saw powerful thunderstorms reaching heights above 16.3 km (about 10.1 miles) in an intense feeder band southeast Neoguri's center. Rain was falling at a rate of ove...

  7. A possible explanation for the dominant effect of South American thunderstorms on the Carnegie curve

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Rycroft, M. J.; Fuellekrug, M.; Papitashvili, V. O.; Keremidarska, V. I.

    2006-02-01

    The Carnegie curve shows the variation of the vertical electric field near the Earth's surface with Universal Time. The largest of the three maxima in this variation occurs at the time of maximum thunderstorm activity over the Americas, although this is weaker than that over Africa. This paradoxical effect may be explained by the fact that South American thunderstorms are close to the magnetic dip equator, whereas most African thunderstorms occur over the Congo at a higher (Southern) dip latitude. Kartalev et al. [2004. A quantitative model of the effect of global thunderstorms on the global distribution of ionospheric electrostatic potential. Journal of Atmospheric and Solar-Terrestrial Physics 66, 1233 1240.] modeled the global distribution of ionospheric electrostatic potential where the equatorial (within 11 magnetic latitude of the equator) lower ionosphere accumulates all upward thunderstorm currents into one line—the dip equator. Currents flow on a spherical shell of the magnetic coordinates model, and so change the distribution of the ionospheric potential on a global scale. That global distribution of ionospheric potential determines the vertical electric field near the Earth's surface everywhere. Thus, the Carnegie curve reflects preferentially the longitudinal distribution of thunderstorms within 11 of the magnetic dip equator.

  8. A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast

    PubMed Central

    Hoggard, Timothy; Shor, Erika; Müller, Carolin A.; Nieduszynski, Conrad A.; Fox, Catherine A.

    2013-01-01

    Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. PMID:24068963

  9. Modelling Discharge Inception in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Dubinova, Anna; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trihn, Gia Thi Ngoc

    2015-04-01

    The electric fields in thunderstorms can exceed the breakdown value locally near hydrometeors. But are fields high enough and the regions large enough to initiate a streamer discharge? And where would a sufficient density of free electrons come from to start the discharge in the humid air that rapidly binds electrons in water-clusters? At the AGU last December we presented our results with the focus on the first question: the streamer initiation, simulated by our 2D cylindrical symmetric streamer fluid code, that now can include dielectric bodies. We use the frequency dependent dielectric permittivity of ice, accounting for the fact that ice can not polarise instantaneously. This important fact makes it harder to develop a streamer. For the second question we showed that an extensive air shower can produce the needed electron density to start a discharge and that relativistic breakdown is not needed. But what are the 'optimal' parameters in question to be expected in a thunderstorm? Which hydrometeor sizes and shapes work and which do not? How (in)homogeneous is the electron density produced by the extensive air shower? And how much will this influence the streamer initiation? The problem is very multi-scale; there are 4 orders of magnitude in time, 8 orders of magnitude in length and 16 orders of magnitude in energy; from high energetic cosmic particles entering the atmosphere down to streamer development near a hydrometeor. We have now one-to-one connected the high energy domain, usually >> 0.5 MeV, of the extensive air shower, down to thermal (~0.03 eV) energies. We simulate the extensive air showers in full detail with CORSIKA [1] and than extend only the electromagnetic part, with use of EGS5 [2] and our group developed codes [3]. We will present the (in)homogeneity of the produced free electron density by extensive air showers and it's influence on the streamer initiation problem. [1] https://web.ikp.kit.edu/corsika/ [2] http://rcwww.kek.jp/research/egs/egs5

  10. Nowcasting Thunderstorm Anvil Clouds Over KSC/CCAFS

    NASA Technical Reports Server (NTRS)

    Short, David A.; Sardonia, James E.; Lambert, Winifred C.; Wheeler, Mark M.

    2004-01-01

    Electrified thunderstorm anvil clouds extend the threat of natural and triggered lightning to space launch and landing operations far beyond the immediate vicinity of thunderstorm cells. The deep convective updrafts of thunderstorms transport large amounts of water vapor, super-cooled water droplets and ice crystals into the upper troposphere, forming anvil clouds, which are then carried downstream by the prevailing winds in the anvil formation layer. Electrified anvil clouds have been observed over the space launch and landing facilities of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS), emanating from thunderstorm activity more than 200 km distant. Space launch commit criteria and flight rules require launch and landing vehicles to avoid penetration of the non-transparent portion of anvil clouds. The life cycles of 167 anvil clouds over the Florida peninsula and its coastal waters were documented using GOES-8 visible imagery on 50 anvil case days during the months of May through July 2001. Anvil clouds were found to propagate at the speed and direction of upper-tropospheric winds in the layer from 300-to-l50 mb, approximately 9.4 km to 14 km, with an effective average transport lifetime of 2 hours and a standard deviation of approximately 30 minutes. The effective lifetime refers to the time required for the nontransparent leading edge of an anvil cloud to reach its maximum extent before beginning to dissipate. The propagation and lifetime information was incorporated into the design, construction and implementation of an objective short-range anvil forecast tool based on upper-air observations, for use on the Meteorological Interactive Data Display System within the Range Weather Operations facility of the 45th Weather Squadron at CCAFS and the Spaceflight Meteorology Group at Johnson Space Center.

  11. Study on the recent severe thunderstorms in northern India

    NASA Astrophysics Data System (ADS)

    Vishwanathan, Gokul; Narayanan, Sunanda; Mrudula, G.

    2016-05-01

    Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere which is associated with thunder, squall lines and lightening. On 13 April 2010, a severe storm struck parts of Bangladesh and eastern India which lasted about 90 minutes, with the most intense portion spanning 30-40 minutes. The severe Thunderstorm on 13th April 2010 spawned a large tornado, which lasted about 20 minutes and was the first tornado recorded in Bihar history. In the year 2015, Bihar experienced a similar storm on 21 April during which multiple microbursts were observed. Various meteorological parameters have been analyzed to study the factors affecting the development of the thunderstorm. Satellite images from KALPANA and Meteosat has been analyzed to capture the temporal and spatial evolution of these storms. The satellite images show the development of a convective clouds system in the early afternoon hours which developed further into the severe storms by late evening. The analysis carried out further using K-index, lifted index, CAPE etc also shows the development of multiple cells of convection. Further analysis of these storms is presented in the paper.

  12. Electric field soundings through thunderstorms

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  13. Thunderstorm hazards flight research - Program overview

    NASA Technical Reports Server (NTRS)

    Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    The NASA thunderstorm hazards research program, designed to study the effects of lightning strikes on the design and operation of aircraft, is described. An all-weather F-106B is instrumented to document the EM characteristics of direct and nearby strikes, measure the field parameters and analyze the ambient atmospheric content, and film the strikes; X-ray detectors are also on board, along with instrumentation for determining the frequency of visible light waveforms. Data is either recorded on-board or sent by telemetry to base, while ground based telemetry is used to direct the pilot and craft into regions of optimal lightning activity. The sensing apparatus is described, and ongoing programs to correlate different storm parameters are reviewed, along with operational procedures and safety precautions. Continued use of the craft through 152 storms and 16 direct hits, with no fatalities or circuit breaker throw, confirms the ability of metal skinned aircraft to withstand lightning strikes; data gathered from flights during 1980 are provided.

  14. Prediction of severe thunderstorms over Sriharikota Island by using the WRF-ARW operational model

    NASA Astrophysics Data System (ADS)

    Papa Rao, G.; Rajasekhar, M.; Pushpa Saroja, R.; Sreeshna, T.; Rajeevan, M.; Ramakrishna, S. S. V. S.

    2016-05-01

    Operational short range prediction of Meso-scale thunderstorms for Sriharikota(13.7°N ,80.18°E) has been performed using two nested domains 27 & 9Km configuration of Weather Research & Forecasting-Advanced Research Weather Model (WRF- ARW V3.4).Thunderstorm is a Mesoscale system with spatial scale of few kilometers to a couple of 100 kilometers and time scale of less than an one hour to several hours, which produces heavy rain, lightning, thunder, surface wind squalls and down-bursts. Numerical study of Thunderstorms at Sriharikota and its neighborhood have been discussed with its antecedent thermodynamic stability indices and Parameters that are usually favorable for the development of convective instability based on WRF ARW model predictions. Instability is a prerequisite for the occurrence of severe weather, the greater the instability, the greater will be the potential of thunderstorm. In the present study, K Index, Total totals Index (TTI), Convective Available Potential Energy (CAPE), Convective Inhibition Energy (CINE), Lifted Index (LI), Precipitable Water (PW), etc. are the instability indices used for the short range prediction of thunderstorms. In this study we have made an attempt to estimate the skill of WRF ARW predictability and diagnosed three thunderstorms that occurred during the late evening to late night of 31st July, 20th September and 2nd October of 2015 over Sriharikota Island which are validated with Local Electric Field Mill (EFM), rainfall observations and Chennai Doppler Weather Radar products. The model predicted thermodynamic indices (CAPE, CINE, K Index, LI, TTI and PW) over Sriharikota which act as good indicators for severe thunderstorm activity.

  15. Example of reduced turbulence during thunderstorm outflow

    SciTech Connect

    Bowen, B.M.

    1996-06-01

    This research note describes the effects of a gust front passage resulting from a thunderstorm outflow on wind, turbulence, and other basic meteorological variables in northern Mew Mexico. The purpose of this note is to explain how a thunderstorm outflow can greatly reduce horizontal and vertical turbulence and produce strong winds, thereby promoting the rapid transport of elevated pollutant concentrations. Another goal is to demonstrate the usefulness of a sodar in combination with a tower to provide data for dispersion and transport calculations during an emergency response. Hopefully, this note will motivate other researchers to analyze and document the effects of thunderstorms on turbulence and dispersion by routine monitoring or by experimentation. 12 refs., 3 figs., 1 tab.

  16. Middle Atmosphere Electrodynamics During a Thunderstorm

    NASA Technical Reports Server (NTRS)

    Croskey, Charles L.

    1996-01-01

    Rocket-based instrumentation investigations of middle atmospheric electrodynamics during thunderstorms were conducted in coordination with balloon-measurements at Wallops Island, Virginia. Middle atmosphere electrodynamics and energy coupling are of particular importance to associated electrical processes at lower and higher altitudes. Objectives of this research effort included: (1) investigation of thunderstorm effects on middle atmosphere electrical structure, including spatial and temporal dependence; (2) characterization of electric field transients and the associated energy deposited at various altitudes; (3) evaluation of the vertical Maxwell current density over a thunderstorm to study the coupling of energy to higher altitudes; and (4) investigation of the coupling of energy to the ionosphere and the current supplied to the 'global circuit.'

  17. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  18. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  19. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  20. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  1. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  2. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    NASA Astrophysics Data System (ADS)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  3. Thunderstorm monitoring and lightning warning, operational applications of the Safir system

    NASA Technical Reports Server (NTRS)

    Richard, Philippe

    1991-01-01

    During the past years a new range of studies have been opened by the application of electromagnetic localization techniques to the field of thunderstorm remote sensing. VHF localization techniques were used in particular for the analysis of lightning discharges and gave access to time resolved 3-D images of lightning discharges within thunderclouds. Detection and localization techniques developed have been applied to the design of the SAFIR system. This development's main objective was the design of an operational system capable of assessing and warning in real time for lightning hazards and potential thunderstorm hazards. The SAFIR system main detection technique is the long range interferometric localization of thunderstorm electromagnetic activity; the system performs the localization of intracloud and cloud to ground lightning discharges and the analysis of the characteristics of the activity.

  4. A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin T.; Blakeslee, Richard J.; Baginski, Michael E.

    1992-01-01

    A thorough examination of the results of a time-dependent computer model of a dipole thunderstorm revealed that there are numerous similarities between the time-averaged electrical properties and the steady-state properties of an active thunderstorm. Thus, the electrical behavior of the atmosphere in the vicinity of a thunderstorm can be determined with a formulation similar to what was first described by Holzer and Saxon (1952). From the Maxwell continuity equation of electric current, a simple analytical equation was derived that expresses a thunderstorm's average current contribution to the global electric circuit in terms of the generator current within the thundercloud, the intracloud lightning current, the cloud-to-ground lightning current, the altitudes of the charge centers, and the conductivity profile of the atmosphere. This equation was found to be nearly as accurate as the more computationally expensive numerical model, even when it is applied to a thunderstorm with a reduced conductivity thundercloud, a time-varying generator current, a varying flash rate, and a changing lightning mix.

  5. Near absence of lightning in torrential rainfall producing Micronesian thunderstorms

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu

    1990-12-01

    The near absence of lightning in the torrential rain producing, tall, convective clouds at Ponape, Micronesia was studied by the use of special radiosondes. A unique rainwater accumulation process involving frozen raindrop-hail formation was found to take place in a narrow layer of altitude just above the freezing level. However, the concentration of frozen particles, including graupel, was one order of magnitude less than that required to trigger lightning. This may be the reason for the weakness of electrical activity in Micronesian thunderstorms.

  6. Terrestrial Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2012-01-01

    Intense of gamma rays have been observed by five different space-borne detectors. The TGFs have hard spectra, with photons extending to over 50 MeV. Most of these flashes last less than a millisecond. Relativistic electrons and positrons associated with TGFs are also seen by orbiting instruments In a special mode of operation, the Fermi-GBM detectors are now detecting an average of about one TGF every two hours. The Fermi spacecraft has been performing special orientations this year which has allowed the Fermi-LAT instrument also detect TGFs. The most likely origin of these high energy photons is bremsstrahlung radiation from electrons, produced by relativistic runaway electrons in intense electric fields within or above thunderstorm regions; the altitude of origin is uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. The observational aspects of TGFs will be the main focus of this talk; theoretical aspects remain speculative.

  7. Investigation Spectral Image the Upper Atmosphere over Regions with Thunderstorm Using Data from the Sv

    NASA Astrophysics Data System (ADS)

    Grichshenko, Valentina

    2016-07-01

    The results of the two-level experiment, including registration of the electric field in the surface layer during thunderstorm on TSCRS (Almaty) and synchronous image the top of the cloud cover over the test range from satellite "Terra / MODIS" are presented. Spectral image of the upper atmosphere over of the thunderstorm related to lighting discharge has been created. As a result of the processing of satellite images Terra / MODIS created a new index of "lightning discharge," which will be used to search for and investigation of optical phenomena (such as Sprites, Elves, Blue Jet) over the regions with thunderstorm activity. The developed technique of space picture processing will be used for studying optical phenomena above other regions too.

  8. Thunderstorms observed by radio astronomy Explorer 1 over regions of low man made noise

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1974-01-01

    Radio Astronomy Explorer (RAE) I observations of thunderstorms over regions of low man-made noise levels are analyzed to assess the satellite's capability for noise source differentiation. The investigation of storms over Australia indicates that RAE can resolve noise generation due to thunderstorms from the general noise background over areas of low man-made noise activity. Noise temperatures observed by RAE over stormy regions are on the average 10DB higher than noise temperatures over the same regions in the absence of thunderstorms. In order to determine the extent of noise contamination due to distant transmitters comprehensive three dimensional computer ray tracings were generated. The results indicate that generally, distant transmitters contribute negligibly to the total noise power, being 30DB or more below contributions arriving from an area immediately below the satellite.

  9. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    USGS Publications Warehouse

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  10. Urban Heat Islands and Summertime Convective Thunderstorms in Atlanta: Three Case Studies

    NASA Technical Reports Server (NTRS)

    Bornstein, Robert; Lin, Qinglu; Goodman, H. Michael (Technical Monitor)

    1999-01-01

    Data from both 27 sites in the Atlanta mesonet surface meteorological network and eight National Weather Service sites were analyzed for the period from 26 July to 3 August 1996. Analysis of the six precipitation events over the city during the period (each on a different day) showed that its urban heat island (UHI) induced a convergence zone that initiated three of the storms at different times of the day, i.e., 0630,0845, and 1445 EDT. Previous analysis has shown that New York City (NYC) effects summer daytime thunderstorm formation and/or movement. That study found that during nearly calm regional flow conditions the NYC UHI initiates convective activity. Moving thunderstorms, however, tended to bifurcate and to move around the city, due to its building barrier effect. The current Atlanta results thus agree with the NYC results with respect to thunderstorm initiation.

  11. Observations of thunderstorm-related 630 nm airglow depletions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Bhatt, A.

    2015-12-01

    The Midlatitude All-sky imaging Network for Geophysical Observations (MANGO) is an NSF-funded network of 630 nm all-sky imagers in the continental United States. MANGO will be used to observe the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network is actively being deployed and will ultimately consist of nine all-sky imagers. These imagers form a network providing continuous coverage over the western United States, including California, Oregon, Washington, Utah, Arizona and Texas extending south into Mexico. This network sees high levels of both medium and large scale wave activity. Apart from the widely reported northeast to southwest propagating wave fronts resulting from the so called Perkins mechanism, this network observes wave fronts propagating to the west, north and northeast. At least three of these anomalous events have been associated with thunderstorm activity. Imager data has been correlated with both GPS data and data from the AIRS (Atmospheric Infrared Sounder) instrument on board NASA's Earth Observing System Aqua satellite. We will present a comprehensive analysis of these events and discuss the potential thunderstorm source mechanism.

  12. More frequent showers and thunderstorms under a warming climate: evidence observed in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Wong, S.; Lambrigtsen, B.; Wang, T.; Chen, L. L.; Von, D.

    2015-12-01

    This study uses historical records of synoptic observations over northern Eurasia to examine changing frequency of precipitation associated with large synoptic events versus convective and thunderstorm activities. We found days associated with showers and precipitation accompanied by thunderstorms have been increasing in general during the study period of 1966-2000 while the total wet day frequency has been decreasing in all seasons. This study suggests increasing convective and severe weather-related precipitation events may be a significant contributor to higher intensity and more extreme precipitation under a warming climate.

  13. Hazardous thunderstorms over Lake Victoria: climate change and early warnings

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole

    2016-04-01

    Severe thunderstorms and associated high waves represent a constant threat to the 200,000 fishermen operating on Lake Victoria. According to the International Red Cross, presumably 3000 to 5000 fishermen die every year on the lake, thereby substantially contributing to the global death toll from natural disasters. Despite the long-known bad reputation of Lake Victoria, operational early warning systems are lacking and possible future changes of these extreme thunderstorms are unknown. Here we present the first dedicated high-resolution, coupled lake-land-atmosphere climate projection for the African Great Lakes region and analyse it in combination with new satellite data and coarser-scale ensemble projections. Our model projections for the end-of-the-century indicate that Lake Victoria amplifies the future intensification of extreme precipitation seen over the surrounding land. Under a high-emission scenario (RCP8.5), the 1% most extreme over-lake precipitation may intensify up to four times faster compared to surrounding land. Our findings are consistent with an ensemble of coarser-scale climate projections for Africa, but the lower skill of the ensemble over Lake Victoria constrains its applicability. Interestingly, the change in extremes contrasts to the change in average over-lake precipitation, which is projected to decrease by -6% for the same period. By further analyzing the high-resolution output we are able to explain this different response: while mesoscale circulation changes cause the average precipitation decline, the response of extremes is essentially thermodynamic. Finally, the study of the satellite-based detection of severe thunderstorms revealed a strong dependency of the nighttime storm intensity over Lake Victoria on the antecedent daytime land storm activity. This highlights the potential of this new satellite product for predicting intense storms over Lake Victoria. Overall, our results indicate a new major hazard associated with climate

  14. The correlation between the gamma-ray flashes and electron bursts associated with thunderstorm activity in the near-Earth space

    NASA Astrophysics Data System (ADS)

    Savushkina, L. V.; Aleksandrin, S. Yu; Galper, A. M.; Koldashov, S. V.

    2017-01-01

    This paper is dedicated to study of the interrelation between gamma-ray flashes of atmospheric origin, associated with lightning discharges, and high-energy electron bursts registered in the near-Earth space below the radiation belt. The database of high-energy electron bursts in the energy range of 3-30 MeV obtained in ARINA and VSPLESK satellite experiments and the database of terrestrial gamma-ray flashes with energies up to 17 MeV registered by the NASA RHESSI satellite are used in the work. The results of the analysis of electron bursts and gamma ray flashes that coincide in time and located at the same L-shell are presented at this work.

  15. DNA replication origin activation in space and time.

    PubMed

    Fragkos, Michalis; Ganier, Olivier; Coulombe, Philippe; Méchali, Marcel

    2015-06-01

    DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

  16. Predicting thunderstorm evolution using ground-based lightning detection networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  17. Total Lightning Flashrate and Severe Weather at Ground in a Thunderstorm at a Tropical Station

    NASA Astrophysics Data System (ADS)

    Pawar, S. D.; Murugavel, P.; Gopalakrishnan, V.

    2009-12-01

    Many experimental and theoretical studies in the past have used the lightning characteristics to categorize the thunderstorms and predict the severity of thunderstorms, because many times severe weather is found to associate with unique lightning characteristics. However, the robust relationship between storm dynamics, severe weather, and lightning activity have not been clearly established. The north-eastern part of India is known to experience very severe thunderstorms during the pre-monsoon season, locally known as ‘Nor-wester’. Measurements of electric field made below such severe thunderstorm at Guwahati, India are reported here. Lightning flash rate increases drastically to about 84 flashes per minute during the active stage of the thunderstorm from about 15 flashes per minute during the initial phase, which lasted for about 7 minutes. Sudden increase in lightning flash rate ( ‘lightning jump’) of about 65 fpm/min is also observed in the beginning of active stage. The dissipating stage is marked by the slow and steady decrease in lightning frequency. Despite very high flash rate during the active stage, no severe weather conditions are observed at the ground. Skew-t graph at Guwahati shows large Convectively Available Potential Energy (CAPE) in the temperature range between -5 degC to - 20 degC. It is proposed that the short duration of the active stage may be the reason for the non-observance of severe weather conditions at the ground. It is also concluded that the vertical distribution of CAPE also may play some role in the non-observance of severe weather at ground during this thunderstorm. Further, electric field changes and recovery curves suggest that the thundercloud with normal positive dipole charge structure during initial phase. However, active and dissipation stages of thunderstorm indicate presence of strong Lower Positive Charge Centers (LPCC). During active and dissipation stages, all electric field change after a lightning discharge

  18. Field studies of the electrification of thunderstorms

    NASA Technical Reports Server (NTRS)

    Christian, H.; Holmes, C. R.; Moore, C. B.; Gaskell, W.; Illingworth, A. J.; Latham, J.

    1979-01-01

    Many theories have been advanced to explain the development of electric fields in thunderstorms, culminating in lightning, but thorough appraisal of these has been hampered by the lack of reliable and comprehensive observational data on the electrical characteristics, microphysical properties and dynamical behavior of the storms. A major field experiment (the Thunderstorm Research International Project) has been in progress for three years, in an effort to remedy this deficiency, and this paper describes some of this work and the results emanating from it. Major tools in this investigation are: an instrumented aircraft capable of penetrating the clouds; dual-Doppler and fast scanning radars; field-change and precipitation-recording networks; and an acoustic system for reconstructing the location of points on the lightning channels. The early results indicate a strong correlation between updraughts, precipitation and high fields. Circumstantial evidence points towards the presence of ice as being crucial to rapid field growth.

  19. Water vapor - Stratospheric injection by thunderstorms.

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Lojko, M. S.; Petersen, E. V.

    1971-01-01

    Infrared radiometric inference measurements of the mass of water vapor injected into the lower stratosphere and upper troposphere by a number of plains thunderstorms show an average threefold increase over the fair weather background mass of water vapor. These airborne measurements, made from the National Aeronautics and Space Administration Convair 990 jet laboratory, extended over a sample size much larger than that possible by balloon and other techniques.

  20. The Severe Thunderstorm Electrification and Precipitation Study.

    NASA Astrophysics Data System (ADS)

    Lang, Timothy J.; Miller, L. Jay; Weisman, Morris; Rutledge, Steven A.; Barker, Llyle J., III; Bringi, V. N.; Chandrasekar, V.; Detwiler, Andrew; Doesken, Nolan; Helsdon, John; Knight, Charles; Krehbiel, Paul; Lyons, Walter A.; Macgorman, Don; Rasmussen, Erik; Rison, William; Rust, W. David; Thomas, Ronald J.

    2004-08-01

    During May July 2000, the Severe Thunderstorm Electrification and Precipitation Study (STEPS) occurred in the High Plains, near the Colorado Kansas border. STEPS aimed to achieve a better understanding of the interactions between kinematics, precipitation, and electrification in severe thunderstorms. Specific scientific objectives included 1) understanding the apparent major differences in precipitation output from super-cells that have led to them being classified as low precipitation (LP), classic or medium precipitation, and high precipitation; 2) understanding lightning formation and behavior in storms, and how lightning differs among storm types, particularly to better understand the mechanisms by which storms produce predominantly positive cloud-to-ground (CG) lightning; and 3) verifying and improving microphysical interpretations from polarimetric radar. The project involved the use of a multiple-Doppler polarimetric radar network, as well as a time-of-arrival very high frequency (VHF) lightning mapping system, an armored research aircraft, electric field meters carried on balloons, mobile mesonet vehicles, instruments to detect and classify transient luminous events (TLEs; e.g., sprites and blue jets) over thunderstorms, and mobile atmospheric sounding equipment. The project featured significant collaboration with the local National Weather Service office in Goodland, Kansas, as well as outreach to the general public. The project gathered data on a number of different cases, including LP storms, supercells, and mesoscale convective systems, among others. Many of the storms produced mostly positive CG lightning during significant portions of their lifetimes and also exhibited unusual electrical structures with opposite polarity to ordinary thunderstorms. The field data from STEPS is expected to bring new advances to understanding of supercells, positive CG lightning, TLEs, and precipitation formation in convective storms.

  1. CloudSat Image of Tropical Thunderstorms Over Africa

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.

  2. Application of the Schumann resonance spectral decomposition in characterizing the main African thunderstorm center

    NASA Astrophysics Data System (ADS)

    Dyrda, Michał; Kulak, Andrzej; Mlynarczyk, Janusz; Ostrowski, Michał; Kubisz, Jerzy; Michalec, Adam; Nieckarz, Zenon

    2014-12-01

    In this paper we present a new method for quantifying the main tropical thunderstorm regions based on extremely low frequency (ELF) electromagnetic wave measurements from a single station—the Hylaty ELF station in Central Europe. Our approach is based on Schumann resonance (SR) measurements, which we apply as an example to thunderstorms in Africa. By solving the inverse problem, using the SR power spectrum templates derived analytically, we calculate distances to the most powerful thunderstorm centers and present simplified 1-D thunderstorm lightning activity "maps" in absolute units C2m2/s. We briefly describe our method of SR power spectrum analysis and present how this method is used with real observational data. We obtained the monthly lightning activity maps of the African storm centers with a spatial resolution of 1° and temporal resolution of 10 min for January and August 2011. This allowed us to study the varying location and intensities of the African storm centers in different seasons of the year. A cross check of the obtained lightning activity maps with Tropical Rainfall Measuring Mission satellite data recorded by the Lightning Imaging Sensor and the derived correlation coefficients between SR and optical data were used to validate the proposed method. We note that modeling a maximum possible number of resonance modes in the SR power spectra (in our case, seven resonances) is essential in application of the proposed approach.

  3. A review of thunderstorm electrification processes

    SciTech Connect

    Saunders, C.P.R. )

    1993-04-01

    Recent developments in the area of thunderstorm electrification processes are reviewed. These processes have two main divisions: (a) convective, in which particles charged by ion capture are moved by convection currents to strengthen the electric field in the cloud, and (b) processes involving charge transfer during particle interactions, following which oppositely charged particles move apart in the updraft to form the observed charge centers. Type-b processes are further subdivided into inductive (relying on the preexistence of an electric field) and noninductive charge-transfer mechanisms, Field and laboratory evidence points to the importance of interactions between particles of the ice phase, in the presence of liquid water droplets, in separating electric charge in thunderstorms. Recent experimental studies have investigated the dependence of charge transfer on the size and relative velocity of the interacting particles and have determined the dependence of the sign of the charge transfer on temperature and cloud liquid water content. Field data upon which the laboratory simulations are based are obtained by increasingly sophisticated airborne and ground-based means. Calculations of electric field growth using experimental charge-transfer data in numerical models of the dynamical and microphysical development of thunderstorms show agreement with observations, although further refinement is required. Some directions for future research are outlined. 121 refs., 2 figs.

  4. Runaway breakdown and electrical discharges in thunderstorms

    NASA Astrophysics Data System (ADS)

    Milikh, Gennady; Roussel-Dupré, Robert

    2010-12-01

    This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.

  5. Schumann Resonance spectra decomposition method and studies of the locations of the African thunderstorm centres

    NASA Astrophysics Data System (ADS)

    Dyrda, Michal; Kulak, Andrzej; Mlynarczyk, Janusz; Ostrowski, Michal; Kubisz, Jerzy; Michalec, Adam; Nieckarz, Zenon

    2014-05-01

    The idea, that the global atmospheric electric circuit is driven by global lightning activity was introduced at the beginning of the last century. Today, the different observational methods are used from satellites to the radio observations performed in the extremely low frequency (ELF) range to evaluate local as well as global lightning activity, its spatial and temporal variability and influence on our planet and Earth's climate. The ground-based thunderstorms observations, particularly ELF, also allow the measurements of the dipole moment of discharges. Global lightning activity excites the Earth-ionosphere cavity and the produced electromagnetic radiation is responsible for generating the Schumann resonance (SR). The interaction of the standing and travelling waves leads to asymmetric shape of the observational SR power spectra picks, which was noticed by Kułak et al. (2006). They proposed a spectral decomposition method, what allows to separate the resonant field from the travelling wave contribution, which can be dominant at small distances from the sources. In such approach, one can apply the inverse problem solution for determining a distance of the dominant signal source. The distances to the thunderstorm centres are calculated using the numerical as well as the analytical models for the electromagnetic waves propagation in the Earth-ionosphere cavity. The ELF electromagnetic waves, recorded by Hylaty ELF station, located in South-East of Poland are used to derive the distances to the most powerful thunderstorm centres located in Africa and hence to obtain 1-D thunderstorm lightning activity maps. The observational data taken in January and August 2011 were binned in 10 minute intervals and SR power spectra were derived. Then a curve describing seven asymmetric SR maxima was fitted to the spectrum for each time interval. We use chi-squared test to compare the resulted decomposed power spectra with curves obtained within the considered numerical and

  6. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed.

  7. The effect of cosmic rays on thunderstorm electricity

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.

    1975-01-01

    The inflow of charges of small ions, formed by cosmic rays, into thunderstorm cells is estimated on the basis of rocket measurements of ionic concentrations below 90 km. Out of the two processes that form the thunderstorm charge (generation and separation of charges), the former is supposed to be caused by cosmic rays, and the nature of separation is assumed to be the same as in other thunderstorm theories.

  8. Extreme Thunderstorms as Seen by Satellite

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2014-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ (decibels relative to Z) reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI and AMSR-E to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For SSMI sensors carried on five DMSP satellites examined so far, the lowest thunderstorm-related brightness temperatures have been from Argentina in November

  9. A neural network short-term forecast of significant thunderstorms

    SciTech Connect

    Mccann, D.W. )

    1992-09-01

    Neural networks, an artificial-intelligence tools that excels in pattern recognition, are reviewed, and a 3-7-h significant thunderstorm forecast developed with this technique is discussed. Two neural networks learned to forecast significant thunderstorms from fields of surface-based lifted index and surface moisture convergence. These networks are sensitive to the patterns that skilled forecasters recognize as occurring prior to strong thunderstorms. The two neural networks are combined operationally at the National Severe Storm Forecast Center into a single hourly product that enhances pattern-recognition skills. Examples of neural network products are shown, and their potential impact on significant thunderstorm forecasting is demonstrated. 22 refs.

  10. Electric Field Profiles over Hurricanes, Tropical Cyclones, and Thunderstorms with an Instrumented ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Mach, Doug M.; Blakeslee, Richard J.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Over the past several years, we have flown a set of calibrated electric field meters (FMs) on the NASA high altitude ER-2 aircraft over oceanic and landbased storms in a number of locations. These included tropical oceanic cyclones and hurricanes in the Caribbean and Atlantic ocean during the Third and Fourth Convection And Moisture EXperiment (CAMEX-3,1998; CAMEX-4, 2001), thunderstorms in Florida during the TExas FLorida UNderflight (TEFLUN, 1998) experiment, tropical thunderstorms in Brazil during the Tropical Rainfall Measuring Mission - Large Scale Biosphere-Atmosphere Experiment in Amazonia (TRMM LBA, 1999), and finally, hurricanes and tropical cyclones in the Caribbean and Western Pacific and thunderstorms in Central America during the Tropical Cloud Systems and Processes (TCSP, 2005) mission. Between these various missions we have well over 50 sorties that provide a unique insights on the different electrical environment, evolution and activity occurring in and around these various types of storms. In general, the electric fields over the tropical oceanic storms and hurricanes were less than a few kilovolts per meter at the ER-2 altitude, while the lightning rates were low. Land-based thunderstorms often produced high lightning activity and correspondingly higher electric fields.

  11. Analysis of heavy-rain-producing elevated thunderstorms in the MO-KS-OK region of the United States

    NASA Astrophysics Data System (ADS)

    McCoy, Laurel

    Most elevated thunderstorms in the United States occur in the Midwest, with a maximum in eastern Kansas (Colman 1990a). Elevated thunderstorms are defined as thunderstorms that occur over a very stable surface boundary layer (Colman 1990b). They may be better defined as convection occurring over a stable layer near the surface, essentially cut off from surface-based instability (Corfidi et al. 2006). Elevated mesoscale convective systems produce 30-70% of the total rainfall during the warm season over the Central Plains (Moore et al. 2003). 1.1 Purpose Elevated thunderstorms are still not very well understood. Elevated convection can take a variety of forms, and can be very similar to surface-based convection. Corfidi et al. (2006) describe the challenge of finding the originating layer of parcels making up a convective cloud. Surface-based convection often incorporates elevated parcels, and elevated convection can bring surface parcels into its updraft. The distinction between the two types of storms can be defined by where most of the parcels originate. This becomes especially hard to distinguish as convection transitions from surface-based to elevated and vice-versa (Corfidi et al. 2006). Colman (1990a), in his study, used three criteria to delineate elevated thunderstorm station reports from surface-based thunderstorm station reports: 1) The observation must lie on the cold side of an analyzed front that shows a clear contrast in temperature, dew-point temperature, and wind. 2) The station's wind, temperature, and dew-point temperature must be qualitatively similar to the immediately surrounding values. 3) The surface air on the warm side of the analyzed front must have a higher equivalent potential temperature (thetae) than the air on the cold side of the front (Colman 1990a). These three criteria have been incorporated into several studies since for the evaluation of elevated convection (e.g., Grant 1995; Rochette and Moore 1996; Moore et al. 1998; Moore et

  12. Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy

    NASA Astrophysics Data System (ADS)

    Bonelli, P.; Marcacci, P.

    2008-10-01

    Thunderstorms and their ground effects, such as flash floods, hail, lightning, strong winds, and tornadoes, are responsible for most weather damages in northern Italy, especially in the warm season from May to September. A nowcasting and warning system focused on severe thunderstorm events would be useful to reduce risks for people involved in outside activities and for electric, telecommunication, and sensitive industrial business. C-band radar and Lighting Location Systems provide useful, fast and high resolution data for the detection of convective systems and for following their dynamics. The whole of northern Italy is covered by radar with a resolution of 1 km and by a lightning network with a mean accuracy of 0.5 km on the single point of impact. The authors present an algorithm developed for tracking high intensity storm cells by means of radar and lightning data. Application to northern Italy reveals that tracking thunderstorm cells can be used as an alert system that may help prevent damages from extreme weather, as well as allowing for studying the correlation among lightning, rainfall and tornado occurrence. Assessing the algorithm skill is also discussed, and a forecast verification method is described and applied for the duration of a thunderstorm season.

  13. Middle atmospheric electric fields over thunderstorms

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1992-01-01

    This grant has supported a variety of investigations all having to do with the external electrodynamics of thunderstorms. The grant was a continuation of work begun while the PI was at the Aerospace Corporation (under NASA Grant NAS6-3109) and the general line of investigation continues today under NASA Grants NAG5-685 and NAG6-111. This report will briefly identify the subject areas of the research and associated results. The period actually covered by the grant NAG5-604 included the following analysis and flights: (1) analysis of five successful balloon flights in 1980 and 1981 (under the predecessor NASA grant) in the stratosphere over thunderstorms; (2) development and flight of the Hy-wire tethered balloon system for direct measurement of the atmospheric potential to 250 kV (this involved multiple tethered balloon flight periods from 1981 through 1986 from several locations including Wallops Island, VA, Poker Flat and Ft. Greely, AK and Holloman AFB, NM.); (3) balloon flights in the stratosphere over thunderstorms to measure vector electric fields and associated parameters in 1986 (2 flights), 1987 (4 flights), and 1988 (2 flights); and (4) rocket-borne optical lightning flash detectors on two rocket flights (1987 and 1988) (the same detector design that was used for the balloon flights listed under #3). In summary this grant supported 8 stratospheric zero-pressure balloon flights, tethered aerostat flights every year between 1982-1985, instruments on 2 rockets, and analysis of data from 6 stratospheric flights in 1980/81.

  14. National thunderstorm frequencies for the contiguous United States

    SciTech Connect

    Changery, M.J.

    1981-11-01

    Individual thunderstorm beginning and ending times were extracted from surface manuscript records for 450 stations for the general period of record 1948-1977. Mean number of thunderstorms were determined for each location on a monthly and annual basis and then analyzed for the contiguous U.S.

  15. Modeling pollutant dispersion within a tornadic thunderstorm

    SciTech Connect

    Pepper, D.W.

    1981-01-01

    A three-dimensional numerical model was developed to calculate ground-level air concentration and deposition of particles entrained in a tornadic thunderstorm. The rotational characteristics of the tornadic storm are within the larger mesoscale flow of the storm system and transported with the vortex. Turbulence exchange coefficients are based on empirical values. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume. Results indicate that updrafts and downdrafts, coupled with scavenging of particles by precipitation, account for most of the material being deposited closer to the site than anticipated. Approximately 5% of the pollutant is dispersed into the stratosphere.

  16. Climate and Weather Analysis of Afghanistan Thunderstorms

    DTIC Science & Technology

    2011-09-01

    level where it occupies the western center of a 1,676–1,981 m high triangular valley basin surrounded by mountains (Figure 5). Kabul is flanked to the...peak elevation of 5,485 m. The walls of the basin rise steeply into the hills and mountains around Kabul , 9 which average 2,745–3,350 m in...development. We have investigated methods for improving thunderstorm forecasting in and near Kabul , Afghanistan, by: (1) analyzing interannual to hourly

  17. A subsynoptic environment associated with two intermountain severe thunderstorm events

    SciTech Connect

    Schwartz, M.N.; Andrews, G.L.

    1985-07-01

    Severe thunderstorms in the basin and plateau regions of the western US can have a significant influence on the economy and population of the area. In general, thunderstorms in the intermountain region (i.e., the region between the Cascade Range and Rocky Mountains) are associated with two processes: (1) orographic effects and (2) dynamic features. We investigated two severe thunderstorm events that affected the Columbia Basin during the evenings of 23 April and 30 April 1981. These events were associated with similar synoptic patterns and appeared to exhibit the same characteristics throughout their life histories. The purpose of this paper is to (1) bring attention to severe thunderstorms in the intermountain region, (2) identify possible mechanisms and processes associated with the 23 April and 30 April thunderstorm events, and (3) aid forecasters in recognizing synoptic and subsynoptic features that may initiate and maintain convection in this region. 13 refs., 12 figs.

  18. Thunderstorms, cosmic rays, and solar-lunar influences

    SciTech Connect

    Lethbridge, M.D.

    1990-08-20

    A study of cosmic rays and thunderstorm frequency has shown a decrease in thunderstorms at the time of high cosmic rays and an increase in thunderstorms 2-4 days later. This was done by superposed epoch analysis of thunderstorms over the eastern two thirds of the United States for 1957-1976. When data for spring and fall months were used, the minimum deepened. When high cosmic rays near full and new moon for these months were key days, the minimum deepened again and was significant at less than the 0.01% level. It is believed that when the Sun, Earth, and Moon are aligned, particulate matter in the lower stratosphere is modulated and acted upon by cosmic rays, bringing about an immediate decrease in thunderstorms.

  19. Relationships between cloud-to-ground flashes and hydrometeors in a thunderstorm in Fujian province

    NASA Astrophysics Data System (ADS)

    Zhang, Tinglong; Zhao, Guo; Wei, Changxiong; Gao, Yi; Yu, Hai; Zhou, Fangcong

    2017-02-01

    A local severe thunderstorm, occurring near the coastal region in Fujian province, China, was chosen to study the relationships between hydrometeors and cloud-to-ground (CG) flash activities. This thunderstorm case study was carried out by using vehicle-mounted X-band dual-polarization radar on August 28, 2009. On the basis of polarimetric parameters, the hydrometeors were identified by fuzzy logic hydrometeor classification (FLHC). The results show that the thunderstorm grew into a squall line with a maximum flash rate of 85 fl/5 min in mature stage. Negative CG constituted approximately 97.3% of total CG flashes. More than 90% of the CG flashes occurred in the convective regions, and less than 10% occurred in the stratiform region. The strong echo volume in convective region had a positive linear correlation with the CG flashes rate. Seven types of hydrometeors, namely, rain (RN), aggregates (AG), low-density graupel (LDG), high-density graupel (HDG), vertically aligned ice crystals (VI), drizzle-light rain (DR), and ice crystals (IC), have been classified; the first five of the hydrometeors are predominant in the thunderstorm. RN is located mainly in regions warmer than 0 °C; the HDG is located in the middle and lower regions colder than 0 °C; and LDG and VI mainly appear in the upper portion of the thunderstorm. The ice hydrometeors seemly had a close relation with CG flashes because the total CG flash rates had a strong positive correlation with the grid number of AG, LDG, HDG, and VI in the convective region. However, the sufficient ice hydrometeors did not produce frequent CG flashes in the stratiform region. It suggests that the dynamic structure is also very important for triggering lightning flashes.

  20. Detection of multiple terrestrial gamma-ray flashes from thunderstorm systems

    NASA Astrophysics Data System (ADS)

    Ursi, A.; Marisaldi, M.; Tavani, M.; Casella, D.; Sanò, P.; Dietrich, S.

    2016-11-01

    Since their discovery, Terrestrial Gamma ray Flashes (TGFs) exhibited an evident correlation with thunderstorms and lightning activity. The fleeting nature of these events and the heavy absorption of gamma rays in the lowest atmospheric layers severely hamper the observation of this phenomenon, making us reveal just a small fraction of a probably much wider population. As each thunderstorm produces a large amount of lightning discharges during its lifetime, it is reasonable that even a large amount of TGFs are produced during the same event. However, detection of multiple TGFs coming from the same storm is difficult to perform, as it requires the constant monitoring of a spatially limited geographic region: this is not an easy task to perform for satellites on high-inclination orbits that make them experience nonnegligible latitudinal shifts at each orbital passage over a certain region, preventing the monitoring of a limited geographic region throughout successive overpasses. In this perspective, the quasi-equatorial (2.5°) orbit of the Astrorivelatore Gamma ad Immagini LEggero (AGILE) satellite ensures a minimal latitudinal shift when flying over the same region at successive passages, allowing for the follow-up of thunderstorms in time. We exploit this feature of the AGILE satellite to search for multiple TGFs coming from the same geographic region and, in particular, from the same thunderstorm. We carry out this search on the AGILE TGF database (2009-2016), ending up with a sample of 79 systems producing more than one TGF, both during the same overpass and up to four overpasses after. Data acquired by geostationary meteorological satellites and cross correlation with radio sferics detected by World Wide Lightning Location Network are used to support this investigation. The AGILE satellite for the first time clearly establishes the multiple occurrences of TGFs from convective thunderstorms, both on timescales of minutes to several hours.

  1. Overshooting top behavior of three tornado-producing thunderstorms

    NASA Technical Reports Server (NTRS)

    Umenhofer, T. A.

    1975-01-01

    The behavior of overshooting tops and jumping cirrus observed in three tornado-producing thunderstorms during the 1974 Learjet Cloud-Truth experiment is discussed. An investigation of temporal changes in the heights of overshooting domes (conglomerations of overshooting tops with diameters less than 1 km) reveals several distinctive features associated with tornadic events. There is a gradual decrease in dome height prior to tornado touchdown. Minimum dome activity occurred 5 min after, 5.5 min before, and at approximately the same time as the tornadic event in the storms observed. In all cases, dramatic dome growth at a rate of 17 to 23 m/sec immediately followed the occurrence of the minimum dome heights. There is evidence that tornado production is insensitive to the pre-touchdown maximum dome heights between 1 and 3 km.

  2. Particle Acceleration Inside Thunderstorms and the Variation in Source Spectra of Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Cramer, Eric; Dwyer, Joseph R.; Briggs, Michael S.; Rassoul, Hamid K.

    2016-03-01

    One of the unresolved questions in the atmospheric sciences is the origin of Terrestrial Gamma-ray Flashes (TGFs). These flashes are short but intense gamma ray bursts emanating from Earth's atmosphere. This phenomenon has been observed by gamma ray detectors on orbiting satellites, e.g. NASA Fermi, intended to study astrophysical phenomena such as Gamma-ray Bursts. TGFs are thought to originate inside thunderstorms where electrons can be accelerated and emit radiation in the multi MeV range due to bremsstrahlung interactions with air molecules. These so called ``runaway electrons'' are seeded from cosmic ray air showers hitting the Earth's atmosphere from (extra) galactic sources. In this work, we present a Monte Carlo model that simulates particle physics inside a thunderstorm region. The subsequent transport of high energy gamma rays through the Earth's atmosphere and up to satellite orbit is also included. We show that by varying both the potential difference and the ambient electric field inside the thundercloud, different electron and photon energy distributions are produced. This effect may be detectable by orbiting spacecraft, and therefore serves as a method to remote sense the electric fields that exist inside thunderstorms.

  3. Nowcasting and assessing thunderstorm risk on the Lombardy region (Italy)

    NASA Astrophysics Data System (ADS)

    Bonelli, P.; Marcacci, P.; Bertolotti, E.; Collino, E.; Stella, G.

    2011-06-01

    The problem of severe thunderstorm risk in the Lombardy region (Italy) is serious. In fact during the warm season many thunderstorms (TS) occur in high density populated area located between the river Po and the Alps. In the year 2003, about 90 TS caused damage to people, houses, cars, agriculture and electrical lines. About 30 municipalities undergo damage by tornadoes. The 2003 summer was not particularly anomalous with respect to others for TS activity. In this region storms are well detected by some C-band radars and the Meteosat satellites, but the study of the correlation between these variables and the TS severity needs the collection of many met-data at the ground. Unfortunately the lack of a fine mesh met-station network forces the use of local press news or subjective reports to identify the impact of TS. Since 2006 ERSE has been collaborating with the Lombardy Region - Civil Protection Service/Office - in developing and testing a system to detect and nowcast severe thunderstorms, STAF (Storm Track Alert and Forecast). STAF is a nowcasting tool based on Radar and MSG (Meteosat Second Generation) data that selects only severe TS, tracks them and produces alert messages to users. In order to evaluate the severity of a TS, a crucial issue for STAF is the correlation between variables detected by the remote-sensing instruments and the effects at the ground. The paper describes a method to classify the severity of a TS by computing an index named "probability of damage" (PD). The index has been carried out by means of a storm archive, where radar and satellite data are stored together with damages reports from newspapers, all collected in 2003 summer. The index has been verified during the 2009 summer, when STAF was applied in a field test involving a group of Civil Protection observers and users. The results of this test are reported in the paper. The test has been also an occasion for verifying the effectiveness of information provided by STAF to selected

  4. Tune Up to Literacy: Original Songs and Activities for Kids

    ERIC Educational Resources Information Center

    Balkin, Al

    2009-01-01

    Encourage literacy with twenty original songs by musician and educator Al Balkin! Children's and school librarians will welcome "Tune Up to Literacy", a handy package of music and activities that musically introduces and reinforces crucial literacy concepts such as the alphabet, vowels, consonants, nouns, verbs, adjectives, sentence construction,…

  5. Thunderstorm asthma due to grass pollen.

    PubMed

    Suphioglu, C

    1998-08-01

    It is widely known and accepted that grass pollen is a major outdoor cause of hay fever. Moreover, grass pollen is also responsible for triggering allergic asthma, gaining impetus as a result of the 1987/1989 Melbourne and 1994 London thunderstorm-associated asthma epidemics. However, grass pollen is too large to gain access into the lower airways to trigger the asthmatic response and micronic particles <5 micro m are required to trigger the response. We have successfully shown that ryegrass pollen ruptures upon contact with water, releasing about 700 starch granules which not only contain the major allergen Lol p 5, but have been shown to trigger both in vitro and in vivo IgE-mediated responses. Furthermore, starch granules have been isolated from the Melbourne atmosphere with 50-fold increase following rainfall. Free grass pollen allergen molecules have been recently shown to interact with other particles including diesel exhaust carbon particles, providing a further transport mechanism for allergens to gain access into lower airways. In this review, implication and evidence for grass pollen as a trigger of thunderstorm-associated asthma is presented. Such information is critical and mandatory for patient education and training in their allergen avoidance programs. More importantly, patients with serum IgE to group 5 allergens are at high risk of allergic asthma, especially those not protected by medication. Therefore, a system to determine the total atmospheric allergen load and devising of an effective asthma risk forecast is urgently needed and is subject to current investigation.

  6. Hazardous thunderstorm intensification over Lake Victoria.

    PubMed

    Thiery, Wim; Davin, Edouard L; Seneviratne, Sonia I; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P M

    2016-09-23

    Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius-Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change.

  7. Thunderstorm vertical velocities estimated from satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1979-01-01

    Infrared geosynchronous satellite data with an interval of 5 min between images are used to estimate thunderstorm top ascent rates on two case study days. A mean vertical velocity of 3.4 m/sec for 23 clouds is calculated at a height of 8.7 km. This upward motion is representative of an area of approximately 10 km on a side. Thunderstorm mass flux of approximately 2 times 10 to the 8th power kg/sec is calculated, which compares favorably with previous estimates. There is a significant difference in the mean calculated vertical velocity between elements associated with severe weather reports (omega = 4.9 m/sec) and those with no such reports (2.4 m/sec). Calculations were made using a velocity profile for an axially symmetric jet to estimate the peak updraft velocity. For the largest observed omega value of 7.8 m/sec the calculation indicates a peak updraft of approximately 50 m/sec.

  8. A review of severe thunderstorms in Australia

    NASA Astrophysics Data System (ADS)

    Allen, John T.; Allen, Edwina R.

    2016-09-01

    Severe thunderstorms are a common occurrence in Australia and have been documented since the first European settlement in 1788. These events are characterized by large damaging hail in excess of 2 cm, convective wind gusts greater than 90 km h- 1 and tornadoes, and contribute a quarter of all natural hazard-related losses in the country. This impact has lead to a growing body of research and insight into these events. In this article, the state of knowledge regarding their incidence, distribution, and the resulting hail, tornado, convective wind, and lightning risk will be reviewed. Applying this assessment of knowledge, the implications for forecasting, the warning process, and how these events may respond to climate change and variability will also be discussed. Based on this review, ongoing work in the field is outlined, and several potential avenues for future research and exploration are suggested. Most notably, the need for improved observational or proxy climatologies, the forecasting guidelines for tornadoes, and the need for a greater understanding of how severe thunderstorms respond to climate variability are highlighted.

  9. Hazardous thunderstorm intensification over Lake Victoria

    PubMed Central

    Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P. M.

    2016-01-01

    Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius–Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change. PMID:27658848

  10. Hazardous thunderstorm intensification over Lake Victoria

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P. M.

    2016-09-01

    Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius-Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change.

  11. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    PubMed Central

    Goldar, Arach; Marsolier-Kergoat, Marie-Claude; Hyrien, Olivier

    2009-01-01

    Although replication proteins are conserved among eukaryotes, the sequence requirements for replication initiation differ between species. In all species, however, replication origins fire asynchronously throughout S phase. The temporal program of origin firing is reproducible in cell populations but largely probabilistic at the single-cell level. The mechanisms and the significance of this program are unclear. Replication timing has been correlated with gene activity in metazoans but not in yeast. One potential role for a temporal regulation of origin firing is to minimize fluctuations in replication end time and avoid persistence of unreplicated DNA in mitosis. Here, we have extracted the population-averaged temporal profiles of replication initiation rates for S. cerevisiae, S. pombe, D. melanogaster, X. laevis and H. sapiens from genome-wide replication timing and DNA combing data. All the profiles have a strikingly similar shape, increasing during the first half of S phase then decreasing before its end. A previously proposed minimal model of stochastic initiation modulated by accumulation of a recyclable, limiting replication-fork factor and fork-promoted initiation of new origins, quantitatively described the observed profiles without requiring new implementations. The selective pressure for timely completion of genome replication and optimal usage of replication proteins that must be imported into the cell nucleus can explain the generic shape of the profiles. We have identified a universal behavior of eukaryotic replication initiation that transcends the mechanisms of origin specification. The population-averaged efficiency of replication origin usage changes during S phase in a strikingly similar manner in a highly diverse set of eukaryotes. The quantitative model previously proposed for origin activation in X. laevis can be generalized to explain this evolutionary conservation. PMID:19521533

  12. Thunderstorm-related asthma: what happens and why.

    PubMed

    D'Amato, G; Vitale, C; D'Amato, M; Cecchi, L; Liccardi, G; Molino, A; Vatrella, A; Sanduzzi, A; Maesano, C; Annesi-Maesano, I

    2016-03-01

    The fifth report issued by the Intergovernmental Panel on Climate Change forecasts that greenhouse gases will increase the global temperature as well as the frequency of extreme weather phenomena. An increasing body of evidence shows the occurrence of severe asthma epidemics during thunderstorms in the pollen season, in various geographical zones. The main hypotheses explaining association between thunderstorms and asthma claim that thunderstorms can concentrate pollen grains at ground level which may then release allergenic particles of respirable size in the atmosphere after their rupture by osmotic shock. During the first 20-30 min of a thunderstorm, patients suffering from pollen allergies may inhale a high concentration of the allergenic material that is dispersed into the atmosphere, which in turn can induce asthmatic reactions, often severe. Subjects without asthma symptoms, but affected by seasonal rhinitis can also experience an asthma attack. All subjects affected by pollen allergy should be alerted to the danger of being outdoors during a thunderstorm in the pollen season, as such events may be an important cause of severe exacerbations. In light of these observations, it is useful to predict thunderstorms and thus minimize thunderstorm-related events.

  13. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons

    SciTech Connect

    Chilingarian, A.; Daryan, A.; Arakelyan, K.; Hovhannisyan, A.; Mailyan, B.; Melkumyan, L.; Hovsepyan, G.; Chilingaryan, S.; Reymers, A.; Vanyan, L.

    2010-08-15

    The Aragats Space Environmental Center facilities continuously measure fluxes of neutral and charged secondary cosmic ray incidents on the Earth's surface. Since 2003 in the 1-minute time series we have detected more than 100 enhancements in the electron, gamma ray, and neutron fluxes correlated with thunderstorm activities. During the periods of the count rate enhancements, lasting tens of minutes, millions of additional particles were detected. Based on the largest particle event of September 19, 2009, we show that our measurements support the existence of long-lasting particle multiplication and acceleration mechanisms in the thunderstorm atmosphere. For the first time we present the energy spectra of electrons and gamma rays from the particle avalanches produced in the thunderstorm atmosphere, reaching the Earth's surface.

  14. A study of the effects of thunderstorm distance and topography on the atmospheric electric field

    NASA Astrophysics Data System (ADS)

    Kastelis, Nikolaos; Kourtidis, Konstantinos; Kotroni, Vasiliki; Lagouvardos, Konstantinos

    2015-04-01

    The atmospheric electric field, though not measured as routinely as other meteorological variables, can be utilized in a variety of applications, including that of approaching or developing thunderstorms recognition. In the current work, the operational active radius of an electric field mill located at the boundary between a valley and a mountain range is evaluated for such use, using also lightning location data from the ZEUS network. The active radius of the electric field mill was around 15 km for the mountain range, while for the valley region it increased to about 30 km. The potential gradient (PG) declined exponentially as distance to thunderclouds increased. The PG response to approaching charged clouds was also studied using the most severe thunderstorm of the study period as a test case.

  15. Thunderstorm phobia in dogs: an Internet survey of 69 cases.

    PubMed

    McCobb, E C; Brown, E A; Damiani, K; Dodman, N H

    2001-01-01

    To learn more about predispositions for, signs, and progression of canine thunderstorm phobia, a survey for owners was posted on the Internet. Questions addressed signalment, age of onset, behavior during storms, and treatments tried. Sixty-nine responses were received. Herding dogs and herding crossbreeds accounted for the majority of dogs. Seventeen of 41 dogs with a known age of onset began exhibiting thunderstorm phobia <1 year of age. Various characteristic responses of dogs to storms were described. Improved knowledge of the demographics of thunderstorm phobia, its development, and presentation will assist in understanding the genesis and progression of the condition.

  16. Thunderstorms over the Pacific Ocean as seen from STS-64

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Multiple thunderstorm cells leading to Earth's atmosphere were photographed on 70mm by the astronauts of STS-64, orbiting aboard the Space Shuttle Discovery 130 nautical miles away. These thunderstorms are located about 16 degrees southeast of Hawaii in the Pacific Ocean. Every stage of a developing thunderstorm is documented in this photo: from the building cauliflower tops to the mature anvil phase. The anvil or the tops of the clouds being blown off are at about 50,000 feet. The light line in the blue atmosphere is either clouds in the distance or an atmospheric layer which is defined but different particle sizes.

  17. A conceptual model of nontornadic supercell thunderstorms

    NASA Astrophysics Data System (ADS)

    Majcen, Mario

    2009-07-01

    This study uses dual-Doppler observations of nontornadic supercells obtained by ground-based mobile Doppler radars and idealized numerical simulations in order to develop a conceptual model of a nontornadic supercell, particularly at low levels and on the submesocyclone scale. In the first part of this dissertation, five nontornadic supercell thunderstorms are analyzed using high-resolution dual-Doppler radar data obtained by a pair of mobile ground-based radars. Three out of five observed supercells had well-developed low-level rotation. The observed low-level kinematic fields of the nontornadic supercells with low-level rotation are compared to the low-level kinematic fields of tornadic supercells that have been previously documented. It is determined that the observed low-level kinematic structure of nontornadic supercells is qualitatively very similar to the low-level kinematic structure of tornadic supercells, notably two out of three observed nontornadic storms had a "bent-back" rear-flank gust front just like the tornadic supercells, and one of those also had a dual rear-flank gust front, a feature that previously has been observed only in tornadic supercells. The low-level mesocyclone in the nontornadic supercells extends to the lowest analysis level in the three cases having low-level rotation, but the low-level circulation in nontornadic mesocyclones is much weaker than in tornadic mesocyclones. Also, the divergence associated with rear-flank downdrafts is stronger in nontornadic supercells than in tornadic supercells. Vortex line analyses in the observed nontornadic storms show that the vorticity field structure is consistent with baroclinic generation of horizontal vorticity and subsequent tilting into the vertical by an updraft, as has been shown in recent observational and numerical simulation studies. In the second part of this study, a series of idealized, dry three-dimensional numerical simulations are used to gain some understanding of the

  18. A study of some effects of vertical shear on thunderstorms

    NASA Technical Reports Server (NTRS)

    Connell, J.

    1976-01-01

    Evidence is presented for the existence of vortices and vortex pairs in thunderstorms. A preliminary parameterized model of the nonthermal generation of thunderstorm vortices derived from field observations of storms and laboratory observations of a jet in crossflow is reported, together with an explanation of how such a model might be used to guide analysis of mesoscale rawinsonde, radar, and satellite data toward an improved capability for prediction of thunderstorm motion and growth. Preliminary analyses of radar and satellite data from Atmospheric Variability Experiment IV are used with available rawinsonde data to develop a correlation between wind shears, instability, and thunderstorm motion and development. Specific studies are recommended for best development of concepts and utilization of data from Atmospheric Variability and Atmospheric Variability Severe Storms Experiments.

  19. NASA's TRMM Satellite Sees Heavy Rain in Arizona Thunderstorms

    NASA Video Gallery

    This simulated flyby of NASA's TRMM satellite on Sept. 8 saw rain falling at a rate of over 62 mm (2.4 inches) per hour in some downpours over Arizona. Some thunderstorm tops reached heights of 13....

  20. Thunderstorms and ground-based radio noise as observed by radio astronomy Explorer 1

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1973-01-01

    Radio Astronomy Explorer (RAE) data were analyzed to determine the frequency dependence of HF terrestrial radio noise power. RAE observations of individual thunderstorms, mid-ocean areas, and specific geographic regions for which concommitant ground based measurements are available indicate that noise power is a monotonically decreasing function of frequency which conforms to expectations over the geographic locations and time periods investigated. In all cases investigated, active thunderstorm regions emit slightly higher power as contrasted to RAE observations of the region during meteorologically quiet periods. Noise levels are some 15 db higher than predicted values over mid-ocean, while in locations where ground based measurements are available a maximum deviation of 5 db occurs. Worldwide contour mapping of the noise power at 6000 km for five individual months and four observing frequencies, examples of which are given, indicate high noise levels over continental land masses with corresponding lower levels over ocean regions.

  1. Observation of successive TGFs produced by the same thunderstorm systems throughout their lifetime

    NASA Astrophysics Data System (ADS)

    Ursi, Alessandro; Marisaldi, Martino; Tavani, Marco; Argan, Andrea; Dietrich, Stefano; Casella, Daniele; Sanò, Paolo

    2016-04-01

    Since their discovery in early 1990s, Terrestrial Gamma-ray Flashes (TGFs) exhibited a clear correlation with thunderstorm activity. The elusive nature of these events and the strong absorption of gamma-rays in the lowest layers of the atmosphere dramatically limits our observation of this phenomenon: the few missions currently detecting TGFs are probably revealing just the tip of the iceberg of a much wider population. Theoretical models, radar measurements and cross-correlations with radio waves emitted by lightning strokes suggest every storm could, in principle, produce a large number of gamma flashes throughout its entire lifetime: however, observation of more TGFs from the same thunderstorm system, even after several hours, is difficult to perform, because successive passes on the same latitude region by high-inclination orbit satellites are shifted westward by ~25°. In this perspective, the AGILE mission has a privileged role, thanks to its unique quasi equatorial (2.5° inclination) orbit, that allows for the follow-up of the same geographic region on the equator at each orbital passage. In more than 8 years activity, we identify tens of cases of more TGFs coming from the same thunderstorm system, either during the same passage, or in the successive passages. We take advantage of data acquired by meteorological satellites to characterize the meteorological scenario associated to these events.

  2. The operational recognition of supercell thunderstorm environments and storm structures

    SciTech Connect

    Moller, A.R.; Doswell, C.A. III; Foster, M.P.; Woodall, G.R. ||

    1994-09-01

    Supercell thunderstorm forecasting and detection is discussed, in light of the disastrous weather events that often accompany supercells. Operational forecasters in the National Weather Service (NWS) can employ conceptual models of the supercell, and of the meteorological environments that produce supercells, to make operational decisions scientifically. The presence of a mesocyclone is common to all supercells, but operational recognition of supercells is clouded by the various radar and visual characteristics they exhibit. The notion of a supercell spectrum is introduced in an effort to guide improved operational detection of supercells. An important part of recognition is the anticipation of what potential exists for supercells in the prestorm environment. Current scientific understanding suggests that cyclonic updraft rotation originates from streamwise vorticity (in the storm`s reference frame) within its environment. A discussion of how storm-relative helicity can be used to evaluate supercell potential is given. An actual supercell event is employed to illustrate the usefulness of conceptual model visualization when issuing statements and warnings for supercell storms. Finally, supercell detection strategies using the advanced datasets from the modernized and restructured NWS are described.

  3. The challenge of predicting flash floods from thunderstorm rainfall.

    PubMed

    Gupta, Hosin; Sorooshian, Soroosh; Gao, Xiaogang; Imam, Bisher; Hsu, Kuo-Lin; Bastidas, Luis; Li, Jailun; Mahani, Shayesteh

    2002-07-15

    A major characteristic of the hydrometeorology of semi-arid regions is the occurrence of intense thunderstorms that develop very rapidly and cause severe flooding. In summer, monsoon air mass is often of subtropical origin and is characterized by convective instability. The existing observational network has major deficiencies for those regions in providing information that is important to run-off generation. Further, because of the complex interactions between the land surface and the atmosphere, mesoscale atmospheric models are currently able to reproduce only general features of the initiation and development of convective systems. In our research, several interrelated components including the use of satellite data to monitor precipitation, data assimilation of a mesoscale regional atmospheric model, modification of the land component of the mesoscale model to better represent the semi-arid region surface processes that control run-off generation, and the use of ensemble forecasting techniques to improve forecasts of precipitation and run-off potential are investigated. This presentation discusses our ongoing research in this area; preliminary results including an investigation related to the unprecedented flash floods that occurred across the Las Vegas valley (Nevada, USA) in July of 1999 are discussed.

  4. Extensive air showers, lightning, and thunderstorm ground enhancements

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-09-01

    For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.

  5. Thunderstorm-environment interactions determined with three-dimensional trajectories

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1980-01-01

    Diagnostically determined three dimensional trajectories were used to reveal some of the scale interaction processes that occur between convective storms and their environment. Data from NASA's fourth Atmospheric Variability Experiment are analyzed. Two intense squall lines and numerous reports of severe weather occurred during the period. Convective storm systems with good temporal and spatial continuity are shown to be related to the development and movement of short wave circulation systems aloft that propagate eastward within a zonal mid tropospheric wind pattern. These short wave systems are found to produce the potential instability and dynamic triggering needed for thunderstorm formation. The environmental flow patterns, relative to convective storm systems, are shown to produce large upward air parcel movements in excess of 50 mb/3h in the immediate vicinity of the storms. The air undergoing strong lifting originates as potentially unstable low level air traveling into the storm environment from southern and southwestern directions. The thermo and hydrodynamical processes that lead to changes in atmospheric structure before, during, and after convective storm formation are described using total time derivatives of pressure or net vertical displacement, potential temperature, and vector wind calculated by following air parcels.

  6. Active medulloblastoma enhancers reveal subgroup-specific cellular origins.

    PubMed

    Lin, Charles Y; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C; Ju, Bensheng; Orr, Brent A; Zeid, Rhamy; Polaski, Donald R; Segura-Wang, Maia; Waszak, Sebastian M; Jones, David T W; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V; Millen, Kathleen J; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O; Pfister, Stefan M; Bradner, James E; Northcott, Paul A

    2016-02-04

    Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.

  7. Active medulloblastoma enhancers reveal subgroup-specific cellular origins

    PubMed Central

    Lin, Charles Y.; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J.; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C.; Ju, Bensheng; Orr, Brent A.; Zeid, Rhamy; Polaski, Donald R.; Segura-Wang, Maia; Waszak, Sebastian M.; Jones, David T.W.; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V.; Millen, Kathleen J.; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O.; Pfister, Stefan M.; Bradner, James E.; Northcott, Paul A.

    2016-01-01

    Summary Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Using H3K27ac and BRD4 ChIP-Seq, coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-Seq, that are responsible for subgroup divergence and implicate candidate cells-of-origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins. PMID:26814967

  8. Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts

    NASA Astrophysics Data System (ADS)

    Manzato, Agostino

    2007-02-01

    A neural network-based scheme to do a multivariate analysis for forecasting the occurrence and intensity of a meteo event is presented. Many sounding-derived indices are combined together to build a short-term forecast of thunderstorm and rainfall events, in the plain of the Friuli Venezia Giulia region (hereafter FVG, NE Italy). For thunderstorm forecasting, sounding, lightning strikes and mesonet station data (rain and wind) from April to November of the years 1995-2002 have been used to train and validate the artificial neural network (hereafter ANN), while the 2003 and 2004 data have been used as an independent test sample. Two kind of ANNs have been developed: the first is a "classification model" ANN and is built for forecasting the thunderstorm occurrence. If this first ANN predicts convective activity, then a second ANN, built as a "regression model", is used for forecasting the thunderstorm intensity, as defined in a previous article. The classification performances are evaluated with the ROC diagram and some indices derived from the Table of Contingency (like KSS, FAR, Odds Ratio). The regression performances are evaluated using the Mean Square Error and the linear cross correlation coefficient R. A similar approach is applied to the problem of 6 h rainfall forecast in the Friuli Venezia Giulia plain, but in this second case the data cover the period from 1992 to 2004. Also the forecasts of binary events (defined as the occurrence of 5, 20 or 40 mm of maximum rain), made by classification and regression ANN, were compared. Particular emphasis is given to the sounding-derived indices which are chosen in the first places by the predictor forward selection algorithm.

  9. THE ORIGIN OF SEGMENTATION MOTOR ACTIVITY IN THE INTESTINE

    PubMed Central

    Huizinga, Jan D.; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J.; Bardakjian, Berj L.; Parsons, Sean P.; Kunze, Wolfgang A.; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2016-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients, was first described in the late 19th century but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by ICC associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in ICC. PMID:24561718

  10. The origin of segmentation motor activity in the intestine.

    PubMed

    Huizinga, Jan D; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J; Bardakjian, Berj L; Parsons, Sean P; Kunze, Wolfgang A; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2014-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients was first described in the late 19th century, but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by interstitial cells of Cajal associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase-amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in the networks of ICC.

  11. Semi-Autonomous Small Unmanned Aircraft Systems for Sampling Tornadic Supercell Thunderstorms

    NASA Astrophysics Data System (ADS)

    Elston, Jack S.

    This work describes the development of a network-centric unmanned aircraft system (UAS) for in situ sampling of supercell thunderstorms. UAS have been identified as a well-suited platform for meteorological observations given their portability, endurance, and ability to mitigate atmospheric disturbances. They represent a unique tool for performing targeted sampling in regions of a supercell thunderstorm previously unreachable through other methods. Doppler radar can provide unique measurements of the wind field in and around supercell thunderstorms. In order to exploit this capability, a planner was developed that can optimize ingress trajectories for severe storm penetration. The resulting trajectories were examined to determine the feasibility of such a mission, and to optimize ingress in terms of flight time and exposure to precipitation. A network-centric architecture was developed to handle the large amount of distributed data produced during a storm sampling mission. Creation of this architecture was performed through a bottom-up design approach which reflects and enhances the interplay between networked communication and autonomous aircraft operation. The advantages of the approach are demonstrated through several field and hardware-in-the-loop experiments containing different hardware, networking protocols, and objectives. Results are provided from field experiments involving the resulting network-centric architecture. An airmass boundary was sampled in the Collaborative Colorado Nebraska Unmanned Aircraft Experiment (CoCoNUE). Utilizing lessons learned from CoCoNUE, a new concept of operations (CONOPS) and UAS were developed to perform in situ sampling of supercell thunderstorms. Deployment during the Verification of the Origins of Rotation in Tornadoes Experiment 2 (VORTEX2) resulted in the first ever sampling of the airmass associated with the rear flank downdraft of a tornadic supercell thunderstorm by a UAS. Hardware-in-the-loop simulation capability

  12. Utilization of Lightning Data for Recognition and Nowcasting of Severe Thunderstorms

    NASA Astrophysics Data System (ADS)

    Betz, Hans D.

    2010-05-01

    Technological disasters and hazardous natural threats are often correlated or even caused by severe thunderstorms. In particular, when a disaster has happened and subsequent human actions of various kinds are activated, it may be helpful to become aware of severe thunderstorms in the area concerned. For example, airports become closed and squadrons working in the open air are called back when lightning threats are expected or do occur. Although thunderstorm recognition and short-term prediction is not considered as a one of the primary subjects in connection with technological dis-asters, it represents background information that should be available in any case, and with high reliability. The present contribution summarizes the status of storm detection and demonstrates the features of the largest lightning location network in Europe (LINET), developed by the Physics Department of the University of Munich, and operated by nowcast GmbH in Munich. Some of the outstanding features of LINET are briefly highlighted. Further-more, it is explained how nowcasting of storms is achieved with the use of only light-ning data, and in combination with radar and other meteorological data sources. Re-sults of co-operations with other research groups, mainly with DLR (Deutsche Luft- und Raumfahrt), and within the project RegioExAKT, funded by the German Government in order to improve nowcasting at airports, are detailed.

  13. Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Grigoriev, A.; Malyshkin, Y.

    2013-02-01

    High-energy radiation emitted from thunderclouds supposes generation of neutrons in photonuclear reactions of the gamma photons with air. This observation is supported by registration of neutrons during thunderstorm activity in a number of experiments, most of which established correlation with lightning. In this work we perform a modeling of the neutron generation and propagation processes at low atmospheric altitudes using current knowledge of the TGF source properties. On this basis we obtain dosimetric maps of thunderstorm neutron radiation and investigate possible radiation threat for aircraft flights. We estimate the maximal effective neutron dose that potentially can be received on board an aircraft in close proximity to the gamma source, to be of the order of 0.54 mSv over a time less than 0.1 s. This dose is considerably less than estimations obtained earlier for the associated electron and gamma radiation; nevertheless, this value is quite large by itself and under some circumstances the neutron component seems to be the most important for the dosimetric effect. Due to wide distribution in space, the thunderstorm neutrons are thought to also provide a convenient means for experimental investigation of gamma emissions from thunderclouds. To register neutrons from powerful gamma flashes that occur at the tops of thunderclouds, however, in the most favorable case one has to take a location above the 2 km level that is appropriate to mountains or aircraft facilities.

  14. A numerical investigation of tropical island thunderstorms

    SciTech Connect

    Golding, B.W. )

    1993-05-01

    A version of the United Kingdom Meteorological Office mesoscale weather prediction model is used to simulate cases of deep tropical convection from the Island Thunderstorm Experiment off the north coast of Australia. Selected cases contrast rather isolated storm development in a dry basic state, with widespread precipitation from a moist basic state. Excellent agreement is found between the simulations and the observed early shower development on both occasions. Initiation of convection occurs along the sea-breeze front, which is then reinforced by downdraft outflows. Merging of simulated cells occurs where the outflows meet, producing cells with cloud tops above 18 km and updraft speeds of 60 m s[sup [minus]1]. The later movement of the storms is less well represented, probably due to weakness in the storm-mean flow interaction. Comparison of the cases shows that differences in the timing of initiation and intensity of subsequent convection are well captured, and relate to differences in the initial sounding. Mean budgets of heat. moisture, and momentum are presented, and sensitivity of the simulations to resolution, island shape, and model microphysics is explored. 48 refs., 12 figs.

  15. UHF and VHF radar observations of thunderstorms

    NASA Technical Reports Server (NTRS)

    Holden, D. N.; Ulbrich, C. W.; Larsen, M. F.; Rottger, J.; Ierkic, H. M.; Swartz, W.

    1986-01-01

    A study of thunderstorms was made in the Summer of 1985 with the 430-MHz and 50-MHz radars at the Arecibo Observatory in Puerto Rico. Both radars use the 300-meter dish, which gives a beam width of less than 2 degrees even at these long wavelengths. Though the radars are steerable, only vertical beams were used in this experiment. The height resolution was 300 and 150 meters for the UHF and VHF, respectively. Lightning echoes, as well as returns from precipitation and clear-air turbulence were detected with both wavelengths. Large increases in the returned power were found to be coincident with increasing downward vertical velocities at UHF, whereas at VHF the total power returned was relatively constant during the life of a storm. This was attributed to the fact that the VHF is more sensitive to scattering from the turbulence-induced inhomogeneities in the refractive index and less sensitive to scatter from precipitation particles. On occasion, the shape of the Doppler spectra was observed to change with the occurrence of a lightning discharge in the pulse volume. Though the total power and mean reflectivity weighted Doppler velocity changed little during these events, the power is Doppler frequency bins near that corresponding to the updraft did increase substantially within a fraction of a second after a discharge was detected in the beam. This suggests some interaction between precipitation and lightning.

  16. Detection of rotating thunderstorms using satellite imagery

    NASA Technical Reports Server (NTRS)

    Anderson, C. E.; Schlesinger, R.

    1985-01-01

    In the case of the Carolina tornadoes, researchers prepared visible and IR GOES imagery covering the period 2000 Z when the storm entered South Carolina from Georgia until it exited North Carolina at 0200 Z into Virginia. The GOES IR imagery clearly demonstrated that this storm was imbedded in a continuously propagating mesolow with a well defined cold dome. The ground damage track paralleled exactly with the cold dome throughout the storm's life across the Carolinas. There were no advanced very high resolution radiometer (AVHRR) data during the period to allow researchers to inspect the cloud top for warm temperature anomalies. The Carolina storm did exhibit rightward deviating outflow which was oriented about 60 degrees to the 300 mb streamlines. The tornadoes of April 27, 1984 were part of a tornado producing cold front which stretched from Oklahoma to Minnesota. As the front moved eastward it touched off numerous tornadoes in eastern Wisconsin. GOES imagery for this data was prepared and it was strikingly clear that all along the North-South oriented squall line, the individual tunderstorms had cirrus plumes which had remarkable right deviation to the upper air flow. Unlike the Carolina long track supercell cell-mesolow system, these storms were isolated individual thunderstorms which touched off at least 16 tornadoes in eastern Wisconsin stretching from the Milwaukee area on the south to Vilas County in the north. The monster tornado of June 8, 1984 which leveled 90 percent of the village of Barneveld, Wisconsin and killed 9 persons is also discussed.

  17. Deep structure and origin of active volcanoes in China

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2010-12-01

    Recent geophysical studies have provided important constraints on the deep structure and origin of the active intraplate volcanoes in Mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab (e.g., Zhao et al., 2009a), while the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well (Zhao et al., 2009b). The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate) (Lei et al., 2009a). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and Indian slab's deep subduction in the west down to the lower mantle (Lei et al., 2009b; Zhao, 2009). The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions (Zhao, 2009). References Lei, J., D. Zhao, Y. Su, 2009a. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302. Lei, J., D. Zhao, B. Steinberger et al., 2009b. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter. 173, 33-50. Zhao, D., 2009. Multiscale seismic tomography and mantle dynamics. Gondwana Res. 15, 297-323. Zhao, D., Z. Wang, N. Umino, A. Hasegawa, 2009a. Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics 467, 89-106. Zhao, D., Y. Tian, J. Lei, L. Liu, 2009b. Seismic

  18. Thunderstorms over a tropical Indian station, Minicoy: Role of vertical wind shear

    NASA Astrophysics Data System (ADS)

    Chaudhari, H. S.; Sawaisarje, G. K.; Ranalkar, M. R.; Sen, P. N.

    2010-10-01

    In this study, an attempt has been made to bring out the observational aspects of vertical wind shear in thunderstorms over Minicoy. Case studies of thunderstorm events have been examined to find out the effect of vertical wind shear and instability on strength and longevity of thunderstorms. Role of vertical wind shear in thunderstorms and its mechanism has been explored in this study. Results reveal that for prolonged thunderstorms high and low instability along with moderate to high vertical wind shear (moderate: 0.003 S-1 ≤ vertical wind shear ≤ 0.005 S-1 and high: > 0.005 S-1) play a significant role in longevity and strength of thunderstorms. The mechanism of vertical wind shear in thunderstorms was investigated in a few cases of thunderstorm events where the duration of thunderstorm was covered by the radiosonde/rawin ascent observation taken at Minicoy. Empirical model has been developed to classify thunderstorm type and to determine the strength and longevity of thunderstorms. Model validation has been carried out for selected cases. Model could classify thunderstorm type for most of the cases of thunderstorm events over island and coastal stations.

  19. Segmental origins of cardiac sympathetic nerve activity in rats.

    PubMed

    Pracejus, Natasha H; Farmer, David G S; McAllen, Robin M

    2015-01-01

    The segmental origins of cardiac sympathetic nerve activity (CSNA) were investigated in 8 urethane-anesthetized, artificially ventilated rats. The left upper thoracic sympathetic chain was exposed retropleurally after removing the heads of the second to fourth ribs. The preganglionic inputs to the chain from segments T1-T3 and the trunk distal to T3 were marked for later sectioning. CSNA was recorded conventionally, amplified, rectified and smoothed. Its mean level was quantified before and after each preganglionic input was cut, usually in rostro-caudal sequence. The level after all inputs were cut (i.e. noise and residual ECG pickup) was subtracted from previous measurements. The signal decrement from cutting each preganglionic input was then calculated as a percentage. CSNA in all rats depended on preganglionic drive from two or more segments, which were not always contiguous. Over the population, most preganglionic drive came from T3 and below, while the least came from T1. But there was striking inter-individual variation, such that the strongest drive to CSNA in any one rat could come from T1, T2, T3, or below T3. These findings provide new functional data on the segmental origins of CSNA in rats.

  20. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  1. Heavy Thunderstorm Synoptic Climatology and Forcing Mechanisms in Saudi Arabia.

    NASA Astrophysics Data System (ADS)

    Ghulam, Ayman S.

    2010-05-01

    Meteorologists are required to provide accurate and comprehensive weather information for planning and operational aviation, agricultural, water projects and also for the public. In general, weather phenomena such as thunderstorms over the area between the tropics and the middle latitudes are not fully understood, particularly in the Middle East area, for many reasons such as: 1) the complexity of the nature of the climate due to the wide-ranging diversity in the topography and landscape in the area; 2) the lack of meteorological data in the area; and 3) the lack of studies on local weather situations. In arid regions such as Saudi Arabia, the spatial and temporal variation of thunderstorms and associated rainfall are essential in determining their effects on social and economic conditions. Thunderstorms form rapidly, due to the fact that the significant heating of the air from the surface and the ensuing rainfall usually occurs within a short period of time. Thus, understanding thunderstorms and rainfall distribution in time and space would be useful for hydrologists, meteorologists and for environmental studies. Research all over the world has shown, however, that consideration of local factors like Low Level Jets (LLJ), moisture flux, sea breezes, and the Red Sea Convergence Zone (RSCZ) would be valuable in thunderstorm prediction. The combined effects of enhanced low-level moisture convergence and layer destabilization due to upslope flow over mountainous terrain has been shown to be responsible for thunderstorm development in otherwise non-favourable conditions. However, there might be other synoptic features associated with heavy thunderstorms or cause them, but these features have not been investigated in any research in Saudi Arabia. Thus, relating the local weather and synoptic situations with those over the middle latitudes will provide a valuable background for the forecasters to issue the medium-range forecasts which are important for many projects

  2. Origins of choice-related activity in mouse somatosensory cortex

    PubMed Central

    Yang, Hongdian; Kwon, Sung E.; Severson, Kyle S.; O’Connor, Daniel H.

    2015-01-01

    During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feedforward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons. PMID:26642088

  3. Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over East Indian Region.

    PubMed

    Litta, A J; Mary Ididcula, Sumam; Mohanty, U C; Kiran Prasad, S

    2012-01-01

    The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region.

  4. Thunderstorm asthma: an overview of the evidence base and implications for public health advice.

    PubMed

    Dabrera, G; Murray, V; Emberlin, J; Ayres, J G; Collier, C; Clewlow, Y; Sachon, P

    2013-03-01

    Thunderstorm asthma is a term used to describe an observed increase in acute bronchospasm cases following the occurrence of thunderstorms in the local vicinity. The roles of accompanying meteorological features and aeroallergens, such as pollen grains and fungal spores, have been studied in an effort to explain why thunderstorm asthma does not accompany all thunderstorms. Despite published evidence being limited and highly variable in quality due to thunderstorm asthma being a rare event, this article reviews this evidence in relation to the role of aeroallergens, meteorological features and the impact of thunderstorm asthma on health services. This review has found that several thunderstorm asthma events have had significant impacts on individuals' health and health services with a range of different aeroallergens identified. This review also makes recommendations for future public health advice relating to thunderstorm asthma on the basis of this identified evidence.

  5. Thunderstorm hazards flight research: Storm hazards 1980 overview

    NASA Technical Reports Server (NTRS)

    Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft.

  6. On the modulation of X ray fluxes in thunderstorms

    NASA Technical Reports Server (NTRS)

    Mccarthy, Michael P.; Parks, George K.

    1992-01-01

    The production of X-ray fluxes in thunderstorms has been attributed to bremsstrahlung. Assuming this, another question arises. How can a thunderstorm modulate the number density of electrons which are sufficiently energetic to produce X-rays? As a partial answer to this question, the effects of typical thunderstorm electric fields on a background population of energetic electrons, such as produced by cosmic ray secondaries and their decays or the decay of airborne radionuclides, are considered. The observed variation of X-ray flux is shown to be accounted for by a simple model involving typical electric field strengths. A necessary background electron number density is found from the model and is determined to be more than 2 orders of magnitude higher than that available from radon decay and a factor of 8 higher than that available from cosmic ray secondaries. The ionization enhancement due to energetic electrons and X-rays is discussed.

  7. Numerical simulation of the precipitation development in a severe thunderstorm

    NASA Astrophysics Data System (ADS)

    Geresdi, I.

    A two-dimensional, slab-symmetric time-dependent cloud model was used to investigate precipitation formation in a severe thunderstorm, observed during the MIST project on 20 July 1986. A bulk microphysics technique is applied in the model. Wet and dry growth of the hailstones is simulated by calculating mean hailstone temperature. The model reproduces well the life cycle of the thunderstorm. The simulation supports the assumption that the hailstones formed from frozen water drops, and the explosive growth of the cloud was caused by the release of latent heat of fusion. The model results (e.g., the duration and the region of the embryo formation) are interpreted from the point of view of hail suppression. The simulation shows that the ice particles (cloud ice and snow) play important roles in hailstone formation in warm base thunderstorms.

  8. Thunderstorm-associated asthma: the effect on GP consultations.

    PubMed

    Hajat, S; Goubet, S A; Haines, A

    1997-10-01

    Evidence shows that asthma attacks can be brought on by adverse weather conditions such as those experienced during a thunderstorm; a prime example of such an occasion being a thunderstorm episode on 24 June 1994, which resulted in a well-documented increase in medical attendances made by those suffering with asthma and respiratory disorders. However, most of these studies have concerned admissions to accident and emergency departments. The aim of this paper was to ascertain whether a similar increase in consultations was observed in the primary care setting.

  9. Terrestrial Gamma Flashes Observed from Nearby Thunderstorms at Ground Level

    NASA Astrophysics Data System (ADS)

    Cherry, M. L.; Chason, N.; Granger, D.; Guzik, T. G.; Pleshinger, D.; Rodi, J.; Stacy, J. G.; Stewart, M.; Zimmer, N.

    2014-12-01

    The TGF and Energetic Thunderstorm Rooftop Array (TETRA) is an array of NaI scintillators located on the campus of Louisiana State University in Baton Rouge, Louisiana. Since July 2010, TETRA has detected 37 millisecond bursts of gamma rays at energies 50 keV - 2 MeV associated with nearby (< 8 km) thunderstorms. The ability to observe ground-level Terrestrial Gamma Flashes from close to the source allows a unique analysis of the storm cells producing these events. A description of the observations, the results of the analysis, and plans for future measurements will be presented.

  10. Sustainable production of biologically active molecules of marine based origin.

    PubMed

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules.

  11. Numerical study on the effect of charge separation at low cloud temperature and effective water content on thunderstorm electrification

    NASA Astrophysics Data System (ADS)

    Tsenova, Boryana Dimitrova; Barakova, Denitsa; Mitzeva, Rumjana

    2017-02-01

    In the present study, a numerical model is used to evaluate the effects of low effective water content and low cloud temperature on graupel charging, charge structure and lightning activity in regions of thunderstorms. Two idealized cloud cases were simulated with MesoNH using different configurations of the main known parameterizations for noninductive charging involving ice crystal/graupel rebounding collisions. Simulations in regions with very low effective cloud water content were performed with the parameterization proposed in Mitzeva et al. (2006) based on the "Relative Growth Rate" hypothesis, while for simulations in regions with low cloud temperature, charge values from Avila et al. (2011) were used. Results showed that the inclusion of the charge separation at very low effective water content influences more the simulated cloud charge structure than does the inclusion of the charge separated at low temperatures. Also, the effect of the charge separated at very low effective water content is more significant when the original parameterization for non-inductive charging is based on the effective water content rather than on the rime accretion rate.

  12. Pre-Convective Environmental Conditions Indicative of Non-Tornadic Severe Thunderstorm Winds over Southeast Florida.

    DTIC Science & Technology

    1987-05-01

    EhEEEEEEEEMhhE mMhhEEEEEMhhhE [EOMOEEE L 6 II125 Am Vl P)COPY RESOI UTION TEST CHART DIlCEiIE COPY PRE-CONVECTIVE ENVIRONMENTAL CONDITIONS INDICATIVE...twelve dates selected by the initial model had reports of severe thunderstorm activity, but independent testing using data from May through September...implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499-533. Burpee , R.W., 1979: Peninsula-scale convergence in the south Florida

  13. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences

    PubMed Central

    Dowdy, Andrew J.; Catto, Jennifer L.

    2017-01-01

    Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather. PMID:28074909

  14. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences

    NASA Astrophysics Data System (ADS)

    Dowdy, Andrew J.; Catto, Jennifer L.

    2017-01-01

    Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather.

  15. Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences.

    PubMed

    Dowdy, Andrew J; Catto, Jennifer L

    2017-01-11

    Phenomena such as cyclones, fronts and thunderstorms can cause extreme weather in various regions throughout the world. Although these phenomena have been examined in numerous studies, they have not all been systematically examined in combination with each other, including in relation to extreme precipitation and extreme winds throughout the world. Consequently, the combined influence of these phenomena represents a substantial gap in the current understanding of the causes of extreme weather events. Here we present a systematic analysis of cyclones, fronts and thunderstorms in combination with each other, as represented by seven different types of storm combinations. Our results highlight the storm combinations that most frequently cause extreme weather in various regions of the world. The highest risk of extreme precipitation and extreme wind speeds is found to be associated with a triple storm type characterized by concurrent cyclone, front and thunderstorm occurrences. Our findings reveal new insight on the relationships between cyclones, fronts and thunderstorms and clearly demonstrate the importance of concurrent phenomena in causing extreme weather.

  16. Severe Thunderstorm Detection by Visual Learning Using Satellite Images

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Wistar, Stephen; Li, Jia; Steinberg, Michael A.; Wang, James Z.

    2017-02-01

    Computers are widely utilized in today's weather forecasting as a powerful tool to leverage an enormous amount of data. Yet, despite the availability of such data, current techniques often fall short of producing reliable detailed storm forecasts. Each year severe thunderstorms cause significant damage and loss of life, some of which could be avoided if better forecasts were available. We propose a computer algorithm that analyzes satellite images from historical archives to locate visual signatures of severe thunderstorms for short-term predictions. While computers are involved in weather forecasts to solve numerical models based on sensory data, they are less competent in forecasting based on visual patterns from satellite images. In our system, we extract and summarize important visual storm evidence from satellite image sequences in the way that meteorologists interpret the images. In particular, the algorithm extracts and fits local cloud motion from image sequences to model the storm-related cloud patches. Image data from the year 2008 have been adopted to train the model, and historical thunderstorm reports in continental US from 2000 through 2013 have been used as the ground-truth and priors in the modeling process. Experiments demonstrate the usefulness and potential of the algorithm for producing more accurate thunderstorm forecasts.

  17. Satellite observations of transient radio impulses from thunderstorms

    SciTech Connect

    Argo, P.E.; Kirkland, M.; Jacobson, A.; Massey, R.; Suszynsky, D.; Eack, K.; Fitzgerald, T.J.; Smith, D.

    1999-06-01

    Transient radio emissions from thunderstorms detected by satellites were first reported in 1995. The nature and source of these emissions remained a mystery until the launch of the FORTE satellite in 1997. FORTE, with its more sophisticated triggering and larger memory capacity showed that these emissions were connected to major thunderstorm systems. The analysis reported here, connecting FORTE RF events with ground based lightning location data from the National Lightning Detection Network (NLDN), shows that localized regions within thunderstorms are responsible for the creation of the satellite detected rf signals. These regions are connected with the areas of strong radar returns from the NEXRAD Doppler radar system, indicating that they are from regions of intense convection. The authors will also show data from several storms detected in the extended Caribbean, in which the height profile of the source regions can be determined. Although as a single low earth orbit satellite FORTE cannot provide global coverage of thunderstorm/lightning events, follow-on satellite constellations should be able to provide detailed information on global lightning in near real-time.

  18. Thunderstorm Research International Program (TRIP 77) report to management

    NASA Technical Reports Server (NTRS)

    Taiani, A. J.

    1977-01-01

    A post analysis of the previous day's weather, followed by the day's forecast and an outlook on weather conditions for the following day is given. The normal NOAA weather charts were used, complemented by the latest GOES satellite pictures, the latest rawinsonde sounding, and the computer-derived thunderstorm probability forecasts associated with the sounding.

  19. Identification of anomalous motion of thunderstorms using daily rainfall fields

    NASA Astrophysics Data System (ADS)

    Moral, Anna del; Llasat, María del Carmen; Rigo, Tomeu

    2017-03-01

    Most of the adverse weather phenomena in Catalonia (northeast Iberian Peninsula) are caused by convective events, which can produce heavy rains, large hailstones, strong winds, lightning and/or tornadoes. These thunderstorms usually have marked paths. However, their trajectories can vary sharply at any given time, completely changing direction from the path they have previously followed. Furthermore, some thunderstorms split or merge with each other, creating new formations with different behaviour. In order to identify the potentially anomalous movements that some thunderstorms make, this paper presents a two-step methodology using a database with 8 years of daily rainfall fields data for the Catalonia region (2008-2015). First, it classifies daily rainfall fields between days with "no rain", "non-potentially convective rain" and "potentially convective rain", based on daily accumulated precipitation and extension thresholds. Second, it categorises convective structures within rainfall fields and briefly identifies their main features, distinguishing whether there were any anomalous thunderstorm movements in each case. This methodology has been applied to the 2008-2015 period, and the main climatic features of convective and non-convective days were obtained. The methodology can be exported to other regions that do not have the necessary radar-based algorithms to detect convective cells, but where there is a good rain gauge network in place.

  20. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    NASA Technical Reports Server (NTRS)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  1. Identification of anomalous motion of thunderstorms using daily rainfall fields

    NASA Astrophysics Data System (ADS)

    del Moral, Anna; Llasat, Maria Carmen; Rigo, Tomeu

    2016-04-01

    Adverse weather phenomena in Catalonia (NE of the Iberian Peninsula) is commonly associated to heavy rains, large hail, strong winds, and/or tornados, all of them caused by thunderstorms. In most of the cases with adverse weather, thunderstorms vary sharply their trajectories in a concrete moment, changing completely the motion directions that have previously followed. Furthermore, it is possible that a breaking into several cells may be produced, or, in the opposite, it can be observed a joining of different thunderstorms into a bigger system. In order to identify the main features of the developing process of thunderstorms and the anomalous motions that these may follow in some cases, this contribution presents a classification of the events using daily rainfall fields, with the purpose of distinguishing quickly anomalous motion of thunderstorms. The methodology implemented allows classifying the daily rainfall fields in three categories by applying some thresholds related with the daily precipitation accumulated values and their extension: days with "no rain", days with "potentially convective" rain and days with "non-potentially convective" rain. Finally, for those "potentially convective" daily rainfall charts, it also allows a geometrical identification and classification of all the convective structures into "ellipse" and "non-ellipse", obtaining then the structures with "normal" or "anomalous" motion pattern, respectively. The work is focused on the period 2008-2015, and presents some characteristics of the rainfall behaviour in terms of the seasonal distribution of convective rainfall or the geographic variability. It shows that convective structures are mainly found during late spring and summer, even though they can be recorded in any time of the year. Consequently, the maximum number of convective structures with anomalous motion is recorded between July and November. Furthermore, the contribution shows the role of the orography of Catalonia in the

  2. TETRA observation of gamma-rays at ground level associated with nearby thunderstorms.

    PubMed

    Ringuette, Rebecca; Case, Gary L; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2013-12-01

    [1] Terrestrial gamma-ray flashes (TGFs)-very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms-have been detected with satellite instruments. TGF and Energetic Thunderstorm Rooftop Array (TETRA), an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma-rays at ground level. After 2.6 years of observation, 24 events with durations 0.02-4.2 ms have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ∼1000 m. Nine of the events occurred within 6 ms and 5 km of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site.

  3. Origin of secondary sulfate minerals on active andesitic stratovolcanoes

    USGS Publications Warehouse

    Zimbelman, D.R.; Rye, R.O.; Breit, G.N.

    2005-01-01

    Sulfate minerals in altered rocks on the upper flanks and summits of active andesitic stratovolcanoes result from multiple processes. The origin of these sulfates at five active volcanoes, Citlalte??petl (Mexico), and Mount Adams, Hood, Rainier, and Shasta (Cascade Range, USA), was investigated using field observations, petrography, mineralogy, chemical modeling, and stable-isotope data. The four general groups of sulfate minerals identified are: (1) alunite group, (2) jarosite group, (3) readily soluble Fe- and Al-hydroxysulfates, and (4) simple alkaline-earth sulfates such as anhydrite, gypsum, and barite. Generalized assemblages of spatially associated secondary minerals were recognized: (1) alunite+silica??pyrite??kaolinite?? gypsum??sulfur, (2) jarosite+alunite+silica; (3) jarosite+smectite+silica??pyrite, (4) Fe- and Al-hydroxysulfates+silica, and (5) simple sulfates+silica??Al-hydroxysulfates??alunite. Isotopic data verify that all sulfate and sulfide minerals and their associated alteration assemblages result largely from the introduction of sulfur-bearing magmatic gases into meteoric water in the upper levels of the volcanoes. The sulfur and oxygen isotopic data for all minerals indicate the general mixing of aqueous sulfate derived from deep (largely disproportionation of SO2 in magmatic vapor) and shallow (oxidation of pyrite or H2S) sources. The hydrogen and oxygen isotopic data of alunite indicate the mixing of magmatic and meteoric fluids. Some alunite-group minerals, along with kaolinite, formed from sulfuric acid created by the disproportionation of SO2 in a condensing magmatic vapor. Such alunite, observed only in those volcanoes whose interiors are exposed by erosion or edifice collapse, may have ??34S values that reflect equilibrium (350??50 ??C) between aqueous sulfate and H2S. Alunite with ??34S values indicating disequilibrium between parent aqueous sulfate and H2S may form from aqueous sulfate created in higher level low

  4. A sea breeze induced thunderstorm over an inland station over Indian South Peninsula - A case study

    NASA Astrophysics Data System (ADS)

    Bhate, Jyoti; Kesarkar, Amit P.; Karipot, Anandakumar; Bala Subrahamanyam, D.; Rajasekhar, M.; Sathiyamoorthy, V.; Kishtawal, C. M.

    2016-10-01

    The dynamic interaction of sea breeze with the prevailing synoptic flows can give rise to meteorological conditions conducive for the occurrence to the thunderstorms over coastal and adjoining regions. Here, we present a rare case study of the genesis of the thunderstorm that occurred on 4th May 2011 at 1500Z over Gadanki (13.5°N, 79.2°E), one of the tropical inland stations (100 km) near to the east coast of the Indian peninsula. The objective of present work is to understand the underlying physical mechanism of initiation of such convection over this region. A set of meteorological observations obtained from microwave radiometer profiler, eddy covariance flux tower system, and Doppler weather radar, are used for investigating the convection genesis characteristics. In conjunction with observations, to bridge the gap of lack of high resolutional spatial observations, the high-resolution (2 km) model analysis is developed using Weather Research and Forecasting (WRF) model and four-dimensional data assimilation technique. The analysis of thermodynamical and dynamical indices carried out from the model analysis as well as observations. Results obtained from this study indicated the presence of a wind discontinuity line and a warm air advection from the north Indian region towards Gadanki caused this area hot dry and convectively active. The sea breeze front propagated over hot and dry area few hours before the genesis of the thunderstorm. The moisture flux convergence increased with the inland propagation of sea breeze front. We found that the inland penetration of sea-breeze front caused advection of moist and cold air over warm and dry region; reduction in dew point depression causing bulging of dry line and lowering of lifting condensation level; development of shear in wind direction and speed; increase in low level convergence and vertical velocity, upward transport of moist air and finally increase in helicity of the environment. The wind shear instability

  5. Observations of high ground flash densities of positive lightning in summertime thunderstorms

    SciTech Connect

    Stolzenburg, M.

    1994-08-01

    Observations of summertime thunderstorms indicate that positive polarity cloud-to-ground lightning activity can occur with rates as high as 67 flashes in 5 min and spatial densities up to 0.60 flashes per square kilometer per hour. All ground flashes in a storm may be positive for substantial periods. Using data from a nationwide network of magnetic direction finders, 24 storms with high ground flash densities of positive lightning were found on 11 days in June and July 1989 in the Great Plains of the United States. The periods of high-density positive lightning persisted an average of 4 h, longer than the lifetime of a typical single thunderstorm cell. In most cases, they occurred at or near the beginning of the storms` cloud-to-ground lightning activity. Supporting data suggest that the production of high rate and high percentage of positive ground flashes may be associated with exceptionally tall storms that exhibit a stage of early, rapid increase in radar echo-top height and produce large hail.

  6. Mapping the African thunderstorm center in absolute units using Schumann resonance spectral decomposition method

    NASA Astrophysics Data System (ADS)

    Dyrda, Michal; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    Monitoring of the global lightning activity provides a very useful tool to study the global warming phenomenon and the other longer-scale climate changes induced by humans. The lightning activity is measured using various observational methods form space (optical satellite observations) as well as from the ground mostly by VLF /LF lightning detection networks, i.e. World Wide Lightning Location Network (WWLLN) or lightning detection network (LINET) in Europe. However, the global lightning activity measurements are possible only in the ELF range. Here we examine the African thunderstorm activity center, which is the most violent and active one. In a spherical damped resonator, such as the Earth-ionosphere cavity, the electromagnetic field is described by the solution of an inhomogeneous wave equation. For such equation the general solution can be expressed by the superposition of the solutions of the homogeneous equation, describing the resonance field, and the component, which is quite strong close to the source and weakens with source-observer separation. Thus, the superposition of the standing wave field with the field of traveling waves, which supply the energy from the lighting discharges to the global resonator, is a main reason for an asymmetric shape of the observational Schumann resonance (SR) power spectra, which highly deviate from the Lorentz curves. It is possible to separate this component from the signal using the spectrum decomposition method proposed by Kułak et al. [2006]. In our approach, we apply the inverse problem solution for determining the distance of the dominant lightning source. The distances to the thunderstorm centers are calculated using the analytical models for the electromagnetic waves propagation in the Earth-ionosphere cavity. Such forms of analytic solutions of the resonant field in the spherical cavity is the zonal harmonic series representation, described by Mushtak and Williams [2002] and we calculated the sets of such curves

  7. Thunderstorm vertical velocities and mass flux estimated from satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Fenn, D. D.

    1979-01-01

    Infrared geosynchronous satellite data with an interval of five minutes between images are used to estimate thunderstorm top ascent rates on two case study days. A mean vertical velocity of 3.5/ms for 19 clouds is calculated at a height of 8.7 km. This upward motion is representative of an area of approximately 10km on a side. Thunderstorm mass flux of approximately 2x10 to the 11th power/gs is calculated, which compares favorably with previous estimates. There is a significant difference in the mean calculated vertical velocity between elements associated with severe weather reports (w bar=4.6/ms) and those with no such reports (2.5/ms). Calculations were made using a velocity profile for an axially symmetric jet to estimate the peak updraft velocity. For the largest observed w value of 7.8/ms the calculation indicates a peak updraft of approximately 50/ms.

  8. Modification of the lower ionospheric conductivity by thunderstorm electrostatic fields

    NASA Astrophysics Data System (ADS)

    Salem, Mohammad A.; Liu, Ningyu; Rassoul, Hamid K.

    2016-01-01

    This paper reports a modeling study of the modifications of the nighttime lower ionospheric conductivity by electrostatic fields produced by underlying thunderstorms. The model used combines Ohm's law with a simplified lower ionospheric ion chemistry model to self-consistently calculate the steady state nighttime conductivity above a thunderstorm. The results indicate that although the electron density is generally increased, the lower ionospheric conductivity can be reduced by up to 1-2 orders of magnitude because electron mobility is significantly reduced due to the electron heating effect. For a typical ionospheric density profile, the resulting changes in the reflection heights of extremely low frequency and very low frequency waves are 5 and 2 km, respectively.

  9. A Numerical Simulation of the 12 July 1996 STERAO Thunderstorm

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. J.; Helsdon, J. H.; Farley, R. D.

    2005-12-01

    We utilize our three-dimensional Storm Electrification Model with an explicit lightning scheme and chemistry to simulate the 12 July 1996 thunderstorm that occurred in northeastern Colorado during the Stratospheric-Tropospheric Experiment: Radiation, Aerosols and Ozone (STERAO) Deep Convection Field Project. The NO production is based on the energy dissipation of the lightning discharge with a pressure dependence included. The chemistry module has nine species, including NO, NO2, O3, and CH4, but does not include non-methane hydrocarbons. There are eighteen reactions among the nine species, three of which are photolytic. We focus on the production of NOx (NO + NO2) by lightning within the model and compare our results to airborne measurements obtained during the thunderstorm.

  10. Thunderstorm electrification of hail and graupel by polar dribble.

    PubMed

    Gunn, R

    1966-02-11

    Hail and graupel falling through rain collect water that selectively dribbles upward from the upper surface of a hailstone. When the hailstones are polarized by nearly vertical electrostatic field these vertically discharged water drops carry away free charge of the same sign as that induced on the upper surfaces. The hail thereby accumulates an equilibrium charge of opposite sign, corresponding to the charges induced on the bottom surfaces. The equilibrium charges are large enough to be important in thunderstorms.

  11. Thunderstorm-scale variations of echoes associated with left-turn tornado families

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1977-01-01

    The origin of tornadoes is studied on the basis of changing radar echo shapes and tornado location relative to the echoes. Three types of tornadoes appear to be associated with different hook echo configurations. No-turn or right-turn tornadoes are linked to a steady hook which does not change shape or orientation. Left-turn tornado families are generated in cases where the hook is unsteady and changes orientation at each successive tornado birth. Finally, left-turn tornado families may also be formed when the hook undergoes no orientation change and the tornadoes move along the rear of the hook. The correlation between a thunderstorm-scale cycle and periodic tornado production is also discussed.

  12. TETRA observation of gamma-rays at ground level associated with nearby thunderstorms

    NASA Astrophysics Data System (ADS)

    Ringuette, Rebecca; Case, Gary L.; Cherry, Michael L.; Granger, Douglas; Guzik, T. Gregory; Stewart, Michael; Wefel, John P.

    2013-12-01

    gamma-ray flashes (TGFs)—very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms—have been detected with satellite instruments. TGF and Energetic Thunderstorm Rooftop Array (TETRA), an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma-rays at ground level. After 2.6 years of observation, 24 events with durations 0.02-4.2 ms have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ~1000 m. Nine of the events occurred within 6 ms and 5 km of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site.

  13. Beaming Properties of Energetic Electrons and Photons Inside Thunderstorms

    NASA Astrophysics Data System (ADS)

    Cramer, Eric; Briggs, Michael

    2017-01-01

    It has been well established that thunderstorm environments allow relativistic runaway electron avalanches (RREAs) to develop under the influence of strong electric fields. This process can be seeded by external sources, such as cosmic-ray secondary electrons. The resulting bremsstrahlung x-rays and gamma rays that are emitted, propagate through the atmosphere and into space where they are detected by orbiting spacecraft, e.g. NASA Fermi. These high energy radiation blasts are known as Terrestrial Gamma-ray Flashes (TGFs). Using a Monte Carlo particle simulation, we show beaming characteristics of these electrons and photons such as the angular distribution, energy spectra, and the radial distribution from the thunderstorm source to the observation point of orbiting spacecraft. These features are related to the thunderstorm electric field, Earth's geomagnetic field, and the potential inside the thundercloud region. Observations of TGFs made by the Gamma-ray Burst Monitor (GBM) will also be discussed, as well as a future multipoint CubeSat mission targeted to measure the beaming geometry of the gamma rays. This material is based upon work supported by the National Science Foundation under Grant Number 1524533.

  14. High-Energy Radiation from Thunderstorms with ADELE: TGFs, Steps, and Glows

    NASA Technical Reports Server (NTRS)

    Smith, David M.; Kelley, Nicole; Martinez-McKinney, Forest; Zhang, Zi Yan; Hazelton, Bryna; Grefenstette, Brian; Splitt, Michael; Lazarus, Steven; Ulrich, William; Levine, Steven; Dwyer, Joseph; Schaal, Meagan; Saleh, Ziad; Cramer, Eric; Rassoul, Hamid; Cummer, Steven; Lu, Gaopeng; Shao, Xuan-Min; Ho, Cheng; Blakeslee, Richard

    2011-01-01

    The biggest challenge in the study of high-energy processes in thunderstorms is getting a detector to the vicinity of the electrically active regions of a storm. The Airborne Detector for Energetic Lightning Emissions (ADELE) has been used to detect gamma rays from aircraft above storms and from a storm-chasing van on the ground. In August 2009, ADELE flew above Florida storms in a Gulfstream V jet, detecting the first terrestrial gamma-ray flash (TGF) seen from a plane and continuous glows of high-energy emission above thunderclouds. The presence of these glows suggests that a gradual process of relativistic runaway and feedback may help limit the total amount of charging in thunderstorms, in contrast to the traditional view that only lightning discharges compete with the charging process. The upper limits on TGF emission from intracloud and cloud-to-ground lightning from the ADELE flights demonstrated conclusively that a TGF of the sort seen from space is not associated with most lightning and not necessary to trigger it. In August 2010, observations from a van detected stepped-leader x-ray emission from at least four lightning strikes in ten days of operations. This mode of operation is therefore promising for future observations of the stepping process, although a more varied suite of instrumentation, in particular a flash-distance detector, would be useful. We will report on these results and on future possibilities for ADELE campaigns.

  15. Relationships between thunderstorms and cloud-to-ground lightning in the United States

    SciTech Connect

    Changnon, S.A. )

    1993-01-01

    Climatic assessments of cloud-to-ground (CG) flashes, and of the relationship between CG flashes and thunder events, as reported at 62 first-order stations in the contiguous US, are performed on the basis of data from networks of lightning sensors operated during 1986-1989. The adequacy of thunder-event data for describing thunderstorm occurrences at a point is determined. The average and extreme frequencies of CG lightning is delineated. Thunder events are found to provide poor estimates of CG lightning incidences and durations. CG flash data reveal that 20 percent (far west) and 50 percent (southeast US) of all thunder events are missed at weather stations; 30-60 percent of all thunder events have durations too short; and 10 per cent (North and West), 40 percent (mountains), and 25 percent (southeast) of all CG flashes within 20 km of weather stations are not reported as thunderstorms. The use of historical thunder data, as a surrogate for lightning activity, is improper, and thunder values need to be adjusted with the relationships presented. 33 refs.

  16. Predicting thunderstorms, lightning and sprites for global observations from the International Space Station

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Stendel, Martin; Chanrion, Olivier; Neubert, Torsten; Moalem, Meir; Silber, Israel; Price, Colin

    2016-04-01

    The THOR experiment on the International Space Station (ISS) was conducted by Danish astronaut, Andreas Mogensen, during September 1-10, 2015. The aim was to observe over-shooting cumulonimbus turrets, lightning and TLEs with an optical camera through the windows of the PIRS module. To maximize the chances of success, we developed a strategy to predict locations of thunderstorm targets up to three days in advance. The long lead-time was required by the astronaut activity planners that attempted to accommodate many experiments during a short time. The prediction strategy relied on the methodology developed for the MEIDEX experiment on board the space shuttle Columbia (in 2003) and later refined for JAXA's Cosmic Shore campaign from the ISS (in 2011). New and additional components were added to the forecast that enabled us to distill and prioritize a daily target-list with specific viewing angles computed relative to the ISS position and attitude. We present results of the verification procedure for the thunderstorm forecasts, using WWLLN data for selected regions and times during the mission, when high-priority targets were identified as suitable for observation. The methodology proves to be accurate and reliable and can be replicated in future space-based campaigns.

  17. Review of recent progress in lightning and thunderstorm detection techniques in Asia

    NASA Astrophysics Data System (ADS)

    Ushio, Tomoo; Wu, Ting; Yoshida, Satoru

    2015-03-01

    In recent years, lightning and thunderstorm detection techniques have been rapidly developed in many regions of Asia. As the most populous continent, hazards caused by lightning and related phenomena are being paid more and more attentions and lightning observations and detections are booming in many countries. In this paper, we will give a brief review on recent progress of lightning and thunderstorm detection techniques in Asia. First, we will introduce several widely used lightning location systems including VHF interferometers, VHF time-of-arrival systems and LF time-of-arrival systems. As an example, a newly-developed system called BOLT is described and recent observation results are introduced. Second, we will review studies of a special type of intracloud discharge called "narrow bipolar event" (NBE). NBE studies in Asia are flourishing in recent years and are making great contributions to the understanding of various properties of NBE. Finally, we will introduce a fast-scanning phased array radar (PAR) system installed in Osaka University. This radar system has a temporal resolution of 10-30 s, which is much faster than the traditional weather radar and is ideal for observations of fast-evolving storm structures and the analysis of their relationship with lightning activities. Preliminary observation results with PAR are described.

  18. Nowcasting Hail Size for Non-Supercell Thunderstorms in the Northeastern U. S.

    DTIC Science & Technology

    2012-03-01

    Figure 6. Formation of hail within a thunderstorm. The updraft lifts a small object above the freezing level where supercooled liquid solidifies on...troposphere by the updraft of a thunderstorm where supercooled liquid is present. The supercooled liquid accumulates on the object and freezes...thunderstorm. The updraft lifts a small object above the freezing level where supercooled liquid solidifies on the object upon contact, forming

  19. Range estimation techniques in single-station thunderstorm warning sensors based upon gated, wideband, magnetic direction finder technology

    NASA Technical Reports Server (NTRS)

    Pifer, Alburt E.; Hiscox, William L.; Cummins, Kenneth L.; Neumann, William T.

    1991-01-01

    Gated, wideband, magnetic direction finders (DFs) were originally designed to measure the bearing of cloud-to-ground lightning relative to the sensor. A recent addition to this device uses proprietary waveform discrimination logic to select return stroke signatures and certain range dependent features in the waveform to provide an estimate of range of flashes within 50 kms. The enhanced ranging techniques are discussed which were designed and developed for use in single station thunderstorm warning sensor. Included are the results of on-going evaluations being conducted under a variety of meteorological and geographic conditions.

  20. Lightning strike density for the contiguous United States from thunderstorm duration records

    SciTech Connect

    MacGorman, D.R.; Maier, M.W.; Rust, W.D.

    1984-05-01

    An improved lightning ground strike climatology has been obtained from thunderstorm duration data recorded by 450 air weather stations. From lightning strike location data collected in Florida and Oklahoma, it was found that strike density could be estimated from thunderstorm duration by the equation N/sub s/ = 0.054H/sup 1/ /sup 1/, where N/sub s/ is the number of strikes per square kilometer and H is thunderstorm duration in hours. This relationship was applied to thunderstorm duration data from the aviation stations to obtain lightning strike density for the contiguous United States.

  1. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  2. Innate response activator B cells: origins and functions

    PubMed Central

    Swirski, Filip K.

    2015-01-01

    Innate response activator (IRA) B cells are a subset of B-1a derived B cells that produce the growth factors granulocyte macrophage colony stimulating factor and IL-3. In mouse models of sepsis and pneumonia, B-1a B cells residing in serosal sites recognize bacteria, migrate to the spleen or lung, and differentiate to IRA B cells that then contribute to the host response by amplifying inflammation and producing polyreactive IgM. In atherosclerosis, IRA B cells accumulate in the spleen, where they promote extramedullary hematopoiesis and activate classical dendritic cells. In this review, we focus on the ontogeny and function of IRA B cells in acute and chronic inflammation. PMID:25957266

  3. Origin of activation energy in a superionic conductor.

    PubMed

    Kamishima, O; Kawamura, K; Hattori, T; Kawamura, J

    2011-06-08

    The characteristics of cation diffusion with many-body effects are discussed using Ag β-alumina as an example of a superionic conductor. Polarized Raman spectra of Ag β-alumina have been measured at room temperature. The interatomic potentials were determined by a non-linear least square fitting between the phonon eigenvalues from the Raman observations and a dynamical matrix calculation based on a rigid-ion model. The obtained potential parameters for the model crystal of Ag β-alumina successfully reproduce the macroscopic properties with respect to the heat capacity, isothermal compressibility and self-diffusion constant. A molecular dynamics (MD) calculation has been carried out using the model crystal of Ag β-alumina to understand the many-body effects for the fast ionic diffusion. It was found that the Ag-Ag repulsion by excess Ag defects significantly reduced the cost of the energy difference of the occupancy between the stable and metastable sites. It is possible for the system to take various configurations of the mobile ions through defects easily, and then the fast ionic diffusion will appear. On the other hand, the Ag-Ag repulsion changes the dynamics of the Ag ions from a random hopping to a cooperative motion. In the cooperative motion, the ionic transport becomes difficult due to the additional energy required for the structural relaxation of the surrounding Ag ions. We propose a new insight into the superionic conduction, that is, the activation energy for the ionic transport is composed of two kinds of elements: a 'static' activation energy and a 'dynamic' one. The static activation energy is the cost of the averaged energy difference in the various structural configurations in the equilibrium state. The dynamic activation energy is the additional energy required for the structural relaxation induced by the jump process.

  4. Synthesis and antiprotozoal activity of original porphyrin precursors and derivatives.

    PubMed

    Abada, Zahra; Cojean, Sandrine; Pomel, Sébastien; Ferrié, Laurent; Akagah, Bernardin; Lormier, Anh Tuan; Loiseau, Philippe M; Figadère, Bruno

    2013-09-01

    Importance of heme in African trypanosomes, Leishmania sp. and Plasmodium sp. metabolisms justifies considering the potential of porphyrins and their precursors and derivatives as potential antiparasitic agents by interfering with heme metabolism. Consequently, twenty-four porphyrin precursors and derivatives were evaluated against Leishmania donovani, Trypanosoma brucei and Plasmodium sp. The best active compound against Trypanosoma brucei brucei was a new porphyrin derivative; compound 4i, with a MEC value of 6.25 μM justifying further in vivo evaluation. Whereas these compounds were not active against intramacrophage amastigotes of L. donovani, another new porphyrin derivative, compound 4f was active in vitro against Plasmodium falciparum at 20 nM and a slight delay of mice survival was observed on the Plasmodium berghei/Swiss mice model at 50 μmol/kg/day × 4. Pharmacomodulations should be further developed relying on a better knowledge on the porphyrin behaviour into the parasites comparatively to host cells.

  5. Analysis of energetic radiation associated with thunderstorms in the Ebro delta region

    NASA Astrophysics Data System (ADS)

    Fabró, Ferran; Montanyà, Joan; Pineda, Nicolau; Argemí, Oriol; van der Velde, Oscar; Romero, David; Soula, Serge

    2016-04-01

    We have analysed increments of background radiation during thunderstorm in the energy range 0.1 - 2 MeV in the Ebro delta region in the northeast of Spain. We present 8 episodes, 3 summer cases and 5 winter cases. The increments of the measured high-energy radiation have been analysed and compared with measurements of electric field, precipitation, radar reflectivity, lightning activity a charge regions altitude. For the first time, measurements of high-energy radiation associated with thunderstorms are compared with radar reflectivity and lightning detected by a LMA network. The aim of this paper is to discern if the high-energy radiation increments measured are related with the storm electrification, like reported in previous publications, or other factors like precipitation. As summary these are the main results: • The comparative of energy spectra of 1 hour period with rain and 1 hour period without rain shows that radon-ion daughters are quite important in the increase of the measured high-energy radiation. • The analysis of the time normalized cumulative curves of radiation counts, radar reflectivity and lightning activity (LINET and LMA detections) shows that that high-energy radiation increments are time related with radar reflectivity rather than lightning activity. • The calculated altitude of the negative charge regions of the different thunderstorms analayzed is too high for the photons produced at those altitudes by Bremmstrahlung effect to overcome atmospheric attenuation and reach the scintillator placed at sea level. These results lead us to conclude, as a contribution in addition to previous works, that the measured increments of high-energy analysed on this paper are associated with radon-ion daughters rather than storm electrification. However, the use of a detector in an energy from 0.1 MeV to 2 Mev does not allow to completely exclude the possibility that part of the high-energy radiation reported should be related storm electrification

  6. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Dalmasse, K.; Kliem, B.; Török, T.

    2015-09-01

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

  7. 78 FR 42103 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: African Growth and... accordance with the Paperwork Reduction Act: African Growth and Opportunity Act Certificate of Origin (AGOA...: African Growth and Opportunity Act Certificate of Origin. OMB Number: 1651-0082. Form Number:...

  8. 75 FR 9423 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: African Growth and... requirement concerning the African Growth and Opportunity Act Certificate of Origin (AGOA). This request for...: Title: African Growth and Opportunity Act Certificate of Origin. OMB Number: 1651-0082. Form...

  9. Total Lightning as it Relates to Rotation in Supercell Thunderstorms

    NASA Astrophysics Data System (ADS)

    Stough, S. M.; Carey, L. D.; Schultz, C. J.

    2015-12-01

    Some of the latest work examining the capability of total lightning to provide advanced notice of severe weather has concentrated on identifying the physical links that associate it with thunderstorm processes. As a result, applications of lightning data have been evaluated in an effort to complement existing meteorological datasets in operations. The total lightning jump algorithm is one such tool, used to objectively-identify rapid increases in total lightning that signify storm intensification. In anticipation of broader coverage of total lightning afforded by the future GOES-R Geostationary Lightning Mapper, applications of lightning data in the context of particular storm environments have also been explored. The work presented here specifically analyzes total lightning trends with respect to radar-inferred mesocyclone development and strengthening in supercell thunderstorms. Supercells have long been identified as the most prolific producers of severe weather because of the dynamic and kinematic processes associated with a robust, rotating updraft. This updraft is the common physical link between lightning, the supercell's hallmark mesocyclone, and ultimately severe weather. Specifically, the updraft is thought to tilt and stretch horizontal vorticity into the vertical to develop the mesocyclone and also participates in non-inductive charging and electrification processes. To address this conceptual relationship, this study examined total lightning and rotation in 19 diverse supercells. Results indicate that the first lightning jump signals the transition of an ordinary thunderstorm to a supercell in a supportive environment, as well as that lightning jumps often give early indication of mesocyclone strengthening. Further, it is suggested that the observed anti-correlated trend between flash rate and low-level rotation alludes to enhanced downdraft-driven vorticity generation, thought to influence tornadogenesis.

  10. Avalanche-to-streamer transition near hydrometeors in thunderstorms

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Dubinova, Anna; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    In the early phase of lightning initiation, streamers must form near water droplets and or ice crystals, collectively called hydrometeors, as it is generally believed that the electric fields in a thunderstorm are below classical breakdown [1]. The hydrometeors, due to their dielectric property, electrically polarize and will enhance the thunderstorm electric field in localized areas just outside the surface, potentially above breakdown. Available electrons, from for example a cosmic ray event, are drawn towards the positive side of the polarized hydrometeor. Some electrons reach the localized area above breakdown, while oxygen molecules have absorbed others. In the area above breakdown electrons begin to multiply in number, creating electron avalanches towards the surface, leaving positive ions behind. This results in a charge separation, which potentially can initiate a positive streamer. The final outcome however strongly depends on several parameters, such as the strength of the thunderstorm electric field, the size and shape of the hydrometeor and the initial amount of electrons. In our letter [1] we introduced a dimensionless quantity M that we call the Meek number, based on the historical and well-used Reather-Meek criterion [2], as a measure of how likely it is to create an avalanche-to-streamer transition near a hydrometeor. Results from simulations showed that streamers can start in a field of only 15% of breakdown from large elongated shaped hydrometeors. Now we extended and generalized our method to arbitrary shaped hydrometeors and we take into account that potentially several electrons can reach the area above breakdown. Due to these effects we can predict smaller hydrometeors to be able to start streamers. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, U., Buitink, S., Scholten, O., & Trinh, G. T. N. (2015). Prediction of lightning inception by large ice particles and extensive air showers. Physical review letters, 115

  11. Possible role of aerosols in the charge structure of isolated thunderstorms

    NASA Astrophysics Data System (ADS)

    Pawar, S. D.; Gopalakrishnan, V.; Murugavel, P.; Veremey, N. E.; Sinkevich, A. A.

    2017-01-01

    The electric field and Maxwell current density measured below 32 small isolated thunderstorms over Pune (India) have been analyzed here. These data clearly show the presence of 10 out of 32 thunderstorms with inverted polarity charge structure. Values of Aerosol Optical Depth (AOD) on thunderstorm days taken from MODIS show that all the thunderstorms with inverted polarity occurred on days with significantly higher AOD compared to normal polarity thunderstorms. The peak flash rate did not show significant difference between normal polarity thunderstorms and inverted polarity thunderstorms. The dew point depression (DPD) during pre-monsoon thunderstorms shows good correlation with inverted polarity charge structure. Observations suggest that aerosol concentration plays an important role in the formation of inverted polarity charge structure in these thunderclouds. In presence of high aerosol concentration with adequate ice nuclei non-inductive charging mechanism can produce strong and wide spread positive charge region in the lower portion of cloud. However, observed good correlation of DPD with inverted polarity charge structure in the pre-monsoon period suggest that the effect of high cloud base height on inverted polarity charge structure as suggested by Williams et al. (2005) cannot be ruled out.

  12. The heating of suprathermal ions above thunderstorm cells

    SciTech Connect

    Bell, T.F.; Helliwell, R.A.; Inan, U.S.; Lauben, D.S. )

    1993-09-15

    The authors estimate proton heating rates in the ionosphere above thunderstorm cells due to electromagnetic waves generated by these cells. Their model is that electron whistler waves are generated by lightning, and propagate into the ionosphere. There they are able to mode convert to proton whistler and lower hybrid waves on plasma density fluctuations. The proton whistler waves then preheat the protons to energies where they can absorb energy from the lower hybrid waves. The model predicts heating rates such that low altitude spacecraft should be able to observe the flux of these heated protons.

  13. Sensitivity of land surface and Cumulus schemes for Thunderstorm prediction

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Mohanty, U. C.; Kumar, Krishan

    2016-06-01

    The cloud processes play an important role in all forms of precipitation. Its proper representation is one of the challenging tasks in mesoscale numerical simulation. Studies have revealed that mesoscale feature require proper initialization which may likely to improve the convective system rainfall forecasts. Understanding the precipitation process, model initial condition accuracy and resolved/sub grid-scale precipitation processes representation, are the important areas which needed to improve in order to represent the mesoscale features properly. Various attempts have been done in order to improve the model performance through grid resolution, physical parameterizations, etc. But it is the physical parameterizations which provide a convective atmosphere for the development and intensification of convective events. Further, physical parameterizations consist of cumulus convection, surface fluxes of heat, moisture, momentum, and vertical mixing in the planetary boundary layer (PBL). How PBL and Cumulus schemes capture the evolution of thunderstorm have been analysed by taking thunderstorm cases occurred over Kolkata, India in the year 2011. PBL and cumulus schemes were customized for WSM-6 microphysics because WSM series has been widely used in operational forecast. Results have shown that KF (PBL scheme) and WSM-6 (Cumulus Scheme) have reproduced the evolution of surface variable such as CAPE, temperature and rainfall very much like observation. Further, KF and WSM-6 scheme also provided the increased moisture availability in the lower atmosphere which was taken to higher level by strong vertical velocities providing a platform to initiate a thunderstorm much better. Overestimation of rain in WSM-6 occurs primarily because of occurrence of melting and freezing process within a deeper layer in WSM-6 scheme. These Schemes have reproduced the spatial pattern and peak rainfall coverage closer to TRMM observation. It is the the combination of WSM-6, and KF schemes

  14. Monitoring Intense Thunderstorms in the Hindu-Kush Himalayan Region

    NASA Technical Reports Server (NTRS)

    Gatlin, Patrick; Cecil, Daniel; Case, Jonathan; Bell, Jordan; Petersen, Walter; Adhikary, Bhupesh

    2016-01-01

    Some of the most intense thunderstorms on the planet routinely occur in the Hindu-Kush Himalaya region(HKH) region where many government organizations lack the capacity needed to predict, observe and effectively respond to the threats and hazards associated with high impact convective weather. This project combines innovative numerical weather prediction, satellite-based precipitation and land imagery techniques into a high impact weather assessment toolkit (HIWAT) that will build the capabilities of national meteorological departments and other weather sensitive agencies in the HKH region to assess the potential threats and impacts of high impact convective weather.

  15. Ground level measurements of air conductivities under Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard J.; Krider, E. P.

    1992-01-01

    Values of the positive and negative polar conductivities under summer thunderstorms in Florida are highly variable and exhibit a significant electrode effect, but the total conductivity usually remains close to values found in fair weather, 0.4 to 1.8 x 10 exp -14 S/m. With these values a method proposed by Krider and Musser (1982) for estimating the total conductivity from changes in the slope of the electric field recovery following a lightning discharge will be extremely sensitive to small time variations in the local Maxwell current density and must be modified to include these effects.

  16. 75 FR 5100 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... SECURITY Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... collection requirement concerning the NAFTA Regulations and Certificate of Origin. This request for comment... CBP is soliciting comments concerning the following information collection: Title: NAFTA...

  17. Neutron activation analysis traces copper artifacts to geographical point of origin

    NASA Technical Reports Server (NTRS)

    Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.

    1967-01-01

    Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.

  18. 12 CFR Appendix A to Part 1007 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... 1007, App. A Appendix A to Part 1007—Examples of Mortgage Loan Originator Activities This appendix... publicly available, such as on the covered financial institution's Web site, for specific types of...

  19. 12 CFR Appendix A to Part 1007 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... 1007, App. A Appendix A to Part 1007—Examples of Mortgage Loan Originator Activities This appendix... publicly available, such as on the covered financial institution's Web site, for specific types of...

  20. 75 FR 3274 - Agency Information Collection; Activity Under OMB Review; Passenger Origin-Destination Survey Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Research & Innovative Technology Administration Agency Information Collection; Activity Under OMB Review; Passenger Origin-Destination Survey Report AGENCY: Research & Innovative Technology Administration (RITA... automated collection techniques or other forms of information technology. Anne Suissa, Director, Office...

  1. 78 FR 28943 - Agency Information Collection; Activity Under OMB Review; Passenger Origin-Destination Survey Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Research & Innovative Technology Administration Agency Information Collection; Activity Under OMB Review; Passenger Origin-Destination Survey Report AGENCY: Research & Innovative Technology Administration (RITA... use of automated collection techniques or other forms of information technology. DATES:...

  2. A relapse of near-fatal thunderstorm-asthma in pregnancy.

    PubMed

    D'Amato, G; Corrado, A; Cecchi, L; Liccardi, G; Stanziola, A; Annesi-Maesano, I; D'Amato, M

    2013-05-01

    Thunderstorm-related asthma is a dramatic example of the allergenic potential of pollen antigens. Pollen allergic patients who encounter the allergenic cloud of pollen during a thunderstorm are at higher risk of having an asthma attack. Relapse is also possible and we describe here the first case of relapse of near fatal thunderstorm-asthma occurred in a 36 years old, 20 weeks pregnant woman affected by seasonal asthma and sensitized to allergens released by Parietariapollen. Patients suffering from pollen allergy should be alerted of the danger of being outdoors during a thunderstorm in the pollen season and if they experienced an episode of severe thunderstorm-related asthma could be at risk of a relapse during a heavy precipitation event.

  3. Lightning and severe thunderstorms in event management.

    PubMed

    Walsh, Katie M

    2012-01-01

    There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, lightning, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to activity. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. Lightning and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and lightning safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions.

  4. MUSIC for localization of thunderstorm cells

    SciTech Connect

    Mosher, J.C.; Lewis, P.S.; Rynne, T.M.

    1993-12-31

    Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surface electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.

  5. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks

    PubMed Central

    Soper, Colin; Wicker, Evan; Kulick, Catherine V.; N’Gouemo, Prosper; Forcelli, Patrick A.

    2016-01-01

    Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy. PMID:26721319

  6. Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland

    NASA Astrophysics Data System (ADS)

    Czernecki, Bartosz; Taszarek, Mateusz; Kolendowicz, Leszek; Konarski, Jerzy

    2016-01-01

    Research presents an overview on thunderstorm occurrence in Poland and focuses mainly on the relationship between human observations of thunderstorms (SYNOP daily summaries) and instrumental lightning detection data (PERUN network) in the timeframe between 2002 and 2013. The total of 4,952,203 cloud-to-ground flashes (2082 days with thunderstorms) derived from the PERUN lightning database, and 12,419 daily thunderstorm SYNOP reports from 44 meteorological stations (1417 days with thunderstorms) are compared. Within the use of two different computational methods, we define the threshold value of the human average observational thunderstorm detection range within a meteorological station. Results indicate that the average of this value ranges from 16.9 km (Delta computational method) to 18.3 km (threat score computational method). Given the limitations of both methods, we believe that the average of these two (17.5 km) may be the most reliable estimate that expresses how lightning is perceived by humans. Large differences in observational range values between some of the stations (e.g. from 12 km in Bielsko-Biała to 24 km in Łeba) indicate that thunderstorm measurements performed by humans are not homogeneous and are prone to errors. We estimate that an average increase/decrease of observational range by approximately 1 km results in 1 additional/redundant day in the average annual number of thunderstorm days in the climatological sense. Results indicate that already existing thunderstorm climatology papers that are based on SYNOP thunderstorm reports may present presumably not entirely reliable results and overestimate or underestimate values from the real distribution.

  7. Simulating supercell thunderstorms in a convective boundary layer: Effects on storm and boundary layer properties

    NASA Astrophysics Data System (ADS)

    Nowotarski, Christopher J.

    formation of so-called "feeder clouds" and anking line convection in these simulations. These findings suggest potentially important rami fications regarding both non-mesocyclone and mesocyclone tornadoes in supercell thunderstorms in an environment with active boundary layer convection.

  8. Parallel electric field generation in the ionosphere over thunderstorms and the interaction with ionospheric electrons

    NASA Astrophysics Data System (ADS)

    Rowland, D.; Wygant, J.; Pfaff, R.; Farrell, W.; Goetz, K.; Monson, S.

    Sounding rockets launched by Mike Kelley and his group at Cornell demonstrated the existence of transient (1 ms) electric fields associated with lightning strikes at high altitudes above active thunderstorms. These electric fields had a component parallel to the Earth's magnetic field, and were unipolar and large in amplitude. They were thought to be strong enough to energize electrons and generate strong turbulence as the beams thermalized. The parallel electric fields were observed on multiple flights, but high time resolution measurements were not made within 100 km horizontal distance of lightning strokes, where the electric fields are largest. In 2000 the ``Lightning Bolt'' sounding rocket (NASA 27.143) was launched directly over an active thunderstorm to an apogee near 300 km. The sounding rocket was equipped with sensitive electric and magnetic field instruments as well as a photometer and electrostatic analyser for measuring accelerated electrons. The electric and magnetic fields were sampled at 10 million samples per second, letting us fully resolve the structure of the parallel electric field pulse up to and beyond the plasma frequency. We will present results from the Lightning Bolt mission, concentrating on the parallel electric field pulses that arrive before the lower-frequency whistler wave modes. We observe pulses with peak electric fields of a few mV/m lasting for a substantial fraction of a millisecond. Superimposed on this is high-frequency turbulence, comparable in amplitude to the pulse itself. This is the first direct observation of this structure in the parallel electric field, within 100 km horizontal distance of the lightning stroke. We will present evidence for the method of generation of these parallel fields, and discuss their probable effect on ionospheric electrons.

  9. Long-duration X-ray emissions observed in thunderstorms

    NASA Astrophysics Data System (ADS)

    Eack, Kenneth B.; Beasley, William H.

    2015-07-01

    In 1995, a series of four balloon flights with an X-ray spectrometer and an electric field meter were conducted to examine if strong electric fields could accelerate, and perhaps multiply, cosmic ray secondary electrons and produce bremsstrahlung X-rays. X-ray intensities between 10 and 1000 times that of normal background were observed in conjunction with strong electric fields. Both negative and positive polarity electric fields (as referenced to the vertical field) produced X-rays, which lasted for time scales on the order of tens of seconds. It was also observed that the increased X-ray intensity would return to near background levels after lightning reduced the local electric field. The observations indicate that X-rays observed above background are most likely produced by a runaway electron process occurring in the strong static electric field present in thunderstorms. The production of runaway electrons can occur over long periods of time without causing an electrical breakdown. This may provide a leakage current that limits the large scale electric field to values near the runaway threshold, especially in regions where the thunderstorm charging rate is low.

  10. Progress of research to identify rotating thunderstorms using satellite imagery

    NASA Technical Reports Server (NTRS)

    Anderson, Charles E.

    1988-01-01

    The possibility of detecting potentially tornadic thunderstorm cells from geosynchronous satelite imagery is determined. During the life of the contract, we examined eight tornado outbreak cases which had a total of 124 individual thunderstorm cells, 37 of which were tornadic.These 37 cells produced a total of 119 tornadoes. The outflow characteristics of all the cells were measured. Through the use of a 2-D flow field model, we were able to simulate the downstream developmemt of an anvil cloud plume which was emitted by the storm updraft at or near the tropopause. We used two parameters to characterize the anvil plume behavior: its speed of downstream propagation (U max) and the clockwise deviation of the centerline of the anvil plume from the storm relative ambient wind at the anvil plume outflow level (MDA). U max was the maximum U-component of the anvil wind parameter required to successfully maintain an envelope of translating particles at the tip of the expanding anvil cloud. MDA was the measured deviation angle acquired from McIDAS, between the storm relative ambient wind direction and the storm relative anvil plume outflow direction; tha latter being manipulated by controlling a tangential wind component to force the envelope of particles to maintain their position of surrounding the expanding outflow cloud.

  11. X-ray Emission from Thunderstorms and Lightning

    SciTech Connect

    Dwyer, Joseph

    2009-08-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences. Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons. This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning. This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes. During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields. These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air. Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away. As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited.

  12. X-ray Emission from Thunderstorms and Lightning

    SciTech Connect

    Dwyer, Joseph

    2009-07-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  13. X-ray Emission from Thunderstorms and Lightning

    ScienceCinema

    Dwyer, Joseph [Florida Institute of Technology, Melbourne, Florida, United States

    2016-07-12

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  14. Thunderstorm Peak Gust Estimation for Structural Engineering Design.

    NASA Astrophysics Data System (ADS)

    Akyuz, Fikri Adnan

    The statistical relationship between observed peak gust velocities and simultaneously measured fastest -minute wind was examined to determine "gust factors" appropriate to thunderstorm episodes in the Midwestern United States. The wind data from 1987 through 1991 for 81 National Weather Service (NWS) stations in 19 different states in the Midwest were extracted from the monthly and annual Local Climatological Data's (LCD's). Gust factor, linear regression and frequency analyses were the statistical analyses used in this study. Statistical analyses of the wind gusts and simultaneous one-minute wind data suggested that an average typical gust factor appropriate to thunderstorm episodes in the Midwestern United States is at least 1.5 (1.53 as a result of the gust factor analysis). It was also found in this research that 75% of the potentially damaging peak gusts in the range of 70 mph to 100 mph were associated with simultaneously measured sustained winds, averaged over 1 minute, of only 30 mph to 60 mph. The gust factor applicable to the design wind speed for the Midwestern United States, as published in American Society of Civil Engineers Standard, is, however, 1.25. Applying this gust factor to one minute winds in the range from 70 mph to 90 mph yields estimated 50-year peak gusts of 88 mph to 113 mph.

  15. Upgrade to the Broadband Observation network for Lightning and Thunderstorms

    NASA Astrophysics Data System (ADS)

    Akiyama, Y.; Wu, T.; Stock, M.; Nakamura, Y.; Kikuchi, H.; Yoshida, S.; Ushio, T.; Kawasaki, Z.

    2015-12-01

    Observation sensors for lightning discharges sense electromagnetic waves, mainly in the ELF to UHF range, and especially in the LF and VHF bands. VHF band sensor sensors can observe lightning discharge process in detail but its observation coverage is limited. On the other hand, LF band sensor can observe lightning at much great distances. Therefore, LF sensors are well adapted to observe lightning throughout a thunderstorm's life cycle. Our research group has been designing and developing the Broadband Observation network for Lightning and Thunderstorm (BOLT), which locates radiation sources associated with lightning discharge in three spatial dimensions. BOLT consists of 11 LF band sensors which detect lightning pulses wide frequency range from 5 kHz to 500 kHz. We have been operating BOLT in Kansai area of Japan, locating both cloud-to-ground and intracloud discharges. Currently, the BOLT system observes about 100 to 1000 lightning pulses per flash, but we are striving to improve both the detection efficiency and the location accuracy. Preliminary investigation show that the number of sources located, increases dramatically when only the highest portion of the BLOT frequency band is used far location. So, our research group has proposed improving a new "DDT" antenna sensor design to improve the high frequency sensitivity of the antenna. The DDT antenna consists of a modified charge amplifier circuit. In this research, we present a comparison of the DDT antenna and show the advantages of the DDT antenna.

  16. The Upward Directed Poynting Flux over a Thunderstorm

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Goldberg, R. A.; Blakeslee, R. J.; Cummer, S. A.; Deschj, M. D.; Mach, D. M.; Mitchell, J. D.; Croskey, C. L.

    2003-12-01

    In August of 2002, NASA carried out the Altus Cumulus Electrification Study (ACES) to investigate the lightning/storm relationship, to quantify the storm electrical budget, and to validate the TRMM lightning sensor (LIS) data. The platform was General Atomic's Altus uninhabited aerial vehicle (UAV) which allowed long-duration, close-proximity monitoring of storms from their births to deaths. The platform carried a set of DC Field Mill sensors to measure electrostatic fields, AC electric and magnetic field sensors for deriving the Poynting flux, a Gerdien conductivity probe, optical sensors, and a flight payload data system. The data system collected low rate data, and also cloud be event-triggered into high rate mode for approximately 0.3 seconds about lightning strikes. During the month long mission, 11 scientific flights occurred yielding over 4300 high rate triggered events. An objective of this study was to determine the amount of upward radiated power into the middle atmosphere and ionosphere, and determine contribution of the radiated power to the global atmospheric electric circuit. In this work, we show upward Poynting flux measurements between 10 Hz -100 kHz from some specific thunderstorm overflights. We find that upward radiated powers from lightning strikes can be large. However, displacement currents are also comparatively large, suggesting that the radiation impedance above a thunderstorm is relatively low (~150 Ohms at 10 kHz). This radiation impedence is calculated as a function of frequency. The effect of the radiated power on the global circuit will be discussed.

  17. Catastrophic flooding from an orographic thunderstorm in the central Appalachians

    NASA Astrophysics Data System (ADS)

    Hicks, Naomi S.; Smith, James A.; Miller, Andrew J.; Nelson, Peter A.

    2005-12-01

    An orographic thunderstorm system in Pendleton County, West Virginia, produced 125-150 mm of rainfall in less than 1 hour on 9 August 2003. Rainfall and fluvial impacts were concentrated in the ungauged 2.1 km2 Saul's Run watershed. Despite the short duration of the event the flood produced significant fluvial impacts and abrupt changes in the extent of incision and channel widening. Hydrometeorological analyses of the storm are based on WSR-88D radar reflectivity observations and rain gauge observations. The small multicell thunderstorms that produced the Saul's Run flood were not markedly different from other storms in the central Appalachian region on 9 August 2003. Detailed surveys of high watermarks and channel/floodplain geometry are used for hydraulic analyses of the Saul's Run flood, including estimation of peak discharge at four locations. Peak discharge estimates at the 1 km2 scale cluster around 18 m3 s-1, placing this event on the flood envelope curve for the mid-Atlantic region. Observed rainfall, estimated peak discharge, and observer notes on timing of peak discharge are used along with a distributed hydrologic model to reconstruct hydrographs at multiple locations. Hydrologic modeling indicates that land use effects may have significantly influenced extreme flood response in Saul's Run. The wide range of fluvial impacts is consistent with patterns of boundary shear stress and unit stream power derived from a simulation of the Saul's Run flood using a 2-D depth-averaged hydraulic model.

  18. Extremely Low Passive Microwave Brightness Temperatures Due to Thunderstorms

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2015-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. Automated quality control flags or other procedures in retrieval algorithms could treat these measurements as errors, because they fall outside the expected bounds. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI, AMSR-E, and the new GMI to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For

  19. Coevolution between human's anticancer activities and functional foods from crop origin center in the world.

    PubMed

    Zeng, Ya-Wen; Du, Juan; Pu, Xiao-Ying; Yang, Jia-Zhen; Yang, Tao; Yang, Shu-Ming; Yang, Xiao-Meng

    2015-01-01

    Cancer is the leading cause of death around the world. Anticancer activities from many functional food sources have been reported in years, but correlation between cancer prevalence and types of food with anticancer activities from crop origin center in the world as well as food source with human migration are unclear. Hunger from food shortage is the cause of early human evolution from Africa to Asia and later into Eurasia. The richest functional foods are found in crop origin centers, housing about 70% in the world populations. Crop origin centers have lower cancer incidence and mortality in the world, especially Central Asia, Middle East, Southwest China, India and Ethiopia. Asia and Africa with the richest anticancer crops is not only the most important evolution base of humans and origin center of anticancer functional crop, but also is the lowest mortality and incidence of cancers in the world. Cancer prevention of early human migrations was associated with functional foods from crop origin centers, especially Asia with four centers and one subcenter of crop origin, accounting for 58% of the world population. These results reveal that coevolution between human's anticancer activities associated with functional foods for crop origin centers, especially in Asia and Africa.

  20. In Situ Observations of Lightning-Produced Nitric Oxide in Thunderstorm Cores

    NASA Astrophysics Data System (ADS)

    Helsdon, J. H.; Detwiler, A. G.; Macgorman, D. R.; Baker, B.; Warner, T. A.

    2003-12-01

    The SD School of Mines & Technology armored T-28 aircraft was deployed to Norman, OK, from 14 May - 10 June 2003 in order to obtain measurements of lightning-produced nitric oxide (NO) mixing ratios in the cores of active thunderstorms (17 - 21 kft altitude range) in conjunction with lightning channel locations determined by the newly-installed NSSL lightning mapping array (LMA). To sample the NO, a TEI 42C-TL NO/NOx analyzer was used, operating in the NO-only mode. The inlet tube for the sampling system was situated above and behind the pilot's canopy along the aircraft axis. Six research and two calibration/test flights were conducted. Electric fields rarely exceeded 50 kV/m in the regions sampled with hydrometeors comprised of aggregates, graupel, and small hail. The TEI instrument often indicated broad regions of elevated NO that may have accumulated from many lightning discharges over a period of time, which were then distributed by convective circulations. A number of instances of narrow NO spikes were observed that we attribute to recent lightning discharges that passed through the sampled region. Peak values were typically from a few to 10s of ppbv. In one instance lightning attached to the T-28's propeller. The NO reading rose to ~180 ppbv in one second, then decayed. Depending on the actual time during which NO generated during this discharge entered the inlet (probably less than one second), and subject to a more refined calibration of the raw instrument reading, we estimate that the peak mixing ratio to have been in the range of 0.5-1 ppmv. With the LMA-derived lightning locations anticipated to be available shortly, we will present a more refined analysis of the overall NO mixing ratio structure within these thunderstorm cores as well as analyses of the NO spikes, focusing on the lightning strike to the aircraft.

  1. Exploiting the Magnetic Origin of Solar Activity in Forecasting Thermospheric Density Variations

    DTIC Science & Technology

    2014-09-01

    Exploiting the Magnetic Origin of Solar Activity in Forecasting Thermospheric Density Variations Harry Warren Naval Research Laboratory, Space...Science Division, Washington, DC John Emmert Naval Research Laboratory, Space Science Division, Washington, DC Abstract A detailed understanding of solar ...drag. Current operational models rely on forecasts of proxies for solar activity based on autoregression. The forecasts from these models generally

  2. Electric fields, electron precipitation, and VLF radiation during a simultaneous magnetospheric substorm and atmospheric thunderstorm

    SciTech Connect

    Bering, E.A.; Rosenberg, T.J.; Benbrook, J.R.; Detrick, D.; Matthews, D.L.; Rycroft, M.J.; Saunders, M.A.; Sheldon, W.R.

    1980-01-01

    A balloon payload instrumented with a double-probe electric field detector and an X ray scintillation counter was launched from Roberval, Quebec, Canada (L=4.1) at 0828 UT (0328 LT) on July 9, 1975. A magnetospheric substorm was observed locally between 0815 and 1100 UT, which produced a maximum ..delta..B of approx.500 nT at approx.0930 UT. A single-cell atmospheric thunderstorm developed northeast of Roberval beginning around 0925 UT which was most intense from approx.1000 to 1035 UT. Detailed study of the electrical properties of the thunderstorm, the X ray precipitation data, and VLF spheric data leads to three conclusions. First, the electrical coupling from the thunderstorm to the magnetosphere increases with frequency from dc to the VLF; for the observed storm the amplitude at the ionosphere of thunderstorm produced electric fields was not significant at frequencies below 0.1 Hz. Second, the atmospheric conductivity above the thunderstorm was observed to be about one-half the fair weather value prior to 1000 UT; decreased to about one-quarter the fair weather value at about 1000 UT; and remained depressed after the end of the thunderstorm. This result was contrary to that expected on the basis of previous work and is one which merits considerably more investigation. Third, the data show a high probability that half-hop whistlers initiated by sferics from the thunderstorm triggered energetic electron precipitation from the magnetosphere.

  3. Same origins of DNA replication function on the active and inactive human X chromosomes.

    PubMed

    Cohen, Stephanie M; Brylawski, Bruna P; Cordeiro-Stone, Marila; Kaufman, David G

    2003-04-01

    We previously characterized a functional origin of DNA replication at the transcriptional promoter of the human hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene (Cohen et al. [2002] J. Cell. Biochem. 85:346-356). This origin was mapped using a quantitative PCR assay to evaluate the relative abundance of HPRT markers in short nascent DNA strands isolated from asynchronous cultures of male fibroblasts. The HPRT gene on the X chromosome is transcriptionally active in male human fibroblasts. It is known that on the heterochromatic X chromosome in female cells the HPRT gene is transcriptionally silenced and its replication timing changes from early to late in S phase. This change in replication timing could indicate that replication of the HPRT gene is under the control of different origins of DNA replication in the active (euchromatic, early replicating) and the inactive (heterochromatic, late replicating) X chromosomes. In the present study, we identified the location of the origin of replication of a second X chromosome gene, glucose-6-phosphate dehydrogenase (G6PD), which we mapped to its transcriptional promoter, in normal male human fibroblasts. Then, we determined the activity of the previously identified HPRT and the G6PD human origins in hybrid hamster cells carrying either the active or the inactive human X chromosome. The results of these studies clearly demonstrated that the human HPRT and G6PD origins of replication were utilized to the same extent in the active and the inactive X chromosomes. Therefore, transcription activity at the HPRT and G6PD genes is not necessary for initiation of DNA replication at the origins mapped to these chromosomal loci.

  4. Thunderstorm activity according to VLF observations at Kamchatka

    NASA Astrophysics Data System (ADS)

    Druzhin, G. I.; Cherneva, N. V.; Melnikov, A. N.

    2009-12-01

    The azimuthal distribution of lightning discharges and cyclone epicenters at a distance of up to 4000 km from the observation point at Kamchatka is given. The azimuths of lightning discharges were determined using an ELF finder, and the cyclone epicenters were determined from meteorological maps. Time dependences of the distribution of received radiations from lightning discharges have been obtained.

  5. Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons are being observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly-Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic runaway avalanche electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. They have generated considerable observational and theoretical interest in recent years. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms.

  6. Intense Gamma-Ray Flashes Above Thunderstorms on the Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors in Earth orbit. They are expected to be present on other planets that exhibit lightning. The terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi- GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly- Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic "runaway avalanche" electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. They have generated considerable observational and theoretical interest in recent years. This talk will give an overview of the all of the space-borne observations of TGFs that have been made thus far. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms

  7. Rapid vertical trace gas transport by an isolated midlatitude thunderstorm

    NASA Astrophysics Data System (ADS)

    Hauf, Thomas; Schulte, Peter; Alheit, Reiner; Schlager, Hans

    1995-11-01

    During the cloud dynamics and chemistry field experiment CLEOPATRA in the summer of 1992 in southern Germany, the Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR) (German Aerospace Research Establishment) research aircraft Falcon traversed four times the anvil of a severe, isolated thunderstorm. The first two traverses were at 8 km altitude and close to the anvil cloud base, while the second two traverses were at 10 km. During the 8-km traverse, measured ozone mixing ratios dropped by 13 parts per billion by volume (ppbv) from the ambient cloud free environment to the anvil cloud, while water vapor increased by 0.3 g kg-1. At the 10-km traverses, ozone dropped by 25 ppbv, while water vapor increased by 0.18 g kg-1. Three-dimensional numerical thunderstorm simulations were performed to understand the cause of these changes. The simulations included the transport of two chemical inert tracers. Ozone was assumed to be one of them. The initial ozone profile was composed from an ozone routine sounding and the in situ Falcon measurements prior to the thunderstorm development. The second tracer is typical for a surface released pollutant with a nonzero, constant value in the boundary layer but zero above it. The redistribution of both tracers by the storm is calculated and compared with the observations. For the anvil penetration at 10 km, the calculated difference in ozone mixing ratios is 21 ppbv, while for water vapor an increase of 0.25 g kg-1 was found, in good agreement with the observations. To validate the model results, the radar reflectivity was calculated from simulated fields of cloud water, rain, graupel, hail, and snow and ice crystals and compared with observed values. With respect to maximum reflectivity values and spatial scales, again, excellent agreement was achieved. It is concluded that the rapid transport from the boundary layer directly into the anvil level is the most likely cause of the observed ozone decrease and water vapor increase

  8. The Severe Thunderstorm Electrification and Precipitation Study (STEPS)

    NASA Astrophysics Data System (ADS)

    Rutledge, S. A.; Lang, T. J.

    2003-12-01

    During May-July 2000, the Severe Thunderstorm Electrification and Precipitation Study (STEPS) was conducted in the High Plains, near the Colorado-Kansas border, in order to achieve a better understanding of the interactions between kinematics, precipitation, and electrification in severe thunderstorms. Specific scientific objectives included: 1) understanding the apparent major differences in precipitation output from supercells that have led to them being classified as low-precipitation (LP), classic or medium-precipitation, and high-precipitation; 2) understanding lightning formation and behavior in storms, and how lightning differs among storm types, particularly to better understand the mechanisms by which storms produce predominantly positive cloud-to-ground (CG) lightning; and 3) to verify and improve microphysical interpretations from polarimetric radar. The project involved the use of a multiple-Doppler and polarimetric radar network, as well as a time-of-arrival VHF lightning mapping system, the T-28 armored research aircraft, electric field meters carried on balloons, mobile mesonet vehicles, instruments to detect and classify transient luminous events over thunderstorms (TLEs; e.g., sprites and blue jets), and mobile atmospheric sounding equipment. The project was a major success, gathering unprecedented data on a wealth of diverse cases, including LP storms, supercells, and mesoscale convective systems, among others. Many of the storms produced mostly positive CG lightning during their lifetimes, and also exhibited unusual electrical structures such as a possibly inverted dipole. The 29 June supercell case has received considerable study to date including the analysis of polarimetric radar data to demonstrate couplings between storm dynamics and the formation of hail and graupel, which lead to formation of significant positive charge in the mid-levels and copious amounts of positive cloud-to-ground lightning. The charge structure in the 29 June case

  9. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  10. Passive microwave observations of thunderstorms from high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1988-01-01

    A high-altitude (20 km) aircraft made overflights of severe and nonsevere Midwest thunderstorms in the central and southeast U.S. during 2 separate experiments. Down-looking instruments on the aircraft are the imaging Multi-Channel Cloud Radiometer with channels in the visible, IR, and near IR, and two passive microwave instruments, the imaging Advanced Microwave Moisture Sounder at 92 (atmospheric window) and 183 GHz (centered on a water vapor line) and the 45 deg foward-of-nadir Multi-Channel Precipitation Radiometer at the 18 and 37 GHz window channels. Over land, the 92 GHz frequency distinguishes quite well the precipitating region from the nonprecipitating anvil region. The interpretation of the microwave measurements is complicated by differences in the cloud microphysics between different climatic regions.

  11. Terrestrial Gamma-ray Flash (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2009-01-01

    Terrestrial gamma-ray flashes (TGFs) are being observed with the Gamma-ray Burst Monitor (GBM) detectors on Fermi about once every four weeks. These intense millisecond flashes of MeV photons have been observed with four space-borne experiments since their initial discovery by the BATSE-CGRO experiment in the early 1990s. TGFs have extremely hard spectra (harder than GRBs) and photons are seen to extend to over 30 MeV. The GBM-Fermi observations have the highest temporal resolution of any previous TGF observations and time-resolved coarse spectra can be derived. These features will be crucial for testing the leading current model of TGF production: relativistic run-away electron cascades formed in the intense electric fields within thunderstorms.

  12. North Dakota Thunderstorm Project. Final report, April 1989-March 1991

    SciTech Connect

    Boe, B.A.

    1991-11-20

    The North Dakota Thunderstorm Project (NDTP) was a national scale research program conducted in central North Dakota during June and July, 1989. The program was hosted and coordinated by the North Dakota Atmospheric Resource Board, and funded jointly by the National Oceanic and Atmospheric Administration (NOAA), the State of North Dakota, and the National Science Foundation. Data collection with four Doppler radars, six aircraft, and a variety of supporting instrumentation began 12 June 1989, and continued through 22 July 1989. In all, 106 of the nineteen various predefined experiments were conducted, though severe storms were fewer in number than expected. Several different atmospheric tracer techniques were employed, including gaseous (sulfur hexafluoride), radar chaff, natural (ozone, carbon monoxide), and fluorescent beads.

  13. Doppler radar observation of the evolution of a thunderstorm

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Srivastava, R. C.

    1980-01-01

    Triple-Doppler radar observations of the evolution of the three-dimensional structure of a thunderstorm on May 19, 1978 are analyzed. Continuous data were taken over a long period of the non-severe storm's lifetime as it passed through the radar and the portable automated mesonet network. A fairly low cloud top of 10 km and high reflectivities were observed, and horizontal rotations developed in the middle troposphere, which never reached lower levels. The cyclonic and anticyclonic circulations at mid-levels intensified after the maximum cell height was reached, and a high reflectivity maximum lasted 15-20 min aloft, with the core descending to the surface because of rapid fallout from the largest precipitation particles. Due to the fairly small scale of the updrafts, future use of smaller grid spacings is considered a necessity.

  14. Satellite-observed characteristics of midwest severe thunderstorm anvils

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Blackmer, Roy H., Jr.

    1988-01-01

    The cloud top and anvil structure of severe thunderstorms observed by the GOES satellite are analyzed for five SESAME cases in 1979 and four non-SESAME cases in 1980-1982. The data is compared with previous models and hypotheses, paying particular attention to the V feature and thermal couplets in the IR observations. The characteristics of the cases are examined and related to the upper-level temperature and wind conditions. It is found that the warm points downwind of the cloud top are due to subsidence. The anaylsis suggests the presence of subsidence due to mountainlike waves. A model in which the close-in warm point is produced by both internal cloud air motions and stratospheric flow around and over the cloud top. It is suggested that the distant warm point is due to either a wave perturbation from air flowing over the cloud top, or air flowing horizonatlly around the elevated portion of the cloud top and anvil.

  15. The electric field alignment of ice particles in thunderstorms

    NASA Technical Reports Server (NTRS)

    Weinheimer, Andrew J.; Few, Arthur A.

    1987-01-01

    Electrical and aerodynamic torques on atmospheric ice particles are calculaed in order to assess the degree of alignment of these particles with the electric fields in thunderstorms. In such clouds fields of many tens of kilovolts per meter are commonly measured, and values of 100 to 200 kV/m are not rare. For E = 100 kV/m the calculations indicate that electric field alignment occurs for crystals with major dimensions up to maximum values in the range from 200 microns to 1 mm, depending upon crystal type. Columns are aligned more easily than platelike crystals, except for dendrites which, by virtue of their smaller assumed density, have smaller fall velocities thereby experiencing weaker aerodynamic torques. Thus a substantial degree of alignment is expected for E = 100 kV/m. For E = 10 kV/m only much smaller crystals will be aligned, probably only ones with major dimensions of less than 50 microns or so.

  16. Four-dimensional visualization of the simultaneous activity of alternative adeno-associated virus replication origins.

    PubMed

    Glauser, Daniel L; Saydam, Okay; Balsiger, N Alexander; Heid, Irma; Linden, R Michael; Ackermann, Mathias; Fraefel, Cornel

    2005-10-01

    The adeno-associated virus (AAV) inverted terminal repeats (ITRs) contain the AAV Rep protein-binding site (RBS) and the terminal resolution site (TRS), which together act as a minimal origin of DNA replication. The AAV p5 promoter also contains an RBS, which is involved in Rep-mediated regulation of promoter activity, as well as a functional TRS, and origin activity of these signals has in fact been demonstrated previously in the presence of adenovirus helper functions. Here, we show that in the presence of herpes simplex virus type 1 (HSV-1) and AAV Rep protein, p5 promoter-bearing plasmids are efficiently amplified to form large head-to-tail concatemers, which are readily packaged in HSV-1 virions if an HSV-1 DNA-packaging/cleavage signal is provided in cis. We also demonstrate simultaneous and independent replication from the two alternative AAV replication origins, p5 and ITR, on the single-cell level using multicolor-fluorescence live imaging, a finding which raises the possibility that both origins may contribute to the AAV life cycle. Furthermore, we assess the differential affinities of Rep for the two different replication origins, p5 and ITR, both in vitro and in live cells and identify this as a potential mechanism to control the replicative and promoter activities of p5.

  17. Thunderstorm Electrification and Raindrop Collisions and Disjection in an Electric Field.

    PubMed

    Gunn, R

    1965-11-12

    Raindrop collisions in an electric field selectively transfer charges of one sign to the larger disjected drops. The disjected drops, falling away from the smaller drops, separate free charge to establish electric fields as large as those observed in thunderstorms.

  18. NASA 3-D Image Reveals Powerful Thunderstorms in Nadine's Northeastern Quadrant

    NASA Video Gallery

    On Oct. 2 at 11:43 p.m. EDT), heavy convective thunderstorms were found in Nadine's northeastern quadrant by NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. Wind shear had separated th...

  19. Winter thunderstorms in central Europe in the past and the present

    NASA Astrophysics Data System (ADS)

    Munzar, Jan; Franc, Marek

    Thunderstorms in the territories of the Czech Republic and neighbouring countries are almost exclusively the only phenomena occurring in the warm season. In the cold half of the year, from October to March, an average incidence of thunderstorms is only 2%, with the least occurrence being recorded in January. Yet, winter thunderstorms are dangerous particularly for air traffic because during them, the cloud base is rapidly falling down and visibility is suddenly worsening due to heavy snowfall. Notwithstanding these facts, the issue of their occurrence in the central European space has been paid little attention so far. Long years of study into historical weather extremes in the territory of the Czech Republic revealed over 10 chronicle entries on the occurrence of winter thunderstorms in the period between November and February from the 16th to the beginning of the 20th centuries. The irregular phenomenon was even devoted three occasional prints in central Europe in the second half of the 16th century, two of which were issued in Germany. Fires caused by winter thunderstorms were no sporadic cases. The occurrence of thunderstorms in winter was apparently associated with the passage of pronounced cold fronts. This can be documented on cases from the end of December 1555 when heavy thunderstorms and consequent fires were recorded within a short period of time in Holland, Germany and in Czech lands. It is assumed that the situation in 1627 was similar when a winter thunderstorm was recorded in Prague and in Holešov, southeastern Moravia on 28 December. In February 1581, a thunderstorm in Prague became one of three unusual events publicized by the local occasional newspaper. The beginning of modern studies into winter thunderstorms dates back to the 1960s with the use of lightning flash counters and later also with the use of systems for large-scale lightning flash detection and localization. However, more comprehensive meteorological and climatological assessments of

  20. Circular polarization of radio emission from air showers in thunderstorm conditions

    NASA Astrophysics Data System (ADS)

    Trinh, T. N. G.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Thoudam, S.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; ter Veen, S.; Winchen, T.

    2017-03-01

    We present measured radio emission from cosmic-ray-induced air showers under thunderstorm conditions. We observe for these events large differences in intensity, linear polarization and circular polarization from the events measured under fair-weather conditions. This can be explained by the effects of atmospheric electric fields in thunderclouds. Therefore, measuring the intensity and polarization of radio emission from cosmic ray extensive air showers during thunderstorm conditions provides a new tool to probe the atmospheric electric fields present in thunderclouds.

  1. Sibling Behaviors and Mexican-Origin Adolescents' After-School Activities

    ERIC Educational Resources Information Center

    Price, Chara D.; Simpkins, Sandra D.; Menjívar, Cecilia

    2017-01-01

    Families are theorized to influence adolescents' participation in skill-based after-school activities, but research has focused on the role of parents while neglecting the role of siblings. Siblings might be especially critical for Mexican-origin youth, the fastest growing youth population in the United States, due to a high value of family as…

  2. 12 CFR Appendix A to Subpart F of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Examples of Mortgage Loan Originator Activities A Appendix A to Subpart F of Part 34 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF... Pt. 34, Subpt. F, App. A Appendix A to Subpart F of Part 34—Examples of Mortgage Loan...

  3. 12 CFR Appendix A to Subpart F of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Examples of Mortgage Loan Originator Activities A Appendix A to Subpart F of Part 34 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF... Pt. 34, Subpt. F, App. A Appendix A to Subpart F of Part 34—Examples of Mortgage Loan...

  4. 76 FR 76983 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and... the NAFTA Regulations and Certificate of Origin. This request for comment is being made pursuant to... CBP is soliciting comments concerning the following information collection: Title: NAFTA...

  5. Perspectives of Mexican-Origin Smokers on Healthy Eating and Physical Activity

    ERIC Educational Resources Information Center

    Strong, Larkin L.; Hoover, Diana S.; Heredia, Natalia I.; Krasny, Sarah; Spears, Claire A.; Correa-Fernández, Virmarie; Wetter, David W.; Fernandez, Maria E.

    2016-01-01

    Key modifiable risk behaviors such as smoking, poor diet and physical inactivity often cluster and may have multiplicative adverse effects on health. This study investigated barriers and facilitators to healthy eating and physical activity (PA) in overweight Mexican-origin smokers to inform the adaptation of an evidence-based smoking cessation…

  6. 75 FR 28276 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: 30.... SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland Security has submitted...

  7. 77 FR 23490 - Agency Information Collection Activities: Country of Origin Marking Requirements for Containers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: Country of Origin Marking Requirements for Containers or Holders AGENCY: U.S. Customs and Border Protection, Department of... collection. SUMMARY: U.S. Customs and Border Protection (CBP) of the Department of Homeland Security will...

  8. 77 FR 9954 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... of Management and Budget. Comments should be addressed to the OMB Desk Officer for Customs and Border... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION:...

  9. 78 FR 26650 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... SECURITY U.S. Customs and Border Protection Agency Information Collection Activities: African Growth and... comment on an information collection requirement concerning the African Growth and Opportunity Act...: Title: African Growth and Opportunity Act Certificate of Origin. OMB Number: 1651-0082. Form...

  10. 75 FR 26974 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... SECURITY Customs and Border Protection Agency Information Collection Activities: African Growth and... review and approval in accordance with the Paperwork Reduction Act: African Growth and Opportunity Act... forms of information. Title: African Growth and Opportunity Act Certificate of Origin. OMB Number:...

  11. Differentially active origins of DNA replication in tumor versus normal cells.

    PubMed

    Di Paola, Domenic; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2006-05-15

    Previously, a degenerate 36 bp human consensus sequence was identified as a determinant of autonomous replication in eukaryotic cells. Random mutagenesis analyses further identified an internal 20 bp of the 36 bp consensus sequence as sufficient for acting as a core origin element. Here, we have located six versions of the 20 bp consensus sequence (20mer) on human chromosome 19q13 over a region spanning approximately 211 kb and tested them for ectopic and in situ replication activity by transient episomal replication assays and nascent DNA strand abundance analyses, respectively. The six versions of the 20mer alone were capable of supporting autonomous replication of their respective plasmids, unlike random genomic sequence of the same length. Furthermore, comparative analyses of the endogenous replication activity of these 20mers at their respective chromosomal sites, in five tumor/transformed and two normal cell lines, done by in situ chromosomal DNA replication assays, involving preparation of nascent DNA by the lambda exonuclease method and quantification by real-time PCR, showed that these sites coincided with chromosomal origins of DNA replication in all cell lines. Moreover, a 2- to 3-fold higher origin activity in the tumor/transformed cells by comparison to the normal cells was observed, suggesting a higher activation of these origins in tumor/transformed cell lines.

  12. Allergen aerosol from pollen-nucleated precipitation: A novel thunderstorm asthma trigger

    NASA Astrophysics Data System (ADS)

    Beggs, Paul John

    2017-03-01

    Thunderstorm asthma is the term used to describe epidemics of asthma exacerbation associated with thunderstorms. Most published reports of thunderstorm asthma have come from the United Kingdom, Canada, and Australia, although several studies have been published on the phenomenon in the USA and Europe (particularly Greece and Italy). Such reports usually consider changes in hospital admissions or emergency department attendances for asthma. For example, Celenza et al. (1996) studied an asthma epidemic in London in June 1994 where 40 patients presented to the accident and emergency department of St Mary's Hospital in the 24 hours after a thunderstorm compared to an average of just over 2 asthma presentations per day over the several weeks before and after this event. More recent examples include the 20 patients who presented to an emergency department in Puglia, Italy, for sudden and severe asthmatic symptoms immediately after a thunderstorm in May 2010, where the average daily emergency department presentations for asthma several weeks before and after this event was only 2 to 3 (Losappio et al., 2011); and the 36 emergency department presentations for acute asthma to the Austin Hospital in Melbourne, Australia, on 25 November 2010 immediately after a thunderstorm (with the number of such presentations on days prior to and following the epidemic ranging from 0 to 10) (Howden et al., 2011).

  13. TETRA observation of gamma-rays at ground level associated with nearby thunderstorms

    PubMed Central

    Ringuette, Rebecca; Case, Gary L; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2013-01-01

    [1] Terrestrial gamma-ray flashes (TGFs)—very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms—have been detected with satellite instruments. TGF and Energetic Thunderstorm Rooftop Array (TETRA), an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma-rays at ground level. After 2.6 years of observation, 24 events with durations 0.02–4.2 ms have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ∼1000 m. Nine of the events occurred within 6 ms and 5 km of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site. PMID:26167428

  14. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin.

    PubMed

    Kujumgiev, A; Tsvetkova, I; Serkedjieva, Y; Bankova, V; Christov, R; Popov, S

    1999-03-01

    Propolis samples from different geographic origins were investigated for their antibacterial (against Staphylococcus aureus and Escherichia coli), antifungal (against Candida albicans) and antiviral (against Avian influenza virus) activities. All samples were active against the fungal and Gram-positive bacterial test strains, and most showed antiviral activity. The activities of all samples were similar in spite of the differences in their chemical composition. In samples from the temperate zone, flavonoids and esters of phenolic acids are known to be responsible for the above mentioned activities of bee glue; tropical samples did not contain such substances but showed similar activities. Obviously, in different samples, different substance combinations are essential for the biological activity of the bee glue. It seems that propolis has general pharmacological value as a natural mixture and not as a source of new powerful antimicrobial, antifungal and antiviral compounds.

  15. Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Yijun; Zheng, Dong

    2015-12-01

    The rate of neutralized charge by lightning (RNCL) is an important parameter indicating the intensity of lightning activity. The total charging rate (CR), the CR of one kind of polarity (e.g., negative) charge (CROP), and the outflow rate of charge on precipitation (ORCP) are proposed as key factors impacting RNCL, based on the principle of conservation of one kind of polarity charge in a thunderstorm. In this paper, the impacts of updraft on CR and CROP are analyzed by using a 3D cloud resolution model for a strong storm that occurred in Beijing on 6 september 2008. The results show that updraft both promotes and inhibits RNCL at the same time. (1) Updraft always has a positive influence on CR. The correlation coefficient between the updraft volume and CR can reach 0.96. Strengthening of the updraft facilitates strengthening of RNCL through this positive influence. (2) Strengthening of the updraft also promotes reinforcement of CROP. The correlation coefficient between the updraft volume and CROP is high (about 0.9), but this promotion restrains the strengthening of RNCL because the strengthening of CROP will, most of the time, inhibit the increasing of RNCL. (3) Additionally, increasing of ORCP depresses the strengthening of RNCL. In terms of magnitude, the peak of ORCP is equal to the peak of CR. Because precipitation mainly appears after the lightning activity finishes, the depression effect of ORCP on RNCL can be ignored during the active lightning period.

  16. Differential effects of school experiences on active citizenship among German and Turkish-origin students.

    PubMed

    Jugert, Philipp; Eckstein, Katharina; Noack, Peter

    2016-12-14

    While research suggests that schools can foster active citizenship among youth, studies have not tested whether ethnic minority youth may benefit differently from school experiences than ethnic majority youth. In this study of 219 students (138 German majority and 81 Turkish-origin minority; Mage  = 18.26; 55% females), we examined the association between different experiences at school and 4 indicators of youth active citizenship, controlling for various socio-demographic characteristics. Although value of social studies was associated with three out of four active citizenship indicators among both ethnic groups, the effects of the other school-related variables on active citizenship were moderated by ethnicity. Specifically, indicators of classroom climate, such as open classroom climate and classroom community, were only associated with greater active citizenship among Turkish-minority youth, while participatory factors, such as engagement in school decisions, were only associated with active citizenship among native German youth.

  17. Investigations of severe/tornadic thunderstorm development and evolution based on satellite and AVE/SESAME/VAS data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Purdom, J. F. W.

    1985-01-01

    Development of cloud relative tracking for severe thunderstorm identification and the beginning of the development of mesoscale airmass characteristics based on vertical atmospheric sounding data were accomplished.

  18. Relativistic electron avalanches as a thunderstorm discharge competing with lightning

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.; Smith, David M.; Dwyer, Joseph R.; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K.

    2015-08-01

    Gamma-ray `glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by >=9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  19. Initial Electric Field Changes of Lightning Flashes in Two Thunderstorms

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Stolzenburg, M.; Karunarathne, S.; Chapman, R.

    2015-12-01

    In a study of lightning initiation, Marshall et al. [2014, JGR Atmospheres] found that an initial electric field change (IEC) occurred before the initial breakdown (IB) pulses in 18 cloud-to-ground (CG) flashes and in 18 intracloud (IC) flashes. Because the IECs were small in amplitude and slowly developing (i.e., primarily electrostatic events), they were only detected by sensors within the reversal distance of each flash. In this presentation we report on a search for IECs in two small Florida thunderstorms that occurred close to several E-change sensors. One storm had 57 flashes; the other had only 13 flashes. The key result is that 69 of the 70 flashes began with detectable IECs. For the one flash without a detectable IEC, the closest sensor was at the reversal distance, presumably masking the IEC. Three of the flashes analyzed seemed to begin twice, in the sense that they had two sets of IB pulses; each beginning was preceded by an IEC.

  20. Probabilistic forecasts of winter thunderstorms around Amsterdam Airport Schiphol

    NASA Astrophysics Data System (ADS)

    Slangen, A. B. A.; Schmeits, M. J.

    2009-04-01

    The development and verification of a probabilistic forecast system for winter thunderstorms around Amsterdam Airport Schiphol is described. We have used Model Output Statistics (MOS) to develop the probabilistic forecast equations. The MOS system consists of 32 logistic regression equations, i.e. for two forecast periods (0-6 h and 6-12 h), four 90×80 km2 regions around Amsterdam Airport Schiphol, and four 6-h time periods. For the predictand quality-controlled Surveillance et Alerte Foudre par Interférométrie Radioélectrique (SAFIR) total lightning data were used. The potential predictors were calculated from postprocessed output of two numerical weather prediction (NWP) models - i.e. the High-Resolution Limited-Area Model (HIRLAM) and the European Centre for Medium-Range Weather Forecasts (ECMWF) model - and from an ensemble of advected lightning and radar data (0-6 h projections only). The predictors that are selected most often are the HIRLAM Boyden index, the square root of the ECMWF 3-h and 6-h convective precipitation sum, the HIRLAM convective available potential energy (CAPE) and two radar advection predictors. An objective verification was done, from which it can be concluded that the MOS system is skilful. The forecast system runs at the Royal Netherlands Meteorological Institute (KNMI) on an experimental basis, with the primary objective to warn aircraft pilots for potential aircraft induced lightning (AIL) risk during winter.

  1. A numerical investigation of the severe thunderstorm gust front

    NASA Technical Reports Server (NTRS)

    Mitchell, K. E.; Hovermale, J. B.

    1977-01-01

    The structure of the thunderstorm gust front is investigated by a nonhydrostatic, two-dimensional (x,z) numerical model. In the model, which is dry, the production of negatively buoyant air by evaporation is parameterized via an externally imposed, local-cooling function. This parameterization sustains a steady cold downdraft, which drives the surface outflow and associated gust front. It is shown that two dominant factors influencing gust front structure in the vertical plane are the solenoidal field coincident with the front and surface friction, modeled by means of a simple bulk aerodynamic drag formulation. The circulation theorem is invoked to illustrate how solenoidal accelerations oppose the deceleration by surface friction. After the onset of a downdraft in the model, these opposing tendencies soon reach a balance. Thus, following a brief transient stage, the model gust front exhibits a persistent configuration as it propagates rapidly forward. The essential features of this configuration are examined and compared with both tower observations of gust fronts and laboratory models of gravity currents.

  2. A numerical investigation of severe thunderstorm gust fronts

    NASA Technical Reports Server (NTRS)

    Mitchell, K. E.

    1975-01-01

    A numerical model was developed to simulate the evolution and structure of severe thunderstorm gust fronts. The model is a non-hydrostatic, fine resolution, cross-sectional primitive equation model. Two-dimensional horizontal and vertical equations of motion, the continuity equation, and the thermodynamic energy equation were utilized. It was shown that two dominant factors influencing gust front configuration are surface friction and the solenoidal field coincident with the front. It is suggested that solenoidal accelerations oppose the deceleration of surface friction. After a downdraft is initiated in the model, these opposing tendencies soon reach a balance and the gust front achieves a quasi-steady configuration. Thus, the experiments indicate that surface friction does not induce a cycle of front formation and collapse. In addition, the effect of evaporative cooling in producing a vigorous downdraft was parameterized by a local cooling function. Greater cooling in the downdraft results in a more intense gust front that exhibits stronger wind maximums and greater shears. The ambient air stability was shown to be an important factor influencing the depth of the cold outflow.

  3. Houston Environmental Aerosol Thunderstorm (HEAT) Project - 2004/2005

    NASA Astrophysics Data System (ADS)

    Orville, R. E.

    2002-12-01

    For over thirteen years the National Lightning Detection Network (NLDN) has been in operation collecting cloud-to-ground (CG) lightning data for the continental United States. Geographical areas of enhanced lightning flashes, or `hot spots', have been detected in this data set. One such observed hot spot is near the city of Houston, Texas, the most polluted city in the United States. The phenomenon has been studied with the available data and hypotheses made as to the reason for the lightning hot spot. However, more comprehensive data sets are needed in order to further examine this occurrence. The Houston Environmental Aerosol Thunderstorm (HEAT) Project will obtain the data sets necessary for further study of the hot spot near Houston and is planned for the summers of 2004/2005. The primary goals of HEAT are to examine the effects of pollution, the urban heat island, and the complex coastline on storms and lightning characteristics in the Houston area. In addition we will determine the relative amounts of lightning-produced and convectively transported NOx

  4. Relativistic electron avalanches as a thunderstorm discharge competing with lightning.

    PubMed

    Kelley, Nicole A; Smith, David M; Dwyer, Joseph R; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K

    2015-08-12

    Gamma-ray 'glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by ≥9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  5. A numerical study of aerosol effects on electrification of thunderstorms

    NASA Astrophysics Data System (ADS)

    Tan, Y. B.; Shi, Z.; Chen, Z. L.; Peng, L.; Yang, Y.; Guo, X. F.; Chen, H. R.

    2017-02-01

    Numerical simulations are performed to investigate the effect of aerosol on microphysical and electrification in thunderstorm clouds. A two-dimensional (2-D) cumulus model with electrification scheme including non-inductive and inductive charge separation is used. The concentration of aerosol particles with distribution fitted by superimposing three log-normal distributions rises from 50 to 10,000 cm-3. The results show that the response of charge separation rate to the increase of aerosol concentration is nonmonotonic. When aerosol concentration is changed from 50 to 1000 cm-3, a stronger formation of cloud droplet, graupel and ice crystal results in increasing charge separation via non-inductive and inductive mechanism. However, in the range of 1000-3000 cm-3, vapor competition arises in the decrease of ice crystal mixing ratio and the reduction of ice crystals size leads to a slightly decrease in non-inductive charge rate, while inductive charging rate has no significant change in magnitude. Above aerosol concentration of 3000 cm-3, the magnitude of charging rate which keeps steady is insensitive to the increase in aerosol concentration. The results also suggest that non-inductive charge separation between ice crystal and graupel contributes to the main upper positive charge region and the middle negative charge region. Inductive graupel-cloud droplet charge separation, on the other hand, is found to play an important role in the development of lower charge region.

  6. High energy radiation from aircraft-triggered lightning and thunderstorm

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; van Deursen, Alexander P. J.; de Boer, Alte I.; Bardet, Michiel; Boissin, Jean-François

    2016-04-01

    In-flight Lightning Strike Damage Assessment System (ILDAS http://ildas.nlr.nl/) was developed in an EU FP6 project to provide information on threat that lightning poses to aircraft. The system contains one E-field and eight H-field sensors distributed over the fuselage. It has recently been extended to include two LaBr3 scintillation detectors. The scintillation detectors are sensitive to x-ray photons above 30 keV. The entire system is installed on an A-350 aircraft. When triggered by lightning and digitizes data synchronously with 10 ns intervals. Twelve continuously monitoring photon energy channels were implemented for X-ray detectors operating at slower rate (15 ms, pulse counting). In spring of 2014 and 2015 the aircraft flew through thunderstorm cells recording the data from the sensors. Total of 93 lightning strikes to the aircraft are recorded. Eighteen of them are also detected by WWLLN network. One strike consists of six individual strokes within 200 ms that were all synchronously identified by WWLLN. The WWLLN inter-stroke distance is much larger than the aircraft movement. Three of these strokes generated X-ray bursts. One exceptionally bright X-ray pulse of more than 8 MeV has been detected in association with another strike; it probably saturated the detector's photomultiplier. Neither long gamma-ray glow, nor positron annihilation have been detected during the campaign. An explanation is sought in the typical altitude profile of these test flights.

  7. On the Magnitude of the Electric Field Near Thunderstorm-Associated Clouds

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Ward, Jennifer G.; Mach, Douglas M.; Bateman, Monte G.; Dye, James E.

    2007-01-01

    Electric field measurements made in and near clouds during two airborne field mill programs are presented. Aircraft equipped with multiple electric field mills and cloud physics sensors were flown near active convection and into thunderstorm anvil and debris clouds. The magnitude of the electric field was measured as a function of position with respect to the cloud edge in order to provide an observational basis for modifications to the lightning launch commit criteria (LLCC) used by the U.S. space program. These LLCC are used to reduce the risk that an ascending launch vehicle will trigger a lightning strike that could cause the loss of the mission or vehicle. The results suggest that even with fields of tens of kV/m inside electrically active convective clouds, the fields external to these clouds decay to less than 3 kV/m within fifteen kilometers of cloud edge. Fields exceeding 3 kV/m were not found external to anvil and debris clouds.

  8. A reconstruction of 1 August 1674 thunderstorms over the Low Countries

    NASA Astrophysics Data System (ADS)

    van der Schrier, Gerard; Groenland, Rob

    2017-02-01

    On 1 August 1674 an active cold front moved over the Low Countries. The accompanying thunderstorms along the squall line were abnormally active, leading to large-scale damage in Europe, from northern France to the northern parts of Holland where damages were particularly severe. Using reported and pictured observations of damages and modern meteorological concepts, the reconstruction of the storm points to an exceptionally severe squall line. The orientation and the velocity of the squall line are reconstructed and shows a developed bow-echo structure. An estimate of the strength of the strongest wind gusts is ≈ 55-90 m s-1 and is based on an assessment of the damages caused by this event. A rough estimate of the return time of this event, based on observed hail size, is between 1000 and 10 000 years. This storm is compared to a more recent storm which was similar in dynamics but much less devastating. Special attention is given to the city of Utrecht which was hit hardest, and where the impact of this storm is still recognizable in the cityscape.

  9. Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin

    SciTech Connect

    Duliu, O. G.; Cristache, C. I.; Oaie, G.; Ricman, C.; Culicov, O. A.; Frontasyeva, M. V.

    2010-01-21

    Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

  10. Space-Borne Observations of Intense Gamma-Ray Flashes Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Jerry

    2005-01-01

    Intense millisecond flashes of MeV photons were discovered with the space-borne detectors of the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO). These flashes originate at altitudes above at least 30 km, in order to be observable by the orbiting detectors. Over the entire CGRO mission, from 1991 until 2000, about 70 of these events were observed. Nearly all TGFs had short (millisecond) durations and sub-ms rise-times and fall-times, however a small fraction of them had longer timescales associated with them. Most were single pulses, but about a dozen had double pulses and a few had more than two pulses. The TGFs are observed in a photon-by-photon recording mode, with each photon from eight independent detectors being tagged to the nearest two microseconds in four energy channels. The TGFs show very hard spectra, in most cases there are more photons recorded above 300 keV than below. Several of the TGFs were also recorded by the thicker (but smaller area) spectroscopy detectors that provided improved spectral resolution than the large area detectors. The temporal and spectral characteristics of the events and the capabilities of the detectors will be described in more detail than the in the original paper. The association of TGFs with thunderstorms is primarily statistical; the TGFs show a strong correlation with the global distribution of lightning, as observed with recent satellites. There has also been an association based upon coincidences with spheric events, however, this association is debatable due to the high spherics rate and the non-directionality of the detectors. This talk gives an update of the BATSE observations of TGFs were published by the BATSE instrument team over ten years ago.

  11. Recommendations for Technology Development and Validation Activities in Support of the Origins Program

    NASA Technical Reports Server (NTRS)

    Capps, Richard W. (Editor)

    1996-01-01

    The Office of Space Science (OSS) has initiated mission concept studies and associated technology roadmapping activities for future large space optical systems. The scientific motivation for these systems is the study of the origins of galaxies, stars, planetary systems and, ultimately, life. Collectively, these studies are part of the 'Astronomical Search for Origins and Planetary Systems Program' or 'Origins Program'. A series of at least three science missions and associated technology validation flights is currently envisioned in the time frame between the year 1999 and approximately 2020. These would be the Space Interferometry Mission (SIM), a 10-meter baseline Michelson stellar interferometer; the Next Generation Space Telescope (NGST), a space-based infrared optimized telescope with aperture diameter larger than four meters; and the Terrestrial Planet Finder (TPF), an 80-meter baseline-nulling Michelson interferometer described in the Exploration of Neighboring Planetary Systems (ExNPS) Study. While all of these missions include significant technological challenges, preliminary studies indicate that the technological requirements are achievable. However, immediate and aggressive technology development is needed. The Office of Space Access and Technology (OSAT) is the primary sponsor of NASA-unique technology for missions such as the Origins series. For some time, the OSAT Space Technology Program has been developing technologies for large space optical systems, including both interferometers and large-aperture telescopes. In addition, technology investments have been made by other NASA programs, including OSS; other government agencies, particularly the Department of Defense; and by the aerospace industrial community. This basis of prior technology investment provides much of the rationale for confidence in the feasibility of the advanced Origins missions. In response to the enhanced interest of both the user community and senior NASA management in large

  12. Lightning Mapping Observations of Volume-Filling Small Discharges in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.

    2013-12-01

    Lightning is usually considered to be a large-scale electrical discharge in the atmosphere. For example, the American Meteorological Society's Glossary of Meteorology defines lightning as "a transient, high-current electric discharge with pathlengths measured in kilometers" (http://glossary.ametsoc.org/wiki/Lightning). There have been several reported examples of short-duration discharges in thunderstorms, which have a duration of a few microseconds to less than a millisecond, and have a small spatial extent These short-duration discharges were located at high altitudes (> 14 km), altitudes consistent with being located between the upper positive charge and the negative screening layer. At these altitudes, the electric field needed to initiate an electrical discharge is much lower than it is at the altitudes of initiation for IC (~8 km) or CG (~5 km) flashes. We have recently reported on short-duration "precursor" discharges with durations of a few microseconds to a few milliseconds, which occur in the high-fields between the mid-level negative and upper positive charge regions. These "precursor" discharges are discrete in both time and space, being separated in time by hundreds of milliseconds to several seconds, and localized in space, usually very close to the initiation location of a subsequent IC discharge. We have recently observed nearly continuous, volume filling short-duration discharges in several thunderstorms. These discharges have durations of much less than a millisecond, spatial extents of less than a few hundred meters, and occur randomly in the volume between the mid-level negative and upper positive charge regions. During an active period, these discharges occur every few milliseconds. The rates of these discharges decreases dramatically to a few per second following an IC discharge, then increases to several hundred per second until the next discharge. In a storm just off the Florida coast, one cell was producing a large number of these small

  13. LEONA: Transient Luminous Event and Thunderstorm High Energy Emission Collaborative Network in Latin America

    NASA Astrophysics Data System (ADS)

    Sao Sabbas, F. T.

    2012-12-01

    This project has the goal of establishing the Collaborative Network LEONA, to study the electrodynamical coupling of the atmospheric layers signaled by Transient Luminous Events - TLEs and high energy emissions from thunderstorms. We will develop and install a remotely controlled network of cameras to perform TLE observations in different locations in South America and one neutron detector in southern Brazil. The camera network will allow building a continuous data set of the phenomena studied in this continent. The first two trial units of the camera network are already installed, in Brazil and Peru, and two more will be installed until December 2012, in Argentina and Brazil. We expect to determine the TLE geographic distribution, occurrence rate, morphology, and possible coupling with other geophysical phenomena in South America, such as the South Atlantic Magnetic Anomaly - SAMA. We also expect to study thunderstorm neutron emissions in a region of intense electrical activity, measuring neutron fluxes with high time resolution simultaneously with TLEs and lightning for the first time in South America. Using an intensified high-speed camera for TLE observation during 2 campaigns we expect to be able to determine the duration and spatial- temporal development of the TLEs observed, to study the structure and initiation of sprites and to measure the velocity of development of sprite structures and the sprite delay. The camera was acquired via the FAPESP project DEELUMINOS (2005-2010), which also nucleated our research group Atmospheric Electrodynamical Coupling - ACATMOS. LEONA will nucleate this research in other institutions in Brazil and other countries in South America, providing continuity for this important research in our region. The camera network will be an unique tool to perform consistent long term TLE observation, and in fact is the only way to accumulate a data set for a climatological study of South America, since satellite instrumentation turns off in

  14. Origin of Active States in Local Neocortical Networks during Slow Sleep Oscillation

    PubMed Central

    Chauvette, Sylvain; Volgushev, Maxim

    2010-01-01

    Slow-wave sleep is characterized by spontaneous alternations of activity and silence in corticothalamic networks, but the causes of transition from silence to activity remain unknown. We investigated local mechanisms underlying initiation of activity, using simultaneous multisite field potential, multiunit recordings, and intracellular recordings from 2 to 4 nearby neurons in naturally sleeping or anesthetized cats. We demonstrate that activity may start in any neuron or recording location, with tens of milliseconds delay in other cells and sites. Typically, however, activity originated at deep locations, then involved some superficial cells, but appeared later in the middle of the cortex. Neuronal firing was also found to begin, after the onset of active states, at depths that correspond to cortical layer V. These results support the hypothesis that switch from silence to activity is mediated by spontaneous synaptic events, whereby any neuron may become active first. Due to probabilistic nature of activity onset, the large pyramidal cells from deep cortical layers, which are equipped with the most numerous synaptic inputs and large projection fields, are best suited for switching the whole network into active state. PMID:20200108

  15. Discrimination and Nitric Oxide Inhibitory Activity Correlation of Ajwa Dates from Different Grades and Origin.

    PubMed

    Abdul-Hamid, Nur Ashikin; Mediani, Ahmed; Maulidiani, M; Abas, Faridah; Ismail, Intan Safinar; Shaari, Khozirah; Lajis, Nordin H

    2016-10-28

    This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO) inhibitory activity. Identification of the metabolites was generated using ¹H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.

  16. Cb-LIKE - Thunderstorm forecasts up to six hours with fuzzy logic

    NASA Astrophysics Data System (ADS)

    Köhler, Martin; Tafferner, Arnold

    2016-04-01

    Thunderstorms with their accompanying effects like heavy rain, hail, or downdrafts cause delays and flight cancellations and therefore high additional cost for airlines and airport operators. A reliable thunderstorm forecast up to several hours could provide more time for decision makers in air traffic for an appropriate reaction on possible storm cells and initiation of adequate counteractions. To provide the required forecasts Cb-LIKE (Cumulonimbus-LIKElihood) has been developed at the DLR (Deutsches Zentrum für Luft- und Raumfahrt) Institute of Atmospheric Physics. The new algorithm is an automated system which designates areas with possible thunderstorm development by using model data of the COSMO-DE weather model, which is driven by the German Meteorological Service (DWD). A newly developed "Best-Member- Selection" method allows the automatic selection of that particular model run of a time-lagged COSMO- DE model ensemble, which matches best the current thunderstorm situation. Thereby the application of the best available data basis for the calculation of the thunderstorm forecasts by Cb-LIKE is ensured. Altogether there are four different modes for the selection of the best member. Four atmospheric parameters (CAPE, vertical wind velocity, radar reflectivity and cloud top temperature) of the model output are used within the algorithm. A newly developed fuzzy logic system enables the subsequent combination of the model parameters and the calculation of a thunderstorm indicator within a value range of 12 up to 88 for each grid point of the model domain for the following six hours in one hour intervals. The higher the indicator value the more the model parameters imply the development of thunderstorms. The quality of the Cb-LIKE thunderstorm forecasts was evaluated by a substantial verification using a neighborhood verification approach and multi-event contingency tables. The verification was performed for the whole summer period of 2012. On the basis of a

  17. Evolutionary origin of autonomic regulation of physiological activities in vertebrate phyla.

    PubMed

    Shimizu, Hiroshi; Okabe, Masataka

    2007-10-01

    Proper regulation of physiological activities is crucial for homeostasis in animals. Autonomic regulation of these activities is most developed in mammals, in which a part of peripheral nervous system, termed the autonomic nervous system plays the dominant role. Circulatory activity and digestive activity in vertebrates change in opposite phases to each other. The stage where circulatory activity is high and digestive activity is low is termed the "fight or flight stage" while the stage where circulatory activity is low and digestive activity is high is termed the "rest and digest stage". It has been thought that the autonomic nervous system originated in early vertebrate phyla and developed to its greatest extent in mammals. In this study, we compared the pattern of change of circulatory and digestive activities in several invertebrates and found that the two stages seen in mammals are also present in a wide variety of animals, including evolutionarily early-diverging invertebrate taxa. From this and other arguments we propose a novel possibility that the basic properties of the autonomic nervous system were established very early in metazoan evolution.

  18. Early detection of severe thunderstorms in the Alpine region: the dynamical approach of COALITION.

    NASA Astrophysics Data System (ADS)

    Nisi, L.; Giunta, I.; Ambrosetti, P.; Clementi, L.

    2010-09-01

    The basic physical mechanisms governing thunderstorms are fairly well understood and these rely on the analysis of temperature and humidity profiles at upper and lower layers. Furthermore, the topography, particularly important in the Alpine region, specifically drives the conditions at boundary layer, where convection elements can be initiated, focused, oriented, reactivated or inhibited. The accurate observation of specific features, e.g. retrieved by remote sensing methods, and appearing at different phases of the thunderstorm lifecycle (pre-convective, convective, deep, mature stage), can lead to significant improvements of the forecast-skills. The challenge is how to build up a methodology for integrating physical and heuristic information into one appropriate, consistent Nowcasting model for complex terrains. The here presented heuristic model (Context and Scale Oriented Thunderstorm Satellite Predictors Development - COALITION) collects and assimilates the information from different data sources and applications (e.g. Meteosat Second Generation, MetOp/IASI, Weather Radar, Numerical Weather Prediction, Topography) into a simplified model, where thunderstorm predictors (e.g. instability indices, moisture convergence) are merged with evolving thunderstorm properties. The storm evolution results then as solution of particular motion equations, governed by couplings between convective signatures (objects) and environments (pseudo potential fields). The improved time-linkage between different features and phases, will be basis for the early prediction of the storm.

  19. The use of network lightning data to detect thunderstorms near surface reporting stations

    SciTech Connect

    Reap, R.M. )

    1993-02-01

    Relationships between network lightning data and hourly thunderstorm observations were examined for the northeastern United States, Oklahoma, Florida, and the western United States to provide additional information on the possible effects of using lightning data to replace or supplement the hourly observations. Identification of thunderstorms for three of the four regions was found to agree closely with the hourly observations, provided the network reports were accumulated for a radius of 48 km or more about the station. The best agreement was found over Florida where high ground-flash densities resulted in a greater likelihood of both observer and network recording a given thunderstorm. In the immediate vicinity (8 km) of a station, use of lightning data from current national or regional networks would not provide observations comparable to the manual observations of thunderstorms due to the poor agreement between the two sets of observations at this radius. Selection of an 8-km radius would result in a decrease of nearly 75% in the number of thunderstorms detected by the network relative to that reported by the observer. 9 refs., 3 figs., 2 tabs.

  20. Thunderstorm-associated asthma or shortness of breath epidemic: a Canadian case report.

    PubMed

    Wardman, A E Dennis; Stefani, Dennis; MacDonald, Judy C

    2002-01-01

    Thunderstorm-associated asthma epidemics have been documented in the literature, but no Canadian experience has been reported. On July 31, 2000, a thunderstorm-associated epidemic of asthma or shortness of breath occurred in Calgary, Alberta. The Calgary Health Region investigated the event using diagnostic data from emergency departments, an urgent care medical clinic and patient interviews, in addition to bioaerosol counts, pollutant data and weather data reflecting atmospheric conditions at that time. On July 31, 2000 and August 1, 2000, 157 people sought care for asthma symptoms. The expected number of people to seek care for such symptoms in a 48 h period in Calgary is 17. Individuals with a personal or family history of asthma, allergies or hay fever who were not taking regular medication for these conditions and who were outdoors before the storm appeared to have been preferentially affected. A stagnant air mass the day before the thunderstorm may have resulted in declining bioaerosol concentrations, and the possible accumulation of spore and pollen reservoirs within mould and plant structures. The elevated bioaerosol concentrations observed on the day of the thunderstorm may be attributed to the sudden onset of high winds during the thunderstorm, which triggered a sudden release of spores and pollens into the atmosphere, which was probably responsible for the epidemic. Several pollutant levels slightly increased on the day of the storm and possibly also played a role in symptom development. It is unclear whether an atmospheric pressure drop contributed to the release of spores and pollens.

  1. Thermodynamic Conditions Favorable to Superlative Thunderstorm Updraft, Mixed Phase Microphysics and Lightning Flash Rate. Revised

    NASA Technical Reports Server (NTRS)

    Williams, E.; Mushtak, V.; Rosenfeld, D.; Goodman, S.; Boccippio, D.

    2004-01-01

    Satellite observations of lightning flash rate have been merged with proximal surface station thermodynamic observations toward improving the understanding of the response of the updraft and lightning activity in the tropical atmosphere to temperature. The tropical results have led in turn to an examination of thermodynamic climatology over the continental United States in summertime and its comparison with exceptional electrical conditions documented in earlier studies. The tropical and mid-latitude results taken together support an important role for cloud base height in regulating the transfer of Convective Available Potential Energy (CAPE) to updraft kinetic energy in thunderstorms. In the tropics, cloud base height is dominated by the dry bulb temperature over the wet bulb temperature as the lightning-regulating temperature in regions characterized by moist convection. In the extratropics, an elevated cloud base height may enable larger cloud water concentrations in the mixed phase region, a favorable condition for the positive charging of large ice particles that may result in thunderclouds with a reversed polarity of the main cloud dipole. The combined requirements of instability and cloud base height serve to confine the region of superlative electrification to the vicinity of the ridge in moist entropy in the western Great Plains.

  2. Behavioral correlates between daily activity and sociality in wild and captive origin African lions

    PubMed Central

    Dunston, Emma J.; Abell, Jackie; Freire, Rafael

    2016-01-01

    ABSTRACT Study of behavioral correlations within and across populations has long been of interest to ethologists. An exploration of behavioral correlations between sociality and behavior of African lions (Panthera leo) was undertaken to examine if this approach is better able to reveal important aspects of lion behavior not easily discernible by looking at these behaviors separately. Resting behavior and received play interactions were correlated in 2 captive-origin prides and one wild pride, attributable to the involvement of cubs and sub-adults. Direct and exploratory movement was negatively correlated with groom centrality in 2 of the 3 prides, due to adults engaging in high levels of both of these activities. Exploration of these behavioral correlations highlighted the differences between age-groups in activity and sociality, facilitating the understanding of the complex behavior and interactions of lions. In addition, the finding of similar behavioral correlations between captive-origin and the wild prides provides confidence in the suitability if captive-origin candidates for ex-situ release. This is imperative to ensure the success of sub-groups and prides under an ex-situ reintroduction program. PMID:27829977

  3. Behavioral correlates between daily activity and sociality in wild and captive origin African lions.

    PubMed

    Dunston, Emma J; Abell, Jackie; Freire, Rafael

    2016-01-01

    Study of behavioral correlations within and across populations has long been of interest to ethologists. An exploration of behavioral correlations between sociality and behavior of African lions (Panthera leo) was undertaken to examine if this approach is better able to reveal important aspects of lion behavior not easily discernible by looking at these behaviors separately. Resting behavior and received play interactions were correlated in 2 captive-origin prides and one wild pride, attributable to the involvement of cubs and sub-adults. Direct and exploratory movement was negatively correlated with groom centrality in 2 of the 3 prides, due to adults engaging in high levels of both of these activities. Exploration of these behavioral correlations highlighted the differences between age-groups in activity and sociality, facilitating the understanding of the complex behavior and interactions of lions. In addition, the finding of similar behavioral correlations between captive-origin and the wild prides provides confidence in the suitability if captive-origin candidates for ex-situ release. This is imperative to ensure the success of sub-groups and prides under an ex-situ reintroduction program.

  4. An explanation for parallel electric field pulses observed over thunderstorms

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  5. Investigations of severe/tornadic thunderstorm development and evolution based on satellite and AVE/SESAME/VAS data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Purdom, J. F. W.

    1984-01-01

    The use of rapid scan satellite imagery to investigate the local environment of severe thunderstorms is discussed. Mesoscale cloud tracking and vertical wind shear as it affects thunderstorm relative flow are mentioned. The role of pre-existing low level cloud cover in the outbreak of tornadoes was investigated. Applying visible atmospheric sounding imagery to mesoscale phenomena is also addressed.

  6. Variation of the low level winds during the passage of a thunderstorm gust front

    NASA Technical Reports Server (NTRS)

    Sinclair, R. W.; Anthes, R. A.; Panofsky, H. A.

    1973-01-01

    Three time histories of wind profiles in thunderstorm gust fronts at Cape Kennedy and three at Oklahoma City are analyzed. Wind profiles at maximum wind strength below 100 m follow logarithmic laws, so that winds above the surface layer can be estimated from surface winds once the roughness length is known. A statistical analysis of 81 cases of surface winds during thunderstorms at Tampa revealed no predictor with skill to predict the time of maximum gust. Some 34% of the variance of the strength of the gust is accounted for by a stability index and surface wind prior to the gust; the regression equations for these variables are given. The coherence between microscale wind speed variations at the different levels has the same proportions as in non-thunderstorm cases.

  7. Neutrons from thunderstorms at low atmospheric altitudes and related doses at aircraft

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Grigoriev, A.

    2013-02-01

    We conduct a simulation of thunderstorm neutron flashes at the lowest atmospheric altitudes below 10 km. The neutron generation mechanism is based on the nowadays conventional idea of possibility for photonuclear reactions to proceed on the atmospheric components owing to TGF photons. Our modeling includes generation of neutrons from TGF and their further propagation with account of interaction with background nuclei. Using the calculation results we investigate the neutron flux properties with respect to problem of their registration, and predict the radiation environment caused by thunderstorm neutrons on altitudes of civil airflights. It is shown, that good conditions for the neutron flashes observation are provided from the 3 km altitude, and, possibly, the neutrons can be registered at ground level. We also found that thunderstorm-neutron-related effective dose can reach the value of 0.5 mSv in the region close to the TGF source if it is located at an altitude of 10 km.

  8. Solar terrestrial relationships related to thunderstorms and BUV dark current and ozone data

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1980-01-01

    Solar terrestrial interactions as they affect Nimbus 4 BUV dark current and possibly affect thunderstorm occurrence are investigated. A solar wind index is calculated for 1970 to 1971. Dark current enhancements appear to be associated in some way with solar proton events and the solar wind index, but additional investigations by GSFC are required before conclusions can be drawn. Superposed epoch analysis of an index of North American thunderstorm occurrence reveals a discernible increase in the index magnitude on days 1 and 2 following solar proton events. There appears to be little or no 27 day recurrence tendency in thunderstorm occurrence frequency and no association with vorticity area index on a day to day basis.

  9. Structure of the active form of human origin recognition complex and its ATPase motor module

    PubMed Central

    Tocilj, Ante; On, Kin Fan; Yuan, Zuanning; Sun, Jingchuan; Elkayam, Elad; Li, Huilin; Stillman, Bruce; Joshua-Tor, Leemor

    2017-01-01

    Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations. DOI: http://dx.doi.org/10.7554/eLife.20818.001 PMID:28112645

  10. Thunderstorm Initiation Climatology Over the Amazon Region Based on Fortracc System

    NASA Astrophysics Data System (ADS)

    Bourscheidt, V.; Pinto, O., Jr.

    2015-12-01

    The increasing availability of meteorological data worldwide (satellite, weather radar, etc.) has led to the development of many systems to track thunderstorms. Despite their primary application on nowcasting, they may also provide information on the onset of thunderstorms. The main tracking system based on satellite data in Brazil is the FORTRACC (Forecast and Track of Cloud Cluster), which was developed by Vila and Machado (2006) to detect and follow clusters of penetrative clouds using the difference of water vapor and infrared channels of GOES imagery. The resulting data comprise different information of the trajectory and evolution of convective systems, as well as the starting point of each thunderstorm, called spontaneous generation (N). Based on a collection of 12 years (2003-2014) of these data (N) over the Amazon region, the resulting climatology of thunderstorm onset location is presented, which is expected to be less subject to errors than the other variables given by the tracking system (despite the storm trajectory and stages are not completely recognized in many cases, the convective system will exist). The initial results indicate a singular behavior, with a reduced number of convective systems starting over the main rivers and lower areas (see attached Figure). To better understand the underlying conditions, storm onset data (N) will be will be separated in different time intervals in a further analysis and the observed spatial distribution will be compared with lightning climatoligies (based on LIS/WWLLN data), as well as on the elevation (from GEOTOPO 30 dataset). Besides the influence of terrain, which is widely described in several previous studies on the thunderstorm initiation, large water bodies and adjacent forest/land may influence on storm onset. At the Amazon region, synoptic effects are reduced, which may increases the influence of contrasting surface characteristics on the sensible/latent heat fluxes and on the local circulation; and

  11. A global model of thunderstorm electricity and the prediction of whistler duct formation

    SciTech Connect

    Stansbery, E.K.

    1989-01-01

    A two-dimensional numerical model is created to calculate the electric field and current that flow from a thunderstorm source into the global electrical circuit. The model includes a hemisphere in which the thunderstorm is located, an equalization layer, and a passive magnetic conjugate hemisphere. To maintain the fair weather electric field, the output current from the thunderstorm is allowed to spread out in the ionosphere or flow along the magnetic field lines into the conjugate hemisphere. The vertical current is constant up to approximately 65 km, decays and is redirected horizontally in the ionosphere. Approximately half of the current that reaches the ionosphere flows along magnetic field lines into the conjugate hemisphere while the rest is spread out in the ionosphere and redirected to the fair weather portion of the storm hemisphere. Our results show that it is important to include a realistic model of the equalization layer to evaluate the role of thunderstorm charging of the global circuit. The mapping of thunderstorm electric fields at middle and subauroral latitudes into the magnetic equatorial plane is studied. The geomagnetic field lines are assumed to be dipolar above approximately 150 km. The horizontal electric field computed in the ionosphere by our model is of sufficient size and shape for the formation of electron density irregularities in the magnetosphere. The mechanism involves a localized convection of ionization tubes by ExB drift. It is shown that the horizontal range of the electric field disturbance in the ionosphere must be within approximately 160 km to produce density irregularities necessary for the formation of whistler ducts. Although the electric field strength at ionospheric heights depends sensitively on the conductivity profile, the results presented show that whistler duct formation is possible by thunderstorm generated electric fields.*

  12. On the possibility of phosphenes being generated by the energetic radiation from lightning flashes and thunderstorms

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Cooray, Gerald; Dwyer, Joseph

    2011-10-01

    After the first report of this phenomenon by Apollo 11 astronauts, experiments conducted in space and on the ground confirmed the creation of phosphenes by the interaction of energetic radiation with the human visual system. The aim of this Letter is to show that the energetic radiation generated in the form of X-rays, gamma rays, electrons and neutrons by thunderstorms and lightning is strong enough for the creation of phosphenes in humans. It is also pointed out that some of the visual observations reported during thunderstorms might be attributable to phosphenes excited by this energetic radiation.

  13. Relation of Neurological Findings on Decoupling of Brain Activity from Limb Movement to Piagetian Ideas on the Origin of Thought

    ERIC Educational Resources Information Center

    Becker, Joe

    2006-01-01

    Neurological research has demonstrated that brain activity in animals originally dedicated to the production and regulation of physical activity can be decoupled from that physical activity. Furthermore, animals can use the brain activity in this new condition to achieve particular results such as moving a cursor on a screen. These findings are…

  14. Evolutionary oscillation in prebiology: igneous activity and the origins of life.

    PubMed

    Sylvester-Bradley, P C

    1976-01-01

    The processes of chemical evolution are responsible for the origin of life. Three such processes have special importance: oscillation, creation, and competition. An oscillation from one kind of environment to another provides a mechanism for instituting processes that can only take place under conditions far removed from equilibrium. Oscillating evolutionary processes are likely to have played an important part in the origin of life. It is a mistake to assume that life originated in any one environment. It did not arrive in a moment of time. It was the result of a long period of chemical evolution during which it passed through a variety of environments. Biopoesis took place in an environment in which a variety of different kinds of protolife were assembled and concentrated. One essential form of protolife involved in these processes is the protocell. The experiments of Fox suggest that the creation of protocells involves violent oscillations of temperature and hydration. Igneous activity is especially characterised by oscillating conditions. Volcanic eruptions consist of violent changes from one extreme condition to another. Temperatures, pressure, phase, concentration and hydration all oscillate violently, and are subject to shock pulses of many kinds. Protolife may well have passed through extremes of environment for wider that those that life itself can sustain. The most probable environment for the assembly of the various forms of protolife would be on mudbanks forming either at the mouth of streams draining regions of active vulcanicity, or round the edge of hot volclanic pools. In this situation one could fins concentrated not only the various stands of protolife necessary for the final act of biopoesis, but also perbiologically formed nutrients necessary as for the first eobionts. As soon as the first protocells start to grow, they start to compete with each other, and so initiate a new additional evolutionary process, that of natural selection. Only after

  15. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.

  16. Activities of Amphioxus GH-Like Protein in Osmoregulation: Insight into Origin of Vertebrate GH Family

    PubMed Central

    Li, Mengyang; Jiang, Chengyan

    2017-01-01

    GH is known to play an important role in both growth promotion and osmoregulation in vertebrates. We have shown that amphioxus possesses a single GH-like hormone (GHl) gene encoding a functional protein capable of promoting growth. However, if GHl can mediate osmoregulation remains open. Here, we demonstrated clearly that GHl increased not only the survival rate of amphioxus but also the muscle moisture under high salinity. Moreover, GHl induced the expression of both the ion transporter Na+-K+-ATPase (NKA) and Na+-K+-2Cl− cotransporter (NKCC) in the gill as well as the mediator of GH action IGFl in the hepatic caecum, indicating that GHl fulfills this osmoregulatory activity through the same mechanisms of vertebrate GH. These results together suggest that the osmoregulatory activities of GH had emerged in the basal chordate amphioxus. We also proposed a new model depicting the origin of pituitary hormone family in vertebrates.

  17. [The original nootropic and neuroprotective drug noopept potentiates the anticonvulsant activity of valproate in mice].

    PubMed

    Kravchenko, E V; Ponteleeva, I V; Trofimov, S S; Lapa, V I; Ostrovskaia, R U; Voronina, T A

    2009-01-01

    The influence of the original dipeptide drug noopept, known to possess nootrope, neuroprotector, and anxiolytic properties, on the anticonvulsant activity of the antiepileptic drug valproate has been studied on the model of corazole-induced convulsions in mice. Neither a single administration of noopept (0.5 mg/kg, i.p.) nor its repeated introduction in 10 or 35 days enhanced the convulsant effect of corazole, which is evidence that noopept alone does not possess anticonvulsant properties. Prolonged (five weeks) preliminary administration of noopept enhanced the anticonvulsant activity of valproate. This result justifies the joint chronic administration of noopept in combination with valproate in order to potentiate the anticonvulsant effect of the latter drug. In addition, the administration of noopept favorably influences the cognitive functions and suppresses the development of neurodegenerative processes.

  18. The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction.

    PubMed

    Kato, Shunsuke; Matam, Santhosh Kumar; Kerger, Philipp; Bernard, Laetitia; Battaglia, Corsin; Vogel, Dirk; Rohwerder, Michael; Züttel, Andreas

    2016-05-10

    Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites.

  19. Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.

    1975-01-01

    One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.

  20. 31 CFR 542.529 - Policy on activities related to petroleum and petroleum products of Syrian origin for the benefit...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum and petroleum products of Syrian origin for the benefit of the National Coalition of Syrian... activities related to petroleum and petroleum products of Syrian origin for the benefit of the National... the purchase, trade, export, import, or production of petroleum or petroleum products of Syrian...

  1. Adsorption of gold cyanide complexes by activated carbon on non-coconut shell origin

    SciTech Connect

    Yalcin, M.; Arol, A.I.

    1995-12-31

    Coconut shells are the most widely used raw material for the production of activated carbon used in the gold production by cyanide leaching. There have been efforts to find alternatives to coconut shells. Shells and stones of certain fruits, have been tested. Although promising results to some extent were obtained, coconut shells remain the main source of activated carbon. Turkey has become a country of interest in terms of gold deposits of epithermal origin. Four deposits have already been discovered and, mining and milling operations are expected to start in the near future. Explorations are underway in many other areas of high expectations. Turkey is also rich in fruits which can be a valuable source of raw material for activated carbon production. In this study, hazelnut shells, peach and apricot stones, abundantly available locally, have been tested to determine whether they are suitable for the gold metallurgy. Parameters of carbonization and activation have been optimized. Gold loading capacity and adsorption kinetics have been studied.

  2. Origin of highly active metal-organic framework catalysts: defects? Defects!

    PubMed

    Canivet, J; Vandichel, M; Farrusseng, D

    2016-03-14

    This article provides a comprehensive review of the nature of catalytic sites in MOFs. In the last decade, a number of striking studies have reported outstanding catalytic activities of MOFs. In all cases, the authors were intrigued as it was unexpected from the ideal structure. We demonstrate here that (surface) defects are at the origin of the catalytic activities for the reported examples. The vacancy of ligands or linkers systematically generates (surface) terminations which can possibly show Lewis and/or Brønsted acido-basic features. The engineering of catalytic sites at the nodes by the creation of defects (on purpose) appears today as a rational approach for the design of active MOFs. Similarly to zeolite post-treatments, post-modifications of MOFs by linker or metal cation exchange appear to be methods of choice. Despite the mild acidity of defective MOFs, we can account for very active MOFs in a number of catalytic applications which show higher performances than zeolites or benchmark catalysts.

  3. Microscopic origins of anistropic active stress in motor-driven nematic liquid crystals

    PubMed Central

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E.; Glaser, Matthew A.; Betterton, M. D.

    2016-01-01

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously be considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile. PMID:26742483

  4. Comparison of bioactive components and pharmacological activities of ophiopogon japonicas extracts from different geographical origins.

    PubMed

    Zhao, Min; Xu, Wan-Feng; Shen, Han-Yuan; Shen, Pei-Qiang; Zhang, Jun; Wang, Dan-Dan; Xu, Han; Wang, Hong; Yan, Ting-Ting; Wang, Lin; Hao, Hai-Ping; Wang, Guang-Ji; Cao, Li-Juan

    2017-02-07

    Ophiopogon japonicus (Linn. f.) Ker-Gawl (O. japonicas), mainly cultivated in Sichuan and Zhejiang province in China, has different bioactive components and therefore their pharmacological activities. To explain the different clinical efficacy of O. japonicas derived preparations, herein we report differences of pharmacological activities between Sichuan and Zhejiang O. japonicas and behind them the exact differences of bioactive components. Based on a LC/MS-IT-TOF method, the differences of bioactive components between Sichuan and Zhejiang O. japonicas extracts were analyzed and respective characteristic components were picked out. We determined 39 ophiopogonones and 71 ophiopogonins compounds in Sichuan and Zhejiang O. japonicas extracts and found the contents of these compositions have several times difference. Evidenced by experimental data of pharmacological activities in inhibiting cardiomyocyte damage induced by H2O2, mouse macrophage cell inflammation induced by lipopolysaccharide and cytotoxicity in vitro, Zhejiang O. japonicas extract had a stronger antioxidant and anti-inflammatory capacity than Sichuan O. japonicas extract, and the two O. japonicas extracts exhibited selective cytotoxicity on different cancer cell lines in vitro. These data shed light on the links between bioactive components and pharmacological activities of O. japonicas derived preparations. Thus, geographical origin of O. japonicas should be considered to be a key factor in efficacy studies and further clinical application.

  5. Field Reconnaissance of Debris Flows Triggered by a July 21, 2007, Thunderstorm in Alpine, Colorado, and Vicinity

    USGS Publications Warehouse

    Coe, Jeffrey A.; Godt, Jonathan W.; Wait, T.C.; Kean, Jason W.

    2007-01-01

    On the evening of July 21, 2007, a slow-moving thunderstorm triggered about 45 debris flows on steep mountainsides near the community of Alpine, Colorado. Most of the debris flows were initiated by surface-water runoff that eroded and entrained loose sediment in previously existing channels. About 12 of the debris-flow channels were located in the lower half of Weldon Gulch upslope from Alpine, which is on a debris fan at the mouth of the Gulch. Most of these channels were deeply incised by the flows, and many of the resulting oversteepened channel banks are now failing and beginning to refill the channels with sediment. Debris flows that emerged from the mouth of Weldon Gulch primarily flowed onto the eastern half of the debris fan and closed roads and damaged vehicles and structures. Debris-flow deposits on the fan generally become finer grained and thinner with distance from the head of the fan. Given the existing conditions in Weldon Gulch, it is estimated that the debris-flow hazard on the fan has neither decreased nor increased as a result of the July 21 debris flows. Preventive measures that need to be considered by Alpine residents and government officials concerned with safety on the fan include: (1) establishing a channel and(or) catchment/diversion structure on the fan that routes future water and debris flows in a manner that protects existing roads and structures, and (2) maintaining vigilance during rainstorms by watching and listening for unusual flows of water or debris that may indicate debris-flow activity upstream, particularly during the summer months when thunderstorms are common in the area.

  6. Possible development mechanisms of pre-monsoon thunderstorms over northeast and east India

    NASA Astrophysics Data System (ADS)

    Narayanan, Sunanda; Vishwanathan, Gokul; Mrudula, G.

    2016-05-01

    Thunderstorms are mesoscale convective systems of towering cumulonimbus clouds of high vertical and horizontal extent lasting from a few minutes to several hours. Pre-monsoon thundershowers over the past 10 years have been analyzed to understand the organization, horizontal and vertical development and dissipation of such severe events. Kalbaisakhi's/ Norwester's over north east and East India is given preference in this study, while some of the other extreme events are also analyzed due to their severity. The meteorological parameters like horizontal and vertical wind, precipitable water etc., and derived variables such as Severe Weather Threat (SWEAT) Index, Convective Available Potential Energy (CAPE), and Convective Inhibition Energy (CINE) of the identified cases are analyzed using observations from NCEP and IMD. Satellite observations from IMD and TRMM are also used to analyze the development and moisture flow of such systems. The analysis shows that some of the parameters display a clear signature of developing thunderstorms. It is also seen that cloud parameters such as convective precipitation rate and convective cloud cover from NCEP FNL didn't show much variation during the development of storms, which may be attributed to the limitation of spatial and temporal resolution. The parameters which showed indications of a developing thunderstorm were studied in detail in order to understand the possible mechanisms behind the development and organization of thunderstorm cells.

  7. Probabilistic forecasting for isolated thunderstorms using a genetic algorithm: The DC3 campaign

    NASA Astrophysics Data System (ADS)

    Hanlon, Christopher J.; Young, George S.; Verlinde, Johannes; Small, Arthur A.; Bose, Satyajit

    2014-01-01

    Researchers on the Deep Convective Clouds and Chemistry (DC3) field campaign in summer 2012 sought airborne in situ measurements of isolated thunderstorms in three different study regions: northeast Colorado, north Alabama, and a larger region extending from central Oklahoma through northwest Texas. Experiment objectives required thunderstorms that met four criteria. To sample thunderstorm outflow, storms had to be large enough to transport boundary-layer air to the upper troposphere and have a lifetime long enough to produce a large anvil. The storms had to be small enough to sample safely and isolated enough that experimenters could distinguish the impact of a particular thunderstorm from other convection in the area. To aid in the optimization of daily flight decisions, an algorithmic forecasting system was developed that produced probabilistic forecasts of suitable flight conditions for each of the three regions. Atmospheric variables forecast by a high-resolution numerical weather prediction model for each region were converted to probabilistic forecasts of suitable conditions using fuzzy logic trapezoids, which quantified the favorability of each variable. In parallel, the trapezoid parameters were tuned using a genetic algorithm and the favorability values of each of the atmospheric variables were weighted using a logistic regression. Results indicate that the automated forecasting system shows predictive skill over climatology in each region, with Brier skill scores of 16% to 45%. Averaged over all regions, the automated forecasting system showed a Brier skill score of 32%, compared to the 24% Brier skill score shown by human forecast teams.

  8. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response 1894

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall of air mass thunderstorms and link it with a watershed hydrological mo...

  9. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response 1907

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydr...

  10. In-situ Observations of Gamma-ray Production in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Eack, Kenneth; Aulich, Graydon; Winn, William; Edens, Harald

    2016-04-01

    The majority of the reported observations of energetic radiation from thunderstorms have come from either ground-based or satellite-based measurements. In order to better understand the physical conditions necessary for the production of fast electrons and gamma-rays, measurements are needed near the production regions inside or above the thunderstorm. Three different measurements are of particular interest. First, gamma-rays produced by the quasi-static electric-field may provide details about the physics of runaway electrons that would be difficult to determine from measurements of transient phenomena, such as lightning and terrestrial gamma-ray flashes (TGFs). Second, what process inside the thunderstorm is responsible for TGFs? Recent ground-bsed studies have pointed to the upward negative leader in inter-cloud lightning as a possible source. Finally, the initiation of lightning appears to be a problem in light of the relatively weak (about 10% of the classical breakdown threshold) electric fields observed inside thunderstorms. Since these field strengths are adequate for runaway electrons, they have been proposed as a possible source for the initial breakdown in lightning. In this paper, we will present observations from balloon-borne gamma-ray detectors and electric-field sensors, as well as ground based instruments like the lightning mapping array (LMA) in effort to examine these areas of interest.

  11. Observations of Nocturnal Thunderstorms and Lighting Displays as Seen During Recent Space Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1994-01-01

    During the recent space shuttle flights the Mesoscale Lightning Experiment, an observational program to observe thunderstorms and lightning from space, was conducted. The low light level TV cameras located in the payload bay of the space shuttle were commanded from the ground and used to collect video images. Presented in this paper are some of the images and supporting information.

  12. An Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2013-01-01

    The focal point of the study reported here was the definition and examination of turbulence, wind shear and thunderstorm in relation to aviation accidents. NASA project management desired this information regarding distinct subgroups of atmospheric hazards, in order to better focus their research portfolio. A seven category expansion of Kaplan's turbulence categories was developed, which included wake turbulence, mountain wave turbulence, clear air turbulence, cloud turbulence, convective turbulence, thunderstorm without mention of turbulence, and low altitude wind shear, microburst or turbulence (with no mention of thunderstorms).More than 800 accidents from flights based in the United States during 1987-2008 were selected from a National Transportation Safety Board (NTSB) database. Accidents were selected for inclusion in this study if turbulence, thunderstorm, wind shear or microburst was considered either a cause or a factor in the accident report, and each accident was assigned to only one hazard category. This report summarizes the differences between the categories in terms of factors such as flight operations category, aircraft engine type, the accident's geographic location and time of year, degree of injury to aircraft occupants, aircraft damage, age and certification of the pilot and the phase of flight at the time of the accident.

  13. Simultaneous Observations of Mesospheric Gravity Waves and Sprites Generated by a Midwestern Thunderstorm

    DTIC Science & Technology

    2003-01-01

    Journal of Atmospheric and Solar - Terrestrial Physics 65 (2003), Pages 537 - 550 14. ABSTRACT The present report...Sentman et al. × Journal of Atmospheric and Solar - Terrestrial Physics 65 (2003) 537-550 sprite occurrence over thunderstorms in the central US show tic wave... Journal of Atmospheric and Solar - Terrestrial Physics 65 (2003) 537-550 539 destruction by

  14. Comparative estimate of the effectiveness of different algorithms for the radar classification of thunderstorms and showers

    NASA Technical Reports Server (NTRS)

    Linev, A. G.; Oprishko, V. S.; Popova, N. D.; Salman, Y. M.

    1975-01-01

    Several schemes for discriminating severe weather phenomena with the aid of different algorithms are examined. The schemes were tested on the same sample. A comparative estimate of the effectiveness of the different algorithms for classifying thunderstorms and showers is carried out.

  15. Functional genomic mapping of an early-activated centromeric mammalian origin of DNA replication.

    PubMed

    Pelletier, R; Price, G B; Zannis-Hadjopoulos, M

    1999-09-15

    Ors12, a mammalian autonomously replicating sequence (812 bp), was previously isolated by extrusion of African green monkey (CV-1 cells) nascent DNA from active replication bubbles. It contains a region of alpha-satellite extending 168-bp from the 5'-end, and a nonrepetitive portion extending from nucleotide position 169 to nucleotide 812 that is present in less than nine copies per haploid genome. Ors12 is capable of transient autonomous DNA replication in vivo and in vitro, associates with the nuclear matrix in a cell cycle-dependent manner, and hybridizes at the centromeric region of six CV-1 cell chromosomes as well as a marker chromosome. To demonstrate that DNA replication initiates at ors12 at a native chromosomal locus, a 14.2 kb African green monkey genomic clone was isolated and sequence information was obtained that allowed us to generate eight sets of PCR primers spanning a region of 8 kb containing ors12. One set of primers occurred inside ors12. These primers were used to amplify nascent DNA strands from asynchronously growing CV-1 and African green monkey kidney (AGMK) cells, using noncompetitive and competitive PCR-based mapping methodologies. Both assays showed that DNA replication in vivo initiates preferentially in a 2.3 kb region containing ors12, as well as at a second site located 1.7 kb upstream of ors12. This study provides the first demonstration of genomic function for a centromeric mammalian origin of DNA replication, originally isolated by nascent strand extrusion.

  16. Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning

    SciTech Connect

    Hondl, K.D.; Eilts, M.D.

    1994-08-01

    The capability of Doppler weather radars to short-term forecast the initiation of thunderstorms and the onset of cloud-to-ground (CG) lightning is examined. Doppler weather radar data from 28 thunderstorms were analyzed from August 1990 in the central Florida environment. These radar echoes were associated with CG lightning strike locations from the National Lightning Detection Network and two lightning detection systems operated by the U.S. Air Force in the vicinity of Kennedy Space Center. From a time history of these radar echoes it was found that a 10-dBZ echo, first detected near the freezing level, may be the first definitive echo of a future thunderstorm. This thunderstorm initiation signature is often accompanied by low-altitude convergence and divergence at the top of the radar echo. The observed lead times between this thunderstorm initiation signature and the first detected CG lightning strike ranged from 5 to 45 min with a median lead time of 15 min. All lightning-producing radar echoes were detected using the thunderstorm initiation signature; however, some echoes exceeded the 10-dBZ threshold and did not produce andy CG lightning. The charecteristics of the WSR-88D and Terminal Doppler Weather Radar systems are evaluated for their capability to detect the thunderstorm initiation signature in central Florida with sufficient temporal and spatial resolution.

  17. Atmospheric conditions of thunderstorms in the European part of the Arctic derived from sounding and reanalysis data

    NASA Astrophysics Data System (ADS)

    Czernecki, Bartosz; Taszarek, Mateusz; Kolendowicz, Leszek; Szyga-Pluta, Katarzyna

    2015-03-01

    While thunderstorms in equatorial and mid-latitudes are well documented, little is known about their presence in high latitudes. There are barely a few studies on this phenomenon analyzing their occurrence in the European Arctic region. In an attempt to rectify this situation authors aim to explain which conditions are conducive to their formation in Bjørnøya, Jan Mayen and Svalbard islands. A total of 41 thunderstorm days derived from SYNOP reports from the period of 1981-2010 were used to define thunderstorm-favorable synoptic conditions from NCEP/NCAR reanalyses and sounding data. In order to underline seasonal variation, anomalies were presented in the polar day and polar night timeframes. As it turned out polar night thunderstorms occur most often in situations with southern warm marine air advections intensified by the positive North Atlantic and Arctic Oscillations. Thunderstorms in this season are characterized by steep vertical lapse rates and occur most likely at the cold fronts. Polar day thunderstorms form when warm air masses move from the continental north-eastern Europe to the Arctic, and create unstable conditions. In this type, thunderstorms are generated by elevated convection and occur most likely in a cyclone's cool side of warm sector.

  18. The direct radiative effect of wildfire smoke on a severe thunderstorm event in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Toll, V.; Männik, A.

    2015-03-01

    On August 8, 2010, a severe derecho type thunderstorm in the Baltic Sea region coincided with smoke from wildfires in Russia. Remarkable smoke aerosol concentrations, with a maximum aerosol optical depth of more than 2 at 550 nm, were observed near the thunderstorm. The impact of the wildfire smoke on the thunderstorm through direct radiative effects was investigated using the Hirlam Aladin Research for Mesoscale Operational Numerical Weather Prediction in Euromed (HARMONIE) model. HARMONIE was successfully able to resolve the dynamics of the thunderstorm, and simulations that considered the influence of the smoke-related aerosols were compared to simulation without aerosols. As simulated by the HARMONIE model, the smoke reduced the shortwave radiation flux at the surface by as much as 300 W/m2 and decreased the near-surface temperature by as much as 3 °C in the vicinity of the thunderstorm and respectively 100 W/m2 and 1 °C in the thunderstorm region. Atmospheric instability decreased through the direct radiative effect of aerosols, and several dynamic features of the simulated thunderstorm appeared slightly weaker.

  19. Determining the Nature and Origin of Mass Loss from Active Asteroid P/2013 P5

    NASA Astrophysics Data System (ADS)

    Jewitt, David

    2014-10-01

    We propose a program of WFC3 images of active asteroid P/2013 P5 in order to determine the nature and origin of mass loss from this object. P5 ejects dust episodically, creating a multi-tailed appearance unlike that of any other known asteroid or comet. The ejection is thought to result from surface rotational instabilities (a process called "mass-shedding" by modelers). We will test the role of rotation by measuring the lightcurve of the nucleus and we will study the evolution of continued mass loss through Cycle 22. Rotational breakup and rotational mass-shedding are suspected to be the main mechanisms of destruction for sub-kilometer asteroids. Neither has been observed before but, between P/2013 P5 and P/2013 R3 (subject of another proposal) we have the first, potentially ground-breaking opportunities to observe both.

  20. Determining the Nature and Origin of Mass Loss from Active Asteroid P/2013 R3

    NASA Astrophysics Data System (ADS)

    Jewitt, David

    2014-10-01

    We propose a program of WFC3 images of the active asteroid P/2013 R3 in order to determine the nature and origin of mass loss from this object. R3 has a unique, multiple nucleus structure in which the components are measured to separate at sub-meter per second velocities. It is best explained as a rotational breakup (presumably resulting from the YORP torque). We will obtain images over a wide time base in Cycle 22 in order to determine the orbits of the fragments and we will obtain time-series, high resolution photometry in order to measure their rotations. Rotational breakup and rotational mass-shedding are suspected to be the main mechanisms of destruction for sub-kilometer asteroids. Neither has been observed before but, between P/2013 R3 and P/2013 P5 (subject of another proposal) we have the first, potentially ground-breaking opportunities to observe both.

  1. Weighing brain activity with the balance: Angelo Mosso's original manuscripts come to light.

    PubMed

    Sandrone, Stefano; Bacigaluppi, Marco; Galloni, Marco R; Cappa, Stefano F; Moro, Andrea; Catani, Marco; Filippi, Massimo; Monti, Martin M; Perani, Daniela; Martino, Gianvito

    2014-02-01

    Neuroimaging techniques, such as positron emission tomography and functional magnetic resonance imaging are essential tools for the analysis of organized neural systems in working and resting states, both in physiological and pathological conditions. They provide evidence of coupled metabolic and cerebral local blood flow changes that strictly depend upon cellular activity. In 1890, Charles Smart Roy and Charles Scott Sherrington suggested a link between brain circulation and metabolism. In the same year William James, in his introduction of the concept of brain blood flow variations during mental activities, briefly reported the studies of the Italian physiologist Angelo Mosso, a multifaceted researcher interested in the human circulatory system. James focused on Mosso's recordings of brain pulsations in patients with skull breaches, and in the process only briefly referred to another invention of Mosso's, the 'human circulation balance', which could non-invasively measure the redistribution of blood during emotional and intellectual activity. However, the details and precise workings of this instrument and the experiments Mosso performed with it have remained largely unknown. Having found Mosso's original manuscripts in the archives, we remind the scientific community of his experiments with the 'human circulation balance' and of his establishment of the conceptual basis of non-invasive functional neuroimaging techniques. Mosso unearthed and investigated several critical variables that are still relevant in modern neuroimaging such as the 'signal-to-noise ratio', the appropriate choice of the experimental paradigm and the need for the simultaneous recording of differing physiological parameters.

  2. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene

    NASA Astrophysics Data System (ADS)

    Jiao, Yan; Zheng, Yao; Davey, Kenneth; Qiao, Shi-Zhang

    2016-10-01

    The hydrogen evolution reaction (HER) is a fundamental process in electrocatalysis and plays an important role in energy conversion through water splitting to produce hydrogen. Effective candidates for HER are often based on noble metals or transition metal dichalcogenides, while carbon-based metal-free electrocatalysts generally demonstrate poorer activity. Here we report evaluation of a series of heteroatom-doped graphene materials as efficient HER electrocatalysts by combining spectroscopic characterization, electrochemical measurements, and density functional theory calculations. Results of theoretical computations are shown to be in good agreement with experimental observations regarding the intrinsic electrocatalytic activity and the HER reaction mechanism. As a result, we establish a HER activity trend for graphene-based materials, and explore their reactivity origin to guide the design of more efficient electrocatalysts. We predict that by rationally modifying particular experimentally achievable physicochemical characteristics, a practically realizable graphene-based material will have the potential to exceed the performance of the metal-based benchmark for HER.

  3. Where is the origin of the activator calcium in cardiac ventricular contraction?

    PubMed

    Reiter, M; Vierling, W; Seibel, K

    1984-01-01

    Under normal experimental conditions, the force of rested-state contractions (i.e., contractions after a rest period of 15 min or longer) of mammalian ventricular myocardium is insignificant. In Mg2+-free solution, in low sodium solution or in the presence of a cardioactive steroid, a strong "early" rested-state contraction develops without delay after stimulation, indicating the accumulation during rest of intracellularly stored activator calcium. By contrast, catecholamines cause a "late" rested-state contraction with a characteristic latent period of about 100 ms between stimulation and onset of contraction. Inhibition of the slow inward current by nifedipine has no influence on the contraction velocity of the "early" rested-state contraction, indicating that Ca2+ of the slow inward current is not involved in the calcium release mechanism of prefilled stores during excitation-contraction coupling. Nifedipine suppresses the "late" rested-state contraction in the presence of noradrenaline. In view of the constancy of the latent period, it is proposed that the activator calcium for the "late" rested-state contraction enters the cell with the slow inward current, is sequestered at first by uptake sites of the sarcoplasmic reticulum and subsequently released from its release sites as long as the cell is depolarized. The model of the different origin of activator calcium is discussed in its implication for high-frequency contractions.

  4. Origin of enhanced photocatalytic activity of F-doped CeO2 nanocubes

    NASA Astrophysics Data System (ADS)

    Miao, Hui; Huang, Gui-Fang; Liu, Jin-Hua; Zhou, Bing-Xin; Pan, Anlian; Huang, Wei-Qing; Huang, Guo-Fang

    2016-05-01

    CeO2 nanoparticles are synthesized using a low-temperature solution combustion method and subsequent heat treatment in air. It is found that F-doping leads to smaller particle size and the formation of CeO2 nanocubes with higher percentage of reactive facets exposed. The band gap is estimated to be 3.16 eV and 2.88 eV, for pure CeO2 and fluorine doped CeO2 (F-doped CeO2) nanocubes, respectively. The synthesized F-doped CeO2 nanocubes exhibit much higher photocatalytic activities than commercial TiO2 and spherical CeO2 for the degradation of MB dye under UV and visible light irradiation. The apparent reaction rate constant k of MB decomposition over the optimized F-doped CeO2 nanocubes is 9.5 times higher than that of pure CeO2 and 2.2 times higher than that of commercial TiO2. The enhanced photocatalytic activity of F-doped CeO2 nanocubes originates from the fact that F-doping induces the small size, the highly reactive facets exposed, the intense absorption in the UV-vis range and the narrowing of the band gap. This research provides some new insights for the synthesis of the doping of the foreign atoms into photocatalyst with controlled morphology and enhanced photocatalytic activity.

  5. THE ORIGIN OF [O II] EMISSION IN RECENTLY QUENCHED ACTIVE GALACTIC NUCLEUS HOSTS

    SciTech Connect

    Kocevski, Dale D.; Lemaux, Brian C.; Lubin, Lori M.; Shapley, Alice E.; Gal, Roy R.; Squires, Gordon K.

    2011-08-20

    We have employed emission-line diagnostics derived from DEIMOS and NIRSPEC spectroscopy to determine the origin of the [O II] emission line observed in six active galactic nucleus (AGN) hosts at z {approx} 0.9. These galaxies are a subsample of AGN hosts detected in the Cl1604 supercluster that exhibit strong Balmer absorption lines in their spectra and appear to be in a post-starburst or post-quenched phase, if not for their [O II] emission. Examining the flux ratio of the [N II] to H{alpha} lines, we find that in five of the six hosts the dominant source of ionizing flux is AGN continuum emission. Furthermore, we find that four of the six galaxies have over twice the [O II] line luminosity that could be generated by star formation alone given their H{alpha} line luminosities. This strongly suggests that AGN-excited narrow-line emission is contaminating the [O II] line flux. A comparison of star formation rates calculated from extinction-corrected [O II] and H{alpha} line luminosities indicates that the former yields a five-fold overestimate of the current activity in these galaxies. Our findings reveal the [O II] line to be a poor indicator of star formation activity in a majority of these moderate-luminosity Seyferts. This result bolsters our previous findings that an increased fraction of AGN at high redshifts is hosted by galaxies in a post-starburst phase. The relatively high fraction of AGN hosts in the Cl1604 supercluster that show signs of recently truncated star formation activity may suggest that AGN feedback plays an increasingly important role in suppressing ongoing activity in large-scale structures at high redshift.

  6. Robust increases in severe thunderstorm environments in response to greenhouse forcing.

    PubMed

    Diffenbaugh, Noah S; Scherer, Martin; Trapp, Robert J

    2013-10-08

    Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage.

  7. Robust increases in severe thunderstorm environments in response to greenhouse forcing

    PubMed Central

    Diffenbaugh, Noah S.; Scherer, Martin; Trapp, Robert J.

    2013-01-01

    Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage. PMID:24062439

  8. The dynamical influences of cloud shading on simulated supercell thunderstorms

    NASA Astrophysics Data System (ADS)

    Frame, Jeffrey

    2008-10-01

    Numerical simulations of supercell thunderstorms which include parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) model. The tilted independent column approximation (TICA) is adopted for use in the ARPS model because the existing method of parameterized radiative transfer, the independent column approximation (ICA), permits only the vertical transfer of shortwave radiation. The computed radiative fluxes from both the TICA and ICA are compared to output from a three-dimensional Monte Carlo radiative transfer solver and it is determined that the TICA fluxes more closely match those from the Monte Carlo model than do those from the ICA. Additionally, the TICA is able to capture the extensions of shadows that occur when the solar zenith angle deviates significantly from zero, which cannot be captured by the ICA. The maximum low-level air temperature deficits within the modeled cloud shadows is 1.5 to 2.0 K, which is only about half that previously observed. The loss of strong solar heating of the model surface within the shaded regions cools the surface temperatures, and changes the sign of the sensible heat flux near the edge of the shadow. This stabilizes the model surface layer and suppresses vertical mixing at low levels within the shaded area. This reduction in vertical mixing means that higher momentum air from aloft is prevented from mixing with air near the surface that has lost momentum to surface friction. The net result of this is a shallower, but more intense vertically-sheared layer near the surface. As the supercell's rear-flank gust front propagates into this modified shear layer, the layer of cold outflow air becomes shallower and it accelerates eastward. In the case of a stationary storm, the cold outflow undercuts the updraft and mesocyclone, depriving them of warm and moist inflow, and ultimately weakening the storm. These results are not likely applicable to all simulations of

  9. Registration of X-rays at 2500 m altitude in association with lightning flashes and thunderstorms

    NASA Astrophysics Data System (ADS)

    Montanyà, Joan; Fabró, Ferran; Velde, Oscar; Romero, David; Solà, Gloria; Hermoso, Juan Ramon; Soula, Serge; Williams, Earle R.; Pineda, Nicolau

    2014-02-01

    Electric fields and high-energy radiation of natural lightning measured at close range from a mountaintop tower are discussed. In none of the 12 negative cloud-to-ground upward flashes were X-rays observed. Also no energetic radiation was found in one negative upward leader at close range (20 m). In the first of two consecutive negative cloud-to-ground flashes, X-rays were detected during the last ~1.75 ms of the leader. During the time of energetic radiation in the flash an intense burst of intracloud VHF sources was located by the interferometers. The X-ray production is attributed to the high electric field runaway electron mechanism during leader stepping. Even though the second flash struck closer than the previous one, no X-rays were detected. The absence of energetic radiation is attributed to being outside of the beam of X-ray photons from the leader tip or to the stepping process not allowing sufficiently intense electric fields ahead of the leader tip. High-speed video of downward negative leaders at the time when X-rays are commonly detected on the ground revealed the increase of speed and luminosity of the leader. Both phenomena allow higher electric fields at the leader front favoring energetic radiation. Background radiation was also measured during thunderstorms. The count rate of a particular day is presented and discussed. The increases in the radiation count rate are more coincident with radar reflectivity levels above ~30 dBZ than with the total lightning activity close to the site. The increases of dose are attributed to radon daughter-ion precipitation.

  10. Initial electrification to the first lightning flash in New Mexico thunderstorms

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Maribeth; Marshall, Thomas C.; Krehbiel, Paul R.

    2015-11-01

    The initial electrification of three New Mexico thunderstorms is examined using in situ and remote measurements. The earliest deflection of electric field (E) measured at the surface was 5-8.6 min before the first flash and coincident with the development of substantial radar reflectivity (40 dBZ) above -5°C. Rapid growth of surface E (>5 V/m/s) started 2.4-3.1 min before the first flash, when 40 dBZ reflectivities reached above the -15°C level. In two cases with clear surface E records, radar reflectivity indicators (40 dBZ echo through -10°C and echo top through -15°C) would yield longer warning times before the first flash than the E record. The first flash in each storm initiated at altitudes between 7.4 and 8.8 km; hence, the temperatures where the largest (negative) E for normal intracloud lightning initiation had developed during the initial electrification were -10°C to -20°C. Negative and positive charge regions associated with the first flash in each cell were centered at -8°C to -16°C (6.9-8.0 km) and -20°C to -24°C (9.0-9.2 km), respectively. In two cases, balloon data indicate the only substantial charge regions present before the first flash were those involved in the flash. Another case shows an initial period of opposite polarity E deflection at the surface coincident with substantial low-level positive charge within the cloud, although this charge was not involved in the first 8 min (first 17 flashes) of lightning activity. The findings support the notion that the initial electrification resulted from charging via the noninductive ice-ice collisional mechanism.

  11. [Biologically active substances of plant origin. Flavonols and flavones: prevalence, dietary sourses and consumption].

    PubMed

    Tutel'ian, V A; Lashneva, N V

    2013-01-01

    Flavonoids are the most numerous group of natural polyphenolic compounds, the secondary metabolites of plants that may play an important role in human health protection. Flavonols and flavones constitute the main two classes of flavonoids, whose antioxidant properties and high biological activity have been proofed both in vitro and in vivo. This review summarizes data, concerning the structure, occurrence and content of the main flavonols (quercetin, kaempherol, myricetin, isorhamnetin) and flavones (apigenin, luteolin) in some most widely consumed foodstuffs, including vegetables, fruits, berries, nuts, beverages and other products of plant origin. The products with high content of these biologically active food compounds--the major dietary sources of them--are noted. Forms of flavonols and flavones more often distributed among edible plants are characterized and some of their known glycosides occurred in foods are enumerated. Some peculiarities, characteristic to flavonol sand flavones glycosilation (O- and/or C-glycosides formation) are described. The data for flavonol and flavone glycosides composition (profiles) of some commonly consumed commodities rich by these flavonoids (onions, cabbage, apples at al.) are shown. Information about levels of daily dietary intake of total and individual flavonols and flavones in several countries is presented. The questions about dietary habits and lifestyle factors and the contribution of certain foods to flavonols and flavones in daily dietary consumption values are also discussed.

  12. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    NASA Astrophysics Data System (ADS)

    Koehne, C.; Sachau, D.; Renger, K.

    2016-09-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller.

  13. Bacteriological Effects of Dentifrices with and without Active Ingredients of Natural Origin

    PubMed Central

    Latimer, Joe; Humphreys, Gavin J.; Sreenivasan, Prem K.; McBain, Andrew J.

    2014-01-01

    Compounds of natural origin are increasingly used as adjuncts to oral hygiene. We have adopted four distinct approaches to assess the antibacterial activity of dentifrices containing natural active ingredients against oral bacteria in several test systems. Corsodyl Daily (CD), Kingfisher Mint (KM), and Parodontax fluoride (PF) were compared to a dentifrice containing fluoride (Colgate Cavity Protection [CCP]) and one containing triclosan (Colgate Total [CT]). The growth inhibitory and bactericidal potency of the formulations were determined for 10 isolated oral bacteria. Effects of single exposures of simulated supragingival plaques were then determined by epifluorescence and confocal microscopy, while the effects of repeated exposures were quantified by viable counting. Additionally, dense plaques, maintained in continuous culture, were repeatedly dosed, and the outcome was assessed by viable counting and eubacterial DNA profiling. The test dentifrices exhibited variable specificity and potency against oral bacteria in axenic culture. Of the herbal formulations, KM caused the largest viability reductions in simulated supragingival plaques, with CT causing the greatest reductions overall. Following single exposures, CD caused moderate reductions, while PF had no effect. After multiple dosing, all formulations significantly reduced numbers of total, facultative, and Gram-negative anaerobes, but only KM and CT caused greater reductions than the fluoride control. KM also reduced counts of streptococci (rank order of effectiveness: CT > KM > CCP > PF > CD). Marked changes in eubacterial DNA profiles were not detected for any herbal formulation in dense plaques, although KM markedly reduced viable counts of streptococci, in agreement with supragingival data. While both nonherbal comparators displayed antibacterial activity, the triclosan-containing formulation caused greater viability reductions than the herbal and nonherbal formulations. PMID:25107974

  14. Probing the origins of aromatase inhibitory activity of disubstituted coumarins via QSAR and molecular docking.

    PubMed

    Worachartcheewan, Apilak; Suvannang, Naravut; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2014-01-01

    This study investigated the quantitative structure-activity relationship (QSAR) of imidazole derivatives of 4,7-disubstituted coumarins as inhibitors of aromatase, a potential therapeutic protein target for the treatment of breast cancer. Herein, a series of 3,7- and 4,7-disubstituted coumarin derivatives (1-34) with R1 and R2 substituents bearing aromatase inhibitory activity were modeled as a function of molecular and quantum chemical descriptors derived from low-energy conformer geometrically optimized at B3LYP/6-31G(d) level of theory. Insights on origins of aromatase inhibitory activity was afforded by the computed set of 7 descriptors comprising of F10[N-O], Inflammat-50, Psychotic-80, H-047, BELe1, B10[C-O] and MAXDP. Such significant descriptors were used for QSAR model construction and results indicated that model 4 afforded the best statistical performance. Good predictive performance were achieved as verified from the internal (comprising the training and the leave-one-out cross-validation (LOO-CV) sets) and external sets affording the following statistical parameters: R (2) Tr = 0.9576 and RMSETr = 0.0958 for the training set; Q (2) CV = 0.9239 and RMSECV = 0.1304 for the LOO-CV set as well as Q (2) Ext = 0.7268 and RMSEExt = 0.2927 for the external set. Significant descriptors showed correlation with functional substituents, particularly, R1 in governing high potency as aromatase inhibitor. Molecular docking calculations suggest that key residues interacting with the coumarins were predominantly lipophilic or non-polar while a few were polar and positively-charged. Findings illuminated herein serve as the impetus that can be used to rationally guide the design of new aromatase inhibitors.

  15. Variability of lightning flash and thunderstorm over East/Southeast Asia on the ENSO time scales

    NASA Astrophysics Data System (ADS)

    Yuan, Tie; Di, Yuelun; Qie, Kai

    2016-03-01

    The variability of lightning flash and thunderstorm on the ENSO time scales over East/Southeast Asia was investigated by using 17-year (1995-2011) lightning data from the Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS), and 14-year (1998-2011) Tropical Rainfall Measuring Mission satellite (TRMM) precipitation feature data. In addition, ERA-Interim reanalysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF) were used to present related environmental characteristics. It was found that the response of lightning flash to ENSO events shows remarkable seasonal and regional variations. The regions of positive (negative) lightning anomaly are mainly located at both sides of 5°-20°N (5°-15°N) in El Niño (La Niña) spring and winter, and located north of the equator in summer and autumn. There is a significantly positive correlation between lightning anomaly and the Oceanic Niño Index (ONI) over both East China and Indonesia during El Niño episodes, but no obvious correlation during La Niña episodes. The positive thunderstorm anomalies during El Niño periods are dispersed. The distribution of thunderstorm anomalies in La Niña summer and autumn is almost opposite to that in spring and winter. The correlation between thunderstorm anomaly and ONI is better over East China than that over Indonesia. In general, lightning variation follows thunderstorm intensity (number) variation over East China during El Niño (La Niña) episodes, and follows a combination of thunderstorm intensity and number variations over Indonesia on ENSO time scales. During ENSO time scales, variations of surface wind can be considered as one of the key factors to LAs. More lightning flashes present in the regions where warm moist flows intersection, and less in the regions where surface wind changes slightly or diverges. Dramatic lightning increases also occur with higher values of convective available potential energy (CAPE). In addition, higher (lower

  16. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  17. Human T helper type 1 dichotomy: origin, phenotype and biological activities

    PubMed Central

    Annunziato, Francesco; Cosmi, Lorenzo; Liotta, Francesco; Maggi, Enrico; Romagnani, Sergio

    2015-01-01

    The great variety of pathogens present in the environment has obliged the immune system to evolve different mechanisms for tailored and maximally protective responses. Initially, two major types of CD4+ T helper (Th) effector cells were identified, and named as type 1 (Th1) and type 2 (Th2) cells because of the different cytokines they produce. More recently, a third type of CD4+ Th effectors has been identified and named as Th17 cells. Th17 cells, however, have been found to exhibit high plasticity because they rapidly shift into the Th1 phenotype in the inflammatory sites. Therefore, in these sites there is usually a dichotomous mixture of classic and non-classic (Th17-derived) Th1 cells. In humans, non-classic Th1 cells express CD161, as well as the retinoic acid orphan receptor C, interleukin-17 receptor E (IL-17RE), IL-1RI, CCR6, and IL-4-induced gene 1 and Tob-1, which are all virtually absent from classic Th1 cells. The possibility to distinguish between these two cell subsets may allow the opportunity to better establish their respective pathogenic role in different chronic inflammatory disorders. In this review, we discuss the different origin, the distinctive phenotypic features and the major biological activities of classic and non-classic Th1 cells. PMID:25284714

  18. Impacts of produced water origin on bacterial community structures of activated sludge.

    PubMed

    Wang, Zhenyu; Pan, Feng; Hesham, Abd El-Latif; Gao, Yingxin; Zhang, Yu; Yang, Min

    2015-11-01

    The purpose of this study was to reveal how activated sludge communities respond to influent quality and indigenous communities by treating two produced waters from different origins in a batch reactor in succession. The community shift and compositions were investigated using Polymerase Chain Reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and further 16S ribosomal DNA (rDNA) clone library analysis. The abundance of targeted genes for polycyclic aromatic hydrocarbon (PAH) degradation, nahAc/phnAc and C12O/C23O, was tracked to define the metabolic ability of the in situ microbial community by Most Probable Number (MPN) PCR. The biosystem performed almost the same for treatment of both produced waters in terms of removals of chemical oxygen demand (COD) and PAHs. Sludge communities were closely associated with the respective influent bacterial communities (similarity>60%), while one sludge clone library was dominated by the Betaproteobacteria (38%) and Bacteriodetes (30%) and the other was dominated by Gammaproteobacteria (52%). This suggested that different influent and water quality have an effect on sludge community compositions. In addition, the existence of catabolic genes in sludge was consistent with the potential for degradation of PAHs in the treatment of both produced waters.

  19. Chemical analysis and antihyperglycemic activity of an original extract from burdock root (Arctium lappa).

    PubMed

    Tousch, Didier; Bidel, Luc P R; Cazals, Guillaume; Ferrare, Karine; Leroy, Jeremy; Faucanié, Marie; Chevassus, Hugues; Tournier, Michel; Lajoix, Anne-Dominique; Azay-Milhau, Jacqueline

    2014-08-06

    In the present study, we obtained a dried burdock root extract (DBRE) rich in caffeoylquinic acids derivatives. We performed the chemical characterization of DBRE and explored its antihyperglycemic potential in both in vitro and in vivo experiments. Chemical analysis of DBRE using LC-MS and GC-MS revealed the presence of a great majority of dicaffeoylquinic acid derivatives (75.4%) of which 1,5-di-O-caffeoyl-4-O-maloylquinic acid represents 44% of the extract. In the in vitro experiments, DBRE is able to increase glucose uptake in cultured L6 myocytes and to decrease glucagon-induced glucose output from rat isolated hepatocytes together with a reduction of hepatic glucose 6-phosphatase activity. DBRE did not increase insulin secretion in the INS-1 pancreatic β-cell line. In vivo, DBRE improves glucose tolerance both after intraperitoneal and oral subchronic administration. In conclusion, our data demonstrate that DBRE constitutes an original set of caffeoylquinic acid derivatives displaying antihyperglycemic properties.

  20. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  1. Origin, persistence and biological activity of genetic material in prebiotic habitats.

    PubMed

    Franchi, Marco; Gallori, Enzo

    2004-02-01

    Molecules which store genetic information (i.e. RNA and DNA) are central to all life on Earth. The formation of these complex molecules, and ultimately life, required specific conditions, including the synthesis and concentration of precursors (nucleotides), the joining of these monomers into larger molecules (polynucleotides), their protection in critical conditions (like those probably existing in primeval habitats), and the expression of the biological potential of the informational molecule (its capacity to multiply and evolve). Determining how these steps occurred and how the earliest genetic molecules originated on Earth is a problem that is far from being resolved. Recent observations on the polymerization of nucleotides on clay surfaces and on the resistance of clay-adsorbed nucleic acids to environmental degradation suggest that clay minerals could have acted as a resting place for the formation and preservation of prebiotic genetic molecules, whatever they were, and for the self-organization of the first auto-replicating systems. In the present work, the molecular characteristics and biological activity of different nucleic acids (DNA, RNAs) adsorbed/bound on clay minerals are discussed in the light of their possible role in ancestral environments.

  2. Origin of active blind-thrust faults in the southern Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Rivero-Ramirez, Carlos Alberto

    This dissertation describes the origins, three-dimensional geometry, slip history and present activity of a regional system of blind-thrust faults located in the Inner California Borderlands, and analyses the new earthquake scenarios they imply for the nearby coastal region of southern California. Chapter 1 is an overview of the main observations and inferences derived from geophysical data (seismic reflection profiles, well information, and seismicity) and coastal tectonics studies that are used to document the reactivation of two regional, low-angle Miocene detachments---the Oceanside and the Thirtymile faults. These active blind-thrusts comprise the Inner California Blind-Thrust System. The paper is co-authored by Prof. John H. Shaw (Harvard University) and Prof. Karl Muller (University of Colorado), and was published in the journal Geology. In this paper we associate the 1986 (ML 5.3) Oceanside earthquake and uplift of coastal marine terraces with activity on these blind-thrust faults, demonstrating their current activity and earthquake potential. We also describe the structural interactions of the blind-thrust system with regional strike-slip fault zones, and propose new earthquake hazards scenarios for the Inner California Borderlands based on these interactions. Chapter 2 presents a methodology used to generate regional 3D velocity models that allows converting seismic reflection data and derived geological surfaces into the depth domain. This chapter is co-authored with Dr. Peter Suss (University of Tubingen) and Prof. John H. Shaw (Harvard University), who developed aspects of the methodology used here in their velocity modeling of the Los Angeles basin. In our study, geologic constraints are employed to guide the interpolation of velocity structure in the Inner California Borderlands, yielding a comprehensive 3D velocity model that is consistent with the structural and stratigraphic architectures of the offshore basins. The need to properly scale time

  3. Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes.

    PubMed

    De Marzio, M; Camisasca, G; Rovere, M; Gallo, P

    2017-02-28

    We perform an accurate analysis of the density self-correlation functions of TIP4P/2005 supercooled water on approaching the region of the liquid-liquid critical point. In a previous work on this model, we provided evidence of a fragile to strong crossover of the dynamical behavior in the deep supercooled region. The structural relaxation follows the Mode Coupling theory in the fragile region and then deviates from Mode Coupling regime to a strong Arrhenius behavior. This crossover is particularly important in water because it is connected to the thermodynamics of the supercooled region. To better understand the origin of this crossover, we compute now the Van Hove self-correlation functions. In particular we aim at investigating the presence and the role of the hopping phenomena that are the cause of the fragile to strong crossover in simple liquids. In TIP4P/2005 water, we find hopping processes too and we analyze how they depend on temperature and density upon approaching the fragile to strong crossover and the Mode Coupling ideal crossover temperature. Our results show that water behaves like a simple glass former. After an initial ballistic regime, the cage effect dominates the mild supercooled region, with diffusion taking place at long time. At the fragile to strong crossover, we find that hopping (activated) processes start to play a role. This is evidenced by the appearance of peaks in the Van Hove correlation functions. In the deep supercooled regime, our analysis clearly indicates that activated processes dominate the dynamics. The comparison between the Van Hove functions and the radial distribution functions allows to better understand the mechanism of hopping phenomena in supercooled water and to connect their onset directly with the crossing of the Widom Line.

  4. Tracing the Origin of Methane and Water on Mars: Active Regions and their Seasonal Variability

    NASA Astrophysics Data System (ADS)

    Villanueva, Geronimo; Mumma, M. J.; Novak, R. E.

    2009-09-01

    We have detected methane on Mars [1,2], and measured it simultaneously with water using powerful ground-based telescopes. Its presence in such a strongly oxidized atmosphere (CO2, 95.3%) requires recent release; the ultimate origin of this methane is uncertain, but it could either be abiotic or biotic. In this paper, we present the spatial distributions of methane and water-vapor on Mars extracted from our complete spectral database now spanning seven years, and we compare these with other geological parameters. Both gases are depleted at vernal equinox but are enhanced in warm seasons (spring/summer), though often with dissimilar spatial distributions. In Northern Summer we observe a polar outburst of water but no methane, while in Southern Spring we observe release of abundant methane but little water. Regions of methane release appear mainly over ancient terrain (Noachian/Hesperian, older than 3 billion years) known to have a rich hydration history. There is ample evidence that ancient Mars was wet and likely hosted habitable conditions. Moreover, the presence of extensive volcanism probably gave rise to widespread hydrothermal activity and the formation of rich aqueous subsurface reservoirs. Methane produced by geological processes (e.g., serpentinization) or by living organisms at that time could have been incorporated into hydrates. If such processes remain active on Mars below the permafrost, the byproduct gases (i.e. CH4 and H2S) may be trapped as hydrates at the base of the cryosphere. [1] Mumma et al. (2009) Science, 323, 1041. [2] Villanueva et al. (2009), submitted. This work was funded by NASA grants 08-PAST08-0034 (Planetary Astronomy) and 08-PATM080-0031 (Planetary Atmospheres) and grants from the NSF RUI Program (AST-0505765 and AST-0805540). We acknowledge the NASA-IRTF and Keck-2 telescopes for observing time.

  5. Thunderstorm-associated asthma in an inland town in south-eastern Australia. Who is at risk?

    PubMed

    Girgis, S T; Marks, G B; Downs, S H; Kolbe, A; Car, G N; Paton, R

    2000-07-01

    The aim of the study was to characterize patients at risk of asthma exacerbation during spring thunderstorms and identify potential measures to ameliorate the impact of those events. A case-control study was conducted among patients aged 7-60 yrs, who attended Wagga Hospital (NSW, Australia) for asthma during the period of 1 June 1997 to 31 October 1997. One hundred and eighty-three patients who attended on 30 and 31 October 1997 were the cases and the remaining 121 patients were the controls. Questionnaire data were obtained from 148 (81%) cases and 91 (75%) controls. One hundred and thirty-eight (95%) cases who attended during the thunderstorm gave a history of hayfever prior to the event compared to 66 (74%) controls who attended at other times (odds ratio (OR) 6.01, 95% confidence interval (CI) 2.55-14.15); 111 (96%) cases were allergic to rye grass pollen compared to 47 (64%) controls (OR 23.6, 95% CI 6.6-84.3). Among subjects with a prior diagnosis of asthma (64% cases and 82% controls), controls (56%) were more likely to be taking inhaled steroids at time of the thunderstorm than cases (27%, OR 0.3, 95% CI 0.16-0.57). History of hayfever and allergy to rye grass are strong predictors for asthma exacerbation during thunderstorms in spring. The lower rate of inhaled steroid use in thunderstorm cases suggests that this treatment may be effective in preventing severe attacks during thunderstorms.

  6. An investigation of the detection of tornadic thunderstorms by observing storm top features using geosynchronous satellite imagery

    NASA Technical Reports Server (NTRS)

    Anderson, Charles E.

    1991-01-01

    The number of tornado outbreak cases studied in detail was increased from the original 8. Detailed ground and aerial studies were carried out of two outbreak cases of considerable importance. It was demonstrated that multiple regression was able to predict the tornadic potential of a given thunderstorm cell by its cirrus anvil plume characteristics. It was also shown that the plume outflow intensity and the deviation of the plume alignment from storm relative winds at anvil altitude could account for the variance in tornadic potential for a given cell ranging from 0.37 to 0.82 for linear to values near 0.9 for quadratic regression. Several predictors were used in various discriminant analysis models and in censored regression models to obtain forecasts of whether a cell is tornadic and how strong tornadic it could be potentially. The experiments were performed with the synoptic scale vertical shear in the horizontal wind and with synoptic scale surface vorticity in the proximity of the cell.

  7. Thunderstorm Effects in Space: Technology Nanosatellite (TEST) Program

    DTIC Science & Technology

    2005-12-01

    memory alloy Nitinol , a nickel-titanium alloy reducing spacecraft wiring difficulties. Typically each formed into a spring. The Nitinol spring is...connectors are similar to tin, but when heat is applied it returns to its easily added. Though the use of D-subs in space is original shape. The Nitinol

  8. English Language Proficiency and Physical Activity among Mexican-Origin Women in South Texas and South Carolina

    PubMed Central

    Salinas, Jennifer J.; Hilfinger Messias, DeAnne K.; Morales-Campos, Daisy; Parra-Medina, Deborah

    2015-01-01

    Objectives To examine the relationship between English language proficiency (ELP), physical activity and physical activity-related psychosocial measures (i.e. exercise self-efficacy, exercise social support, perceptions of environmental supports) among Mexican-origin women in South Carolina and Texas. Design Adjusted robust regression and interaction modeling to evaluate baseline questionnaire data on self-reported ELP with CHAMPS leisure-time moderate-to-vigorous physical activity (MVPA), accelerometry data, Physical Activity Self-Efficacy, Physical Activity Social Support and Environmental Support for Physical Activity in 118 Mexican-origin women. Results The adjusted regression revealed a significant association between ELP and perceived physical activity self-efficacy (β= 234.2, p=.004), but not with physical activity social support. In South Carolina, CHAMPS leisure-time MVPA (411.4 versus 114.3 minutes, p<.05) was significantly different between women in the high ELP quartile and those in the very low quartile. Among high ELP Mexican-origin women, participants in Texas reported significantly higher MVPA measured by accelerometry (p=.042) than those in South Carolina. Conclusion Our findings indicate that ELP was associated with physical activity and that contextual factors may also play a role. PMID:24509031

  9. Polarization of X-rays and Gamma-Rays produced by Thunderstorms and Lightning

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2014-12-01

    Terrestrial Gamma-ray Flashes (TGFs), thunderstorm gamma-ray glows and x-rays from lightning are produced by bremsstrahlung emissions from runaway electrons. These runaway electrons are accelerated by strong electric fields inside thunderstorms and/or near lightning leader channels. Both the bremsstrahlung emission and subsequent Compton scattering result in partially polarized x-rays and gamma-rays, which could potentially be measured, providing insight into the geometry of the source region. To investigate the x-ray and gamma-ray polarization from runaway electron emissions and photon propagation, the REAM Monte Carlo code has been modified to calculate and keep track of individual photon polarization states. Polarization results from these Monte Carlo simulations will be presented, and the possibility of measuring the polarization from the ground, in situ by aircraft or balloons, and by spacecraft will be discussed.

  10. Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere

    SciTech Connect

    Sentman, D.D.; Wescott, E.M.

    1995-06-01

    Recent low light level monochrome television observations obtained from the ground and from the space shuttle, and low light level color and monochrome television images obtained from aboard jet aircraft, have shown that intense lightning in mesoscale thunderstorm systems may excite at least two distinct types of optical emissions that together span the space between the tops of some thunderstorms and the ionosphere. The first of these emissions, dubbed ``sprites,`` are luminous red structures that typically span the altitude range 60--90 km, often with faint bluish tendrils dangling below. A second, rarer, type of luminous emission are ``blue jets`` that appear to spurt upward out of the anvil top in narrow cones to altitudes of 40--50 km at speeds of {similar_to}100 km/s. In this paper the principal observational characteristics of sprites and jets are presented, and several proposed production mechanisms are reviewed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  11. Turbulent transport model of wind shear in thunderstorm gust fronts and warm fronts

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.; Teske, M. E.; Segur, H. C. O.

    1978-01-01

    A model of turbulent flow in the atmospheric boundary layer was used to simulate the low-level wind and turbulence profiles associated with both local thunderstorm gust fronts and synoptic-scale warm fronts. Dimensional analyses of both type fronts provided the physical scaling necessary to permit normalized simulations to represent fronts for any temperature jump. The sensitivity of the thunderstorm gust front to five different dimensionless parameters as well as a change from axisymmetric to planar geometry was examined. The sensitivity of the warm front to variations in the Rossby number was examined. Results of the simulations are discussed in terms of the conditions which lead to wind shears which are likely to be most hazardous for aircraft operations.

  12. Techniques used to identify tornado producing thunderstorms using geosynchronous satellite data

    NASA Technical Reports Server (NTRS)

    Schrab, Kevin J.; Anderson, Charles E.; Monahan, John F.

    1992-01-01

    Satellite imagery in the outbreak region in the time prior to and during tornado occurrence was examined in detail to obtain descriptive characteristics of the anvil plume. These characteristics include outflow strength (UMAX), departure of anvil centerline from the storm relative ambient wind (MDA), storm relative ambient wind (SRAW), and maximum surface vorticity (SFCVOR). It is shown that by using satellite derived parameters which characterize the flow field in the anvil region, the occurrence and intensity of tornadoes, which the parent thunderstorm produces, can be identified. Analysis of the censored regression models revealed that the five explanatory variables (UMAX, MDA, SRAW, UMAX-2, and SFCVOR) were all significant predictors in the identification of tornadic intensity of a particular thunderstorm.

  13. The structure and dynamics of mesoscale systems influencing severe thunderstorm development during AVE/SESAME 1

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1982-01-01

    Relationships between meso-beta scale systems and thunderstorm formation were examined as part of the NASA atmospheric variability experiment/severe environmental storms and mesoscale experiment 1979. The McIdas program was employed for meso-beta scale analyses of atmospheric structure and dynamics in kinematic computations of the Abilene Triangle on a grid mesh of 100 km for station spacing of 275 km. Mesoscale short wave systems were detected imbedded and propagating cyclonically around upper-level vortex circulation and creating environmental conditions conducive to thunderstorm development. TIROS-N and GOES satellite data served to connect the systems with two convective storms which developed. The necessity to use spaceborne instrumentation carried on the Shuttle or on free-flying satellites for enhancing the data-base on storm development is noted.

  14. Low-light video observations of frequent luminous structures in the stratosphere above thunderstorms

    NASA Technical Reports Server (NTRS)

    Lyons, Walter A.

    1994-01-01

    A new series of video measurements were made of the phenomenon provisionally termed the cloud-to-stratosphere (CS) event, an electrical discharge extending to great heights above thunderstorm tops. This new series of measurements were accomplished by properly positioning a sensor, the Xybion model ISS 225 low-light monochrome imaging system with a C-mount fl.8 manual zoom lens, and training it on the appropriate portion of the sky above a distant thunderstorm complex mean Fort Collins, Colorado. The resulting images are currently undergoing intensive analysis. Some tentative conclusions are given. Cloud-to-stratosphere events occur far more frequently than previously suspected and are perhaps a ubiquitous aspect of many larger convective systems. Cloud-to-stratosphere events are also of substantial horizontal extent, on the order of tens of kilometers in some cases.

  15. 77 FR 6815 - Agency Information Collection Activities: Country of Origin Marking Requirements for Containers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Marking Requirements for Containers or Holders AGENCY: U.S. Customs and Border Protection (CBP... requirement concerning Country of Origin Marking Requirements for Containers or Holders. This request for...: Title: Country of Origin Marking Requirements for Containers or Holders. OMB Number: 1651-0057....

  16. 78 FR 43968 - Agency Information Collection; Activity Under OMB Review; Passenger Origin-Destination Survey Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... routes, and modeling the spread of contagious diseases. The Passenger Origin-Destination Survey Report is...; Passenger Origin-Destination Survey Report AGENCY: Research & Innovative Technology Administration (RITA...@dot.gov . SUPPLEMENTARY INFORMATION: OMB Approval No. 2139-0001 Title: Passenger...

  17. Studies of the electrical activity of the ventricles and the origin of the QRS complex.

    PubMed

    Scher, A M

    1995-01-01

    Historical events in the development of cardiac electrophysiology are described briefly. Observations before 1900 showed that electrical changes accompanied activity of muscle and nerve. Other studies showed that electrical activity of the heart produced voltage changes on the human torso. In 1903 Einthoven developed the string galvanometer which made measurement of electrocardiographic potentials much easier, more accurate and more common. The bases of understanding of arrhythmias were established by Lewis in the early 1900's. Soon thereafter Wilson devised practical and theoretical approaches to the human electrocardiogram which led to many further developments. Events before 1950 established the existence and mechanism of electrical activity in excitable cells. Studies of the origin of QRS began in about 1950, with studies of depolarization of the canine ventricle. Studies of the human ventricle followed. In the 70's it appeared possible to solve the electrocardiographic forward problem, prediction of electrocardiographic potentials from a knowledge of intracardiac events. That solution appeared possible because of new approaches to the associated physical and computational problems. Attempts to solve the forward problem at that time assumed that the cardiac generator (the boundary between resting and depolarized cells) was a uniform double layer generator. (The strength of the generator is constant everywhere along the boundary). Meanwhile physiologists and anatomists had worked out the mechanism of communication between cardiac cells. The cells are longer than they are wide, and each cell can depolarize contiguous cells. The connections between cells are predominantly at the ends of the cell and the longitudinal depolarization of a cardiac mass travels three times as fast as transverse depolarization. The generator is not uniform but is strongest parallel to the long axes of the cells. Many or most of those working in the field did not recognize the importance

  18. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  19. Observations of high-energy radiation during thunderstorms at Tien-Shan

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Almenova, A. M.; Antonova, V. P.; Chubenko, A. P.; Karashtin, A. N.; Kryakunova, O. N.; Lutsenko, V. Yu.; Mitko, G. G.; Ptitsyn, M. O.; Piscal, V. V.; Ryabov, V. A.; Salikhov, N. M.; Sadykov, T. Kh.; Shepetov, A. L.; Shlyugaev, Yu. V.; Thu, W. M.; Vil'danova, L. I.; Zastrozhnova, N. N.; Zybin, K. P.

    2016-07-01

    Energetic radiation during thunderstorms is studied. The possibility to identify the high-energy lightning emission in the 10 s monitoring mode is demonstrated. Simultaneous measurements of gamma-ray emission, high-energy electrons, and neutron radiation in the triggering mode are fulfilled. Energy spectra of gamma emission and electrons are obtained. The intensity both of electrons and gamma rays in lightning discharge prevail the background emission by 1.5 to 2 orders of magnitude.

  20. Lightning-induced extensive charge sheets provide long range electrostatic thunderstorm detection.

    PubMed

    Bennett, A J; Harrison, R G

    2013-07-26

    By combining electrostatic measurements of lightning-induced electrostatic field changes with radio frequency lightning location, some field changes from exceptionally distant lightning events are apparent which are inconsistent with the usual inverse cube of distance. Furthermore, by using two measurement sites, a transition zone can be identified beyond which the electric field response reverses polarity. For these severe lightning events, we infer a horizontally extensive charge sheet above a thunderstorm, consistent with a mesospheric halo of several hundred kilometers' extent.

  1. A Comparison of Radar Rainfall Estimates and Rain Gage Measurements during Two Denver Thunderstorms

    DTIC Science & Technology

    1992-01-01

    80 viii CHAPTER I INTRODUCTION Accurate measurements of thunderstorm rainfall are essential for providing timely guidance on flash flood potential...throughout the drainage basins effecting the Denver metropolitan area (see Figure 2.1). This network is used to provide flash flood predictions for...report of flash flooding 40 miles southwest of Denver at 1520 MDT (NOAA, 1991). 2. Severe weather reports Reports of severe weather were numerous in the

  2. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  3. Gamma ray and fair weather electric field measurements during thunderstorms: indications for TGEs?

    NASA Astrophysics Data System (ADS)

    Reuveni, Yuval; Yair, Yoav; Steinitz, Gideon; Price, Colin; Pustil'nik, Lev; Yaniv, Roy; Hamiel, Yariv; Katz, Evgeni

    2016-04-01

    We report coincidences of ground-level gamma-ray enhancements with strong electric fields typical of lightning discharges, measured at a mountainous site in northern Israel. High-energy emissions detected on the Earth's surface during thunderstorms supposedly initiate Thunderstorm Ground Enhancements (TGEs) of fluxes of electrons, neutrons and gamma rays that can last tens of minutes. Such enhancements are thought to be related to Extensive Cloud Showers (ECSs) initiated between the main negative charge center and the lower positive charge pocket in mature thunderstorms (Chilingarian et al., 2015). The Cosmic Ray and Space Weather Center located at Mt. Hermon hosts a gamma ray detector alongside a continuous multi-parametric array consisting of a Global Navigation Satellite Systems (GNSS) geodetic receiver (for measuring Precipitable Water Vapor (PWV) and ionospheric Total Electron Content (TEC)), vertical atmospheric electric field (Ez) and current (Jz) and a neutron super monitor (for cosmic ray measurements). The diurnal variations in fair-weather conditions exhibit a clear 24-hour periodicity, related to the diurnal variation of atmospheric parameters. During several severe thunderstorms that occurred over Israel and near the Mt. Hermon station in October and November 2015, we recorded several instantaneous enhancements in the counts of Gamma rays, which lasted ten of minutes, and that coincided with peaks in the vertical electric field and current. Lightning data obtained from the Israeli Lightning Detection Network (ILDN) show that these peaks match the occurrences of close-by CG lightning discharges. This talk will present correlations between the properties of parent flashes and the observed peaks, and discuss possible mechanisms.

  4. Direct effects of lightning on an aircraft during intentional penetrations of thunderstorms. [T-28 aircraft

    NASA Technical Reports Server (NTRS)

    Musil, D. J.; Prodan, J.

    1980-01-01

    An armored T-28 aircraft was struck by lightning on two different days while participating in the 1979 severe environmental storm and mesoscale experiment in Oklahoma. The T-28, which is specially armored and instrumented, was making intentional penetrations of thunderstorms and was struck twice on 30 May and once on 5 June. Various degrees of damage, mainly in the form of large burn spots and holes, resulted to the aircraft.

  5. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures

    NASA Astrophysics Data System (ADS)

    Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.

    2016-01-01

    In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.

  6. A study of turbulence near thunderstorm tops. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Pantley, Kim Christine

    1989-01-01

    It has been known for many years that turbulence significant for aviation often occurs near thunderstorm tops. However, that turbulence is not well-predicted because of an incomplete understanding of the processes which generate it and because of inadequate observations. The current study seeks to alleviate these problems via: (1) a comprehensive review of recent theoretical and experimental studies related to turbulence near thunderstorm tops (TNTT), and (2) three case studies designed to examine the feasibility of using data derived from commercial aircraft to study TNTT. The literature review revealed extensive evidence which showed that convection often produces significant barrier effects; several mesoscale phenomena capable of producing turbulence may occur, depending on wind and stability conditions near the thunderstorm tops. These include two- and three-dimensional lee waves, rotors, Kelvin-Helmholtz instabilities, and Karman vortices. Conventional meteorological data were combined with data derived from the aircraft flight tapes to produce quantitative descriptions of the turbulence and its mesoscale environment for the three cases.

  7. Balloon Measurements of Electric Fields in Thunderstorms: A Modern Version of Benjamin Franklin's Kite

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Stolzenburg, M.

    2006-12-01

    One of Benjamin Franklin's most famous experiments was the kite experiment, which showed that thunderstorms are electrically charged. It is not as commonly noted that the kite experiment was also one of the the first attempts to make an in situ measurement of any storm parameter. Franklin realized the importance of making measurements close to and within storms, and this realization has been shared by later atomspheric scientists. In this presentation we focus on a modern version of Franklin's kite--instrumented balloons--used for in situ measurements of electric field and other storm parameters. In particular, most of our knowledge of the charge structure inside thunderstorms is based on balloon soundings of electric field. Balloon measurements of storm electricity began with the work of Simpson and colleagues in the 1930's and 1940's. The next major instrumentation advances were made by Winn and colleagues in the 1970's and 1980's. Today's instruments are digital versions of the Winn design. We review the main instrument techniques that have allowed balloons to be the worthy successors to kites. We also discuss some of the key advances in our understanding of thunderstorm electrification made with in situ balloon-borne instruments.

  8. Satellite triangulation of thunderstorms, from fading radio fields synchronously recorded on two orthogonal antennas

    NASA Astrophysics Data System (ADS)

    Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert H.

    2011-12-01

    Single-satellite observations of lightning radio emissions normally do not independently provide useful thunderstorm location. The scientific value of these radio waveform recordings is greatly enhanced by knowing at least the approximate location of the source thunderstorm. Since the Very High Frequency radio emissions from lightning are always broadband and usually incoherent, radio interferometry is an obvious approach to direction-finding the source. However, radio-interferometry requires separated, deployed antennas, and for decametric radio waves, success with interferometric direction-finding on a satellite has not yet been reported. We describe a method for approximate location of source thunderstorms, using the statistical fading of the received electric field on two orthogonal, but co-located, antennas. The method is based on previous work geolocating polarized sources, and we show that it can be adapted efficiently to unpolarized radio fields, which constitute the majority of lightning emissions. We implement the method with dual-antenna radio recordings from the FORTE satellite, and demonstrate its capabilities using a wide variety of radio data.

  9. The interpretation of gamma-ray enhancements in thunderstorms with and without avalanche multiplication

    NASA Astrophysics Data System (ADS)

    Kelley, N. A.

    2015-12-01

    Relativistic Runaway Electron Avalanches (RREAs) are the acceleration and subsequent multiplication of relativistic electrons inside by electric field. Inside thunderstorms, RREA are thought to be involved in the creation of extraordinarily bright bursts of gamma rays, called Terrestrial Gamma-ray Flashes (TGFs), and long duration production of gamma rays (called gamma-ray glows or thunderstorm ground enhancements (TGEs)). However, Chilingarian has proposed that some electric fields inside thunderstorms may not be strong enough or have large enough spatial extent to result in significant avalanche multiplication by RREA to make a glow. High-energy electrons and gamma rays would still be present by a modification of the spectra (MOS) of cosmic-ray air showers. MOS and RREA glows have both been detected many times from the ground but distinguishing between the two is difficult since differing count rates can be the result of either these two distinct production models or attenuation due to various source distances. We will present GEANT4 models showing how these spectra differ as a function of source distance as well as discuss the differences in their gamma ray/electron signature in ground-based, gamma-ray detectors. These models will be compared to measurements made with instruments already in place in Mexico and Japan.

  10. An overview of thunderstorm-associated asthma outbreak in southwest of Iran.

    PubMed

    Forouzan, Arash; Masoumi, Kambiz; Haddadzadeh Shoushtari, Maryam; Idani, Esmaeil; Tirandaz, Fatemeh; Feli, Maryam; Assarehzadegan, Mohammad Ali; Asgari Darian, Ali

    2014-01-01

    The aim of this study was to report the characteristics and treatment strategies of all patients with acute bronchospasm who were presented to the emergency departments of Ahvaz, Iran, following the occurrence of a thunderstorm on November 2, 2013. A total of 2000 patients presenting with asthma attacks triggered by thunderstorm were interviewed and an initial questionnaire was completed for each individual. After twenty days, patients were asked to complete a supplementary questionnaire, but only 800 of them accepted to do so. The majority of subjects was aged 20-40 years (60.5%) and had no history of asthma in most cases (60.0%). The symptoms had started outdoors for 60.0% of the participants. In most patients, the onset of the condition was on November 2. Short-acting β 2-agonist (salbutamol) and aminophylline were the most commonly prescribed medications in the emergency department. Upon the second interview, 85.3% of the patients were still symptomatic. Overall, 63.6% did not have a follow-up visit after hospital discharge, although all of them were referred to the specialist. The findings of the present study suggest that thunderstorm-associated asthma could affect young adults with no gender priority, with or without asthma history, which put a strain on emergency medical services.

  11. Lightning-driven electric fields measured in the upper mesosphere and lower ionosphere during the Thunderstorm-III rocket campaign: Implications for transient luminous events

    NASA Astrophysics Data System (ADS)

    Thomas, J. N.; Barnum, B. H.; Holzworth, R. H.; Lay, E. H.; Cho, M.

    2006-12-01

    On September 1, 1995, the Thunderstorm-III sounding rocket was launched from Wallops Island, VA, USA to measure the effects of lightning on the ionosphere. Thunderstorm-III measured hundreds of electric and magnetic field changes from an active storm near Wallops Island and a few other more distant storms. Although the majority of these measurements occurred at altitudes above 130 km, there were 60 lightning- driven electric field changes measured at 75-130 km altitude during the rocket descent. Most of these lightning occurred at horizontal distances of 250-300 km from the rocket as located by the National Lightning Detection Network. At these distances, weak quasi-static electric field components and strong electromagnetic components were measured. These are some of the only lightning-driven electric fields measured in the upper mesosphere / lower ionosphere ever to be reported, since this region is typically too low in altitude for rockets and satellites and too high for balloons. In this presentation, these electric field changes are summarized and a few detailed case studies are presented. Moreover, these measurements are compared directly to a 2-D numerical model of lightning-driven electromagnetic fields in the middle and upper atmosphere. Finally, the implications of these results for transient luminous events, such as sprites, elves, and halos that have been observed at these altitudes are discussed.

  12. 12 CFR Appendix A to Part 610 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGISTRATION OF MORTGAGE LOAN ORIGINATORS Pt. 610, App. A Appendix A to Part 610—Examples of Mortgage Loan... institution's Web site, for specific types of loan products without communicating to the consumer...

  13. 12 CFR Appendix A to Subpart D of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... 563, Subpt. D, App. A Appendix A to Subpart D of Part 563—Examples of Mortgage Loan Originator... available, such as on the savings association's Web site, for specific types of loan products...

  14. 12 CFR Appendix A to Subpart D of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... 563, Subpt. D, App. A Appendix A to Subpart D of Part 563—Examples of Mortgage Loan Originator... available, such as on the savings association's Web site, for specific types of loan products...

  15. 12 CFR Appendix A to Subpart I of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (REGULATION H) Registration of Residential Mortgage Loan Originators Pt. 208, Subpt. I, App. A Appendix A to... as on the bank's Web site, for specific types of loan products without communicating to the...

  16. 12 CFR Appendix A to Subpart I of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (REGULATION H) Registration of Residential Mortgage Loan Originators Pt. 208, Subpt. I, App. A Appendix A to... as on the bank's Web site, for specific types of loan products without communicating to the...

  17. 12 CFR Appendix A to Part 610 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGISTRATION OF MORTGAGE LOAN ORIGINATORS Pt. 610, App. A Appendix A to Part 610—Examples of Mortgage Loan... institution's Web site, for specific types of loan products without communicating to the consumer...

  18. 12 CFR Appendix A to Subpart D of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... 563, Subpt. D, App. A Appendix A to Subpart D of Part 563—Examples of Mortgage Loan Originator... available, such as on the savings association's Web site, for specific types of loan products...

  19. 12 CFR Appendix A to Subpart B of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Mortgage Loan Originators Pt. 365, Subpt. B, App. A Appendix A to Subpart B of Part 365—Examples of... insured State nonmember bank's Web site, for specific types of loan products without communicating to...

  20. 12 CFR Appendix A to Subpart D of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... 563, Subpt. D, App. A Appendix A to Subpart D of Part 563—Examples of Mortgage Loan Originator... available, such as on the savings association's Web site, for specific types of loan products...

  1. 12 CFR Appendix A to Part 610 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGISTRATION OF MORTGAGE LOAN ORIGINATORS Pt. 610, App. A Appendix A to Part 610—Examples of Mortgage Loan... institution's Web site, for specific types of loan products without communicating to the consumer...

  2. 12 CFR Appendix A to Subpart B of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Mortgage Loan Originators Pt. 365, Subpt. B, App. A Appendix A to Subpart B of Part 365—Examples of... insured State nonmember bank's Web site, for specific types of loan products without communicating to...

  3. 12 CFR Appendix A to Subpart B of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Mortgage Loan Originators Pt. 365, Subpt. B, App. A Appendix A to Subpart B of Part 365—Examples of... insured State nonmember bank's Web site, for specific types of loan products without communicating to...

  4. 12 CFR Appendix A to Subpart I of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (REGULATION H) Registration of Residential Mortgage Loan Originators Pt. 208, Subpt. I, App. A Appendix A to... as on the bank's Web site, for specific types of loan products without communicating to the...

  5. 12 CFR Appendix A to Subpart I of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (REGULATION H) Registration of Residential Mortgage Loan Originators Pt. 208, Subpt. I, App. A Appendix A to... as on the bank's Web site, for specific types of loan products without communicating to the...

  6. Analysis of Cumulonimbus (Cb), Thunderstorm and Fog for Izmir Adnan Menderes Airport

    NASA Astrophysics Data System (ADS)

    Avsar, Ercument

    2016-07-01

    Demand for airline transport has been increasing day by day with the development of the aviation industry in Turkey. Meteorological conditions are among the most important factors that influence aviation facilities. Meteorological events cause delays and cancellation of flights which create economic and time losses, and they even lead to accidents and breakups. The most important meteorological events that affect the takeoff and landing of airplanes can be listed as wind, runway visual range, cloud, rain, icing, turbulence, and low level windshear. Meteorological events that affect the aviation facilities most often in Adnan Menderes Airport (LTBJ), the fourth largest airport in Turkey in terms of air traffic, are fog, Cumulonimbus (Cb) clouds and thunderstorms (TS-Thunderstorm). Therefore, it is important to identify the occurrence time of these events based on the analysis of data over many years and do the flight plans based on this meteorological information in order to make the aviation facilities safer and without delays. In this study, statistical analysis on the formation of Cb clouds, thunderstorm and foggy days is conducted using observations produced for aviation (METAR) and special observers (SPECI). It is found that there are two types of fog that are observed most often at LTBJ, namely radiation and advection fogs, accordingly to the results of statistical analysis based on data from 2004 to 2014. Fog events are found to occur most often in the months of December and January, during 04:00 - 07:00 UTC time interval, between pressure values over 1015-1020 hPa, in 130-190 degree light breeze (1-5KT) and in temperature levels between 5°C and 8°C. Thunderstorm events recorded at LTBJ between the years 2004 and 2014 are most often observed in the months of January and February, in 120-210 degree gentle breeze winds (6-10KT), and in temperature levels between 8 and 18 °C. Key Words: Adnan Menderes International Airport, LTBJ, Fog, Thunderstorm (TS), Cb

  7. Thunderstorm-associated bronchial asthma: a forgotten but very present epidemic.

    PubMed

    Al-Rubaish, Abdullah M

    2007-05-01

    Acute episodes of bronchial asthma are associated with specific etiological factors such as air pollutants and meteorological conditions including thunderstorms. Evidence suggests that thunderstorm-associated asthma (TAA) may be a distinct subset of asthmatics, and, epidemics have been reported, but none from Saudi Arabia.The trigger for this review was the TAA epidemic in November 2002, Eastern Saudi Arabia. The bulk of patients were seen in the King Fahd Hospital of the University, Al-Khobar. The steady influx of acute cases were managed effectively and involved all neighboring hospitals, without evoking any "Major Incident Plan".THREE GROUPS OF FACTORS ARE IMPLICATED AS CAUSES OF TAA: pollutants (aerobiologic or chemical) and meteorological conditions. Aerobiological pollutants include air-borne allergens: pollen and spores of molds. Their asthma-inducing effect is augmented during thunderstorms.Chemical pollutants include greenhouse gases, heavy metals, ozone, nitrogen dioxide, sulfur dioxide, fumes from engines and particulate matter. Their relation to rain-associated asthma is mediated by sulfuric and nitric acid.Outbreaks of non-epidemic asthma are associated with high rainfall, drop in maximum air temperature and pressure, lightning strikes and increased humidity. Thunderstorm can cause all of these and it seems to be related to the onset of asthma epidemic.Patients in epidemics of TAA are usually young atopic adults not on prophylaxis steroid inhalers. The epidemic is usually their first known attack. These features are consistent with the hypothesis that TAA is related to both aero-allergens and weather effects. Subjects allergic to pollen who are in the path of thunderstorm can inhale air loaded with pollen allergen and so have acute asthmatic response. TAA runs a benign courseDoctors should be aware of this phenomenon and the potential outbreak of asthma during heavy rains. A & E departments and ICU should be alert for possible rush of asthmatic

  8. Thunderstorm clouds as possible link in relation cosmic ray intensity variation - climate change.

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.

    2003-04-01

    On the basis of cosmic ray (CR) and atmospheric electric field (AEF) one minute data obtained correspondingly by neutron monitor and the sensor EFS-1000 of Emilio Segre' Observatory (hight 2025 m above s.l., cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR for total neutron intensity and for multiplicities mge1, mge2, mge3, mge4, mge5, mge6, mge7, and mge8, as well as for m=1, m=2, m=3, m=4, m=5, m=6, and m=7. For comparison and excluding primary CR variations we use also data on other neutron monitors. In February 2000 were observed 14 periods of thunderstorms with different durations (up to about 1000 min), the maximum strength of electric field was 110 kV/m. Thunderstorms were observed also in March 2000 (6 periods with maximal field 112 kV/m), in April 2000 (9; 70 kV/m), in May 2000 (4; 10 kV/m), in October 2000 (10; 70 kV/m), in November 2000 (5; 50 kV/m), in December 2000 (7; 88 kV/m), in January 2001 (12; 62 kV/m), in February 2001 (10; 88 kV/m). According to the theoretical calculations of Dorman and Dorman (2002) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman and Dorman (2002), the biggest electric field effect is expected in the multiplicity m=1, much smaller in m=2 and negligible effect is expected in higher multiplicities. We control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field, and estimate the integral electric field between thunderstorm clouds and ground. We consider also the possible influence of CR air ionization (especially by secondary energetic electrons) on thunderstorms and lightnings, and through this - on climate. We compare effectiveness of both possible mechanisms of cosmic ray influence on thunderstorms

  9. Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals.

    PubMed

    Szolnoki, Zs; Farsang, A; Puskás, I

    2013-06-01

    The concentration of heavy metals and soil properties in fifty urban garden soils of Szeged (SE Hungary) were determined to evaluate the cumulative impacts of urbanization and cultivation on these soils. Using two enrichment factors (EFs) (based on reference horizon; Ti as reference element) and multivariate statistical analysis (PCA), the origin of the studied elements was defined. According to statistical coincidence of EFs confirmed by t-test, anthropogenic enrichment of Cu (EF = 4), Zn (EF = 2.7) and Pb (EF = 2.5) was significant in topsoils. Moreover, PCA also revealed the geogenic origin of Ni, Co, Cr and As and differentiated two groups of the anthropogenic metals [Pb, Zn] [Cu]. Spatial distribution of the metals visualized by GIS reflected the traffic origin of Pb; while based on ANOVA, the anthropogenic source of Cu is relevant (mainly pesticides) and there is a statistically significant difference in its concentration depending on land use.

  10. Determination of the origin of the medieval glass bracelets discovered in Dubna, Moscow region, Russia using the neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Dmitrieva, S. O.; Frontasyeva, M. V.; Dmitriev, A. A.; Dmitriev, A. Yu.

    2017-01-01

    The work is dedicated to the determination of the origin of archaeological finds from medieval glass using the method of neutron activation analysis (NAA). Among such objects we can discover not only things produced in ancient Russian glassmaking workshops but also imported from Byzantium. The authors substantiate the ancient Russian origin of the medieval glass bracelets of pre-Mongol period, found on the ancient Dubna settlement. The conclusions are based on data about the glass chemical composition obtained as a result of NAA of 10 fragments of bracelets at the IBR-2 reactor (Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research).

  11. Thunderstorm as a Source of Sounds in the Ocean

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Nikolai A.; Frolov, Vladimir M.

    Results of underwater sounds analysis related to the presence of a powerful thundercloud during its approaching to and moving away from the receivers are presented. It is shown that the thundercloud presence manifests itself at large ranges in the appearance of infrasound bursts that are ~ 3 sec in duration and with two peaks in power spectrum within 10-30 Hz. At closer ranges the impulsive sounds in the band 100-300 Hz begin to appear. At close vicinity (5-10 km) to the research vessel, a great variety of different impulsive sounds are observed, which can be associated with the presence of lightning strikes. Different hypothesis on origin of impulsive signals appearing in presence of a thundercloud are discussed.

  12. 77 FR 47426 - Agency Information Collection Activities: Request for the Return of Original Documents, Form...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... the Return of Original Documents, Form Number G-884; Extension, Without Change, of a Currently... this 60-day period, USCIS will be evaluating whether to revise the Form G-884. Should USCIS decide to revise Form G-884, we will advise the public when we publish the 30-day notice in the Federal Register...

  13. The THOR Project-Reducing the Impact of Thunderstorms on Aviation and the General Public Through a Multi-Agency Effect

    NASA Technical Reports Server (NTRS)

    Smith, Stephan B.; Pace, David; Goodman, Steven J.; Burgess, Donald W.; Smarsh, David; Roberts, Rita D.; Wolfson, Marilyn M.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Thunderstorms are high impact weather phenomena. They also pose an extremely challenging forecast problem. The National Oceanic and Atmospheric Administration (NOAA), the Federal Aviation Administration (FAA), the National Aeronautic and Space Administration (NASA), and the Air Force Weather Agency (AFWA), have decided to pool technology and scientific expertise into an unprecedented effort to better observe, diagnose, and forecast thunderstorms. This paper describes plans for an operational field test called the THunderstorm Operational Research (THOR) Project beginning in 2002, the primary goals of which are to: 1) Reduce the number of Thunderstorm-related Air Traffic Delays with in the National Airspace System (NAS) and, 2) Improve severe thunderstorm, tornado and airport thunderstorm warning accuracy and lead time. Aviation field operations will be focused on the prime air traffic bottleneck in the NAS, the airspace bounded roughly by Chicago, New York City and Washington D.C., sometimes called the Northeast Corridor. A variety of new automated thunderstorm forecasting applications will be tested here that, when implemented into FAA-NWS operations, will allow for better tactical decision making and NAS management during thunderstorm days. Severe thunderstorm operations will be centered on Northern Alabama. NWS meteorologists from the forecast office in Birmingham will test the utility of experimental lightning, radar, and profiler data from a mesoscale observing network being established by NASA's Marshall Space Flight Center. In addition, new tornado detection and thunderstorm nowcasting algorithms will be examined for their potential for improving warning accuracy. The Alabama THOR site will also serve as a test bed for new gridded, digital thunderstorm and flash flood warning products.

  14. Exceptional sequence of severe thunderstorms and related flash floods in May and June 2016 in Germany - Part 1: Meteorological background

    NASA Astrophysics Data System (ADS)

    Piper, David; Kunz, Michael; Ehmele, Florian; Mohr, Susanna; Mühr, Bernhard; Kron, Andreas; Daniell, James

    2016-12-01

    During a 15-day episode from 26 May to 9 June 2016, Germany was affected by an exceptionally large number of severe thunderstorms. Heavy rainfall, related flash floods and creek flooding, hail, and tornadoes caused substantial losses running into billions of euros (EUR). This paper analyzes the key features of the severe thunderstorm episode using extreme value statistics, an aggregated precipitation severity index, and two different objective weather-type classification schemes. It is shown that the thunderstorm episode was caused by the interaction of high moisture content, low thermal stability, weak wind speed, and large-scale lifting by surface lows, persisting over almost 2 weeks due to atmospheric blocking.For the long-term assessment of the recent thunderstorm episode, we draw comparisons to a 55-year period (1960-2014) regarding clusters of convective days with variable length (2-15 days) based on precipitation severity, convection-favoring weather patterns, and compound events with low stability and weak flow. It is found that clusters with more than 8 consecutive convective days are very rare. For example, a 10-day cluster with convective weather patterns prevailing during the recent thunderstorm episode has a probability of less than 1 %.

  15. Use of RegCM gridded dataset for thunderstorm favorable conditions analysis over Poland—climatological approach

    NASA Astrophysics Data System (ADS)

    Walawender, Ewelina; Kielar, Rafał; Ustrnul, Zbigniew

    2017-01-01

    The paper analyzes equivalent data for a low density meteorological station network (spatially discontinuous data) and poor temporal homogeneity of thunderstorm observational data. Due to that, a Regional Climate Model (RegCM) dataset was tested. The Most Unstable Convective Available Potential Energy index value (MUCAPE) above the 200 J kg-1 threshold was selected as a predictor describing favorable conditions for the occurrence of thunderstorms. The quality of the dataset was examined through a comparison between model results and soundings from several aerological stations in Central Europe. Good, statistically significant (0.05 significance level) results were obtained through correlation analysis; the value of Pearson's correlation coefficient was above 0.8 in every single case. Then, using methods associated with gridded climatology, data series for 44 weather stations were derived and an analysis of correlation between RegCM modeled data and in situ thunderstorm observations was conducted with coefficients in the range of 0.75-0.90. The possibility of employing the dataset in thunderstorm climatology analysis was checked via a few examples by mapping monthly, seasonal, and annual means. Moreover, long-term variability and trend analysis along with modeled MUCAPE data were tested. As a result, the RegCM modeled MUCAPE gridded dataset was proposed as an easily available, suitable, and valuable predictor for thunderstorm climatology analysis and mapping. Finally, some limitations are discussed and recommendations for further improvements are given.

  16. Glycycoumarin exerts anti-liver cancer activity by directly targeting T-LAK cell-originated protein kinase

    PubMed Central

    Song, Xinhua; Yin, Shutao; Zhang, Enxiang; Fan, Lihong; Ye, Min; Zhang, Yong; Hu, Hongbo

    2016-01-01

    Glycycoumarin (GCM) is a major bioactive coumarin compound isolated from licorice and the anti-cancer activity of GCM has not been scientifically addressed. In the present study, we have tested the anti-liver cancer activity of GCM using both in vitro and in vivo models and found for the first time that GCM possesses a potent activity against liver cancer evidenced by cell growth inhibition and apoptosis induction in vitro and tumor reduction in vivo. Mechanistically, GCM was able to bind to and inactivate oncogenic kinase T-LAK cell-originated protein kinase (TOPK), which in turn led to activation of p53 pathway. Our findings supported GCM as a novel active compound that contributed to the anti-cancer activity of licorice and TOPK could be an effective target for hepatocellular carcinoma (HCC) treatment. PMID:27582549

  17. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities

    PubMed Central

    Manyi-Loh, Christy E.; Ndip, Roland N.; Clarke, Anna M.

    2011-01-01

    Volatile organic compounds (VOCs) in honey are obtained from diverse biosynthetic pathways and extracted by using various methods associated with varying degrees of selectivity and effectiveness. These compounds are grouped into chemical categories such as aldehyde, ketone, acid, alcohol, hydrocarbon, norisoprenoids, terpenes and benzene compounds and their derivatives, furan and pyran derivatives. They represent a fingerprint of a specific honey and therefore could be used to differentiate between monofloral honeys from different floral sources, thus providing valuable information concerning the honey’s botanical and geographical origin. However, only plant derived compounds and their metabolites (terpenes, norisoprenoids and benzene compounds and their derivatives) must be employed to discriminate among floral origins of honey. Notwithstanding, many authors have reported different floral markers for honey of the same floral origin, consequently sensory analysis, in conjunction with analysis of VOCs could help to clear this ambiguity. Furthermore, VOCs influence honey’s aroma described as sweet, citrus, floral, almond, rancid, etc. Clearly, the contribution of a volatile compound to honey aroma is determined by its odor activity value. Elucidation of the aroma compounds along with floral origins of a particular honey can help to standardize its quality and avoid fraudulent labeling of the product. Although only present in low concentrations, VOCS could contribute to biomedical activities of honey, especially the antioxidant effect due to their natural radical scavenging potential. PMID:22272147

  18. Racemization and the origin of optically active organic compounds in living organisms

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1987-01-01

    The organic compounds synthesized in prebiotic experiments are racemic mixtures. A number of proposals have been offered to explain how asymmetric organic compounds formed on the Earth before life arose, with the influence of chiral weak nuclear interactions being the most frequent proposal. This and other proposed asymmetric syntheses give only sight enantiomeric excess and any slight excess will be degraded by racemization. This applies particularly to amino acids where half-lives of 10(5)-10(6) years are to be expected at temperatures characteristic of the Earth's surface. Since the generation of chiral molecules could not have been a significant process under geological conditions, the origins of this asymmetry must have occurred at the time of the origin of life or shortly thereafter. It is possible that the compounds in the first living organisms were prochiral rather than chiral; this is unlikely for amino acids, but it is possible for the monomers of RNA-like molecules.

  19. The origin of spontaneous activity in developing networks of the vertebrate nervous system.

    PubMed

    O'Donovan, M J

    1999-02-01

    Spontaneous neuronal activity has been detected in many parts of the developing vertebrate nervous system. Recent studies suggest that this activity depends on properties that are probably shared by all developing networks. Of particular importance is the high excitability of recurrently connected, developing networks and the presence of activity-induced transient depression of network excitability. In the spinal cord, it has been proposed that the interaction of these properties gives rise to spontaneous, periodic activity.

  20. Synchronized network activity as the origin of a P300 component in a facial attractiveness judgment task.

    PubMed

    Zhang, Yuan; Tang, Akaysha C; Zhou, Xiaolin

    2014-03-01

    Many studies have used the P300 as an index for cognitive processing and neurological/psychiatric disorders. Here, we combined the source separation and source localization methods to investigate the cortical origins of the P300 elicited in a facial attractiveness judgment task. For each participant, we applied second-order blind identification (SOBI) to continuous EEG data to decompose the mixture of brain signals and noise. We then used the equivalent current dipole (ECD) models to estimate the centrality of the SOBI-recovered P300. We found that the ECD models, consisting of dipoles in the frontal and posterior association cortices, account for 96.5 ± 0.5% of variance in the scalp projection of the component. Given that the recovered dipole activities in different brain regions share the same time course with different weights, we conclude that the P300 originates from synchronized activity between anterior and posterior parts of the brain.

  1. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    NASA Technical Reports Server (NTRS)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  2. Long-term variability of the thunderstorm and hail potential in Europe

    NASA Astrophysics Data System (ADS)

    Mohr, Susanna; Kunz, Michael; Speidel, Johannes; Piper, David

    2016-04-01

    Severe thunderstorms and associated hazardous weather events such as hail frequently cause considerable damage to buildings, crops, and automobiles, resulting in large monetary costs in many parts of Europe and the world. To relate single extreme hail events to the historic context and to estimate their return periods and possible trends related to climate change, long-term statistics of hail events are required. Due to the local-scale nature of hail and a lack of suitable observation systems, however, hailstorms are not captured reliably and comprehensively for a long period of time. In view of this fact, different proxies (indirect climate data) obtained from sounding stations and regional climate models can be used to infer the probability and intensity of thunderstorms or hailstorms. In contrast to direct observational data, such proxies are available homogeneously over a long time period. The aim of the study is to investigate the potential for severe thunderstorms and their changes over past decades. Statistical analyses of sounding data show that the convective potential over the past 20 - 30 years has significantly increased over large parts of Central Europe, making severe thunderstorms more likely. A similar picture results from analyses of weather types that are most likely associated with damaging hailstorms. These weather patterns have increased, even if only slightly but nevertheless statistically significantly, in the time period from 1971 to 2000. To improve the diagnostics of hail events in regional climate models, a logistic hail model has been developed by means of a multivariate analysis method. The model is based on a combination of appropriate hail-relevant meteorological parameters. The output of the model is a new index that estimates the potential of the atmosphere for hailstorm development, referred to as potential hail index (PHI). Applied to a high-resolved reanalysis run for Europe driven by NCEP/NCAR1, long-term changes of the PHI for

  3. A comparison of thunderstorm reflectivities measured at the VHF and UHF

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Rottger, J.

    1986-01-01

    Observations of thunderstorms made with two radars operating at different wavelengths of 70 cm and 5.67 m are compared. The first set of observations was made with the UHF radar at the Arecibo Observatory in Puerto Rico, and the second set was made with the Max-Planck-Institut fur Aeronomie VHF radar in the Harz Mountains in West Germany. Both sets of observations show large echo strengths in the convective region above the -10 C isothem. At UHF, there appears to be a contribution from both the precipitation echoes and the normal echoes due to scatter from turbulent variations in the refractive index.

  4. Debris flows and Record Floods from Extreme Mesoscale Convective Thunderstorms over the Santa Catalina Mountains, Arizona

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Shoemaker, C.; Webb, R. H.; Schaffner, M.; Griffiths, P. G.; Pytlak, E.

    2006-12-01

    Ample geologic evidence indicates early Holocene and Pleistocene debris flows from the south side of the Santa Catalina Mountains north of Tucson, Arizona, but few records document historical events. On July 31, 2006, an unusual set of atmospheric conditions aligned to produce record floods and an unprecedented number of debris flows in the Santa Catalinas. During the week prior to the event, an upper-level area of low pressure centered near Albuquerque, New Mexico generated widespread heavy rainfall in southern Arizona. After midnight on July 31, a strong and widespread complex of thunderstorms developed over the Mogollon Rim in central Arizona in a deformation zone that formed on the back side of the upper-level low. High atmospheric moisture (50 mm of precipitable water) coupled with cooling aloft spawned a mesoscale thunderstorm complex that moved southeast into the Tucson basin. These thunderstorms interacted with a low- to mid-level zone of atmospheric instability to create an initial wave of rainfall across the Tucson metropolitan area in the early morning hours. A second wave of thunderstorms and heavy rain developed over the Santa Catalina Mountain near dawn. A 15-20 knot low-level southwesterly wind developed with a significant upslope component over the south face of the Santa Catalina Mountains advecting moist and unstable air into the merging storms. NEXRAD radar indicates that a swath of 75-150 mm of rainfall occurred over the lower and middle elevations of the southern Santa Catalina Mountains in three increments: (1) from 2-6 AM, moderate intensity rainfall up to 65 mm; (2) from 6-7 AM, intensities up to 75 mm in 45 minutes; and (3) a final burst approaching 50 mm in 45 minutes from 8-9 AM. This intense rain falling on saturated soil triggered multiple debris flows in four adjacent canyons. Sabino Canyon, a heavily used recreation area administered by the U.S. Forest Service, was the epicenter of mass wasting where at least 18 debris flows removed

  5. The influence of artificial-thunderstorm cell polarity on discharge initiation by model hydrometeor arrays

    NASA Astrophysics Data System (ADS)

    Temnikov, A. G.; Chernenskii, L. L.; Orlov, A. V.; Lysov, N. Yu.; Belova, O. S.; Kalugina, I. E.; Gerastenok, T. K.; Zhuravkova, D. S.

    2017-02-01

    The initiation of discharge by model hydrometeors between an artificial-thunderstorm cell (aerosol cloud) of negative or positive polarity and ground has been experimentally studied. It is established for the first time that the conditions of cloud-ground spark discharge initiation by hydrometeors, as well as the characteristics of discharge significantly depend on the polarity of charged cloud. The effect of hydrometeor arrays can be manifested by the cloud-ground lightning initiated in a thundercloud and used for developing scientific principles of artificial lightning discharge.

  6. Sensitivity of PBL and Cumulus schemes for Thunderstorm prediction over an Indian Region

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Charan Mohanty, Uma; Kumar, Krishan

    2015-04-01

    The cloud processes play an important role in all forms of precipitation. Its proper representation is one of the challenging tasks in mesoscale numerical simulation. Studies have revealed that mesoscale feature require proper initialization which may likely to improve the convective system rainfall forecasts. Understanding the precipitation process, model initial condition accuracy and resolved/sub grid-scale precipitation processes representation, are the important areas which needed to improve in order to represent the mesoscale features properly. Various attempts have been done in order to improve the model performance through grid resolution, physical parameterizations, etc. But it is the physical parameterizations which provide a convective atmosphere for the development and intensification of convective events. Further, physical parameterizations consist of cumulus convection, surface fluxes of heat, moisture, momentum, and vertical mixing in the planetary boundary layer (PBL). How PBL and Cumulus schemes capture the evolution of thunderstorm have been analysed by taking thunderstorm cases occurred over Kolkata, India in the year 2011. PBL and cumulus schemes were customized for WSM-6 microphysics because WSM series has been widely used in operational forecast. Results have shown that KF (PBL scheme) and WSM-6 (Cumulus Scheme) have reproduced the evolution of surface variable such as CAPE, temperature and rainfall very much like observation. Further, KF and WSM-6 scheme also provided the increased moisture availability in the lower atmosphere which was taken to higher level by strong vertical velocities providing a platform to initiate a thunderstorm much better. Overestimation of rain in WSM-6 occurs primarily because of occurrence of melting and freezing process within a deeper layer in WSM-6 scheme. These Schemes have reproduced the spatial pattern and peak rainfall coverage closer to TRMM observation. It is the the combination of WSM-6, and KF schemes

  7. Lifecycles and radiative impacts of anvil cirrus outflow during the maritime continent thunderstorm experiment

    NASA Astrophysics Data System (ADS)

    Jensen, Michael Philip

    2000-10-01

    The Maritime Continent Thunderstorm Experiment took place from 13 November to 10 December 1995 on the Tiwi Islands, which are located approximately 70 km north of Darwin, Australia. As part of this experiment a suite of surface remote sensing instruments including a dual-wavelength millimeter radar, a 10 cm vertically pointing radar and broad-band radiometers were deployed on the northwest comer of Melville Island (11.4S, 130.41E). A 5.2 cm scanning radar was located at Nguiu (10.23A, 130.62E) on the southeast comer of Bathurst Island. The radiative impact of three separate cirrus anvil systems ire investigated. In order to do this, the three- dimensional structure of ice water in the cloud is parameterized from the 5.2 cm radar reflectivity measurements through a Z-IWC relationship. The three- dimensional ice water structure is put into a two-steam radiative transfer model using an independent pixel approximation for several different stages in the lifecycle of the cloud system. Radiative heating/cooling occurs at many different levels through the cloud area. Our analysis shows that the top layer of the cloud is optically thick. Therefore, this variability in the height of radiative heating/cooling is due to variability in cloud top height. There is a distinct difference between the average radiative heating profile in the presence of island-based convection compared to oceanic convection. The island-based convection results in a profile which concentrates cloud- top solar heating and infrared cooling higher in the atmosphere and with a greater magnitude than does oceanic convection. A comparison of the large-scale radiative impact of the island-based thunderstorms upon the net radiative heating in the tropical western Pacific shows that the presence of these thunderstorms greatly changes the deposition of radiational energy in the atmospheric column. Therefore, when considering the energy balance over the tropical western Pacific it is important to treat the

  8. Heavy thunderstorms observed over land by the Nimbus 7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.; Olson, W. S.; Martin, D. W.; Weinman, J. A.; Santek, D. A.; Wu, R.

    1983-01-01

    Brightness temperatures obtained through examination of microwave data from the Nimbus 7 satellite are noted to be much lower than those expected on the strength of radiation emanating from rain-producing clouds. Very cold brightness temperature cases all coincided with heavy thunderstorm rainfall, with the cold temperatures being attributable to scattering by a layer of ice hydrometeors in the upper parts of the storms. It is accordingly suggested that brightness temperatures observed by satellite microwave radiometers can sometimes distinguish heavy rain over land.

  9. Analysis of Summer Thunderstorms in Central Alabama Using the NASA Land Information System

    NASA Technical Reports Server (NTRS)

    James, Robert; Case, Jonathan; Molthan, Andrew; Jedloved, Gary

    2010-01-01

    Forecasters have difficulty predicting "random" afternoon thunderstorms during the summer months. Differences in soil characteristics could be a contributing factor for storms. The NASA Land Information System (LIS) may assist forecasters in predicting summer convection by identifying boundaries in land characteristics. This project identified case dates during the summer of 2009 by analyzing synoptic weather maps, radar, and satellite data to look for weak atmospheric forcing and disorganized convective development. Boundaries in land characteristics that may have lead to convective initiation in central Alabama were then identified using LIS.

  10. An Analysis of Two Thunderstorms Producing Five Negative Sprites on 12 September 2014

    NASA Astrophysics Data System (ADS)

    Boggs, L.; Liu, N.; Splitt, M. E.; Lazarus, S. M.; Cummer, S. A.; Rassoul, H.

    2015-12-01

    We present a detailed analysis of the thunderstorms and the parent lightning discharge morphologies of five confirmed negative sprites taking place in two different thunderstorms. These two thunderstorms took place in east-central and south Florida on 12 September 2014. We utilized several lightning location networks, remote magnetic field measurements, dual polarization radar, and balloon borne soundings in our analysis. Each parent discharge was immediately preceded by intra-cloud (IC) discharges between the mid-level negative and upper positive charge regions. This either allowed a second upward negative leader to escape the upper positive charge region, or encouraged a downward negative leader to be initiated and connect with ground. The discharges found in this study support the findings of Lu et al., 2012 [JGR,117, D04212, 2012] that negative sprite-parent lightning consists primarily of hybrid intra-cloud negative cloud-to-ground (IC-NCG) and bolt-from-the-blue (BFB) lightning. Our work finds these unique discharges form in thunderstorms that have an excess of mid-level negative charge and weakened upper positive charge. Due to this charge structure, these unusual discharges transfer more charge to the ground than typical negative cloud-to-ground discharges. Our study suggests that the key difference separating bolt-from-the-blue and gigantic jet discharges is an asymmetric charge structure. This acts to bring the negative leader exiting the thundercloud closer to the lateral positive screening layer, encouraging the negative leader to turn towards ground. This investigation reveals IC discharges that involve multiple convective cells and come to ground as a negative CG discharge, a breed of hybrid IC-NCG discharges, also transfer more negative charge to ground than typical negative CG discharges and are able to initiate negative sprites. From this work, the charge structures mentioned above resulted from tall, intense convective cells with low CG flash

  11. Investigations into the triggered lightning response of the F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.; Perala, Rodney A.; Mckenna, Paul M.; Parker, Steven L.

    1985-01-01

    An investigation has been conducted into the lightning characteristics of the NASA F106B thunderstorm research aircraft. The investigation includes analysis of measured data from the aircraft in the time and frequency domains. Linear and nonlinear computer modelling has also been performed. In addition, new computer tools have been developed, including a new enhanced nonlinear air breakdown model, and a subgrid model useful for analyzing fine details of the aircraft's geometry. Comparison of measured and calculated electromagnetic responses of the aircraft to a triggered lightning environment are presented.

  12. Space-time simulations of photon, lepton, ionization and nucleon trails of TGF ignition in thunderstorm electric field geometries

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2015-04-01

    The origin of high energy electrons which contribute to the Relativistic Runaway Electron Avalanche of a TGF are not precisely known, or yet observed, though the most obvious source would seem to be the products of cosmic ray showers, or electron avalanches generated in the high electric field near the tips of lightning leaders. With our new TGF simulation software package LEPTRACK we can now easily create any electric field geometry to be expected in stormclouds, any kind of electron source, and are investigating scenarios of TGF ignition, which may or may not be runaway, and in any direction - not just vertical. Vidoes, lightcurves and spectra, presenting the detailed density structure and time evolution of TGF photon, electron, neucleon and ionization trails were presented for the first time at the AGU Fall Meeting in 2014 - showing the complicated effects of changing electric field strength and air density - and the as yet unrecognized importance of the earth magnetic field in trapping electrons and positrons in the upper atmosphere at the magnetic equator - possibly giving rise to the hard tail seen in some TGF spectra observed by AGILE. We will present here an extension of this work to show the dynamics of TGF ignition scenarios of current interest - upward, downward and randomly directed - both from free electrons and from combinations of lightning leader micro-fields producing electron avalanches, which are then input to the macro-fields expected at or above thunderstorm cloudtops. We will show the spatial shape and time evolution of TGF particle structures, along with their optical and gamma ray spectra emitted, and bring to life their essential physics.

  13. A case study of the Thunderstorm Research International Project. 2. Interrelations among the observable parameters controlling electrification

    SciTech Connect

    Nisbet, J.S.; Kasha, J.R.; Forbes, G.S. )

    1990-04-20

    In Part 1 of this paper, the data obtained at the time of the Thunderstorm Research International Project storm at the Kennedy Space Center on July 11, 1978, are discussed and analyzed in a model-independent manner. Here the parameters of the electrical system that would be consistent with these observations are discussed. Three-dimensional electrodynamic modeling of the thundercloud electrification allowed estimates to be made of the current moments and electrical power generated continuously throughout the evolution of the two cells of the storm that were studied. The evolution and configuration of the currents were consistent with the separation of an originally neutral ensemble of particles by gravity in the region of 7 km in the region close to the maximum of the updraft velocity. After about 370 s the effect of wind shears would have caused the particles to separate in the convective system of the cells. Rain did not appear to be the dominant charge carrier. The current moments generated were compared with the current moments transferred by intercloud and cloud-to-ground lightning. It is shown that for the southern cell, which produced a charge moment of about 8.4 (MC m), lightning utilized about 84% of the charge moment separated, while for the northern cell, which produced about 1.1 (MC m), this figure was approximately 60%. It was shown that the times of initiation and maximum electrical power generated correspond best with the normalized mass above 7.5 km. It was deduced that the median diameter heavier particles had a fall velocity of about 3 m/s. The generator currents, flash rates, cloud conductivities, and mean charge per flash were used to estimate the volume associated with the lower region of current divergence.

  14. On the origin of high activity of hcp metals for ammonia synthesis.

    PubMed

    Ahmadi, Shideh; Kaghazchi, Payam

    2016-02-21

    Structure and activity of nanoparticles of hexagonal close-packed (hcp) metals are studied using first-principles calculations. Results show that, in contact with a nitrogen environment, high-index {134[combining macron]2} facets are formed on hcp metal nanoparticles. Nitrogen molecules dissociate easily at kink sites on these high-index facets (activation barriers of <0.2 eV). Analysis of the site blocking effect and adsorption energies on {134[combining macron]2} facets explains the order of activity of hcp metals for ammonia synthesis: Re < Os < Ru. Our results indicate that the high activity of hcp metals for ammonia synthesis is due to the N-induced formation of {134[combining macron]2} facets with high activity for the dissociation of nitrogen molecules. However, quite different behavior for adsorption of dissociated N atoms leads to distinctive activity of hcp metals.

  15. Isolation and sequencing of active origins of DNA replication by nascent strand capture and release (NSCR)

    PubMed Central

    Kunnev, Dimiter; Freeland, Amy; Qin, Maochun; Wang, Jianmin; Pruitt, Steven C.

    2015-01-01

    Nascent strand capture and release (NSCR) is a method for isolation of short nascent strands to identify origins of DNA replication. The protocol provided involves isolation of total DNA, denaturation, size fractionation on a sucrose gradient, 5′-biotinylation of the appropriate size nucleic acids, binding to a streptavidin coated magnetic beads, intensive washing, and specific release of only the RNA-containing chimeric nascent strand DNA using ribonuclease I (RNase I). The method has been applied to mammalian cells derived from proliferative tissues and cell culture but could be used for any system where DNA replication is primed by a small RNA resulting in chimeric RNA-DNA molecules. PMID:26949711

  16. Ventrolateral Origin of Each Cycle of Rhythmic Activity Generated by the Spinal Cord of the Chick Embryo

    PubMed Central

    Arai, Yoshiyasu; Mentis, George Z.; Wu, Jiang-young; O'Donovan, Michael J.

    2007-01-01

    Background The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. Methodology/Principal Findings The spatiotemporal organization of neural activity in transverse slices of the lumbosacral cord of the chick embryo (E8-E11) was investigated using intrinsic and voltage-sensitive dye (VSD) imaging. VSD signals accompanying episodes of activity comprised a rhythmic decrease in light transmission that corresponded to each cycle of electrical activity recorded from the ipsilateral ventral root. The rhythmic signals were widely synchronized across the cord face, and the largest signal amplitude was in the ventrolateral region where motoneurons are located. In unstained slices we recorded two classes of intrinsic signal. In the first, an episode of rhythmic activity was accompanied by a slow decrease in light transmission that peaked in the dorsal horn and decayed dorsoventrally. Superimposed on this signal was a much smaller rhythmic increase in transmission that was coincident with each cycle of discharge and whose amplitude and spatial distribution was similar to that of the VSD signals. At the onset of a spontaneously occurring episode and each subsequent cycle, both the intrinsic and VSD signals originated within the lateral motor column and spread medially and then dorsally. By contrast, following a dorsal root stimulus, the optical signals originated within the dorsal horn and traveled ventrally to reach the lateral motor column. Conclusions/Significance These findings suggest that motoneuron activity contributes to the initiation of each cycle of rhythmic activity, and that motoneuron and/or R-interneuron synapses are a plausible site for the activity-dependent synaptic depression that modeling studies have identified as a critical

  17. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane

    PubMed Central

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X. S.

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species. PMID:26729288

  18. New cell-based assay indicates dependence of antioxidant biological activity on the origin of reactive oxygen species.

    PubMed

    Dimitrov, Martin D; Pesheva, Margarita G; Venkov, Pencho V

    2013-05-08

    The mobility of the Ty1 transposon in Saccharomyces cerevisiae was found to vary proportionally with the level of ROS generated in cells, which provides the possibility to determine antioxidant activity by changes in a cellular process instead of using chemical reactions. The study of propolis, royal jelly, and honey with the newly developed Ty1antiROS test reveals an inverse exponential dependence of antioxidant activity on increased concentrations. This dependence can be transformed to proportional by changing the source of ROS: instead of cell-produced to applied as hydrogen peroxide. The different test responses are not due to excess of added hydrogen peroxide, as evidenced by the exponential dependence found by usage of yap1Δ tester cells accumulating cell-generated ROS. Results indicate that the activity of antioxidants to oxidative radicals depends on the origin of ROS, and this activity is elevated for cell-generated ROS compared to ROS added as reagents in the assay.

  19. Lightning and related phenomena in thunderstorms and squall lines

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Taylor, W. L.; Macgorman, D. R.; Brandes, E.; Mazur, V.; Arnold, R.; Marshall, T.; Christian, H.; Goodman, S. J.

    1984-01-01

    During the past few years, cooperative research on storm electricity has yielded the following results of both basic and applied interest: (1) the intracloud to cloud-to-ground flashing ratio can be as great as 40:1; (2) as storm cells in a squall line dissipate, longer flashes become predominant; (3) there are two centers of lightning activity maxima that are vertically separated, the lower maximum at about 5 km and the upper at about 12 km. In addition, (4) storms produce lightning in their upper regions at a high rate; (5) lightning appears to be related in time to convective motions; (6) positive cloud-to-ground flashes occur in the severe stage of storms and in the later, well-developed stage of squall line storms; (7) mesoscale convective complexes have been observed to have cloud-to-ground flashing rates of more than 48/min; and (8) the electric field in anvils well away from the main storm core (more than 60 km) can be very high, more than 94 kV/m.

  20. Electrification in winter storms and the analysis of thunderstorm overflight

    NASA Technical Reports Server (NTRS)

    Brook, Marx

    1991-01-01

    The emergence of 24 hr operational lightning detection networks has led to the finding that positive lightning strokes, although still much fewer in number than the normal negative strokes, are present in summer and winter storms. Recent papers address the importance of understanding the meteorological conditions which lead to a dominance of one polarity of stroke over another; the appearance of positive strokes at the end of a storm appeared to presage the end-of-storm downdraft and subsidence leading to downburst activity. It is beginning to appear that positive strokes may be important meteorological indicators. Significant research accomplishments on the following topics are addressed: (1) a study to verify that the black boxes used in the lightning networks to detect both negative and positive strokes to ground were accurate; (2) the use of slow tails to determine the polarity of distant lightning; (3) lightning initiation in winter vs. summer storms; (4) the upgrade of sensors for the measurement of electric field signals associated with lightning; (5) the analysis of lightning flash records from storms between 40 and 125 km from the sensor; and (6) an interesting aspect of the initiation process which involves the physical processes driving the stepped leader. The focus of current research and future research plans are presented.

  1. Cooked Volatiles and the Origin of Titan's Atmosphere: Evidence of Deep Hydrothermal Activity?

    NASA Astrophysics Data System (ADS)

    Glein, C. R.

    2014-12-01

    As on the terrestrial planets, key clues to the origin of Titan's enigmatic atmosphere are contained in the abundances of noble gases and stable isotopes in the atmosphere. The Huygens GCMS measured the abundances of 40Ar, 36Ar, and 22Ne (tentatively); as well as the nitrogen and carbon isotopic compositions of atmospheric N2 and CH4, respectively. No isotopes of Kr or Xe were detected (<10 ppbv). Cassini CIRS has provided us with the D/H ratio in CH4. Here, I attempt to explain these data by developing the hypothesis that the noble gases, nitrogen, and methane originated in the rocky core of Titan [1]. The presence of 40Ar demonstrates that volatile species can be delivered from the deep interior to the atmosphere. Consistent with [2], I find that Titan's primordial core should have contained sufficient 36Ar and 22Ne to explain their reported abundances. By extrapolating this model, I provide a new explanation for why the GCMS failed to detect Kr or Xe, as the predicted mixing ratios of 84Kr and 132Xe are ~0.2 ppbv and ~0.01 ppbv, respectively. I find that nitrogen should be outgassed similarly to argon, while krypton can serve as a geochemical proxy for methane, given the similar volatilities of these pairs of substances. This allows me to deduce that geochemical reactions in Titan's core could have generated enough N2 and CH4 from accreted NH3 and CO2, respectively. A hydrothermal origin of atmospheric nitrogen is also supported by the similarity in N isotopes between Titan's N2 and cometary NH3 [3]. I find that the isotopic ratios in methane can be explained by low-temperature (~300 K) equilibria with liquid water and the alteration mineral calcite. Looking toward the future, this model predicts 12C/13C ≈ 84 in dry ice, and D/H ≈ 170 ppm in water ice on Titan's surface. References: [1] Glein C.R. (2014) Icarus, submitted; [2] Tobie G., et al. (2012) ApJ 752, 125; [3] Mandt K.E., et al. (2014) ApJ Lett. 788, L24.

  2. Preliminary breakdown pulses located by Broadband Observation network for Lightning and Thunderstorm

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Wu, T.; Ushio, T.

    2013-12-01

    We have been designing and developing Broadband Observation network for Lightning and Thunderstorm (BOLT), which locates RF emissions associated with lightning discharges in 3D. The BOLT consists of 4 or more broadband sensors. A sensor of the BOLT is a capacitive antenna having decay time constants of about 0.2 ms. Waveforms of the sensor are digitized with 14 bit amplitude resolution and a sampling rate of 4 MHz. We have deployed the BOLT, consisting of 11 sensors, in Kinki area, Japan. We use the atmospheric sign convention (a positive electric field change corresponds to the dominant addition of positive charge above the ground). We first discuss the accuracy and detectability of the BOLT by comparing with the 2D radiation data located by VHF broadband digital interferometers. Also, we focus on a thunderstorm, lasting about one and half hours and producing many flashes on 28 October 2012, and show progressions of preliminary breakdown pulses, which occur in the beginning stage of a lightning flash. Most of negative preliminary breakdown pulses, whose initial polarity is negative, are located around 6 km in altitude, and most of positive ones are located around 4 km in altitude. These results indicate that negative initial breakdown pulses, most of which are followed by cloud-to-cloud lightning, were initiated between main negative and main positive charge regions. On the contrary, the positive initial breakdown pulses, most of which are followed by cloud-to-ground lightning, were initiated between main negative and lower positive charge regions.

  3. Relations of Kinematics, Microphysics and Electrification in an Isolated Mountain Thunderstorm.

    NASA Astrophysics Data System (ADS)

    Ziegler, Conrad L.; Ray, Peter S.; Macgorman, Donald R.

    1986-10-01

    This paper addresses aspects of the airflow, microphysics, and electrification in a mountain thunderstorm which occurred on 7 August 1979 over the Langmuir Laboratory new Socorro, New Mexico, site of the Thunderstorm Research International Program (TRIP). Single Doppler observations are used to form a conceptual model of the essentially one-dimensional storm updraft which is expressed in simple analytical form. A one-dimensional kinematic numerical cloud model is employed with the analytic updraft profile to diagnose the evolution of temperature, war substance, radar reflectivity, space charge density and axial electric field in the main updraft region. Retrieved thermal, microphysical, and electrical variables are verified with in situ aircraft and balloon observations and measured radar reflectivity. The calculated rate of noninductive charge transfer accompanying collision and separation of ice crystals and riming graupel particles is in direct proportion to cloud and precipitation content, and attains a peak value of about 10 C km3 min1 between 30° and 40°C. Agreement between calculations and balloon measurements of space charge density and vertical electric field imply that the noninductive graupel-ice charge separation mechanism accounts for a substantial portion of the storm's total separated charge. The peak noninductive charging rate appears to balance the discharge rate implied by the observed flash rate.

  4. STS-55 Earth observation of a thunderstorm over the coast of Nigeria

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows a 30-mile-wide thunderstorm (tops estimated near 45,000 feet). It was photographed by the STS-55 crew from an altitude of 162 nautical miles over the coast of Nigeria, 05-02-93, at 11 hours, 13 minutes, 34 seconds GMT (near noon, local time). A Meteosat view taken at almost exactly the same time allows us to pinpoint the location of the storm but does not show any of the detail evident in the Shuttle photograph. This huge thunderstorm was in the early stages of formation, as can been seen by the intense turbulence in the cauliflower shape of the top. Two major updrafts can be seen as the rose-shaped regions in the cloud tops. An easterly wave in the low levels of the atmosphere created a line of instability, which, together with an ample supply of moisture from the warm waters of the Gulf of Guinea and solar heating over the coast throughout the morning, caused this megastorm to occur. North is to the left

  5. VHF Lightning Mapping Observations of Screening Charge Flashes at Thunderstorm Tops

    NASA Astrophysics Data System (ADS)

    Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2014-12-01

    Deeply convective thunderstorms occasionally produce series of continual small-scale electrical discharges near the cloud top. Over the past years a number of such cases in normal-polarity thunderstorms have been observed with the Lightning Mapping Array (LMA) deployed near Langmuir Laboratory in south-central New Mexico. The LMA observations show most of the discharges as single-point VHF sources, which can occur at rates of ten or more discharges per second in a localized region near the cloud top. Correlated visual observations of storm tops indicate that the small discharges occur near the cloud boundary of overshooting tops during their upward development, suggesting that the discharges are screening charge flashes between upper positive charge and inferred negative screening charge at the cloud boundary. Some screening charge flashes develop into more extensive breakdown, with negative leaders propagating down several km into the upper positive charge region, while the positive leaders are undetected by the LMA. The more extensive screening charge flashes are characteristic of breakdown associated with blue starters and jets.Screening charge flashes can temporarily become the dominant form of negative breakdown into the upper positive charge region, associated with an almost complete lack of intracloud flashes. We speculate that vigorous overshooting convection at high altitude, where the atmosphere has a higher conductivity, produces a rapid accumulation of negative screening charge at the cloud boundary. The accumulated screening charge causes localized regions of strong electric fields between it and the upper positive charge region before diffusing and mixing in.

  6. X- and gamma ray observations in high-altitude thunderstorms in Mexico

    NASA Astrophysics Data System (ADS)

    Kelley, N. A.; Smith, D. M.; Lara, A.

    2014-12-01

    High-energy emission from lightning is more easily measured at high altitudes, close to or within the electric fields accelerating the energetic particles. Gamma rays from long duration glows and x-rays from stepped leaders attenuate with distance. From mountaintops, it may be possible to measure an amplified version of the x-rays commonly seen from stepped leaders. These amplified x-rays could arise from the thunderstorm electric field multiplying the energetic particles via Relativistic Runaway Electron Avalanches (RREA). Amplified stepped leaders may be similar or even the same as terrestrial gamma-ray flashes (TGFs), which need long-range electric fields to produce the intensities seen from space. We deployed two gamma-ray detectors at the High Altitude Water Cherenkov (HAWC) Observatory site on the northeastern slope of the Sierra Negra near Puebla, Mexico at 4100 meters to search for amplified leader events and also for the minutes-long gamma-ray glows observed from thunderstorms by other groups from the ground, balloons, and aircraft. We will also examine the data from HAWC itself, a large array of water tanks viewed by photomultiplier tubes, to look for signals simultaneous with any in our scintillators. In principle, large Cherenkov detectors and small scintillators can give complementary data about the radiation field, emphasizing the total energy content and the number flux of particles, respectively. We will present results from the summer 2014 deployment and talk about future lightning gamma-ray detectors to be deployed at HAWC.

  7. A statistical analysis on the relationship between thunderstorms and the sporadic E Layer over Rome

    NASA Astrophysics Data System (ADS)

    Barta, V.; Scotto, C.; Pietrella, M.; Sgrigna, V.; Conti, L.; Sátori, G.

    2013-11-01

    Meteorological processes (cold fronts, mesoscale convective complexes, thunderstorms) in the troposphere can generate upward propagating waves in the neutral atmosphere affecting the behaviour of the ionosphere. One type of these waves are the internal atmospheric gravity waves (AGWs) which are often generated by thunderstorms. Davis & Johnson (2005) found in low pressure systems that a localized intensification of the sporadic E layer (Es) can be attributed to lightnings. To confirm this result, we have performed two different statistical analysis using the time series of the critical frequency (foEs), the virtual height of the sporadic E layer (h'Es), and meteorological observations (lightnings, Infrared maps) over the ionospheric station of Rome (41.9o N, 12.5o E). In the first statistical analysis, we separated the days of 2009 into two groups: stormy days and fair-weather days, then we studied the occurrence and the properties of the Es separately for the two different groups. No significant differences have been found. In the second case, a superposed epoch analysis (SEA) was used to study the behaviour of the critical frequency and virtual height 100 hours before and after the lightnings. The SEA shows a statistically significant decrease in the critical frequency after the time of the lightnings, which indicates a sudden decrease in the electron density of the sporadic E layer associated with lightnings.

  8. Using a smart phone application to measure high-energy radiation from thunderstorms

    NASA Astrophysics Data System (ADS)

    Bowers, G. S.; Smith, D. M.; Rexroad, W. Z.; Kelley, N. A.; Martinez-Mckinney, F.; Rubenstein, E. P.; Drukier, G.; Benes, G. N.

    2013-12-01

    Commercial airline flights and developing cell phone technologies present a burgeoning opportunity for the public to help investigate radiation from thunderstorms, including terrestrial gamma-ray flashes (TGFs), longer-lived gamma-ray glows, x-rays from lightning stepped leaders, and possible high-energy radiation, never yet observed, from blue jets, gigantic jets, and blue starters. GammaPix is a smartphone application from Image Insight, Inc. that uses the camera's CCD or CMOS sensor to identify and qualitatively assess threats related to gamma radioactivity, e.g., those caused by accidental exposure to radioactive material, high-altitude air travel, or acts of terrorism. A science-oriented version of the app is under development that will be publicized for use aboard commercial airline flights and on the ground in regions (like Japan in the wintertime) where thunderstorm charge centers come close to the ground. The primary goal of the project is to learn whether TGFs close to passenger aircraft and population centers on the ground occur often enough to create concern about radiation risk.

  9. Identification and compatibility of the major active principles in some new natural origin antiseptics

    NASA Astrophysics Data System (ADS)

    Nikolić, G. S.; Zlatković, S.; Nikolić, N.

    2009-09-01

    The newly established instrumentation of HPLC/DAD, FTIR, and NMR techniques have been applied for simultaneous identification and physicochemical compatibility determination of the potential major antiseptic constituents ( Hypericum perforatum L. and Usnea barbata extracts) which can be present in some new origin pharmaceutical preparation. Based on the obtained results the conclusion is that a simultaneous use of the analyzed constituents in production of some new preparations with antiseptic properties is possible. The chromatographic separation of antiseptic mixture was performed on a RP-HPLC C18 column. For the NMR detection, the analytes eluted from LC column were trapped and hereafter transported into the NMR flow-cell. The NMR and FTIR techniques allowed the characterization of the major constituent of Hypericum perforatum L., mainly hypericin, as well as of Usnea barbata, mainly usnic acid.

  10. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A.; Siemiginowska, A.

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle_dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much_gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such ``star tails`` with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  11. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A. ); Siemiginowska, A. )

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such star tails'' with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  12. Screening for new antitrichomonal substances of microbial origin and antitrichomonal activity of trichostatin A.

    PubMed

    Otoguro, K; Oiwa, R; Iwai, Y; Tanaka, H; Omura, S

    1988-04-01

    In vitro and in vivo screening methods for new antitrichomonal substances were established. Primary screening is based on in vitro antitrichomonal activities of culture broths of actinomycetes isolated from soil. With secondary screening, after crude materials obtained from the cultured broths were administered orally to mice, excretion of antitrichomonal activity into urine was examined. Tertiary screening was done by examining therapeutic activity for experimental trichomoniasis in mice with Trichomonas foetus. Using the screening systems, a new antibiotic (setamycin)-producing strain was picked out among about six thousands soil isolates, and the therapeutic efficacy of KM-3851, which was identified as trichostatin A, was found. It was active against T. foetus both in vitro and in vivo.

  13. Characterisation of faecal protease activity in irritable bowel syndrome with diarrhoea: origin and effect of gut transit

    PubMed Central

    Tooth, David; Garsed, Klara; Singh, Gulzar; Marciani, Luca; Lam, Ching; Fordham, Imogen; Fields, Annie; Banwait, Rawinder; Lingaya, Melanie; Layfield, Robert; Hastings, Maggie; Whorwell, Peter; Spiller, Robin

    2014-01-01

    Objectives Faecal serine proteases (FSPs) may play a role in irritable bowel syndrome with diarrhoea (IBS-D), but their origin is unclear. We aimed to structurally characterise them and define the impact of colonic cleansing and transit time. Design Faecal samples were obtained from 30 healthy volunteers (HV) and 79 patients with IBS-D participating in a trial of ondansetron versus placebo. Colonic transit was measured using radio-opaque markers. Samples were also obtained from 24 HV before and after colonic cleansing with the osmotic laxative MoviPrep. FSPs were purified from faecal extracts using benzamidine-Sepharose affinity chromatography. SDS-PAGE profiled components were identified using trypsinolysis and tandem mass spectrometry. Functional protease activity in faecal extracts was measured using a colorimetric assay based on the proteolysis of azo-casein. Results Protein analysis identified the most abundant FSPs as being of human origin and probably derived from pancreatic juice. Functional assays showed increased faecal protease (FP) and amylase in patients with IBS-D compared with HV. Those with higher amylase had significantly higher FP and greater anxiety. FP activity correlated negatively with whole gut transit in patients with IBS-D (Spearman r=−0.32, p=0.005) and HV (r=−0.55, p=0.014). Colon cleansing caused a significant rise in FP activity in HV from a baseline of median (IQR) 253 (140–426) to 1031 (435–2296), levels similar to those seen in patients with IBS-D. FSP activity correlated positively with days/week with urgency. Conclusions The most abundant FSPs are of human origin. Rapid transit through the colon and/or decreased (possibly bacterial) proteolytic degradation increases their faecal concentration and could contribute to visceral hypersensitivity in patients with IBS-D. ClinicalTrials.gov NCT00745004. PMID:23911555

  14. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA

    NASA Technical Reports Server (NTRS)

    Opitz, J. G.; Ciglic, M. I.; Haugg, M.; Trautwein-Fritz, K.; Raillard, S. A.; Jermann, T. M.; Benner, S. A.

    1998-01-01

    Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic activity. These experiments have been guided in part by experimental reconstructions of ancestral RNases from extinct organisms that were intermediates in the evolution of the RNase superfamily. It is shown that the enhanced interactions between bovine seminal RNase and double-stranded nucleic acid do not arise from the increased number of basic residues carried by the seminal enzyme. Rather, a combination of a dimeric structure and the introduction of two glycine residues at positions 38 and 111 on the periphery of the active site confers the full catalytic activity of bovine seminal RNase against duplex RNA. A structural model is presented to explain these data, the use of evolutionary reconstructions to guide protein engineering experiments is discussed, and a new variant of RNase A, A(Q28L K31C S32C D38G E111G), which contains all of the elements identified in these experiments as being important for duplex activity, is prepared. This is the most powerful catalyst within this subfamily yet observed, some 46-fold more active against duplex RNA than RNase A.

  15. Quantyfing the global lightning activity in absolute unints using Schumann resonance spectral decomposition method and the data from the World ELF Radiolocation Array

    NASA Astrophysics Data System (ADS)

    Dyrda, M.; Kulak, A.; Mlynarczyk, J.; Ostrowski, M.

    2015-12-01

    The extremely low frequency (ELF) electromagnetic waves in the Earth-ionosphere cavity are generated mainly by lightning discharges, originating from the tropical thunderstorm centers. The Earth-ionosphere spherical cavity forms a global resonator for the ELF waves. In a spherical damped resonator, like the Earth-ionosphere cavity, the electromagnetic field is the superposition of the standing wave (resonance) field with the traveling waves field, which transfers the energy from lightning flashes to the global resonator. This component is quite strong close to the source and weakens with source-observer separation and is a major reason for an asymmetric shape of the observational Schumann resonance (SR) power spectra. In physics the process, where the resonant field interference with the background is very well known and in such a case the resonant lines are always asymmetric. However, it is possible to separate the resonance field component from the signal using the spectrum decomposition method proposed by Kułak et al. [2006]. Here, we examine the activity of African thunderstorm center using Schumann resonance data collected by the two ELF stations built under the World ELF Radiolocation Array (WERA) project. The first ELF station in located in Poland and it has been recording data continuously since the end of 2004. In May 2015, another ELF station was installed in the Hugo Wildlife Area in Colorado as part of our project WERA. We binned the ELF data in 10-minute files and we derived the SR power spectra. In the next step the decomposition curve, which describes 7 asymmetric SR modes was fitted to the observational data. Using the algorithm, described in Dyrda et al. [2014], we calculated the distances to the tropical thunderstorm center located in Africa with the spatial resolution of 0.1 Mm. This is done independently for each of the ELF stations from WERA array. Then using the information about the distances and about the size of our magnetic antennas beam

  16. A THEORY ON THE CONVECTIVE ORIGINS OF ACTIVE LONGITUDES ON SOLAR-LIKE STARS

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2013-06-20

    Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective flows, we find that the distribution of emerging flux tubes in our simulation is inhomogeneous in longitude, with properties similar to those of active longitudes on the Sun and other solar-like stars. The large-scale pattern of flux emergence our simulations produce exhibits preferred longitudinal modes of low order, drift with respect to a fixed reference system, and alignment across the equator at low latitudes between {+-}15 Degree-Sign . We suggest that these active-longitude-like emergence patterns are the result of columnar, rotationally aligned giant cells present in our convection simulation at low latitudes. If giant convecting cells exist in the bulk of the solar convection zone, this phenomenon, along with differential rotation, could in part provide an explanation for the behavior of active longitudes.

  17. Local and thalamic origins of correlated ongoing and sensory-evoked cortical activities

    PubMed Central

    Cohen-Kashi Malina, Katayun; Mohar, Boaz; Rappaport, Akiva N.; Lampl, Ilan

    2016-01-01

    Thalamic inputs of cells in sensory cortices are outnumbered by local connections. Thus, it was suggested that robust sensory response in layer 4 emerges due to synchronized thalamic activity. To investigate the role of both inputs in the generation of correlated cortical activities, we isolated the thalamic excitatory inputs of cortical cells by optogenetically silencing cortical firing. In anaesthetized mice, we measured the correlation between isolated thalamic synaptic inputs of simultaneously patched nearby layer 4 cells of the barrel cortex. Here we report that in contrast to correlated activity of excitatory synaptic inputs in the intact cortex, isolated thalamic inputs exhibit lower variability and asynchronous spontaneous and sensory-evoked inputs. These results are further supported in awake mice when we recorded the excitatory inputs of individual cortical cells simultaneously with the local field potential in a nearby site. Our results therefore indicate that cortical synchronization emerges by intracortical coupling. PMID:27615520

  18. TIRDA Originating From Lateral Temporal Cortex in a Patient With mTLE Is Not Related to Hippocampal Activity.

    PubMed

    Serafini, Anna; Issa, Naoum P; Rose, Sandra; Wu, Shasha; Warnke, Peter; Tao, James X

    2016-12-01

    Electrophysiological studies have suggested that temporal intermittent rhythmic delta activity (TIRDA) has a localizing value similar to interictal spikes in patients with temporal lobe epilepsy and is associated with a favorable outcome after temporal lobectomy. However, it remains controversial whether TIRDA is an EEG marker for mesial or lateral temporal epileptogenesis. We simultaneously recorded scalp EEG and stereoencephalography in a patient with mesial temporal lobe epilepsy during epilepsy presurgical evaluation. Seizure onset was localized to the hippocampus. However, TIRDA originated from the lateral temporal cortex, and rhythmic delta activity was not observed concomitantly in the hippocampus. In addition, TIRDA was not associated with repetitive interictal spikes or subclinical seizures in the hippocampus as previously speculated. This case suggests that TIRDA can be an EEG marker that is independent of hippocampal activity and can represent temporal neocortical epileptogenesis.

  19. Seismic structure and origin of active intraplate volcanoes in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Duan, Yonghong; Zhao, Dapeng; Zhang, Xiankang; Xia, Shaohong; Liu, Zhi; Wang, Fuyun; Li, Li

    2009-05-01

    Three-dimensional P-wave velocity structure beneath the Changbai and other intraplate volcanic areas in Northeast Asia is determined by inverting 1378 high-quality P-wave arrival times from 186 teleseismic events recorded by 61 broadband seismic stations. Low-velocity (low-V) anomalies are revealed beneath the Changbai, Longgan, Xianjindao volcanoes. High-velocity (high-V) anomalies are found in the mantle transition zone, where deep-focus earthquakes under Hunchun occur at depths of 500-600 km. The high-V anomaly reflects the deep subduction of the Pacific slab under NE Asia which may have contributed to the formation of the Changbai, Longgang, Xianjindao and Jingpohu intraplate volcanoes. A low-V anomaly is also revealed in the mantle transition zone, which may have a close relationship with the occurrence of deep earthquakes under the Hunchun area. Our results support the Big Mantle Wedge (BMW) model by Zhao et al. [Zhao, D., Lei, J., Tang, Y., 2004. Origin of the Changbai volcano in northeast China: evidence from seismic tomography, Chin. Sci. Bull. 49, 1401-1408; Zhao, D., Maruyama, S., Omori, S., 2007. Mantle dynamics of western Pacific and East Asia: insight from seismic tomography and mineral physics. Gondwana Res. 11, 120-131.] who proposed that the intraplate volcanoes in NE Asia are caused by the back-arc magmatism associated with the deep dehydration process of the subducting slab and convective circulation process in the BMW above the stagnant Pacific slab.

  20. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation.

    PubMed

    Kramann, Rafael; Dirocco, Derek P; Maarouf, Omar H; Humphreys, Benjamin D

    2013-12-01

    Chronic injury to the kidney causes kidney fibrosis with irreversible loss of functional renal parenchyma and leads to the clinical syndromes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Regardless of the type of initial injury, kidney disease progression follows the same pathophysiologic processes characterized by interstitial fibrosis, capillary rarefaction and tubular atrophy. Myofibroblasts play a pivotal role in fibrosis by driving excessive extracellular matrix (ECM) deposition. Targeting these cells in order to prevent the progression of CKD is a promising therapeutic strategy, however, the cellular source of these cells is still controversial. In recent years, a growing amount of evidence points to resident mesenchymal cells such as pericytes and perivascular fibroblasts, which form extensive networks around the renal vasculature, as major contributors to the pool of myofibroblasts in renal fibrogenesis. Identifying the cellular origin of myofibroblasts and the key regulatory pathways that drive myofibroblast proliferation and transdifferentiation as well as capillary rarefaction is the first step to developing novel anti-fibrotic therapeutics to slow or even reverse CKD progression and ultimately reduce the prevalence of ESRD. This review will summarize recent findings concerning the cellular source of myofibroblasts and highlight recent discoveries concerning the key regulatory signaling pathways that drive their expansion and progression in CKD.

  1. Antibiotic resistance and antibacterial activity in heterotrophic bacteria of mineral water origin.

    PubMed

    Messi, Patrizia; Guerrieri, Elisa; Bondi, Moreno

    2005-06-15

    Antibiotic resistance and antibacterial activity were determined on heterotrophic bacteria isolated from mineral waters. Of the 120 isolates Pseudomonas spp. (55.8%) was the predominant group followed by Acinetobacter spp. (14.17%), Flavobacterium spp. (10.83%), Achromobacter spp. (10%), Burkholderia cepacia (3.3%), Agrobacterium/radiobacter (2.5%), Moraxella spp. (1.7%), Aeromonas hydrophila (1.7%). Over 80% of the isolates were resistant to one or more antibiotics and the highest resistance was found for chloramphenicol, ampicillin, colistin and sulfamethizole (60%, 55%, 50% and 47.5%, respectively). Strains with multiple antibiotic resistance (MAR) represented 55% of isolates and the most resistant organism belonged to the genus Pseudomonas. Of 40 randomly selected strains, 27 (67.5%) had antibacterial activity towards one or more indicators. This activity, found in a high percentage in the genus Pseudomonas (92%), emerged mainly against closely related microorganisms. Several producers were active also against Escherichia coli, Salmonella, Listeria monocytogenes and Staphylococcus aureus. Forty-six percent of the isolates harboured 1 to 5 plasmids with molecular weights ranging from 2.1 to 41.5 MDa.

  2. Holotoxin Activity of Botulinum Neurotoxin Subtype A4 Originating from a Nontoxigenic Clostridium botulinum Expression System.

    PubMed

    Bradshaw, Marite; Tepp, William H; Whitemarsh, Regina C M; Pellett, Sabine; Johnson, Eric A

    2014-12-01

    Clostridium botulinum subtype A4 neurotoxin (BoNT/A4) is naturally expressed in the dual-toxin-producing C. botulinum strain 657Ba at 100× lower titers than BoNT/B. In this study, we describe purification of recombinant BoNT/A4 (rBoNT/A4) expressed in a nonsporulating and nontoxigenic C. botulinum expression host strain. The rBoNT/A4 copurified with nontoxic toxin complex components provided in trans by the expression host and was proteolytically cleaved to the active dichain form. Activity of the recombinant BoNT/A4 in mice and in human neuronal cells was about 1,000-fold lower than that of BoNT/A1, and the recombinant BoNT/A4 was effectively neutralized by botulism heptavalent antitoxin. A previous report using recombinant truncated BoNT/A4 light chain (LC) expressed in Escherichia coli has indicated reduced stability and activity of BoNT/A4 LC compared to BoNT/A1 LC, which was surmounted by introduction of a single-amino-acid substitution, I264R. In order to determine whether this mutation would also affect the holotoxin activity of BoNT/A4, a recombinant full-length BoNT/A4 carrying this mutation as well as a second mutation predicted to increase solubility (L260F) was produced in the clostridial expression system. Comparative analyses of the in vitro, cellular, and in vivo activities of rBoNT/A4 and rBoNT/A4-L260F I264R showed 1,000-fold-lower activity than BoNT/A1 in both the mutated and nonmutated BoNT/A4. This indicates that these mutations do not alter the activity of BoNT/A4 holotoxin. In summary, a recombinant BoNT from a dual-toxin-producing strain was expressed and purified in an endogenous clostridial expression system, allowing analysis of this toxin.

  3. Discovery of intense gamma-ray flashes of atmospheric origin

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Bhat, P. N.; Mallozzi, R.; Horack, J. M.; Koshut, T.; Kouveliotou, C.; Pendleton, G. N.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.

    1994-01-01

    Observations have been made of a new terrestrial phenomenon: brief (approx. millisecond), intense flashes of gamma rays, observed with space-borne detectors. These flashes must originate at altitudes in the atmosphere above at least 30 km in order to be observable by orbiting detectors aboard the Compton Gamma-Ray Observatory (CGRO). At least a dozen events have been detected over the past 2 years. The photon spectra from the events are very hard and are consistent with bremsstrahlung emission from energetic (MeV) electrons. The most likely origin of these high energy electrons, while speculative at this time, is a rare type of high altitude electrical discharge above thunderstorm regions.

  4. Short-term Fallout Radionuclide Ratios and Mass Balance Identify New Suspended Sediments of Channel Origin and Importance of Catchment Flowpath

    NASA Astrophysics Data System (ADS)

    Karwan, Diana; Pizzuto, James; Aalto, Rolf; Marquard, Julia; Aufdenkampe, Anthony; Harpold, Adrian; Benthem, Adam; Skalak, Katherine; Levia, Delphis; Siegert, Courtney

    2016-04-01

    Fallout radionuclides and their ratios, such as beryllium-7 (7Be) and lead-210 (210Pb), are used to determine suspended sediment source and age in catchments. The ratio of beryllium-7 to lead-210 (7Be/210Pb) on suspended sediment has been used to estimate the fraction of "new" sediment in suspension. In the application of this model, "new" suspended sediment is often assumed to originate from recent landscape surface erosion that is delivered to the stream network. Fallout radionuclide deposition can vary across watersheds and on an event basis in a single watershed due to factors such as storm type, atmospheric height, and storm origin. In the White Clay Creek watershed within the mid-Atlantic USA, single-event deposition of 7Be varies from 15 - 177 Bq m-2 and 210Pb varies from 0 - 10 Bq m-2. 7Be/210Pb ratios vary from 7.9 to 17 within event precipitation and from 0.8 to 12.8 on suspended sediment. "New" sediment varies from 6 - 100% over the course of these events. 7Be mass balance during events shows that the majority of 7Be is retained within the catchment and not exported on suspended sediment. During summer thunderstorms, less than 1% of 7Be deposited on the watershed exits the stream channel. By comparing this flux with the direct channel interception of 7Be deposition in precipitation and throughfall we can determine the minimum amount of 7Be leaving the watershed that could occur in the absence of surface erosion. For example in summer thunderstorms, the entirety of the 7Be exiting the watershed on suspended sediment is less than the total activity deposited on the channel in direct precipitation. Channel-intercepted fallout radionuclides can exit the catchment by multiple mechanisms including the tagging of subaerial fluvial deposits with event precipitation; hence "new" suspended sediment originates from within the channel rather than from surface erosion. During extreme events, such as Hurricane Irene, less of the suspended sediment has been newly

  5. A study of thunderstorm microphysical properties and lightning flash counts associated with terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Barnes, D. E.; Splitt, M. E.; Dwyer, J. R.; Lazarus, S.; Smith, D. M.; Rassoul, H. K.

    2015-04-01

    The terrestrial gamma ray flash (TGF) is an emission of highly energetic radiation produced by or at least in close association with lightning. Previous investigations attempted to isolate the production mechanisms and production altitude(s) of TGFs as well as macrophysical characteristics, while thunderstorm microphysical characteristics were largely ignored. This investigation into thunderstorms and their hydrometeor and flash characteristics utilize temporal and spatial coincident satellite passes between the Reuven Ramaty High Energy Solar Spectroscopic Imager and the Tropical Rainfall Measuring Mission to determine the bulk (or footprint) microphysical properties of two types of study events, the thunderstorm complexes which are associated with TGFs (TGF case) and the thunderstorm complexes which did not produce a TGF detected by Reuven Ramaty High Energy Solar Spectroscopic Imager during the pass (non-TGF case). Results are presented for two different comparison methods. The first case utilizes geographic region weighted by TGF distribution, and the second is based on TGF percentage of occurrence when compared to total flash count of data set. Results show that the associated storms around the TGF location possess differences in the hydrometeor concentrations: cloud liquid water, cloud ice, precipitation water, and precipitation ice. These results take place at different levels of the atmosphere, including the mixed phase region. Additionally, results will show that TGFs are a consistent percentage of observed flashes as the rate of TGFs as a function of Lightning Imaging Sensor flash count is relatively constant.

  6. Thunderstorm coupling to the magnetosphere and associated ionospheric effects. Semiannual Report, 1 November 1991-30 April 1992

    SciTech Connect

    Inan, U.S.

    1992-01-01

    This project deals with the coupling of electromagnetic energy released during a thunderstorm to the magnetosphere and the ionosphere. Both the effects of an individual lightning event as well the aggregate of all the lightning events during a thunderstorm are considered. Energy in the very low frequency (VLF) band can play a variety of roles in the magnetospheric and ionospheric physics: generation of plasmaspheric hiss believed to be responsible for the slot region in the radiation belts, generation of lower hybrid waves that can heat ions in the auroral and subauroral regions, precipitation of energetic electrons, ionospheric heating etc. While these phenomena have been identified, and characterized to some extent, the influence and role of thunderstorm energy on the magnetosphere and ionosphere at a global scale is not known. Only recently, simultaneous high resolution (temporal and spatial) data sets from ground based lightning detectors and space and ground based VLF detectors have become available, and thus it has become possible to raise a question of the kind mentioned above and try to answer it quantitatively. Work on the correlation between individual lightning discharges in a thunderstorm as detected by the lightning network and the whistlers observed on the DE-1 satellite continued during this period. Results are summarized.

  7. A Feasibility Study. The Determination of Thunderstorm Intensity with a Temperature Sensing Shuttle-Borne Lidar (Laser Radar).

    DTIC Science & Technology

    1982-12-01

    thunderstorms by Sikdar (1970), Purdom (1971), Adler and Fenn (1976), Yuen (1977), and Negri (1977). Fujita (1978) was able to isolate an incident of pulsating...Plains," Bulletin of the American Meteorological Society, 62: 1286-1293, September 1981. Sikdar , D., et al. "Convective Transport of Mass and Energy

  8. Thunderstorms' atmospheric electric field effects in the intensity of cosmic ray muons and in neutron monitor data

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Parisi, M.; Ne'Eman, Y.; Pustil'Nik, L. A.; Signoretti, F.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    2003-05-01

    Theoretical and experimental results on the influence of thunderstorms' atmospheric electric field on cosmic ray secondary components are presented. On the basis of the approach proposed by [1987], theoretical models for a correct numerical evaluation of these effects on hard muon, soft muon, and neutron monitor component are developed. For hard and soft muons the validity of the models are checked by their comparison with experimental results of the Baksan muon detector. For the first time, the effect of thunderstorms' atmospheric electric field on cosmic rays is investigated by simultaneous measurements of one-minute neutron monitor intensity and of atmospheric electric field at the Emilio Segre' Observatory on Mt. Hermon (Israel). A series of large thunderstorms during February 2000 is investigated; for each thunderstorm the maximum atmospheric electric field intensity was ranging from 10 to about 100 kV/m. Clear correlation between field intensity and neutron monitor intensity variations is presented for total intensity and for different detected multiplicity channels. This correlation is quantitatively in agreement with the developed model which takes into account the formation of short-living meso-atoms by the capture of slow negative muons in the lead of the monitor. The effect is relevant only for neutron events with detected multiplicity m = 1 and evident for multiplicity m = 2; the other multiplicity channels are not influenced by neutrons from meso-atoms.

  9. Origins of power-law degree distribution in the heterogeneity of human activity in social networks

    PubMed Central

    Muchnik, Lev; Pei, Sen; Parra, Lucas C.; Reis, Saulo D. S.; Andrade Jr, José S.; Havlin, Shlomo; Makse, Hernán A.

    2013-01-01

    The probability distribution of number of ties of an individual in a social network follows a scale-free power-law. However, how this distribution arises has not been conclusively demonstrated in direct analyses of people's actions in social networks. Here, we perform a causal inference analysis and find an underlying cause for this phenomenon. Our analysis indicates that heavy-tailed degree distribution is causally determined by similarly skewed distribution of human activity. Specifically, the degree of an individual is entirely random - following a “maximum entropy attachment” model - except for its mean value which depends deterministically on the volume of the users' activity. This relation cannot be explained by interactive models, like preferential attachment, since the observed actions are not likely to be caused by interactions with other people. PMID:23648793

  10. Botanical origin causes changes in nutritional profile and antioxidant activity of fermented products obtained from honey.

    PubMed

    Dezmirean, Graţia I; Mărghitaş, Liviu A; Bobiş, Otilia; Dezmirean, Daniel S; Bonta, Victoriţa; Erler, Silvio

    2012-08-15

    Honey as rich source of enzymatic and nonenzymatic antioxidants serves as health-promoting nutrient in the human body. Here, we present the first time a comparative study of nutritional profiles (e.g., acidities, sugar, organic acid profile, total polyphenolic, flavonoid content) for different unifloral, multifloral honeys and their fermented products, in correlation with their antioxidant activity. Additionally, an optimized method for HPLC separation of organic acids from honey was established. The total phenolic content of honey samples varied widely among the honey types compared to fermented products. High amounts of total flavonoids were quantified in heather honey, followed by raspberry, multifloral, black locust, and linden honey. A positive correlation between the content of polyphenols, flavonoids, and antioxidant activity was observed in honey samples. After fermentation, the flavonoid content of dark honey fermented products decreased significantly. Black locust and linden honeys are more suitable for fermentation because the decrease in antioxidant substances is less pronounced.

  11. Origins of power-law degree distribution in the heterogeneity of human activity in social networks.

    PubMed

    Muchnik, Lev; Pei, Sen; Parra, Lucas C; Reis, Saulo D S; Andrade, José S; Havlin, Shlomo; Makse, Hernán A

    2013-01-01

    The probability distribution of number of ties of an individual in a social network follows a scale-free power-law. However, how this distribution arises has not been conclusively demonstrated in direct analyses of people's actions in social networks. Here, we perform a causal inference analysis and find an underlying cause for this phenomenon. Our analysis indicates that heavy-tailed degree distribution is causally determined by similarly skewed distribution of human activity. Specifically, the degree of an individual is entirely random - following a "maximum entropy attachment" model - except for its mean value which depends deterministically on the volume of the users' activity. This relation cannot be explained by interactive models, like preferential attachment, since the observed actions are not likely to be caused by interactions with other people.

  12. Detection of bacterial phosphatase activity by means of an original and simple test.

    PubMed Central

    Satta, G; Grazi, G; Varaldo, P E; Fontana, R

    1979-01-01

    A new test for the detection of bacterial phosphatase activity has been devised. The test is performed using agar media containing both methyl green (MG) and phenolphthalein diphosphate (PDP); in these media phosphatase-producing strains grow deep-green-stained colonies whereas non-producing strains do not. A total of 739 different strains were tested, including 593 staphylococci, 95 micrococci, 11 streptococci, 10 corynebacteria, 14 enterobacteria, and 16 candidae. All strains found phosphatase-positive according to the conventional phosphatase test displayed deep-green-stained colonies on MG-PDP media, whereas all phosphatase-negative strains showed unstained colonies on the same media. The main advantages of the present phosphatase test as compared with other conventional ones are that it is more simple to perform, it can reveal the phosphatase activity of colonies grown in deep agar, and can be incorporated into commercial multitest kits. PMID:87403

  13. On the Origin of the Asymmetric Helicity Injection in Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Alexander, D.; Tian, L.

    2009-12-01

    To explore the possible causes of the observed asymmetric helicity flux in emerging active regions between the leading and following polarities reported in a recent study by Tian & Alexander, we examine the subsurface evolution of buoyantly rising Ω-shaped flux tubes using three-dimensional, spherical-shell anelastic MHD simulations. We find that due to the asymmetric stretching of the Ω-shaped tube by the Coriolis force, the leading side of the emerging tube has a greater field strength, is more buoyant, and remains more cohesive compared to the following side. As a result, the magnetic field lines in the leading leg show more coherent values of local twist α ≡ (∇ × B) · B/B 2, whereas the values in the following leg show large fluctuations and are of mixed sign. On average, however, the field lines in the leading leg do not show a systematically greater mean twist compared to the following leg. Due to the higher rise velocity of the leading leg, the upward helicity flux through a horizontal cross section at each depth in the upper half of the convection zone is significantly greater in the leading polarity region than that in the following leg. This may contribute to the observed asymmetric helicity flux in emerging active regions. Furthermore, based on a simplified model of active region flux emergence into the corona by Longcope & Welsch, we show that a stronger field strength in the leading tube can result in a faster rotation of the leading polarity sunspot driven by torsional Alfvén waves during flux emergence into the corona, contributing to a greater helicity injection rate in the leading polarity of an emerging active region.

  14. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    PubMed

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism.

  15. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-07

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency.

  16. Original Research: ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fibrosis.

    PubMed

    Prata, Luana O; Rodrigues, Carolina R; Martins, Jéssica M; Vasconcelos, Paula C; Oliveira, Fabrício Marcus S; Ferreira, Anderson J; Rodrigues-Machado, Maria da Glória; Caliari, Marcelo V

    2017-01-01

    The interstitial lung diseases are poorly understood and there are currently no studies evaluating the association of physical exercise with an ACE2 activator (DIZE) as a possible treatment for this group of diseases. We evaluate the effects of pharmacological treatment with an angiotensin-converting enzyme 2 activator drug, associated with exercise, on the pulmonary lesions induced by bleomycin. From the 96 male Balb/c mice used in the experiment, only 49 received 8 U/kg of bleomycin (BLM, intratracheally). The mice were divided into control (C) and bleomycin (BLM) groups, sedentary and trained (C-SED, C-EXE, BLM-SED, BLM-EXE), control and bleomycin and also sedentary and trained treated with diminazene (C-SED/E, C-EXE/E, BLM-SED/E, BLM-EXE/E). The animals were trained five days/week, 1 h/day with 60% of the maximum load obtained in a functional capacity test, for four weeks. Diminazene groups were treated (1 mg/kg, by gavage) daily until the end of the experiment. The lungs were collected 48 h after the training program, set in buffered formalin and investigated by Gomori's trichrome, immunohistochemistry of collagen type I, TGF-β1, beta-prolyl-4-hydroxylase, MMP-1 and -2. The BLM-EXE/E group obtained a significant increase in functional capacity, reduced amount of fibrosis and type I collagen, decreased expression of TGF-β1 and beta-prolyl-4-hydroxylase and an increase of metalloproteinase -1, -2 when compared with the other groups. The present research shows, for the first time, that exercise training associated with the activation of ACE2 potentially reduces pulmonary fibrosis.

  17. Remote sensing of the electrodynamic coupling between thunderstorm systems and the mesophere/lower ionosphere

    NASA Astrophysics Data System (ADS)

    Reising, Steven Craig

    In the past few years, dramatic experimental evidence has emerged, showing that tropospheric lightning discharges modify the mesosphere and the lower ionosphere through heating and ionization, producing gamma-ray bursts and optical emissions known as Sprites, blue jets, and elves. These processes may have long-term effects such as increased production of mesospheric and stratospheric nitrogen oxides (NOy) and persistent heating of ionospheric electrons. To determine the effects of this electrodynamic coupling, the global occurrence rate of Sprites needs to be known. Since optical monitoring of Sprite occurrence on large spatial scales is not practical, a continuous proxy indicator for Sprite occurrence is needed. Sprites are intense, transient luminous events in the mesosphere and lower ionosphere above thunderstorm systems. They extend from ~40 to ~90 km in altitude, are primarily red in color, and develop to full brightness in a few ms. Sprites are nearly uniquely associated with a subset of positive cloud-to-ground lightning fiashes, but the peak current of each flash, measured by the National Lightning Detection Network, is not sufficient to determine the likelihood of Sprite occurrence. In this work, remote sensing of the electrodynamic coupling between thunderstorms and the middle atmosphere is accomplished by measurement of radio atmospherics in the ELF (extremely low frequency, here 15 Hz-1.5 kHz) and VLF (very low frequency, here 1.5-22 kHz) ranges. Radio atmospherics ('sferics'), the electromagnetic signatures of each lightning discharge, propagate efficiently in the waveguide bounded by the Earth's surface and the ionosphere. Novel digital signal processing techniques allow automated detection of individual sferics and the determination of their arrival azimuth with /pm1o precision at Palmer Station, Antarctica, a source-to-receiver distance of ~12,000 km. Broadband measurements of sferics performed near Ft. Collins, Colorado, ~500 km from the source

  18. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska 1. Origin of Strombolian activity

    USGS Publications Warehouse

    Vergniolle, S.; Boichu, M.; Caplan-Auerbach, J.

    2004-01-01

    The 1999 basaltic eruption of Shishaldin volcano (Alaska, USA) displayed both classical Strombolian activity and an explosive Subplinian plume. Strombolian activity at Shishaldin occurred in two major phases following the Subplinian activity. In this paper, we use acoustic measurements to interpret the Strombolian activity. Acoustic measurements of the two Strombolian phases show a series of explosions that are modeled by the vibration of a large overpressurised cylindrical bubble at the top of the magma column. Results show that the bubble does not burst at its maximum radius, as expected if the liquid film is stretched beyond its elasticity. But bursting occurs after one cycle of vibration, as a consequence of an instability of the air-magma interface close to the bubble minimum radius. During each Strombolian period, estimates of bubble length and overpressure are calculated. Using an alternate method based on acoustic power, we estimate gas velocity to be 30-60 m/s, in very good agreement with synthetic waveforms. Although there is some variation within these parameters, bubble length and overpressure for the first Strombolian phase are found to be ??? 82 ?? 11 m and 0.083 MPa. For the second Strombolian phase, bubble length and overpressure are estimated at 24 ?? 12 m and 0.15 MPa for the first 17 h after which bubble overpressure shows a constant increase, reaching a peak of 1.4 MPa, just prior to the end of the second Strombolian phase. This peak suggests that, at the time, the magma in the conduit may contain a relatively large concentration of small bubbles. Maximum total gas volume and gas fluxes at the surface are estimated to be 3.3 ?? 107 and 2.9 ?? 103 m3/s for the first phase and 1.0 ?? 108 and 2.2 ?? 103 m3/s for the second phase. This gives a mass flux of 1.2 ?? 103 and 8.7 ?? 102 kg/s, respectively, for the first and the second Strombolian phases. ?? 2004 Elsevier B.V. All rights reserved.

  19. On the origin of power-law X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Schlosman, I.; Shaham, J.; Shaviv, G.

    1984-01-01

    In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.

  20. Comparison of thunderstorm hours registered by the lightning detection network and human observers in Estonia, 2006-2011

    NASA Astrophysics Data System (ADS)

    Enno, S. E.

    2015-07-01

    Relationships between the lightning detection network data and human-reported thunderstorms were studied in Estonia during the period of 2006-2011. Estonia is located in northeastern Europe between 57.5° to 59.5° N and 21° to 28.5° E. Numbers of thunderstorm days (TD) and thunderstorm hours (TH) reported by 61 volunteer observers and six meteorological stations were compared to the data of the lightning detection network. Results indicated that the flash data within 9.0 km from the sites of volunteer observers should be used in order to derive TD numbers equal to human observations. Larger radius of 14.7 km was found on the basis of six meteorological stations with probably better quality of thunderstorm observations. Due to data quality issues, the daily and monthly numbers of THs reported by individual observers explained only 12-39 % of variations in the flash counts within 40 km of their observing sites. In contrast, the average TH data of all observers successfully explained 75-86 % of variations in daily and monthly flash counts within 40 km of the observation sites. The main advantage of using the average data of many human observers seems to be that in case of a dense network, the neighboring observers tend to compensate for each other's errors. In general, intense storms close to observing sites were found to be most successfully reported by human observers. The most important conclusion of the study is that although human observations of thunderstorms and automatic lightning observations are very different methods, they generally give similar results.