Science.gov

Sample records for active thunderstorms originating

  1. Global thunderstorm activity research survey

    NASA Technical Reports Server (NTRS)

    Coroniti, S. C.

    1982-01-01

    The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.

  2. The atmospheric electric global circuit. [thunderstorm activity

    NASA Technical Reports Server (NTRS)

    Kasemir, H. W.

    1979-01-01

    The hypothesis that world thunderstorm activity represents the generator for the atmospheric electric current flow in the earth atmosphere between ground and the ionosphere is based on a close correlation between the magnitude and the diurnal variation of the supply current (thunderstorm generator current) and the load current (fair weather air-earth current density integrated over the earth surface). The advantages of using lightning survey satellites to furnish a base for accepting or rejecting the thunderstorm generator hypothesis are discussed.

  3. Positrons observed to originate from thunderstorms

    NASA Astrophysics Data System (ADS)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  4. Estimates of the global electric circuit from global thunderstorm activity

    NASA Astrophysics Data System (ADS)

    Hutchins, M. L.; Holzworth, R. H.; Brundell, J. B.

    2013-12-01

    The World Wide Lightning Location Network (WWLLN) has a global detection efficiency around 10%, however the network has been shown to identify 99% of thunderstorms (Jacobson, et al 2006, using WWLLN data from 2005). To create an estimate of the global electric circuit activity a clustering algorithm is applied to the WWLLN dataset to identify global thunderstorms from 2009 - 2013. The annual, seasonal, and regional thunderstorm activity is investigated with this new WWLLN thunderstorm dataset in order to examine the source behavior of the global electric circuit. From the clustering algorithm the total number of active thunderstorms is found every 30 minutes to create a measure of the global electric circuit source function. The clustering algorithm used is shown to be robust over parameter ranges related to real physical storm sizes and times. The thunderstorm groupings are verified with case study comparisons using satellite and radar data. It is found that there are on average 714 × 81 thunderstorms active at any given time. Similarly the highest average number of thunderstorms occurs in July (783 × 69) with the lowest in January (599 × 76). The annual and diurnal thunderstorm activity seen with the WWLLN thunderstorms is in contrast with the bimodal stroke activity seen by WWLLN. Through utilizing the global coverage and high time resolution of WWLLN, it is shown that the total active thunderstorm count is less than previous estimates based on compiled climatologies.

  5. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms

    DOE PAGES

    Shao, Xuan -Min; Lay, Erin Hoffmann

    2016-07-04

    Thunderstorms have been observed to introduce infrasonic oscillations in the ionosphere, but it is not clear what processes or which parts of the thunderstorm generate the oscillations. In this paper, we present a new technique that uses an array of ground-based GPS total electron content (TEC) measurements to locate the source of the infrasonic oscillations and compare the source locations with thunderstorm features to understand the possible source mechanisms. The location technique utilizes instantaneous phase differences between pairs of GPS-TEC measurements and an algorithm to best fit the measured and the expected phase differences for assumed source positions and othermore » related parameters. In this preliminary study, the infrasound waves are assumed to propagate along simple geometric raypaths from the source to the measurement locations to avoid extensive computations. The located sources are compared in time and space with thunderstorm development and lightning activity. Sources are often found near the main storm cells, but they are more likely related to the downdraft process than to the updraft process. As a result, the sources are also commonly found in the convectively quiet stratiform regions behind active cells and are in good coincidence with extensive lightning discharges and inferred high-altitude sprites discharges.« less

  6. The origin of infrasonic ionosphere oscillations over tropospheric thunderstorms

    NASA Astrophysics Data System (ADS)

    Shao, Xuan-Min; Lay, Erin H.

    2016-07-01

    Thunderstorms have been observed to introduce infrasonic oscillations in the ionosphere, but it is not clear what processes or which parts of the thunderstorm generate the oscillations. In this paper, we present a new technique that uses an array of ground-based GPS total electron content (TEC) measurements to locate the source of the infrasonic oscillations and compare the source locations with thunderstorm features to understand the possible source mechanisms. The location technique utilizes instantaneous phase differences between pairs of GPS-TEC measurements and an algorithm to best fit the measured and the expected phase differences for assumed source positions and other related parameters. In this preliminary study, the infrasound waves are assumed to propagate along simple geometric raypaths from the source to the measurement locations to avoid extensive computations. The located sources are compared in time and space with thunderstorm development and lightning activity. Sources are often found near the main storm cells, but they are more likely related to the downdraft process than to the updraft process. The sources are also commonly found in the convectively quiet stratiform regions behind active cells and are in good coincidence with extensive lightning discharges and inferred high-altitude sprites discharges.

  7. Initiation of non-tropical thunderstorms by solar activity

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1978-01-01

    A theory of thunderstorm initiation is proposed to account for the statistical correlation between solar activity and thunderstorm occurrence in middle to high latitudes. It is suggested that cosmic ray decreases and/or high-energy solar protons associated with active solar events enhance the electric field at low heights so that, if appropriate meteorological conditions are present during a solar event, the atmospheric electric field enhancement may be sufficient to trigger thunderstorm development. Statistical correlations and atmospheric electric effects are described. The theory could be tested if the possible forcing functions and the responding atmospheric electrical and ionic species' characteristics were measured.

  8. Spatial and temporal variations of thunderstorm activities over Sri Lanka

    NASA Astrophysics Data System (ADS)

    Sonnadara, Upul

    2016-05-01

    Spatial and temporal variation of frequencies of thunderstorms over Sri Lanka using thunder day data is presented. A thunder day is simply a calendar day in which thunder is heard at least once at a given location. Two sets of data were collected and analyzed: annual totals for 10 climatological stations for a period of 50 years and monthly totals for 20 climatological stations for a period of 20 years. The average annual thunder days over Sri Lanka was found to be 76. Among the climatological stations considered, a high number of annual thunder days was recorded in Ratnapura (150 days/year), followed by Colombo (108 days/year) and Bandarawela (106 days/year). It appears that there are no widespread long-term increasing or decreasing trends in thunderstorm frequencies. However, Colombo, the capital of Sri Lanka which has over two million people shows an increasing trend of 0.8 thunder days per year. Although there is a high variability between stations reporting the number of thunder days, the overall pattern within a year is clear. Thunderstorm frequencies are high during two periods: March-May and September-November, which coincide with the first inter-monsoon and second inter-monsoon periods. Compared to the dry zone, the wet zone, especially the southwestern region, has high thunderstorm activity. There is a clear spatial difference in thunderstorm activities during the southwest and northeast monsoon seasons. During both these seasons, enhanced thunderstorm activities are reported on the leeward side of the mountain range. A slight reduction in the thunderstorm activities was found in the high elevation areas of the hill country compared to the surrounding areas. A lightning ground flash density map derived using annual thunder days is also presented.

  9. The Characteristics of Total Lightning Activity in Severe Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Williams, E.; Goodman, S. J.; Raghavan, R.; Boldi, R.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.

    1997-01-01

    Severe thunderstorms are defined by specific exceedance criteria regarding either wind speed (greater than or equal to 50 kts), hailstone diameter (greater than or equal to 3/4 inch), the occurrence of a tornado, or any combination thereof. Although traditional radar signatures of severe thunderstorms have been well documented, the characteristics of associated total lightning activity (both intracloud and cloud-to-ground) of severe thunderstorms remain poorly established. The reason for this are (1) less than 1% of all storms are actually severe, (2) intracloud lightning, which is typically the dominant form of electrical discharge within thunderstorms, is not routinely measured or recorded, (3) direct visual observations of intracloud lightning are obscured during the daytime, and (4) the migratory nature of many severe thunderstorms can make the accurate detection and mapping of intracloud lightning difficult when using fixed-location sensors. The recent establishment of LISDAD (Lightning Imaging Sensor Data Acquisition and Display - discussed in Goodman et al, this Meeting) has substantially addressed these limitations in east central Florida (ECFL). Analysis of total lightning flash Count histories using the LDAR (Lightning Detection And Ranging) system for known severe thunderstorms (currently irrespective of seasonal aspects and severe storm-type) has revealed flash rates exceeding 1 per second. This appears to be a necessary, but not sufficient,condition for most ECFL severe storm cases. The differences in radar-observed storm structure for high flash rate storms (to include both severe and non-severe categories) will be described together with the timing of peak flash rate vs. the timing of the severe weather manifestation. Comparisons with the satellite-bases OTD (Optical Transient Detector) overhead passes will also be presented when possible.

  10. TRMM/LIS and PR Observations and Thunderstorm Activity

    NASA Astrophysics Data System (ADS)

    Ohita, S.; Morimoto, T.; Kawasaki, Z. I.; Ushio, T.

    2005-12-01

    Thunderstorms observed by TRMM/PR and LIS have been investigating, and Lightning Research Group of Osaka University (LRG-OU) has unveiled several interesting features. Correlation between lightning activities and the snow depth of convective clouds may follow the power-five law. The power five law means that the flash density is a function of the snow-depth to power five. The definition of snow depth is the height of detectable cloud tops by TRMM/PR from the climatological freezing level, and it may be equivalent to the length of the portion where the solid phase precipitation particles exist. This is given by examining more than one million convective clouds, and we conclude that the power five law should be universal from the aspect of the statistic. Three thunderstorm active areas are well known as "Three World Chimneys", and those are the Central Africa, Amazon of the South America, and South East Asia. Thunderstorm activities in these areas are expected to contribute to the distribution of thermal energy around the equator to middle latitude regions. Moreover thunderstorm activity in the tropical region is believed to be related with the average temperature of our planet earth. That is why long term monitoring of lightning activity is required. After launching TRMM we have accumulated seven-year LIS observations, and statistics for three world chimneys are obtained. We have recognized the additional lightning active area, and that is around the Maracaibo lake in Venezuera. We conclude that this is because of geographical features of the Maracaibo lake and the continuous easterly trade wind. Lightning Activity during El Niño period is another interesting subject. LRGOU studies thunderstorm occurrences over west Indonesia and south China, and investigates the influence of El Nino on lightning . We compare the statistics between El Nino and non El Nino periods. We learn that the lightning activity during El Niño period is higher than non El Nino period instead

  11. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and {gt} 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  12. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and [gt] 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  13. Hands-On Thunderstorms.

    ERIC Educational Resources Information Center

    Palmer, Mark H.

    2000-01-01

    Introduces activities published by the National Oceanic and Atmospheric Administration (NOAA) that can be used to explain the physical properties of a thunderstorm. Activities include cloud formation and the first step of thunderstorm development, cycle of a thunderstorm, the nature of lightning, ice in a thunderstorm, and tornado warning. Lists…

  14. The Behavior of Total Lightning Activity in Severe Florida Thunderstorms

    NASA Technical Reports Server (NTRS)

    Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark; Hodanish, Steve; Sharp, Dave; Goodman, Steve; Raghavan, Ravi; Buechler, Dennis

    1998-01-01

    The development of a new observational system called LISDAD (Lightning Imaging Sensor Demonstration and Display) has enabled a study of severe weather in central Florida. The total flash rates for storms verified to be severe are found to exceed 60 flashes/min, with some values reaching 500 flashes/min. Similar to earlier results for thunderstorm microbursts, the peak flash rate precedes the severe weather at the ground by 5-20 minutes. A distinguishing feature of severe storms is the presence of lightning "jumps"-abrupt increases in flash rate in advance of the maximum rate for the storm. ne systematic total lightning precursor to severe weather of all kinds-wind, hail, tornadoes-is interpreted in terms of the updraft that sows the seeds aloft for severe weather at the surface and simultaneously stimulates the ice microphysics that drives the lightning activity.

  15. Dancing red sprites and the lightning activity in their parent thunderstorm

    NASA Astrophysics Data System (ADS)

    Bór, József; Zelkó, Zoltán; Hegedüs, Tibor; Jäger, Zoltán; Mlynarczyk, Janusz; Popek, Martin; Betz, Hans-Dieter

    2016-04-01

    Red sprites are brief optical emissions initiated in the mesosphere by intense tropospheric lightning discharges. A group of red sprites, in which the elements appear in rapid succession with some lateral offset from one another is referred to as a dancing sprite event. The occurrence of such events implies that significant and sequential charge removal extending to large regions of the thunderstorm can take place in the underlying cloud system. In this work, we examine the relation of the locations and observation times of appearing sprite elements to the temporal and spatial distribution of the lightning activity in a specific sprite-active thunderstorm. The selected mesoscale convective system (MCS) composed of several extremely active thundercloud cells crossed Central Europe from South-West to North-East through Germany, Austria, the Czech Republic, and Poland on the night of 6 August, 2013. This MCS has triggered over one hundred sprites including several dancing sprite events. Video recordings of sprites captured from Sopron, Hungary (16.6°E, 47.7°N) and Nydek, Czech Republic (18.8°E, 49.7°N) were used to identify dancing sprite events and to determine the exact locations of the appearing sprite elements by a triangulation technique used originally to analyze meteor observations. Lightning activity in the MCS can be reviewed using the database of LINET lightning detection network which fully covers the region of interest (ROI). The poster demonstrates how cases of sequential charge removal in the thunderstorm can be followed by combining the available information on the occurrence time, location, polarity, and type (CG/IC) of detected lightning strokes in the ROI on one hand and the occurrence time and location of elements in dancing sprite events on the other hand.

  16. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  17. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world

    PubMed Central

    Dowdy, Andrew J.

    2016-01-01

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431

  18. Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world.

    PubMed

    Dowdy, Andrew J

    2016-02-11

    Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.

  19. Comparative Analysis of Thunderstorm Activity in the West Caucasus According to the Instrumental Measurements and Weather Stations Observations

    NASA Astrophysics Data System (ADS)

    Knyazeva, Zalina; Gergokova, Zainaf; Gyatov, Ruslan; Boldyreff, Anton

    2014-05-01

    The number of thunderstorms days is one of the main characteristics of thunderstorms. In most cases, the number of days with different meteorological phenomena are the climate characteristic of the area. This characteristic is a common climate indicator. The comparative analysis of thunderstorms days quantity, received with lightning detector LS 8000 by Vaisala and weather stations of Krasnodar District (Russia), is presented. For this purpose the Krasnodar region was divided into 19 sites. The thunderstorm days amount and their comparison were conducted for each site according to the data of weather stations and LS 8000 lightning detectors. Totally 29 weather stations are located in this area. The number of thunderstorm days per year for the period of 2009-2012 was determined according to data, received from stations. It was received that average annual number of thunderstorm days for this area was from 33 to 39 days. The majority of thunderstorm days per year (up to 77) was registered in the south of Krasnodar region and on the Black Sea coast. The lowest thunderstorm activity (about 20 days) was observed in the North of the region. To compare visual and voice data for calculating thunderstorm days quantity of the Krasnodar region, the day was considered thundery if at least one weather station registered a storm. These instrumental observations of thunderstorms allow to obtain the basic characteristics and features of the distribution of thunderstorm activity over a large territory for a relatively short period of time. However, some characteristics such as thunderstorms intensity, damages from lightning flashes and others could be obtained only with instrumental observations. The territory of gathering thunderstorm discharges data by system LS8000 is limited by perimeter of 2250 km and square of 400 000 km2. According to the instrumental observations, the majority of storm activity also takes place on the Black Sea coast, near the cities of Sochi and Tuapse

  20. On the origin of pronounced O3 gradients in the thunderstorm outflow region during DC3

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Fütterer, D.; Rappenglück, B.; Ackermann, L.; Pickering, K. E.; Cummings, K. A.; Biggerstaff, M. I.; Betten, D. P.; Honomichl, S.; Barth, M. C.

    2016-06-01

    Unique in situ measurements of CO, O3, SO2, CH4, NO, NOx, NOy, VOC, CN, and rBC were carried out with the German Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon aircraft in the central U.S. thunderstorms during the Deep Convective Clouds and Chemistry experiment in summer 2012. Fresh and aged anvil outflow (9-12 km) from supercells, mesoscale convective systems, mesoscale convective complexes, and squall lines were probed over Oklahoma, Texas, Colorado, and Kansas. For three case studies (30 May and 8 and 12 June) a combination of trace species, radar, lightning, and satellite information, as well as model results, were used to analyze and design schematics of major trace gas transport pathways within and in the vicinity of the probed thunderstorms. The impact of thunderstorms on the O3 composition in the upper troposphere/lower stratosphere (LS) region was analyzed. Overshooting cloud tops injected high amounts of biomass burning and lightning-produced NOx emissions into the LS, in addition to low O3 mixing ratios from the lower troposphere. As a dynamical response, O3-rich air from the LS was transported downward into the anvil and also surrounded the outflow. The ΔO3/ΔCO ratio was determined in the anvil outflow region. A pronounced in-mixing of O3-rich stratospheric air masses was observed in the outflow indicated by highly positive or even negative ΔO3/ΔCO ratios (+1.4 down to -3.9). Photochemical O3 production (ΔO3/ΔCO = +0.1) was found to be minor in the recently lofted pollution plumes. O3 mixing ratios within the aged anvil outflow were mainly enhanced due to dynamical processes.

  1. Evidence for Synchronicity of Lightning Activity in Spatially Remote Thunderstorms Obtained from Space Shuttle Observations

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Aviv, R.; Ravid, G.; Yaniv, R.; Ziv, B.; Price, C.

    2005-12-01

    Visual observations by space shuttle astronauts detailed a phenomenon in which spatially distant thunderstorm cells seemed to reciprocally "ignite" lightning flashes in a semi-cyclic sequence. We report the quantitative analysis of lightning observations conducted within the framework of the MEIDEX-sprite campaign on board the space shuttle Columbia in January 2003 [Yair et al., 2003]. We analyzed video footage of 6 storm systems with varying flash rates, which occurred over Africa, South America, Australia and the Pacific Ocean. It is found that when the storm flash rate was high, lightning activity in horizontally remote electrically active cells became clustered, with bursts of nearly simultaneous activity separated by periods of quiet. The recurrence time was ~2.5 seconds, close to the time delay between consecutive signals in the SR range previously reported [Fallekrug, 1995]. We propose that this behavior is similar to the collective dynamics of a network of weakly coupled limit-cycle oscillators [Strogatz, 2000]. Thunderstorm cells embedded within a mesoscale convective system (MCS) constitute such a network, and their lightning frequency is best described in terms of phase-locking of a globally coupled array [Kourtchatov et al., 1995]. The dominant network hub in such an MCS is the thunderstorm cell with the highest flash rate, which affects the lightning activity of neighboring cells. Comparison of basic parameters of the lightning network with predictions of random graph models reveals that the network cannot be described by the classical random graph model [Erdos and Renyi, 1960], but is more compatible with generalized random graphs with prescribed degree distribution [Newman et al., 2001] that exhibit a high clustering coefficient and small average path lengths. Such networks are capable of supporting fast response, synchronization and coherent oscillations. Several physical mechanisms are suggested to explain this phenomenon.

  2. Simulation of the impact of thunderstorm activity on atmospheric gas composition

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.

    2010-08-01

    A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

  3. Analysis of lightning field changes during active Florida thunderstorms

    SciTech Connect

    Koshak, W.J.; Krider, E.P. )

    1989-01-20

    A computer algorithm has been developed to derive accurate values of lightning-caused changes in cloud electric fields under active storm conditions. This algorithm has been applied to data obtained from a network of ground-based electric field mills at the NASA Kennedy Space Center and the U.S. Air Force Cape Canaveral Air Force Station during portions of two storms. The resulting field changes have been analyzed using a least squares optimization procedure and point-charge (Q) and point-dipole (P) models. The results indicate that the values and time variations of the Q-model parameters under active storm conditions are similar to those reported previously for small storms when the computations are done with the same analysis criteria and comparable biases. The parameters of P solutions seem to vary with time within the storm interval and from storm to storm. The P vectors at low altitudes all tend to point upward, and those at high altitudes almost always point downward. When a P solution is located in the altitude range corresponding to Q altitudes, the direction of P tends to be horizontal. Since Q solutions typically describe cloud-to-ground lightning and P solutions describe cloud discharges (Maier and Krider, 1986), the altitude dependence of the P vectors is consistent with the classic thunder-cloud charge model that has an excess negative charge at altitudes corresponding to the Q altitudes.

  4. Coupling between the lower and upper atmosphere during thunderstorms

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth; Le Pichon, Alexis; Farges, Thomas; Heinrich, Philippe; Costantino, Lorenzo

    2014-05-01

    We present observations of gravity waves produced by thunderstorms in France and in Africa performed in the frame of the ARISE project by using infrasound technology. The wave amplitudes reach 150 Pa and periods vary from few tens of minutes up to few hours during the thunderstorm evolution. The thunderstorm structure can be determined by using meteorological radars, satellites and lightning maps. Activity in the troposphere is strongly related to the thunderstorm presence and vanishes when the thunderstorm moves away. Comparison with radar observations shows that gravity waves originate from different convection cells moving over the station. Thunderstorm systems are observed in Ivory Coast (Africa) over much larger period of time Than in France. The thunderstorm activity appears to be the major source of gravity waves in these regions. Models show that the impact in the stratosphere and mesosphere can be significant. It is concluded that such observations are very efficient to precisely characterize convection cells and dynamical motions at the origin of gravity waves which are currently observed in the upper atmosphere and ionosphere.

  5. Response of thunderstorm activity in data of neutron monitoring at Tien Shan

    NASA Astrophysics Data System (ADS)

    Antonova, Valentina; Kryukov, Sergey; Lutsenko, Vadim

    2015-04-01

    We present results of the study of data of the monitoring of high-energy and thermal neutrons at Tien Shan at different stages of thunderstorm activity. The data of the neutron monitoring were used taking into account the barometric effect. The intensity of the neutron component of cosmic rays is recorded in seven energy ranges. The electric field has values of ~ 100 V/m under fair weather conditions. Standard deviation of minute values of the neutron monitor data at the high altitude station does not exceed 0.5-0.6 %. Found that the standard deviation of the data during thunderstorms always exceeds these values. We selected events during the passage of thunderstorm clouds over the high altitude station without lightning discharges or with a small number of them. It was found that the particle rate of the neutron monitor changes in antiphase with the electric field changes. Atmospheric electric field of positive polarity decreases the count rate of the neutron monitor, and negative polarity - increases. Change of the count rate occurs at values of electric field ≥ 10-15 kV/m and reaches 2 %. The neutron monitor at the high-altitude station has the ability to measure the energy of recorded particles through determination of their multiplicity. We experimentally established that the sensitivity of the detected particles to change in Ez increases with decreasing their energy. The upper energy threshold of sensitivity of neutrons to change electric field is ~10 GeV. The physical mechanism of effect is based on lead nucleus capture of soft negative muons with the subsequent generation of neutrons. It is known that 7% of the neutron monitor count rate caused by negative muons. Absence of this effect in thermal neutrons data confirms the conclusion since the main difference of the thermal neutrons detector from the neutron monitor is the absence of the lead. In the active phase of a thunderstorm in the formed thundercloud the picture of distribution of charges is

  6. Nighttime observations of thunderstorm electrical activity from a high altitude airplane

    NASA Technical Reports Server (NTRS)

    Brook, M.; Vonnegut, B.; Orville, R. E.; Vaughan, O. H., Jr.

    1984-01-01

    Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes.

  7. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    NASA Astrophysics Data System (ADS)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  8. Thunderstorm asthma.

    PubMed

    Taylor, Philip E; Jonsson, Haflidi

    2004-09-01

    Thunderstorms have often been linked to epidemics of asthma, especially during the grass flowering season; however, the precise mechanisms explaining this phenomenon are unknown. Evidence of high respirable allergen loadings in the air associated with specific meteorologic events combined with an analysis of pollen physiology suggests that rupture of airborne pollen can occur. Strong downdrafts and dry, cold outflows distinguish thunderstorm rain from frontal rain. The weather system of a mature thunderstorm likely entrains grass pollen into the cloud base, where pollen rupture would be enhanced, then transports the respirable-sized fragments of pollen debris to ground level where outflows distribute them ahead of the rain. The conditions occurring at the onset of a thunderstorm might expose susceptible people to a rapid increase in concentrations of pollen allergens in the air that can readily deposit in the lower airways and initiate asthmatic reactions. PMID:15283882

  9. Thunderstorm asthma.

    PubMed

    Taylor, Philip E; Jonsson, Haflidi

    2004-09-01

    Thunderstorms have often been linked to epidemics of asthma, especially during the grass flowering season; however, the precise mechanisms explaining this phenomenon are unknown. Evidence of high respirable allergen loadings in the air associated with specific meteorologic events combined with an analysis of pollen physiology suggests that rupture of airborne pollen can occur. Strong downdrafts and dry, cold outflows distinguish thunderstorm rain from frontal rain. The weather system of a mature thunderstorm likely entrains grass pollen into the cloud base, where pollen rupture would be enhanced, then transports the respirable-sized fragments of pollen debris to ground level where outflows distribute them ahead of the rain. The conditions occurring at the onset of a thunderstorm might expose susceptible people to a rapid increase in concentrations of pollen allergens in the air that can readily deposit in the lower airways and initiate asthmatic reactions.

  10. First results from the THOR experiment imaging thunderstorm activity from the ISS.

    NASA Astrophysics Data System (ADS)

    Chanrion, Olivier; Neubert, Torsten; Mogensen, Andreas; Yair, Yoav; Stendel, Martin; Larsen, Niels

    2016-04-01

    Video imaging from the THOR experiment conducted on International Space Station by the Danish astronaut Andreas Mogensen has been analyzed. The observations we report in this paper were taken with a color camera from the vantage point of the Cupola, tracking thunderstorm activity over the Bay of Bengal. Among many lightning, the observations contain a sprite, a blue jet and numerous small blue discharge regions at the top of a tall cumulonimbus cloud. The latter are interpreted as electric discharges between layers at the uppermost layers of the cloud and to the screening layer formed at the very edge between the cloud and the surrounding atmosphere. The observations are the first of their kind and give new insights into the charge structure at the top of clouds in the tropical tropopause regions, a region that is difficult to observe and to access.

  11. Thunderstorm asthma.

    PubMed

    2014-10-01

    AN ASSOCIATION between asthma and thunderstorms based on retrospective data has been noted in several papers. This study, however, draws on almost-real-time, anonymised attendance data from 35 emergency departments (EDs) in the UK, and lightning-strike plots from the Met Office. PMID:25270814

  12. Thunderstorm asthma.

    PubMed

    2014-10-01

    AN ASSOCIATION between asthma and thunderstorms based on retrospective data has been noted in several papers. This study, however, draws on almost-real-time, anonymised attendance data from 35 emergency departments (EDs) in the UK, and lightning-strike plots from the Met Office.

  13. Towards understanding the nature of any relationship between Solar Activity and Cosmic Rays with thunderstorm activity and lightning discharge

    NASA Astrophysics Data System (ADS)

    O'Regan, J.; Muller, J.-P.; Matthews, S.

    2012-04-01

    The runaway breakdown hypothesis of lightning discharge has predicted relationships between cosmic rays' interactions with the atmosphere and thunderstorm production and lightning activity. Precipitating energetic particles lead to the injection of MeV-energy electrons into electrified thunderclouds [1,2], resulting in runaway breakdown occurring, and assisting in the process of charge separation [2]. Previous lightning studies show that correlations to solar activity are weak but significant, with better correlations to solar activity and cosmic rays when carried out over smaller geographical areas [3,4,5,6] and over longer timescales [6]. In this work, correlations are explored between variations of SEPs and lightning activity levels at various spatio-temporal scales. Temporal scales span from short-term (days) scales surrounding large Earth-directed coronal mass ejection (CME) events to long-term (years) scales. Similarly, spatial scales span from 1-degree x 1-degree latitudinal-longitudinal grid scales to an entirely global study, for varying timescales. Additionally, investigation of correlation sign and statistical significance by 1-degree latitudinal bands is also employed, allowing a comparative study of lightning activity relative to regions of greatest - and contrasting regions of relative absence of - energetic particle precipitation. These regions are determined from electron and proton flux maps, derived from measurements from the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) system. Lightning data is obtained from the World Wide Lightning Location Network (WWLLN) for the period 2005 to 2011. The correlations of lightning strike rates are carried out with respect to Relative Sunspot Number (R), 10.7cm Solar radio flux (F10.7), Galactic Cosmic Ray (GCR) neutron monitor flux, the Ap geomagnetic activity index, and Disturbance Storm Time (DST) index. Correlations show dramatic variations in

  14. Nighttime observations of thunderstorm electrical activity from a high altitude airplane

    NASA Technical Reports Server (NTRS)

    Brook, M.; Rhodes, C.; Vaughan, O. H., Jr.; Orville, R. E.; Vonnegut, B.

    1984-01-01

    Photographs from a NASA U-2 airplane flying over nocturnal thunderstorms show frequent lightning activity in the upper part of the cloud. In some cases, unobscured segments of lightning channels 1 km or longer are visible in clear air around and above the cloud. Multiple images of lightning channels indicate multiple discharges in the same channel. Photographs taken through a diffraction grating show that the lightning has a spectrum similar to that observed in the lower troposphere. Lightning spectra obtained with a slitless line-scan spectrometer show strong singly ionized nitrogen emissions at 463.0 and 500.5 nm. Field changes measured with an electric field-change meter correlate with pulses measured with a photocell optical system. Optical signals corresponding to dart leader, return stroke, and continuing current events are readily distinguished in the scattered light emerging from the cloud surface. The variation of light intensity with time in lightning events is consistent with predicted modification of optical lightning signals by clouds. It appears that satellite based optical sensor measurements cannot provide reliable information on current rise times in return strokes. On the other hand, discrimination between cloud-to-ground and intracloud flashes and the counting of ground strokes is possible using the optical pulse pairs which have been identified with leader, return-stroke events in the cloud-to-ground flashes studied.

  15. Dynamics of Saturnian thunderstorms

    NASA Astrophysics Data System (ADS)

    Fischer, Georg; Pagaran, Joseph; Dyudina, Ulyana; Delcroix, Marc

    2016-04-01

    Thunderstorms on Saturn usually last much longer than their terrestrial counterparts. The Cassini spacecraft has observed Saturnian lightning storms with durations of a few days up to several months. During these long storms the lightning flash rate measured by the Cassini RPWS (Radio and Plasma Wave Science) instrument is waxing and waning or sometimes even going down to zero for a few days before rising up again. Dyudina et al. (2007, Icarus 190, 545-555) observed three bright storm cloud eruptions in 2004 correlating with high Saturnian lightning flash rates. To gain more insight into the dynamics of the thunderstorms we will further compare the distance-normalized lightning flash rate with contemporaneous images from the Cassini camera complemented with images of Saturn storms from amateur astronomers taken on Earth. We will show that the decrease of lightning flash rates in late January 2008 can be explained by a corresponding splitting of the thunderstorm cell. This led to two storm cells, a weaker one with probably no lightning activity that drifted westward, and a stronger one that kept its drift rate and developed large lightning activity again by mid-February 2008. We will show other examples of storm cell splitting suggesting that this process might be an important factor in the dynamics of Saturnian thunderstorms.

  16. Evidence for synchronicity of lightning activity in networks of spatially remote thunderstorms

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Aviv, Reuven; Ravid, Gilad; Yaniv, Roy; Ziv, Baruch; Price, Colin

    2006-08-01

    Visual observations by space shuttle astronauts have described a phenomenon in which spatially distant thunderstorm cells seem to reciprocally “ignite” lightning flashes in a semi-cyclic sequence. Lightning occurring in one cell is immediately followed by lightning in other cells, separated by tens or hundreds of kilometers. We present quantitative analysis of lightning observations conducted within the framework of the MEIDEX-sprite campaign on board the space shuttle Columbia in January 2003 [Yair, Y., Israelevich, P., Devir, A., Moalem, M., Price, C., Joseph, J., Levin, Z., Ziv, B., Teller, A., 2004. New sprites observations from the space shuttle. Journal of Geophysical Research 109, D15201/10.1029/2003JD004497]. Video footage of 6 storm systems with varying flash rates, which occurred over Africa, South America, Australia and the Pacific Ocean were analyzed. It is found that when the storm flash rate was high, lightning activity in horizontally remote electrically active cells became clustered, with bursts of nearly simultaneous activity separated by quiet periods. The recurrence time was ˜2.5 s, close to the previously reported time delay between consecutive ELF transient signals in the Schumann resonance range [Füllekrug, M., 1995. Schumann resonances in magnetic filed components. Journal of Atmospheric and Terresterial Physics 57, 479 484]. We propose that this behavior is similar to the collective dynamics of a network of weakly coupled limit-cycle oscillators [Strogatz, S.H., 2000, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica, D, 1 20]. Thunderstorm cells embedded within a mesoscale convective system (MCS) constitute such a network, and their lightning frequency is best described in terms of phase-locking of a globally coupled array [Kourtchatov, S.Y., Yu, V.V., Likhanskii, V.V., Napartovitch, A.P., Arecchi, F.T., Lapucci, A., 1995 Theory of phase locking of globally coupled laser

  17. Discernible signals of aerosol effects on the diurnal, weekly and decadal variations in thunderstorm activities

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2015-12-01

    Aerosol can affect atmospheric convection, cloud and precipitation in a variety of means by altering energy balance at the surface and in the atmospheric column, and by altering cloud micro- and macro-physical properties. The effects are often contingent upon meteorological variables and aerosol properties. By reducing surface energy budget, aerosol tends to suppress convection, but aerosol-induced heating in the lower atmosphere can destabilize the upper atmosphere and strengthen convection. Aerosol-induced altering cloud microphysics may also suppress or invigorate cloud development pending on various factors. In this talk, I will illustrate how aerosols likely contribute to the thunderstorm variability on three distinct time scales from diurnal, weekly to decadal and how different types of aerosols and varying meteorological conditions may affect with the observed trends. I will first demonstrate the opposite effects of conservative scattering and hygroscopic aerosols versus absorbing and hydrophobic aerosol on the long-term trends of thunderstorms. I will then illustrate that aerosol can have a discernible effect on the weekly cycle of thunderstorms and there is the dependence of the phase of the weekly cycle on aerosol types. Last, I will show how aerosol delays the occurrence of thunderstorms. Of course, the plausible connections are subject to various uncertainties that should be tackled with more rigorous modeling and extensive observation studies.

  18. Thunderstorm Hypothesis Reasoner

    NASA Technical Reports Server (NTRS)

    Mulvehill, Alice M.

    1994-01-01

    THOR is a knowledge-based system which incorporates techniques from signal processing, pattern recognition, and artificial intelligence (AI) in order to determine the boundary of small thunderstorms which develop and dissipate over the area encompassed by KSC and the Cape Canaveral Air Force Station. THOR interprets electric field mill data (derived from a network of electric field mills) by using heuristics and algorithms about thunderstorms that have been obtained from several domain specialists. THOR generates two forms of output: contour plots which visually describe the electric field activity over the network and a verbal interpretation of the activity. THOR uses signal processing and pattern recognition to detect signatures associated with noise or thunderstorm behavior in a near real time fashion from over 31 electrical field mills. THOR's AI component generates hypotheses identifying areas which are under a threat from storm activity, such as lightning. THOR runs on a VAX/VMS at the Kennedy Space Center. Its software is a coupling of C and FORTRAN programs, several signal processing packages, and an expert system development shell.

  19. Positron clouds within thunderstorms

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Smith, David M.; Hazelton, Bryna J.; Grefenstette, Brian W.; Kelley, Nicole A.; Lowell, Alexander W.; Schaal, Meagan M.; Rassoul, Hamid K.

    2015-08-01

    We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 s apart, each lasting approximately 0.2 s. The enhancements, which were approximately a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometre across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were caused by the presence of the aircraft in the electrified environment.

  20. Relationship between solar activities and thunderstorm activities in the Beijing area and the northeast region of China

    NASA Technical Reports Server (NTRS)

    Zhuang, Hong C.; Lu, Xi C.

    1989-01-01

    An analysis of the relationship between the IMF section boundary crossing, solar flares, the sunspot 11 year cycle variation and the thunderstorm index is given, using the superposition epoch method, for data from more than 13,000 thunderstorms from 10 meteorological stations in the Beijing area and the Northeast region during 1957 to 1978. The results show that for some years a correlation exists between the thunderstorm index and the positive IMF section boundary crossing. The thunderstorm index increases obviously within three days near the crossing and on the seventh day after the crossing. The influence of the crossing on thunderstorms is stronger in the first half year than the latter half year. For different classes of solar flares, the influences are not equally obvious. The solar flares which appeared on the west side, especially in the western region (from 0 to 30 deg) have the most obvious influence. There is no discernible correlation between the thunderstorm index and the sunspot eleven-year cycle.

  1. Diurnal variation of the global electric circuit from clustered thunderstorms

    NASA Astrophysics Data System (ADS)

    Hutchins, Michael L.; Holzworth, Robert H.; Brundell, James B.

    2014-01-01

    The diurnal variation of the global electric circuit is investigated using the World Wide Lightning Location Network (WWLLN), which has been shown to identify nearly all thunderstorms (using WWLLN data from 2005). To create an estimate of global electric circuit activity, a clustering algorithm is applied to the WWLLN data set to identify global thunderstorms from 2010 to 2013. Annual, seasonal, and regional thunderstorm activity is investigated in this new WWLLN thunderstorm data set in order to estimate the source behavior of the global electric circuit. Through the clustering algorithm, the total number of active thunderstorms are counted every 30 min creating a measure of the global electric circuit source function. The thunderstorm clusters are compared to precipitation radar data from the Tropical Rainfall Measurement Mission satellite and with case studies of thunderstorm evolution. The clustering algorithm reveals an average of 660±70 thunderstorms active at any given time with a peak-to-peak variation of 36%. The highest number of thunderstorms occurs in November (720±90), and the lowest number occurs in January (610±80). Thunderstorm cluster and electrified storm cloud activity are combined with thunderstorm overflight current measurements to estimate the global electric circuit thunderstorm contribution current to be 1090±70 A with a variation of 24%. By utilizing the global coverage and high time resolution of WWLLN, the total active thunderstorm count and current is shown to be less than previous estimates based on compiled climatologies.

  2. The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images

    NASA Astrophysics Data System (ADS)

    Wang, Pao K.; Cheng, Kai-Yuan; Setvak, Martin; Wang, Chen-Kang

    2016-04-01

    Gullwing-shaped cirrus layers are observed on an image above a severe thunderstorm occurred in Argentina taken by the instrument CALIOP on board of the CALIPSO satellite. The cirrus layers extended into a level in the stratosphere even higher than the above-anvil cirrus plumes that had been studied previously. This paper utilized the cloud model simulation results of a similar storm to explain the formation of such gullwing cirrus. It is shown that these cirrus layers can form from the moisture transported upward by successive internal gravity wave breaking at levels higher than the above-anvil plumes. The vertical locus of the wave crests where wave breaking occurs is itself gullwing-shaped which is the main reason why the thin cirrus layers are also gullwing shaped. Model results indicate that wave breaking can transport materials irreversibly into higher stratospheric layers and the gullwing-shaped cirrus is an evidence of this transport process.

  3. Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm. I - Campaign overview and initial ionospheric results

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Siefring, C. L.; Pfaff, R. F.; Kintner, P. M.; Larsen, M.

    1985-01-01

    The first simultaneous electric field observations performed in the ionosphere and atmosphere over an active nighttime thunderstorm are reported here. In the stratosphere, typical storm-related dc electric fields were detected from a horizontal distance of about 100 km, and transient electric fields due to lightning were measured at several different altitudes. In the ionosphere and mesosphere, lightning-induced transient electric fields in the range of tens of millivolts per meter were detected with rise times at least as fast as 0.2 ms and typical duration of 10-20 ms. The transients had significant components parallel to the magnetic field at 150 km altitude. This implies that either considerable Joule heating occurs or a collective instability is present because of the high drift velocities induced by the transient electric fields. Copious numbers of whistlers were generated by the storm and were detected above but not below the base of the ionosphere. The outline of a new model for direct whistler wave generation over an active thunderstorm is presented based on these observations. The intensity of the observed two-hop whistlers implies that they were amplified along their propagation path and suggests that particles were precipitated in both hemispheres.

  4. Ionospheric VLF waves and optical phenomena over active thunderstorms. Ph.D. Thesis

    SciTech Connect

    Li, Y.Q.

    1993-01-01

    In 1987 and 1988, two campaigns, the Wave Induced Particle Precipitation campaign and the Thunderstorm 2 campaign, were conducted to investigate lightning-generated effects in the upper atmosphere and ionosphere. Two rockets (apogees 420km and 330km) and 6 balloons (float altitudes 30km) were launched near thunderstorms in these campaigns. Optical and electric signals from hundreds of lightning strokes were recorded by both the rockets and balloons. Using the data obtained in these two campaigns, the author has been able to study some problems about lightning-generated VLF waves in the ionosphere which have not been well investigated previously. In this dissertation, the author reports the following: the downward-looking optical detector on the rocket recorded some anomalous characteristic optical phenomena which had not been reported previously. This study shows that they occurred above the balloon altitude (30km), and the results are interpreted in terms of discharges at high altitudes. The author studied the relation between the amplitude of lightning-generated VLF waves in the ionosphere and the lightning current recorded by the SUNYA lightning network. This study shows that the amplitude of waves at frequencies below 5 kHz has linear response to the lightning current. Above 5 kHz, there is not a significant linear correlation between the wave amplitude and the lightning current. The author has been able to determine the propagation path of the lightning-generated VLF waves from the source to the rocket. The path is consistent with the leaky waveguide hypothesis in which waves travel in the waveguide to the vicinity of the rockets, and then propagate vertically through the ionosphere. The author has found that the amplitude of lightning generated VLF waves have maxima and minima at different altitudes instead of being attenuated monotonically with altitude as expected.

  5. Ionospheric VLF waves and optical phenomena over active thunderstorms. [VLF (very low frequency)

    SciTech Connect

    Li, Y.Q.

    1993-01-01

    In 1987 and 1988, two campaigns, the Wave Induced Particle Precipitation campaign and the Thunderstorm II campaign, were conducted to investigate lightning-generated effects in the upper atmosphere and ionosphere. Two rockets and 6 balloons were launched near thunderstorms in these campaigns. Optical and electrical signals from hundreds of lightning strokes were recorded. The author has been able to study some problems about lightning-generated VLF waves in the ionosphere which have not been well investigated previously. This dissertation reports the following: (1) The downward-looking optical detector on the rocket recorded some anomalous characteristic optical phenomena. (2) The author studied the relation between the amplitude of lightning-generated VLF waves in the ionosphere and the lightning current recorded by the SUNYA lightning network. This study shows that the amplitude of waves at frequencies below 5 kHz has linear response to the lightning current. (3) The author has been able to determine the propagation path of the lightning-generated VLF waves from the source to the rocket. The path is consistent with the leaky waveguide hypothesis. (4) The amplitude of lightning-generated VLF waves has been found to have maxima and minima at different altitudes, instead of being attenuated monotonically with altitude as expected. A theoretical model has been proposed which shows that the wave amplitude profiles are the result of interference between waves from an aperture area below the rocket. (5) The author numerically calculated the absorption of VLF waves at the bottom of the ionosphere. The electron density gradient of the ionosphere was taken into account. The characteristics of the absorption, such as the frequency dependence, were investigated. The author deduced that significant heating of the ionosphere is caused by lightning-generated VLF waves.

  6. Thunderstorm activity in early Earth: same estimations from point of view a role of electric discharges in formation of prebiotic conditions

    NASA Astrophysics Data System (ADS)

    Serozhkin, Yu.

    2008-09-01

    Introduction The structure and the physical parameters of an early Earth atmosphere [1], most likely, played a determining role in formation of conditions for origin of life. The estimation of thunderstorm activity in atmosphere of the early Earth is important for understanding of the real role of electrical discharges during formation of biochemical compounds. The terrestrial lightning a long time are considered as one of components determining a physical state and chemical structure of an atmosphere. Liebig in 1827 has considered a capability of nitrogen fixation at discharges of lightning [2]. Recent investigations (Lamarque et al. 1996) have achieved that production rate of NOx due to lightning at 3·106 ton/year [3]. The efficiency of electric discharges as energy source for synthesis of low molecular weight organic compounds is explained by the several factors. To them concern effect of optical radiation, high temperature, shock waves and that is especially important, pulse character of these effects. The impulse impact is essentially reduced the probability of destruction of the formed compounds. However, for some reasons is not clear the real role of electric discharges in synthesis of biochemical compounds. The discharges used in experiments on synthesis of organic substances, do not remind the discharges observable in a nature. One more aspect of a problem about a role of electric discharges in forming pre-biotic conditions on the Earth is connected with the thunderstorm activity in a modern atmosphere. This activity is connected with the presence in an atmosphere of ice crystals and existing gradient of temperature. To tell something about a degree of thunderstorm activity during the early Earth, i.e. that period, when formed pre-biotic conditions were is very difficult. Astrobiological potential of various discharges First of all the diversity of electric discharges in terrestrial atmosphere (usual lightning, lightning at eruption of volcanoes

  7. Origins of Solar Activity

    NASA Astrophysics Data System (ADS)

    Rust, David M.

    1996-05-01

    Work under the subject grant began in August 1992, when Mr. J. J. Blanchette began study and data analysis in the area of solar flare research. Mr. Blanchette passed all requirements toward a Ph.D., except for the thesis. Mr. Blanchette worked with the APL Flare Genesis Experiment team to build a balloon-borne solar vector magnetograph. Other work on the magnetograph was partially supported by AFOSR grant F49620-94-1-0079. Mr. Blanchette assisted the Flare Genesis team prepare the telescope and focal plane optical elements for a test flight. He participated in instrument integ ration and in launch preparations for the flight, which took place on January 23, 1994. Mr. Blanchette was awarded a Masters Degree in Astrophysics by the Johns Hopkins University in recognition of his achievements. Mr. Blanchette indicated a desire to suspend work on the Ph.D. degree, and he left the AASERT program on August 31, 1994. Under the guidance of his advisor at JHU/APL, Dr. David M. Rust, Mr. Blanchette gained enough background in solar physics so that he can contribute to observational, analytical, and presentation efforts in solar research. Beginning in August 1995, Mr. Ashok Kumar was supported by the grant. Mr. Kumar demonstrated remarkable theoretical insight into the problems of solar activity. He developed the concept of intrinsic scale magnetic flux ropes in the solar atmosphere and interplanetary space. His model can explain the heating of interplanetary magnetic clouds. Recently, his idea has been extended to explain solar wind heating. If the idea is confirmed by further comparison with observations, it will be a major breakthrough in space physics and it may lead to an explanation for why the solar corona's temperature is over a million degrees.

  8. Thunderstorms: Thermodynamics and Organization

    NASA Astrophysics Data System (ADS)

    Zinner, Tobias; Groenemeijer, Pieter

    Thunderstorm research is strongly motivated by the wish to reduce the harm they do to people and their property. Thunderstorms are a global phenomenon, although some areas in the mid-latitudes and tropics are particularly at risk. They form where and whenever the ingredients for their formation come together: instability, moisture and lift. Especially upon interaction with vertical wind shear, they may develop into well-organized systems that produce hazards such as large hail, severe winds, heavy precipitation, and tornadoes.

  9. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  10. Summertime Thunderstorms Prediction in Belarus

    NASA Astrophysics Data System (ADS)

    Lapo, Palina; Sokolovskaya, Yaroslava; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    Mesoscale modeling with the Weather Research & Forecasting (WRF) system makes it possible to predict thunderstorm formation events by direct numerical simulation. In the present study, we analyze the feasibility and quality of thunderstorm prediction on the territory of Belarus for the summer period of 2014 based on analysis of several characteristic parameters in WRF modeling results that can serve as indicators of thunderstorms formation. These parameters include vertical velocity distribution, convective available potential energy (CAPE), K-index, SWEAT-index, Thompson index, lifted condensation level (LCL), and others, all of them being indicators of favorable atmospheric conditions for thunderstorms development. We perform mesoscale simulations of several cases of thunderstorm development in Belarus with WRF-ARW modeling system using 3 km grid spacing, WSM6 microphysics parameterization and explicit convection (no convective parameterization). Typical modeling duration makes 48 hours, which is equivalent to next-day thunderstorm prediction in operational use. We focus our attention to most prominent cases of intense thunderstorms in Minsk. For validation purposes, we use radar and satellite data in addition to surface observations. In summertime, the territory of Belarus is quite often under the influence of atmospheric fronts and stationary anticyclones. In this study, we subdivide thunderstorm cases under consideration into 2 categories: thunderstorms related to free convection and those related to forced convection processes. Our aim is to study the differences in thunderstorm indicator parameters between these two categories of thunderstorms in order to elaborate a set of parameters that can be used for operational thunderstorm forecasting. For that purpose, we analyze characteristic features of thunderstorms development on cold atmospheric fronts as well as thunderstorms formation in stable air masses. Modeling results demonstrate good predictive skill

  11. Maxwell currents under thunderstorms

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Musser, J. A.

    1982-01-01

    Time variations observed in thunderstorm electric fields may be interpreted in terms of a total Maxwell current density, varying slowly with time in the intervals between lightning discharges, which can be used to estimate and map thunderstorms. Using the quasi-static behavior of the Maxwell current density, an expression is derived for the field-dependent current density under a thunderstorm during the field recovery following a lightning discharge. Values of air conductivity under the small storm which range from 2 to 6 x 10 to the -13th mho/m are inferred. Data are presented which indicate that the area-average Maxwell current is not usually affected by lightning, and instead varies slowly throughout the evolution of the storm. In light of this, it is suggested that cloud electrification processes probably do not depend on the cloud electric field as much as on the more slowly varying storm dynamics and meteorological structure.

  12. Thunderstorm Overflight Program

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.; Vonnegut, B.; Orville, R.; Brook, M.; Tennis, R.; Rhodes, C.; Rust, D.

    1980-01-01

    The Thunderstorm Overflight Program is being conducted by NASA, NOAA, and universities to evaluate the feasibility of making meaningful measurements of lightning parameters from an orbiting platform above thunderstorms. A NASA instrumented U-2 high-altitude research aircraft was used during the summer of 1979 and spring of 1980 to collect data over the tops of the thunderstorms while ground-based measurements were being made simultaneously. Test sites at Langmuir Laboratory, Socorro, N. Mex., and the National Severe Storms Laboratory, Norman, Okla. were used for this program. Additional flights are planned for the spring and summer of 1981. Data from the NASA U-2 flights will also be used to interpret measurements made during the Nighttime/Daytime Optical Survey Lightning Experiment to be flown on the Space Shuttle in late 1981.

  13. Allergens and thunderstorm asthma.

    PubMed

    Nasser, Shuaib M; Pulimood, Thomas B

    2009-09-01

    Thunderstorm-related asthma is increasingly recognized in many parts of the world. This review focuses on important advances in the understanding of the mechanism of the role of allergens, in particular fungal spores such as Alternaria, in asthma epidemics associated with thunderstorms. From our observations, we have proposed that the prerequisites for this phenomenon are as follows: 1) a sensitized, atopic, asthmatic individual; 2) prior airway hyperresponsiveness before a sudden, large allergen exposure; 3) a large-scale thunderstorm with cold outflow occurring at a time and location during an allergen season in which large numbers of asthmatics are outdoors; and 4) sudden release of large amounts of respirable allergenic fragments, particularly fungal spores such as Alternaria. PMID:19671382

  14. Allergens and thunderstorm asthma.

    PubMed

    Nasser, Shuaib M; Pulimood, Thomas B

    2009-09-01

    Thunderstorm-related asthma is increasingly recognized in many parts of the world. This review focuses on important advances in the understanding of the mechanism of the role of allergens, in particular fungal spores such as Alternaria, in asthma epidemics associated with thunderstorms. From our observations, we have proposed that the prerequisites for this phenomenon are as follows: 1) a sensitized, atopic, asthmatic individual; 2) prior airway hyperresponsiveness before a sudden, large allergen exposure; 3) a large-scale thunderstorm with cold outflow occurring at a time and location during an allergen season in which large numbers of asthmatics are outdoors; and 4) sudden release of large amounts of respirable allergenic fragments, particularly fungal spores such as Alternaria.

  15. What Happens during a Thunderstorm?

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    2004-01-01

    A thunderstorm is a localized storm accompanied by lightning and thunder. It may also have gusty winds and often brings heavy rain. Some thunderstorms can also bring tornadoes and/or hail. During winter, localized heavy snow showers may also have thunder and lightning. And, in the western United States in summer, thunderstorms may be "dry,"…

  16. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  17. Studying the Effect of the Local Thunderstorm Cells on the Background ULF Magnetic Noise Parameter Spectra

    NASA Astrophysics Data System (ADS)

    Ermakova, E. N.; Kotik, D. S.; Ryabov, A. V.; Panyutin, A. A.

    2015-04-01

    We study the effect of the masking factor from the local thunderstorm cells on ULF magnetic field spectra with the inhomogeneous electron-density structures existing in the local ionosphere (ionospheric and lower ionospheric Alfvén resonators). Using an original data-processing technique for recording of horizontal magnetic components at the midlatitude reception point Novaya Zhizn', we have examined the contribution of the sources located at different distances from the reception point to the formation of the background noise spectra. The ULF signal processing technique permitted us to reduce the pulse component of magnetic noise in amplitude above a certain threshold and thus rule out the effect of a local thunderstorm activity. Frequency dependences of the azimuthal angle of the principal axis of the magnetic noise polarization ellipse are also analyzed. It is shown that the presence of the lower ionospheric Alfvén resonator leads to a nonmonotonic dependence of the azimuthal angle on the frequency. It was found that the local thunderstorms within 60 -80 km from the reception point completely mask the manifestation of the lower ionospheric Alfvén resonator in the ULF noise polarization parameters. To spot the local thunderstorm cells, we used the data from the meteorological radar facility MRL-4 in Nizhny Novgorod.

  18. Initiation Locations of Lightning Flashes in Two Florida Thunderstorms

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Karunarathna, N.; Stolzenburg, M.; Karunarathne, S.

    2015-12-01

    In this presentation we investigate the initiation locations of all intracloud (IC) and cloud-to-ground (CG) lightning flashes in two small thunderstorms which occurred over NASA/Kennedy Space Center on July 22, 2011. Initiation points of 47 of the 58 lightning flashes (19 IC and 28 CG) were identified using the first initial breakdown (IB) pulse of each flash measured with E-change data. In this study 32 of the flashes had an LDAR2 (VHF) location coincident with the first IB pulse. For 15 flashes we used Position By Fast Antenna or PBFA [Karunarathne et al., 2013, JGR Atmospheres] to determine the location of the first IB pulse. (The remaining flashes had neither LDAR2 nor PBFA locations of the first IB pulse.) All these initiation points were then mapped onto radar reflectivity of the parent thundercloud. The initiation points of the flashes tend to cluster in specific regions in thundercloud. Lightning activity in both thunderstorms lasted 35 minutes, and all the flash initiation points in each storm occurred within a horizontal region of 4 km by 8 km. Flash initiation altitudes for IC flashes of the two thunderstorms ranged from 5.1 km to 12.1 km altitude while for CG flashes the altitude ranged from 4.6 km to 8.1 km. Based on available radar data for 14 IC flashes and 27 CG flashes, all but one of the IC flashes originated in 10 dBZ - 30 dBZ reflectivity regions while 22 of the CG flashes originated in 30 dBZ - 40 dBZ reflectivities. During the lifetimes of these two storms, no Narrow Bipolar Events occurred.

  19. Study of stratospheric-ionospheric coupling during thunderstorms and tornadoes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1977-01-01

    A continuous-wave-spectrum high-frequency Doppler sounder array with three transmitters at each of three sites was used to observe the dynamics of the coupling of energy between the stratosphere and the ionosphere. During times of severe weather activity wavelike disturbances have been detected on ground-based ionospheric sounding records as perturbations in electron densities. Infrasonic waves with wave periods of 3-7 min and with horizontal phase velocities of 600-800 m/s were observed when there was thunderstorm activity; gravity waves with wave periods of 10-15 min and horizontal phase velocities of 100-200 m/s were detected when there was tornado activity. Both triangulations from the cross correlation functions of the Doppler records based on an assumption of no background wind shear and ray-tracing computations including an assumed background wind shear indicate that the waves originated in the vicinity of the thunderstorms and tornadoes. A comparison of the wavelengths of the infrasonic and gravity waves observed at ionospheric heights and those in cloud-top pictures from satellites show that they are all of the order of 100-300 km.

  20. Electrical structure in two thunderstorm anvil clouds

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.

    1989-01-01

    Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.

  1. On the role of thermodynamics and cloud-aerosol-precipitation interactions over thunderstorm activity during GoAmazon and ACRIDICON-CHUVA field experiments

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Morales, C. A.; Hoeller, H.; Braga, R. C.; Machado, L.; Wendisch, M.; Andreae, M. O.; Rosenfeld, D.; Poeschl, U.; Biscaro, T.; Lima, W.; Eichholz, C.; Oliveira, R. A. J.; Sperling, V.; Carvalho, I.; Calheiros, A. J. P.; Amaral, L. F.; Cecchin, M.; Saraiva, J.; Saraiva, I.; Schumacher, C.; Funk, A. B.

    2015-12-01

    Based on satellite data, total (intracloud and cloud-to-ground) lightning activity climatological annual cycle over the GoAmazon area of interest (from T0 to T3 sites) shows that lightning activity is moderate (up to 10 flashes per day - fl day-1) throughout the wet (December-March) and dry (April-August) seasons, with T3 always being a little greater than T1 and T0 sites, respectively. During the dry-to-wet transition season (September-October), however, lightning activity peaks up to 25 fl day-1 at T1, followed by T3 (20 fl day-1) and T0 (15 fl day-1). The diurnal cycle reveals that the onset of deep convection during this same season starts one hour and peaks two hours earlier than the wet season. In the Amazon, cloud updrafts are primarily controlled by the local environment thermodynamics. During the dry-to-wet transition season, thermodynamics is significantly changed by land cover land cover where cloud base heights are elevated over deforested areas potentially increasing the strength of updrafts due to a better processing of the convective available potential energy, and therefore also increasing cloud electrification. The total (intracloud and cloud-to-ground) LIghtning NET(LINET - Nowcast) installed in September-October 2014 for GoAmazon IOP2 and ACRIDICON-CHUVA field experiments and the set of weather radars revealed that the thunderstorm enhancement over T1 (Manaus) during the dry-to-wet season is driven by the interaction between river breeze and the main easterly winds over Amazon basin, resulting in a locally forced convergent flow on the east side of Rio Negro which drives deep afternoon convection. In terms of atmospheric pollution, the dry-to-wet season is also marked by increased biomass burning, and the city of Manaus (T1) is a local polluted heat island. We will also present quantified thermodynamical and microphysical differences between the thunderstorms that developed over T0, T1 and T2. Our hypothesis is that cloud charge centers, total

  2. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  3. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore » disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  4. Infrasound from thunderstorms

    NASA Astrophysics Data System (ADS)

    Liszka, L. J.

    2006-12-01

    The present work summarizes the results of infrasonic observations of thunderstorms recorded by the Swedish Infrasound Network (SIN). A lightning in the atmosphere is a source of cylindrical shock waves. When the distance from the source increases, more and more energy is transferred into the low-frequency range through the same mechanism as for shock waves from supersonic aircraft. It is difficult to estimate maximal distances at which infrasound from a single lightning may be detected. It is, however, clear that distances between the SIN arrays (250 600 km) are in most cases too large in order to identify the same lightning from at least two arrays. During the recent summer, at few occasions, the same thunderstorm cell, and even the same lightning, could be observed by two arrays. That means that intense lightning may be, during favourable meteorological conditions, observed at distances up to 300 km. The infrasonic data may be used to determine the angular extent of the discharge, as seen by the array, its radial extent (in kilometres) and its acoustical intensity. Recent results of these morphological studies are presented.

  5. The physics of a thunderstorm

    NASA Astrophysics Data System (ADS)

    Mason, John; Mason, Nigel

    2003-09-01

    The salient facts concerning the dynamical, physical and electrical properties of a thunderstorm, and of the detailed structure and associated electric field-changes of lightning flashes, are marshalled to deduce the criteria for a satisfactory quantitative theory of charge generation and separation leading to the growth of electric fields strong enough to initiate and to sustain lightning activity. A quantitative theory is presented of how charges are generated and separated when supercooled cloud droplets make grazing contact with the undersides of hail pellets (graupel) polarized initially by the Earth's fine-weather electric field. The rebounding droplets acquire a positive charge and are carried by the convective updraught towards the top of the cloud, while the hail pellets carrying a net negative charge fall towards cloud base. This creates a vertical dipole field which increases the polarizing charges on the hail pellets and so accelerates the rates of charge generation and separation, and so reinforces the vertical electrical field, which grows exponentially until insulation of the air breaks down and triggers a lightning flash. It is demonstrated that a thunderstorm cell, 2 km in diameter, producing small hail falling at 30 mm h-1 can produce vertical electric fields of ~5000 V cm-1 in about 10 min involving the separation of ~50 C of charge, enough to initiate a lightning flash which, on average, neutralizes about 20 C. As long as the hail persists, it continues to generate and separate sufficient charge to produce a succession of lightning flashes at about 30 s intervals. More frequent discharges at say 10 s intervals would require high rates of hail production in larger cells but are more likely to be produced by large multi-cellular storms sustained by strong convective currents for perhaps several hours.

  6. First observations of Gigantic Jets from Monsoon Thunderstorms over India

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Maurya, Ajeet; Chanrion, Olivier; Neubert, Torsten; Cummer, Steven; Mlynarczyk, Janusz; Bór, József; Siingh, Devendraa; Cohen, Morris; Kumar, Sushil

    2016-04-01

    Gigantic Jets are electric discharges from thunderstorm cloud tops to the bottom of the ionosphere at ~80 km altitude. After their first discovery in 2001, relatively few observations have been reported. Most of these are from satellites at large distances and a few tens from the ground at higher spatial resolution. Here we report the first Gigantic Jets observed in India from two thunderstorm systems that developed over the land surface from monsoon activity, each storm producing two Gigantic Jets. The jets were recorded by a video camera system at standard video rate (20 ms exposure) at a few hundred km distance. ELF measurements suggest that the jets are of the usual negative polarity and that they develop in less than 40 ms, which is faster than most jets reported in the past. The jets originate from the leading edge of a slowly drifting convective cloud complex close to the highest regions of the clouds and carry ~25 Coulomb of charge to the ionosphere. One jet has a markedly horizontal displacement that we suggest is caused by a combination of close-range cloud electric fields at inception, and longer-range cloud fields at larger distances during full development. The Gigantic Jets are amongst the few that have been observed over land.

  7. Thunderstorms, Andean Mountains Ridgeline, Argentina

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In this scenic view of thunderstorms skirting the eastern ridgeline of the Andeas Mountains in northern Argentina (approximate coordinates 28.0S, 57.0W), the confluence of the Rio Salado and Rio Saladillo where they merge with the Rio Parana can be seen in sunglint. Thunderstorms along the eastern Andes are typical at this time of year (Southern Hemisphere summer) with anvils moving to the east from the core of the storm.

  8. Thunderstorms over Brazil

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph, acquired in February 1984 by an astronaut aboard the space shuttle, shows a series of mature thunderstorms located near the Parana River in southern Brazil. With abundant warm temperatures and moisture-laden air in this part of Brazil, large thunderstorms are commonplace. A number of overshooting tops and anvil clouds are visible at the tops of the clouds. Storms of this magnitude can drop large amounts of rainfall in a short period of time, causing flash floods. However, a NASA-funded researcher has discovered that tiny airborne particles of pollution may modify developing thunderclouds by increasing the quantity and reducing the size of the ice crystals within them. These modifications may affect the clouds' impact on the Earth's 'radiation budget,' or the amount of radiation that enters and leaves our planet. Steven Sherwood, a professor at Yale University, found that airborne aerosols reduce the size of ice crystals in thunderclouds and may reduce precipitation as well. Using several satellites and instruments including NASA's Total Ozone Mapping Spectrometer (TOMS) and NASA's Tropical Rainfall Measuring Mission (TRMM) satellite, Sherwood observed how airborne pollution particles (aerosols) affect large thunderstorms, or cumulonimbus clouds in the tropics. Common aerosols include mineral dust, smoke, and sulfates. An increased number of these particles create a larger number of smaller ice crystals in cumulonimbus clouds. As a result of their smaller size, the ice crystals evaporate from a solid state directly into a gas, instead of falling as rain. Sherwood noted that this effect is more prevalent over land than open ocean areas. Previous research by Daniel Rosenfeld of Hebrew University revealed that aerosols and pollution reduced rainfall in shallow cumulus clouds of liquid water, which do not have the capability to produce as much rainfall. Sherwood expanded on that research by looking at cumulonimbus clouds with more ice particles. Studies

  9. A study of lightning in winter thunderstorms and the analysis of thunderstorm overflight data

    NASA Technical Reports Server (NTRS)

    Brook, Marx

    1995-01-01

    Thunderstorms and the activities associated with them was the emphasis of this final report. The primary goal of the investigation of the dynamics, microphysics, and the electrical properties of tropical thunderstorms, was to understand the process or processes which initiate the precipitation in various convective clouds. A concept that the degree of atmospheric instability that determines the updraft velocity is different between those storms that generate electrical activity and those that do not. This is apparent in temperate latitudes, but in tropical regions, little knowledge of these interactions is available. Several ground monitoring stations have been set up and, along with a waveform recorder at one of the stations, the data collected from these stations will be analyzed in conjunction with other data collected from ship and airborne radars and airborne in situ measurements of electrical activity in coordination with the TOGA-COARE program.

  10. Thunderstorms Increase Mercury Wet Deposition.

    PubMed

    Holmes, Christopher D; Krishnamurthy, Nishanth P; Caffrey, Jane M; Landing, William M; Edgerton, Eric S; Knapp, Kenneth R; Nair, Udaysankar S

    2016-09-01

    Mercury (Hg) wet deposition, transfer from the atmosphere to Earth's surface by precipitation, in the United States is highest in locations and seasons with frequent deep convective thunderstorms, but it has never been demonstrated whether the connection is causal or simple coincidence. We use rainwater samples from over 800 individual precipitation events to show that thunderstorms increase Hg concentrations by 50% relative to weak convective or stratiform events of equal precipitation depth. Radar and satellite observations reveal that strong convection reaching the upper troposphere (where high atmospheric concentrations of soluble, oxidized mercury species (Hg(II)) are known to reside) produces the highest Hg concentrations in rain. As a result, precipitation meteorology, especially thunderstorm frequency and total rainfall, explains differences in Hg deposition between study sites located in the eastern United States. Assessing the fate of atmospheric mercury thus requires bridging the scales of global transport and convective precipitation. PMID:27464305

  11. Thunderstorms Increase Mercury Wet Deposition.

    PubMed

    Holmes, Christopher D; Krishnamurthy, Nishanth P; Caffrey, Jane M; Landing, William M; Edgerton, Eric S; Knapp, Kenneth R; Nair, Udaysankar S

    2016-09-01

    Mercury (Hg) wet deposition, transfer from the atmosphere to Earth's surface by precipitation, in the United States is highest in locations and seasons with frequent deep convective thunderstorms, but it has never been demonstrated whether the connection is causal or simple coincidence. We use rainwater samples from over 800 individual precipitation events to show that thunderstorms increase Hg concentrations by 50% relative to weak convective or stratiform events of equal precipitation depth. Radar and satellite observations reveal that strong convection reaching the upper troposphere (where high atmospheric concentrations of soluble, oxidized mercury species (Hg(II)) are known to reside) produces the highest Hg concentrations in rain. As a result, precipitation meteorology, especially thunderstorm frequency and total rainfall, explains differences in Hg deposition between study sites located in the eastern United States. Assessing the fate of atmospheric mercury thus requires bridging the scales of global transport and convective precipitation.

  12. The Electrical Structure of Thunderstorms

    NASA Technical Reports Server (NTRS)

    Workman, E J; Helzer, R E; Pelsor, G T

    1942-01-01

    The time histories of thunderstorm charge distribution during three storms occurring during the summer of 1940 in the vicinity of the Albuquerque Airport were investigated by the use of eight synchronized recording electrometers arranged in a particular pattern over a field 1.6 kilometers above sea level.

  13. Severe thunderstorms and climate change

    NASA Astrophysics Data System (ADS)

    Brooks, H. E.

    2013-04-01

    As the planet warms, it is important to consider possible impacts of climate change on severe thunderstorms and tornadoes. To further that discussion, the current distribution of severe thunderstorms as a function of large-scale environmental conditions is presented. Severe thunderstorms are much more likely to form in environments with large values of convective available potential energy (CAPE) and deep-tropospheric wind shear. Tornadoes and large hail are preferred in high-shear environments and non-tornadic wind events in low shear. Further, the intensity of tornadoes and hail, given that they occur, tends to be almost entirely a function of the shear and only weakly depends on the thermodynamics. Climate model simulations suggest that CAPE will increase in the future and the wind shear will decrease. Detailed analysis has suggested that the CAPE change will lead to more frequent environments favorable for severe thunderstorms, but the strong dependence on shear for tornadoes, particularly the strongest ones, and hail means that the interpretation of how individual hazards will change is open to question. The recent development of techniques to use higher-resolution models to estimate the occurrence of storms of various kinds is discussed. Given the large interannual variability in environments and occurrence of events, caution is urged in interpreting the observational record as evidence of climate change.

  14. Activation of a dormant replication origin is essential for Haloferax mediterranei lacking the primary origins

    PubMed Central

    Yang, Haibo; Wu, Zhenfang; Liu, Jingfang; Liu, Xiaoqing; Wang, Lei; Cai, Shuangfeng; Xiang, Hua

    2015-01-01

    The use of multiple origins for chromosome replication has been demonstrated in archaea. Similar to the dormant origins in eukaryotes, some potential origins in archaea appear to be inactive during genome replication. We have comprehensively explored the origin utilization in Haloferax mediterranei. Here we report three active chromosomal origins by genome-wide replication profiling, and demonstrate that when these three origins are deleted, a dormant origin becomes activated. Notably, this dormant origin cannot be further deleted when the other origins are already absent and vice versa. Interestingly, a potential origin that appears to stay dormant in its native host H. volcanii lacking the main active origins becomes activated and competent for replication of the entire chromosome when integrated into the chromosome of origin-deleted H. mediterranei. These results indicate that origin-dependent replication is strictly required for H. mediterranei and that dormant replication origins in archaea can be activated if needed. PMID:26374389

  15. Generation of Runaway Electrons Induced by Cosmic-Ray Muons in Thunderstorm Electric Fields

    NASA Astrophysics Data System (ADS)

    Torii, T.; Nishijima, T.; Sugita, T.; Kawasaki, Z.

    2004-05-01

    Gamma ray dose-rate increases associated with winter thunderstorm activities have been observed in the coastal areas facing the Sea of Japan [1]. In order to investigate the generation of energetic photons which originate in thunderstorm electric fields, we have calculated the behavior of secondary cosmic ray electrons and photons in electric fields with Monte Carlo method. In the calculation, the electron and photon fluxes have increased greatly in the region where the field strength exceeds about 280 P(z) kV/m-atm, and these energy spectra show a large increase in the energy region up to several MeV [2]. In addition to the analysis of the electromagnetic component of cosmic rays, we have carried out the Monte Carlo transport calculations of the cosmic-ray muons and associated particles (e.g. knock-on electrons and bremsstrahlung photons) in thunderstorm electric fields, using GEANT4 code [3]. Muons form a large part of the secondary cosmic-rays and directly reach the regions of strong electric fields owing to their high penetrability in the atmosphere. Therefore, they can serve as the source of a considerable amount of runaway electrons, through their ionization process with air molecules, and their decay into energetic electrons. The electron and photon fluxes show notable increases in the strong electric field, while the muon flux does not fluctuate significantly. These results indicate that the production of energetic electrons by cosmic ray muons plays an important role in the enhancement of electron and photon fluxes in thunderstorm electric fields. Finally, we discuss a feasibility of muon-triggered lightning deduced from the muon transport calculation inside thunderstorm electric fields. From the calculation results, we estimate that the irradiation of muon beams rapidly increases energy deposition in the region of strong electric fields, and produce numerous electron - ion pairs. These productions may induce the lightning discharge by the runaway

  16. Vertically integrated moisture flux convergence as a predictor of thunderstorms

    NASA Astrophysics Data System (ADS)

    van Zomeren, Jeroen; van Delden, Aarnout

    2007-02-01

    Vertically Integrated Moisture Flux Convergence (VIMFC) alone and in combination with the lifted stability index of the most unstable layer (SMUL) is evaluated as a thunderstorm predictor. By using six-hourly standard pressure weather analysis data from the European Centre for Medium-range Weather Forecasts (ECMWF) during 30 days in the summers of 1992 and 1994 containing several severe weather events along with quiescent events in northwestern Europe 17,206 events are obtained. The location and time of a lightning discharge are obtained from the Arrival Time Difference (ATD) sferics lightning location system from the UK Meteorological Office. Using the Heidke Skill Score (HEIDKE) to determine the best threshold we conclude that VIMFC alone, does not perform well as a dichotomous thunderstorm predictor compared to the stability index. However, the Thundery Case Probability (TCP) tested as function of VIMFC results in a high correlation with thunderstorms. By combining SMUL and VIMFC the surplus value as a thunderstorm predictor of VIMFC was established. TCP percentages up to 95% were found in an unstable environment with high positive values of VIMFC. In a marginally unstable environment with a high positive VIMFC the thunderstorm probability is higher than in a very unstable environment with no or negative VIMFC. These results are illustrated with a study of the case of the disastrous flash flood at Vaison-La-Romaine (southeastern France) on September 22, 1992. Although latent instability was present in a large area surrounding Vaison-La-Romaine, nearly all and especially the most severe thunderstorm activity occurred within the smaller area with positive VIMFC and latent instability.

  17. Thunderstorm observations from Space Shuttle

    NASA Technical Reports Server (NTRS)

    Vonnegut, B.; Vaughan, O. H., Jr.; Brook, M.

    1983-01-01

    Results of the Nighttime/Daytime Optical Survey of Lightning (NOSL) experiments done on the STS-2 and STS-4 flights are covered. During these two flights of the Space Shuttle Columbia, the astronaut teams of J. Engle and R. Truly, and K. Mattingly II and H. Hartsfield took motion pictures of thunderstorms with a 16 mm cine camera. Film taken during daylight showed interesting thunderstorm cloud formations, where individual frames taken tens of seconds apart, when viewed as stereo pairs, provided information on the three-dimensional structure of the cloud systems. Film taken at night showed clouds illuminated by lightning with discharges that propagated horizontally at speeds of up to 10 to the 5th m/sec and extended for distances on the order of 60 km or more.

  18. Thunderstorm off Florida coast, USA

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This cumulonimbus thunderhead with its towering anvil was photographed just north of Cape Canaveral and the Kennedy Space Center, Florida (28.5N, 80.5W). Cumulonimbus clouds are the familiar thunderheads that can tower up to as much as 75,000 ft. producing thunderstorms and sometimes tornadoes as well. Inland from the cape, Orlando in the center of the state, can be seen.

  19. Thunderstorm, Texas Gulf Coast, USA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This thunderstorm along the Texas Gulf Coast (29.0N, 95.0W), USA is seen as the trailing edge of a large cloud mass formed along the leading edge of a spring frontal system stretching northwest to southeast across the Texas Gulf Coast. This system brought extensive severe weather and flooding to parts of Texas and surrounding states. Muddy water discharging from coastal streams can be seen in the shallow Gulf of Mexico as far south as Lavaca Bay.

  20. Asthma outbreak during a thunderstorm.

    PubMed

    Packe, G E; Ayres, J G

    1985-07-27

    An outbreak of acute asthma occurred in Birmingham and the surrounding area on July 6 and 7, 1983. In most patients symptoms began at the time of sudden climatic changes associated with a thunderstorm. Air pollution was not a factor. The large and sudden increase in numbers of airborne fungal spores, especially Didymella exitialis and Sporobolomyces, around the time of the outbreak suggests that they may have been partly contributory, although a direct causal effect has not yet been established.

  1. A giant thunderstorm on Saturn.

    PubMed

    Fischer, G; Kurth, W S; Gurnett, D A; Zarka, P; Dyudina, U A; Ingersoll, A P; Ewald, S P; Porco, C C; Wesley, A; Go, C; Delcroix, M

    2011-07-06

    Lightning discharges in Saturn's atmosphere emit radio waves with intensities about 10,000 times stronger than those of their terrestrial counterparts. These radio waves are the characteristic features of lightning from thunderstorms on Saturn, which last for days to months. Convective storms about 2,000 kilometres in size have been observed in recent years at planetocentric latitude 35° south (corresponding to a planetographic latitude of 41° south). Here we report observations of a giant thunderstorm at planetocentric latitude 35° north that reached a latitudinal extension of 10,000 kilometres-comparable in size to a 'Great White Spot'-about three weeks after it started in early December 2010. The visible plume consists of high-altitude clouds that overshoot the outermost ammonia cloud layer owing to strong vertical convection, as is typical for thunderstorms. The flash rates of this storm are about an order of magnitude higher than previous ones, and peak rates larger than ten per second were recorded. This main storm developed an elongated eastward tail with additional but weaker storm cells that wrapped around the whole planet by February 2011. Unlike storms on Earth, the total power of this storm is comparable to Saturn's total emitted power. The appearance of such storms in the northern hemisphere could be related to the change of seasons, given that Saturn experienced vernal equinox in August 2009.

  2. A giant thunderstorm on Saturn.

    PubMed

    Fischer, G; Kurth, W S; Gurnett, D A; Zarka, P; Dyudina, U A; Ingersoll, A P; Ewald, S P; Porco, C C; Wesley, A; Go, C; Delcroix, M

    2011-07-01

    Lightning discharges in Saturn's atmosphere emit radio waves with intensities about 10,000 times stronger than those of their terrestrial counterparts. These radio waves are the characteristic features of lightning from thunderstorms on Saturn, which last for days to months. Convective storms about 2,000 kilometres in size have been observed in recent years at planetocentric latitude 35° south (corresponding to a planetographic latitude of 41° south). Here we report observations of a giant thunderstorm at planetocentric latitude 35° north that reached a latitudinal extension of 10,000 kilometres-comparable in size to a 'Great White Spot'-about three weeks after it started in early December 2010. The visible plume consists of high-altitude clouds that overshoot the outermost ammonia cloud layer owing to strong vertical convection, as is typical for thunderstorms. The flash rates of this storm are about an order of magnitude higher than previous ones, and peak rates larger than ten per second were recorded. This main storm developed an elongated eastward tail with additional but weaker storm cells that wrapped around the whole planet by February 2011. Unlike storms on Earth, the total power of this storm is comparable to Saturn's total emitted power. The appearance of such storms in the northern hemisphere could be related to the change of seasons, given that Saturn experienced vernal equinox in August 2009. PMID:21734705

  3. Red Sprites and Blue Jets: Transient Electrical Effects of Thunderstorms on the Middle and Upper Atmospheres

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.; Wescott, E. M.

    1998-01-01

    Four new and diverse classes of energetic electrical effects of thunderstorms have been documented over the past 5 years. Two of these classes, called red sprites and blue jets, are large-scale optical emissions excited by lightning. Together they span the entire distance between tops of some thunderstorms and the ionosphere. Gamma-ray (1 MeV) bursts and extremely intense VHF radio bursts some 10(exp 4) times larger than normally produced by lightning have been observed from low Earth orbit and are also believed to originate in thunderstorms. Taken together, these newly discovered classes of natural electrical phenomena provide evidence that thunderstorms are both more energetic and capable of electrically interacting with the upper atmosphere and ionosphere to a far greater degree than has been appreciated in the past. Here, characteristics of red sprites and blue jets are summarized.

  4. The Magnetic Origins of Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    The defining physical property of the Sun's corona is that the magnetic field dominates the plasma. This property is the genesis for all solar activity ranging from quasi-steady coronal loops to the giant magnetic explosions observed as coronal mass ejections/eruptive flares. The coronal magnetic field is also the fundamental driver of all space weather; consequently, understanding the structure and dynamics of the field, especially its free energy, has long been a central objective in Heliophysics. The main obstacle to achieving this understanding has been the lack of accurate direct measurements of the coronal field. Most attempts to determine the magnetic free energy have relied on extrapolation of photospheric measurements, a notoriously unreliable procedure. In this presentation I will discuss what measurements of the coronal field would be most effective for understanding solar activity. Not surprisingly, the key process for driving solar activity is magnetic reconnection. I will discuss, therefore, how next-generation measurements of the coronal field will allow us to understand not only the origins of space weather, but also one of the most important fundamental processes in cosmic and laboratory plasmas.

  5. Active causation and the origin of meaning.

    PubMed

    van Hateren, J H

    2015-02-01

    Purpose and meaning are necessary concepts for understanding mind and culture, but appear to be absent from the physical world and are not part of the explanatory framework of the natural sciences. Understanding how meaning (in the broad sense of the term) could arise from a physical world has proven to be a tough problem. The basic scheme of Darwinian evolution produces adaptations that only represent apparent ("as if") goals and meaning. Here I use evolutionary models to show that a slight, evolvable extension of the basic scheme is sufficient to produce genuine goals. The extension, targeted modulation of mutation rate, is known to be generally present in biological cells and gives rise to two phenomena that are absent from the non-living world: intrinsic meaning and the ability to initiate goal-directed chains of causation (active causation). The extended scheme accomplishes this by utilizing randomness modulated by a feedback loop that is itself regulated by evolutionary pressure. The mechanism can be extended to behavioural variability as well and thus shows how freedom of behaviour is possible. A further extension to communication suggests that the active exchange of intrinsic meaning between organisms may be the origin of consciousness, which in combination with active causation can provide a physical basis for the phenomenon of free will. PMID:25056914

  6. A Radar-Based Climatology of Thunderstorm Days across New York State.

    NASA Astrophysics Data System (ADS)

    Falconer, Phillip D.

    1984-07-01

    Archived radar reports, derived from the National Weather Service radar network, were used to estimate the average annual frequencies of thunderstorm days across New York State for the period 1978-81. The archival records consist of manually-digitized radar (MDR) data, available on magnetic tapes and arranged as hourly, digitally-encoded radar reflectivity values within a high-resolution grid of reporting blocks, each 45 × 45 km. Analyses of these data made use of an experimentally-derived relationship between radar reflectivities and the presence and intensities of thunderstorms. The radar-based thunderstorm day climatology generally agreed to within 15% of conventional, surface-based thunderstorm day statistics reported for the same period by National Weather Service (NWS) offices located within range of two or more network radars in the State. Poorest agreement between annual totals was found at selected NWS offices in the Greater New York City Metropolitan Area and northward into the lower Hudson River Valley, in far western New York and over far northern New York. Where redundant, near-continuous network radar coverage was available, a northwest-to-southeast increase of thunderstorm days, approaching an annual maximum of 45 in downstate New York was revealed. This gradient in thunderstorm day activity is significantly different from that depicted on isokeraunic maps derived from conventional thunder observing protocol. Because the MDR data are archived on a high-resolution grid of reporting blocks, local thunderstorm maxima on a scale of tens of kilometers may be resolved. Analyses further revealed that 5-25% of all thunderstorm days contained sufficiently vigorous storms to be characterized as `intense'. The greatest frequency of intense thunderstorm days, approaching 8 annually, was located in the highly-populated region of the State along the New York-New Jersey borders, northwest of the Greater New York City Metropolitan Area.

  7. A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast

    PubMed Central

    Hoggard, Timothy; Shor, Erika; Müller, Carolin A.; Nieduszynski, Conrad A.; Fox, Catherine A.

    2013-01-01

    Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. PMID:24068963

  8. Distinct weekly cycles of thunderstorms and a potential connection with aerosol type in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Li, Zhanqing; Liu, Lin; Zhou, Lijing; Cribb, Maureen; Zhang, Fang

    2016-08-01

    This study identified distinct weekly cycles in thunderstorm activities and convection-associated variables in two regions of China dominated by different types of aerosol during the summers of 1983-2005. In both regions, visibility has similar weekly cycle: lower on weekdays than on weekends. Barring any possible "natural" weekly cycles, the findings of the poorest and best visibility on Friday and Monday, respectively, point to the weekly variations in anthropogenic emissions. However, the phases of the thunderstorm cycles between the two regions were different. In central China, thunderstorms occurred more frequently from Saturday to Monday than on other days. The cycles were out of phase in southeast China. It is hypothesized that the phase difference is associated with aerosol type. In central China aerosol absorption is strong, which suppresses convection more on weekdays. In southeast China aerosols are less absorbing but more hygroscopic, which helps invigorate thunderstorms more on weekdays.

  9. Thunderstorm-asthma and pollen allergy.

    PubMed

    D'Amato, G; Liccardi, G; Frenguelli, G

    2007-01-01

    Thunderstorms have been linked to asthma epidemics, especially during the pollen seasons, and there are descriptions of asthma outbreaks associated with thunderstorms, which occurred in several cities, prevalently in Europe (Birmingham and London in the UK and Napoli in Italy) and Australia (Melbourne and Wagga Wagga). Pollen grains can be carried by thunderstorm at ground level, where pollen rupture would be increased with release of allergenic biological aerosols of paucimicronic size, derived from the cytoplasm and which can penetrate deep into lower airways. In other words, there is evidence that under wet conditions or during thunderstorms, pollen grains may, after rupture by osmotic shock, release into the atmosphere part of their content, including respirable, allergen-carrying cytoplasmic starch granules (0.5-2.5 microm) or other paucimicronic components that can reach lower airways inducing asthma reactions in pollinosis patients. The thunderstorm-asthma outbreaks are characterized, at the beginning of thunderstorms by a rapid increase of visits for asthma in general practitioner or hospital emergency departments. Subjects without asthma symptoms, but affected by seasonal rhinitis can experience an asthma attack. No unusual levels of air pollution were noted at the time of the epidemics, but there was a strong association with high atmospheric concentrations of pollen grains such as grasses or other allergenic plant species. However, subjects affected by pollen allergy should be informed about a possible risk of asthma attack at the beginning of a thunderstorm during pollen season. PMID:17156336

  10. Thunderstorm-asthma and pollen allergy.

    PubMed

    D'Amato, G; Liccardi, G; Frenguelli, G

    2007-01-01

    Thunderstorms have been linked to asthma epidemics, especially during the pollen seasons, and there are descriptions of asthma outbreaks associated with thunderstorms, which occurred in several cities, prevalently in Europe (Birmingham and London in the UK and Napoli in Italy) and Australia (Melbourne and Wagga Wagga). Pollen grains can be carried by thunderstorm at ground level, where pollen rupture would be increased with release of allergenic biological aerosols of paucimicronic size, derived from the cytoplasm and which can penetrate deep into lower airways. In other words, there is evidence that under wet conditions or during thunderstorms, pollen grains may, after rupture by osmotic shock, release into the atmosphere part of their content, including respirable, allergen-carrying cytoplasmic starch granules (0.5-2.5 microm) or other paucimicronic components that can reach lower airways inducing asthma reactions in pollinosis patients. The thunderstorm-asthma outbreaks are characterized, at the beginning of thunderstorms by a rapid increase of visits for asthma in general practitioner or hospital emergency departments. Subjects without asthma symptoms, but affected by seasonal rhinitis can experience an asthma attack. No unusual levels of air pollution were noted at the time of the epidemics, but there was a strong association with high atmospheric concentrations of pollen grains such as grasses or other allergenic plant species. However, subjects affected by pollen allergy should be informed about a possible risk of asthma attack at the beginning of a thunderstorm during pollen season.

  11. Positron density enhancements recorded within a thunderstorm by ADELE

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Hazelton, B. J.; Grefenstette, B.; Kelley, N. A.; Lowell, A. W.; Schaal, M.; Rassoul, H.

    2015-12-01

    We report the observation of two unusual positron density enhancements made inside an active thunderstorm by the Airborne Detector for Energetic Lightning Emissions (ADELE) onboard a Gulfstream V aircraft in August 2009. ADELE recorded two count rate enhancements of 511 keV annihilation gamma rays, 35 seconds apart, that lasted approximately 0.2 seconds each. The enhancements were about a factor of 12 above background and had energy spectra consistent with clouds of positrons, approximately 1 km across, briefly surrounding the aircraft. A flat-plate antenna on the underside of the aircraft also recorded electrical activity during the positron enhancements. It is not clear how the positron clouds were created within the thunderstorm or whether the presence of the aircraft played a role in their production. In this presentation, we will show the ADELE data along with model fits of the positron spectra. We shall also discuss possible sources of the positron excesses.

  12. Aircraft observations of extreme ozone concentrations near thunderstorms

    SciTech Connect

    Clarke, J.F.; Griffing, G.W.

    1985-01-01

    Anomalously large short-term ozone concentrations were observed on several occasions by aircraft during an experiment on August 5, 1980, to characterize the physical and chemical properties of the Baltimore urban plume. The ozone spikes of about 500 ppb were traversed by aircraft in less than 30 s (travel distance of less than 2 km). Analysis of these and ancillary data suggest that the ozone spikes may have resulted from ozone production by chemical reactions activated by lightning associated with thunderstorms.

  13. Towering Thunderstorms Seen in Typhoon Neoguri

    NASA Video Gallery

    On July 8, NASA's TRMM satellite saw powerful thunderstorms reaching heights above 16.3 km (about 10.1 miles) in an intense feeder band southeast Neoguri's center. Rain was falling at a rate of ove...

  14. Fermi Sees Antimatter-Hurling Thunderstorms

    NASA Video Gallery

    NASA's Fermi Gamma-ray Space Telescope has detected beams of antimatter launched by thunderstorms. Acting like enormous particle accelerators, the storms can emit gamma-ray flashes, called TGFs, an...

  15. TRMM Satellite Sees Thunderstorms in the South

    NASA Video Gallery

    The TRMM satellite flew above tornado spawning thunderstorms in the southern United States on May 9, 2014 at 0115 UTC. This simulated 3-D TRMM animation shows the location of intense radar echoes w...

  16. 76 FR 19119 - Agency Information Collection Activities: Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... SECURITY U.S. CUSTOMS AND BORDER PROTECTION Agency Information Collection Activities: Certificate of Origin... Certificate of Origin (CBP Form 3229). This request for comment is being made pursuant to the Paperwork... concerning the following information collection: Title: Certificate of Origin. OMB Number: 1651-0016....

  17. Study on the recent severe thunderstorms in northern India

    NASA Astrophysics Data System (ADS)

    Vishwanathan, Gokul; Narayanan, Sunanda; Mrudula, G.

    2016-05-01

    Thunderstorm, resulting from vigorous convective activity, is one of the most spectacular weather phenomena in the atmosphere which is associated with thunder, squall lines and lightening. On 13 April 2010, a severe storm struck parts of Bangladesh and eastern India which lasted about 90 minutes, with the most intense portion spanning 30-40 minutes. The severe Thunderstorm on 13th April 2010 spawned a large tornado, which lasted about 20 minutes and was the first tornado recorded in Bihar history. In the year 2015, Bihar experienced a similar storm on 21 April during which multiple microbursts were observed. Various meteorological parameters have been analyzed to study the factors affecting the development of the thunderstorm. Satellite images from KALPANA and Meteosat has been analyzed to capture the temporal and spatial evolution of these storms. The satellite images show the development of a convective clouds system in the early afternoon hours which developed further into the severe storms by late evening. The analysis carried out further using K-index, lifted index, CAPE etc also shows the development of multiple cells of convection. Further analysis of these storms is presented in the paper.

  18. Chromatin regulates origin activity in Drosophila follicle cells.

    PubMed

    Aggarwal, Bhagwan D; Calvi, Brian R

    2004-07-15

    It is widely believed that DNA replication in multicellular animals (metazoa) begins at specific origins to which a pre-replicative complex (pre-RC) binds. Nevertheless, a consensus sequence for origins has yet to be identified in metazoa. Origin identity can change during development, suggesting that there are epigenetic influences. A notable example of developmental specificity occurs in Drosophila, where somatic follicle cells of the ovary transition from genomic replication to exclusive re-replication at origins that control amplification of the eggshell (chorion) protein genes. Here we show that chromatin acetylation is critical for this developmental transition in origin specificity. We find that histones at the active origins are hyperacetylated, coincident with binding of the origin recognition complex (ORC). Mutation of the histone deacetylase (HDAC) Rpd3 induced genome-wide hyperacetylation, genomic replication and a redistribution of the origin-binding protein ORC2 in amplification-stage cells, independent of effects on transcription. Tethering Rpd3 or Polycomb proteins to the origin decreased its activity, whereas tethering the Chameau acetyltransferase increased origin activity. These results suggest that nucleosome acetylation and other epigenetic changes are important modulators of origin activity in metazoa. PMID:15254542

  19. Electric field soundings through thunderstorms

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  20. On the problem of radar effectiveness of discriminating thunderstorms and clouds

    NASA Technical Reports Server (NTRS)

    Allenov, P. A.; Zrazhevskaya, R. M.

    1975-01-01

    Data are presented on the effectiveness of detecting clouds (within a radius of 40 km) and thunderstorms (within a radius of 300 km) with the aid of instrumental (WR) and visual (weather station net) observations in the operational service of aviation. Data obtained on a large statistical sample confirm the very great effectiveness of the radar method of observations for thunderstorms and clouds with precipitation. The origin of certain probabilities for detecting stratiform clouds without precipitation which are small compared with the data of other authors is explained.

  1. Origins.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    Provides an annotated list of resources dealing with the theme of origins of life, the universe, and traditions. Includes Web sites, videos, books, audio materials, and magazines with appropriate grade levels and/or subject disciplines indicated; professional resources; and learning activities. (LRW)

  2. Prediction of severe thunderstorms over Sriharikota Island by using the WRF-ARW operational model

    NASA Astrophysics Data System (ADS)

    Papa Rao, G.; Rajasekhar, M.; Pushpa Saroja, R.; Sreeshna, T.; Rajeevan, M.; Ramakrishna, S. S. V. S.

    2016-05-01

    Operational short range prediction of Meso-scale thunderstorms for Sriharikota(13.7°N ,80.18°E) has been performed using two nested domains 27 & 9Km configuration of Weather Research & Forecasting-Advanced Research Weather Model (WRF- ARW V3.4).Thunderstorm is a Mesoscale system with spatial scale of few kilometers to a couple of 100 kilometers and time scale of less than an one hour to several hours, which produces heavy rain, lightning, thunder, surface wind squalls and down-bursts. Numerical study of Thunderstorms at Sriharikota and its neighborhood have been discussed with its antecedent thermodynamic stability indices and Parameters that are usually favorable for the development of convective instability based on WRF ARW model predictions. Instability is a prerequisite for the occurrence of severe weather, the greater the instability, the greater will be the potential of thunderstorm. In the present study, K Index, Total totals Index (TTI), Convective Available Potential Energy (CAPE), Convective Inhibition Energy (CINE), Lifted Index (LI), Precipitable Water (PW), etc. are the instability indices used for the short range prediction of thunderstorms. In this study we have made an attempt to estimate the skill of WRF ARW predictability and diagnosed three thunderstorms that occurred during the late evening to late night of 31st July, 20th September and 2nd October of 2015 over Sriharikota Island which are validated with Local Electric Field Mill (EFM), rainfall observations and Chennai Doppler Weather Radar products. The model predicted thermodynamic indices (CAPE, CINE, K Index, LI, TTI and PW) over Sriharikota which act as good indicators for severe thunderstorm activity.

  3. Middle Atmosphere Electrodynamics During a Thunderstorm

    NASA Technical Reports Server (NTRS)

    Croskey, Charles L.

    1996-01-01

    Rocket-based instrumentation investigations of middle atmospheric electrodynamics during thunderstorms were conducted in coordination with balloon-measurements at Wallops Island, Virginia. Middle atmosphere electrodynamics and energy coupling are of particular importance to associated electrical processes at lower and higher altitudes. Objectives of this research effort included: (1) investigation of thunderstorm effects on middle atmosphere electrical structure, including spatial and temporal dependence; (2) characterization of electric field transients and the associated energy deposited at various altitudes; (3) evaluation of the vertical Maxwell current density over a thunderstorm to study the coupling of energy to higher altitudes; and (4) investigation of the coupling of energy to the ionosphere and the current supplied to the 'global circuit.'

  4. Example of reduced turbulence during thunderstorm outflow

    SciTech Connect

    Bowen, B.M.

    1996-06-01

    This research note describes the effects of a gust front passage resulting from a thunderstorm outflow on wind, turbulence, and other basic meteorological variables in northern Mew Mexico. The purpose of this note is to explain how a thunderstorm outflow can greatly reduce horizontal and vertical turbulence and produce strong winds, thereby promoting the rapid transport of elevated pollutant concentrations. Another goal is to demonstrate the usefulness of a sodar in combination with a tower to provide data for dispersion and transport calculations during an emergency response. Hopefully, this note will motivate other researchers to analyze and document the effects of thunderstorms on turbulence and dispersion by routine monitoring or by experimentation. 12 refs., 3 figs., 1 tab.

  5. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  6. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  7. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  8. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  9. DNA replication origin activation in space and time.

    PubMed

    Fragkos, Michalis; Ganier, Olivier; Coulombe, Philippe; Méchali, Marcel

    2015-06-01

    DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

  10. A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms

    NASA Technical Reports Server (NTRS)

    Driscoll, Kevin T.; Blakeslee, Richard J.; Baginski, Michael E.

    1992-01-01

    A thorough examination of the results of a time-dependent computer model of a dipole thunderstorm revealed that there are numerous similarities between the time-averaged electrical properties and the steady-state properties of an active thunderstorm. Thus, the electrical behavior of the atmosphere in the vicinity of a thunderstorm can be determined with a formulation similar to what was first described by Holzer and Saxon (1952). From the Maxwell continuity equation of electric current, a simple analytical equation was derived that expresses a thunderstorm's average current contribution to the global electric circuit in terms of the generator current within the thundercloud, the intracloud lightning current, the cloud-to-ground lightning current, the altitudes of the charge centers, and the conductivity profile of the atmosphere. This equation was found to be nearly as accurate as the more computationally expensive numerical model, even when it is applied to a thunderstorm with a reduced conductivity thundercloud, a time-varying generator current, a varying flash rate, and a changing lightning mix.

  11. Severe thunderstorm internal structure from dual-Doppler radar measurements

    NASA Technical Reports Server (NTRS)

    Eagleman, J. R.; Lin, W. C.

    1977-01-01

    Dual-Doppler radar data were analyzed for three different times during the life cycle of a severe thunderstorm. The thunderstorm developed a double vortex inside as a tornado was generated beneath the cloud. The organized kinematic and precipitation internal structure of the thunderstorm support a theoretical double-vortex thunderstorm model that was developed earlier. The horizontal perturbation and relative winds, vertical winds, horizontal divergence and vorticity are compared for the three different times of measurement. The measurements and theoretical model provide new explanations of the severe thunderstorm and the relationship of associated tornadoes.

  12. Near absence of lightning in torrential rainfall producing Micronesian thunderstorms

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu

    1990-12-01

    The near absence of lightning in the torrential rain producing, tall, convective clouds at Ponape, Micronesia was studied by the use of special radiosondes. A unique rainwater accumulation process involving frozen raindrop-hail formation was found to take place in a narrow layer of altitude just above the freezing level. However, the concentration of frozen particles, including graupel, was one order of magnitude less than that required to trigger lightning. This may be the reason for the weakness of electrical activity in Micronesian thunderstorms.

  13. Terrestrial Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2012-01-01

    Intense of gamma rays have been observed by five different space-borne detectors. The TGFs have hard spectra, with photons extending to over 50 MeV. Most of these flashes last less than a millisecond. Relativistic electrons and positrons associated with TGFs are also seen by orbiting instruments In a special mode of operation, the Fermi-GBM detectors are now detecting an average of about one TGF every two hours. The Fermi spacecraft has been performing special orientations this year which has allowed the Fermi-LAT instrument also detect TGFs. The most likely origin of these high energy photons is bremsstrahlung radiation from electrons, produced by relativistic runaway electrons in intense electric fields within or above thunderstorm regions; the altitude of origin is uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. The observational aspects of TGFs will be the main focus of this talk; theoretical aspects remain speculative.

  14. Thunderstorms observed by radio astronomy Explorer 1 over regions of low man made noise

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1974-01-01

    Radio Astronomy Explorer (RAE) I observations of thunderstorms over regions of low man-made noise levels are analyzed to assess the satellite's capability for noise source differentiation. The investigation of storms over Australia indicates that RAE can resolve noise generation due to thunderstorms from the general noise background over areas of low man-made noise activity. Noise temperatures observed by RAE over stormy regions are on the average 10DB higher than noise temperatures over the same regions in the absence of thunderstorms. In order to determine the extent of noise contamination due to distant transmitters comprehensive three dimensional computer ray tracings were generated. The results indicate that generally, distant transmitters contribute negligibly to the total noise power, being 30DB or more below contributions arriving from an area immediately below the satellite.

  15. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    USGS Publications Warehouse

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  16. Urban Heat Islands and Summertime Convective Thunderstorms in Atlanta: Three Case Studies

    NASA Technical Reports Server (NTRS)

    Bornstein, Robert; Lin, Qinglu; Goodman, H. Michael (Technical Monitor)

    1999-01-01

    Data from both 27 sites in the Atlanta mesonet surface meteorological network and eight National Weather Service sites were analyzed for the period from 26 July to 3 August 1996. Analysis of the six precipitation events over the city during the period (each on a different day) showed that its urban heat island (UHI) induced a convergence zone that initiated three of the storms at different times of the day, i.e., 0630,0845, and 1445 EDT. Previous analysis has shown that New York City (NYC) effects summer daytime thunderstorm formation and/or movement. That study found that during nearly calm regional flow conditions the NYC UHI initiates convective activity. Moving thunderstorms, however, tended to bifurcate and to move around the city, due to its building barrier effect. The current Atlanta results thus agree with the NYC results with respect to thunderstorm initiation.

  17. Investigation Spectral Image the Upper Atmosphere over Regions with Thunderstorm Using Data from the Sv

    NASA Astrophysics Data System (ADS)

    Grichshenko, Valentina

    2016-07-01

    The results of the two-level experiment, including registration of the electric field in the surface layer during thunderstorm on TSCRS (Almaty) and synchronous image the top of the cloud cover over the test range from satellite "Terra / MODIS" are presented. Spectral image of the upper atmosphere over of the thunderstorm related to lighting discharge has been created. As a result of the processing of satellite images Terra / MODIS created a new index of "lightning discharge," which will be used to search for and investigation of optical phenomena (such as Sprites, Elves, Blue Jet) over the regions with thunderstorm activity. The developed technique of space picture processing will be used for studying optical phenomena above other regions too.

  18. Observations of thunderstorm-related 630 nm airglow depletions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Bhatt, A.

    2015-12-01

    The Midlatitude All-sky imaging Network for Geophysical Observations (MANGO) is an NSF-funded network of 630 nm all-sky imagers in the continental United States. MANGO will be used to observe the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network is actively being deployed and will ultimately consist of nine all-sky imagers. These imagers form a network providing continuous coverage over the western United States, including California, Oregon, Washington, Utah, Arizona and Texas extending south into Mexico. This network sees high levels of both medium and large scale wave activity. Apart from the widely reported northeast to southwest propagating wave fronts resulting from the so called Perkins mechanism, this network observes wave fronts propagating to the west, north and northeast. At least three of these anomalous events have been associated with thunderstorm activity. Imager data has been correlated with both GPS data and data from the AIRS (Atmospheric Infrared Sounder) instrument on board NASA's Earth Observing System Aqua satellite. We will present a comprehensive analysis of these events and discuss the potential thunderstorm source mechanism.

  19. Do West African thunderstorms predict the intensity of Atlantic hurricanes?

    NASA Astrophysics Data System (ADS)

    Price, Colin; Reicher, Naama; Yair, Yoav

    2015-04-01

    Since 85% of all major Atlantic hurricanes originate as thunderstorm clusters in equatorial Africa, we have investigated the connection between these African thunderstorms and the consequent development of these disturbances into tropical storms. We have analyzed Meteosat infrared cloud top temperature data to determine the areal coverage of cold cloud tops over a 6 year period from 2005 to 2010. In addition, hurricane statistics from the same period (intensity, date of generation, location, and maximum winds) were obtained from the National Hurricane Center database. We first show that the areal coverage of cold clouds (with brightness temperatures Tb < -50°C) in tropical Africa is a good indicator of the monthly number of African Easterly Waves (AEWs) leaving the west coast of tropical Africa. Furthermore, the AEWs that develop into tropical storms have a significantly larger area covered by cold cloud tops compared with nondeveloping waves. Finally, we show that on a storm-by-storm basis, the cold cloud coverage in West Africa is positively correlated (r = 0.57) with the accumulated cyclone energy of the future tropical cyclones that develop out of these waves.

  20. Do West African Thunderstorms Predict the Intensity of Atlantic Hurricanes?

    NASA Astrophysics Data System (ADS)

    Price, Colin; Reicher, Naama; Yair, Yoav

    2015-04-01

    Since 85% of all major Atlantic hurricanes originate as thunderstorm clusters in equatorial Africa, we have investigated the connection between these African thunderstorms and the consequent development of these disturbances into tropical storms. We have analyzed METEOSAT infrared cloud-top temperature data to determine the areal coverage of cold cloud tops over a six year period from 2005-2010. In addition, hurricane statistics from the same period (intensity, date of generation, location, maximum winds) were obtained from the National Hurricane Center (NHC) data base. We first show that the areal coverage of cold clouds (with brightness temperatures Tb<-50oC) in tropical Africa is a good indicator of the monthly number of African Easterly Waves (AEWs) leaving the west coast of tropical Africa. Furthermore, the AEWs that develop into tropical storms have a significantly larger area covered by cold cloud tops compared with non-developing waves. Finally, we show that on a storm-by-storm basis, the cold cloud coverage in West Africa is positively correlated (r=0.57) with the accumulated cyclone energy (ACE) of the future tropical cyclones that develop out of these waves.

  1. Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Holmes, C. D.; Ter Schure, A.; Kallos, G.; Walters, J. T.

    2013-02-01

    This study examines dynamical and microphysical features of convective clouds that affect mercury (Hg) wet scavenging and concentrations in rainfall. Using idealized numerical model simulations in the Regional Atmospheric Modeling System (RAMS), we diagnose vertical transport and scavenging of soluble Hg species in thunderstorms under typical environmental conditions found in the Northeast and Southeast United States (US). Three important environmental characteristics that impact thunderstorm morphology were studied: convective available potential energy (CAPE), vertical shear (0-6 km) of horizontal wind (SHEAR) and precipitable water (PW). We find that in a strong convective storm in the Southeast US that about 40% of mercury in the boundary layer (0-2 km) can be scavenged and deposited to the surface. Removal efficiencies are 35% or less in the free troposphere and decline with altitude. Nevertheless, if we assume that soluble Hg species are initially uniformly mixed vertically, then about 60% deposited mercury deposited by the thunderstorm originates in the free troposphere. For a given CAPE, storm morphology and Hg deposition respond to SHEAR and PW. Experiments show that the response of mercury concentration in rainfall to SHEAR depends on the amount of PW. For low PW, increasing SHEAR decreases mercury concentrations in high-rain amounts (>13 mm). However, at higher PW values, increasing SHEAR decreases mercury concentrations for all rainfall amounts. These experiments suggest that variations in environmental characteristics relevant to thunderstorm formation and evolution can also contribute to geographical difference in wet deposition of mercury. An ensemble of thunderstorm simulations was also conducted for different combinations of CAPE, SHEAR and PW values derived from radiosonde observations at five sites in the Northeast United States (US) and at three sites in the Southeast US. Using identical initial concentrations of gaseous oxidized mercury (GOM

  2. Origin invariance in vibrational resonance Raman optical activity

    SciTech Connect

    Vidal, Luciano N. Cappelli, Chiara; Egidi, Franco; Barone, Vincenzo

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  3. Long-term variability and changes in thunderstorm induced extreme precipitation in Slovakia over 1951-2010

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Faško, P.; Bližák, V.; Kajaba, P.; Košálová, J.; Bochníček, O.; Lešková, L.

    2012-04-01

    It is well known that extreme precipitation associated with intensive rains, in summer induced mostly by local thunderstorm activity, could cause very significant problems in economical and social spheres of the countries. Heavy precipitation and consecutive flash-floods are the most serious weather-related hazards over the territory of Slovakia. The extreme precipitation analyses play a strategic role in many climatological and hydrological evaluations designed for the wide range of technical and engineering applications as well as climate change impact assessments. A thunderstorm, as a violent local storm produced by a cumulonimbus cloud and accompanied by thunder and lightning, represents extreme convective activity in the atmosphere depending upon the release of latent heat, by the condensation of water vapor, for most of its energy. Under the natural conditions of Slovakia the incidence of thunderstorms has been traditionally concentrated in the summer or warm half-year (Apr.-Sept.), but increasing air temperature resulting in higher water vapor content and more intense short-term precipitation is associated with more frequent thunderstorm occurrence in early spring as well as autumn. It is the main reason why the studies of thunderstorm phenomena have increased in Slovakia in recent years. It was found that thunderstorm occurrence, in terms of incidence of storm days, has profoundly changed particularly in spring season (~ 30 % in April and May). The present contribution is devoted to verifying the hypothesis that recently the precipitation has been more intense and significant shifts in seasonal incidence have occurred in particular regions in Slovakia. On the basis of the 60-year (1951-2010) meteorological observation series obtained from more than 20 synoptic stations, the analysis of trends and long-term variability of the days with thunderstorms and the accompanying precipitation for seasons was undertaken. Contribution also attempts to explain the main

  4. Hazardous thunderstorms over Lake Victoria: climate change and early warnings

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole

    2016-04-01

    Severe thunderstorms and associated high waves represent a constant threat to the 200,000 fishermen operating on Lake Victoria. According to the International Red Cross, presumably 3000 to 5000 fishermen die every year on the lake, thereby substantially contributing to the global death toll from natural disasters. Despite the long-known bad reputation of Lake Victoria, operational early warning systems are lacking and possible future changes of these extreme thunderstorms are unknown. Here we present the first dedicated high-resolution, coupled lake-land-atmosphere climate projection for the African Great Lakes region and analyse it in combination with new satellite data and coarser-scale ensemble projections. Our model projections for the end-of-the-century indicate that Lake Victoria amplifies the future intensification of extreme precipitation seen over the surrounding land. Under a high-emission scenario (RCP8.5), the 1% most extreme over-lake precipitation may intensify up to four times faster compared to surrounding land. Our findings are consistent with an ensemble of coarser-scale climate projections for Africa, but the lower skill of the ensemble over Lake Victoria constrains its applicability. Interestingly, the change in extremes contrasts to the change in average over-lake precipitation, which is projected to decrease by -6% for the same period. By further analyzing the high-resolution output we are able to explain this different response: while mesoscale circulation changes cause the average precipitation decline, the response of extremes is essentially thermodynamic. Finally, the study of the satellite-based detection of severe thunderstorms revealed a strong dependency of the nighttime storm intensity over Lake Victoria on the antecedent daytime land storm activity. This highlights the potential of this new satellite product for predicting intense storms over Lake Victoria. Overall, our results indicate a new major hazard associated with climate

  5. Ten year observations of gravity waves from thunderstorms in western Africa

    NASA Astrophysics Data System (ADS)

    Blanc, E.; Farges, T.; Le Pichon, A.; Heinrich, P.

    2014-06-01

    A new study of gravity waves produced by thunderstorms was performed using continuous recordings at the IS17 (Ivory Coast) infrasound station of the International Monitoring System developed for the verification of the Comprehensive Nuclear Test-Ban Treaty. A typical case study is presented for a large thunderstorm on 10-11 April 2006 lasting near 14 h. Comparison with cloud temperature measured by the Meteosat 6 satellite shows that wave activity is large when the cloud temperature is low inside convection cells located over the station. Statistics based on 10 year data show that the wave activity is intense throughout the year with peak periods in May and October and less intense activity in January, in good agreement with the local keraunic level. The seasonal variations of the wave azimuth highlight clear trends from northward direction from February to August to southward direction from August to December. Lightning flashes, observed from space, show a similar motion confirming that thunderstorms are the main sources of the gravity wave activity. The gravity wave azimuth follows the seasonal motion of the tropical rain belt partly related to the Intertropical Convergence Zone of the winds. The contribution of other possible sources, such as wind over relief, is weak because surface winds are weak in this region and only oceans are present south of the station. We conclude that the large observed wave activity is mainly produced by convection associated to thunderstorms.

  6. Predicting thunderstorm evolution using ground-based lightning detection networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  7. CloudSat Image of Tropical Thunderstorms Over Africa

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.

  8. NCOA4 transcriptional coactivator inhibits activation of DNA replication origins.

    PubMed

    Bellelli, Roberto; Castellone, Maria Domenica; Guida, Teresa; Limongello, Roberto; Dathan, Nina Alayne; Merolla, Francesco; Cirafici, Anna Maria; Affuso, Andrea; Masai, Hisao; Costanzo, Vincenzo; Grieco, Domenico; Fusco, Alfredo; Santoro, Massimo; Carlomagno, Francesca

    2014-07-01

    NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase. NCOA4(-/-) MEFs display unscheduled origin activation and reduced interorigin distance; this results in replication stress, as shown by the presence of fork stalling, reduction of fork speed, and premature senescence. Together, our findings indicate that NCOA4 acts as a regulator of DNA replication origins that helps prevent inappropriate DNA synthesis and replication stress.

  9. Runaway breakdown and electrical discharges in thunderstorms

    NASA Astrophysics Data System (ADS)

    Milikh, Gennady; Roussel-Dupré, Robert

    2010-12-01

    This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.

  10. A review of thunderstorm electrification processes

    SciTech Connect

    Saunders, C.P.R. )

    1993-04-01

    Recent developments in the area of thunderstorm electrification processes are reviewed. These processes have two main divisions: (a) convective, in which particles charged by ion capture are moved by convection currents to strengthen the electric field in the cloud, and (b) processes involving charge transfer during particle interactions, following which oppositely charged particles move apart in the updraft to form the observed charge centers. Type-b processes are further subdivided into inductive (relying on the preexistence of an electric field) and noninductive charge-transfer mechanisms, Field and laboratory evidence points to the importance of interactions between particles of the ice phase, in the presence of liquid water droplets, in separating electric charge in thunderstorms. Recent experimental studies have investigated the dependence of charge transfer on the size and relative velocity of the interacting particles and have determined the dependence of the sign of the charge transfer on temperature and cloud liquid water content. Field data upon which the laboratory simulations are based are obtained by increasingly sophisticated airborne and ground-based means. Calculations of electric field growth using experimental charge-transfer data in numerical models of the dynamical and microphysical development of thunderstorms show agreement with observations, although further refinement is required. Some directions for future research are outlined. 121 refs., 2 figs.

  11. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    PubMed Central

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery. PMID:19696873

  12. Active control of jets from indeterminate-origin nozzles

    NASA Astrophysics Data System (ADS)

    Kibens, V.; Wlezien, R. W.

    1985-03-01

    Acoustic excitation has been applied to indeterminate-origin (IO) nozzles. The resulting highly three-dimensional instability-wave patterns generate complex vortex interaction systems. Phase-locked schlieren photography has been used to document major features of the flowfields generated from IO nozzles under active control

  13. Tune Up to Literacy: Original Songs and Activities for Kids

    ERIC Educational Resources Information Center

    Balkin, Al

    2009-01-01

    Encourage literacy with twenty original songs by musician and educator Al Balkin! Children's and school librarians will welcome "Tune Up to Literacy", a handy package of music and activities that musically introduces and reinforces crucial literacy concepts such as the alphabet, vowels, consonants, nouns, verbs, adjectives, sentence construction,…

  14. The effect of cosmic rays on thunderstorm electricity

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.

    1975-01-01

    The inflow of charges of small ions, formed by cosmic rays, into thunderstorm cells is estimated on the basis of rocket measurements of ionic concentrations below 90 km. Out of the two processes that form the thunderstorm charge (generation and separation of charges), the former is supposed to be caused by cosmic rays, and the nature of separation is assumed to be the same as in other thunderstorm theories.

  15. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed.

  16. Electric Field Profiles over Hurricanes, Tropical Cyclones, and Thunderstorms with an Instrumented ER-2 Aircraft

    NASA Technical Reports Server (NTRS)

    Mach, Doug M.; Blakeslee, Richard J.; Bateman, Monte G.; Bailey, Jeff C.

    2007-01-01

    Over the past several years, we have flown a set of calibrated electric field meters (FMs) on the NASA high altitude ER-2 aircraft over oceanic and landbased storms in a number of locations. These included tropical oceanic cyclones and hurricanes in the Caribbean and Atlantic ocean during the Third and Fourth Convection And Moisture EXperiment (CAMEX-3,1998; CAMEX-4, 2001), thunderstorms in Florida during the TExas FLorida UNderflight (TEFLUN, 1998) experiment, tropical thunderstorms in Brazil during the Tropical Rainfall Measuring Mission - Large Scale Biosphere-Atmosphere Experiment in Amazonia (TRMM LBA, 1999), and finally, hurricanes and tropical cyclones in the Caribbean and Western Pacific and thunderstorms in Central America during the Tropical Cloud Systems and Processes (TCSP, 2005) mission. Between these various missions we have well over 50 sorties that provide a unique insights on the different electrical environment, evolution and activity occurring in and around these various types of storms. In general, the electric fields over the tropical oceanic storms and hurricanes were less than a few kilovolts per meter at the ER-2 altitude, while the lightning rates were low. Land-based thunderstorms often produced high lightning activity and correspondingly higher electric fields.

  17. A neural network short-term forecast of significant thunderstorms

    SciTech Connect

    Mccann, D.W. )

    1992-09-01

    Neural networks, an artificial-intelligence tools that excels in pattern recognition, are reviewed, and a 3-7-h significant thunderstorm forecast developed with this technique is discussed. Two neural networks learned to forecast significant thunderstorms from fields of surface-based lifted index and surface moisture convergence. These networks are sensitive to the patterns that skilled forecasters recognize as occurring prior to strong thunderstorms. The two neural networks are combined operationally at the National Severe Storm Forecast Center into a single hourly product that enhances pattern-recognition skills. Examples of neural network products are shown, and their potential impact on significant thunderstorm forecasting is demonstrated. 22 refs.

  18. EHD Approach to Tornadic Thunderstorms and Methods of Their Destruction

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2005-05-01

    In many cases, tornadoes are accompanied or involved by lightning discharges and are thought to be com- posed of uncharged and charged components different from each other in terms of velocity, vorticity, heli- city, and appearance (shape and luminosity). Their visible dark portion may correspond to uncharged tor- nadoes, while luminous or bright part may involve charged tornadoes with return strokes. Usually, un- charged tornadoes have been considered to be ascending hot streams of thermohydrodynamic origin. This is the conventional theory of tornadoes, based on hydrodynamics (HD) or thermohydrodynamics (THD) but does not consider electrical effects that are really significant in tornadic thunderstorms..It has been shown, however, that a new electrohydrodynamics (EHD) established and developed over the last more than a decade is applicable to tornadic thunderstorms with lightning. This paper summarizes such an EHD approach and proposes the methods of tornado destruction based on EHD. Space charge and electric field configurations in tornadic thunderstorms are considered to be quadrupole-like, taking into account the cloud-charge images onto the ground. Accordingly, dynamics of particles and EHD flows in an electric quadrupole forming an electric cusp and mirror can straightly apply to those circumstances. When the gas pressure is below the breakdown threshold, there occur helical motion of particles, not only charged but also even uncharged, and/or vortex generation. While for gases whose pressure is beyond the breakdown threshold, the following basic processes succeed one after another. When the grain is uncharged, a dis- charge channel is formed towards each pole as a result of X-type reconnection. For a negatively or posi- tively charged grain, I-type reconnection occurs between the grain and positive or negative poles, respect- ively. For uncharged two grains, O-type reconnection between both grains could be involved in addition to X-type between each pole

  19. Extreme Thunderstorms as Seen by Satellite

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2014-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ (decibels relative to Z) reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI and AMSR-E to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For SSMI sensors carried on five DMSP satellites examined so far, the lowest thunderstorm-related brightness temperatures have been from Argentina in November

  20. Decrease of atmospheric neutron counts observed during thunderstorms.

    PubMed

    Alekseenko, V; Arneodo, F; Bruno, G; Di Giovanni, A; Fulgione, W; Gromushkin, D; Shchegolev, O; Stenkin, Yu; Stepanov, V; Sulakov, V; Yashin, I

    2015-03-27

    We report here, in brief, some results of the observation and analysis of sporadic variations of atmospheric thermal neutron flux during thunderstorms. The results obtained with unshielded scintillation neutron detectors show a prominent flux decrease correlated with meteorological precipitations after a long dry period. No observations of neutron production during thunderstorms were reported during the three-year period of data recording. PMID:25860750

  1. National thunderstorm frequencies for the contiguous United States

    SciTech Connect

    Changery, M.J.

    1981-11-01

    Individual thunderstorm beginning and ending times were extracted from surface manuscript records for 450 stations for the general period of record 1948-1977. Mean number of thunderstorms were determined for each location on a monthly and annual basis and then analyzed for the contiguous U.S.

  2. Middle atmospheric electric fields over thunderstorms

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1992-01-01

    This grant has supported a variety of investigations all having to do with the external electrodynamics of thunderstorms. The grant was a continuation of work begun while the PI was at the Aerospace Corporation (under NASA Grant NAS6-3109) and the general line of investigation continues today under NASA Grants NAG5-685 and NAG6-111. This report will briefly identify the subject areas of the research and associated results. The period actually covered by the grant NAG5-604 included the following analysis and flights: (1) analysis of five successful balloon flights in 1980 and 1981 (under the predecessor NASA grant) in the stratosphere over thunderstorms; (2) development and flight of the Hy-wire tethered balloon system for direct measurement of the atmospheric potential to 250 kV (this involved multiple tethered balloon flight periods from 1981 through 1986 from several locations including Wallops Island, VA, Poker Flat and Ft. Greely, AK and Holloman AFB, NM.); (3) balloon flights in the stratosphere over thunderstorms to measure vector electric fields and associated parameters in 1986 (2 flights), 1987 (4 flights), and 1988 (2 flights); and (4) rocket-borne optical lightning flash detectors on two rocket flights (1987 and 1988) (the same detector design that was used for the balloon flights listed under #3). In summary this grant supported 8 stratospheric zero-pressure balloon flights, tethered aerostat flights every year between 1982-1985, instruments on 2 rockets, and analysis of data from 6 stratospheric flights in 1980/81.

  3. A Comparison of Lightning Behaviors in Severe Thunderstorms and a Non-severe Thunderstorm

    NASA Astrophysics Data System (ADS)

    Macgorman, D. R.; Griffin, E. M.; Elliott, M. S.

    2009-12-01

    To better understand relationships between lightning and other storm properties, it is useful to compare behaviors in multiple storms. We have examined rates and spatial distributions of very high frequency (VHF) radiation sources mapped by the Oklahoma Lightning Mapping Array over the life cycle of four storms: two supercell storms from different seasons, one marginally severe storm, and one non-severe thunderstorm. One of the supercell storms occurred on 9-10 February 2009, and the other, on 24 April 2006. Both produced tornadoes and large hail in central Oklahoma. A non-supercell storm occurred on 11 June 2007 and was classified as severe only because it produced brief straight-line wind damage. The non-severe thunderstorm traversed central Oklahoma on 15 May 2007. The two supercell storms had a well-defined lightning ring signature in the vicinity of the mesocyclone and strong updraft. While both the 11 June 2007 and 24 April 2006 severe storms had continual, small VHF source rates in the overshooting storm tops (as observed previously in several other supercell storms), the 9 February 2009 supercell storm, which was less tall (10 km MSL storm height versus 13-16 km MSL), did not. The non-severe thunderstorm obviously tended to have much smaller VHF source rates than the severe thunderstorms, but source rates of the severe thunderstorms also differed substantially. Overall, the April supercell storm exhibited the greatest VHF source rates throughout its lifecycle. The height of upper peaks in the vertical distribution of mapped VHF sources appeared to be near the height of the environmental -30°C isotherm, which tends to increase through the spring, and the height of lower peaks appeared to be near the height of the 0°C isotherm.

  4. Modeling pollutant dispersion within a tornadic thunderstorm

    SciTech Connect

    Pepper, D.W.

    1981-01-01

    A three-dimensional numerical model was developed to calculate ground-level air concentration and deposition of particles entrained in a tornadic thunderstorm. The rotational characteristics of the tornadic storm are within the larger mesoscale flow of the storm system and transported with the vortex. Turbulence exchange coefficients are based on empirical values. The quasi-Lagrangian method of moments is used to model the transport of concentration within a grid cell volume. Results indicate that updrafts and downdrafts, coupled with scavenging of particles by precipitation, account for most of the material being deposited closer to the site than anticipated. Approximately 5% of the pollutant is dispersed into the stratosphere.

  5. Particle Acceleration Inside Thunderstorms and the Variation in Source Spectra of Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Cramer, Eric; Dwyer, Joseph R.; Briggs, Michael S.; Rassoul, Hamid K.

    2016-03-01

    One of the unresolved questions in the atmospheric sciences is the origin of Terrestrial Gamma-ray Flashes (TGFs). These flashes are short but intense gamma ray bursts emanating from Earth's atmosphere. This phenomenon has been observed by gamma ray detectors on orbiting satellites, e.g. NASA Fermi, intended to study astrophysical phenomena such as Gamma-ray Bursts. TGFs are thought to originate inside thunderstorms where electrons can be accelerated and emit radiation in the multi MeV range due to bremsstrahlung interactions with air molecules. These so called ``runaway electrons'' are seeded from cosmic ray air showers hitting the Earth's atmosphere from (extra) galactic sources. In this work, we present a Monte Carlo model that simulates particle physics inside a thunderstorm region. The subsequent transport of high energy gamma rays through the Earth's atmosphere and up to satellite orbit is also included. We show that by varying both the potential difference and the ambient electric field inside the thundercloud, different electron and photon energy distributions are produced. This effect may be detectable by orbiting spacecraft, and therefore serves as a method to remote sense the electric fields that exist inside thunderstorms.

  6. A subsynoptic environment associated with two intermountain severe thunderstorm events

    SciTech Connect

    Schwartz, M.N.; Andrews, G.L.

    1985-07-01

    Severe thunderstorms in the basin and plateau regions of the western US can have a significant influence on the economy and population of the area. In general, thunderstorms in the intermountain region (i.e., the region between the Cascade Range and Rocky Mountains) are associated with two processes: (1) orographic effects and (2) dynamic features. We investigated two severe thunderstorm events that affected the Columbia Basin during the evenings of 23 April and 30 April 1981. These events were associated with similar synoptic patterns and appeared to exhibit the same characteristics throughout their life histories. The purpose of this paper is to (1) bring attention to severe thunderstorms in the intermountain region, (2) identify possible mechanisms and processes associated with the 23 April and 30 April thunderstorm events, and (3) aid forecasters in recognizing synoptic and subsynoptic features that may initiate and maintain convection in this region. 13 refs., 12 figs.

  7. Thunderstorms, cosmic rays, and solar-lunar influences

    SciTech Connect

    Lethbridge, M.D.

    1990-08-20

    A study of cosmic rays and thunderstorm frequency has shown a decrease in thunderstorms at the time of high cosmic rays and an increase in thunderstorms 2-4 days later. This was done by superposed epoch analysis of thunderstorms over the eastern two thirds of the United States for 1957-1976. When data for spring and fall months were used, the minimum deepened. When high cosmic rays near full and new moon for these months were key days, the minimum deepened again and was significant at less than the 0.01% level. It is believed that when the Sun, Earth, and Moon are aligned, particulate matter in the lower stratosphere is modulated and acted upon by cosmic rays, bringing about an immediate decrease in thunderstorms.

  8. Overshooting top behavior of three tornado-producing thunderstorms

    NASA Technical Reports Server (NTRS)

    Umenhofer, T. A.

    1975-01-01

    The behavior of overshooting tops and jumping cirrus observed in three tornado-producing thunderstorms during the 1974 Learjet Cloud-Truth experiment is discussed. An investigation of temporal changes in the heights of overshooting domes (conglomerations of overshooting tops with diameters less than 1 km) reveals several distinctive features associated with tornadic events. There is a gradual decrease in dome height prior to tornado touchdown. Minimum dome activity occurred 5 min after, 5.5 min before, and at approximately the same time as the tornadic event in the storms observed. In all cases, dramatic dome growth at a rate of 17 to 23 m/sec immediately followed the occurrence of the minimum dome heights. There is evidence that tornado production is insensitive to the pre-touchdown maximum dome heights between 1 and 3 km.

  9. Nowcasting and assessing thunderstorm risk on the Lombardy region (Italy)

    NASA Astrophysics Data System (ADS)

    Bonelli, P.; Marcacci, P.; Bertolotti, E.; Collino, E.; Stella, G.

    2011-06-01

    The problem of severe thunderstorm risk in the Lombardy region (Italy) is serious. In fact during the warm season many thunderstorms (TS) occur in high density populated area located between the river Po and the Alps. In the year 2003, about 90 TS caused damage to people, houses, cars, agriculture and electrical lines. About 30 municipalities undergo damage by tornadoes. The 2003 summer was not particularly anomalous with respect to others for TS activity. In this region storms are well detected by some C-band radars and the Meteosat satellites, but the study of the correlation between these variables and the TS severity needs the collection of many met-data at the ground. Unfortunately the lack of a fine mesh met-station network forces the use of local press news or subjective reports to identify the impact of TS. Since 2006 ERSE has been collaborating with the Lombardy Region - Civil Protection Service/Office - in developing and testing a system to detect and nowcast severe thunderstorms, STAF (Storm Track Alert and Forecast). STAF is a nowcasting tool based on Radar and MSG (Meteosat Second Generation) data that selects only severe TS, tracks them and produces alert messages to users. In order to evaluate the severity of a TS, a crucial issue for STAF is the correlation between variables detected by the remote-sensing instruments and the effects at the ground. The paper describes a method to classify the severity of a TS by computing an index named "probability of damage" (PD). The index has been carried out by means of a storm archive, where radar and satellite data are stored together with damages reports from newspapers, all collected in 2003 summer. The index has been verified during the 2009 summer, when STAF was applied in a field test involving a group of Civil Protection observers and users. The results of this test are reported in the paper. The test has been also an occasion for verifying the effectiveness of information provided by STAF to selected

  10. ER-2 investigations of lightning and thunderstorms

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard

    1993-01-01

    The primary objective of the ER-2 lightning program is to investigate relationships between lightning and storm electrification and a number of underlying and interrelated phenomena including the structure, dynamics, and evolution of thunderstorms and thunderstorm systems, precipitation distribution and amounts, atmospheric chemistry processes, and the global electric circuit. This research is motivated by the desire to develop an understanding needed for the effective utilization and interpretation of data from the Lighting Imaging Sensor (LIS), the Lightning Mapper Sensor (LMS), and other satellite-based lightning detectors planned for the late 1900's and early 2000's. These satellite lightning detection systems will be characterized by high detection efficiencies (i.e., 90 percent) and the capability to detect both intracloud and cloud-to-ground discharges during day and night. The Lightning Imaging Sensor (LIS) is being developed by NASA for the Tropical Rainfall Measuring Mission (TRMM) satellite. In the ER-2 and related investigations, the emphasis is on establishing quantitative relationships and developing practical algorithms that employ lightning data, such as could be derived from satellite observations of optical lightning emissions, as the independent variable. Significant accomplishments made during the past year are presented.

  11. A review of severe thunderstorms in Australia

    NASA Astrophysics Data System (ADS)

    Allen, John T.; Allen, Edwina R.

    2016-09-01

    Severe thunderstorms are a common occurrence in Australia and have been documented since the first European settlement in 1788. These events are characterized by large damaging hail in excess of 2 cm, convective wind gusts greater than 90 km h- 1 and tornadoes, and contribute a quarter of all natural hazard-related losses in the country. This impact has lead to a growing body of research and insight into these events. In this article, the state of knowledge regarding their incidence, distribution, and the resulting hail, tornado, convective wind, and lightning risk will be reviewed. Applying this assessment of knowledge, the implications for forecasting, the warning process, and how these events may respond to climate change and variability will also be discussed. Based on this review, ongoing work in the field is outlined, and several potential avenues for future research and exploration are suggested. Most notably, the need for improved observational or proxy climatologies, the forecasting guidelines for tornadoes, and the need for a greater understanding of how severe thunderstorms respond to climate variability are highlighted.

  12. Hazardous thunderstorm intensification over Lake Victoria

    PubMed Central

    Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P. M.

    2016-01-01

    Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius–Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change. PMID:27658848

  13. Hazardous thunderstorm intensification over Lake Victoria

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P. M.

    2016-09-01

    Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius-Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change.

  14. Thunderstorm asthma due to grass pollen.

    PubMed

    Suphioglu, C

    1998-08-01

    It is widely known and accepted that grass pollen is a major outdoor cause of hay fever. Moreover, grass pollen is also responsible for triggering allergic asthma, gaining impetus as a result of the 1987/1989 Melbourne and 1994 London thunderstorm-associated asthma epidemics. However, grass pollen is too large to gain access into the lower airways to trigger the asthmatic response and micronic particles <5 micro m are required to trigger the response. We have successfully shown that ryegrass pollen ruptures upon contact with water, releasing about 700 starch granules which not only contain the major allergen Lol p 5, but have been shown to trigger both in vitro and in vivo IgE-mediated responses. Furthermore, starch granules have been isolated from the Melbourne atmosphere with 50-fold increase following rainfall. Free grass pollen allergen molecules have been recently shown to interact with other particles including diesel exhaust carbon particles, providing a further transport mechanism for allergens to gain access into lower airways. In this review, implication and evidence for grass pollen as a trigger of thunderstorm-associated asthma is presented. Such information is critical and mandatory for patient education and training in their allergen avoidance programs. More importantly, patients with serum IgE to group 5 allergens are at high risk of allergic asthma, especially those not protected by medication. Therefore, a system to determine the total atmospheric allergen load and devising of an effective asthma risk forecast is urgently needed and is subject to current investigation.

  15. Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Holmes, C. D.; Ter Schure, A.; Kallos, G.; Walters, J. T.

    2013-10-01

    This study examines dynamical and microphysical features of convective clouds that affect mercury (Hg) wet scavenging and concentrations in rainfall. Using idealized numerical model simulations in the Regional Atmospheric Modeling System (RAMS), we diagnose vertical transport and scavenging of soluble Hg species - gaseous oxidized mercury (GOM) and particle-bound mercury (HgP), collectively Hg(II) - in thunderstorms under typical environmental conditions found in the Northeast and Southeast United States (US). Mercury scavenging efficiencies from various initial altitudes are diagnosed for a case study of a typical strong convective storm in the Southeast US. Assuming that soluble mercury concentrations are initially vertically uniform, the model results suggest that 60% of mercury deposited to the surface in rainwater originates from above the boundary layer (> 2 km). The free troposphere could supply a larger fraction of mercury wet deposition if GOM and HgP concentrations increase with altitude. We use radiosonde observations in the Northeast and Southeast to characterize three important environmental characteristics that influence thunderstorm morphology: convective available potential energy (CAPE), vertical shear (0-6 km) of horizontal wind (SHEAR) and precipitable water (PW). The Southeast US generally has lower SHEAR and higher CAPE and PW. We then use RAMS to test how PW and SHEAR impact mercury scavenging and deposition, while keeping the initial Hg(II) concentrations fixed in all experiments. We found that the mercury concentration in rainfall is sensitive to SHEAR with the nature of sensitivity differing depending upon the PW. Since CAPE and PW cannot be perturbed independently, we test their combined influence using an ensemble of thunderstorm simulations initialized with environmental conditions for the Northeast and Southeast US. These simulations, which begin with identical Hg(II) concentrations, predict higher mercury concentrations in rainfall

  16. Active medulloblastoma enhancers reveal subgroup-specific cellular origins.

    PubMed

    Lin, Charles Y; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C; Ju, Bensheng; Orr, Brent A; Zeid, Rhamy; Polaski, Donald R; Segura-Wang, Maia; Waszak, Sebastian M; Jones, David T W; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V; Millen, Kathleen J; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O; Pfister, Stefan M; Bradner, James E; Northcott, Paul A

    2016-02-01

    Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.

  17. Radar observations of changing orientations of hydrometeors in thunderstorms

    SciTech Connect

    Metcalf, J.I.

    1995-04-01

    Changing orientations of hydrometeors due to rapidly changing electric fields in thunderstorms were observed by the 11-cm polarimetric Doppler radar that was operated by the Geophysics Directorate of Phillips Laboratory in Sudbury, Massachusetts. The radar transmitted signals of right circular polarization and received signals of right and left circular polarization in a dual-channel receiver. The effects of electric fields at heights of 7 - 11 km in thunderstorms appear as differential phase shifts in the propagation medium due to highly oriented ice particles. These effects are evident in rangewise profiles of the cross-covariance amplitude ratio derived from the two received signals. Some of the observations show specific differential phase shifts up to 1.6 deg/km in range intervals of a few kilometers and up to 0.8 deg/km in range intervals up to 18 km with a distinct tendency of increasing phase shift prior to an occurrence of lightning. Many occurrences of lightning were accompanied by sudden increases or decreases of the phase shift, indicative of corresponding changes in the magnitude of the electric field, or by sudden changes in the orientation of the cross-covariance amplitude ratio, indicative of sudden changes of the canting angle of the propagation medium. Following such a sudden change, the propagation medium usually returned to its prior state in a time interval between several seconds and several tens of seconds, depending on the electrical activity of the storm. These results support the possibility of characterizing the electric field in clouds by radar measurements.

  18. Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons

    SciTech Connect

    Chilingarian, A.; Daryan, A.; Arakelyan, K.; Hovhannisyan, A.; Mailyan, B.; Melkumyan, L.; Hovsepyan, G.; Chilingaryan, S.; Reymers, A.; Vanyan, L.

    2010-08-15

    The Aragats Space Environmental Center facilities continuously measure fluxes of neutral and charged secondary cosmic ray incidents on the Earth's surface. Since 2003 in the 1-minute time series we have detected more than 100 enhancements in the electron, gamma ray, and neutron fluxes correlated with thunderstorm activities. During the periods of the count rate enhancements, lasting tens of minutes, millions of additional particles were detected. Based on the largest particle event of September 19, 2009, we show that our measurements support the existence of long-lasting particle multiplication and acceleration mechanisms in the thunderstorm atmosphere. For the first time we present the energy spectra of electrons and gamma rays from the particle avalanches produced in the thunderstorm atmosphere, reaching the Earth's surface.

  19. Thunderstorm-related asthma: what happens and why.

    PubMed

    D'Amato, G; Vitale, C; D'Amato, M; Cecchi, L; Liccardi, G; Molino, A; Vatrella, A; Sanduzzi, A; Maesano, C; Annesi-Maesano, I

    2016-03-01

    The fifth report issued by the Intergovernmental Panel on Climate Change forecasts that greenhouse gases will increase the global temperature as well as the frequency of extreme weather phenomena. An increasing body of evidence shows the occurrence of severe asthma epidemics during thunderstorms in the pollen season, in various geographical zones. The main hypotheses explaining association between thunderstorms and asthma claim that thunderstorms can concentrate pollen grains at ground level which may then release allergenic particles of respirable size in the atmosphere after their rupture by osmotic shock. During the first 20-30 min of a thunderstorm, patients suffering from pollen allergies may inhale a high concentration of the allergenic material that is dispersed into the atmosphere, which in turn can induce asthmatic reactions, often severe. Subjects without asthma symptoms, but affected by seasonal rhinitis can also experience an asthma attack. All subjects affected by pollen allergy should be alerted to the danger of being outdoors during a thunderstorm in the pollen season, as such events may be an important cause of severe exacerbations. In light of these observations, it is useful to predict thunderstorms and thus minimize thunderstorm-related events. PMID:26765082

  20. Thunderstorm-related asthma: what happens and why.

    PubMed

    D'Amato, G; Vitale, C; D'Amato, M; Cecchi, L; Liccardi, G; Molino, A; Vatrella, A; Sanduzzi, A; Maesano, C; Annesi-Maesano, I

    2016-03-01

    The fifth report issued by the Intergovernmental Panel on Climate Change forecasts that greenhouse gases will increase the global temperature as well as the frequency of extreme weather phenomena. An increasing body of evidence shows the occurrence of severe asthma epidemics during thunderstorms in the pollen season, in various geographical zones. The main hypotheses explaining association between thunderstorms and asthma claim that thunderstorms can concentrate pollen grains at ground level which may then release allergenic particles of respirable size in the atmosphere after their rupture by osmotic shock. During the first 20-30 min of a thunderstorm, patients suffering from pollen allergies may inhale a high concentration of the allergenic material that is dispersed into the atmosphere, which in turn can induce asthmatic reactions, often severe. Subjects without asthma symptoms, but affected by seasonal rhinitis can also experience an asthma attack. All subjects affected by pollen allergy should be alerted to the danger of being outdoors during a thunderstorm in the pollen season, as such events may be an important cause of severe exacerbations. In light of these observations, it is useful to predict thunderstorms and thus minimize thunderstorm-related events.

  1. The origin of segmentation motor activity in the intestine.

    PubMed

    Huizinga, Jan D; Chen, Ji-Hong; Zhu, Yong Fang; Pawelka, Andrew; McGinn, Ryan J; Bardakjian, Berj L; Parsons, Sean P; Kunze, Wolfgang A; Wu, Richard You; Bercik, Premysl; Khoshdel, Amir; Chen, Sifeng; Yin, Sheng; Zhang, Qian; Yu, Yuanjie; Gao, Qingmin; Li, Kongling; Hu, Xinghai; Zarate, Natalia; Collins, Phillip; Pistilli, Marc; Ma, Junling; Zhang, Ruixue; Chen, David

    2014-01-01

    The segmentation motor activity of the gut that facilitates absorption of nutrients was first described in the late 19th century, but the fundamental mechanisms underlying it remain poorly understood. The dominant theory suggests alternate excitation and inhibition from the enteric nervous system. Here we demonstrate that typical segmentation can occur after total nerve blockade. The segmentation motor pattern emerges when the amplitude of the dominant pacemaker, the slow wave generated by interstitial cells of Cajal associated with the myenteric plexus (ICC-MP), is modulated by the phase of induced lower frequency rhythmic transient depolarizations, generated by ICC associated with the deep muscular plexus (ICC-DMP), resulting in a waxing and waning of the amplitude of the slow wave and a rhythmic checkered pattern of segmentation motor activity. Phase-amplitude modulation of the slow waves points to an underlying system of coupled nonlinear oscillators originating in the networks of ICC.

  2. Thapsigargin, Origin, Chemistry, Structure-Activity Relationships and Prodrug Development.

    PubMed

    Quynh Doan, Nhu Thi; Christensen, Soren Brogger

    2015-01-01

    Thapsigargin was originally isolated from the roots of the Mediterranean umbelliferous plant Thapsia garganica in order to characterize the skin irritant principle. Characteristic chemical properties and semi-syntheses are reviewed. The biological activity was related to the subnanomolar affinity for the sarco/endoplasmic reticulum calcium ATPase. Prolonged inhibition of the pump afforded collapse of the calcium homeostasis and eventually apoptosis. Structure-activity relationships enabled design of an equipotent analogue containing a linker. Conjugation of the analogue containing the linker with peptides, which only are substrates for either prostate specific antigen (PSA) or prostate specific membrane antigen (PSMA) enabled design of prodrugs targeting a number of cancer diseases including prostate cancer (G115) and hepatocellular carcinoma (G202). Prodrug G202 has under the name of mipsagargin in phase II clinical trials shown promising properties against hepatocellular carcinoma.

  3. Thapsigargin, Origin, Chemistry, Structure-Activity Relationships and Prodrug Development.

    PubMed

    Quynh Doan, Nhu Thi; Christensen, Soren Brogger

    2015-01-01

    Thapsigargin was originally isolated from the roots of the Mediterranean umbelliferous plant Thapsia garganica in order to characterize the skin irritant principle. Characteristic chemical properties and semi-syntheses are reviewed. The biological activity was related to the subnanomolar affinity for the sarco/endoplasmic reticulum calcium ATPase. Prolonged inhibition of the pump afforded collapse of the calcium homeostasis and eventually apoptosis. Structure-activity relationships enabled design of an equipotent analogue containing a linker. Conjugation of the analogue containing the linker with peptides, which only are substrates for either prostate specific antigen (PSA) or prostate specific membrane antigen (PSMA) enabled design of prodrugs targeting a number of cancer diseases including prostate cancer (G115) and hepatocellular carcinoma (G202). Prodrug G202 has under the name of mipsagargin in phase II clinical trials shown promising properties against hepatocellular carcinoma. PMID:26429715

  4. Origins.

    PubMed

    Weinberg, S

    1985-10-01

    The farthest of the galaxies that can be seen through the large ground-based telescopes of modern astronomy, such as those on La Palma in the Canary Islands, are so far away that they appear as they did close to the time of the origin of the universe, perhaps some 10 billion years ago. Much has been learned, and much has still to be learned, about the young universe from optical and radio telescopes, but these instruments cannot be used to look directly at the universe in its first few hundred thousand years. Instead, they are used to search the relatively recent past for relics of much earlier times. Together with experiments planned for the next generation of elementary particle accelerators, astronomical observations should continue to extend what is known about the universe backward in time to the Big Bang and may eventually help to reveal the origins of the physical laws that govern the universe.

  5. Thunderstorms over the Pacific Ocean as seen from STS-64

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Multiple thunderstorm cells leading to Earth's atmosphere were photographed on 70mm by the astronauts of STS-64, orbiting aboard the Space Shuttle Discovery 130 nautical miles away. These thunderstorms are located about 16 degrees southeast of Hawaii in the Pacific Ocean. Every stage of a developing thunderstorm is documented in this photo: from the building cauliflower tops to the mature anvil phase. The anvil or the tops of the clouds being blown off are at about 50,000 feet. The light line in the blue atmosphere is either clouds in the distance or an atmospheric layer which is defined but different particle sizes.

  6. Thunderstorm phobia in dogs: an Internet survey of 69 cases.

    PubMed

    McCobb, E C; Brown, E A; Damiani, K; Dodman, N H

    2001-01-01

    To learn more about predispositions for, signs, and progression of canine thunderstorm phobia, a survey for owners was posted on the Internet. Questions addressed signalment, age of onset, behavior during storms, and treatments tried. Sixty-nine responses were received. Herding dogs and herding crossbreeds accounted for the majority of dogs. Seventeen of 41 dogs with a known age of onset began exhibiting thunderstorm phobia <1 year of age. Various characteristic responses of dogs to storms were described. Improved knowledge of the demographics of thunderstorm phobia, its development, and presentation will assist in understanding the genesis and progression of the condition. PMID:11450831

  7. Strong flux of low-energy neutrons produced by thunderstorms.

    PubMed

    Gurevich, A V; Antonova, V P; Chubenko, A P; Karashtin, A N; Mitko, G G; Ptitsyn, M O; Ryabov, V A; Shepetov, A L; Shlyugaev, Yu V; Vildanova, L I; Zybin, K P

    2012-03-23

    We report here for the first time about the registration of an extraordinary high flux of low-energy neutrons generated during thunderstorms. The measured neutron count rate enhancements are directly connected with thunderstorm discharges. The low-energy neutron flux value obtained in our work is a challenge for the photonuclear channel of neutron generation in thunderstorm: the estimated value of the needed high-energy γ-ray flux is about 3 orders of magnitude higher than that one observed. PMID:22540588

  8. Thunderstorm phobia in dogs: an Internet survey of 69 cases.

    PubMed

    McCobb, E C; Brown, E A; Damiani, K; Dodman, N H

    2001-01-01

    To learn more about predispositions for, signs, and progression of canine thunderstorm phobia, a survey for owners was posted on the Internet. Questions addressed signalment, age of onset, behavior during storms, and treatments tried. Sixty-nine responses were received. Herding dogs and herding crossbreeds accounted for the majority of dogs. Seventeen of 41 dogs with a known age of onset began exhibiting thunderstorm phobia <1 year of age. Various characteristic responses of dogs to storms were described. Improved knowledge of the demographics of thunderstorm phobia, its development, and presentation will assist in understanding the genesis and progression of the condition.

  9. Deep structure and origin of active volcanoes in China

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2010-12-01

    Recent geophysical studies have provided important constraints on the deep structure and origin of the active intraplate volcanoes in Mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab (e.g., Zhao et al., 2009a), while the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well (Zhao et al., 2009b). The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate) (Lei et al., 2009a). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and Indian slab's deep subduction in the west down to the lower mantle (Lei et al., 2009b; Zhao, 2009). The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions (Zhao, 2009). References Lei, J., D. Zhao, Y. Su, 2009a. Insight into the origin of the Tengchong intraplate volcano and seismotectonics in southwest China from local and teleseismic data. J. Geophys. Res. 114, B05302. Lei, J., D. Zhao, B. Steinberger et al., 2009b. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter. 173, 33-50. Zhao, D., 2009. Multiscale seismic tomography and mantle dynamics. Gondwana Res. 15, 297-323. Zhao, D., Z. Wang, N. Umino, A. Hasegawa, 2009a. Mapping the mantle wedge and interplate thrust zone of the northeast Japan arc. Tectonophysics 467, 89-106. Zhao, D., Y. Tian, J. Lei, L. Liu, 2009b. Seismic

  10. Thunderstorm asthma due to grass pollen.

    PubMed

    Suphioglu, C

    1998-08-01

    It is widely known and accepted that grass pollen is a major outdoor cause of hay fever. Moreover, grass pollen is also responsible for triggering allergic asthma, gaining impetus as a result of the 1987/1989 Melbourne and 1994 London thunderstorm-associated asthma epidemics. However, grass pollen is too large to gain access into the lower airways to trigger the asthmatic response and micronic particles <5 micro m are required to trigger the response. We have successfully shown that ryegrass pollen ruptures upon contact with water, releasing about 700 starch granules which not only contain the major allergen Lol p 5, but have been shown to trigger both in vitro and in vivo IgE-mediated responses. Furthermore, starch granules have been isolated from the Melbourne atmosphere with 50-fold increase following rainfall. Free grass pollen allergen molecules have been recently shown to interact with other particles including diesel exhaust carbon particles, providing a further transport mechanism for allergens to gain access into lower airways. In this review, implication and evidence for grass pollen as a trigger of thunderstorm-associated asthma is presented. Such information is critical and mandatory for patient education and training in their allergen avoidance programs. More importantly, patients with serum IgE to group 5 allergens are at high risk of allergic asthma, especially those not protected by medication. Therefore, a system to determine the total atmospheric allergen load and devising of an effective asthma risk forecast is urgently needed and is subject to current investigation. PMID:9693274

  11. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  12. Origins of choice-related activity in mouse somatosensory cortex

    PubMed Central

    Yang, Hongdian; Kwon, Sung E.; Severson, Kyle S.; O’Connor, Daniel H.

    2015-01-01

    During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feedforward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons. PMID:26642088

  13. Origins of choice-related activity in mouse somatosensory cortex.

    PubMed

    Yang, Hongdian; Kwon, Sung E; Severson, Kyle S; O'Connor, Daniel H

    2016-01-01

    During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied as a way to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feed-forward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons. PMID:26642088

  14. Thunderstorms and ground-based radio noise as observed by radio astronomy Explorer 1

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1973-01-01

    Radio Astronomy Explorer (RAE) data were analyzed to determine the frequency dependence of HF terrestrial radio noise power. RAE observations of individual thunderstorms, mid-ocean areas, and specific geographic regions for which concommitant ground based measurements are available indicate that noise power is a monotonically decreasing function of frequency which conforms to expectations over the geographic locations and time periods investigated. In all cases investigated, active thunderstorm regions emit slightly higher power as contrasted to RAE observations of the region during meteorologically quiet periods. Noise levels are some 15 db higher than predicted values over mid-ocean, while in locations where ground based measurements are available a maximum deviation of 5 db occurs. Worldwide contour mapping of the noise power at 6000 km for five individual months and four observing frequencies, examples of which are given, indicate high noise levels over continental land masses with corresponding lower levels over ocean regions.

  15. NASA's TRMM Satellite Sees Heavy Rain in Arizona Thunderstorms

    NASA Video Gallery

    This simulated flyby of NASA's TRMM satellite on Sept. 8 saw rain falling at a rate of over 62 mm (2.4 inches) per hour in some downpours over Arizona. Some thunderstorm tops reached heights of 13....

  16. Observation of successive TGFs produced by the same thunderstorm systems throughout their lifetime

    NASA Astrophysics Data System (ADS)

    Ursi, Alessandro; Marisaldi, Martino; Tavani, Marco; Argan, Andrea; Dietrich, Stefano; Casella, Daniele; Sanò, Paolo

    2016-04-01

    Since their discovery in early 1990s, Terrestrial Gamma-ray Flashes (TGFs) exhibited a clear correlation with thunderstorm activity. The elusive nature of these events and the strong absorption of gamma-rays in the lowest layers of the atmosphere dramatically limits our observation of this phenomenon: the few missions currently detecting TGFs are probably revealing just the tip of the iceberg of a much wider population. Theoretical models, radar measurements and cross-correlations with radio waves emitted by lightning strokes suggest every storm could, in principle, produce a large number of gamma flashes throughout its entire lifetime: however, observation of more TGFs from the same thunderstorm system, even after several hours, is difficult to perform, because successive passes on the same latitude region by high-inclination orbit satellites are shifted westward by ~25°. In this perspective, the AGILE mission has a privileged role, thanks to its unique quasi equatorial (2.5° inclination) orbit, that allows for the follow-up of the same geographic region on the equator at each orbital passage. In more than 8 years activity, we identify tens of cases of more TGFs coming from the same thunderstorm system, either during the same passage, or in the successive passages. We take advantage of data acquired by meteorological satellites to characterize the meteorological scenario associated to these events.

  17. Response of surface boundary layer parameters during the formation of thunderstorms over Cochin

    NASA Astrophysics Data System (ADS)

    Babu, C. A.; Jayakrishnan, P. R.

    2014-12-01

    In the present study we made a detailed analysis of the surface ABL parameters associated with three thunderstorms that occurred over Cochin during pre-monsoon season. The high-resolution sonic anemometer data can provide microscale evolution of the surface boundary layer processes. The parameters studied are momentum flux, sensible heat flux, Turbulent Kinetic Energy (TKE), friction velocity and variance of u, v, w, T. Momentum flux anomalously increases from 0.1 N m-2 to 1 N m-2 during the occurrence of thunderstorm. Correspondingly, sensible heat flux decreases anomalously to a value of -200 W m-2 from 10 W m-2. TKE increases abruptly to 3 m2 s-2 from 0.5 m2 s-2 during convective activity. Friction velocity also changes abruptly to 1 m s-1 from 0.1 m s-1. The thermodynamic parameters and stability indices were investigated prior to the occurrence of thunderstorms and found that the atmospheric characteristics were conducive for the formation of convective activity.

  18. A composite stability index for dichotomous forecast of thunderstorms

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Middey, Anirban

    2012-12-01

    Thunderstorms are the perennial feature of Kolkata (22° 32' N, 88° 20' E), India during the premonsoon season (April-May). Precise forecast of these thunderstorms is essential to mitigate the associated catastrophe due to lightning flashes, strong wind gusts, torrential rain, and occasional hail and tornadoes. The present research provides a composite stability index for forecasting thunderstorms. The forecast quality detection parameters are computed with the available indices during the period from 1997 to 2006 to select the most relevant indices with threshold ranges for the prevalence of such thunderstorms. The analyses reveal that the lifted index (LI) within the range of -5 to -12 °C, convective inhibition energy (CIN) within the range of 0-150 J/kg and convective available potential energy (CAPE) within the ranges of 2,000 to 7,000 J/kg are the most pertinent indices for the prevalence thunderstorms over Kolkata during the premonsoon season. A composite stability index, thunderstorm prediction index (TPI) is formulated with LI, CIN, and CAPE. The statistical skill score analyses show that the accuracy in forecasting such thunderstorms with TPI is 99.67 % with lead time less than 12 h during training the index whereas the accuracies are 89.64 % with LI, 60 % with CIN and 49.8 % with CAPE. The performance diagram supports that TPI has better forecast skill than its individual components. The forecast with TPI is validated with the observation of the India Meteorological Department during the period from 2007 to 2009. The real-time forecast of thunderstorms with TPI is provided for the year 2010.

  19. The operational recognition of supercell thunderstorm environments and storm structures

    SciTech Connect

    Moller, A.R.; Doswell, C.A. III; Foster, M.P.; Woodall, G.R. ||

    1994-09-01

    Supercell thunderstorm forecasting and detection is discussed, in light of the disastrous weather events that often accompany supercells. Operational forecasters in the National Weather Service (NWS) can employ conceptual models of the supercell, and of the meteorological environments that produce supercells, to make operational decisions scientifically. The presence of a mesocyclone is common to all supercells, but operational recognition of supercells is clouded by the various radar and visual characteristics they exhibit. The notion of a supercell spectrum is introduced in an effort to guide improved operational detection of supercells. An important part of recognition is the anticipation of what potential exists for supercells in the prestorm environment. Current scientific understanding suggests that cyclonic updraft rotation originates from streamwise vorticity (in the storm`s reference frame) within its environment. A discussion of how storm-relative helicity can be used to evaluate supercell potential is given. An actual supercell event is employed to illustrate the usefulness of conceptual model visualization when issuing statements and warnings for supercell storms. Finally, supercell detection strategies using the advanced datasets from the modernized and restructured NWS are described.

  20. The challenge of predicting flash floods from thunderstorm rainfall.

    PubMed

    Gupta, Hosin; Sorooshian, Soroosh; Gao, Xiaogang; Imam, Bisher; Hsu, Kuo-Lin; Bastidas, Luis; Li, Jailun; Mahani, Shayesteh

    2002-07-15

    A major characteristic of the hydrometeorology of semi-arid regions is the occurrence of intense thunderstorms that develop very rapidly and cause severe flooding. In summer, monsoon air mass is often of subtropical origin and is characterized by convective instability. The existing observational network has major deficiencies for those regions in providing information that is important to run-off generation. Further, because of the complex interactions between the land surface and the atmosphere, mesoscale atmospheric models are currently able to reproduce only general features of the initiation and development of convective systems. In our research, several interrelated components including the use of satellite data to monitor precipitation, data assimilation of a mesoscale regional atmospheric model, modification of the land component of the mesoscale model to better represent the semi-arid region surface processes that control run-off generation, and the use of ensemble forecasting techniques to improve forecasts of precipitation and run-off potential are investigated. This presentation discusses our ongoing research in this area; preliminary results including an investigation related to the unprecedented flash floods that occurred across the Las Vegas valley (Nevada, USA) in July of 1999 are discussed. PMID:12804254

  1. Thunderstorm-environment interactions determined with three-dimensional trajectories

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1980-01-01

    Diagnostically determined three dimensional trajectories were used to reveal some of the scale interaction processes that occur between convective storms and their environment. Data from NASA's fourth Atmospheric Variability Experiment are analyzed. Two intense squall lines and numerous reports of severe weather occurred during the period. Convective storm systems with good temporal and spatial continuity are shown to be related to the development and movement of short wave circulation systems aloft that propagate eastward within a zonal mid tropospheric wind pattern. These short wave systems are found to produce the potential instability and dynamic triggering needed for thunderstorm formation. The environmental flow patterns, relative to convective storm systems, are shown to produce large upward air parcel movements in excess of 50 mb/3h in the immediate vicinity of the storms. The air undergoing strong lifting originates as potentially unstable low level air traveling into the storm environment from southern and southwestern directions. The thermo and hydrodynamical processes that lead to changes in atmospheric structure before, during, and after convective storm formation are described using total time derivatives of pressure or net vertical displacement, potential temperature, and vector wind calculated by following air parcels.

  2. The challenge of predicting flash floods from thunderstorm rainfall.

    PubMed

    Gupta, Hosin; Sorooshian, Soroosh; Gao, Xiaogang; Imam, Bisher; Hsu, Kuo-Lin; Bastidas, Luis; Li, Jailun; Mahani, Shayesteh

    2002-07-15

    A major characteristic of the hydrometeorology of semi-arid regions is the occurrence of intense thunderstorms that develop very rapidly and cause severe flooding. In summer, monsoon air mass is often of subtropical origin and is characterized by convective instability. The existing observational network has major deficiencies for those regions in providing information that is important to run-off generation. Further, because of the complex interactions between the land surface and the atmosphere, mesoscale atmospheric models are currently able to reproduce only general features of the initiation and development of convective systems. In our research, several interrelated components including the use of satellite data to monitor precipitation, data assimilation of a mesoscale regional atmospheric model, modification of the land component of the mesoscale model to better represent the semi-arid region surface processes that control run-off generation, and the use of ensemble forecasting techniques to improve forecasts of precipitation and run-off potential are investigated. This presentation discusses our ongoing research in this area; preliminary results including an investigation related to the unprecedented flash floods that occurred across the Las Vegas valley (Nevada, USA) in July of 1999 are discussed.

  3. Extensive air showers, lightning, and thunderstorm ground enhancements

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-09-01

    For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.

  4. Utilization of Lightning Data for Recognition and Nowcasting of Severe Thunderstorms

    NASA Astrophysics Data System (ADS)

    Betz, Hans D.

    2010-05-01

    Technological disasters and hazardous natural threats are often correlated or even caused by severe thunderstorms. In particular, when a disaster has happened and subsequent human actions of various kinds are activated, it may be helpful to become aware of severe thunderstorms in the area concerned. For example, airports become closed and squadrons working in the open air are called back when lightning threats are expected or do occur. Although thunderstorm recognition and short-term prediction is not considered as a one of the primary subjects in connection with technological dis-asters, it represents background information that should be available in any case, and with high reliability. The present contribution summarizes the status of storm detection and demonstrates the features of the largest lightning location network in Europe (LINET), developed by the Physics Department of the University of Munich, and operated by nowcast GmbH in Munich. Some of the outstanding features of LINET are briefly highlighted. Further-more, it is explained how nowcasting of storms is achieved with the use of only light-ning data, and in combination with radar and other meteorological data sources. Re-sults of co-operations with other research groups, mainly with DLR (Deutsche Luft- und Raumfahrt), and within the project RegioExAKT, funded by the German Government in order to improve nowcasting at airports, are detailed.

  5. Sustainable production of biologically active molecules of marine based origin.

    PubMed

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules.

  6. A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan

    PubMed Central

    Kwan, Elizabeth X.; Foss, Eric J.; Tsuchiyama, Scott; Alvino, Gina M.; Kruglyak, Leonid; Kaeberlein, Matt; Raghuraman, M. K.; Brewer, Bonita J.; Kennedy, Brian K.; Bedalov, Antonio

    2013-01-01

    Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics. PMID:23505383

  7. Lightning flash multiplicity in eastern Mediterranean thunderstorms

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Shalev, S.; Erlich, Z.; Agrachov, A.; Katz, E.; Saaroni, H.; Price, C.; Ziv, B.

    2014-02-01

    Cloud-to-ground lightning flashes usually consist of one or several strokes coming in very short temporal succession and close spatial proximity. A commonly used method for converting stroke data into flashes is using the National Lightning Detection Network (NLDN) thresholds of maximum temporal separation of 0.5 s and maximum lateral distance of 10 km radius between successive strokes. In the present study, we tested a location-based algorithm with several spatial and temporal ranges, and analyzed stroke data obtained by the Israel Lightning Location System (ILLS) during one year (1.8.2009-31.7.2010). We computed the multiplicity, the percentage of single stroke flashes and the geographical distribution of average multiplicity values for thunderstorms in the Eastern Mediterranean region. Results show that for the NLDN thresholds, the percentage of single stroke flashes in Israel was 37% and the average multiplicity was 1.7. We reanalyzed the data with a spatial range that equals twice the ILLS location error and shorter times. For the new thresholds of maximum distance of 2.5 km and maximum allowed temporal separation of 0.2 s we find that the mean multiplicity of negative CGs is lowered to 1.4 and find a percentage of 58% of single stroke flashes. A unique severe storm from 30 October 2009 is analyzed and compared with the annual average of 2009/2010, showing that large deviations from the mean values can occur in specific events.

  8. A numerical investigation of tropical island thunderstorms

    SciTech Connect

    Golding, B.W. )

    1993-05-01

    A version of the United Kingdom Meteorological Office mesoscale weather prediction model is used to simulate cases of deep tropical convection from the Island Thunderstorm Experiment off the north coast of Australia. Selected cases contrast rather isolated storm development in a dry basic state, with widespread precipitation from a moist basic state. Excellent agreement is found between the simulations and the observed early shower development on both occasions. Initiation of convection occurs along the sea-breeze front, which is then reinforced by downdraft outflows. Merging of simulated cells occurs where the outflows meet, producing cells with cloud tops above 18 km and updraft speeds of 60 m s[sup [minus]1]. The later movement of the storms is less well represented, probably due to weakness in the storm-mean flow interaction. Comparison of the cases shows that differences in the timing of initiation and intensity of subsequent convection are well captured, and relate to differences in the initial sounding. Mean budgets of heat. moisture, and momentum are presented, and sensitivity of the simulations to resolution, island shape, and model microphysics is explored. 48 refs., 12 figs.

  9. Thunderstorms over a tropical Indian station, Minicoy: Role of vertical wind shear

    NASA Astrophysics Data System (ADS)

    Chaudhari, H. S.; Sawaisarje, G. K.; Ranalkar, M. R.; Sen, P. N.

    2010-10-01

    In this study, an attempt has been made to bring out the observational aspects of vertical wind shear in thunderstorms over Minicoy. Case studies of thunderstorm events have been examined to find out the effect of vertical wind shear and instability on strength and longevity of thunderstorms. Role of vertical wind shear in thunderstorms and its mechanism has been explored in this study. Results reveal that for prolonged thunderstorms high and low instability along with moderate to high vertical wind shear (moderate: 0.003 S-1 ≤ vertical wind shear ≤ 0.005 S-1 and high: > 0.005 S-1) play a significant role in longevity and strength of thunderstorms. The mechanism of vertical wind shear in thunderstorms was investigated in a few cases of thunderstorm events where the duration of thunderstorm was covered by the radiosonde/rawin ascent observation taken at Minicoy. Empirical model has been developed to classify thunderstorm type and to determine the strength and longevity of thunderstorms. Model validation has been carried out for selected cases. Model could classify thunderstorm type for most of the cases of thunderstorm events over island and coastal stations.

  10. Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over East Indian Region.

    PubMed

    Litta, A J; Mary Ididcula, Sumam; Mohanty, U C; Kiran Prasad, S

    2012-01-01

    The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region. PMID:22645480

  11. Comparison of Thunderstorm Simulations from WRF-NMM and WRF-ARW Models over East Indian Region

    PubMed Central

    Litta, A. J.; Mary Ididcula, Sumam; Mohanty, U. C.; Kiran Prasad, S.

    2012-01-01

    The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region. PMID:22645480

  12. Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over East Indian Region.

    PubMed

    Litta, A J; Mary Ididcula, Sumam; Mohanty, U C; Kiran Prasad, S

    2012-01-01

    The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region.

  13. Ionospheric Disturbances Originating From Tropospheric and Ground Activities: A new Strategic Research Program at the Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Shao, X. M.

    2015-12-01

    It has been increasingly recognized and observed that activities within the troposphere, either natural (e.g., thunderstorm, earthquake, volcano) or anthropogenic (e.g., explosion above or below ground), can substantially disturb the ionosphere in the forms of atmosphere gravity wave, infrasonic acoustic wave, and electric-field-induced ionospheric chemical reaction. These disturbances introduce plasma density variations in the ionosphere that adversely distort the transionospheric radio signals for communication, navigation, surveillance, and other national security missions. A new three-year strategic research program has been initiated at LANL in FY16 to investigate, understand, and characterize the interwoven dynamic and electrodynamic coupling processes from the source in the troposphere to the disturbances in the ionosphere via comprehensive observation and model simulation. The planned study area is chosen to be over the US Great Plains where severe thunderstorms occur frequently and where the necessary atmospheric and ionospheric observations are conducted routinely. In this presentation, we will outline our program plan, technical approaches, and scientific goals, and will discuss opportunities of possible inter-institute collaborations.

  14. Heavy Thunderstorm Synoptic Climatology and Forcing Mechanisms in Saudi Arabia.

    NASA Astrophysics Data System (ADS)

    Ghulam, Ayman S.

    2010-05-01

    Meteorologists are required to provide accurate and comprehensive weather information for planning and operational aviation, agricultural, water projects and also for the public. In general, weather phenomena such as thunderstorms over the area between the tropics and the middle latitudes are not fully understood, particularly in the Middle East area, for many reasons such as: 1) the complexity of the nature of the climate due to the wide-ranging diversity in the topography and landscape in the area; 2) the lack of meteorological data in the area; and 3) the lack of studies on local weather situations. In arid regions such as Saudi Arabia, the spatial and temporal variation of thunderstorms and associated rainfall are essential in determining their effects on social and economic conditions. Thunderstorms form rapidly, due to the fact that the significant heating of the air from the surface and the ensuing rainfall usually occurs within a short period of time. Thus, understanding thunderstorms and rainfall distribution in time and space would be useful for hydrologists, meteorologists and for environmental studies. Research all over the world has shown, however, that consideration of local factors like Low Level Jets (LLJ), moisture flux, sea breezes, and the Red Sea Convergence Zone (RSCZ) would be valuable in thunderstorm prediction. The combined effects of enhanced low-level moisture convergence and layer destabilization due to upslope flow over mountainous terrain has been shown to be responsible for thunderstorm development in otherwise non-favourable conditions. However, there might be other synoptic features associated with heavy thunderstorms or cause them, but these features have not been investigated in any research in Saudi Arabia. Thus, relating the local weather and synoptic situations with those over the middle latitudes will provide a valuable background for the forecasters to issue the medium-range forecasts which are important for many projects

  15. Thunderstorm asthma: an overview of the evidence base and implications for public health advice.

    PubMed

    Dabrera, G; Murray, V; Emberlin, J; Ayres, J G; Collier, C; Clewlow, Y; Sachon, P

    2013-03-01

    Thunderstorm asthma is a term used to describe an observed increase in acute bronchospasm cases following the occurrence of thunderstorms in the local vicinity. The roles of accompanying meteorological features and aeroallergens, such as pollen grains and fungal spores, have been studied in an effort to explain why thunderstorm asthma does not accompany all thunderstorms. Despite published evidence being limited and highly variable in quality due to thunderstorm asthma being a rare event, this article reviews this evidence in relation to the role of aeroallergens, meteorological features and the impact of thunderstorm asthma on health services. This review has found that several thunderstorm asthma events have had significant impacts on individuals' health and health services with a range of different aeroallergens identified. This review also makes recommendations for future public health advice relating to thunderstorm asthma on the basis of this identified evidence. PMID:23275386

  16. Thunderstorm asthma: an overview of the evidence base and implications for public health advice.

    PubMed

    Dabrera, G; Murray, V; Emberlin, J; Ayres, J G; Collier, C; Clewlow, Y; Sachon, P

    2013-03-01

    Thunderstorm asthma is a term used to describe an observed increase in acute bronchospasm cases following the occurrence of thunderstorms in the local vicinity. The roles of accompanying meteorological features and aeroallergens, such as pollen grains and fungal spores, have been studied in an effort to explain why thunderstorm asthma does not accompany all thunderstorms. Despite published evidence being limited and highly variable in quality due to thunderstorm asthma being a rare event, this article reviews this evidence in relation to the role of aeroallergens, meteorological features and the impact of thunderstorm asthma on health services. This review has found that several thunderstorm asthma events have had significant impacts on individuals' health and health services with a range of different aeroallergens identified. This review also makes recommendations for future public health advice relating to thunderstorm asthma on the basis of this identified evidence.

  17. Patterns and origin of igneous activity around the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Foley, S. F.; Link, K.; Tiberindwa, J. V.; Barifaijo, E.

    2012-01-01

    Tertiary and later igneous activity is common on and around the Tanzanian craton, with primitive magma compositions ranging from kimberlites and varieties of picrites through nephelinites, basanites and alkali basalts. This review focuses on elucidating the conditions of origin of the melts, addressing the question of the state and involvement of the Tanzanian cratonic lithosphere in magma genesis. The Tanzanian craton is anomalous with a surface elevation of >1100 m reflecting buoyancy supported by a subcratonic plume whose effects are seen in the volcanics of both western and eastern rift branches. Magmatism on the craton and at its edge has high K/Na and primitive melts show fractionation dominated by olivine. Slightly further from the craton pyroxene fractionation dominates and K/Na ratios in the magmas are lower. Off-craton melts are nephelinites, basanites and alkali basalts with low K/Na. Potassium enrichment in the melts correlates with the occurrence of phlogopite in mantle-derived xenoliths, and also with carbonate in the magmas. This is attributed to melting at >140 km depths of mixed source regions containing phlogopite pyroxenite and peridotite, whereby the carbonate is derived from oxidation of diamonds concentrated near the base of the cratonic lithosphere. Mixed source regions are required by arrays of radiogenic isotopes such as Os and Sr in the volcanic rocks. The temporal progression of lamproites to phlogopite + carbonate-rich rocks to melilitites, nephelinites and alkali basalts seen during the erosion of the North Atlantic craton are seen around the Tanzanian craton as the coeval occurrence kimberlites, kamafugites and related rocks, nephelinites and alkali basalts showing spatial instead of temporal variation. This is due to the different stages of development of rifting around the craton: in northwestern Uganda and northern Tanzania, K-rich volcanism occurs at the craton edge, whereas nephelinites, basanites and alkali basalts occur where

  18. Thunderstorm hazards flight research: Storm hazards 1980 overview

    NASA Technical Reports Server (NTRS)

    Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft.

  19. On the modulation of X ray fluxes in thunderstorms

    NASA Technical Reports Server (NTRS)

    Mccarthy, Michael P.; Parks, George K.

    1992-01-01

    The production of X-ray fluxes in thunderstorms has been attributed to bremsstrahlung. Assuming this, another question arises. How can a thunderstorm modulate the number density of electrons which are sufficiently energetic to produce X-rays? As a partial answer to this question, the effects of typical thunderstorm electric fields on a background population of energetic electrons, such as produced by cosmic ray secondaries and their decays or the decay of airborne radionuclides, are considered. The observed variation of X-ray flux is shown to be accounted for by a simple model involving typical electric field strengths. A necessary background electron number density is found from the model and is determined to be more than 2 orders of magnitude higher than that available from radon decay and a factor of 8 higher than that available from cosmic ray secondaries. The ionization enhancement due to energetic electrons and X-rays is discussed.

  20. High-altitude electrical discharges associated with thunderstorms and lightning

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.

    2015-12-01

    The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.

  1. Research progress of pharmacological activities and analytical methods for plant origin proteins.

    PubMed

    Li, Chun-hong; Chen, Cen; Xia, Zhi-ning; Yang, Feng-qing

    2015-07-01

    As one of the important active components of traditional Chinese medicine (TCM), plant origin active proteins have many significant pharmacological functions. According to researches on the plant origin active proteins reported in recent years, pharmacological effects include anti-tumor, immune regulation, anti-oxidant, anti-pathogeny microorganism, anti-thrombus, as well as hypolipidemic and hypoglycemic activities of plant origin were reviewed, respectively. On the other hand, the analytical methods including chromatography, spectroscopy, electrophoresis and mass spectrometry for plant origin proteins analysis were also summarized. The main purpose of this paper is providing a reference for future development and application of plant active proteins.

  2. Origin of secondary sulfate minerals on active andesitic stratovolcanoes

    USGS Publications Warehouse

    Zimbelman, D.R.; Rye, R.O.; Breit, G.N.

    2005-01-01

    Sulfate minerals in altered rocks on the upper flanks and summits of active andesitic stratovolcanoes result from multiple processes. The origin of these sulfates at five active volcanoes, Citlalte??petl (Mexico), and Mount Adams, Hood, Rainier, and Shasta (Cascade Range, USA), was investigated using field observations, petrography, mineralogy, chemical modeling, and stable-isotope data. The four general groups of sulfate minerals identified are: (1) alunite group, (2) jarosite group, (3) readily soluble Fe- and Al-hydroxysulfates, and (4) simple alkaline-earth sulfates such as anhydrite, gypsum, and barite. Generalized assemblages of spatially associated secondary minerals were recognized: (1) alunite+silica??pyrite??kaolinite?? gypsum??sulfur, (2) jarosite+alunite+silica; (3) jarosite+smectite+silica??pyrite, (4) Fe- and Al-hydroxysulfates+silica, and (5) simple sulfates+silica??Al-hydroxysulfates??alunite. Isotopic data verify that all sulfate and sulfide minerals and their associated alteration assemblages result largely from the introduction of sulfur-bearing magmatic gases into meteoric water in the upper levels of the volcanoes. The sulfur and oxygen isotopic data for all minerals indicate the general mixing of aqueous sulfate derived from deep (largely disproportionation of SO2 in magmatic vapor) and shallow (oxidation of pyrite or H2S) sources. The hydrogen and oxygen isotopic data of alunite indicate the mixing of magmatic and meteoric fluids. Some alunite-group minerals, along with kaolinite, formed from sulfuric acid created by the disproportionation of SO2 in a condensing magmatic vapor. Such alunite, observed only in those volcanoes whose interiors are exposed by erosion or edifice collapse, may have ??34S values that reflect equilibrium (350??50 ??C) between aqueous sulfate and H2S. Alunite with ??34S values indicating disequilibrium between parent aqueous sulfate and H2S may form from aqueous sulfate created in higher level low

  3. Terrestrial Gamma Flashes Observed from Nearby Thunderstorms at Ground Level

    NASA Astrophysics Data System (ADS)

    Cherry, M. L.; Chason, N.; Granger, D.; Guzik, T. G.; Pleshinger, D.; Rodi, J.; Stacy, J. G.; Stewart, M.; Zimmer, N.

    2014-12-01

    The TGF and Energetic Thunderstorm Rooftop Array (TETRA) is an array of NaI scintillators located on the campus of Louisiana State University in Baton Rouge, Louisiana. Since July 2010, TETRA has detected 37 millisecond bursts of gamma rays at energies 50 keV - 2 MeV associated with nearby (< 8 km) thunderstorms. The ability to observe ground-level Terrestrial Gamma Flashes from close to the source allows a unique analysis of the storm cells producing these events. A description of the observations, the results of the analysis, and plans for future measurements will be presented.

  4. Ionospheric plasma dynamics and instability causedby upward currents above thunderstorms

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Lee, L. C.

    2015-12-01

    Thunderstorms are electric generators, which drive currents upwardly into the ionosphere. In thispaper, we examine the effects of thunderstorm upward current on the ionosphere. We use a thunderstormmodel to calculate the three-dimensional current flows in the atmosphere and to simulate the upward currentabove the thunderstormwith the tripole-charge structure. The upward current flows into the ionosphere, whilethe associated electric field causes the plasma E × B motion. The caused plasma motion redistributes theplasma density, leading to ionospheric density variations. In the nighttime ionosphere, the E × B motion mayalso cause the formation of plasma bubbles.

  5. Thunderstorm-associated asthma: the effect on GP consultations.

    PubMed

    Hajat, S; Goubet, S A; Haines, A

    1997-10-01

    Evidence shows that asthma attacks can be brought on by adverse weather conditions such as those experienced during a thunderstorm; a prime example of such an occasion being a thunderstorm episode on 24 June 1994, which resulted in a well-documented increase in medical attendances made by those suffering with asthma and respiratory disorders. However, most of these studies have concerned admissions to accident and emergency departments. The aim of this paper was to ascertain whether a similar increase in consultations was observed in the primary care setting. PMID:9474828

  6. Thunderstorm-associated asthma: the effect on GP consultations.

    PubMed Central

    Hajat, S; Goubet, S A; Haines, A

    1997-01-01

    Evidence shows that asthma attacks can be brought on by adverse weather conditions such as those experienced during a thunderstorm; a prime example of such an occasion being a thunderstorm episode on 24 June 1994, which resulted in a well-documented increase in medical attendances made by those suffering with asthma and respiratory disorders. However, most of these studies have concerned admissions to accident and emergency departments. The aim of this paper was to ascertain whether a similar increase in consultations was observed in the primary care setting. PMID:9474828

  7. Thunderstorm-associated asthma: the effect on GP consultations.

    PubMed

    Hajat, S; Goubet, S A; Haines, A

    1997-10-01

    Evidence shows that asthma attacks can be brought on by adverse weather conditions such as those experienced during a thunderstorm; a prime example of such an occasion being a thunderstorm episode on 24 June 1994, which resulted in a well-documented increase in medical attendances made by those suffering with asthma and respiratory disorders. However, most of these studies have concerned admissions to accident and emergency departments. The aim of this paper was to ascertain whether a similar increase in consultations was observed in the primary care setting.

  8. Subsynoptic environment associated with two inter-mountain severe thunderstorm events

    SciTech Connect

    Schwartz, M.N.; Andrews, G.L.

    1983-05-01

    Isentropic analysis provided the means for revealing a subsynoptic feature, the thermal line, that is virtually impossible to detect on a surface map. The initial convective activity occurred in the vicinity of this boundary rather than near the more salient surface features (e.g., thermal low and cold front). Isentropic analysis also showed that the location of the thermal line did coincide with a region of significant upward motion. Thus, in these cases, it appears the subsynoptic features (e.g., thermal line and it's associated environment) were catalysts for the initial convection while the synoptic conditions provided the favorable environment for severe thunderstorms.

  9. Thunderstorm Charge Structures in South Dakota, Colorado, and New Mexico

    NASA Astrophysics Data System (ADS)

    Tilles, J.; Thomas, R. J.; Rison, W.; Warner, T. A.; Helsdon, J.; Krehbiel, P. R.

    2014-12-01

    With little exception, New Mexico thunderstorms contain a main negative charge region and a lower (weaker) positive region, whereby the dominate polarity of cloud-to-ground lightning is negative. This Normal Polarity (NP) charge structure is observable via the New Mexico Tech Lightning Mapping Array (LMA), which has been operated by Langmuir Laboratory since the late 1990s. In contrast, an LMA deployed for the 2012 Deep Convective Clouds and Chemistry (DC3) project revealed that thunderstorm charge structures were predominantly anomalous—i.e. not NP—in north-central Colorado. These anomalous charge structures are characterized by positive cloud-to-ground (+CG) lightning, and lower-than-normal CG rates. The difference in charge structure between the two geographic locations could possibly be correlated with the scale of forcing: New Mexico storms are predominantly formed by mesoscale (small-scale) forcing, whereas Colorado can have larger synoptically-forced thunderstorms. To gain further insight into the relationship between the scale of forcing and the resulting charge structures, LMA data from the 2014 Upward Lightning Triggering Study (UPLIGHTS) will be used to determine electrical characteristics of thunderstorms in western South Dakota. The charge structures of similar storm morphologies from each geographic location—central New Mexico, north-central Colorado, and western South Dakota—will be compared.

  10. Thunderstorm Tracking Using Data from the Brazilian Lightning Detection Network

    NASA Astrophysics Data System (ADS)

    Bourscheidt, V.; Pinto, O.; Naccarato, K.

    2011-12-01

    Severe weather has been noticed as an increasing environmental hazard in the last years. In the same way, pronounced improvements have been made in the forecast and tracking of extreme weather by integrating the meteorological information with lightning data. Thunderstorm tracking software/algorithms using integrated meteorological information and lightning data are nowadays a useful tool to the government and civil defense agencies, with several examples of those systems around the world. Thunderstorm tracking systems that use only lightning data are also available for different regions and give reliable results in general. On the other hand, storm tracking based on lightning data depends on the system characteristics (system performance, number of sensors, detection technology etc.). In the Brazilian case, with a hybrid network with different technologies, a careful analysis is necessary to determine the tracking boundary conditions (distinction of thunderstorm cell, cell life cycle, flash rate, prevailing displacement direction etc). Thus, our goal is to evaluate, based on the already available tracking algorithms, these boundary conditions to find the best approach for a Brazilian lightning-based thunderstorm tracking algorithm/system. This tracking system might help (mainly) on the severe weather forecast/warning, reducing the human/economic damages related to it.

  11. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... more in passenger-carrying operations, except a helicopter operating under day VFR conditions, unless... weather radar equipment. (b) No person may operate a helicopter that has a passenger seating configuration... flown, unless the helicopter is equipped with either approved thunderstorm detection equipment...

  12. Thunderstorm Research International Program (TRIP 77) report to management

    NASA Technical Reports Server (NTRS)

    Taiani, A. J.

    1977-01-01

    A post analysis of the previous day's weather, followed by the day's forecast and an outlook on weather conditions for the following day is given. The normal NOAA weather charts were used, complemented by the latest GOES satellite pictures, the latest rawinsonde sounding, and the computer-derived thunderstorm probability forecasts associated with the sounding.

  13. Satellite observations of transient radio impulses from thunderstorms

    SciTech Connect

    Argo, P.E.; Kirkland, M.; Jacobson, A.; Massey, R.; Suszynsky, D.; Eack, K.; Fitzgerald, T.J.; Smith, D.

    1999-06-01

    Transient radio emissions from thunderstorms detected by satellites were first reported in 1995. The nature and source of these emissions remained a mystery until the launch of the FORTE satellite in 1997. FORTE, with its more sophisticated triggering and larger memory capacity showed that these emissions were connected to major thunderstorm systems. The analysis reported here, connecting FORTE RF events with ground based lightning location data from the National Lightning Detection Network (NLDN), shows that localized regions within thunderstorms are responsible for the creation of the satellite detected rf signals. These regions are connected with the areas of strong radar returns from the NEXRAD Doppler radar system, indicating that they are from regions of intense convection. The authors will also show data from several storms detected in the extended Caribbean, in which the height profile of the source regions can be determined. Although as a single low earth orbit satellite FORTE cannot provide global coverage of thunderstorm/lightning events, follow-on satellite constellations should be able to provide detailed information on global lightning in near real-time.

  14. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    NASA Technical Reports Server (NTRS)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  15. A DNA Sequence Element That Advances Replication Origin Activation Time in Saccharomyces cerevisiae

    PubMed Central

    Pohl, Thomas J.; Kolor, Katherine; Fangman, Walton L.; Brewer, Bonita J.; Raghuraman, M. K.

    2013-01-01

    Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time. PMID:24022751

  16. Indonesian propolis: chemical composition, biological activity and botanical origin.

    PubMed

    Trusheva, Boryana; Popova, Milena; Koendhori, Eko Budi; Tsvetkova, Iva; Naydenski, Christo; Bankova, Vassya

    2011-03-01

    From a biologically active extract of Indonesian propolis from East Java, 11 compounds were isolated and identified: four alk(en)ylresorcinols (obtained as an inseparable mixture) (1-4) were isolated for the first time from propolis, along with four prenylflavanones (6-9) and three cycloartane-type triterpenes (5, 10 and 11). The structures of the components were elucidated based on their spectral properties. All prenylflavanones demonstrated significant radical scavenging activity against diphenylpicrylhydrazyl radicals, and compound 6 showed significant antibacterial activity against Staphylococcus aureus. For the first time Macaranga tanarius L. and Mangifera indica L. are shown as plant sources of Indonesian propolis.

  17. Meteorological characteristics of red sprite producing thunderstorms above Hungary

    NASA Astrophysics Data System (ADS)

    Brockhauser, Barbara; Bór, József; Ács, Ferenc; Popek, Martin; Betz, Hans-Dieter

    2014-05-01

    Red sprites are brief luminous optical emissions accompanying electric discharges in the mesosphere. Such discharges dominantly occur after intense +CG lightning flashes. The ~50-90 km height range in which sprites can be observed was monitored above 4 thunderstorm systems running above Hungary in the summer months of 2007, 2010, 2011, and 2012. Observers in Sopron (16.58 E, 47.68N, 234 m MSL) in Hungary, and in Nydek (18.77E, 49.67N, 482 m MSL) in the Czech Republic used their optical detection systems in order to record any sprites these storms may produce. In periods of their evolution in time, some regions of the monitored thunderstorms produced sprites which were detected by the observers, while in other periods and above other regions no red sprites were detected. The poster summarizes the findings from our analysis which has attempted to identify measurable meteorological properties having characteristic values during the periods of sprite production in thunderstorms. Data considered in the analysis included cloud top heights and cloud top temperatures deduced from METEOSAT IR imaging and DWSR weather radar intensities (vertical composites) both of which has been provided by the Hungarian Meteorological Service (time resolution is 15 min., spatial resolution is 2 km), as well as information about lightning strokes (occurrence time, polarity, type (CG or IC), peak current, and geographical location) provided by the LINET lightning location network. No quantity we deduced from the available data was found to show characteristic tendencies which was commonly present in all cases and according to which sprite producing and not sprite producing periods could be unambiguously separated in the examined thunderstorms. On the other hand, the distribution of radar reflectivity values and the contrast between the average and extremal values of cloud top heights and temperatures suggests formation of a trailing stratiform region in those extended thunderstorms which

  18. Identification of anomalous motion of thunderstorms using daily rainfall fields

    NASA Astrophysics Data System (ADS)

    del Moral, Anna; Llasat, Maria Carmen; Rigo, Tomeu

    2016-04-01

    Adverse weather phenomena in Catalonia (NE of the Iberian Peninsula) is commonly associated to heavy rains, large hail, strong winds, and/or tornados, all of them caused by thunderstorms. In most of the cases with adverse weather, thunderstorms vary sharply their trajectories in a concrete moment, changing completely the motion directions that have previously followed. Furthermore, it is possible that a breaking into several cells may be produced, or, in the opposite, it can be observed a joining of different thunderstorms into a bigger system. In order to identify the main features of the developing process of thunderstorms and the anomalous motions that these may follow in some cases, this contribution presents a classification of the events using daily rainfall fields, with the purpose of distinguishing quickly anomalous motion of thunderstorms. The methodology implemented allows classifying the daily rainfall fields in three categories by applying some thresholds related with the daily precipitation accumulated values and their extension: days with "no rain", days with "potentially convective" rain and days with "non-potentially convective" rain. Finally, for those "potentially convective" daily rainfall charts, it also allows a geometrical identification and classification of all the convective structures into "ellipse" and "non-ellipse", obtaining then the structures with "normal" or "anomalous" motion pattern, respectively. The work is focused on the period 2008-2015, and presents some characteristics of the rainfall behaviour in terms of the seasonal distribution of convective rainfall or the geographic variability. It shows that convective structures are mainly found during late spring and summer, even though they can be recorded in any time of the year. Consequently, the maximum number of convective structures with anomalous motion is recorded between July and November. Furthermore, the contribution shows the role of the orography of Catalonia in the

  19. Antibacterial activity against Clostridium genus and antiradical activity of the essential oils from different origin.

    PubMed

    Kačániová, Miroslava; Vukovič, Nenad; Horská, Elena; Salamon, Ivan; Bobková, Alica; Hleba, Lukáš; Fiskelová, Martina; Vatľák, Alexander; Petrová, Jana; Bobko, Marek

    2014-01-01

    In the present study, the antimicrobial and antiradical activities of 15 essential oils were investigated. The antimicrobial activities were determined by using agar disc diffusion and broth microdilution methods against Clostridium genus and antioxidant properties of essential oils by testing their scavenging effect on DPPH radicals activities. We determined the antibacterial activity of Clostridium butyricum, Clostridium hystoliticum, Clostridium intestinale, Clostridium perfringens and Clostridium ramosum. We obtained the original commercial essential oils samples of Lavandula angustifolia, Carum carvi, Pinus montana, Mentha piperita, Foeniculum vulgare Mill., Pinus sylvestris, Satureia montana, Origanum vulgare L. (2 samples), Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abies alba Mill., Chamomilla recutita L. Rausch and Thymus vulgaris L. produced in Slovakia (Calendula a.s., Nova Lubovna, Slovakia). The results of the disk diffusion method showed very high essential oils activity against all tested strains of microorganisms. The best antimicrobial activity against C. butyricum was found at Pimpinella anisum, against C. hystoliticum was found at Pinus sylvestris, against C. intestinale was found at Satureia hortensis L., against C. perfringens was found at Origanum vulgare L. and against C. ramosum was found at Pinus sylvestris. The results of broth microdilution assay showed that none of the essential oils was active against C. hystoliticum. The best antimicrobial activity against C. butyricum was found at Abies alba Mill., against C. intestinale was found at Abies alba Mill., against C. perfringens was found at Satureia montana and against C. ramosum was found at Abius alba and Carum carvi. Antioxidant DPPH radical scavenging activity was determined at several solutions of oil samples (50 μL.mL(-1)-0.39 μL.mL(-1)) and the best scavenging effect for the highest concentration (50 μL.mL(-1)) was observed. The antioxidant properties

  20. Antibacterial activity against Clostridium genus and antiradical activity of the essential oils from different origin.

    PubMed

    Kačániová, Miroslava; Vukovič, Nenad; Horská, Elena; Salamon, Ivan; Bobková, Alica; Hleba, Lukáš; Fiskelová, Martina; Vatľák, Alexander; Petrová, Jana; Bobko, Marek

    2014-01-01

    In the present study, the antimicrobial and antiradical activities of 15 essential oils were investigated. The antimicrobial activities were determined by using agar disc diffusion and broth microdilution methods against Clostridium genus and antioxidant properties of essential oils by testing their scavenging effect on DPPH radicals activities. We determined the antibacterial activity of Clostridium butyricum, Clostridium hystoliticum, Clostridium intestinale, Clostridium perfringens and Clostridium ramosum. We obtained the original commercial essential oils samples of Lavandula angustifolia, Carum carvi, Pinus montana, Mentha piperita, Foeniculum vulgare Mill., Pinus sylvestris, Satureia montana, Origanum vulgare L. (2 samples), Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abies alba Mill., Chamomilla recutita L. Rausch and Thymus vulgaris L. produced in Slovakia (Calendula a.s., Nova Lubovna, Slovakia). The results of the disk diffusion method showed very high essential oils activity against all tested strains of microorganisms. The best antimicrobial activity against C. butyricum was found at Pimpinella anisum, against C. hystoliticum was found at Pinus sylvestris, against C. intestinale was found at Satureia hortensis L., against C. perfringens was found at Origanum vulgare L. and against C. ramosum was found at Pinus sylvestris. The results of broth microdilution assay showed that none of the essential oils was active against C. hystoliticum. The best antimicrobial activity against C. butyricum was found at Abies alba Mill., against C. intestinale was found at Abies alba Mill., against C. perfringens was found at Satureia montana and against C. ramosum was found at Abius alba and Carum carvi. Antioxidant DPPH radical scavenging activity was determined at several solutions of oil samples (50 μL.mL(-1)-0.39 μL.mL(-1)) and the best scavenging effect for the highest concentration (50 μL.mL(-1)) was observed. The antioxidant properties

  1. The Altus Cumulus Electrification Study (ACES): A UAV-based Investigation of Thunderstorms

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Arnold, James E. (Technical Monitor)

    2001-01-01

    The Altus Cumulus Electrification Study (ACES) is a NASA-sponsored and -led science investigation that utilizes an uninhabited aerial vehicle (UAV) to investigate thunderstorms in the vicinity of the NASA Kennedy Space Center, Florida. As part of NASA's UAV-based science demonstration program, ACES will provide a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. ACES will employ the Altus 11 aircraft, built by General Atomics-Aeronautical Systems, Inc. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high-altitude flight (up to 55,000 feet), the Altus will be flown near, and when possible, above (but never into) thunderstorms for long periods of time, allowing investigations to be conducted over entire storm life cycles. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and (3) provide Lightning Imaging Sensor validation. The ACES payload, already developed and flown on Altus, includes electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. The ACES field campaign will be conducted during July 2002 with a goal of performing 8 to 10 UAV flights. Each flight will require about 4 to 5 hours on station at altitudes from 40,000 ft to 55,000 ft. The ACES team is comprised of scientists from the NASA Marshall Space Flight Center and NASA Goddard Space Flight Centers partnered with General Atomics and IDEA, LLC.

  2. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  3. The origin of word-related motor activity.

    PubMed

    Papeo, Liuba; Lingnau, Angelika; Agosta, Sara; Pascual-Leone, Alvaro; Battelli, Lorella; Caramazza, Alfonso

    2015-06-01

    Conceptual processing of verbs consistently recruits the left posterior middle temporal gyrus (lpMTG). The left precentral motor cortex also responds to verbs, with higher activity for action than nonaction verbs. The early timing of this effect has suggested that motor features of words' meaning are accessed directly, bypassing access to conceptual representations in lpMTG. An alternative hypothesis is that the retrieval of conceptual representations in lpMTG is necessary to drive more specific, motor-related representations in the precentral gyrus. To test these hypotheses, we first showed that repetitive transcranial magnetic stimulation (rTMS) applied to the verb-preferring lpMTG site selectively impoverished the semantic processing of verbs. In a second experiment, rTMS perturbation of lpMTG, relative to no stimulation (no-rTMS), eliminated the action-nonaction verb distinction in motor activity, as indexed by motor-evoked potentials induced in peripheral muscles with single-pulse TMS over the left primary motor cortex. rTMS pertubation of an occipital control site, relative to no-rTMS, did not affect the action-nonaction verb distinction in motor activity, but the verb contrast did not differ reliably from the lpMTG effect. The results show that lpMTG carries core semantic information necessary to drive the activation of specific (motor) features in the precentral gyrus.

  4. Origin of activation energy in a superionic conductor.

    PubMed

    Kamishima, O; Kawamura, K; Hattori, T; Kawamura, J

    2011-06-01

    The characteristics of cation diffusion with many-body effects are discussed using Ag β-alumina as an example of a superionic conductor. Polarized Raman spectra of Ag β-alumina have been measured at room temperature. The interatomic potentials were determined by a non-linear least square fitting between the phonon eigenvalues from the Raman observations and a dynamical matrix calculation based on a rigid-ion model. The obtained potential parameters for the model crystal of Ag β-alumina successfully reproduce the macroscopic properties with respect to the heat capacity, isothermal compressibility and self-diffusion constant. A molecular dynamics (MD) calculation has been carried out using the model crystal of Ag β-alumina to understand the many-body effects for the fast ionic diffusion. It was found that the Ag-Ag repulsion by excess Ag defects significantly reduced the cost of the energy difference of the occupancy between the stable and metastable sites. It is possible for the system to take various configurations of the mobile ions through defects easily, and then the fast ionic diffusion will appear. On the other hand, the Ag-Ag repulsion changes the dynamics of the Ag ions from a random hopping to a cooperative motion. In the cooperative motion, the ionic transport becomes difficult due to the additional energy required for the structural relaxation of the surrounding Ag ions. We propose a new insight into the superionic conduction, that is, the activation energy for the ionic transport is composed of two kinds of elements: a 'static' activation energy and a 'dynamic' one. The static activation energy is the cost of the averaged energy difference in the various structural configurations in the equilibrium state. The dynamic activation energy is the additional energy required for the structural relaxation induced by the jump process.

  5. A sea breeze induced thunderstorm over an inland station over Indian South Peninsula - A case study

    NASA Astrophysics Data System (ADS)

    Bhate, Jyoti; Kesarkar, Amit P.; Karipot, Anandakumar; Bala Subrahamanyam, D.; Rajasekhar, M.; Sathiyamoorthy, V.; Kishtawal, C. M.

    2016-10-01

    The dynamic interaction of sea breeze with the prevailing synoptic flows can give rise to meteorological conditions conducive for the occurrence to the thunderstorms over coastal and adjoining regions. Here, we present a rare case study of the genesis of the thunderstorm that occurred on 4th May 2011 at 1500Z over Gadanki (13.5°N, 79.2°E), one of the tropical inland stations (100 km) near to the east coast of the Indian peninsula. The objective of present work is to understand the underlying physical mechanism of initiation of such convection over this region. A set of meteorological observations obtained from microwave radiometer profiler, eddy covariance flux tower system, and Doppler weather radar, are used for investigating the convection genesis characteristics. In conjunction with observations, to bridge the gap of lack of high resolutional spatial observations, the high-resolution (2 km) model analysis is developed using Weather Research and Forecasting (WRF) model and four-dimensional data assimilation technique. The analysis of thermodynamical and dynamical indices carried out from the model analysis as well as observations. Results obtained from this study indicated the presence of a wind discontinuity line and a warm air advection from the north Indian region towards Gadanki caused this area hot dry and convectively active. The sea breeze front propagated over hot and dry area few hours before the genesis of the thunderstorm. The moisture flux convergence increased with the inland propagation of sea breeze front. We found that the inland penetration of sea-breeze front caused advection of moist and cold air over warm and dry region; reduction in dew point depression causing bulging of dry line and lowering of lifting condensation level; development of shear in wind direction and speed; increase in low level convergence and vertical velocity, upward transport of moist air and finally increase in helicity of the environment. The wind shear instability

  6. Seismo-acoustic analysis of thunderstorms at Plostina (Romania) site

    NASA Astrophysics Data System (ADS)

    Grecu, Bogdan; Ghica, Daniela; Moldovan, Iren; Ionescu, Constantin

    2013-04-01

    The National Institute for Earth Physics (Romania) operates one of the largest seismic networks in the Eastern Europe. The network includes 97 stations with velocity sensors of which 52 are broadband and 45 are short period, 102 strong motion stations and 8 seismic observatories. Located in the most active seismic region of Romania, i.e. Vrancea area, the Plostina Observatory included initially two seismic stations, one at surface with both broadband and accelerometer sensors and one at 30 m depth with only short period velocity sensor. Starting with 2007, the facilities at Plostina have been upgraded so that at present, the observatory also includes one seismic array (PLOR) of seven elements (PLOR1, PLOR2, PLOR3, PLOR4, PLOR5, PLOR6, PLOR7) with an aperture of 2.5 km, seven infrasound elements (IPL2, IPL3, IPL4, IPH4, IPH5, IPH6, IPH7), two three-component fluxgate sensors, one Boltek EFM-100 electrometer and one La Crosse weather station. The element PLOR4 is co-located with the accelerometer and borehole sensor, two infrasonic elements (IPL4 and IPH4), one fluxgate sensor, the Boltek electrometer and the weather station. All the date are continuously recorded and real-time transmitted to the Romanian National Data Centre (RONDC) in Magurele. The recent developments at Plostina site made possible the improvement of the local miscroseismic activity monitoring as well as conducting of other geophysical studies such as acoustic measurements, observations of the variation of the magnetic field in correlation with solar activity, observations of the variation of radioactive alpha gases concentration, observations of the telluric currents. In this work, we investigate the signals emitted due to the process of lightning and thunder during thunderstorms activity at Plostina site. These signals are well recorded by both seismic and infrasound networks and they are used to perform spectral and specific array analyses. We also perform multiple correlations between the

  7. Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Yijun; Zheng, Dong; Xu, Liangtao

    2015-04-01

    A three-dimensional (3D) charging-discharging cloud resolution model was used to investigate the impact of the vertical velocity field on the charging processes and the formation of charge structure in a strong thunderstorm. The distribution and evolution of ice particle content and charges on ice particles were analyzed in different vertical velocity fields. The results show that the ice particles in the vertical velocity range from 1 to 5 m s-1 obtained the most charge through charging processes during the lifetime of the thunderstorm. The magnitude of the charges could reach 1014 nC. Before the beginning of lightning activity, the charges produced in updraft region 2 (updraft speed ⩾ 13 m s-1) and updraft region 1 (updraft speed between 5 and 13 m s-1) were relatively significant. The magnitudes of charge reached 1013 nC, which clearly impacted upon the early lightning activity. The vertical velocity conditions in the quasi-steady region (updraft speed between -1 and 1 m s-1) were the most conducive for charge separation on ice particles on different scales. Accordingly, a net charge structure always appeared in the quasi-steady and adjacent regions. Based on the results, a conceptual model of ice particle charging, charge separation, and charge structure formation in the flow field was constructed. The model helps to explain observations of the "lightning hole" phenomenon.

  8. Observations of high ground flash densities of positive lightning in summertime thunderstorms

    SciTech Connect

    Stolzenburg, M.

    1994-08-01

    Observations of summertime thunderstorms indicate that positive polarity cloud-to-ground lightning activity can occur with rates as high as 67 flashes in 5 min and spatial densities up to 0.60 flashes per square kilometer per hour. All ground flashes in a storm may be positive for substantial periods. Using data from a nationwide network of magnetic direction finders, 24 storms with high ground flash densities of positive lightning were found on 11 days in June and July 1989 in the Great Plains of the United States. The periods of high-density positive lightning persisted an average of 4 h, longer than the lifetime of a typical single thunderstorm cell. In most cases, they occurred at or near the beginning of the storms` cloud-to-ground lightning activity. Supporting data suggest that the production of high rate and high percentage of positive ground flashes may be associated with exceptionally tall storms that exhibit a stage of early, rapid increase in radar echo-top height and produce large hail.

  9. Mapping the African thunderstorm center in absolute units using Schumann resonance spectral decomposition method

    NASA Astrophysics Data System (ADS)

    Dyrda, Michal; Kulak, Andrzej; Mlynarczyk, Janusz

    2015-04-01

    Monitoring of the global lightning activity provides a very useful tool to study the global warming phenomenon and the other longer-scale climate changes induced by humans. The lightning activity is measured using various observational methods form space (optical satellite observations) as well as from the ground mostly by VLF /LF lightning detection networks, i.e. World Wide Lightning Location Network (WWLLN) or lightning detection network (LINET) in Europe. However, the global lightning activity measurements are possible only in the ELF range. Here we examine the African thunderstorm activity center, which is the most violent and active one. In a spherical damped resonator, such as the Earth-ionosphere cavity, the electromagnetic field is described by the solution of an inhomogeneous wave equation. For such equation the general solution can be expressed by the superposition of the solutions of the homogeneous equation, describing the resonance field, and the component, which is quite strong close to the source and weakens with source-observer separation. Thus, the superposition of the standing wave field with the field of traveling waves, which supply the energy from the lighting discharges to the global resonator, is a main reason for an asymmetric shape of the observational Schumann resonance (SR) power spectra, which highly deviate from the Lorentz curves. It is possible to separate this component from the signal using the spectrum decomposition method proposed by Kułak et al. [2006]. In our approach, we apply the inverse problem solution for determining the distance of the dominant lightning source. The distances to the thunderstorm centers are calculated using the analytical models for the electromagnetic waves propagation in the Earth-ionosphere cavity. Such forms of analytic solutions of the resonant field in the spherical cavity is the zonal harmonic series representation, described by Mushtak and Williams [2002] and we calculated the sets of such curves

  10. Origin of aromatase inhibitory activity via proteochemometric modeling.

    PubMed

    Simeon, Saw; Spjuth, Ola; Lapins, Maris; Nabu, Sunanta; Anuwongcharoen, Nuttapat; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-01-01

    Aromatase, the rate-limiting enzyme that catalyzes the conversion of androgen to estrogen, plays an essential role in the development of estrogen-dependent breast cancer. Side effects due to aromatase inhibitors (AIs) necessitate the pursuit of novel inhibitor candidates with high selectivity, lower toxicity and increased potency. Designing a novel therapeutic agent against aromatase could be achieved computationally by means of ligand-based and structure-based methods. For over a decade, we have utilized both approaches to design potential AIs for which quantitative structure-activity relationships and molecular docking were used to explore inhibitory mechanisms of AIs towards aromatase. However, such approaches do not consider the effects that aromatase variants have on different AIs. In this study, proteochemometrics modeling was applied to analyze the interaction space between AIs and aromatase variants as a function of their substructural and amino acid features. Good predictive performance was achieved, as rigorously verified by 10-fold cross-validation, external validation, leave-one-compound-out cross-validation, leave-one-protein-out cross-validation and Y-scrambling tests. The investigations presented herein provide important insights into the mechanisms of aromatase inhibitory activity that could aid in the design of novel potent AIs as breast cancer therapeutic agents. PMID:27190705

  11. Origin of aromatase inhibitory activity via proteochemometric modeling

    PubMed Central

    Simeon, Saw; Spjuth, Ola; Lapins, Maris; Nabu, Sunanta; Anuwongcharoen, Nuttapat; Prachayasittikul, Virapong; Wikberg, Jarl E.S.

    2016-01-01

    Aromatase, the rate-limiting enzyme that catalyzes the conversion of androgen to estrogen, plays an essential role in the development of estrogen-dependent breast cancer. Side effects due to aromatase inhibitors (AIs) necessitate the pursuit of novel inhibitor candidates with high selectivity, lower toxicity and increased potency. Designing a novel therapeutic agent against aromatase could be achieved computationally by means of ligand-based and structure-based methods. For over a decade, we have utilized both approaches to design potential AIs for which quantitative structure–activity relationships and molecular docking were used to explore inhibitory mechanisms of AIs towards aromatase. However, such approaches do not consider the effects that aromatase variants have on different AIs. In this study, proteochemometrics modeling was applied to analyze the interaction space between AIs and aromatase variants as a function of their substructural and amino acid features. Good predictive performance was achieved, as rigorously verified by 10-fold cross-validation, external validation, leave-one-compound-out cross-validation, leave-one-protein-out cross-validation and Y-scrambling tests. The investigations presented herein provide important insights into the mechanisms of aromatase inhibitory activity that could aid in the design of novel potent AIs as breast cancer therapeutic agents. PMID:27190705

  12. Origin of aromatase inhibitory activity via proteochemometric modeling.

    PubMed

    Simeon, Saw; Spjuth, Ola; Lapins, Maris; Nabu, Sunanta; Anuwongcharoen, Nuttapat; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-01-01

    Aromatase, the rate-limiting enzyme that catalyzes the conversion of androgen to estrogen, plays an essential role in the development of estrogen-dependent breast cancer. Side effects due to aromatase inhibitors (AIs) necessitate the pursuit of novel inhibitor candidates with high selectivity, lower toxicity and increased potency. Designing a novel therapeutic agent against aromatase could be achieved computationally by means of ligand-based and structure-based methods. For over a decade, we have utilized both approaches to design potential AIs for which quantitative structure-activity relationships and molecular docking were used to explore inhibitory mechanisms of AIs towards aromatase. However, such approaches do not consider the effects that aromatase variants have on different AIs. In this study, proteochemometrics modeling was applied to analyze the interaction space between AIs and aromatase variants as a function of their substructural and amino acid features. Good predictive performance was achieved, as rigorously verified by 10-fold cross-validation, external validation, leave-one-compound-out cross-validation, leave-one-protein-out cross-validation and Y-scrambling tests. The investigations presented herein provide important insights into the mechanisms of aromatase inhibitory activity that could aid in the design of novel potent AIs as breast cancer therapeutic agents.

  13. The thermal origin of spontaneous activity in the Limulus photoreceptor

    PubMed Central

    Srebro, Richard; Behbehani, Mahmood

    1972-01-01

    1. Discrete depolarizations of the photoreceptor cell membrane called discrete waves occur spontaneously and in response to illumination in the eye of the horseshoe crab, Limulus. Each light induced discrete wave is caused by the absorption of a single photon. 2. The frequencies of spontaneous and light induced discrete waves were studied at different temperatures from 0 to 25° C using a new method of counting them to avoid errors due to their temporal overlap. 3. The frequency of spontaneous discrete waves followed the Arrhenius relationship with activation energy equal to 48·6 kcal. 4. The frequency of the discrete waves caused by a fixed level of steady illumination was not significantly changed when the temperature of the cell was changed. 5. The relationship of the frequency of spontaneous discrete waves to temperature was compared to a prediction based on the relationship of the quantum relative spectral sensitivity of the Limulus eye to the temperature of the eye. The prediction was in good agreement with observation and suggests that spontaneous discrete waves result from thermally induced cis to trans isomerizations of visual pigment molecules. PMID:5071400

  14. THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS

    SciTech Connect

    Dalmasse, K.; Kliem, B.; Török, T.

    2015-09-01

    There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents—not observed in 2.5D—in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line—a special condition that is rarely observed. We conclude that  photospheric flows, as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.

  15. Application of the blown-ups principle to thunderstorm forecast

    NASA Astrophysics Data System (ADS)

    Chen, Huizhi; Xie, Na; Wang, Qin

    2005-09-01

    Discontinuous and long-duration thunderstorm weather, which occurred at Guanghan in Sichuan Province, was analyzed and predicted using structural conversion of irregular information in phase-space from self-recording “time sequence” records for predicting rain areas, as described in the “Non Destructive Information” method proposed by Professor OuYang Shoucheng. The results show that this method can reveal important changes of weather as well as, by using irregular self-recording information recorded every ten minutes, predict local thunderstorms with durations of only half an hour, and even predict intense convections 12 hours in advance. This is significant for civil and military aviation. It shows the necessity of full utilization of information from automatic weather stations and the necessity of improvements in recording modes in current automatic stations.

  16. Modification of the lower ionospheric conductivity by thunderstorm electrostatic fields

    NASA Astrophysics Data System (ADS)

    Salem, Mohammad A.; Liu, Ningyu; Rassoul, Hamid K.

    2016-01-01

    This paper reports a modeling study of the modifications of the nighttime lower ionospheric conductivity by electrostatic fields produced by underlying thunderstorms. The model used combines Ohm's law with a simplified lower ionospheric ion chemistry model to self-consistently calculate the steady state nighttime conductivity above a thunderstorm. The results indicate that although the electron density is generally increased, the lower ionospheric conductivity can be reduced by up to 1-2 orders of magnitude because electron mobility is significantly reduced due to the electron heating effect. For a typical ionospheric density profile, the resulting changes in the reflection heights of extremely low frequency and very low frequency waves are 5 and 2 km, respectively.

  17. Stereoscopic observations of hurricanes and tornadic thunderstorms from geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Mack, R.; Hasler, A. F.; Rodgers, E. B.

    1982-01-01

    Results are presented which show the application of GOES stereoscopy to the investigation of hurricanes and tornadic thunderstorms. Stereo cloud top height contour maps were constructed to observe the structural evolution of two hurricanes, Frederic on September 12, 1979 and Allen on August 8, 1980, and a tornadic thunderstorm complex over Oklahoma on May 2-3, 1979. Stereo height contours of Hurricane Allen reveal a very intense and symmetric storm with a circular shaped central dense overcast with an average height of 16.5 km. Contours of Hurricane Frederic reveal a preferred region for convection with an explosive exhaust tower attaining a maximum height of 17.8 km. Also presented is a technique for estimating tropical cyclone intensity using GOES stereo height and IR temperature information. Results indicate vertical motions ranging from 4.4 m/s for a moderate storm to 7.7 m/s for an intense storm.

  18. Thunderstorm-scale variations of echoes associated with left-turn tornado families

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1977-01-01

    The origin of tornadoes is studied on the basis of changing radar echo shapes and tornado location relative to the echoes. Three types of tornadoes appear to be associated with different hook echo configurations. No-turn or right-turn tornadoes are linked to a steady hook which does not change shape or orientation. Left-turn tornado families are generated in cases where the hook is unsteady and changes orientation at each successive tornado birth. Finally, left-turn tornado families may also be formed when the hook undergoes no orientation change and the tornadoes move along the rear of the hook. The correlation between a thunderstorm-scale cycle and periodic tornado production is also discussed.

  19. Thunderstorm electrification of hail and graupel by polar dribble.

    PubMed

    Gunn, R

    1966-02-11

    Hail and graupel falling through rain collect water that selectively dribbles upward from the upper surface of a hailstone. When the hailstones are polarized by nearly vertical electrostatic field these vertically discharged water drops carry away free charge of the same sign as that induced on the upper surfaces. The hail thereby accumulates an equilibrium charge of opposite sign, corresponding to the charges induced on the bottom surfaces. The equilibrium charges are large enough to be important in thunderstorms.

  20. High-Energy Radiation from Thunderstorms with ADELE: TGFs, Steps, and Glows

    NASA Technical Reports Server (NTRS)

    Smith, David M.; Kelley, Nicole; Martinez-McKinney, Forest; Zhang, Zi Yan; Hazelton, Bryna; Grefenstette, Brian; Splitt, Michael; Lazarus, Steven; Ulrich, William; Levine, Steven; Dwyer, Joseph; Schaal, Meagan; Saleh, Ziad; Cramer, Eric; Rassoul, Hamid; Cummer, Steven; Lu, Gaopeng; Shao, Xuan-Min; Ho, Cheng; Blakeslee, Richard

    2011-01-01

    The biggest challenge in the study of high-energy processes in thunderstorms is getting a detector to the vicinity of the electrically active regions of a storm. The Airborne Detector for Energetic Lightning Emissions (ADELE) has been used to detect gamma rays from aircraft above storms and from a storm-chasing van on the ground. In August 2009, ADELE flew above Florida storms in a Gulfstream V jet, detecting the first terrestrial gamma-ray flash (TGF) seen from a plane and continuous glows of high-energy emission above thunderclouds. The presence of these glows suggests that a gradual process of relativistic runaway and feedback may help limit the total amount of charging in thunderstorms, in contrast to the traditional view that only lightning discharges compete with the charging process. The upper limits on TGF emission from intracloud and cloud-to-ground lightning from the ADELE flights demonstrated conclusively that a TGF of the sort seen from space is not associated with most lightning and not necessary to trigger it. In August 2010, observations from a van detected stepped-leader x-ray emission from at least four lightning strikes in ten days of operations. This mode of operation is therefore promising for future observations of the stepping process, although a more varied suite of instrumentation, in particular a flash-distance detector, would be useful. We will report on these results and on future possibilities for ADELE campaigns.

  1. Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm

    NASA Astrophysics Data System (ADS)

    Shao, Xuan-Min; Lay, Erin H.; Jacobson, Abram R.

    2013-01-01

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere, at altitudes of 65-90km, by convective atmospheric gravity waves and by electric field changes produced by lightning discharges. Theoretical simulations suggest that lightning electric fields enhance electron attachment to O2 and reduce electron density in the lower ionosphere. Owing to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. However, it is now possible to probe the lower ionosphere in a spatially and temporally resolved manner by using remotely detected time waveforms of lightning radio signals. Here we report such observations of the night-time ionosphere above a small thunderstorm. We find that electron density in the lower ionosphere decreased in response to lightning discharges. The extent of the reduction is closely related in time and space to the rate of lightning discharges, supporting the idea that the enhanced electron attachment is responsible for the reduction. We conclude that ionospheric electron density variations corresponding to lightning discharges should be considered in future simulations of the ionosphere and the initiation of sprite discharges.

  2. Predicting thunderstorms, lightning and sprites for global observations from the International Space Station

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Stendel, Martin; Chanrion, Olivier; Neubert, Torsten; Moalem, Meir; Silber, Israel; Price, Colin

    2016-04-01

    The THOR experiment on the International Space Station (ISS) was conducted by Danish astronaut, Andreas Mogensen, during September 1-10, 2015. The aim was to observe over-shooting cumulonimbus turrets, lightning and TLEs with an optical camera through the windows of the PIRS module. To maximize the chances of success, we developed a strategy to predict locations of thunderstorm targets up to three days in advance. The long lead-time was required by the astronaut activity planners that attempted to accommodate many experiments during a short time. The prediction strategy relied on the methodology developed for the MEIDEX experiment on board the space shuttle Columbia (in 2003) and later refined for JAXA's Cosmic Shore campaign from the ISS (in 2011). New and additional components were added to the forecast that enabled us to distill and prioritize a daily target-list with specific viewing angles computed relative to the ISS position and attitude. We present results of the verification procedure for the thunderstorm forecasts, using WWLLN data for selected regions and times during the mission, when high-priority targets were identified as suitable for observation. The methodology proves to be accurate and reliable and can be replicated in future space-based campaigns.

  3. Relationships between thunderstorms and cloud-to-ground lightning in the United States

    SciTech Connect

    Changnon, S.A. )

    1993-01-01

    Climatic assessments of cloud-to-ground (CG) flashes, and of the relationship between CG flashes and thunder events, as reported at 62 first-order stations in the contiguous US, are performed on the basis of data from networks of lightning sensors operated during 1986-1989. The adequacy of thunder-event data for describing thunderstorm occurrences at a point is determined. The average and extreme frequencies of CG lightning is delineated. Thunder events are found to provide poor estimates of CG lightning incidences and durations. CG flash data reveal that 20 percent (far west) and 50 percent (southeast US) of all thunder events are missed at weather stations; 30-60 percent of all thunder events have durations too short; and 10 per cent (North and West), 40 percent (mountains), and 25 percent (southeast) of all CG flashes within 20 km of weather stations are not reported as thunderstorms. The use of historical thunder data, as a surrogate for lightning activity, is improper, and thunder values need to be adjusted with the relationships presented. 33 refs.

  4. 75 FR 3274 - Agency Information Collection; Activity Under OMB Review; Passenger Origin-Destination Survey Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... the following collection of information was published on November 16, 2009 (74 FR 59018-59019). DATES... Research & Innovative Technology Administration Agency Information Collection; Activity Under OMB Review; Passenger Origin-Destination Survey Report AGENCY: Research & Innovative Technology Administration...

  5. Ionospheric plasma dynamics and instability caused by upward currents above thunderstorms

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Lee, L. C.

    2015-04-01

    Thunderstorms are electric generators, which drive currents upwardly into the ionosphere. In this paper, we examine the effects of thunderstorm upward current on the ionosphere. We use a thunderstorm model to calculate the three-dimensional current flows in the atmosphere and to simulate the upward current above the thunderstorm with the tripole-charge structure. The upward current flows into the ionosphere, while the associated electric field causes the plasma E × B motion. The caused plasma motion redistributes the plasma density, leading to ionospheric density variations. In the nighttime ionosphere, the E × B motion may also cause the formation of plasma bubbles.

  6. Lightning strike density for the contiguous United States from thunderstorm duration records

    SciTech Connect

    MacGorman, D.R.; Maier, M.W.; Rust, W.D.

    1984-05-01

    An improved lightning ground strike climatology has been obtained from thunderstorm duration data recorded by 450 air weather stations. From lightning strike location data collected in Florida and Oklahoma, it was found that strike density could be estimated from thunderstorm duration by the equation N/sub s/ = 0.054H/sup 1/ /sup 1/, where N/sub s/ is the number of strikes per square kilometer and H is thunderstorm duration in hours. This relationship was applied to thunderstorm duration data from the aviation stations to obtain lightning strike density for the contiguous United States.

  7. Cloud-resolving chemistry simulation of a Hector thunderstorm

    NASA Astrophysics Data System (ADS)

    Cummings, K. A.; Huntemann, T. L.; Pickering, K. E.; Barth, M. C.; Skamarock, W. C.; Höller, H.; Betz, H.-D.; Volz-Thomas, A.; Schlager, H.

    2012-07-01

    Cloud chemistry simulations are performed for a Hector storm observed on 16 November 2005 during the SCOUT-O3/ACTIVE campaigns based in Darwin, Australia, with the primary objective of estimating the average production of NO per lightning flash during the storm which occurred in a tropical environment. The 3-D WRF-AqChem model (Barth et al., 2007a) containing the WRF nonhydrostatic cloud-resolving model, online gas- and aqueous-phase chemistry, and a lightning-NOx production algorithm is used for these calculations. An idealized early morning sounding of temperature, water vapor, and winds is used to initialize the model. Surface heating of the Tiwi Islands is simulated in the model to induce convection. Aircraft observations from air undisturbed by the storm are used to construct composite initial condition chemical profiles. The idealized model storm has many characteristics similar to the observed storm. Convective transport in the idealized simulated storm is evaluated using tracer species, such as CO and O3. The convective transport of CO from the boundary layer to the anvil region was well represented in the model, with a small overestimate of the increase of CO at anvil altitudes. Lightning flashes observed by the LIghtning detection NETwork (LINET) are input to the model and a lightning placement scheme is used to inject the resulting NO into the simulated cloud. We find that a lightning NO production scenario of 500 moles per flash for both CG and IC flashes yields anvil NOx mixing ratios that match aircraft observations well for this storm. These values of NO production nearly match the mean values for CG and IC flashes obtained from similar modeling analyses conducted for several midlatitude and subtropical convective events and are larger than most other estimates for tropical thunderstorms. Approximately 85% of the lightning NOx mass was located at altitudes greater than 7 km in the later stages of the storm, which is an amount greater than found for

  8. Coevolution between human's anticancer activities and functional foods from crop origin center in the world.

    PubMed

    Zeng, Ya-Wen; Du, Juan; Pu, Xiao-Ying; Yang, Jia-Zhen; Yang, Tao; Yang, Shu-Ming; Yang, Xiao-Meng

    2015-01-01

    Cancer is the leading cause of death around the world. Anticancer activities from many functional food sources have been reported in years, but correlation between cancer prevalence and types of food with anticancer activities from crop origin center in the world as well as food source with human migration are unclear. Hunger from food shortage is the cause of early human evolution from Africa to Asia and later into Eurasia. The richest functional foods are found in crop origin centers, housing about 70% in the world populations. Crop origin centers have lower cancer incidence and mortality in the world, especially Central Asia, Middle East, Southwest China, India and Ethiopia. Asia and Africa with the richest anticancer crops is not only the most important evolution base of humans and origin center of anticancer functional crop, but also is the lowest mortality and incidence of cancers in the world. Cancer prevention of early human migrations was associated with functional foods from crop origin centers, especially Asia with four centers and one subcenter of crop origin, accounting for 58% of the world population. These results reveal that coevolution between human's anticancer activities associated with functional foods for crop origin centers, especially in Asia and Africa. PMID:25824728

  9. Analysis of energetic radiation associated with thunderstorms in the Ebro delta region

    NASA Astrophysics Data System (ADS)

    Fabró, Ferran; Montanyà, Joan; Pineda, Nicolau; Argemí, Oriol; van der Velde, Oscar; Romero, David; Soula, Serge

    2016-04-01

    We have analysed increments of background radiation during thunderstorm in the energy range 0.1 - 2 MeV in the Ebro delta region in the northeast of Spain. We present 8 episodes, 3 summer cases and 5 winter cases. The increments of the measured high-energy radiation have been analysed and compared with measurements of electric field, precipitation, radar reflectivity, lightning activity a charge regions altitude. For the first time, measurements of high-energy radiation associated with thunderstorms are compared with radar reflectivity and lightning detected by a LMA network. The aim of this paper is to discern if the high-energy radiation increments measured are related with the storm electrification, like reported in previous publications, or other factors like precipitation. As summary these are the main results: • The comparative of energy spectra of 1 hour period with rain and 1 hour period without rain shows that radon-ion daughters are quite important in the increase of the measured high-energy radiation. • The analysis of the time normalized cumulative curves of radiation counts, radar reflectivity and lightning activity (LINET and LMA detections) shows that that high-energy radiation increments are time related with radar reflectivity rather than lightning activity. • The calculated altitude of the negative charge regions of the different thunderstorms analayzed is too high for the photons produced at those altitudes by Bremmstrahlung effect to overcome atmospheric attenuation and reach the scintillator placed at sea level. These results lead us to conclude, as a contribution in addition to previous works, that the measured increments of high-energy analysed on this paper are associated with radon-ion daughters rather than storm electrification. However, the use of a detector in an energy from 0.1 MeV to 2 Mev does not allow to completely exclude the possibility that part of the high-energy radiation reported should be related storm electrification

  10. Functional Centromeres Determine the Activation Time of Pericentric Origins of DNA Replication in Saccharomyces cerevisiae

    PubMed Central

    Pohl, Thomas J.; Brewer, Bonita J.; Raghuraman, M. K.

    2012-01-01

    The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation. PMID:22589733

  11. Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae.

    PubMed

    Pohl, Thomas J; Brewer, Bonita J; Raghuraman, M K

    2012-01-01

    The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.

  12. Thunderstorm Electric Potential Profiles: Electrical Evolution and Lightning Energy

    NASA Astrophysics Data System (ADS)

    Stolzenburg, M.; Marshall, T. C.

    2005-05-01

    From a balloon sounding of electric field through a thunderstorm, one can calculate the vertical profile of potential, V, within the storm. In this presentation we investigate thunderstorm electrical evolution by examining V profiles through various stages of a storm's life. We present data from New Mexico mountain thunderstorms in which we made a series of 4 to 6 balloon soundings. Several of the successive V profiles in the same storm are quite similar, in spite of the numerous lightning flashes that occurred during the balloon flights. These similarities suggest that the V profiles are reasonable estimates of the in-cloud potential. The similar profiles occur during the mature phase of the storm, and mature phase profiles are even similar from one storm to another. This is true despite different lightning flashing rates and, presumably, different charge generation rates in the different storms. Another result of this work is that potential profiles during the early and late stages of the storm do not resemble those from the mature stage. Recently, Coleman et al. [2003] showed that intra-cloud (IC) flashes connect potential extrema of opposite polarity and that normal (negative) cloud-to-ground (CG) flashes connect a potential minimum to ground. Thus we can use the V profiles to estimate the potential difference spanned by lightning flashes during the evolution of the storm and, with this, estimate the lightning energy. Typical potential differences spanned by IC and CG flashes will be presented from four storms. Reference: Coleman, L.M., T.C. Marshall, M. Stolzenburg, T. Hamlin, P.R. Krehbiel, W. Rison, and R.J. Thomas, Effects of charge and electrostatic potential on lightning propagation, J. Geophys. Res., 108, doi:10.1029/2002JD002718, 2003.

  13. Avalanche-to-streamer transition near hydrometeors in thunderstorms

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Dubinova, Anna; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    In the early phase of lightning initiation, streamers must form near water droplets and or ice crystals, collectively called hydrometeors, as it is generally believed that the electric fields in a thunderstorm are below classical breakdown [1]. The hydrometeors, due to their dielectric property, electrically polarize and will enhance the thunderstorm electric field in localized areas just outside the surface, potentially above breakdown. Available electrons, from for example a cosmic ray event, are drawn towards the positive side of the polarized hydrometeor. Some electrons reach the localized area above breakdown, while oxygen molecules have absorbed others. In the area above breakdown electrons begin to multiply in number, creating electron avalanches towards the surface, leaving positive ions behind. This results in a charge separation, which potentially can initiate a positive streamer. The final outcome however strongly depends on several parameters, such as the strength of the thunderstorm electric field, the size and shape of the hydrometeor and the initial amount of electrons. In our letter [1] we introduced a dimensionless quantity M that we call the Meek number, based on the historical and well-used Reather-Meek criterion [2], as a measure of how likely it is to create an avalanche-to-streamer transition near a hydrometeor. Results from simulations showed that streamers can start in a field of only 15% of breakdown from large elongated shaped hydrometeors. Now we extended and generalized our method to arbitrary shaped hydrometeors and we take into account that potentially several electrons can reach the area above breakdown. Due to these effects we can predict smaller hydrometeors to be able to start streamers. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, U., Buitink, S., Scholten, O., & Trinh, G. T. N. (2015). Prediction of lightning inception by large ice particles and extensive air showers. Physical review letters, 115

  14. Sensitivity of land surface and Cumulus schemes for Thunderstorm prediction

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Mohanty, U. C.; Kumar, Krishan

    2016-06-01

    The cloud processes play an important role in all forms of precipitation. Its proper representation is one of the challenging tasks in mesoscale numerical simulation. Studies have revealed that mesoscale feature require proper initialization which may likely to improve the convective system rainfall forecasts. Understanding the precipitation process, model initial condition accuracy and resolved/sub grid-scale precipitation processes representation, are the important areas which needed to improve in order to represent the mesoscale features properly. Various attempts have been done in order to improve the model performance through grid resolution, physical parameterizations, etc. But it is the physical parameterizations which provide a convective atmosphere for the development and intensification of convective events. Further, physical parameterizations consist of cumulus convection, surface fluxes of heat, moisture, momentum, and vertical mixing in the planetary boundary layer (PBL). How PBL and Cumulus schemes capture the evolution of thunderstorm have been analysed by taking thunderstorm cases occurred over Kolkata, India in the year 2011. PBL and cumulus schemes were customized for WSM-6 microphysics because WSM series has been widely used in operational forecast. Results have shown that KF (PBL scheme) and WSM-6 (Cumulus Scheme) have reproduced the evolution of surface variable such as CAPE, temperature and rainfall very much like observation. Further, KF and WSM-6 scheme also provided the increased moisture availability in the lower atmosphere which was taken to higher level by strong vertical velocities providing a platform to initiate a thunderstorm much better. Overestimation of rain in WSM-6 occurs primarily because of occurrence of melting and freezing process within a deeper layer in WSM-6 scheme. These Schemes have reproduced the spatial pattern and peak rainfall coverage closer to TRMM observation. It is the the combination of WSM-6, and KF schemes

  15. The heating of suprathermal ions above thunderstorm cells

    SciTech Connect

    Bell, T.F.; Helliwell, R.A.; Inan, U.S.; Lauben, D.S. )

    1993-09-15

    The authors estimate proton heating rates in the ionosphere above thunderstorm cells due to electromagnetic waves generated by these cells. Their model is that electron whistler waves are generated by lightning, and propagate into the ionosphere. There they are able to mode convert to proton whistler and lower hybrid waves on plasma density fluctuations. The proton whistler waves then preheat the protons to energies where they can absorb energy from the lower hybrid waves. The model predicts heating rates such that low altitude spacecraft should be able to observe the flux of these heated protons.

  16. A relapse of near-fatal thunderstorm-asthma in pregnancy.

    PubMed

    D'Amato, G; Corrado, A; Cecchi, L; Liccardi, G; Stanziola, A; Annesi-Maesano, I; D'Amato, M

    2013-05-01

    Thunderstorm-related asthma is a dramatic example of the allergenic potential of pollen antigens. Pollen allergic patients who encounter the allergenic cloud of pollen during a thunderstorm are at higher risk of having an asthma attack. Relapse is also possible and we describe here the first case of relapse of near fatal thunderstorm-asthma occurred in a 36 years old, 20 weeks pregnant woman affected by seasonal asthma and sensitized to allergens released by Parietariapollen. Patients suffering from pollen allergy should be alerted of the danger of being outdoors during a thunderstorm in the pollen season and if they experienced an episode of severe thunderstorm-related asthma could be at risk of a relapse during a heavy precipitation event. PMID:23862404

  17. A relapse of near-fatal thunderstorm-asthma in pregnancy.

    PubMed

    D'Amato, G; Corrado, A; Cecchi, L; Liccardi, G; Stanziola, A; Annesi-Maesano, I; D'Amato, M

    2013-05-01

    Thunderstorm-related asthma is a dramatic example of the allergenic potential of pollen antigens. Pollen allergic patients who encounter the allergenic cloud of pollen during a thunderstorm are at higher risk of having an asthma attack. Relapse is also possible and we describe here the first case of relapse of near fatal thunderstorm-asthma occurred in a 36 years old, 20 weeks pregnant woman affected by seasonal asthma and sensitized to allergens released by Parietariapollen. Patients suffering from pollen allergy should be alerted of the danger of being outdoors during a thunderstorm in the pollen season and if they experienced an episode of severe thunderstorm-related asthma could be at risk of a relapse during a heavy precipitation event.

  18. Evolution of lightning flash density and reflectivity structure in a multicell thunderstorm

    NASA Technical Reports Server (NTRS)

    Mazur, V.; Rust, W. D.; Gerlach, J. C.

    1986-01-01

    The radar reflectivity structure and the distribution of lightning in a storm cell was investigated using S-band and UHF-band radar data for six storm cells over Wallops Island. The S-band scans were vertical and continuous, while the UHF data were taken in steps of 2.5 deg elevation. The peak in lightning activity during the study corresponded to a merging of two storm cells. A minimum height of 7 km was found necessary for the appearance of a 40 dBZ core with lightning, which first appears in a multicell thunderstorm at the leading edge of the 50 dBZ core of the cell and between a cell and its decaying neighbor. The lightning moves further into the cell during cell decay and decreases in density. Finally, the lightning is offset horizontally from the precipitation core during cell growth but colocates with the precipitation core as the cell dissipates.

  19. Simulating supercell thunderstorms in a convective boundary layer: Effects on storm and boundary layer properties

    NASA Astrophysics Data System (ADS)

    Nowotarski, Christopher J.

    formation of so-called "feeder clouds" and anking line convection in these simulations. These findings suggest potentially important rami fications regarding both non-mesocyclone and mesocyclone tornadoes in supercell thunderstorms in an environment with active boundary layer convection.

  20. Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland

    NASA Astrophysics Data System (ADS)

    Czernecki, Bartosz; Taszarek, Mateusz; Kolendowicz, Leszek; Konarski, Jerzy

    2016-01-01

    Research presents an overview on thunderstorm occurrence in Poland and focuses mainly on the relationship between human observations of thunderstorms (SYNOP daily summaries) and instrumental lightning detection data (PERUN network) in the timeframe between 2002 and 2013. The total of 4,952,203 cloud-to-ground flashes (2082 days with thunderstorms) derived from the PERUN lightning database, and 12,419 daily thunderstorm SYNOP reports from 44 meteorological stations (1417 days with thunderstorms) are compared. Within the use of two different computational methods, we define the threshold value of the human average observational thunderstorm detection range within a meteorological station. Results indicate that the average of this value ranges from 16.9 km (Delta computational method) to 18.3 km (threat score computational method). Given the limitations of both methods, we believe that the average of these two (17.5 km) may be the most reliable estimate that expresses how lightning is perceived by humans. Large differences in observational range values between some of the stations (e.g. from 12 km in Bielsko-Biała to 24 km in Łeba) indicate that thunderstorm measurements performed by humans are not homogeneous and are prone to errors. We estimate that an average increase/decrease of observational range by approximately 1 km results in 1 additional/redundant day in the average annual number of thunderstorm days in the climatological sense. Results indicate that already existing thunderstorm climatology papers that are based on SYNOP thunderstorm reports may present presumably not entirely reliable results and overestimate or underestimate values from the real distribution.

  1. MUSIC for localization of thunderstorm cells

    SciTech Connect

    Mosher, J.C.; Lewis, P.S.; Rynne, T.M.

    1993-12-31

    Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surface electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.

  2. Lightning and severe thunderstorms in event management.

    PubMed

    Walsh, Katie M

    2012-01-01

    There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, lightning, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to activity. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. Lightning and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and lightning safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions. PMID:22580490

  3. Lightning and severe thunderstorms in event management.

    PubMed

    Walsh, Katie M

    2012-01-01

    There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, lightning, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to activity. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. Lightning and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and lightning safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions.

  4. Progress of research to identify rotating thunderstorms using satellite imagery

    NASA Technical Reports Server (NTRS)

    Anderson, Charles E.

    1988-01-01

    The possibility of detecting potentially tornadic thunderstorm cells from geosynchronous satelite imagery is determined. During the life of the contract, we examined eight tornado outbreak cases which had a total of 124 individual thunderstorm cells, 37 of which were tornadic.These 37 cells produced a total of 119 tornadoes. The outflow characteristics of all the cells were measured. Through the use of a 2-D flow field model, we were able to simulate the downstream developmemt of an anvil cloud plume which was emitted by the storm updraft at or near the tropopause. We used two parameters to characterize the anvil plume behavior: its speed of downstream propagation (U max) and the clockwise deviation of the centerline of the anvil plume from the storm relative ambient wind at the anvil plume outflow level (MDA). U max was the maximum U-component of the anvil wind parameter required to successfully maintain an envelope of translating particles at the tip of the expanding anvil cloud. MDA was the measured deviation angle acquired from McIDAS, between the storm relative ambient wind direction and the storm relative anvil plume outflow direction; tha latter being manipulated by controlling a tangential wind component to force the envelope of particles to maintain their position of surrounding the expanding outflow cloud.

  5. Thunderstorms: an important mechanism in the transport of air pollutants.

    PubMed

    Dickerson, R R; Huffman, G J; Luke, W T; Nunnermacker, L J; Pickering, K E; Leslie, A C; Lindsey, C G; Slinn, W G; Kelly, T J; Daum, P H; Delany, A C; Greenberg, J P; Zimmerman, P R; Boatman, J F; Ray, J D; Stedman, D H

    1987-01-23

    Acid deposition and photochemical smog are urban air pollution problems, and they remain localized as long as the sulfur, nitrogen, and hydrocarbon pollutants are confined to the lower troposphere (below about 1-kilometer altitude) where they are short-lived. If, however, the contaminants are rapidly transported to the upper troposphere, then their atmospheric residence times grow and their range of influence expands dramatically. Although this vertical transport ameliorates some of the effects of acid rain by diluting atmospheric acids, it exacerbates global tropospheric ozone production by redistributing the necessary nitrogen catalysts. Results of recent computer simulations suggest that thunderstorms are one means of rapid vertical transport. To test this hypothesis, several research aircraft near a midwestern thunderstrom measured carbon monoxide, hydrocarbons, ozone, and reactive nitrogen compounds. Their concentrations were much greater in the outflow region of the storm, up to 11 kilometers in altitude, than in surrounding air. Trace gas measurements can thus be used to track the motion of air in and around a cloud. Thunderstorms may transform local air pollution problems into regional or global atmospheric chemistry problems.

  6. X-ray Emission from Thunderstorms and Lightning

    ScienceCinema

    Dwyer, Joseph [Florida Institute of Technology, Melbourne, Florida, United States

    2016-07-12

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  7. Upgrade to the Broadband Observation network for Lightning and Thunderstorms

    NASA Astrophysics Data System (ADS)

    Akiyama, Y.; Wu, T.; Stock, M.; Nakamura, Y.; Kikuchi, H.; Yoshida, S.; Ushio, T.; Kawasaki, Z.

    2015-12-01

    Observation sensors for lightning discharges sense electromagnetic waves, mainly in the ELF to UHF range, and especially in the LF and VHF bands. VHF band sensor sensors can observe lightning discharge process in detail but its observation coverage is limited. On the other hand, LF band sensor can observe lightning at much great distances. Therefore, LF sensors are well adapted to observe lightning throughout a thunderstorm's life cycle. Our research group has been designing and developing the Broadband Observation network for Lightning and Thunderstorm (BOLT), which locates radiation sources associated with lightning discharge in three spatial dimensions. BOLT consists of 11 LF band sensors which detect lightning pulses wide frequency range from 5 kHz to 500 kHz. We have been operating BOLT in Kansai area of Japan, locating both cloud-to-ground and intracloud discharges. Currently, the BOLT system observes about 100 to 1000 lightning pulses per flash, but we are striving to improve both the detection efficiency and the location accuracy. Preliminary investigation show that the number of sources located, increases dramatically when only the highest portion of the BLOT frequency band is used far location. So, our research group has proposed improving a new "DDT" antenna sensor design to improve the high frequency sensitivity of the antenna. The DDT antenna consists of a modified charge amplifier circuit. In this research, we present a comparison of the DDT antenna and show the advantages of the DDT antenna.

  8. Long-duration X-ray emissions observed in thunderstorms

    NASA Astrophysics Data System (ADS)

    Eack, Kenneth B.; Beasley, William H.

    2015-07-01

    In 1995, a series of four balloon flights with an X-ray spectrometer and an electric field meter were conducted to examine if strong electric fields could accelerate, and perhaps multiply, cosmic ray secondary electrons and produce bremsstrahlung X-rays. X-ray intensities between 10 and 1000 times that of normal background were observed in conjunction with strong electric fields. Both negative and positive polarity electric fields (as referenced to the vertical field) produced X-rays, which lasted for time scales on the order of tens of seconds. It was also observed that the increased X-ray intensity would return to near background levels after lightning reduced the local electric field. The observations indicate that X-rays observed above background are most likely produced by a runaway electron process occurring in the strong static electric field present in thunderstorms. The production of runaway electrons can occur over long periods of time without causing an electrical breakdown. This may provide a leakage current that limits the large scale electric field to values near the runaway threshold, especially in regions where the thunderstorm charging rate is low.

  9. Surrounding material effect on measurement of thunderstorm-related neutrons

    NASA Astrophysics Data System (ADS)

    Tsuchiya, H.

    2014-05-01

    Observations of strong flux of low-energy neutrons were made by 3He counters during thunderstorms (Gurevich et al., 2012) [11]. How the unprecedented enhancements were produced remains elusive. To better elucidate the mechanism, a simulation study of surrounding material impacts on measurement by 3He counters was performed with GEANT4. It was found that unlike previously thought, a 3He counter had a small sensitivity to high-energy gamma rays because of inelastic interaction with its cathode-tube materials (Al or stainless steel). A 3He counter with the intrinsic small sensitivity, if surrounded by thick materials, would largely detect thunderstorm-related gamma rays rather than those neutrons produced via photonuclear reaction in the atmosphere. On the other hand, the counter, if surrounded by thin materials and located away from a gamma-ray source, would observe neutron signals with little gamma-ray contamination. Compared with the Gurevich measurement, the present work allows us to deduce that the enhancements are attributable to gamma rays, if their observatory was very close to or inside a gamma-ray emitting region in thunderclouds.

  10. Blue starters∷ Brief upward discharges from an intense Arkansas thunderstorm

    NASA Astrophysics Data System (ADS)

    Wescott, E. M.; Sentman, D. D.; Heavner, M. J.; Hampton, D. L.; Osborne, D. L.; Vaughan, O. H., Jr.

    This paper documents the first observations of a new stratospheric electrical phenomenon associated with thunderstorms. On the night of 30 June (UT 1 July) 1994, 30 examples of these events, which we have called “blue starters,” were observed in a 6 m 44 s interval above the very energetic Arkansas thunderstorm where blue jets were first observed. The blue starters are distinguished from blue jets by a much lower terminal altitude. They are bright and blue in color, and protrude upward from the cloud top (17-18 km) to a maximum 25.5 km (83,655 ft.) in altitude. All blue starters events were recorded from two small areas near Texarkana, Texas/Arkansas where hail 7.0 cm in diameter was falling. Comparison to cloud-to-ground (CG) lightning flashes revealed: 1. Blue starters were not observed to be coincident with either positive or negative CG flashes, but they do occur in the same general area as negative CG flashes; 2. Cumulative distributions of the negative CG flashes in ±5 s before and after the starter and within a radius of 50 km shows a significant reduction for about 3 s following the event in the two cells where starters and jets were observed. The energy deficit is approximately 109 J. It is possible that blue starters are a short-lived streamer phenomenon.

  11. X-ray Emission from Thunderstorms and Lightning

    SciTech Connect

    Dwyer, Joseph

    2009-07-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  12. X-ray Emission from Thunderstorms and Lightning

    SciTech Connect

    Dwyer, Joseph

    2009-08-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences. Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons. This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning. This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes. During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields. These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air. Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away. As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited.

  13. Extremely Low Passive Microwave Brightness Temperatures Due to Thunderstorms

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.

    2015-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. Automated quality control flags or other procedures in retrieval algorithms could treat these measurements as errors, because they fall outside the expected bounds. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI, AMSR-E, and the new GMI to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For

  14. Perspectives of Mexican-Origin Smokers on Healthy Eating and Physical Activity

    ERIC Educational Resources Information Center

    Strong, Larkin L.; Hoover, Diana S.; Heredia, Natalia I.; Krasny, Sarah; Spears, Claire A.; Correa-Fernández, Virmarie; Wetter, David W.; Fernandez, Maria E.

    2016-01-01

    Key modifiable risk behaviors such as smoking, poor diet and physical inactivity often cluster and may have multiplicative adverse effects on health. This study investigated barriers and facilitators to healthy eating and physical activity (PA) in overweight Mexican-origin smokers to inform the adaptation of an evidence-based smoking cessation…

  15. Activity and recovery profiles of state-of-origin and national rugby league match-play.

    PubMed

    Gabbett, Tim J

    2015-03-01

    State-of-Origin is the highest standard of rugby league competition played anywhere in the world. This study investigated the activity profiles of State-of-Origin and compared them against regular National Rugby League (NRL) fixture matches. Video footage from State-of-Origin and NRL matches were coded for activity and recovery cycles. Time when the ball was continuously in play was considered activity, whereas any stoppages during matches were considered recovery. Ball-in-play periods in matches of different playing standards were analyzed by comparing State-of-Origin matches, NRL matches (with representative players available), and NRL matches (with representative players unavailable). The mean, maximum, and total ball-in-play time of State-of-Origin matches were longer than NRL matches (effect size [ES] ≥ 0.75) with and without the availability of representative players. State-of-Origin matches were associated with a greater proportion (ES ≥ 1.54) of long duration (46-300 seconds) ball-in-play periods, and a smaller proportion (ES ≥ 1.69) of short duration (<45 seconds) ball-in-play periods than NRL matches when representative players were both available and unavailable for selection. When representative players were available for club selection, NRL matches were associated with a smaller proportion of short duration ball-in-play periods (ES = 1.14) and a larger proportion of long duration ball-in-play periods (ES = 0.89), compared with NRL matches when representative players were unavailable. The results of this study provide empirical support for the higher playing intensity of State-of-Origin matches in comparison with regular NRL fixture matches. Furthermore, these findings demonstrate the lower quality of NRL matches during the State-of-Origin period, when representative players are unavailable for selection for their club team. From a practical perspective, these results quantify the difference in activity profiles between State-of-Origin and NRL

  16. Intense Gamma-Ray Flashes Above Thunderstorms on the Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons have been observed with space-borne detectors in Earth orbit. They are expected to be present on other planets that exhibit lightning. The terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi- GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly- Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic "runaway avalanche" electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. They have generated considerable observational and theoretical interest in recent years. This talk will give an overview of the all of the space-borne observations of TGFs that have been made thus far. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms

  17. Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    Intense millisecond flashes of MeV photons are being observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly-Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic runaway avalanche electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. They have generated considerable observational and theoretical interest in recent years. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms.

  18. Studying thunderstorm-ionosphere relationships by ionograms recorded at Pruhonice in two summer campaigns of 2013

    NASA Astrophysics Data System (ADS)

    Barta, Veronika; Buresova, Dalia; Chum, Jaroslav; Bór, József; Sátori, Gabriella

    2014-05-01

    The thunderstorms in the lower atmosphere can affect the ionosphere through the electrical and electromagnetic phenomena (red sprites, blue jets etc.) and upward propagating waves in the neutral atmosphere, like Atmospheric Gravity Waves (AGWs) and Infrasound waves. To study the troposphere-ionosphere coupling mechanisms ionograms obtained from the Digisonde DPS4D at Pruhonice, which is operated by the Institute of Atmospheric Physics AS CR, have been studied in those time intervals when a thunderstorm passed through the Czech Republic. Measurements related to thunderstorms were carried out during two campaigns in summer of 2013 on 29th of May (09:50 - 15:25) and on 20th of June (18:00 - 24:00). During the campaigns ionograms were recorded every minute. LINET lightning data and METEOSAT-9 infrared maps were used in this work to identify the thunderstorms. The thunderstorm - ionosphere coupling was studied in the same time intervals using a five-point continuous Doppler sounding system operating at 3.59 MHz, developed at the Institute of Atmospheric Physics AS CR. Furthermore several sprite events were observed from Sopron, Hungary during the night of June 20 above that thunderstorm which passed through the Pruhonice region. The analysis of data obtained from the collocated different instruments means a good possibility to disclose further thunderstorm-ionosphere coupling mechanisms.

  19. Classification of Thunderstorms over India Using Multiscale Analysis of AMSU-B Images.

    NASA Astrophysics Data System (ADS)

    Puranik, Dileep M.; Karekar, R. N.

    2004-04-01

    The structure of thunderstorms has been studied for a long time. In the absence of radar coverage, only high- resolution multifrequency satelliteborne sensors of longer wavelengths (i.e., microwaves) can show structures inside thunderstorms. The National Oceanic and Atmospheric Administration (NOAA) Advanced Microwave Sounding Unit-B (AMSU-B), with five frequencies and 16-km resolution, is now capable of looking at thunderstorm structure. To analyze cloud structure, a tool that can separate regions by size is needed. The à trous wavelet transform, a discrete approximation to the continuous wavelet transform, is such a tool. Images, as well as their wavelet components, may be noisy. To remove noise from wavelet components, those smaller than one standard deviation (of the wavelet image) are equated to zero. This is most suitable for meteorological studies. Images at an appropriate wavelet scale are used for the analysis of thunderstorms. Thunderstorm structures show mostly in scales 2 and 3 (sizes less than 32 and 64 km, respectively) of the à trous transformed images. Other cloud classes are seen either in smaller or larger scales. Given the resolution of the images, three parts of the thunderstorms, namely, the cumulonimbus towers, detraining altostratus, and cirrus anvils, are separated. Thunderstorms in the Indian subcontinent and adjoining seas are grouped according to six classes of wind profiles obtained in this region. Different organizations of towers, altostratus, and cirrus anvils emerged in the AMSU- B images of these six classes.


  20. Electric fields, electron precipitation, and VLF radiation during a simultaneous magnetospheric substorm and atmospheric thunderstorm

    SciTech Connect

    Bering, E.A.; Rosenberg, T.J.; Benbrook, J.R.; Detrick, D.; Matthews, D.L.; Rycroft, M.J.; Saunders, M.A.; Sheldon, W.R.

    1980-01-01

    A balloon payload instrumented with a double-probe electric field detector and an X ray scintillation counter was launched from Roberval, Quebec, Canada (L=4.1) at 0828 UT (0328 LT) on July 9, 1975. A magnetospheric substorm was observed locally between 0815 and 1100 UT, which produced a maximum ..delta..B of approx.500 nT at approx.0930 UT. A single-cell atmospheric thunderstorm developed northeast of Roberval beginning around 0925 UT which was most intense from approx.1000 to 1035 UT. Detailed study of the electrical properties of the thunderstorm, the X ray precipitation data, and VLF spheric data leads to three conclusions. First, the electrical coupling from the thunderstorm to the magnetosphere increases with frequency from dc to the VLF; for the observed storm the amplitude at the ionosphere of thunderstorm produced electric fields was not significant at frequencies below 0.1 Hz. Second, the atmospheric conductivity above the thunderstorm was observed to be about one-half the fair weather value prior to 1000 UT; decreased to about one-quarter the fair weather value at about 1000 UT; and remained depressed after the end of the thunderstorm. This result was contrary to that expected on the basis of previous work and is one which merits considerably more investigation. Third, the data show a high probability that half-hop whistlers initiated by sferics from the thunderstorm triggered energetic electron precipitation from the magnetosphere.

  1. Poplar-type Propolis: Chemical Composition, Botanical Origin and Biological Activity.

    PubMed

    Ristivojević, Petar; Trifković, Jelena; Andrić, Filip; Milojković-Opsenica, Dusanka

    2015-11-01

    Propolis is one of the most used natural products known for centuries for its beneficial effects. Due to significant differences in chemical composition of samples originating from different geographic and climatic zones it is crucial to characterize reliably each type of propolis. This article comprises the latest findings concerning the poplar type propolis, i.e. it gives a cross section of chemical composition, botanical origin and biological activity of poplar type propolis in order to encourage further investigations that would indicate its beneficial effects.

  2. Rapid vertical trace gas transport by an isolated midlatitude thunderstorm

    NASA Astrophysics Data System (ADS)

    Hauf, Thomas; Schulte, Peter; Alheit, Reiner; Schlager, Hans

    1995-11-01

    During the cloud dynamics and chemistry field experiment CLEOPATRA in the summer of 1992 in southern Germany, the Deutsche Forschungsanstalt für Luft- und Raumfahrt (DLR) (German Aerospace Research Establishment) research aircraft Falcon traversed four times the anvil of a severe, isolated thunderstorm. The first two traverses were at 8 km altitude and close to the anvil cloud base, while the second two traverses were at 10 km. During the 8-km traverse, measured ozone mixing ratios dropped by 13 parts per billion by volume (ppbv) from the ambient cloud free environment to the anvil cloud, while water vapor increased by 0.3 g kg-1. At the 10-km traverses, ozone dropped by 25 ppbv, while water vapor increased by 0.18 g kg-1. Three-dimensional numerical thunderstorm simulations were performed to understand the cause of these changes. The simulations included the transport of two chemical inert tracers. Ozone was assumed to be one of them. The initial ozone profile was composed from an ozone routine sounding and the in situ Falcon measurements prior to the thunderstorm development. The second tracer is typical for a surface released pollutant with a nonzero, constant value in the boundary layer but zero above it. The redistribution of both tracers by the storm is calculated and compared with the observations. For the anvil penetration at 10 km, the calculated difference in ozone mixing ratios is 21 ppbv, while for water vapor an increase of 0.25 g kg-1 was found, in good agreement with the observations. To validate the model results, the radar reflectivity was calculated from simulated fields of cloud water, rain, graupel, hail, and snow and ice crystals and compared with observed values. With respect to maximum reflectivity values and spatial scales, again, excellent agreement was achieved. It is concluded that the rapid transport from the boundary layer directly into the anvil level is the most likely cause of the observed ozone decrease and water vapor increase

  3. On transient events in the upper atmosphere generated away of thunderstorm regions

    NASA Astrophysics Data System (ADS)

    Morozenko, V.; Garipov, G.; Khrenov, B.; Klimov, P.; Panasyuk, M.; Sharakin, S.; Zotov, M.

    2011-12-01

    Experimental data on transient events in UV and Red-IR ranges obtained in the MSU missions "Unversitetsky-Tatiana" (wavelengths 300-400 nm) and "Unversitetsky-Tatiana-2" (wavelengths 300-400 nm and 600-800 nm), published by Garipov et al, in 2010 at COSPAR session http://www.cospar2010.org, at TEPA conference http://www.aragats.am/Conferences/tepa2010 and in 2011 by Sadovnichy et al, Solar System Research, 45, #1, 3-29 (2011); Vedenkin et al, JETP, v. 140, issue 3(9), 1-11 (2011) demonstrated existence of transients at large distances (up to thousands km) away of cloud thunderstorm regions. Those "remote" transients are short (1-5 msec) and are less luminous than the transients above thunderstorm regions. The ratio of Red-IR to UV photon numbers in those transients indicates high altitude of their origin (~70 km). Important observation facts are also: 1. a change of the exponent in transient distribution on luminosity Q ("-1" for photon numbers Q=1020 -1023 to "-2" for Q>1023), 2. a change of global distribution of transient with their luminosity (transients with Q>1023 are concentrated in equatorial range above continents, while transients with low luminosity are distributed more uniformly), 3. a phenomenon of transient sequences in one satellite orbit which is close to geomagnetic meridian. In the present paper phenomenological features of transients are explained in assumption that the observed transients have to be divided in two classes: 1. transients related to local, lower in the atmosphere, lightning at distance not more than hundreds km from satellite detector field of view in the atmosphere and 2. transients generated by far away lightning. Local transients are luminous and presumably are events called "transient luminous events" (TLE). In distribution on luminosity those events have some threshold Q~1023 and their differential luminosity distribution is approximated by power law exponent "-2". Remote transients have to be considered separately. Their

  4. A study of point discharge current observations in the thunderstorm environment at a tropical station during the year 1987 and 1988

    NASA Technical Reports Server (NTRS)

    Manohar, G. K.; Kandalgaonkar, S. S.; Sholapurkar, S. M.

    1991-01-01

    The results of the measurements of point discharge current observations at Pune, India, during years 1987 and 1988 are presented by categorizing and studying their number of spells, polar current average durations, and current magnitudes in day-time and night-time conditions. While the results showed that the thunderstorm activity occupies far more day-time than the night-time the level of current magnitudes remains nearly the same in the two categories.

  5. Social and Environmental Determinants of Child Physical Activity in a Rural Mexican-Origin Community.

    PubMed

    Schaefer, Sara E; Gomez-Camacho, Rosa; Martinez, Lisa; Sadeghi, Banafsheh; German, J Bruce; de la Torre, Adela

    2016-04-01

    California's rural agricultural communities face an increased burden of obesity and metabolic disease. The present objective is to define the social and environmental influences to child obesity and physical activity within Mexican-origin communities in California's Central Valley. A range of data (anthropometric, socioeconomic, demographic, cultural and environmental) were collected on more than 650 children enrolled in Niños Sanos, Familia Sana. Physical activity data were gathered from a subsample of children 4-7 years of age (n = 148) via accelerometer. Cross sectional analyses explored the relationship between BMI and physical activity and the influence of numerous social and environmental variables. In this sample 45 % of children were determined to be overweight or obese. Boys had a higher daily average moderate-to-vigorous physical activity than girls (p = 0.008). Chi square analyses showed weight status was associated with activity level in girls (p = 0.03) but not boys. Multivariate regression revealed several social and environmental indicators influenced BMI and physical activity (p = 0.004). In this population of school-age children of Mexican-origin, girls may benefit more from targeted efforts to increase MVPA. Family and community support systems may also boost child participation in physical activities.

  6. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  7. The electric field alignment of ice particles in thunderstorms

    NASA Technical Reports Server (NTRS)

    Weinheimer, Andrew J.; Few, Arthur A.

    1987-01-01

    Electrical and aerodynamic torques on atmospheric ice particles are calculaed in order to assess the degree of alignment of these particles with the electric fields in thunderstorms. In such clouds fields of many tens of kilovolts per meter are commonly measured, and values of 100 to 200 kV/m are not rare. For E = 100 kV/m the calculations indicate that electric field alignment occurs for crystals with major dimensions up to maximum values in the range from 200 microns to 1 mm, depending upon crystal type. Columns are aligned more easily than platelike crystals, except for dendrites which, by virtue of their smaller assumed density, have smaller fall velocities thereby experiencing weaker aerodynamic torques. Thus a substantial degree of alignment is expected for E = 100 kV/m. For E = 10 kV/m only much smaller crystals will be aligned, probably only ones with major dimensions of less than 50 microns or so.

  8. Thunderstorm Ground Enhancements Abruptly Terminated by the Lightning Flash

    NASA Astrophysics Data System (ADS)

    Chilingarian, A. A.; Sogomonyan, S. B.

    2015-12-01

    Electrons giving rise to the Thunderstorm ground enhancements (TGEs) are accelerated in the lower dipole formed by the main negatively charged region in the middle of the cloud and the transient lower positively charged region (LPCR). The LPCR prevents the lightning leader from reaching the ground and usually no -CG lightning occurs during mature LPCR when the particle flux is sizable. Only after decaying of the LPCR lightning the stepped leader makes its path to the ground. Polarized water droplets also have a role in the TGE initiation. Our observations show that only at high humidity the TGEs at Aragats are possible and rains terminate the particle fluxes. We consider TGE events abruptly terminated by the lightning discharge. Proceeding from the large collection of the sharply stopped TGE events detected on Mt. Aragats we investigated how particle fluxes can help the stepped leader to reach the ground.

  9. Infrasonic Observations of Thunderstorms at High Latitudes: Time Scales

    NASA Astrophysics Data System (ADS)

    Liszka, L. J.

    2008-12-01

    The present work summarizes some results of infrasonic observations of thunderstorms recorded in the Northern Scandinavia by the Swedish-Finnish Infrasound Network (SIN). A lightning in the atmosphere is a source of cylindrical shock waves. When the distance from the source increases, more and more energy is transferred into the low-frequency range through the same mechanism as for shock waves from supersonic aircraft. Frequently, semi-regular sequences of lightning with similar orientation and nearly constant repetition frequency are observed. For that reason the spectrum of time delays between individual strokes is studied. It has been found that the apparent random occurrence of strokes seems be a result of superposition of several processes with slowly varying time scales.

  10. North Dakota Thunderstorm Project. Final report, April 1989-March 1991

    SciTech Connect

    Boe, B.A.

    1991-11-20

    The North Dakota Thunderstorm Project (NDTP) was a national scale research program conducted in central North Dakota during June and July, 1989. The program was hosted and coordinated by the North Dakota Atmospheric Resource Board, and funded jointly by the National Oceanic and Atmospheric Administration (NOAA), the State of North Dakota, and the National Science Foundation. Data collection with four Doppler radars, six aircraft, and a variety of supporting instrumentation began 12 June 1989, and continued through 22 July 1989. In all, 106 of the nineteen various predefined experiments were conducted, though severe storms were fewer in number than expected. Several different atmospheric tracer techniques were employed, including gaseous (sulfur hexafluoride), radar chaff, natural (ozone, carbon monoxide), and fluorescent beads.

  11. Terrestrial Gamma-ray Flash (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2009-01-01

    Terrestrial gamma-ray flashes (TGFs) are being observed with the Gamma-ray Burst Monitor (GBM) detectors on Fermi about once every four weeks. These intense millisecond flashes of MeV photons have been observed with four space-borne experiments since their initial discovery by the BATSE-CGRO experiment in the early 1990s. TGFs have extremely hard spectra (harder than GRBs) and photons are seen to extend to over 30 MeV. The GBM-Fermi observations have the highest temporal resolution of any previous TGF observations and time-resolved coarse spectra can be derived. These features will be crucial for testing the leading current model of TGF production: relativistic run-away electron cascades formed in the intense electric fields within thunderstorms.

  12. Extreme warm season thunderstorm systems and the urban environment

    NASA Astrophysics Data System (ADS)

    Ntelekos, Alexandros Anastasios

    The consequences of a flood are amplified when it occurs in urban environments by virtue of the large concentration of people and wealth affected. This dissertation is devoted to advancing the understanding of the ways that warm season thunderstorm systems interact with the urban environment to produce flooding. The area of study is the northeastern United States with particular focus over the urban environments of Baltimore, Washington, DC, and New York City. The complex topography of the northeastern United States, with the Appalachian Mountains to the west, and the land-ocean boundary to the east of the heavily urbanized northeastern corridor, presents the analyses with great challenges. At the same time, it increases their relevance since most of the world's urban cores are built close to complex terrain. Warm season thunderstorm systems that produce short-duration, high-intensity rain-fall events are shown to be the major flash flooding agents over the urban corridor of the northeastern US. Established theories of inadvertent weather modification by urban environments are put to the test with the use of advanced models and multiple observational techniques. The results reveal unexplored links of inadvertent weather modification arising from synergies between the urban canopy layer and the land-ocean boundary. Aerosols are also shown to play an important role in rain-fall enhancement, under certain environmental conditions that are examined through combined observational analyses and numerical model experiments. The last part of this dissertation is devoted to synthesizing the links between flooding and the urban environment to perform a critical review of the US flood policy framework. Projections of end-of-the 21st Century annual flood costs are made, and recommendations are provided for a modernization of the policy framework to more efficiently mitigate the effects of floods in the future.

  13. Characteristics of TLE-producing lightning in a coastal thunderstorm

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Chun; Hsu, Rue-Ron; Huang, Sung-Ming; Su, Han-Tzong; Kuo, Cheng-Ling; Chou, Jung-Kung; Lee, Li-Jou; Wu, Yeng-Jung; Chen, Alfred B.

    2014-11-01

    Observing from southern Taiwan on 2 August 2010, a thunderstorm near Luzon Island, Philippines, about 500 km away was found to produce 72 transient luminous events (TLEs). Besides optical images, ULF and VLF sferics of lightning from this thunderstorm were also recorded. This work examines the characteristics of TLE-producing lightning through studying their ULF and VLF sferics. The attenuation of ULF and VLF sferics in the Earth cavity is obtained through analyzing the sferics associated with Imager of Sprite and Upper Atmospheric Lightning elves that occurred within ~1500 km of Taiwan. Amplitudes of the ULF and the VLF sferics are found to vary as D-0.871 and D-1.207, respectively, where D is the source distance from the sferic stations. After normalizing the sferics from the 2 August 2010 storm to 500 km distance, the ratio of the peak ULF and the VLF magnetic fields is found to be distinct for different TLE-producing lightning. The ratio for the halo-producing lightning is nearly 3 times that of the elve-producing lightning, but it is comparable to that of the halo-sprite-producing lightning, although the ULF strength for the halo-sprite lightning is significantly larger than that for the halo lightning. Therefore, it is possible to distinguish between the TLE-types using the ULF to VLF peak ratio or the strength of ULF/VLF band emissions of the parent lightning. Comparison of numerically simulated and the observed lightning radiation fields indicates that the best fit discharge time of the elve lightning is about 100 µs, while that for the halo-producing lightning is between 200 and 500 µs.

  14. Thunderstorm detection and warning system atmospheric potential monitor

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An new type of electric field instrumentation was developed for lighting prediction at KSC. Currently, it is being installed at several government laboratories and is being made available to the public. It has important advantages over the previous method for measuring electric fields with motor driven field mills: (1) it has no moving parts and requires little maintenance compared to rotating machinery; (2) it is unaffected by rain, snow, sand, or insects, all of which can influence field mills; and (3) the lightweight sensor can be mounted easily on a tall mast. By mounting the instrumentation on a tall mast the instrumentation is placed above much of the blanket of point discharge ions that are emitted from objects on the ground during thunderstorms. This space charge limits the ability of any ground based electric field sensor to accurately measure cloud electric fields which produce lightning. The elevated mounting was demonstrated to significantly improve monitoring of thunderstorm electric fields. This instrumentation measures the atmospheric potential relative to earth at a corona needle sensor on top of a mast which normally is mounted on a tower or roof. The needle is kept in corona at all times by a low power high voltage power supply. This produces a small cloud of ions around the needle allowing a current to flow. Measurement of the current provides the atmospheric potential. The potential divided by the height of the needle above the ground is proportional to the average electric field between the needle and earth. The potential on top of a tall pole or above a rooftop is more representative of the intensity of cloud electrification than electric field measurements made at ground level. Photographs that depict the computer terminal, video display of a two sensor system, and the individual components installed on a tower are presented.

  15. Hail events across the Greater Metropolitan Severe Thunderstorm Warning Area

    NASA Astrophysics Data System (ADS)

    Rasuly, A. A.; Cheung, K. K. W.; McBurney, B.

    2015-05-01

    This study addresses the recent climatology of hail occurrence in the Greater Metropolitan Severe Thunderstorm Warning Area (GMSTWA) of New South Wales (NSW). The study area is a sprawling suburban area with a population of nearly 4.7 million and one of Australia's largest metropoles. The main objective is to highlight the recent temporal-spatial fluctuations of hail event frequencies and magnitudes (sizes) for each of recognized and vastly inhabited local government areas (LGAs). The relevant hail event data from 1989 to 2013 were initially derived from the severe storm archive of the Australian Bureau of Meteorology. A climatologically oriented GIS technique was then applied in the examining and mapping procedure of all hail events and hail days reported throughout the study area. By applying a specific criterion, severe hail (defined as 2 cm or more in diameter) was cautiously selected for relevant analysis. The database includes 357 hail events with sizes 2-11 cm which occurred in 169 hail days (a day in which a hail event at least more than 2 cm reported) across the region during the past 25 years. The hail distribution patterns are neither temporally nor spatially uniform in magnitude throughout the study area. Temporal analysis indicated that most of hail events occur predominately in the afternoons with peak time of 1-5 p.m. Australian eastern standard time (EST). They are particularly common in spring and summer, reaching maximum frequency in November and December. There is an average of 14.3 events per year, but a significant decreasing trend in hail frequency and associated magnitude in the recent years has been identified. In turn, spatial analyses also established three main distribution patterns over the study area which include the Sydney metropolitan, the coastal and the most pronounced topographic effects. Based on the understanding of the favorable factors for thunderstorm development in the GMSTWA, the potential impacts from climate variability

  16. Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin

    SciTech Connect

    Duliu, O. G.; Cristache, C. I.; Oaie, G.; Ricman, C.; Culicov, O. A.; Frontasyeva, M. V.

    2010-01-21

    Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

  17. Recommendations for Technology Development and Validation Activities in Support of the Origins Program

    NASA Technical Reports Server (NTRS)

    Capps, Richard W. (Editor)

    1996-01-01

    The Office of Space Science (OSS) has initiated mission concept studies and associated technology roadmapping activities for future large space optical systems. The scientific motivation for these systems is the study of the origins of galaxies, stars, planetary systems and, ultimately, life. Collectively, these studies are part of the 'Astronomical Search for Origins and Planetary Systems Program' or 'Origins Program'. A series of at least three science missions and associated technology validation flights is currently envisioned in the time frame between the year 1999 and approximately 2020. These would be the Space Interferometry Mission (SIM), a 10-meter baseline Michelson stellar interferometer; the Next Generation Space Telescope (NGST), a space-based infrared optimized telescope with aperture diameter larger than four meters; and the Terrestrial Planet Finder (TPF), an 80-meter baseline-nulling Michelson interferometer described in the Exploration of Neighboring Planetary Systems (ExNPS) Study. While all of these missions include significant technological challenges, preliminary studies indicate that the technological requirements are achievable. However, immediate and aggressive technology development is needed. The Office of Space Access and Technology (OSAT) is the primary sponsor of NASA-unique technology for missions such as the Origins series. For some time, the OSAT Space Technology Program has been developing technologies for large space optical systems, including both interferometers and large-aperture telescopes. In addition, technology investments have been made by other NASA programs, including OSS; other government agencies, particularly the Department of Defense; and by the aerospace industrial community. This basis of prior technology investment provides much of the rationale for confidence in the feasibility of the advanced Origins missions. In response to the enhanced interest of both the user community and senior NASA management in large

  18. NASA 3-D Image Reveals Powerful Thunderstorms in Nadine's Northeastern Quadrant

    NASA Video Gallery

    On Oct. 2 at 11:43 p.m. EDT), heavy convective thunderstorms were found in Nadine's northeastern quadrant by NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. Wind shear had separated th...

  19. Thunderstorm occurrence and characteristics in Central Europe under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Wapler, Kathrin; James, Paul

    2015-05-01

    The occurrence and characteristics of thunderstorms in Central Europe are examined in relation to the predominant synoptic conditions as derived from an automatic classification of synoptic patterns. Lightning strokes measured by a lightning detection network, human thunderstorm observations at weather stations and convective cells derived from radar reflectivity are used. The analysis reveals conditions favourable for thunderstorm development and highlights regions affected under different flow regimes. Additionally, the cell-based analysis shows that different synoptic conditions are typically associated with specific cell characteristics, such as the direction and speed of movement or cell sizes and severity. These relationships can be explained meaningfully via a description of the synoptic-meteorological characteristics of each of the standard weather patterns. As such these results may support a better understanding of thunderstorm formation as well as improve forecasters' situational awareness.

  20. On amplifications of photonuclear neutron flux in thunderstorm atmosphere and possibility of detecting them

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Zalyalov, A. N.

    2013-05-01

    The reliability of communications reporting observations of neutron flux enhancements in thunderstorm atmosphere is analyzed. The analysis is motivated by the fact that the employed gas-discharge counters on the basis of reactions 3He( n, p)3H and 10B( n; 4He, γ)7Li detect not only neutrons but any penetrating radiations. Photonuclear reactions are capable of accounting for the possible amplifications of neutron flux in thunder-storm atmosphere since in correlation with thunderstorms γ-ray flashes were repeatedly observed with spectra extending high above the threshold of photonuclear reactions in air. By numerical simulations, it was demonstrated that γ-ray pulses detected in thunderstorm atmosphere are capable of generating photonuclear neutrons in numbers sufficient to be detected even at sea level.

  1. Thunderstorm Electrification and Raindrop Collisions and Disjection in an Electric Field.

    PubMed

    Gunn, R

    1965-11-12

    Raindrop collisions in an electric field selectively transfer charges of one sign to the larger disjected drops. The disjected drops, falling away from the smaller drops, separate free charge to establish electric fields as large as those observed in thunderstorms.

  2. Winter thunderstorms in central Europe in the past and the present

    NASA Astrophysics Data System (ADS)

    Munzar, Jan; Franc, Marek

    Thunderstorms in the territories of the Czech Republic and neighbouring countries are almost exclusively the only phenomena occurring in the warm season. In the cold half of the year, from October to March, an average incidence of thunderstorms is only 2%, with the least occurrence being recorded in January. Yet, winter thunderstorms are dangerous particularly for air traffic because during them, the cloud base is rapidly falling down and visibility is suddenly worsening due to heavy snowfall. Notwithstanding these facts, the issue of their occurrence in the central European space has been paid little attention so far. Long years of study into historical weather extremes in the territory of the Czech Republic revealed over 10 chronicle entries on the occurrence of winter thunderstorms in the period between November and February from the 16th to the beginning of the 20th centuries. The irregular phenomenon was even devoted three occasional prints in central Europe in the second half of the 16th century, two of which were issued in Germany. Fires caused by winter thunderstorms were no sporadic cases. The occurrence of thunderstorms in winter was apparently associated with the passage of pronounced cold fronts. This can be documented on cases from the end of December 1555 when heavy thunderstorms and consequent fires were recorded within a short period of time in Holland, Germany and in Czech lands. It is assumed that the situation in 1627 was similar when a winter thunderstorm was recorded in Prague and in Holešov, southeastern Moravia on 28 December. In February 1581, a thunderstorm in Prague became one of three unusual events publicized by the local occasional newspaper. The beginning of modern studies into winter thunderstorms dates back to the 1960s with the use of lightning flash counters and later also with the use of systems for large-scale lightning flash detection and localization. However, more comprehensive meteorological and climatological assessments of

  3. TETRA observation of gamma-rays at ground level associated with nearby thunderstorms

    PubMed Central

    Ringuette, Rebecca; Case, Gary L; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2013-01-01

    [1] Terrestrial gamma-ray flashes (TGFs)—very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms—have been detected with satellite instruments. TGF and Energetic Thunderstorm Rooftop Array (TETRA), an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma-rays at ground level. After 2.6 years of observation, 24 events with durations 0.02–4.2 ms have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ∼1000 m. Nine of the events occurred within 6 ms and 5 km of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site. PMID:26167428

  4. Detection of trends in days with thunderstorms in Iran over the past five decades

    NASA Astrophysics Data System (ADS)

    Araghi, Alireza; Adamowski, Jan; Jaghargh, Majid Rajabi

    2016-05-01

    Thunderstorms, which usually occur when there are cumulonimbus (Cb) clouds in the sky, can be a natural hazard if they are severe. Most previous studies have focused on the physical and dynamic structure of thunderstorms, with little focus on exploring the trends of thunderstorm occurrence. In this paper, the time series of days with thunderstorms were studied at 30 synoptic stations in Iran during the past five decades (1961 to 2010). The non-parametric Mann-Kendall statistical method was the main approach employed since it is very useful in hydro-meteorological studies. The results of this study showed that the trend of days with thunderstorms in Iran was positive in most parts of the country for all months of the year. The largest area with positive and significant trends occurred in April and May, especially in the northwestern and northern parts of Iran. Based on the annual time series, more than 90% of the country's area had positive (significant or non-significant) trends. In addition, no significant negative trends were observed in days with thunderstorms for any months of the year in the study region. This research supports the hypothesis that climate change can have significant effects on extreme atmospheric phenomena. Additional research is necessary to explore the climatic and physical causes of the trends presented in this study.

  5. NOWCASTING OF IN-FLIGHT hazard thunderstorm, supporting aircrew and ATM decision making process

    NASA Astrophysics Data System (ADS)

    Guillou, Y.; Senesi, S.; Tafferner, A.; Forster, C.

    2009-09-01

    The Integrated Project FLYSAFE allows to define and experiment Weather Information Management Systems (WIMS). These systems provide met data on several weather hazards: icing, clear air turbulence and thunderstorms. The thunderstorm system, called CB WIMS (Cb for Cumulonimbus), has been developed with involvement of partners from Météo-France, German Aerospace Center (DLR), ONERA, UK-Met Office and the University of Hannover. In order to reduce the complexity of a real thunderstorm to a practical model which can be used onboard aircraft for informing pilot of hazard area, it is been represented as bottom and top hazard volumes. The bottom volumes are defined from ground RADAR network and has two levels of hazard severity. The top volume is defined on satellite data and includes only one level of hazard severity. In this presentation, we will focus on test flights operated during summer campaign in August 2008, and more precisely on flights operated by the research plane of Météo-France (ATR42). Through different case studies, we will point out the important contribution of CB WIMS to complete the pilot view of thunderstorm hazards which is available from the single board RADAR. Indeed, in addition to an overview of thunderstorm hazard, the CB WIMS provide relevant information on thunderstorm evolution too. The bottom volume can also indicate hazard area in lower layers not necessary detected by onboard radar but which can result in a moderate turbulence for the plane.

  6. Characteristics, location and origin of flare activity in a complex active region

    NASA Technical Reports Server (NTRS)

    Machado, M. E.; Gary, G. A.; Hagyard, M. J.; Hernandez, A. M.; Rovira, M. G.

    1986-01-01

    The observational characteristics of series of multiple-loop flares from a complex active region are summarized. The location of the highest observed photospheric magnetic shear is found to be the commonly observed site of flare onset, but not, in many cases, the magnetic region where the largest time-integrated energy release is observed. The observations thus reveal a consistent pattern of energy-release processes related to the magnetic-field topology.

  7. Origin of thoracic spinal network activity during locomotor-like activity in the neonatal rat.

    PubMed

    Beliez, Lauriane; Barrière, Grégory; Bertrand, Sandrine S; Cazalets, Jean-René

    2015-04-15

    Effective quadrupedal locomotor behaviors require the coordination of many muscles in the limbs, back, neck, and tail. Because of the spinal motoneuronal somatotopic organization, motor coordination implies interactions among distant spinal networks. Here, we investigated some of the interactions between the lumbar locomotor networks that control limb movements and the thoracic networks that control the axial muscles involved in trunk movement. For this purpose, we used an in vitro isolated newborn rat spinal cord (from T2 to sacrococcygeal) preparation. Using extracellular ventral root recordings, we showed that, while the thoracic cord possesses an intrinsic rhythmogenic capacity, the lumbar circuits, if they are rhythmically active, will entrain the rhythmicity of the thoracic circuitry. However, if the lumbar circuits are rhythmically active, these latter circuits will entrain the rhythmicity of the thoracic circuitry. Blocking the synaptic transmission in some thoracic areas revealed that the lumbar locomotor network could trigger locomotor bursting in distant thoracic segments through short and long propriospinal pathways. Patch-clamp recordings revealed that 72% of the thoracic motoneurons (locomotor-driven motoneurons) expressed membrane potential oscillations and spiking activity coordinated with the locomotor activity expressed by the lumbar cord. A biphasic excitatory (glutamatergic)/inhibitory (glycinergic) synaptic drive was recorded in thoracic locomotor-driven motoneurons. Finally, we found evidence that part of this locomotor drive involved a monosynaptic component coming directly from the lumbar locomotor network. We conclude that the lumbar locomotor network plays a central role in the generation of locomotor outputs in the thoracic cord by acting at both the premotoneuronal and motoneuronal levels. PMID:25878284

  8. Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities.

    PubMed Central

    Ziegelin, G; Scherzinger, E; Lurz, R; Lanka, E

    1993-01-01

    alpha Protein of satellite phage P4 of Escherichia coli is multifunctional in P4 replication with three activities. First, the protein (subunit M(r) = 84,900) complexes specifically the P4 origin and the cis replication region required for replication. alpha Protein interacts with all six type I repeats (TGTTCACC) present in the origin. Second, associated with the alpha protein is a DNA helicase activity that is fueled by hydrolysis of a nucleoside 5' triphosphate. All common NTPs except UTP and dTTP can serve as cofactors. Strand separation of partial duplexes containing tailed ends that resemble a replication fork is preferred, although a preformed fork is not absolutely required for the enzyme to invade and unwind duplex DNA. alpha Protein catalyzes unwinding in the 3'-5' direction with respect to the strand it has bound. Finally, the primase activity already demonstrated for alpha protein is due to synthesis of RNA primers. In vitro, alpha protein generates di- to pentaribonucleotides on single-stranded phage fd DNA. The predominant product is the dimer pppApG, on which most of the longer oligoribonucleotides are based. Using DNA oligonucleotides of defined sequence as templates, synthesis of pppApG was also detectable. To date, among prokaryotic and eukaryotic replication systems, gp alpha is the only protein known that combines three activities on one single polypeptide chain. Images PMID:8253092

  9. Rice genomes recorded ancient pararetrovirus activities: Virus genealogy and multiple origins of endogenization during rice speciation.

    PubMed

    Chen, Sunlu; Liu, Ruifang; Koyanagi, Kanako O; Kishima, Yuji

    2014-12-01

    Viral fossils in rice genomes are a best entity to understand ancient pararetrovirus activities through host plant history because of our advanced knowledge of the genomes and evolutionary history with rice and its related species. Here, we explored organization, geographic origins and genealogy of rice pararetroviruses, which were turned into endogenous rice tungro bacilliform virus-like (eRTBVL) sequences. About 300 eRTBVL sequences from three representative rice genomes were clearly classified into six families. Most of the endogenization events of the eRTBVLs were initiated before differentiation of the rice progenitor (> 160,000 years ago). We successfully followed the genealogy of old relic viruses during rice speciation, and inferred the geographical origins for these viruses. Possible virus genomic sequences were explained mostly by recombinations between different virus families. Interestingly, we discovered that only a few recombination events among the numerous occasions had determined the virus genealogy. PMID:25461539

  10. Recent land use/land cover changes and their impact on the evolution and structure of thunderstorm in New Delhi

    NASA Astrophysics Data System (ADS)

    Mamgain, Ashu; C. K., Unnikrishnan; Rajagopal, E. N.

    2016-05-01

    Current study investigates the impact of changes in land use/land cover (Lu/Lc) on thunderstorm, the short lived convective event occurred in New Delhi. We are trying to understand the impact of urban Lu/Lc changes on the structure and evolution of severe thunderstorm activities over a short time period. Lu/Lc data from IGBP are available for the period 1992-1993 and recent period 2012-2013 Lu/Lc data are from the ISRO AWiFS satellite sensor. We have used a cloud resolving model at 1.5 km resolution embedded within a coarser resolution global model at 17 km resolution. These configurations of models are based on UK Met Office Unified Model. Recent period Lu/Lc shows an increase in urban build up and increase in bare soil fraction over Delhi region. Our result shows that the Lu/LC change can impact the low level wind and thermodynamic structure of the storm.

  11. Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Yijun; Zheng, Dong

    2015-12-01

    The rate of neutralized charge by lightning (RNCL) is an important parameter indicating the intensity of lightning activity. The total charging rate (CR), the CR of one kind of polarity (e.g., negative) charge (CROP), and the outflow rate of charge on precipitation (ORCP) are proposed as key factors impacting RNCL, based on the principle of conservation of one kind of polarity charge in a thunderstorm. In this paper, the impacts of updraft on CR and CROP are analyzed by using a 3D cloud resolution model for a strong storm that occurred in Beijing on 6 september 2008. The results show that updraft both promotes and inhibits RNCL at the same time. (1) Updraft always has a positive influence on CR. The correlation coefficient between the updraft volume and CR can reach 0.96. Strengthening of the updraft facilitates strengthening of RNCL through this positive influence. (2) Strengthening of the updraft also promotes reinforcement of CROP. The correlation coefficient between the updraft volume and CROP is high (about 0.9), but this promotion restrains the strengthening of RNCL because the strengthening of CROP will, most of the time, inhibit the increasing of RNCL. (3) Additionally, increasing of ORCP depresses the strengthening of RNCL. In terms of magnitude, the peak of ORCP is equal to the peak of CR. Because precipitation mainly appears after the lightning activity finishes, the depression effect of ORCP on RNCL can be ignored during the active lightning period.

  12. An Overview of Thunderstorm-Related Research on the Atmospheric Electric Field, Schumann Resonances, Sprites, and the Ionosphere at Sopron, Hungary

    NASA Astrophysics Data System (ADS)

    Sátori, Gabriella; Rycroft, Michael; Bencze, Pál; Märcz, Ferenc; Bór, József; Barta, Veronika; Nagy, Tamás; Kovács, Károly

    2013-05-01

    This paper gives a resume of the papers written in English which (a) describe some of the recording instruments in use at the Nagycenk Observatory (NCK) since the International Geophysical Year (IGY 1957-1958) and up to the present time, (b) summarise the most important and different types of observations associated with thunderstorms which have been made there, and (c) discuss their various geophysical interpretations. The paper describes the main results which have been obtained in four areas of thunderstorm associated atmospheric and geospace science within the context of Earth system science. These relate to the following parameters of atmospheric electricity: the vertical electric potential gradient just above the Earth's surface and the air-Earth current as well as the point discharge current, Schumann resonance (SR) signals of the Earth-ionosphere cavity at 8, 14 and 20 Hz, transient luminous events (TLEs), and some aspects of the behaviour of the ionosphere. Deductions from these data sets are concerned with the global lightning activity and the conductivity of the air, with diurnal, seasonal, annual and long-term variations of the SR amplitudes and resonant frequencies in terms of migrating thunderstorm centres, with transient SR excitations and with sprites and other TLEs, and with ionospheric disturbances. The paper closes with some thoughts on future research directions based on the observations at NCK and Sopron and the results achieved since the IGY.

  13. Genotoxic and antigenotoxic activity of acerola (Malpighia glabra L.) extract in relation to the geographic origin.

    PubMed

    Nunes, Roberta Da Silva; Kahl, Vivian Francília Silva; Sarmento, Merielen Da Silva; Richter, Marc François; Abin-Carriquiry, Juan Andres; Martinez, Marcela María; Ferraz, Alexandre De Barros Falcão; Da Silva, Juliana

    2013-10-01

    Malpighia glabra L, popularly known as acerola, is considered a functional fruit and therefore is taken to prevent disease or as adjuvant to treatment strategies, since the fruit is an undeniable source of vitamin C, carotenoids, and flavonoids. Acerola is a natural source of vitamin C, flavonoids, and carotenoids. Its chemical composition is affected by genetic uniformity of the orchards and environmental factors. Considering the extensive growth of the culture of acerola in Brazil as well as its widespread use, this study evaluates the genotoxic and antigenotoxic activity of acerola in relation to geographical origin using the comet assay in mice blood cells in vitro. No acerola samples showed potential to induce DNA damage, independently of origin. Also, for antigenotoxicity activity, only the acerola sample from São Paulo reduced DNA damage induced by hydrogen peroxide (by about 56%). The sample from Ceará showed good antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl assay, in agreement with its higher rutin, quercetin, and vitamin C levels. Additional studies with other treatment regimens are necessary to better understand the impact of the complex mixture of acerola on genomic stability.

  14. A Tale of Two Super-Active Active Regions: On the Magnetic Origin of Flares and CMEs

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Dhakal, Suman; Chintzoglou, Georgios

    2015-04-01

    From a comparative study of two super-active active regions, we find that the magnetic origin of CMEs is different from that of flares. NOAA AR 12192 is one of the largest active regions in the recorded history with a sunspot number of 66 and area of 2410 millonths. During its passage through the front disk from Oct. 14-30, 2014, the active region produced 93 C-class, 30 M-class and 6 X-class flares. However, all six X-class flares are confined; in other words, none of them are associated with CMEs; most other flares are also confined. This behavior of low-CME production rate for such as a super active region is rather peculiar, given the usual hand-on-hand occurrence of CMEs with flares. To further strengthen this point, we also investigated the super-active NOAA AR 11429, which had a sunspot number of 28 and area of 1270 millionths. During its passage from March 02-17, 2012, the active region produced 47 C-class, 15 M-class and 3 X-class flares. In this active region, all three X-class flares were accompanied by CMEs, and the same for most M-class flares. Given the relative sizes of the two active regions, the production rates of flares are comparable. But the CME production rates are not. Through a careful study of the magnetic configuration on the surface and the extrapolated magnetic field in the corona, we argue that the generation of flares largely depends on the amount of free energy in the active region. On the other hand, the generation of CMEs largely depends on the complexity, such as measured by magnetic helicity. In particular, we argue that the high CME generation rate in the smaller active region is caused by the emergence and continuous generation of magnetic flux ropes in the region.

  15. Perspectives of Mexican-origin smokers on healthy eating and physical activity.

    PubMed

    Strong, Larkin L; Hoover, Diana S; Heredia, Natalia I; Krasny, Sarah; Spears, Claire A; Correa-Fernández, Virmarie; Wetter, David W; Fernandez, Maria E

    2016-08-01

    Key modifiable risk behaviors such as smoking, poor diet and physical inactivity often cluster and may have multiplicative adverse effects on health. This study investigated barriers and facilitators to healthy eating and physical activity (PA) in overweight Mexican-origin smokers to inform the adaptation of an evidence-based smoking cessation program into a multiple health behavior change intervention. Five focus groups were conducted with overweight Mexican-origin men (n = 9) and women (n = 21) who smoked. Barriers and facilitators of healthy eating and PA were identified, and gender differences were assessed. Participants expressed some motivation to eat healthfully and identified strategies for doing so, yet many women experienced difficulties related to personal, family and work-related circumstances. Barriers to healthy eating among men were related to food preferences and lack of familiarity with fruits and vegetables. Participants performed PA primarily within the context of work and domestic responsibilities. Stress/depressed mood, lack of motivation and concern for physical well-being limited further PA engagement. Routines involving eating, PA and smoking highlight how these behaviors may be intertwined. Findings emphasize the importance of social, structural and cultural contexts and call for additional investigation into how to integrate healthy eating and PA into smoking cessation interventions for overweight Mexican-origin smokers.

  16. Perspectives of Mexican-origin smokers on healthy eating and physical activity.

    PubMed

    Strong, Larkin L; Hoover, Diana S; Heredia, Natalia I; Krasny, Sarah; Spears, Claire A; Correa-Fernández, Virmarie; Wetter, David W; Fernandez, Maria E

    2016-08-01

    Key modifiable risk behaviors such as smoking, poor diet and physical inactivity often cluster and may have multiplicative adverse effects on health. This study investigated barriers and facilitators to healthy eating and physical activity (PA) in overweight Mexican-origin smokers to inform the adaptation of an evidence-based smoking cessation program into a multiple health behavior change intervention. Five focus groups were conducted with overweight Mexican-origin men (n = 9) and women (n = 21) who smoked. Barriers and facilitators of healthy eating and PA were identified, and gender differences were assessed. Participants expressed some motivation to eat healthfully and identified strategies for doing so, yet many women experienced difficulties related to personal, family and work-related circumstances. Barriers to healthy eating among men were related to food preferences and lack of familiarity with fruits and vegetables. Participants performed PA primarily within the context of work and domestic responsibilities. Stress/depressed mood, lack of motivation and concern for physical well-being limited further PA engagement. Routines involving eating, PA and smoking highlight how these behaviors may be intertwined. Findings emphasize the importance of social, structural and cultural contexts and call for additional investigation into how to integrate healthy eating and PA into smoking cessation interventions for overweight Mexican-origin smokers. PMID:27240536

  17. Gender differences in sociodemographic and behavioral influences of physical activity in Mexican-origin adolescents

    PubMed Central

    Strong, Larkin L; Anderson, Cheryl B; Miranda, Patricia Y; Bondy, Melissa L; Zhou, Renke; Etzel, Carol J; Spitz, Margaret R; Wilkinson, Anna V

    2011-01-01

    Background Understanding the factors that contribute to physical activity (PA) in Mexican-origin adolescents is essential to the design of effective efforts to enhance PA participation in this population. Methods Multivariable logistic regression was used to identify sociodemographic and behavioral correlates of self-reported PA in school and community settings in 1,154 Mexican-origin adolescents aged 12–17 years in Houston, TX. Results The majority of adolescents were born in the US (74%), approximately half (51%) were overweight or obese, and nearly three-quarters (73%) watched more than 2 hours of weekday television. Similarities and differences by setting and gender were observed in the relationships between sociodemographic and behavioral characteristics and PA. In boys, parental education and attending physical education (PE) were positively associated with PA across multiple PA outcomes. Adolescent linguistic acculturation was inversely associated with participation in community sports, whereas parental linguistic acculturation was positively associated with PA at school. In girls, PA in school and community settings was inversely associated with TV viewing and positively associated with PE participation. Conclusions These findings highlight similarities and differences in correlates of PA among boys and girls, and point towards potential sources of opportunities as well as disparities for PA behaviors in Mexican-origin adolescents. PMID:21952224

  18. Investigations of severe/tornadic thunderstorm development and evolution based on satellite and AVE/SESAME/VAS data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Purdom, J. F. W.

    1985-01-01

    Development of cloud relative tracking for severe thunderstorm identification and the beginning of the development of mesoscale airmass characteristics based on vertical atmospheric sounding data were accomplished.

  19. Relation of Neurological Findings on Decoupling of Brain Activity from Limb Movement to Piagetian Ideas on the Origin of Thought

    ERIC Educational Resources Information Center

    Becker, Joe

    2006-01-01

    Neurological research has demonstrated that brain activity in animals originally dedicated to the production and regulation of physical activity can be decoupled from that physical activity. Furthermore, animals can use the brain activity in this new condition to achieve particular results such as moving a cursor on a screen. These findings are…

  20. Origin of concurrent ATPase activities in skinned cardiac trabeculae from rat.

    PubMed Central

    Ebus, J P; Stienen, G J

    1996-01-01

    1. To determine the rate of ATP turnover by the sarcoplasmic reticulum (SR) Ca2+ pump in cardiac muscle, and to assess the contributions of other ATPase activities to the overall ATP turnover rate, ATPase activity and isometric force production were studied in saponin-skinned trabeculae from rat. ATP hydrolysis was enzymatically coupled to the oxidation of NADH; the concentration of NADH was monitored photometrically. All measurements were performed at 20 +/- 1 degrees C and pH 7.0. Resting sarcomere length was adjusted to 2.1 microns. All solutions contained 5 mM caffeine to ensure continuous release of Ca2+ from the SR. 2. The Ca(2+)-independent ATPase activity, determined in relaxing solution (pCa 9), amounted to 130 +/- 13 microM s-1 (mean +/- S.E.M., n = 7) at the beginning of an experiment. During subsequent measurements in relaxing solution, a decrease in ATPase activity was observed, indicative of loss of membrane-bound ATPase activity. The steady-state Ca(2+)-independent (basal) ATPase activity was 83 +/- 5 microM s-1 (n = 66). 3. Treatment of saponin-skinned preparations with Triton X-100 abolished 50 microM s-1 (60%) of the basal ATPase activity. Addition of ouabain (1 mM) suppressed 14 +/- 5% of the basal activity, whereas 8 +/- 3% was suppressed by 20 microM cyclopiazonic acid (CPA). It is argued that 31 microM s-1 of the basal ATPase activity may be associated with MgATPase from the transverse tubular system. 4. The maximal Ca(2+)-activated ATPase activity, i.e. the total ATPase activity (determined in activating solution, pCa 4.3) corrected for basal ATPase activity, was found to be 409 +/- 15 microM s-1 (n = 66). Experiments with CPA indicated that at least 9 +/- 6% of the maximal Ca(2+)-activated ATPase activity originates from the sarcoplasmic Ca2+ pump. These experiments indicate that the rate of ATP consumption by the SR Ca2+ transporting ATPase amounts to at least 37 microM s-1. 5. Treatment of preparations with Triton X-100 abolished 15 +/- 3

  1. On the Magnitude of the Electric Field Near Thunderstorm-Associated Clouds

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Ward, Jennifer G.; Mach, Douglas M.; Bateman, Monte G.; Dye, James E.

    2007-01-01

    Electric field measurements made in and near clouds during two airborne field mill programs are presented. Aircraft equipped with multiple electric field mills and cloud physics sensors were flown near active convection and into thunderstorm anvil and debris clouds. The magnitude of the electric field was measured as a function of position with respect to the cloud edge in order to provide an observational basis for modifications to the lightning launch commit criteria (LLCC) used by the U.S. space program. These LLCC are used to reduce the risk that an ascending launch vehicle will trigger a lightning strike that could cause the loss of the mission or vehicle. The results suggest that even with fields of tens of kV/m inside electrically active convective clouds, the fields external to these clouds decay to less than 3 kV/m within fifteen kilometers of cloud edge. Fields exceeding 3 kV/m were not found external to anvil and debris clouds.

  2. Space-Borne Observations of Intense Gamma-Ray Flashes Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Jerry

    2005-01-01

    Intense millisecond flashes of MeV photons were discovered with the space-borne detectors of the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO). These flashes originate at altitudes above at least 30 km, in order to be observable by the orbiting detectors. Over the entire CGRO mission, from 1991 until 2000, about 70 of these events were observed. Nearly all TGFs had short (millisecond) durations and sub-ms rise-times and fall-times, however a small fraction of them had longer timescales associated with them. Most were single pulses, but about a dozen had double pulses and a few had more than two pulses. The TGFs are observed in a photon-by-photon recording mode, with each photon from eight independent detectors being tagged to the nearest two microseconds in four energy channels. The TGFs show very hard spectra, in most cases there are more photons recorded above 300 keV than below. Several of the TGFs were also recorded by the thicker (but smaller area) spectroscopy detectors that provided improved spectral resolution than the large area detectors. The temporal and spectral characteristics of the events and the capabilities of the detectors will be described in more detail than the in the original paper. The association of TGFs with thunderstorms is primarily statistical; the TGFs show a strong correlation with the global distribution of lightning, as observed with recent satellites. There has also been an association based upon coincidences with spheric events, however, this association is debatable due to the high spherics rate and the non-directionality of the detectors. This talk gives an update of the BATSE observations of TGFs were published by the BATSE instrument team over ten years ago.

  3. Sensitivity of the distribution of thunderstorms to sea surface temperatures in four Australian east coast lows

    NASA Astrophysics Data System (ADS)

    Chambers, Christopher R. S.; Brassington, Gary B.; Walsh, Kevin; Simmonds, Ian

    2015-10-01

    The relationship between the sea surface temperature (SST) distribution and the locations of thunderstorms during four Australian east coast lows is investigated using both lightning observations and numerical simulation results. The focus is placed on investigating changes in convective instability caused by the introduction of complex, high-resolution ocean eddy, and frontal structures present in Bluelink SST datasets. Global Position and Tracking System lightning data are overlaid on maps of SST to investigate whether a thunderstorm-SST relationship is discernible. Weather Research and Forecast model simulations are used to establish what atmospheric changes contribute to the observed distributions of thunderstorms. Maximum convective available potential energy (MCAPE) analysis shows a distinct relationship to the SST distribution. In particular, areas of elevated MCAPE are related to regions of warmer SST with horizontal advection often displacing increased MCAPE downwind of the warmer SST. At short timescales of 3-6 h, the differences in MCAPE become larger and more localised and show a strong correlation with the observed lightning. This suggests that at times the thunderstorms are directly related to the complex structures in the detailed SST dataset. For the damaging Pasha Bulker case, the plume of thunderstorms associated with the coastal damage occurs downwind of the region of enhanced MCAPE on the southern flank of the warm eddy. Based on these results, it is concluded that the particular features of the warm eddy enhanced the thunderstorm potential over the coastal region during this event and helped in localising the area of greatest impact for thunderstorm-related intense rainfall.

  4. High energy radiation from aircraft-triggered lightning and thunderstorm

    NASA Astrophysics Data System (ADS)

    Kochkin, Pavlo; van Deursen, Alexander P. J.; de Boer, Alte I.; Bardet, Michiel; Boissin, Jean-François

    2016-04-01

    In-flight Lightning Strike Damage Assessment System (ILDAS http://ildas.nlr.nl/) was developed in an EU FP6 project to provide information on threat that lightning poses to aircraft. The system contains one E-field and eight H-field sensors distributed over the fuselage. It has recently been extended to include two LaBr3 scintillation detectors. The scintillation detectors are sensitive to x-ray photons above 30 keV. The entire system is installed on an A-350 aircraft. When triggered by lightning and digitizes data synchronously with 10 ns intervals. Twelve continuously monitoring photon energy channels were implemented for X-ray detectors operating at slower rate (15 ms, pulse counting). In spring of 2014 and 2015 the aircraft flew through thunderstorm cells recording the data from the sensors. Total of 93 lightning strikes to the aircraft are recorded. Eighteen of them are also detected by WWLLN network. One strike consists of six individual strokes within 200 ms that were all synchronously identified by WWLLN. The WWLLN inter-stroke distance is much larger than the aircraft movement. Three of these strokes generated X-ray bursts. One exceptionally bright X-ray pulse of more than 8 MeV has been detected in association with another strike; it probably saturated the detector's photomultiplier. Neither long gamma-ray glow, nor positron annihilation have been detected during the campaign. An explanation is sought in the typical altitude profile of these test flights.

  5. Jet transport performance in thunderstorm wind shear conditions

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Blick, E. F.; Bensch, R. R.

    1979-01-01

    Several hours of three dimensional wind data were collected in the thunderstorm approach-to-landing environment, using an instrumented Queen Air airplane. These data were used as input to a numerical simulation of aircraft response, concentrating on fixed-stick assumptions, while the aircraft simulated an instrument landing systems approach. Output included airspeed, vertical displacement, pitch angle, and a special approach deterioration parameter. Theory and the results of approximately 1000 simulations indicated that about 20 percent of the cases contained serious wind shear conditions capable of causing a critical deterioration of the approach. In particular, the presence of high energy at the airplane's phugoid frequency was found to have a deleterious effect on approach quality. Oscillations of the horizontal wind at the phugoid frequency were found to have a more serious effect than vertical wind. A simulation of Eastern flight 66, which crashed at JFK in 1975, served to illustrate the points of the research. A concept of a real-time wind shear detector was outlined utilizing these results.

  6. Relativistic electron avalanches as a thunderstorm discharge competing with lightning.

    PubMed

    Kelley, Nicole A; Smith, David M; Dwyer, Joseph R; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K

    2015-08-12

    Gamma-ray 'glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by ≥9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  7. Relativistic electron avalanches as a thunderstorm discharge competing with lightning

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.; Smith, David M.; Dwyer, Joseph R.; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K.

    2015-08-01

    Gamma-ray `glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by >=9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  8. Relativistic electron avalanches as a thunderstorm discharge competing with lightning.

    PubMed

    Kelley, Nicole A; Smith, David M; Dwyer, Joseph R; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K

    2015-01-01

    Gamma-ray 'glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by ≥9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500. PMID:26263880

  9. Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.

    1975-01-01

    One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.

  10. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.

  11. [The original nootropic and neuroprotective drug noopept potentiates the anticonvulsant activity of valproate in mice].

    PubMed

    Kravchenko, E V; Ponteleeva, I V; Trofimov, S S; Lapa, V I; Ostrovskaia, R U; Voronina, T A

    2009-01-01

    The influence of the original dipeptide drug noopept, known to possess nootrope, neuroprotector, and anxiolytic properties, on the anticonvulsant activity of the antiepileptic drug valproate has been studied on the model of corazole-induced convulsions in mice. Neither a single administration of noopept (0.5 mg/kg, i.p.) nor its repeated introduction in 10 or 35 days enhanced the convulsant effect of corazole, which is evidence that noopept alone does not possess anticonvulsant properties. Prolonged (five weeks) preliminary administration of noopept enhanced the anticonvulsant activity of valproate. This result justifies the joint chronic administration of noopept in combination with valproate in order to potentiate the anticonvulsant effect of the latter drug. In addition, the administration of noopept favorably influences the cognitive functions and suppresses the development of neurodegenerative processes. PMID:20095393

  12. The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction.

    PubMed

    Kato, Shunsuke; Matam, Santhosh Kumar; Kerger, Philipp; Bernard, Laetitia; Battaglia, Corsin; Vogel, Dirk; Rohwerder, Michael; Züttel, Andreas

    2016-05-10

    Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites. PMID:27061237

  13. Diversity of Monomers in Nonribosomal Peptides: towards the Prediction of Origin and Biological Activity ▿ †

    PubMed Central

    Caboche, Ségolène; Leclère, Valérie; Pupin, Maude; Kucherov, Gregory; Jacques, Philippe

    2010-01-01

    Nonribosomal peptides (NRPs) are molecules produced by microorganisms that have a broad spectrum of biological activities and pharmaceutical applications (e.g., antibiotic, immunomodulating, and antitumor activities). One particularity of the NRPs is the biodiversity of their monomers, extending far beyond the 20 proteogenic amino acid residues. Norine, a comprehensive database of NRPs, allowed us to review for the first time the main characteristics of the NRPs and especially their monomer biodiversity. Our analysis highlighted a significant similarity relationship between NRPs synthesized by bacteria and those isolated from metazoa, especially from sponges, supporting the hypothesis that some NRPs isolated from sponges are actually synthesized by symbiotic bacteria rather than by the sponges themselves. A comparison of peptide monomeric compositions as a function of biological activity showed that some monomers are specific to a class of activities. An analysis of the monomer compositions of peptide products predicted from genomic information (metagenomics and high-throughput genome sequencing) or of new peptides detected by mass spectrometry analysis applied to a culture supernatant can provide indications of the origin of a peptide and/or its biological activity. PMID:20693331

  14. Lightning Mapping Observations of Volume-Filling Small Discharges in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.

    2013-12-01

    Lightning is usually considered to be a large-scale electrical discharge in the atmosphere. For example, the American Meteorological Society's Glossary of Meteorology defines lightning as "a transient, high-current electric discharge with pathlengths measured in kilometers" (http://glossary.ametsoc.org/wiki/Lightning). There have been several reported examples of short-duration discharges in thunderstorms, which have a duration of a few microseconds to less than a millisecond, and have a small spatial extent These short-duration discharges were located at high altitudes (> 14 km), altitudes consistent with being located between the upper positive charge and the negative screening layer. At these altitudes, the electric field needed to initiate an electrical discharge is much lower than it is at the altitudes of initiation for IC (~8 km) or CG (~5 km) flashes. We have recently reported on short-duration "precursor" discharges with durations of a few microseconds to a few milliseconds, which occur in the high-fields between the mid-level negative and upper positive charge regions. These "precursor" discharges are discrete in both time and space, being separated in time by hundreds of milliseconds to several seconds, and localized in space, usually very close to the initiation location of a subsequent IC discharge. We have recently observed nearly continuous, volume filling short-duration discharges in several thunderstorms. These discharges have durations of much less than a millisecond, spatial extents of less than a few hundred meters, and occur randomly in the volume between the mid-level negative and upper positive charge regions. During an active period, these discharges occur every few milliseconds. The rates of these discharges decreases dramatically to a few per second following an IC discharge, then increases to several hundred per second until the next discharge. In a storm just off the Florida coast, one cell was producing a large number of these small

  15. Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations

    NASA Astrophysics Data System (ADS)

    Riousset, Jeremy A.; Pasko, Victor P.; Krehbiel, Paul R.; Thomas, Ronald J.; Rison, William

    2007-08-01

    The direct comparison of lightning mapping observations by the New Mexico Tech Lightning Mapping Array (LMA) with realistic models of thundercloud electrical structures and lightning discharges represents a useful tool for studies of electrification mechanisms in thunderstorms, initiation and propagation mechanisms of different types of lightning discharges as well as for understanding of electrical and energetic effects of tropospheric thunderstorms on the upper regions of the Earth's atmosphere. This paper presents the formulation of a new three-dimensional probabilistic model for investigating the structure and development of bidirectional positive and negative lightning leaders. The results closely resemble structures observed by the LMA during intracloud discharges. The model represents a synthesis of the original dielectric breakdown model based on fractal approach proposed by Niemeyer et al. (1984) and the equipotential lightning channel hypothesis advanced by Kasemir (1960) and places special emphasis on obtaining self-consistent solutions preserving complete charge neutrality of the discharge trees at any stage of the simulation. A representative simulation run is compared to a typical intracloud discharge measured by LMA in a New Mexico thunderstorm on 31 July 1999. Following the conclusions from Coleman et al. (2003), the comparison of the model and observed discharges reveals that an adequate choice of the electrical structure of the model thundercloud permits the development of a model intracloud discharge reproducing principal features of the observed event including the initial vertical extension of the discharge between the main negative and upper positive charge regions of the thundercloud, and the subsequent horizontal propagations in these regions. Also consistent with observations (e.g., Coleman et al., 2003), negative and positive leaders mainly develop in the upper positive and main negative charge regions, respectively. For the particular

  16. 31 CFR 542.529 - Policy on activities related to petroleum and petroleum products of Syrian origin for the benefit...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... petroleum and petroleum products of Syrian origin for the benefit of the National Coalition of Syrian... activities related to petroleum and petroleum products of Syrian origin for the benefit of the National... the purchase, trade, export, import, or production of petroleum or petroleum products of Syrian...

  17. Cb-LIKE - Thunderstorm forecasts up to six hours with fuzzy logic

    NASA Astrophysics Data System (ADS)

    Köhler, Martin; Tafferner, Arnold

    2016-04-01

    Thunderstorms with their accompanying effects like heavy rain, hail, or downdrafts cause delays and flight cancellations and therefore high additional cost for airlines and airport operators. A reliable thunderstorm forecast up to several hours could provide more time for decision makers in air traffic for an appropriate reaction on possible storm cells and initiation of adequate counteractions. To provide the required forecasts Cb-LIKE (Cumulonimbus-LIKElihood) has been developed at the DLR (Deutsches Zentrum für Luft- und Raumfahrt) Institute of Atmospheric Physics. The new algorithm is an automated system which designates areas with possible thunderstorm development by using model data of the COSMO-DE weather model, which is driven by the German Meteorological Service (DWD). A newly developed "Best-Member- Selection" method allows the automatic selection of that particular model run of a time-lagged COSMO- DE model ensemble, which matches best the current thunderstorm situation. Thereby the application of the best available data basis for the calculation of the thunderstorm forecasts by Cb-LIKE is ensured. Altogether there are four different modes for the selection of the best member. Four atmospheric parameters (CAPE, vertical wind velocity, radar reflectivity and cloud top temperature) of the model output are used within the algorithm. A newly developed fuzzy logic system enables the subsequent combination of the model parameters and the calculation of a thunderstorm indicator within a value range of 12 up to 88 for each grid point of the model domain for the following six hours in one hour intervals. The higher the indicator value the more the model parameters imply the development of thunderstorms. The quality of the Cb-LIKE thunderstorm forecasts was evaluated by a substantial verification using a neighborhood verification approach and multi-event contingency tables. The verification was performed for the whole summer period of 2012. On the basis of a

  18. Adsorption of gold cyanide complexes by activated carbon on non-coconut shell origin

    SciTech Connect

    Yalcin, M.; Arol, A.I.

    1995-12-31

    Coconut shells are the most widely used raw material for the production of activated carbon used in the gold production by cyanide leaching. There have been efforts to find alternatives to coconut shells. Shells and stones of certain fruits, have been tested. Although promising results to some extent were obtained, coconut shells remain the main source of activated carbon. Turkey has become a country of interest in terms of gold deposits of epithermal origin. Four deposits have already been discovered and, mining and milling operations are expected to start in the near future. Explorations are underway in many other areas of high expectations. Turkey is also rich in fruits which can be a valuable source of raw material for activated carbon production. In this study, hazelnut shells, peach and apricot stones, abundantly available locally, have been tested to determine whether they are suitable for the gold metallurgy. Parameters of carbonization and activation have been optimized. Gold loading capacity and adsorption kinetics have been studied.

  19. The chemical origin and catalytic activity of coinage metals: from oxidation to dehydrogenation.

    PubMed

    Syu, Cih-Ying; Yang, Hao-Wen; Hsu, Fu-Hsing; Wang, Jeng-Han

    2014-04-28

    The high oxidation activity of coinage metals (Cu, Ag and Au) has been widely applied in various important reactions, such as oxidation of carbon monoxide, alkenes or alcohols. The catalytic behavior of those inert metals has mostly been attributable to their size effect, the physical effect. In the present study, the chemical effects on their high oxidation activity have been investigated. We mechanistically examine the direct and oxidative dehydrogenation (partial oxidation) reactions of ethanol to acetaldehyde on a series of transition metals (groups 9, 10 and 11) with identical physical characteristics and varied chemical origins using density functional theory (DFT) calculations and electronic structure analyses at the GGA-PW91 level. The energetic results show that coinage metals have much lower activation energies and higher exothermicities for the oxidative dehydrogenation steps although they have higher energy for the direct dehydrogenation reaction. In the electronic structure analyses, coinage metals with saturated d bands can efficiently donate electrons to O* and OH*, or other electronegative adspecies, and better promote their p bands to higher energy levels. The negatively charged O* and OH* with high-lying p bands are responsible for lowering the energies in oxidative steps. The mechanistic understanding well explains the better oxidation activity of coinage metals and provides valuable information on their utilization in other useful applications, for example, the dehydrogenation process. PMID:24626959

  20. The chemical origin and catalytic activity of coinage metals: from oxidation to dehydrogenation.

    PubMed

    Syu, Cih-Ying; Yang, Hao-Wen; Hsu, Fu-Hsing; Wang, Jeng-Han

    2014-04-28

    The high oxidation activity of coinage metals (Cu, Ag and Au) has been widely applied in various important reactions, such as oxidation of carbon monoxide, alkenes or alcohols. The catalytic behavior of those inert metals has mostly been attributable to their size effect, the physical effect. In the present study, the chemical effects on their high oxidation activity have been investigated. We mechanistically examine the direct and oxidative dehydrogenation (partial oxidation) reactions of ethanol to acetaldehyde on a series of transition metals (groups 9, 10 and 11) with identical physical characteristics and varied chemical origins using density functional theory (DFT) calculations and electronic structure analyses at the GGA-PW91 level. The energetic results show that coinage metals have much lower activation energies and higher exothermicities for the oxidative dehydrogenation steps although they have higher energy for the direct dehydrogenation reaction. In the electronic structure analyses, coinage metals with saturated d bands can efficiently donate electrons to O* and OH*, or other electronegative adspecies, and better promote their p bands to higher energy levels. The negatively charged O* and OH* with high-lying p bands are responsible for lowering the energies in oxidative steps. The mechanistic understanding well explains the better oxidation activity of coinage metals and provides valuable information on their utilization in other useful applications, for example, the dehydrogenation process.

  1. Determination of concentration of charged particles in various regions of thunderstorms

    NASA Astrophysics Data System (ADS)

    Detwiler, A. G.; Mo, Q.

    2015-12-01

    During the Severe Thunderstorm Precipitation and Electrification Study in 2000, data on hydrometeor sizes and charges were obtained in thunderstorms using an optical array probe modified by the New Mexico Institute of Mining and Technology and mounted on the South Dakota School of Mines and Technology armored T-28 research aircraft. Analysis yielded quantitative observations of hydrometeor size and charge data in selected regions of storms with relatively low concentrations of charged particles. In most regions hydrometeor concentrations were so high that there were multiple charged particles in the probe sample volume at the same time and quantitative charge analysis was not possible. While it is impossible to reliably determine individual particle charges in these high concentration regions, we can use Poisson statistics to estimate the total number concentration of charged particles based on the fraction of records with just one particle in them. We compare these number concentrations for different thunderstorm regions, including updrafts, flanking cells, core precipitation regions, and trailing stratiform regions, at approximately the -10 C level, in several thunderstorms. We will discuss the implications of these results for understanding charge-separation processes in thunderstorms.

  2. Thunderstorm-associated asthma or shortness of breath epidemic: a Canadian case report.

    PubMed

    Wardman, A E Dennis; Stefani, Dennis; MacDonald, Judy C

    2002-01-01

    Thunderstorm-associated asthma epidemics have been documented in the literature, but no Canadian experience has been reported. On July 31, 2000, a thunderstorm-associated epidemic of asthma or shortness of breath occurred in Calgary, Alberta. The Calgary Health Region investigated the event using diagnostic data from emergency departments, an urgent care medical clinic and patient interviews, in addition to bioaerosol counts, pollutant data and weather data reflecting atmospheric conditions at that time. On July 31, 2000 and August 1, 2000, 157 people sought care for asthma symptoms. The expected number of people to seek care for such symptoms in a 48 h period in Calgary is 17. Individuals with a personal or family history of asthma, allergies or hay fever who were not taking regular medication for these conditions and who were outdoors before the storm appeared to have been preferentially affected. A stagnant air mass the day before the thunderstorm may have resulted in declining bioaerosol concentrations, and the possible accumulation of spore and pollen reservoirs within mould and plant structures. The elevated bioaerosol concentrations observed on the day of the thunderstorm may be attributed to the sudden onset of high winds during the thunderstorm, which triggered a sudden release of spores and pollens into the atmosphere, which was probably responsible for the epidemic. Several pollutant levels slightly increased on the day of the storm and possibly also played a role in symptom development. It is unclear whether an atmospheric pressure drop contributed to the release of spores and pollens. PMID:12195272

  3. Thunderstorm-associated asthma or shortness of breath epidemic: a Canadian case report.

    PubMed

    Wardman, A E Dennis; Stefani, Dennis; MacDonald, Judy C

    2002-01-01

    Thunderstorm-associated asthma epidemics have been documented in the literature, but no Canadian experience has been reported. On July 31, 2000, a thunderstorm-associated epidemic of asthma or shortness of breath occurred in Calgary, Alberta. The Calgary Health Region investigated the event using diagnostic data from emergency departments, an urgent care medical clinic and patient interviews, in addition to bioaerosol counts, pollutant data and weather data reflecting atmospheric conditions at that time. On July 31, 2000 and August 1, 2000, 157 people sought care for asthma symptoms. The expected number of people to seek care for such symptoms in a 48 h period in Calgary is 17. Individuals with a personal or family history of asthma, allergies or hay fever who were not taking regular medication for these conditions and who were outdoors before the storm appeared to have been preferentially affected. A stagnant air mass the day before the thunderstorm may have resulted in declining bioaerosol concentrations, and the possible accumulation of spore and pollen reservoirs within mould and plant structures. The elevated bioaerosol concentrations observed on the day of the thunderstorm may be attributed to the sudden onset of high winds during the thunderstorm, which triggered a sudden release of spores and pollens into the atmosphere, which was probably responsible for the epidemic. Several pollutant levels slightly increased on the day of the storm and possibly also played a role in symptom development. It is unclear whether an atmospheric pressure drop contributed to the release of spores and pollens.

  4. The use of network lightning data to detect thunderstorms near surface reporting stations

    SciTech Connect

    Reap, R.M. )

    1993-02-01

    Relationships between network lightning data and hourly thunderstorm observations were examined for the northeastern United States, Oklahoma, Florida, and the western United States to provide additional information on the possible effects of using lightning data to replace or supplement the hourly observations. Identification of thunderstorms for three of the four regions was found to agree closely with the hourly observations, provided the network reports were accumulated for a radius of 48 km or more about the station. The best agreement was found over Florida where high ground-flash densities resulted in a greater likelihood of both observer and network recording a given thunderstorm. In the immediate vicinity (8 km) of a station, use of lightning data from current national or regional networks would not provide observations comparable to the manual observations of thunderstorms due to the poor agreement between the two sets of observations at this radius. Selection of an 8-km radius would result in a decrease of nearly 75% in the number of thunderstorms detected by the network relative to that reported by the observer. 9 refs., 3 figs., 2 tabs.

  5. The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation

    PubMed Central

    Paranjape, Neha P.; Calvi, Brian R.

    2016-01-01

    Eukaryotic DNA replication begins from multiple origins. The origin recognition complex (ORC) binds origin DNA and scaffolds assembly of a prereplicative complex (pre-RC), which is subsequently activated to initiate DNA replication. In multicellular eukaryotes, origins do not share a strict DNA consensus sequence, and their activity changes in concert with chromatin status during development, but mechanisms are ill-defined. Previous genome-wide analyses in Drosophila and other organisms have revealed a correlation between ORC binding sites and the histone variant H3.3. This correlation suggests that H3.3 may designate origin sites, but this idea has remained untested. To address this question, we examined the enrichment and function of H3.3 at the origins responsible for developmental gene amplification in the somatic follicle cells of the Drosophila ovary. We found that H3.3 is abundant at these amplicon origins. H3.3 levels remained high when replication initiation was blocked, indicating that H3.3 is abundant at the origins before activation of the pre-RC. H3.3 was also enriched at the origins during early oogenesis, raising the possibility that H3.3 bookmarks sites for later amplification. However, flies null mutant for both of the H3.3 genes in Drosophila did not have overt defects in developmental gene amplification or genomic replication, suggesting that H3.3 is not essential for the assembly or activation of the pre-RC at origins. Instead, our results imply that the correlation between H3.3 and ORC sites reflects other chromatin attributes that are important for origin function. PMID:27172191

  6. Thermodynamic Conditions Favorable to Superlative Thunderstorm Updraft, Mixed Phase Microphysics and Lightning Flash Rate. Revised

    NASA Technical Reports Server (NTRS)

    Williams, E.; Mushtak, V.; Rosenfeld, D.; Goodman, S.; Boccippio, D.

    2004-01-01

    Satellite observations of lightning flash rate have been merged with proximal surface station thermodynamic observations toward improving the understanding of the response of the updraft and lightning activity in the tropical atmosphere to temperature. The tropical results have led in turn to an examination of thermodynamic climatology over the continental United States in summertime and its comparison with exceptional electrical conditions documented in earlier studies. The tropical and mid-latitude results taken together support an important role for cloud base height in regulating the transfer of Convective Available Potential Energy (CAPE) to updraft kinetic energy in thunderstorms. In the tropics, cloud base height is dominated by the dry bulb temperature over the wet bulb temperature as the lightning-regulating temperature in regions characterized by moist convection. In the extratropics, an elevated cloud base height may enable larger cloud water concentrations in the mixed phase region, a favorable condition for the positive charging of large ice particles that may result in thunderclouds with a reversed polarity of the main cloud dipole. The combined requirements of instability and cloud base height serve to confine the region of superlative electrification to the vicinity of the ridge in moist entropy in the western Great Plains.

  7. ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY

    SciTech Connect

    Wang, Y.-M.

    2013-10-01

    Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowing a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity.

  8. Origin of enhanced photocatalytic activity of F-doped CeO2 nanocubes

    NASA Astrophysics Data System (ADS)

    Miao, Hui; Huang, Gui-Fang; Liu, Jin-Hua; Zhou, Bing-Xin; Pan, Anlian; Huang, Wei-Qing; Huang, Guo-Fang

    2016-05-01

    CeO2 nanoparticles are synthesized using a low-temperature solution combustion method and subsequent heat treatment in air. It is found that F-doping leads to smaller particle size and the formation of CeO2 nanocubes with higher percentage of reactive facets exposed. The band gap is estimated to be 3.16 eV and 2.88 eV, for pure CeO2 and fluorine doped CeO2 (F-doped CeO2) nanocubes, respectively. The synthesized F-doped CeO2 nanocubes exhibit much higher photocatalytic activities than commercial TiO2 and spherical CeO2 for the degradation of MB dye under UV and visible light irradiation. The apparent reaction rate constant k of MB decomposition over the optimized F-doped CeO2 nanocubes is 9.5 times higher than that of pure CeO2 and 2.2 times higher than that of commercial TiO2. The enhanced photocatalytic activity of F-doped CeO2 nanocubes originates from the fact that F-doping induces the small size, the highly reactive facets exposed, the intense absorption in the UV-vis range and the narrowing of the band gap. This research provides some new insights for the synthesis of the doping of the foreign atoms into photocatalyst with controlled morphology and enhanced photocatalytic activity.

  9. Weighing brain activity with the balance: Angelo Mosso's original manuscripts come to light.

    PubMed

    Sandrone, Stefano; Bacigaluppi, Marco; Galloni, Marco R; Cappa, Stefano F; Moro, Andrea; Catani, Marco; Filippi, Massimo; Monti, Martin M; Perani, Daniela; Martino, Gianvito

    2014-02-01

    Neuroimaging techniques, such as positron emission tomography and functional magnetic resonance imaging are essential tools for the analysis of organized neural systems in working and resting states, both in physiological and pathological conditions. They provide evidence of coupled metabolic and cerebral local blood flow changes that strictly depend upon cellular activity. In 1890, Charles Smart Roy and Charles Scott Sherrington suggested a link between brain circulation and metabolism. In the same year William James, in his introduction of the concept of brain blood flow variations during mental activities, briefly reported the studies of the Italian physiologist Angelo Mosso, a multifaceted researcher interested in the human circulatory system. James focused on Mosso's recordings of brain pulsations in patients with skull breaches, and in the process only briefly referred to another invention of Mosso's, the 'human circulation balance', which could non-invasively measure the redistribution of blood during emotional and intellectual activity. However, the details and precise workings of this instrument and the experiments Mosso performed with it have remained largely unknown. Having found Mosso's original manuscripts in the archives, we remind the scientific community of his experiments with the 'human circulation balance' and of his establishment of the conceptual basis of non-invasive functional neuroimaging techniques. Mosso unearthed and investigated several critical variables that are still relevant in modern neuroimaging such as the 'signal-to-noise ratio', the appropriate choice of the experimental paradigm and the need for the simultaneous recording of differing physiological parameters.

  10. THE ORIGIN OF [O II] EMISSION IN RECENTLY QUENCHED ACTIVE GALACTIC NUCLEUS HOSTS

    SciTech Connect

    Kocevski, Dale D.; Lemaux, Brian C.; Lubin, Lori M.; Shapley, Alice E.; Gal, Roy R.; Squires, Gordon K.

    2011-08-20

    We have employed emission-line diagnostics derived from DEIMOS and NIRSPEC spectroscopy to determine the origin of the [O II] emission line observed in six active galactic nucleus (AGN) hosts at z {approx} 0.9. These galaxies are a subsample of AGN hosts detected in the Cl1604 supercluster that exhibit strong Balmer absorption lines in their spectra and appear to be in a post-starburst or post-quenched phase, if not for their [O II] emission. Examining the flux ratio of the [N II] to H{alpha} lines, we find that in five of the six hosts the dominant source of ionizing flux is AGN continuum emission. Furthermore, we find that four of the six galaxies have over twice the [O II] line luminosity that could be generated by star formation alone given their H{alpha} line luminosities. This strongly suggests that AGN-excited narrow-line emission is contaminating the [O II] line flux. A comparison of star formation rates calculated from extinction-corrected [O II] and H{alpha} line luminosities indicates that the former yields a five-fold overestimate of the current activity in these galaxies. Our findings reveal the [O II] line to be a poor indicator of star formation activity in a majority of these moderate-luminosity Seyferts. This result bolsters our previous findings that an increased fraction of AGN at high redshifts is hosted by galaxies in a post-starburst phase. The relatively high fraction of AGN hosts in the Cl1604 supercluster that show signs of recently truncated star formation activity may suggest that AGN feedback plays an increasingly important role in suppressing ongoing activity in large-scale structures at high redshift.

  11. Investigations of severe/tornadic thunderstorm development and evolution based on satellite and AVE/SESAME/VAS data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Purdom, J. F. W.

    1984-01-01

    The use of rapid scan satellite imagery to investigate the local environment of severe thunderstorms is discussed. Mesoscale cloud tracking and vertical wind shear as it affects thunderstorm relative flow are mentioned. The role of pre-existing low level cloud cover in the outbreak of tornadoes was investigated. Applying visible atmospheric sounding imagery to mesoscale phenomena is also addressed.

  12. Electrical Structure of Real Thunderstorms in Relation to Energetic Radiation Production

    NASA Astrophysics Data System (ADS)

    Stolzenburg, M.; Marshall, T. C.

    2015-12-01

    Recent observations have shown that highly energetic radiation in various forms is produced in association with thunderstorms. Many of the developing models of energetic radiation production rely on characteristics of the underlying thunderstorm electrical structure that are more or less known. This presentation will give an overview of electric field and net charge structures observed inside thunderstorms as they may relate to the production of energetic radiation. Locations within clouds of lightning initiation and altitudes of the main charges involved in intracloud and cloud-to-ground lightning flashes will be covered. Typical maximum electric field magnitudes and their altitudes within storms will be discussed, along with the few cases of extreme field values observed near lightning initiations. The variability in the large scale charge structure and the possible importance of smaller scale features as a storm evolves through its lifecycle will also be examined.

  13. The interaction of a dipolar thunderstorm with its global electrical environment

    NASA Technical Reports Server (NTRS)

    Tzur, I.; Roble, R. G.

    1985-01-01

    The role of the thundercloud in the global electric circuit has been considered by many researchers. Thus, Holzer and Saxon (1952) have constructed a simple model of a bipolar thunderstorm. The global models considered provide insight into the atmospheric electric circuit but are restricted, both by various analytical mathematical representations and by computer size, to a grid of about five degrees in latitude and longitude. A need exists, therefore, for the development of a numerical regional model capable of resolving small-scale phenomena so that their coupling into the global-scale circuit can be examined. The construction of a two-dimensional quasi-static numerical model of atmospheric electricity is discussed. The model provides a basis for the calculation of the global electric field and current distribution produced by a single thunderstorm generator. In connection with the calculations, the thunderstorm was defined by a quasi-static current source function which generates a dipole charge configuration.

  14. Variation of the low level winds during the passage of a thunderstorm gust front

    NASA Technical Reports Server (NTRS)

    Sinclair, R. W.; Anthes, R. A.; Panofsky, H. A.

    1973-01-01

    Three time histories of wind profiles in thunderstorm gust fronts at Cape Kennedy and three at Oklahoma City are analyzed. Wind profiles at maximum wind strength below 100 m follow logarithmic laws, so that winds above the surface layer can be estimated from surface winds once the roughness length is known. A statistical analysis of 81 cases of surface winds during thunderstorms at Tampa revealed no predictor with skill to predict the time of maximum gust. Some 34% of the variance of the strength of the gust is accounted for by a stability index and surface wind prior to the gust; the regression equations for these variables are given. The coherence between microscale wind speed variations at the different levels has the same proportions as in non-thunderstorm cases.

  15. Thunderstorm Initiation Climatology Over the Amazon Region Based on Fortracc System

    NASA Astrophysics Data System (ADS)

    Bourscheidt, V.; Pinto, O., Jr.

    2015-12-01

    The increasing availability of meteorological data worldwide (satellite, weather radar, etc.) has led to the development of many systems to track thunderstorms. Despite their primary application on nowcasting, they may also provide information on the onset of thunderstorms. The main tracking system based on satellite data in Brazil is the FORTRACC (Forecast and Track of Cloud Cluster), which was developed by Vila and Machado (2006) to detect and follow clusters of penetrative clouds using the difference of water vapor and infrared channels of GOES imagery. The resulting data comprise different information of the trajectory and evolution of convective systems, as well as the starting point of each thunderstorm, called spontaneous generation (N). Based on a collection of 12 years (2003-2014) of these data (N) over the Amazon region, the resulting climatology of thunderstorm onset location is presented, which is expected to be less subject to errors than the other variables given by the tracking system (despite the storm trajectory and stages are not completely recognized in many cases, the convective system will exist). The initial results indicate a singular behavior, with a reduced number of convective systems starting over the main rivers and lower areas (see attached Figure). To better understand the underlying conditions, storm onset data (N) will be will be separated in different time intervals in a further analysis and the observed spatial distribution will be compared with lightning climatoligies (based on LIS/WWLLN data), as well as on the elevation (from GEOTOPO 30 dataset). Besides the influence of terrain, which is widely described in several previous studies on the thunderstorm initiation, large water bodies and adjacent forest/land may influence on storm onset. At the Amazon region, synoptic effects are reduced, which may increases the influence of contrasting surface characteristics on the sensible/latent heat fluxes and on the local circulation; and

  16. A global model of thunderstorm electricity and the prediction of whistler duct formation

    SciTech Connect

    Stansbery, E.K.

    1989-01-01

    A two-dimensional numerical model is created to calculate the electric field and current that flow from a thunderstorm source into the global electrical circuit. The model includes a hemisphere in which the thunderstorm is located, an equalization layer, and a passive magnetic conjugate hemisphere. To maintain the fair weather electric field, the output current from the thunderstorm is allowed to spread out in the ionosphere or flow along the magnetic field lines into the conjugate hemisphere. The vertical current is constant up to approximately 65 km, decays and is redirected horizontally in the ionosphere. Approximately half of the current that reaches the ionosphere flows along magnetic field lines into the conjugate hemisphere while the rest is spread out in the ionosphere and redirected to the fair weather portion of the storm hemisphere. Our results show that it is important to include a realistic model of the equalization layer to evaluate the role of thunderstorm charging of the global circuit. The mapping of thunderstorm electric fields at middle and subauroral latitudes into the magnetic equatorial plane is studied. The geomagnetic field lines are assumed to be dipolar above approximately 150 km. The horizontal electric field computed in the ionosphere by our model is of sufficient size and shape for the formation of electron density irregularities in the magnetosphere. The mechanism involves a localized convection of ionization tubes by ExB drift. It is shown that the horizontal range of the electric field disturbance in the ionosphere must be within approximately 160 km to produce density irregularities necessary for the formation of whistler ducts. Although the electric field strength at ionospheric heights depends sensitively on the conductivity profile, the results presented show that whistler duct formation is possible by thunderstorm generated electric fields.*

  17. The origin and timing of fluvial activity at Eberswalde crater, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Kite, E. S.; Kleinhans, M. G.; Newsom, H.; Ansan, V.; Hauber, E.; Kraal, E.; Quantin, C.; Tanaka, K.

    2012-08-01

    The fan deposit in Eberswalde crater has been interpreted as strong evidence for sustained liquid water on early Mars with a paleolake formed during the Noachian period (>3.7 Gy). This location became a key region for understanding the Mars paleo-environment. Eberswalde crater is located 50 km north of the rim of the 150 km diameter crater Holden. Stratigraphic relationships and chronology obtained using recent Mars Express High Resolution Stereo Camera and Mars Reconnaissance Orbiter Context Camera images show that Eberswalde fluvial activity crosscuts Holden ejecta and thus postdates Holden crater, whose formation age is estimated from crater counts as Late Hesperian (˜3.5 Gy, depending on models). Fluvial modeling shows that short term activity (over several years to hundreds of years) involving dense flows (with sediment:water ratio between 0.01 and 0.3) may be as good an explanation of the fluvial landforms as dilute flow over longer durations. Modeling of the thermal effect of the Holden impact in the Eberswalde watershed is used to evaluate its potential role in aqueous activity. The relative timing of the Holden impact and Eberswalde's fan is a constraint for future studies about the origin of these landforms. Holden ejecta form a weak and porous substrate, which may be easy to erode by fluvial incision. In a cold climate scenario, impact heating could have produced runoff by melting snow or ground ice. Any attempt to model fluvial activity at Eberswalde should take into account that it may have formed as late as in the Late Hesperian, after the great majority of valley network formation and aqueous mineralization on Mars. This suggests that hypotheses for fan formation at Eberswalde by transient and/or localized processes (i.e. impact, volcanism, unusual orbital forcing) should be considered on a par with globally warmer climate.

  18. Fundamental processes capable of accounting for the neutron flux enhancements in a thunderstorm atmosphere

    NASA Astrophysics Data System (ADS)

    Babich, L. P.

    2014-03-01

    Elementary processes capable of producing neutrons in a thunderstorm atmosphere are analyzed. The efficiency of nuclear fusion 2H(2H, n)3He, photonuclear reactions (γ, Xn), electrodisintegration reactions {/m n }A( e -, n){/m n-1}, and reactions e -( p +, n)ν e opposite to the β-decay is evaluated. It is shown that an unrealistically strong electric field is required for the nuclear fusion to be responsible for the neutron production in the lightning channel. The generation of neutrons in a thunderstorm atmosphere is connected with photonuclear (γ, Xn) and, at a much lower degree, electrodisintegration reactions, the relativistic runaway electron avalanches being primary parent processes.

  19. Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations

    NASA Astrophysics Data System (ADS)

    Trapp, Robert J.; Diffenbaugh, Noah S.; Gluhovsky, Alexander

    2009-01-01

    We investigate the transient response of severe-thunderstorm forcing to the time-varying greenhouse gas concentrations associated with the A1B emissions scenario. Using a five-member ensemble of global climate model experiments, we find a positive trend in such forcing within the United States, over the period 1950-2099. The rate of increase varies by geographic region, depending on (i) low-level water vapor availability and transport, and (ii) the frequency of synoptic-scale cyclones during the warm season. Our results indicate that deceleration of the greenhouse gas emissions trajectory would likely result in slower increases in severe thunderstorm forcing.

  20. On the possibility of phosphenes being generated by the energetic radiation from lightning flashes and thunderstorms

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Cooray, Gerald; Dwyer, Joseph

    2011-10-01

    After the first report of this phenomenon by Apollo 11 astronauts, experiments conducted in space and on the ground confirmed the creation of phosphenes by the interaction of energetic radiation with the human visual system. The aim of this Letter is to show that the energetic radiation generated in the form of X-rays, gamma rays, electrons and neutrons by thunderstorms and lightning is strong enough for the creation of phosphenes in humans. It is also pointed out that some of the visual observations reported during thunderstorms might be attributable to phosphenes excited by this energetic radiation.

  1. Remote measurements of the structure of midwest thunderstorm tops and anvils from high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1990-01-01

    Results are presented from observations by a visible and IR scanning radiometer, a scanning passive microwave radiometer, and a nadir-viewing cloud lidar system (CLS), carried out from ER-2 overflights for two midwest severe weather events both of which presented following phenomena: (1) a group of severe thunderstorms which later transformed into a linear mesoscale convective system, and (2) a severe thunderstorm which produced large hail. Most of the aircraft in situ and remote measurements pointed to a deep subsidence region and gravity waves downstream of the overshooting cloud tops. The observations do not support a radiative explanation for the warm areas in the anvil.

  2. 75 FR 5100 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Certificate of Origin AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: 60... collection requirement concerning the NAFTA Regulations and Certificate of Origin. This request for comment... and Certificate of Origin. OMB Number: 1651-0098. Form Number: CBP Forms 434, 446, and 447....

  3. 75 FR 9423 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Opportunity Act Certificate of Origin AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland... requirement concerning the African Growth and Opportunity Act Certificate of Origin (AGOA). This request for...: Title: African Growth and Opportunity Act Certificate of Origin. OMB Number: 1651-0082. Form...

  4. 76 FR 76983 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Certificate of Origin AGENCY: U.S. Customs and Border Protection (CBP), Department of Homeland Security... the NAFTA Regulations and Certificate of Origin. This request for comment is being made pursuant to... and Certificate of Origin. OMB Number: 1651-0098. Form Number: CBP Forms 434, 446, and 447....

  5. 78 FR 26650 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... Opportunity Act Certificate of Origin AGENCY: U.S. Customs and Border Protection, Department of Homeland... Certificate of Origin (AGOA). This request for comments is being made pursuant to the Paperwork Reduction Act...: Title: African Growth and Opportunity Act Certificate of Origin. OMB Number: 1651-0082. Form...

  6. Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality.

    PubMed

    Feás, Xesús; Vázquez-Tato, M Pilar; Estevinho, Leticia; Seijas, Julio A; Iglesias, Antonio

    2012-07-11

    Organic bee pollen (BP, n = 22) harvested from the Douro International Natural Park (DINP, Portugal) was studied. Nine botanical families were found in the mixture of the samples. The water activity and pH ranged 0.21-0.37 and 4.3-5.2, respectively. The BP analyses averaged 67.7% carbohydrates, 21.8% crude protein, 5.2% crude fat and 2.9% ash. The energy ranged from 396.4 to 411.1 kcal/100 g. The principal fatty acid found was linolenic, followed by linoleic acid, palmitic acid and oleic acid. The phenolic and flavonoid contents varied from 12.9 to 19.8 mg of gallic acid equivalents/g of extract and from 4.5 to 7.1 mg of catechin equivalents/g of extract, respectively. The scavenger activity and β-carotene bleaching assays values (EC₅₀) were 3.0 ± 0.7 mg/mL and 4.6 mg/mL ± 0.9 mg/mL, respectively. E. coli, sulphite-reducing Clostridia, Salmonella and S. aureus were not found. Since there are studies indicating appreciable differences among BPs from different regions, the full characterization of BP from diverse origins still appears to be a sound research priority in order to obtain reliable data about this beehive product.

  7. Origin of strong chiroptical activities in films of nonafluorenes with a varying extent of pendant chirality.

    PubMed

    Geng, Yanhou; Trajkovska, Anita; Culligan, Sean W; Ou, Jane J; Chen, H M Philip; Katsis, Dimitris; Chen, Shaw H

    2003-11-19

    Novel nonafluorenes with a varying extent of pendant chirality were synthesized for an investigation of the origins of chiroptical activities in neat films. Thermal annealing of 4-microm-thick sandwiched films and of 90-nm-thick spin-cast films, all on surface-treated substrates, produced monodomain glassy films characterized as a right-handed cholesteric stack with a helical pitch length ranging from 180 to 534 nm and from 252 to 1151 nm, respectively. The observed strong circular dichroism (CD) and g(e) as functions of helical pitch length in single-substrate monodomain glassy cholesteric films were quantitatively interpreted with a circularly polarized fluorescence theory accounting for light absorption, emission, and propagation in a cholesteric stack. Although intertwined molecular helices were likely to be present, cholesteric stacking of rodlike molecules seemed to be the predominant contributor to the strong chiroptical activities. All the cholesteric stacks comprising a polydomain glassy film on an untreated substrate were found to contribute to CD and g(e) largely to the same extent as in a monodomain film. A circularly polarized blue organic light-emitting diode containing a nonafluorene film resulted in a g(e) of 0.35 with a luminance yield of 0.94 cd/A at 20 mA/cm(2), the best performance to date.

  8. Active Structural Acoustic Control in an Original A400M Aircraft Structure

    NASA Astrophysics Data System (ADS)

    Koehne, C.; Sachau, D.; Renger, K.

    2016-09-01

    Low frequency noise has always been a challenge in propeller driven aircraft. At low frequencies passive noise treatments are not as efficient as active noise reduction systems. The Helmut-Schmidt-University has built up a full-scale test rig with an original A400M aircraft structure. This provides a good opportunity to develop and test active noise reduction systems in a realistic environment. The currently installed system consists of mechanical actuators and acoustical sensors. The actuators are called TVAs (Tuneable Vibration Absorber) and contain two spring-mass systems whose natural frequencies are adjusted to the BPFs (Blade Passage Frequency) of the propellers. The TVAs are mounted to the frames and the force direction is normal to the skin. The sensors are condenser microphones which are attached to the primary structure of the airframe. The TVAs are equipped with signal processing devices. These components carry out Fourier transforms and signal amplification for the sensor data and actuator signals. The communication between the TVAs and the central control unit is implemented by the CAN Bus protocol and mainly consists of complex coefficients for the sensor and actuator data. This paper describes the basic structure of the system, the hardware set-up and function tests of the controller.

  9. Electric Currents and Fields in Middle and Low Atmosphere in Fair-Weather Regions due to Distant Thunderstorms

    NASA Astrophysics Data System (ADS)

    Velinov, Peter; Velinov, Peter; Tonev, Peter

    The electric currents created by the thunderstorms and the electrified shower clouds over the Earth flow into the global atmospheric electric circuit and are responsible for the formation in fair-weather regions of ionosphere-ground current of about 2 pA per square meter, as well as for the related fair-weather electric field of the order of 100 V/m at sea level. The link of the diurnal variations of the fair-weather electric field with the global thunderstorm activity has been widely studied with connection to the Wilson's hypothesis. To confirm this hypothesis directly, also the fair-weather electric field response to a strong single lightning discharge has being examined. Here we study theoretically the variations of the electric currents and fields in fair-weather regions at different altitudes of the lower and middle atmosphere, which are provoked by distant lightning discharges. The electric field variations can play an important role at higher altitudes (in the upper troposphere and above), where they are much larger and possibly influence the physical and chemical processes. For our goals we realize a globalscale model of the electric fields and currents generated by a lightning discharge, which is based on the Maxwell's equations. The fair-weather electric characteristics are studied by our model depending on the lightning parameters, location and distance. We also examine how variations of the conductivity in the strato/mesosphere due to changes of solar and geomagnetic activity affect the characteristics studied. Another question discussed is whether and how the mesospheric electric response to a remote lightning discharge is influenced by the conductivity anisotropy above 70 km and by the geomagnetic field geometry. The variations of the fairweather electric fields due to a distant lightning at tropospheric heights are also studied with respect to their presumable role in the cloud physics.

  10. A study of the contribution of thunderstorms to the Global Electric Circuit using a time dependent numerical model and a fractal model

    NASA Astrophysics Data System (ADS)

    Mallios, Sotirios A.

    The Global Electric Circuit (GEC) is a circuit that is formed between the Earth's surface, which is a good conductor of electricity, and the ionosphere, a weakly-ionized plasma at ˜80 km altitude. Thunderstorms are believed to be the major charging sources of this circuit. In this dissertation, we present our studies on the contribution of thunderstorms to the Global electric Circuit. We examine the current that is driven to the ionosphere and to the ground before, during and after single negative cloud-to-ground (CG) and intra-cloud (IC) lightning discharges. A numerical model has been developed, that calculates the quasi-electrostatic field before the lightning, due to the slow accumulation of the charge in the thunder-cloud, and after the lightning by taking into account the Maxwellian relaxation of the charges in the conducting atmosphere and accounting for the dissipation stage of the thunderstorm development. From these results, the charges that are transferred to the ionosphere and to the ground are calculated. We demonstrate the significance of considering the pre-lightning and the dissipation stages and accounting for realistic distribution of the conductivity inside of the thundercloud for the accurate calculation of the charge flow to the ionosphere and to the ground. We show that the charge transfer to the ionosphere depends mainly on the altitudes of the charges inside the thundercloud and their spatial separation. The amount of charge that is transferred to the ground, due to currents flowing in the vicinity of the thundercloud during a transient time period following a lightning discharge, is significantly affected by the conductivity distribution in the thundercloud and can be several times smaller than the amount of charge that is transferred to the ionosphere during the same time period. Moreover, we show that the duration of each of the thunderstorm life cycle stages affects the results. Furthermore, we show the influence of the corona currents

  11. Bacteriological effects of dentifrices with and without active ingredients of natural origin.

    PubMed

    Ledder, Ruth G; Latimer, Joe; Humphreys, Gavin J; Sreenivasan, Prem K; McBain, Andrew J

    2014-10-01

    Compounds of natural origin are increasingly used as adjuncts to oral hygiene. We have adopted four distinct approaches to assess the antibacterial activity of dentifrices containing natural active ingredients against oral bacteria in several test systems. Corsodyl Daily (CD), Kingfisher Mint (KM), and Parodontax fluoride (PF) were compared to a dentifrice containing fluoride (Colgate Cavity Protection [CCP]) and one containing triclosan (Colgate Total [CT]). The growth inhibitory and bactericidal potency of the formulations were determined for 10 isolated oral bacteria. Effects of single exposures of simulated supragingival plaques were then determined by epifluorescence and confocal microscopy, while the effects of repeated exposures were quantified by viable counting. Additionally, dense plaques, maintained in continuous culture, were repeatedly dosed, and the outcome was assessed by viable counting and eubacterial DNA profiling. The test dentifrices exhibited variable specificity and potency against oral bacteria in axenic culture. Of the herbal formulations, KM caused the largest viability reductions in simulated supragingival plaques, with CT causing the greatest reductions overall. Following single exposures, CD caused moderate reductions, while PF had no effect. After multiple dosing, all formulations significantly reduced numbers of total, facultative, and Gram-negative anaerobes, but only KM and CT caused greater reductions than the fluoride control. KM also reduced counts of streptococci (rank order of effectiveness: CT > KM > CCP > PF > CD). Marked changes in eubacterial DNA profiles were not detected for any herbal formulation in dense plaques, although KM markedly reduced viable counts of streptococci, in agreement with supragingival data. While both nonherbal comparators displayed antibacterial activity, the triclosan-containing formulation caused greater viability reductions than the herbal and nonherbal formulations.

  12. A group II-activated ascending tract of lumbosacral origin in the cat spinal cord.

    PubMed Central

    Harrison, P J; Riddell, J S

    1990-01-01

    1. Electrophysiological investigations have revealed a population of ascending tract neurones originating in the lumbosacral enlargement, with input from group II muscle afferents of the cat hindlimb. 2. Single-unit microelectrode recordings were made in the lateral funiculus at L6, from the axons of thirty-four ascending tract neurones. All of the axons were antidromically activated by stimulation of the ipsilateral lateral funiculus at Th13 and, whenever tested (eight units), at C1. 3. Conduction velocities of the axons, between the L6 and Th13 segment, ranged from 33 to 92 m s-1 (mean 61 m s-1). 4. All of the ascending tract neurones were discharged following electrical stimulation of muscle nerves at group II strength, but not by weaker stimuli in the group I range. Most of the investigated neurones were excited by group II afferents of more than one muscle nerve. In addition, a proportion of the units tested could also be discharged by cutaneous and by joint afferents. 5. Responses to natural stimuli were investigated in eighteen ascending tract neurones discharged by electrical stimulation of group II afferents in the gastrocnemius-soleus (GS) and plantaris (P1) nerves which were dissected free in continuity with their muscles. Seven units were spontaneously active. Eight units responded to isometric contraction of the GS/P1 muscles with a discharge occurring mainly on the falling phase of muscle tension. Nine units increased their discharge frequency in response to stretching of the muscles and five units responded to mechanically probing the muscles with a blunt instrument. 6. The final termination sites of this group of ascending tract neurones has yet to be determined. Initial attempts (three units) to antidromically activate the neurones from the cerebellum have been unsuccessful. Other likely areas of termination in the brain stem are considered. PMID:2213583

  13. Bacteriological effects of dentifrices with and without active ingredients of natural origin.

    PubMed

    Ledder, Ruth G; Latimer, Joe; Humphreys, Gavin J; Sreenivasan, Prem K; McBain, Andrew J

    2014-10-01

    Compounds of natural origin are increasingly used as adjuncts to oral hygiene. We have adopted four distinct approaches to assess the antibacterial activity of dentifrices containing natural active ingredients against oral bacteria in several test systems. Corsodyl Daily (CD), Kingfisher Mint (KM), and Parodontax fluoride (PF) were compared to a dentifrice containing fluoride (Colgate Cavity Protection [CCP]) and one containing triclosan (Colgate Total [CT]). The growth inhibitory and bactericidal potency of the formulations were determined for 10 isolated oral bacteria. Effects of single exposures of simulated supragingival plaques were then determined by epifluorescence and confocal microscopy, while the effects of repeated exposures were quantified by viable counting. Additionally, dense plaques, maintained in continuous culture, were repeatedly dosed, and the outcome was assessed by viable counting and eubacterial DNA profiling. The test dentifrices exhibited variable specificity and potency against oral bacteria in axenic culture. Of the herbal formulations, KM caused the largest viability reductions in simulated supragingival plaques, with CT causing the greatest reductions overall. Following single exposures, CD caused moderate reductions, while PF had no effect. After multiple dosing, all formulations significantly reduced numbers of total, facultative, and Gram-negative anaerobes, but only KM and CT caused greater reductions than the fluoride control. KM also reduced counts of streptococci (rank order of effectiveness: CT > KM > CCP > PF > CD). Marked changes in eubacterial DNA profiles were not detected for any herbal formulation in dense plaques, although KM markedly reduced viable counts of streptococci, in agreement with supragingival data. While both nonherbal comparators displayed antibacterial activity, the triclosan-containing formulation caused greater viability reductions than the herbal and nonherbal formulations. PMID:25107974

  14. Evolutionary origins of retinoid active short-chain dehydrogenases/reductases of SDR16C family

    PubMed Central

    Belyaeva, Olga V.; Chang, Chenbei; Berlett, Michael C; Kedishvili, Natalia Y.

    2014-01-01

    Vertebrate enzymes that belong to the 16C family of short-chain dehydrogenases/reductases (SDR16C) were shown to play an essential role in the control of retinoic acid (RA) levels during development. To trace the evolution of enzymatic function of SDR16C family, and to examine the origins of the pathway for RA biosynthesis from vitamin A, we identified putative SDR16C enzymes through the extensive search of available genome sequencing data in a subset of species representing major metazoan phyla. The phylogenetic analysis revealed that enzymes from protostome, non-chordate deuterostome and invertebrate chordate species are found in three clades of SDR16C family containing retinoid active enzymes, which are retinol dehydrogenase 10 (RDH10), retinol dehydrogenases E2 (RDHE2) and RDHE2-similar, and dehydrogenase reductase (SDR family) member 3 (DHRS3). For the initial functional analysis, we cloned RDH10- and RDHE2-related enzymes from the early developmental stages of a non-chordate deuterostome, green sea urchin Lytechinus variegatus, and an invertebrate chordate, sea squirt Ciona intestinalis. In situ hybridization revealed that these proteins are expressed in a pattern relevant to development, while assays performed on proteins expressed in mammalian cell culture showed that they possess retinol-oxidizing activity as their vertebrate homologs. The existence of invertebrate homologs of DHRS3 was inferred from the analysis of phylogeny and cofactor-binding residues characteristic of preference for NADP(H). The presence of invertebrate homologs in the DHRS3 group of SDR16C is interesting in light of the complex mutually activating interaction, which we have recently described for human RDH10 and DHRS3 enzymes. Further functional analysis of these homologs will establish whether this interaction evolved to control retinoid homeostasis only in vertebrates, or is also conserved in pre-vertebrates. PMID:25451586

  15. Probing the origins of aromatase inhibitory activity of disubstituted coumarins via QSAR and molecular docking

    PubMed Central

    Worachartcheewan, Apilak; Suvannang, Naravut; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2014-01-01

    This study investigated the quantitative structure-activity relationship (QSAR) of imidazole derivatives of 4,7-disubstituted coumarins as inhibitors of aromatase, a potential therapeutic protein target for the treatment of breast cancer. Herein, a series of 3,7- and 4,7-disubstituted coumarin derivatives (1-34) with R1 and R2 substituents bearing aromatase inhibitory activity were modeled as a function of molecular and quantum chemical descriptors derived from low-energy conformer geometrically optimized at B3LYP/6-31G(d) level of theory. Insights on origins of aromatase inhibitory activity was afforded by the computed set of 7 descriptors comprising of F10[N-O], Inflammat-50, Psychotic-80, H-047, BELe1, B10[C-O] and MAXDP. Such significant descriptors were used for QSAR model construction and results indicated that model 4 afforded the best statistical performance. Good predictive performance were achieved as verified from the internal (comprising the training and the leave-one-out cross-validation (LOO-CV) sets) and external sets affording the following statistical parameters: R2Tr = 0.9576 and RMSETr = 0.0958 for the training set; Q2CV = 0.9239 and RMSECV = 0.1304 for the LOO-CV set as well as Q2Ext = 0.7268 and RMSEExt = 0.2927 for the external set. Significant descriptors showed correlation with functional substituents, particularly, R1 in governing high potency as aromatase inhibitor. Molecular docking calculations suggest that key residues interacting with the coumarins were predominantly lipophilic or non-polar while a few were polar and positively-charged. Findings illuminated herein serve as the impetus that can be used to rationally guide the design of new aromatase inhibitors. PMID:26417339

  16. Bacteriological Effects of Dentifrices with and without Active Ingredients of Natural Origin

    PubMed Central

    Latimer, Joe; Humphreys, Gavin J.; Sreenivasan, Prem K.; McBain, Andrew J.

    2014-01-01

    Compounds of natural origin are increasingly used as adjuncts to oral hygiene. We have adopted four distinct approaches to assess the antibacterial activity of dentifrices containing natural active ingredients against oral bacteria in several test systems. Corsodyl Daily (CD), Kingfisher Mint (KM), and Parodontax fluoride (PF) were compared to a dentifrice containing fluoride (Colgate Cavity Protection [CCP]) and one containing triclosan (Colgate Total [CT]). The growth inhibitory and bactericidal potency of the formulations were determined for 10 isolated oral bacteria. Effects of single exposures of simulated supragingival plaques were then determined by epifluorescence and confocal microscopy, while the effects of repeated exposures were quantified by viable counting. Additionally, dense plaques, maintained in continuous culture, were repeatedly dosed, and the outcome was assessed by viable counting and eubacterial DNA profiling. The test dentifrices exhibited variable specificity and potency against oral bacteria in axenic culture. Of the herbal formulations, KM caused the largest viability reductions in simulated supragingival plaques, with CT causing the greatest reductions overall. Following single exposures, CD caused moderate reductions, while PF had no effect. After multiple dosing, all formulations significantly reduced numbers of total, facultative, and Gram-negative anaerobes, but only KM and CT caused greater reductions than the fluoride control. KM also reduced counts of streptococci (rank order of effectiveness: CT > KM > CCP > PF > CD). Marked changes in eubacterial DNA profiles were not detected for any herbal formulation in dense plaques, although KM markedly reduced viable counts of streptococci, in agreement with supragingival data. While both nonherbal comparators displayed antibacterial activity, the triclosan-containing formulation caused greater viability reductions than the herbal and nonherbal formulations. PMID:25107974

  17. 31 CFR 560.505 - Importation of certain Iranian-origin services authorized; activities related to certain visa...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... services authorized; activities related to certain visa categories authorized. 560.505 Section 560.505...; activities related to certain visa categories authorized. (a) The importation of Iranian-origin services into... with that purpose. (b) Persons otherwise qualified for a non-immigrant visa under categories A-3 and...

  18. Field Reconnaissance of Debris Flows Triggered by a July 21, 2007, Thunderstorm in Alpine, Colorado, and Vicinity

    USGS Publications Warehouse

    Coe, Jeffrey A.; Godt, Jonathan W.; Wait, T.C.; Kean, Jason W.

    2007-01-01

    On the evening of July 21, 2007, a slow-moving thunderstorm triggered about 45 debris flows on steep mountainsides near the community of Alpine, Colorado. Most of the debris flows were initiated by surface-water runoff that eroded and entrained loose sediment in previously existing channels. About 12 of the debris-flow channels were located in the lower half of Weldon Gulch upslope from Alpine, which is on a debris fan at the mouth of the Gulch. Most of these channels were deeply incised by the flows, and many of the resulting oversteepened channel banks are now failing and beginning to refill the channels with sediment. Debris flows that emerged from the mouth of Weldon Gulch primarily flowed onto the eastern half of the debris fan and closed roads and damaged vehicles and structures. Debris-flow deposits on the fan generally become finer grained and thinner with distance from the head of the fan. Given the existing conditions in Weldon Gulch, it is estimated that the debris-flow hazard on the fan has neither decreased nor increased as a result of the July 21 debris flows. Preventive measures that need to be considered by Alpine residents and government officials concerned with safety on the fan include: (1) establishing a channel and(or) catchment/diversion structure on the fan that routes future water and debris flows in a manner that protects existing roads and structures, and (2) maintaining vigilance during rainstorms by watching and listening for unusual flows of water or debris that may indicate debris-flow activity upstream, particularly during the summer months when thunderstorms are common in the area.

  19. Chemical analysis and antihyperglycemic activity of an original extract from burdock root (Arctium lappa).

    PubMed

    Tousch, Didier; Bidel, Luc P R; Cazals, Guillaume; Ferrare, Karine; Leroy, Jeremy; Faucanié, Marie; Chevassus, Hugues; Tournier, Michel; Lajoix, Anne-Dominique; Azay-Milhau, Jacqueline

    2014-08-01

    In the present study, we obtained a dried burdock root extract (DBRE) rich in caffeoylquinic acids derivatives. We performed the chemical characterization of DBRE and explored its antihyperglycemic potential in both in vitro and in vivo experiments. Chemical analysis of DBRE using LC-MS and GC-MS revealed the presence of a great majority of dicaffeoylquinic acid derivatives (75.4%) of which 1,5-di-O-caffeoyl-4-O-maloylquinic acid represents 44% of the extract. In the in vitro experiments, DBRE is able to increase glucose uptake in cultured L6 myocytes and to decrease glucagon-induced glucose output from rat isolated hepatocytes together with a reduction of hepatic glucose 6-phosphatase activity. DBRE did not increase insulin secretion in the INS-1 pancreatic β-cell line. In vivo, DBRE improves glucose tolerance both after intraperitoneal and oral subchronic administration. In conclusion, our data demonstrate that DBRE constitutes an original set of caffeoylquinic acid derivatives displaying antihyperglycemic properties.

  20. Chemical analysis and antihyperglycemic activity of an original extract from burdock root (Arctium lappa).

    PubMed

    Tousch, Didier; Bidel, Luc P R; Cazals, Guillaume; Ferrare, Karine; Leroy, Jeremy; Faucanié, Marie; Chevassus, Hugues; Tournier, Michel; Lajoix, Anne-Dominique; Azay-Milhau, Jacqueline

    2014-08-01

    In the present study, we obtained a dried burdock root extract (DBRE) rich in caffeoylquinic acids derivatives. We performed the chemical characterization of DBRE and explored its antihyperglycemic potential in both in vitro and in vivo experiments. Chemical analysis of DBRE using LC-MS and GC-MS revealed the presence of a great majority of dicaffeoylquinic acid derivatives (75.4%) of which 1,5-di-O-caffeoyl-4-O-maloylquinic acid represents 44% of the extract. In the in vitro experiments, DBRE is able to increase glucose uptake in cultured L6 myocytes and to decrease glucagon-induced glucose output from rat isolated hepatocytes together with a reduction of hepatic glucose 6-phosphatase activity. DBRE did not increase insulin secretion in the INS-1 pancreatic β-cell line. In vivo, DBRE improves glucose tolerance both after intraperitoneal and oral subchronic administration. In conclusion, our data demonstrate that DBRE constitutes an original set of caffeoylquinic acid derivatives displaying antihyperglycemic properties. PMID:24933284

  1. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  2. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  3. Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe.

    PubMed

    Neunzig, Ina; Widjaja, Maria; Peters, Frank T; Maurer, Hans H; Hehn, Alain; Bourgaud, Frédéric; Bureik, Matthias

    2013-08-01

    Cytochrome P450 enzymes (CYPs or P450s) are the most important enzymes involved in the phase I metabolism of drugs (and other xenobiotics) in humans, and the corresponding drug metabolites are needed as reference substances for their structural confirmation and for pharmacological or toxicological characterization. We have previously shown that biotechnological synthesis of such metabolites is feasible by whole-cell biotransformation with human CYPs recombinantly expressed in the fission yeast Schizosaccharomyces pombe. It was the aim of this study to compare the activity of seven human microsomal CYPs (CYP2C9, CYP2D6, CYP3A4, CYP3A5, CYP3A7, CYP17, and CYP21) upon coexpression with NADPH-cytochrome P450 oxidoreductases (CPRs) from various origins, namely, human CPR (hCPR) and its homologues from fission yeast (ccr1) and the bishop's weed Ammi majus (AmCPR), respectively. For this purpose, 28 recombinant strains were needed, with five of them having been constructed previously and 23 strains being newly constructed. Bioconversion experiments showed that coexpression of a CPR does not only influence the reaction rate but, in some cases, also exerts an influence on the metabolite pattern. For CYP3A enzymes, coexpression of hCPR yielded the best results, while for another two, hCPR was equally helpful as ccr1 (both CYP17 and CYP21) or AmCPR (CYP17 only), respectively. Interestingly, CYP2D6 displayed its highest activity when coexpressed with ccr1 and CYP2C9 with AmCPR. These results corroborate the view of CPR as a well-suited bio-brick in synthetic biology for the construction of artificial enzyme complexes.

  4. Possible development mechanisms of pre-monsoon thunderstorms over northeast and east India

    NASA Astrophysics Data System (ADS)

    Narayanan, Sunanda; Vishwanathan, Gokul; Mrudula, G.

    2016-05-01

    Thunderstorms are mesoscale convective systems of towering cumulonimbus clouds of high vertical and horizontal extent lasting from a few minutes to several hours. Pre-monsoon thundershowers over the past 10 years have been analyzed to understand the organization, horizontal and vertical development and dissipation of such severe events. Kalbaisakhi's/ Norwester's over north east and East India is given preference in this study, while some of the other extreme events are also analyzed due to their severity. The meteorological parameters like horizontal and vertical wind, precipitable water etc., and derived variables such as Severe Weather Threat (SWEAT) Index, Convective Available Potential Energy (CAPE), and Convective Inhibition Energy (CINE) of the identified cases are analyzed using observations from NCEP and IMD. Satellite observations from IMD and TRMM are also used to analyze the development and moisture flow of such systems. The analysis shows that some of the parameters display a clear signature of developing thunderstorms. It is also seen that cloud parameters such as convective precipitation rate and convective cloud cover from NCEP FNL didn't show much variation during the development of storms, which may be attributed to the limitation of spatial and temporal resolution. The parameters which showed indications of a developing thunderstorm were studied in detail in order to understand the possible mechanisms behind the development and organization of thunderstorm cells.

  5. An Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2013-01-01

    The focal point of the study reported here was the definition and examination of turbulence, wind shear and thunderstorm in relation to aviation accidents. NASA project management desired this information regarding distinct subgroups of atmospheric hazards, in order to better focus their research portfolio. A seven category expansion of Kaplan's turbulence categories was developed, which included wake turbulence, mountain wave turbulence, clear air turbulence, cloud turbulence, convective turbulence, thunderstorm without mention of turbulence, and low altitude wind shear, microburst or turbulence (with no mention of thunderstorms).More than 800 accidents from flights based in the United States during 1987-2008 were selected from a National Transportation Safety Board (NTSB) database. Accidents were selected for inclusion in this study if turbulence, thunderstorm, wind shear or microburst was considered either a cause or a factor in the accident report, and each accident was assigned to only one hazard category. This report summarizes the differences between the categories in terms of factors such as flight operations category, aircraft engine type, the accident's geographic location and time of year, degree of injury to aircraft occupants, aircraft damage, age and certification of the pilot and the phase of flight at the time of the accident.

  6. Floral movements in response to thunderstorms improve reproductive effort in the alpine species Gentiana algida (Gentianaceae).

    PubMed

    Bynum, M R; Smith, W K

    2001-06-01

    Studies of floral movements in response to environmental change are rare in the literature, and information about possible adaptive benefits appears nonexistent. The closure of the upright, tubular flowers of alpine gentian (Gentiana algida) were observed during the frequent afternoon thunderstorms characteristic of the central and southern Rocky Mountains (USA). Flowers closed within minutes of an approaching thunderstorm and reopened after direct sunlight returned. Corolla opening widths decreased ∼10%/min prior to rainfall, in close correspondence to declines in air and corolla temperatures. Identical floral behavior was also induced experimentally in the field and laboratory by artificial changes in corolla temperature. Corolla closure did not occur during experiments that simulated natural changes in solar irradiance, wind, or absolute humidity during a thunderstorm. Furthermore, individual G. algida plants forced experimentally to remain open during rain had substantial losses of pollen after single rain events (up to 34%) and if forced to remain open for the entire flowering period (59%). Subsequent seasonal reductions in female fitness (up to 73%) also occurred, including seed size and mass, number of ovules produced, number of viable seeds produced per ovule, and seed germination. Thus, corolla closing and opening in G. algida associated with frequent summer thunderstorms may be a behavioral adaptation that improves both paternal and maternal reproductive effort.

  7. Probabilistic forecasting for isolated thunderstorms using a genetic algorithm: The DC3 campaign

    NASA Astrophysics Data System (ADS)

    Hanlon, Christopher J.; Young, George S.; Verlinde, Johannes; Small, Arthur A.; Bose, Satyajit

    2014-01-01

    Researchers on the Deep Convective Clouds and Chemistry (DC3) field campaign in summer 2012 sought airborne in situ measurements of isolated thunderstorms in three different study regions: northeast Colorado, north Alabama, and a larger region extending from central Oklahoma through northwest Texas. Experiment objectives required thunderstorms that met four criteria. To sample thunderstorm outflow, storms had to be large enough to transport boundary-layer air to the upper troposphere and have a lifetime long enough to produce a large anvil. The storms had to be small enough to sample safely and isolated enough that experimenters could distinguish the impact of a particular thunderstorm from other convection in the area. To aid in the optimization of daily flight decisions, an algorithmic forecasting system was developed that produced probabilistic forecasts of suitable flight conditions for each of the three regions. Atmospheric variables forecast by a high-resolution numerical weather prediction model for each region were converted to probabilistic forecasts of suitable conditions using fuzzy logic trapezoids, which quantified the favorability of each variable. In parallel, the trapezoid parameters were tuned using a genetic algorithm and the favorability values of each of the atmospheric variables were weighted using a logistic regression. Results indicate that the automated forecasting system shows predictive skill over climatology in each region, with Brier skill scores of 16% to 45%. Averaged over all regions, the automated forecasting system showed a Brier skill score of 32%, compared to the 24% Brier skill score shown by human forecast teams.

  8. In-situ Observations of Gamma-ray Production in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Eack, Kenneth; Aulich, Graydon; Winn, William; Edens, Harald

    2016-04-01

    The majority of the reported observations of energetic radiation from thunderstorms have come from either ground-based or satellite-based measurements. In order to better understand the physical conditions necessary for the production of fast electrons and gamma-rays, measurements are needed near the production regions inside or above the thunderstorm. Three different measurements are of particular interest. First, gamma-rays produced by the quasi-static electric-field may provide details about the physics of runaway electrons that would be difficult to determine from measurements of transient phenomena, such as lightning and terrestrial gamma-ray flashes (TGFs). Second, what process inside the thunderstorm is responsible for TGFs? Recent ground-bsed studies have pointed to the upward negative leader in inter-cloud lightning as a possible source. Finally, the initiation of lightning appears to be a problem in light of the relatively weak (about 10% of the classical breakdown threshold) electric fields observed inside thunderstorms. Since these field strengths are adequate for runaway electrons, they have been proposed as a possible source for the initial breakdown in lightning. In this paper, we will present observations from balloon-borne gamma-ray detectors and electric-field sensors, as well as ground based instruments like the lightning mapping array (LMA) in effort to examine these areas of interest.

  9. Floral movements in response to thunderstorms improve reproductive effort in the alpine species Gentiana algida (Gentianaceae).

    PubMed

    Bynum, M R; Smith, W K

    2001-06-01

    Studies of floral movements in response to environmental change are rare in the literature, and information about possible adaptive benefits appears nonexistent. The closure of the upright, tubular flowers of alpine gentian (Gentiana algida) were observed during the frequent afternoon thunderstorms characteristic of the central and southern Rocky Mountains (USA). Flowers closed within minutes of an approaching thunderstorm and reopened after direct sunlight returned. Corolla opening widths decreased ∼10%/min prior to rainfall, in close correspondence to declines in air and corolla temperatures. Identical floral behavior was also induced experimentally in the field and laboratory by artificial changes in corolla temperature. Corolla closure did not occur during experiments that simulated natural changes in solar irradiance, wind, or absolute humidity during a thunderstorm. Furthermore, individual G. algida plants forced experimentally to remain open during rain had substantial losses of pollen after single rain events (up to 34%) and if forced to remain open for the entire flowering period (59%). Subsequent seasonal reductions in female fitness (up to 73%) also occurred, including seed size and mass, number of ovules produced, number of viable seeds produced per ovule, and seed germination. Thus, corolla closing and opening in G. algida associated with frequent summer thunderstorms may be a behavioral adaptation that improves both paternal and maternal reproductive effort. PMID:11410474

  10. Observations of Nocturnal Thunderstorms and Lighting Displays as Seen During Recent Space Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1994-01-01

    During the recent space shuttle flights the Mesoscale Lightning Experiment, an observational program to observe thunderstorms and lightning from space, was conducted. The low light level TV cameras located in the payload bay of the space shuttle were commanded from the ground and used to collect video images. Presented in this paper are some of the images and supporting information.

  11. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response 1907

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydr...

  12. Spatial patterns in thunderstorm rainfall events and their coupling with watershed hydrological response 1894

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall of air mass thunderstorms and link it with a watershed hydrological mo...

  13. Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning

    NASA Technical Reports Server (NTRS)

    Hondl, Kurt D.; Eilts, Michael D.

    1994-01-01

    The capability of Doppler weather radars to short-term forecast the initiation of thunderstorms and the onset of cloud-to-ground (CG) lightning is examined. Doppler weather radar data from 28 thunderstorms were analyzed from August 1990 in the central Florida environment. These radar echoes were associated with CG lightning strike locations from the National Lightning Detection Network and two lightning detection systems operated by the U.S. Air Force in the vicinity of Kennedy Space Center. From a time history of these radar echoes it was found that a 10-dBZ echo, first detected near the freezing level, may be the first definitive echo of a future thunderstorm. This thunderstorm initiation signature is often accompanied by low-altitude convergence and divergence at the top of the radar echo. The observed lead times between this thunderstorm initiation signature and the first detected CG lightning strike ranged from 5 to 45 min with a median lead time of 15 min. All lightning-producing radar echoes were detected using the thunderstorm initiation signature; however, some echoes exceeded the 10-dBZ threshold and did not produce andy CG lightning. The charecteristics of the WSR-88D and Terminal Doppler Weather Radar systems are evaluated for their capability to detect the thunderstorm initiation signature in central Florida with sufficient temporal and spatial resolution.

  14. Atmospheric conditions of thunderstorms in the European part of the Arctic derived from sounding and reanalysis data

    NASA Astrophysics Data System (ADS)

    Czernecki, Bartosz; Taszarek, Mateusz; Kolendowicz, Leszek; Szyga-Pluta, Katarzyna

    2015-03-01

    While thunderstorms in equatorial and mid-latitudes are well documented, little is known about their presence in high latitudes. There are barely a few studies on this phenomenon analyzing their occurrence in the European Arctic region. In an attempt to rectify this situation authors aim to explain which conditions are conducive to their formation in Bjørnøya, Jan Mayen and Svalbard islands. A total of 41 thunderstorm days derived from SYNOP reports from the period of 1981-2010 were used to define thunderstorm-favorable synoptic conditions from NCEP/NCAR reanalyses and sounding data. In order to underline seasonal variation, anomalies were presented in the polar day and polar night timeframes. As it turned out polar night thunderstorms occur most often in situations with southern warm marine air advections intensified by the positive North Atlantic and Arctic Oscillations. Thunderstorms in this season are characterized by steep vertical lapse rates and occur most likely at the cold fronts. Polar day thunderstorms form when warm air masses move from the continental north-eastern Europe to the Arctic, and create unstable conditions. In this type, thunderstorms are generated by elevated convection and occur most likely in a cyclone's cool side of warm sector.

  15. The direct radiative effect of wildfire smoke on a severe thunderstorm event in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Toll, V.; Männik, A.

    2015-03-01

    On August 8, 2010, a severe derecho type thunderstorm in the Baltic Sea region coincided with smoke from wildfires in Russia. Remarkable smoke aerosol concentrations, with a maximum aerosol optical depth of more than 2 at 550 nm, were observed near the thunderstorm. The impact of the wildfire smoke on the thunderstorm through direct radiative effects was investigated using the Hirlam Aladin Research for Mesoscale Operational Numerical Weather Prediction in Euromed (HARMONIE) model. HARMONIE was successfully able to resolve the dynamics of the thunderstorm, and simulations that considered the influence of the smoke-related aerosols were compared to simulation without aerosols. As simulated by the HARMONIE model, the smoke reduced the shortwave radiation flux at the surface by as much as 300 W/m2 and decreased the near-surface temperature by as much as 3 °C in the vicinity of the thunderstorm and respectively 100 W/m2 and 1 °C in the thunderstorm region. Atmospheric instability decreased through the direct radiative effect of aerosols, and several dynamic features of the simulated thunderstorm appeared slightly weaker.

  16. Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning

    SciTech Connect

    Hondl, K.D.; Eilts, M.D.

    1994-08-01

    The capability of Doppler weather radars to short-term forecast the initiation of thunderstorms and the onset of cloud-to-ground (CG) lightning is examined. Doppler weather radar data from 28 thunderstorms were analyzed from August 1990 in the central Florida environment. These radar echoes were associated with CG lightning strike locations from the National Lightning Detection Network and two lightning detection systems operated by the U.S. Air Force in the vicinity of Kennedy Space Center. From a time history of these radar echoes it was found that a 10-dBZ echo, first detected near the freezing level, may be the first definitive echo of a future thunderstorm. This thunderstorm initiation signature is often accompanied by low-altitude convergence and divergence at the top of the radar echo. The observed lead times between this thunderstorm initiation signature and the first detected CG lightning strike ranged from 5 to 45 min with a median lead time of 15 min. All lightning-producing radar echoes were detected using the thunderstorm initiation signature; however, some echoes exceeded the 10-dBZ threshold and did not produce andy CG lightning. The charecteristics of the WSR-88D and Terminal Doppler Weather Radar systems are evaluated for their capability to detect the thunderstorm initiation signature in central Florida with sufficient temporal and spatial resolution.

  17. 77 FR 9954 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... information collection was previously published in the Federal Register (77 FR 76983) on December 9, 2011... Certificate of Origin AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: 30... Origin. This is a proposed revision and extension of an information collection that was...

  18. 75 FR 28276 - Agency Information Collection Activities: NAFTA Regulations and Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... previously published in the Federal Register (75 FR 5100) on February 1, 2010, allowing for a 60-day comment... Certificate of Origin AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION: 30... approval in accordance with the Paperwork Reduction Act: NAFTA Regulations and Certificate of Origin....

  19. 78 FR 42103 - Agency Information Collection Activities: African Growth and Opportunity Act Certificate of Origin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... Opportunity Act Certificate of Origin AGENCY: U.S. Customs and Border Protection, Department of Homeland... accordance with the Paperwork Reduction Act: African Growth and Opportunity Act Certificate of Origin (AGOA... previously published in the Federal Register (78 FR 26650) on May 7, 2013, allowing for a 60-day...

  20. Studies of the electrical activity of the ventricles and the origin of the QRS complex.

    PubMed

    Scher, A M

    1995-01-01

    Historical events in the development of cardiac electrophysiology are described briefly. Observations before 1900 showed that electrical changes accompanied activity of muscle and nerve. Other studies showed that electrical activity of the heart produced voltage changes on the human torso. In 1903 Einthoven developed the string galvanometer which made measurement of electrocardiographic potentials much easier, more accurate and more common. The bases of understanding of arrhythmias were established by Lewis in the early 1900's. Soon thereafter Wilson devised practical and theoretical approaches to the human electrocardiogram which led to many further developments. Events before 1950 established the existence and mechanism of electrical activity in excitable cells. Studies of the origin of QRS began in about 1950, with studies of depolarization of the canine ventricle. Studies of the human ventricle followed. In the 70's it appeared possible to solve the electrocardiographic forward problem, prediction of electrocardiographic potentials from a knowledge of intracardiac events. That solution appeared possible because of new approaches to the associated physical and computational problems. Attempts to solve the forward problem at that time assumed that the cardiac generator (the boundary between resting and depolarized cells) was a uniform double layer generator. (The strength of the generator is constant everywhere along the boundary). Meanwhile physiologists and anatomists had worked out the mechanism of communication between cardiac cells. The cells are longer than they are wide, and each cell can depolarize contiguous cells. The connections between cells are predominantly at the ends of the cell and the longitudinal depolarization of a cardiac mass travels three times as fast as transverse depolarization. The generator is not uniform but is strongest parallel to the long axes of the cells. Many or most of those working in the field did not recognize the importance

  1. Robust increases in severe thunderstorm environments in response to greenhouse forcing

    PubMed Central

    Diffenbaugh, Noah S.; Scherer, Martin; Trapp, Robert J.

    2013-01-01

    Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage. PMID:24062439

  2. Robust increases in severe thunderstorm environments in response to greenhouse forcing.

    PubMed

    Diffenbaugh, Noah S; Scherer, Martin; Trapp, Robert J

    2013-10-01

    Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage. PMID:24062439

  3. Robust increases in severe thunderstorm environments in response to greenhouse forcing.

    PubMed

    Diffenbaugh, Noah S; Scherer, Martin; Trapp, Robert J

    2013-10-01

    Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage.

  4. Initial electrification to the first lightning flash in New Mexico thunderstorms

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Maribeth; Marshall, Thomas C.; Krehbiel, Paul R.

    2015-11-01

    The initial electrification of three New Mexico thunderstorms is examined using in situ and remote measurements. The earliest deflection of electric field (E) measured at the surface was 5-8.6 min before the first flash and coincident with the development of substantial radar reflectivity (40 dBZ) above -5°C. Rapid growth of surface E (>5 V/m/s) started 2.4-3.1 min before the first flash, when 40 dBZ reflectivities reached above the -15°C level. In two cases with clear surface E records, radar reflectivity indicators (40 dBZ echo through -10°C and echo top through -15°C) would yield longer warning times before the first flash than the E record. The first flash in each storm initiated at altitudes between 7.4 and 8.8 km; hence, the temperatures where the largest (negative) E for normal intracloud lightning initiation had developed during the initial electrification were -10°C to -20°C. Negative and positive charge regions associated with the first flash in each cell were centered at -8°C to -16°C (6.9-8.0 km) and -20°C to -24°C (9.0-9.2 km), respectively. In two cases, balloon data indicate the only substantial charge regions present before the first flash were those involved in the flash. Another case shows an initial period of opposite polarity E deflection at the surface coincident with substantial low-level positive charge within the cloud, although this charge was not involved in the first 8 min (first 17 flashes) of lightning activity. The findings support the notion that the initial electrification resulted from charging via the noninductive ice-ice collisional mechanism.

  5. The dynamical influences of cloud shading on simulated supercell thunderstorms

    NASA Astrophysics Data System (ADS)

    Frame, Jeffrey

    2008-10-01

    Numerical simulations of supercell thunderstorms which include parameterized radiative transfer and surface fluxes are performed using the Advanced Regional Prediction System (ARPS) model. The tilted independent column approximation (TICA) is adopted for use in the ARPS model because the existing method of parameterized radiative transfer, the independent column approximation (ICA), permits only the vertical transfer of shortwave radiation. The computed radiative fluxes from both the TICA and ICA are compared to output from a three-dimensional Monte Carlo radiative transfer solver and it is determined that the TICA fluxes more closely match those from the Monte Carlo model than do those from the ICA. Additionally, the TICA is able to capture the extensions of shadows that occur when the solar zenith angle deviates significantly from zero, which cannot be captured by the ICA. The maximum low-level air temperature deficits within the modeled cloud shadows is 1.5 to 2.0 K, which is only about half that previously observed. The loss of strong solar heating of the model surface within the shaded regions cools the surface temperatures, and changes the sign of the sensible heat flux near the edge of the shadow. This stabilizes the model surface layer and suppresses vertical mixing at low levels within the shaded area. This reduction in vertical mixing means that higher momentum air from aloft is prevented from mixing with air near the surface that has lost momentum to surface friction. The net result of this is a shallower, but more intense vertically-sheared layer near the surface. As the supercell's rear-flank gust front propagates into this modified shear layer, the layer of cold outflow air becomes shallower and it accelerates eastward. In the case of a stationary storm, the cold outflow undercuts the updraft and mesocyclone, depriving them of warm and moist inflow, and ultimately weakening the storm. These results are not likely applicable to all simulations of

  6. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.

    PubMed

    Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier

    2011-12-01

    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general

  7. Gastrointestinal tract radionuclide activity on In-111 labeled leukocyte imaging: clinical significance in patients with fever of unknown origin

    SciTech Connect

    Datz, F.L.; Thorne, D.A.

    1986-09-01

    To determine the frequency and clinical significance of indium-111 labeled leukocyte activity in the gastrointestinal (GI) tract of patients with fever of unknown origin, we reviewed 312 leukocyte studies involving 271 patients. Radionuclide activity was noted in the bowel in 59 cases. Of these, only 27 were due to the infection or inflammatory disease that caused the patient's fever. The 32 false-positive results were due primarily to swallowed leukocytes or bleeding. In two cases, no explanation was found for the activity in the GI tract. We conclude that bowel activity on In-111 labeled leukocyte scans in patients with fever of unknown origin often does not correlate with the true cause of the patient's fever.

  8. Active mammalian replication origins are associated with a high-density cluster of mCpG dinucleotides.

    PubMed Central

    Rein, T; Zorbas, H; DePamphilis, M L

    1997-01-01

    ori-beta is a well-characterized origin of bidirectional replication (OBR) located approximately 17 kb downstream of the dihydrofolate reductase gene in hamster cell chromosomes. The approximately 2-kb region of ori-beta that exhibits greatest replication initiation activity also contains 12 potential methylation sites in the form of CpG dinucleotides. To ascertain whether DNA methylation might play a role at mammalian replication origins, the methylation status of these sites was examined with bisulfite to chemically distinguish cytosine (C) from 5-methylcytosine (mC). All of the CpGs were methylated, and nine of them were located within 356 bp flanking the minimal OBR, creating a high-density cluster of mCpGs that was approximately 10 times greater than average for human DNA. However, the previously reported densely methylated island in which all cytosines were methylated regardless of their dinucleotide composition was not detected and appeared to be an experimental artifact. A second OBR, located at the 5' end of the RPS14 gene, exhibited a strikingly similar methylation pattern, and the organization of CpG dinucleotides at other mammalian origins revealed the potential for high-density CpG methylation. Moreover, analysis of bromodeoxyuridine-labeled nascent DNA confirmed that active replication origins were methylated. These results suggest that a high-density cluster of mCpG dinucleotides may play a role in either the establishment or the regulation of mammalian replication origins. PMID:8972222

  9. Geospace variations measured by satellites before severe thunderstorms in Athens (June 27, 2010): An-unexpected sequence of events

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, G.; Ouzounov, D.; Pulinets, S.; Kafatos, M.; Efthymiadis, D.

    2013-09-01

    Three physical parameters from space are consider for a significant time interval before severe thunderstorms occurred on June 27, 2010 in the greater region of Athens, and other places in Greece: radiation belt electron precipitation in ionosphere (CNES/DEMETER), electron concentration in atmosphere-ionosphere (GPS/TEC) / changes in plasma parameters and outgoing long-wavelength radiation (OLR) / (NOAA, NASA) on the top of the atmosphere. During May-July 2010, we performed first prospective tests for continuing analysis of the selected parameters over Greece. On June 25-26 we detected anomalous values in electron precipitation, ionospheric plasma and OLR over Crete Island, which occurred simultaneously with a large seismic swam (more 30 events, M>3) in Greece. On June 27, when the electron precipitation stopped, an extreme whether event occurred: severe thunderstorms in the greater region of Athens, and other places in Greece. Lighting activity was measured by the National Observatory of Athens ZEUS lightning detection system (Lagouvardos et al, 2009) and hundreds of lightning flashes (which exceeded the 20 per hour per 10 km2 rate) in the Greek capital were recorded. Two new phenomena are noted during the period June 25-27: (1) The radiation belt electron precipitation in ionosphere was recorded before the strong lighting activity above Crete / Greece, not during the lighting activity, as expected according to the relative scientific literature, and (2) The geospace measurements suggested that a great earthquake (M?6) was possible to occur on June 25-27; instead, a large seismic swam did occur on June 25-26 near Crete. The possible physical relation between the observed variations in the radiation belts/ ionosphere, the seismic activity (June 24-26, 2010) and the following night of lighting (June 27) is discussed. Certainly, a high ionization of the atmosphere caused by the induced radiation belt electron precipitation and the seismic activity played most

  10. Variability of lightning flash and thunderstorm over East/Southeast Asia on the ENSO time scales

    NASA Astrophysics Data System (ADS)

    Yuan, Tie; Di, Yuelun; Qie, Kai

    2016-03-01

    The variability of lightning flash and thunderstorm on the ENSO time scales over East/Southeast Asia was investigated by using 17-year (1995-2011) lightning data from the Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS), and 14-year (1998-2011) Tropical Rainfall Measuring Mission satellite (TRMM) precipitation feature data. In addition, ERA-Interim reanalysis data of the European Centre for Medium-Range Weather Forecasts (ECMWF) were used to present related environmental characteristics. It was found that the response of lightning flash to ENSO events shows remarkable seasonal and regional variations. The regions of positive (negative) lightning anomaly are mainly located at both sides of 5°-20°N (5°-15°N) in El Niño (La Niña) spring and winter, and located north of the equator in summer and autumn. There is a significantly positive correlation between lightning anomaly and the Oceanic Niño Index (ONI) over both East China and Indonesia during El Niño episodes, but no obvious correlation during La Niña episodes. The positive thunderstorm anomalies during El Niño periods are dispersed. The distribution of thunderstorm anomalies in La Niña summer and autumn is almost opposite to that in spring and winter. The correlation between thunderstorm anomaly and ONI is better over East China than that over Indonesia. In general, lightning variation follows thunderstorm intensity (number) variation over East China during El Niño (La Niña) episodes, and follows a combination of thunderstorm intensity and number variations over Indonesia on ENSO time scales. During ENSO time scales, variations of surface wind can be considered as one of the key factors to LAs. More lightning flashes present in the regions where warm moist flows intersection, and less in the regions where surface wind changes slightly or diverges. Dramatic lightning increases also occur with higher values of convective available potential energy (CAPE). In addition, higher (lower

  11. Thunderstorm-associated asthma in an inland town in south-eastern Australia. Who is at risk?

    PubMed

    Girgis, S T; Marks, G B; Downs, S H; Kolbe, A; Car, G N; Paton, R

    2000-07-01

    The aim of the study was to characterize patients at risk of asthma exacerbation during spring thunderstorms and identify potential measures to ameliorate the impact of those events. A case-control study was conducted among patients aged 7-60 yrs, who attended Wagga Hospital (NSW, Australia) for asthma during the period of 1 June 1997 to 31 October 1997. One hundred and eighty-three patients who attended on 30 and 31 October 1997 were the cases and the remaining 121 patients were the controls. Questionnaire data were obtained from 148 (81%) cases and 91 (75%) controls. One hundred and thirty-eight (95%) cases who attended during the thunderstorm gave a history of hayfever prior to the event compared to 66 (74%) controls who attended at other times (odds ratio (OR) 6.01, 95% confidence interval (CI) 2.55-14.15); 111 (96%) cases were allergic to rye grass pollen compared to 47 (64%) controls (OR 23.6, 95% CI 6.6-84.3). Among subjects with a prior diagnosis of asthma (64% cases and 82% controls), controls (56%) were more likely to be taking inhaled steroids at time of the thunderstorm than cases (27%, OR 0.3, 95% CI 0.16-0.57). History of hayfever and allergy to rye grass are strong predictors for asthma exacerbation during thunderstorms in spring. The lower rate of inhaled steroid use in thunderstorm cases suggests that this treatment may be effective in preventing severe attacks during thunderstorms. PMID:10933077

  12. Thunderstorm-associated asthma in an inland town in south-eastern Australia. Who is at risk?

    PubMed

    Girgis, S T; Marks, G B; Downs, S H; Kolbe, A; Car, G N; Paton, R

    2000-07-01

    The aim of the study was to characterize patients at risk of asthma exacerbation during spring thunderstorms and identify potential measures to ameliorate the impact of those events. A case-control study was conducted among patients aged 7-60 yrs, who attended Wagga Hospital (NSW, Australia) for asthma during the period of 1 June 1997 to 31 October 1997. One hundred and eighty-three patients who attended on 30 and 31 October 1997 were the cases and the remaining 121 patients were the controls. Questionnaire data were obtained from 148 (81%) cases and 91 (75%) controls. One hundred and thirty-eight (95%) cases who attended during the thunderstorm gave a history of hayfever prior to the event compared to 66 (74%) controls who attended at other times (odds ratio (OR) 6.01, 95% confidence interval (CI) 2.55-14.15); 111 (96%) cases were allergic to rye grass pollen compared to 47 (64%) controls (OR 23.6, 95% CI 6.6-84.3). Among subjects with a prior diagnosis of asthma (64% cases and 82% controls), controls (56%) were more likely to be taking inhaled steroids at time of the thunderstorm than cases (27%, OR 0.3, 95% CI 0.16-0.57). History of hayfever and allergy to rye grass are strong predictors for asthma exacerbation during thunderstorms in spring. The lower rate of inhaled steroid use in thunderstorm cases suggests that this treatment may be effective in preventing severe attacks during thunderstorms.

  13. Magnetite in CI carbonaceous meteorites - Origin by aqueous activity on a planetesimal surface

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Mackay, A. L.; Boynton, W. V.

    1979-01-01

    The composition and morphology of magnetite in CI carbonaceous meteorites appear incompatible with a nebular origin. Mineralization on the meteorite parent body is a more plausible mode of formation. The iodine-xenon age of this material therefore dates an episode of secondary mineralization on a planetesimal rather than the epoch of condensation in the primitive solar nebula.

  14. The Consequences of Replicating in the Wrong Orientation: Bacterial Chromosome Duplication without an Active Replication Origin

    PubMed Central

    Dimude, Juachi U.; Stockum, Anna; Midgley-Smith, Sarah L.; Upton, Amy L.; Foster, Helen A.; Khan, Arshad; Saunders, Nigel J.; Retkute, Renata

    2015-01-01

    ABSTRACT Chromosome replication is regulated in all organisms at the assembly stage of the replication machinery at specific origins. In Escherichia coli, the DnaA initiator protein regulates the assembly of replication forks at oriC. This regulation can be undermined by defects in nucleic acid metabolism. In cells lacking RNase HI, replication initiates independently of DnaA and oriC, presumably at persisting R-loops. A similar mechanism was assumed for origin-independent synthesis in cells lacking RecG. However, recently we suggested that this synthesis initiates at intermediates resulting from replication fork fusions. Here we present data suggesting that in cells lacking RecG or RNase HI, origin-independent synthesis arises by different mechanisms, indicative of these two proteins having different roles in vivo. Our data support the idea that RNase HI processes R-loops, while RecG is required to process replication fork fusion intermediates. However, regardless of how origin-independent synthesis is initiated, a fraction of forks will proceed in an orientation opposite to normal. We show that the resulting head-on encounters with transcription threaten cell viability, especially if taking place in highly transcribed areas. Thus, despite their different functions, RecG and RNase HI are both important factors for maintaining replication control and orientation. Their absence causes severe replication problems, highlighting the advantages of the normal chromosome arrangement, which exploits a single origin to control the number of forks and their orientation relative to transcription, and a defined termination area to contain fork fusions. Any changes to this arrangement endanger cell cycle control, chromosome dynamics, and, ultimately, cell viability. PMID:26530381

  15. The structure and dynamics of mesoscale systems influencing severe thunderstorm development during AVE/SESAME 1

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1982-01-01

    Relationships between meso-beta scale systems and thunderstorm formation were examined as part of the NASA atmospheric variability experiment/severe environmental storms and mesoscale experiment 1979. The McIdas program was employed for meso-beta scale analyses of atmospheric structure and dynamics in kinematic computations of the Abilene Triangle on a grid mesh of 100 km for station spacing of 275 km. Mesoscale short wave systems were detected imbedded and propagating cyclonically around upper-level vortex circulation and creating environmental conditions conducive to thunderstorm development. TIROS-N and GOES satellite data served to connect the systems with two convective storms which developed. The necessity to use spaceborne instrumentation carried on the Shuttle or on free-flying satellites for enhancing the data-base on storm development is noted.

  16. Turbulent transport model of wind shear in thunderstorm gust fronts and warm fronts

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.; Teske, M. E.; Segur, H. C. O.

    1978-01-01

    A model of turbulent flow in the atmospheric boundary layer was used to simulate the low-level wind and turbulence profiles associated with both local thunderstorm gust fronts and synoptic-scale warm fronts. Dimensional analyses of both type fronts provided the physical scaling necessary to permit normalized simulations to represent fronts for any temperature jump. The sensitivity of the thunderstorm gust front to five different dimensionless parameters as well as a change from axisymmetric to planar geometry was examined. The sensitivity of the warm front to variations in the Rossby number was examined. Results of the simulations are discussed in terms of the conditions which lead to wind shears which are likely to be most hazardous for aircraft operations.

  17. Techniques used to identify tornado producing thunderstorms using geosynchronous satellite data

    NASA Technical Reports Server (NTRS)

    Schrab, Kevin J.; Anderson, Charles E.; Monahan, John F.

    1992-01-01

    Satellite imagery in the outbreak region in the time prior to and during tornado occurrence was examined in detail to obtain descriptive characteristics of the anvil plume. These characteristics include outflow strength (UMAX), departure of anvil centerline from the storm relative ambient wind (MDA), storm relative ambient wind (SRAW), and maximum surface vorticity (SFCVOR). It is shown that by using satellite derived parameters which characterize the flow field in the anvil region, the occurrence and intensity of tornadoes, which the parent thunderstorm produces, can be identified. Analysis of the censored regression models revealed that the five explanatory variables (UMAX, MDA, SRAW, UMAX-2, and SFCVOR) were all significant predictors in the identification of tornadic intensity of a particular thunderstorm.

  18. Studies of Florida Thunderstorms Using LDAR, LLP, and Single Doppler Radar Data

    NASA Technical Reports Server (NTRS)

    Forbes, Gregory S.; Hoffert, Steven G.

    1999-01-01

    The paper summarizes results from research conducted on thunderstorms in the vicinity of the Kennedy Space Center (KSC) Florida, between 1993 and 1998. The focus of the research was to identify procedures that would assist weather forecasters at the Cape Canaveral Air Station (CCAS) in real-time detection and forecasting of the lightning threat to launches and daily ground operations at KSC/CCAS sites. The research was divided into three topics: (1) studies aimed at improving the forecasting of the initial cloud-ground (CG) lightning threat, (2) studies aimed at improving the forecasting of the end-of-storm termination of the CG lightning threat, and (3) studies of the location of CG strikes relative to the thunderstorm radar echo and to lightning discharges aloft. Only the first two topics are covered in this preprint.

  19. Measured electric field in the vicinity of a thunderstorm system at an altitude of 37 km

    NASA Technical Reports Server (NTRS)

    Benbrook, J. R.; Kern, J. W.; Sheldon, W. R.

    1974-01-01

    A balloon-borne experiment to measure the atmospheric electric field was flown from the National Scientific Balloon Facility at Palestine, Texas, on July 10, 1973. The electric field and atmospheric conductivity were measured during ascent and for a 4-hour float period at 37-km altitude. Termination of the flight occurred near a thunderstorm line in west Texas. The perturbing influence of the thunderstorms on the electric field was observed at least 100 km from the storm line. The measured electric field is in reasonable agreement with calculations based on simple models of cloud structure and atmospheric conductivity. Large pulses in the measured electric field are interpreted as being the result of intracloud lightning.

  20. Charge structure of a summer thunderstorm in North China: Simulation using a Regional Atmospheric Model System

    NASA Astrophysics Data System (ADS)

    Liu, Dongxia; Qie, Xiushu; Peng, Liang; Li, Wanli

    2014-09-01

    Electrification and simple discharge schemes are coupled into a 3D Regional Atmospheric Model System (RAMS) as microphysical parameterizations, in accordance with electrical experiment results. The dynamics, microphysics, and electrification components are fully integrated into the RAMS model, and the inductive and non-inductive electrification mechanisms are considered in the charging process. The results indicate that the thunderstorm mainly had a normal tripole charge structure. The simulated charge structure and lightning frequency are basically consistent with observations of the lightning radiation source distribution. The non-inductive charging mechanism contributed to the electrification during the whole lifetime of the thunderstorm, while the inductive electrification mechanism played a significant role in the development period and the mature stage when the electric field reached a large value. The charge structure in the convective region and the rearward region are analyzed, showing that the charge density in the convective region was double that in the rearward region.

  1. Evaluation of a one-dimensional cloud model for yellow and green thunderstorms

    NASA Astrophysics Data System (ADS)

    Gallagher, Frank W.; Beasley, William H.

    2003-01-01

    Many observers have reported observations of green light emanating from severe thunderstorms in the midwestern United States. Spectral measurements have demonstrated that the dominant wavelength of the light is in the green portion of the visible spectrum and that this is not just a subjective impression. According to the theory proposed by Bohren and Fraser [Bull. Am. Meteorol. Soc. 74, 2185 (1993)], two effects combine to produce green light from thunderstorms. First, incident solar radiation is reddened by selective scattering by air molecules and particles in the atmosphere before it enters the cloud. Second, the radiation that passes through an optically thick cloud is attenuated in the longer wavelengths because of selective absorption by liquid water. Model calculations indicate that realizable combinations of mean drop diameters, mean liquid-water contents, and cloud thicknesses can satisfy the conditions required for shifting the dominant wavelength of the incident solar radiation to green.

  2. Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere

    SciTech Connect

    Sentman, D.D.; Wescott, E.M.

    1995-06-01

    Recent low light level monochrome television observations obtained from the ground and from the space shuttle, and low light level color and monochrome television images obtained from aboard jet aircraft, have shown that intense lightning in mesoscale thunderstorm systems may excite at least two distinct types of optical emissions that together span the space between the tops of some thunderstorms and the ionosphere. The first of these emissions, dubbed ``sprites,`` are luminous red structures that typically span the altitude range 60--90 km, often with faint bluish tendrils dangling below. A second, rarer, type of luminous emission are ``blue jets`` that appear to spurt upward out of the anvil top in narrow cones to altitudes of 40--50 km at speeds of {similar_to}100 km/s. In this paper the principal observational characteristics of sprites and jets are presented, and several proposed production mechanisms are reviewed. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Gamma ray and fair weather electric field measurements during thunderstorms: indications for TGEs?

    NASA Astrophysics Data System (ADS)

    Reuveni, Yuval; Yair, Yoav; Steinitz, Gideon; Price, Colin; Pustil'nik, Lev; Yaniv, Roy; Hamiel, Yariv; Katz, Evgeni

    2016-04-01

    We report coincidences of ground-level gamma-ray enhancements with strong electric fields typical of lightning discharges, measured at a mountainous site in northern Israel. High-energy emissions detected on the Earth's surface during thunderstorms supposedly initiate Thunderstorm Ground Enhancements (TGEs) of fluxes of electrons, neutrons and gamma rays that can last tens of minutes. Such enhancements are thought to be related to Extensive Cloud Showers (ECSs) initiated between the main negative charge center and the lower positive charge pocket in mature thunderstorms (Chilingarian et al., 2015). The Cosmic Ray and Space Weather Center located at Mt. Hermon hosts a gamma ray detector alongside a continuous multi-parametric array consisting of a Global Navigation Satellite Systems (GNSS) geodetic receiver (for measuring Precipitable Water Vapor (PWV) and ionospheric Total Electron Content (TEC)), vertical atmospheric electric field (Ez) and current (Jz) and a neutron super monitor (for cosmic ray measurements). The diurnal variations in fair-weather conditions exhibit a clear 24-hour periodicity, related to the diurnal variation of atmospheric parameters. During several severe thunderstorms that occurred over Israel and near the Mt. Hermon station in October and November 2015, we recorded several instantaneous enhancements in the counts of Gamma rays, which lasted ten of minutes, and that coincided with peaks in the vertical electric field and current. Lightning data obtained from the Israeli Lightning Detection Network (ILDN) show that these peaks match the occurrences of close-by CG lightning discharges. This talk will present correlations between the properties of parent flashes and the observed peaks, and discuss possible mechanisms.

  4. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  5. Electrical soundings in the decay stage of a thunderstorm in the Pingliang region

    NASA Astrophysics Data System (ADS)

    Zhang, Tinglong; Zhao, Zhongkuo; Zhao, Yang; Wei, Changxiong; Yu, Hai; Zhou, Fangcong

    2015-10-01

    An electric field sounding system, based on corona discharge, was designed to measure the vertical component of the electric fields in a thunderstorm. The decay stage of a thunderstorm that occurred during the night of August 20, 2012, in the Pingliang region, China (35.57°N, 106.59°E, 1620 m above sea level (asl)), was investigated by two balloon-borne electrical soundings. The results of the first sounding showed that the thunderstorm had a tripole charge structure: a lower positive charge region located at temperatures of 3 to 15 °C (2.0-4.0 km asl); a middle negative charge region located at temperatures of - 3 to 3 °C (4.5-5.3 km asl); and an upper positive charge region at temperatures of - 10 to - 3 °C (5.3-6.3 km asl). In addition, there was a negative screen layer at the bottom of the thunderstorm with a depth of about 400 m. The charge density of the middle negative charge region was larger than that of the lower and upper positive charge regions. Influenced by the downdraft of precipitation, each charge region moved down to a lower altitude region. The results of the second sounding showed that the lower positive charge center totally disappeared and only the middle negative charge region (3.7-4.2 km asl) and upper positive charge region (4.2-4.7 km asl) remained. We conclude that the downdraft with precipitation caused the dissipation of the lower positive charge region. Compared with the first sounding result, we found that the charge density increased and the depth decreased for both of the charge regions.

  6. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures

    NASA Astrophysics Data System (ADS)

    Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.

    2016-01-01

    In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.

  7. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields. PMID:25955053

  8. Lightning-induced extensive charge sheets provide long range electrostatic thunderstorm detection.

    PubMed

    Bennett, A J; Harrison, R G

    2013-07-26

    By combining electrostatic measurements of lightning-induced electrostatic field changes with radio frequency lightning location, some field changes from exceptionally distant lightning events are apparent which are inconsistent with the usual inverse cube of distance. Furthermore, by using two measurement sites, a transition zone can be identified beyond which the electric field response reverses polarity. For these severe lightning events, we infer a horizontally extensive charge sheet above a thunderstorm, consistent with a mesospheric halo of several hundred kilometers' extent. PMID:23931377

  9. Lightning-induced extensive charge sheets provide long range electrostatic thunderstorm detection.

    PubMed

    Bennett, A J; Harrison, R G

    2013-07-26

    By combining electrostatic measurements of lightning-induced electrostatic field changes with radio frequency lightning location, some field changes from exceptionally distant lightning events are apparent which are inconsistent with the usual inverse cube of distance. Furthermore, by using two measurement sites, a transition zone can be identified beyond which the electric field response reverses polarity. For these severe lightning events, we infer a horizontally extensive charge sheet above a thunderstorm, consistent with a mesospheric halo of several hundred kilometers' extent.

  10. Observations of high-energy radiation during thunderstorms at Tien-Shan

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Almenova, A. M.; Antonova, V. P.; Chubenko, A. P.; Karashtin, A. N.; Kryakunova, O. N.; Lutsenko, V. Yu.; Mitko, G. G.; Ptitsyn, M. O.; Piscal, V. V.; Ryabov, V. A.; Salikhov, N. M.; Sadykov, T. Kh.; Shepetov, A. L.; Shlyugaev, Yu. V.; Thu, W. M.; Vil'danova, L. I.; Zastrozhnova, N. N.; Zybin, K. P.

    2016-07-01

    Energetic radiation during thunderstorms is studied. The possibility to identify the high-energy lightning emission in the 10 s monitoring mode is demonstrated. Simultaneous measurements of gamma-ray emission, high-energy electrons, and neutron radiation in the triggering mode are fulfilled. Energy spectra of gamma emission and electrons are obtained. The intensity both of electrons and gamma rays in lightning discharge prevail the background emission by 1.5 to 2 orders of magnitude.

  11. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  12. Volatile Compounds in Honey: A Review on Their Involvement in Aroma, Botanical Origin Determination and Potential Biomedical Activities

    PubMed Central

    Manyi-Loh, Christy E.; Ndip, Roland N.; Clarke, Anna M.

    2011-01-01

    Volatile organic compounds (VOCs) in honey are obtained from diverse biosynthetic pathways and extracted by using various methods associated with varying degrees of selectivity and effectiveness. These compounds are grouped into chemical categories such as aldehyde, ketone, acid, alcohol, hydrocarbon, norisoprenoids, terpenes and benzene compounds and their derivatives, furan and pyran derivatives. They represent a fingerprint of a specific honey and therefore could be used to differentiate between monofloral honeys from different floral sources, thus providing valuable information concerning the honey’s botanical and geographical origin. However, only plant derived compounds and their metabolites (terpenes, norisoprenoids and benzene compounds and their derivatives) must be employed to discriminate among floral origins of honey. Notwithstanding, many authors have reported different floral markers for honey of the same floral origin, consequently sensory analysis, in conjunction with analysis of VOCs could help to clear this ambiguity. Furthermore, VOCs influence honey’s aroma described as sweet, citrus, floral, almond, rancid, etc. Clearly, the contribution of a volatile compound to honey aroma is determined by its odor activity value. Elucidation of the aroma compounds along with floral origins of a particular honey can help to standardize its quality and avoid fraudulent labeling of the product. Although only present in low concentrations, VOCS could contribute to biomedical activities of honey, especially the antioxidant effect due to their natural radical scavenging potential. PMID:22272147

  13. Racemization and the origin of optically active organic compounds in living organisms

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1987-01-01

    The organic compounds synthesized in prebiotic experiments are racemic mixtures. A number of proposals have been offered to explain how asymmetric organic compounds formed on the Earth before life arose, with the influence of chiral weak nuclear interactions being the most frequent proposal. This and other proposed asymmetric syntheses give only sight enantiomeric excess and any slight excess will be degraded by racemization. This applies particularly to amino acids where half-lives of 10(5)-10(6) years are to be expected at temperatures characteristic of the Earth's surface. Since the generation of chiral molecules could not have been a significant process under geological conditions, the origins of this asymmetry must have occurred at the time of the origin of life or shortly thereafter. It is possible that the compounds in the first living organisms were prochiral rather than chiral; this is unlikely for amino acids, but it is possible for the monomers of RNA-like molecules.

  14. Nordic Lightning Information System: Thunderstorm climate of Northern Europe for the period 2002-2011

    NASA Astrophysics Data System (ADS)

    Mäkelä, Antti; Enno, Sven-Erik; Haapalainen, Jussi

    2014-03-01

    A 10-year statistics (2002-2011) of the Nordic Lightning Information System (NORDLIS) are presented. NORDLIS is a joined lightning location network between Norway, Sweden, Finland, and Estonia, comprising in 2011 of 32 lightning location sensors. Our data set contains a total of 4,121,649 cloud-to-ground (CG) flashes. We show the regional and temporal distribution of lightning in Northern Europe during the study period. Our results indicate that the average annual ground flash density values are greatest in Southern Sweden, Baltic countries and Western Finland. The average number of thunderstorm days is largest in the Baltic countries and Southwestern Sweden, and the annual number of ground flashes has varied during the study period from 250,000 to 620,000. The largest observed daily number of ground flashes is 51,500, and the largest daily ground flash density is about 5 CGs km- 2; this has occurred in southern Sweden in July 2003. The average daily number of ground flashes peaks in mid-July-early-August. Cold season (October-April) thunderstorms occur frequently over the North Sea west of Norway and in the west coast of Denmark. Our results also show that an intense thunderstorm may occur practically anywhere in the Northern Europe except for certain maritime and mountain areas.

  15. Balloon Measurements of Electric Fields in Thunderstorms: A Modern Version of Benjamin Franklin's Kite

    NASA Astrophysics Data System (ADS)

    Marshall, T. C.; Stolzenburg, M.

    2006-12-01

    One of Benjamin Franklin's most famous experiments was the kite experiment, which showed that thunderstorms are electrically charged. It is not as commonly noted that the kite experiment was also one of the the first attempts to make an in situ measurement of any storm parameter. Franklin realized the importance of making measurements close to and within storms, and this realization has been shared by later atomspheric scientists. In this presentation we focus on a modern version of Franklin's kite--instrumented balloons--used for in situ measurements of electric field and other storm parameters. In particular, most of our knowledge of the charge structure inside thunderstorms is based on balloon soundings of electric field. Balloon measurements of storm electricity began with the work of Simpson and colleagues in the 1930's and 1940's. The next major instrumentation advances were made by Winn and colleagues in the 1970's and 1980's. Today's instruments are digital versions of the Winn design. We review the main instrument techniques that have allowed balloons to be the worthy successors to kites. We also discuss some of the key advances in our understanding of thunderstorm electrification made with in situ balloon-borne instruments.

  16. Multi-scale 3D simulation of lightning and thunderstorm electrodynamics

    NASA Astrophysics Data System (ADS)

    Kabirzadeh, R.; Lehtinen, N. G.; Liang, C.; Cohen, M.; Inan, U.

    2014-12-01

    Despite centuries studying thunderstorm electrodynamics, our understanding of these phenomena remains limited. The difficulty lies partly in the large number of processes and their mutual dependency and the wide range of temporal and the spatial scales involved. In this study we combine two numerical models to move toward a simulation that addresses these broad scales. First, we use a 3D numerical model to calculate the large scale quasi-electrostatic (QES) fields and charge distributions built up by updrafts in the thundercloud. This model self-consistently accounts for the conductivities, particle densities, large scale currents and charging mechanisms inside a thundercloud in the atmosphere. Second, we use a time-domain fractal lightning (TDFL) model developed that takes into account both the thermodynamics and electrodynamics of leader development and the return stroke on small time and spatial scales (Liang et al. 2014). The QES model simulates slow thunderstorm charging dynamics, and then passes the state to the TDFL model when a flash is ready to trigger. Using this combined simulation, we explain some recently observed patterns of lightning inside a thunderstorm and within a flash (e.g. Zoghzoghy et al. 2013, 2014). We attempt to constrain properties of the thundercloud like the size and shape of the charge pockets removed from the thundercloud, the flash rate and updraft currents, the relative occurrence rate of different types of lightning, and the cloud charge distribution structure effects on the lightning type.

  17. The interpretation of gamma-ray enhancements in thunderstorms with and without avalanche multiplication

    NASA Astrophysics Data System (ADS)

    Kelley, N. A.

    2015-12-01

    Relativistic Runaway Electron Avalanches (RREAs) are the acceleration and subsequent multiplication of relativistic electrons inside by electric field. Inside thunderstorms, RREA are thought to be involved in the creation of extraordinarily bright bursts of gamma rays, called Terrestrial Gamma-ray Flashes (TGFs), and long duration production of gamma rays (called gamma-ray glows or thunderstorm ground enhancements (TGEs)). However, Chilingarian has proposed that some electric fields inside thunderstorms may not be strong enough or have large enough spatial extent to result in significant avalanche multiplication by RREA to make a glow. High-energy electrons and gamma rays would still be present by a modification of the spectra (MOS) of cosmic-ray air showers. MOS and RREA glows have both been detected many times from the ground but distinguishing between the two is difficult since differing count rates can be the result of either these two distinct production models or attenuation due to various source distances. We will present GEANT4 models showing how these spectra differ as a function of source distance as well as discuss the differences in their gamma ray/electron signature in ground-based, gamma-ray detectors. These models will be compared to measurements made with instruments already in place in Mexico and Japan.

  18. An overview of thunderstorm-associated asthma outbreak in southwest of Iran.

    PubMed

    Forouzan, Arash; Masoumi, Kambiz; Haddadzadeh Shoushtari, Maryam; Idani, Esmaeil; Tirandaz, Fatemeh; Feli, Maryam; Assarehzadegan, Mohammad Ali; Asgari Darian, Ali

    2014-01-01

    The aim of this study was to report the characteristics and treatment strategies of all patients with acute bronchospasm who were presented to the emergency departments of Ahvaz, Iran, following the occurrence of a thunderstorm on November 2, 2013. A total of 2000 patients presenting with asthma attacks triggered by thunderstorm were interviewed and an initial questionnaire was completed for each individual. After twenty days, patients were asked to complete a supplementary questionnaire, but only 800 of them accepted to do so. The majority of subjects was aged 20-40 years (60.5%) and had no history of asthma in most cases (60.0%). The symptoms had started outdoors for 60.0% of the participants. In most patients, the onset of the condition was on November 2. Short-acting β 2-agonist (salbutamol) and aminophylline were the most commonly prescribed medications in the emergency department. Upon the second interview, 85.3% of the patients were still symptomatic. Overall, 63.6% did not have a follow-up visit after hospital discharge, although all of them were referred to the specialist. The findings of the present study suggest that thunderstorm-associated asthma could affect young adults with no gender priority, with or without asthma history, which put a strain on emergency medical services. PMID:25093023

  19. Thunderstorm top structure observed by aircraft overflights with an infrared radiometer

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Shenk, W. E.; Markus, M. J.; Fenn, D. D.; Szejwach, G.

    1983-01-01

    Thunderstorm top structure is examined with high spatial resolution radiometric data (visible and infrared) from aircraft overflights together with other storm views, including geosynchronous satellite observations. Results show that overshooting cumuliform towers appear as distinct cold areas in the high resolution, 11-micron IR aircraft images, but that the geosynchronous satellite observations significantly overestimate the thunderstorm-top IR brightness temperature, T(B), due to field of view effects. Profiles of cloud top height and T(B) across overshooting features indicate an adiabatic cloud surface lapse rate. However, one-dimensional cloud model results indicate that when comparing thunderstorm top temperature and height at different times or different storms, a temperature-to-height conversion of about 7 K/km is appropriate. Examination of mature storm evolution indicates that, during periods when the updraft is relatively intense, the satellite IR 'cold point' is aligned with the low-level radar reflectivity maximum, but during periods of updraft weakening and lowering cloud top heights, the satellite T(B) minimum occurs downwind with cirrus anvil debris. The growth period of a relatively weak cumulonimbus cluster is also examined with aircraft and satellite data.

  20. A study of turbulence near thunderstorm tops. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Pantley, Kim Christine

    1989-01-01

    It has been known for many years that turbulence significant for aviation often occurs near thunderstorm tops. However, that turbulence is not well-predicted because of an incomplete understanding of the processes which generate it and because of inadequate observations. The current study seeks to alleviate these problems via: (1) a comprehensive review of recent theoretical and experimental studies related to turbulence near thunderstorm tops (TNTT), and (2) three case studies designed to examine the feasibility of using data derived from commercial aircraft to study TNTT. The literature review revealed extensive evidence which showed that convection often produces significant barrier effects; several mesoscale phenomena capable of producing turbulence may occur, depending on wind and stability conditions near the thunderstorm tops. These include two- and three-dimensional lee waves, rotors, Kelvin-Helmholtz instabilities, and Karman vortices. Conventional meteorological data were combined with data derived from the aircraft flight tapes to produce quantitative descriptions of the turbulence and its mesoscale environment for the three cases.

  1. An overview of thunderstorm-associated asthma outbreak in southwest of Iran.

    PubMed

    Forouzan, Arash; Masoumi, Kambiz; Haddadzadeh Shoushtari, Maryam; Idani, Esmaeil; Tirandaz, Fatemeh; Feli, Maryam; Assarehzadegan, Mohammad Ali; Asgari Darian, Ali

    2014-01-01

    The aim of this study was to report the characteristics and treatment strategies of all patients with acute bronchospasm who were presented to the emergency departments of Ahvaz, Iran, following the occurrence of a thunderstorm on November 2, 2013. A total of 2000 patients presenting with asthma attacks triggered by thunderstorm were interviewed and an initial questionnaire was completed for each individual. After twenty days, patients were asked to complete a supplementary questionnaire, but only 800 of them accepted to do so. The majority of subjects was aged 20-40 years (60.5%) and had no history of asthma in most cases (60.0%). The symptoms had started outdoors for 60.0% of the participants. In most patients, the onset of the condition was on November 2. Short-acting β 2-agonist (salbutamol) and aminophylline were the most commonly prescribed medications in the emergency department. Upon the second interview, 85.3% of the patients were still symptomatic. Overall, 63.6% did not have a follow-up visit after hospital discharge, although all of them were referred to the specialist. The findings of the present study suggest that thunderstorm-associated asthma could affect young adults with no gender priority, with or without asthma history, which put a strain on emergency medical services.

  2. Synchronized network activity as the origin of a P300 component in a facial attractiveness judgment task.

    PubMed

    Zhang, Yuan; Tang, Akaysha C; Zhou, Xiaolin

    2014-03-01

    Many studies have used the P300 as an index for cognitive processing and neurological/psychiatric disorders. Here, we combined the source separation and source localization methods to investigate the cortical origins of the P300 elicited in a facial attractiveness judgment task. For each participant, we applied second-order blind identification (SOBI) to continuous EEG data to decompose the mixture of brain signals and noise. We then used the equivalent current dipole (ECD) models to estimate the centrality of the SOBI-recovered P300. We found that the ECD models, consisting of dipoles in the frontal and posterior association cortices, account for 96.5 ± 0.5% of variance in the scalp projection of the component. Given that the recovered dipole activities in different brain regions share the same time course with different weights, we conclude that the P300 originates from synchronized activity between anterior and posterior parts of the brain.

  3. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins and induces DNA damage

    PubMed Central

    Conti, Chiara; Leo, Elisabetta; Eichler, Gabriel S.; Sordet, Olivier; Martin, Melvenia M.; Fan, Angela; Aladjem, Mirit I.; Pommier, Yves

    2010-01-01

    Protein acetylation is a reversible process regulated by histone deacetylases (HDACs) that is often altered in human cancers. SAHA (suberoylanilide hydroxamic acid) is the first histone deacetylase inhibitor (HDACi) to be approved for clinical use as an anticancer agent. Given that histone acetylation is a key determinant of chromatin structure, we investigated how SAHA may affect DNA replication and integrity to gain deeper insights into the basis for its anticancer activity. Nuclear replication factories were visualized with confocal immunofluorescence microscopy and with single-replicon analyses conducted by genome-wide molecular combing after pulse labeling with two thymidine-analogues. Additionally, nascent strand real-time polymerase chain reaction (RT-PCR) in the human β-globin locus was used to assess the effects of SAHA on replication fork origin firing. We found that pharmacological concentrations of SAHA induce replication-mediated DNA damage, on the basis of single-cell and single-DNA molecule analyses. Molecular combing indicated slowdown in replication speed along with activation of dormant replication origins in response to SAHA. Similar results were obtained using siRNA-mediated depletion of HDAC3 expression, implicating this HDAC member as a likely target in the SAHA response. Activation of dormant origins was confirmed by molecular analyses of the β-globin locus control region. Our findings indicate that SAHA produces profound alterations in DNA replication that cause DNA damage, establishing a critical link between robust chromatin acetylation and DNA replication in human cancer cells. PMID:20460513

  4. Using disdrometer, radar, lightning, and model data to investigate severe thunderstorm microphysics

    NASA Astrophysics Data System (ADS)

    Kalina, Evan Anthony

    Dual-polarization radar, disdrometer, lightning, and model data are analyzed to determine 1) the usefulness and accuracy of disdrometer and attenuation-corrected X-band mobile radar data from severe thunderstorms, 2) the effect of cloud condensation nuclei (CCN) concentration on idealized supercell thunderstorms, and 3) the synoptic weather, dual-polarization radar, and lightning characteristics of Colorado plowable hailstorms. The results in Chapter 2 demonstrate that the best agreement (1 dB in reflectivity Z and 0.2 dB in differential reflectivity ZDR) between the disdrometer and X-band radar data was obtained when the radar signal quality index (SQI) was at least 0.8 and large hail was not present. Disagreement in Z (ZDR) increased to 6 dB (1.6 dB) and 13 dB (0.6 dB) in large hail and SQI < 0.8, respectively. Since better agreement was obtained under these conditions when the disdrometer measurements were compared to S-band radar data, the X-band attenuation-correction scheme was likely responsible for the disagreement. In Chapter 3, results from idealized supercell thunderstorm simulations in which the CCN concentration was varied from 100-10 000 cm-3 for several different environmental soundings are presented. Changes in the microphysical process rates saturated at CCN ≈ 3000 cm-3. In heavily polluted conditions (CCN = 10 000 cm-3), supercell thunderstorms formed up to 30% larger rain and 3% larger hail particles, produced up to 25 mm more precipitation near the updraft, and tracked more poleward. The area and size of the cold pool were also sensitive to the CCN concentration, especially when the low-level relative humidity was fairly dry (˜60%). Chapter 4 analyzes the synoptic weather, radar, and lightning characteristics from four severe thunderstorms that produced "plowable" hail accumulations of 15-60 cm along the Colorado Front Range. Westerly flow at 500 hPa at slow speeds (5-15 m s-1), combined with moist upslope low-level flow, accompanied each

  5. Analysis of Cumulonimbus (Cb), Thunderstorm and Fog for Izmir Adnan Menderes Airport

    NASA Astrophysics Data System (ADS)

    Avsar, Ercument

    2016-07-01

    Demand for airline transport has been increasing day by day with the development of the aviation industry in Turkey. Meteorological conditions are among the most important factors that influence aviation facilities. Meteorological events cause delays and cancellation of flights which create economic and time losses, and they even lead to accidents and breakups. The most important meteorological events that affect the takeoff and landing of airplanes can be listed as wind, runway visual range, cloud, rain, icing, turbulence, and low level windshear. Meteorological events that affect the aviation facilities most often in Adnan Menderes Airport (LTBJ), the fourth largest airport in Turkey in terms of air traffic, are fog, Cumulonimbus (Cb) clouds and thunderstorms (TS-Thunderstorm). Therefore, it is important to identify the occurrence time of these events based on the analysis of data over many years and do the flight plans based on this meteorological information in order to make the aviation facilities safer and without delays. In this study, statistical analysis on the formation of Cb clouds, thunderstorm and foggy days is conducted using observations produced for aviation (METAR) and special observers (SPECI). It is found that there are two types of fog that are observed most often at LTBJ, namely radiation and advection fogs, accordingly to the results of statistical analysis based on data from 2004 to 2014. Fog events are found to occur most often in the months of December and January, during 04:00 - 07:00 UTC time interval, between pressure values over 1015-1020 hPa, in 130-190 degree light breeze (1-5KT) and in temperature levels between 5°C and 8°C. Thunderstorm events recorded at LTBJ between the years 2004 and 2014 are most often observed in the months of January and February, in 120-210 degree gentle breeze winds (6-10KT), and in temperature levels between 8 and 18 °C. Key Words: Adnan Menderes International Airport, LTBJ, Fog, Thunderstorm (TS), Cb

  6. Thunderstorm-associated bronchial asthma: a forgotten but very present epidemic.

    PubMed

    Al-Rubaish, Abdullah M

    2007-05-01

    Acute episodes of bronchial asthma are associated with specific etiological factors such as air pollutants and meteorological conditions including thunderstorms. Evidence suggests that thunderstorm-associated asthma (TAA) may be a distinct subset of asthmatics, and, epidemics have been reported, but none from Saudi Arabia.The trigger for this review was the TAA epidemic in November 2002, Eastern Saudi Arabia. The bulk of patients were seen in the King Fahd Hospital of the University, Al-Khobar. The steady influx of acute cases were managed effectively and involved all neighboring hospitals, without evoking any "Major Incident Plan".THREE GROUPS OF FACTORS ARE IMPLICATED AS CAUSES OF TAA: pollutants (aerobiologic or chemical) and meteorological conditions. Aerobiological pollutants include air-borne allergens: pollen and spores of molds. Their asthma-inducing effect is augmented during thunderstorms.Chemical pollutants include greenhouse gases, heavy metals, ozone, nitrogen dioxide, sulfur dioxide, fumes from engines and particulate matter. Their relation to rain-associated asthma is mediated by sulfuric and nitric acid.Outbreaks of non-epidemic asthma are associated with high rainfall, drop in maximum air temperature and pressure, lightning strikes and increased humidity. Thunderstorm can cause all of these and it seems to be related to the onset of asthma epidemic.Patients in epidemics of TAA are usually young atopic adults not on prophylaxis steroid inhalers. The epidemic is usually their first known attack. These features are consistent with the hypothesis that TAA is related to both aero-allergens and weather effects. Subjects allergic to pollen who are in the path of thunderstorm can inhale air loaded with pollen allergen and so have acute asthmatic response. TAA runs a benign courseDoctors should be aware of this phenomenon and the potential outbreak of asthma during heavy rains. A & E departments and ICU should be alert for possible rush of asthmatic

  7. Thunderstorm-associated bronchial asthma: a forgotten but very present epidemic.

    PubMed

    Al-Rubaish, Abdullah M

    2007-05-01

    Acute episodes of bronchial asthma are associated with specific etiological factors such as air pollutants and meteorological conditions including thunderstorms. Evidence suggests that thunderstorm-associated asthma (TAA) may be a distinct subset of asthmatics, and, epidemics have been reported, but none from Saudi Arabia.The trigger for this review was the TAA epidemic in November 2002, Eastern Saudi Arabia. The bulk of patients were seen in the King Fahd Hospital of the University, Al-Khobar. The steady influx of acute cases were managed effectively and involved all neighboring hospitals, without evoking any "Major Incident Plan".THREE GROUPS OF FACTORS ARE IMPLICATED AS CAUSES OF TAA: pollutants (aerobiologic or chemical) and meteorological conditions. Aerobiological pollutants include air-borne allergens: pollen and spores of molds. Their asthma-inducing effect is augmented during thunderstorms.Chemical pollutants include greenhouse gases, heavy metals, ozone, nitrogen dioxide, sulfur dioxide, fumes from engines and particulate matter. Their relation to rain-associated asthma is mediated by sulfuric and nitric acid.Outbreaks of non-epidemic asthma are associated with high rainfall, drop in maximum air temperature and pressure, lightning strikes and increased humidity. Thunderstorm can cause all of these and it seems to be related to the onset of asthma epidemic.Patients in epidemics of TAA are usually young atopic adults not on prophylaxis steroid inhalers. The epidemic is usually their first known attack. These features are consistent with the hypothesis that TAA is related to both aero-allergens and weather effects. Subjects allergic to pollen who are in the path of thunderstorm can inhale air loaded with pollen allergen and so have acute asthmatic response. TAA runs a benign courseDoctors should be aware of this phenomenon and the potential outbreak of asthma during heavy rains. A & E departments and ICU should be alert for possible rush of asthmatic

  8. Isolation and sequencing of active origins of DNA replication by nascent strand capture and release (NSCR)

    PubMed Central

    Kunnev, Dimiter; Freeland, Amy; Qin, Maochun; Wang, Jianmin; Pruitt, Steven C.

    2015-01-01

    Nascent strand capture and release (NSCR) is a method for isolation of short nascent strands to identify origins of DNA replication. The protocol provided involves isolation of total DNA, denaturation, size fractionation on a sucrose gradient, 5′-biotinylation of the appropriate size nucleic acids, binding to a streptavidin coated magnetic beads, intensive washing, and specific release of only the RNA-containing chimeric nascent strand DNA using ribonuclease I (RNase I). The method has been applied to mammalian cells derived from proliferative tissues and cell culture but could be used for any system where DNA replication is primed by a small RNA resulting in chimeric RNA-DNA molecules. PMID:26949711

  9. Measurement of energetic radiation generated during thunderstorm by a sounding balloon and an airplane

    NASA Astrophysics Data System (ADS)

    Torii, Tatsuo; Sanada, Yukihisa; Nishizawa, Yukiyasu; Yamada, Tsutomu; Orita, Tadashi; Muraoka, Koji; Sato, Masayuki; Watanabe, Akira

    2015-04-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the source location of the radiation and its energy distribution, we observed radiation using a sounding balloon and an airplane in the inside and above the thundercloud which would be near a source of radiation. On the measurement in the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), besides meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of 2 GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Then, we measured the variation of the energetic radiation from the top of the thundercloud using an airplane. At this time, we used two NaI detectors different in the size -- the large one is with the size of 5 inches (12.7cmφ ×12.7cm) to detect the energetic radiation (< 30 MeV) that will be emitted from strong electric field in a thundercloud, and 3 inches (7.62cmφ×7.62cm) detector for the measurement of low energy gamma-rays( < 3 MeV). We performed the radiation measurement by flying around the thunderclouds at 12 -- 14 km in height by the observation in the summer. Furthermore, in the winter season, we flew 5 -- 6 km in height and measured the radiation around the thunderclouds. The event that the counting rate was slightly exceeding a normal variation was observed by a result of the winter observation. About the cause, we are analyzing it now. We report the result of these measurements and

  10. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress.

    PubMed

    Ercilla, Amaia; Llopis, Alba; Feu, Sonia; Aranda, Sergi; Ernfors, Patrik; Freire, Raimundo; Agell, Neus

    2016-06-01

    Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/C(Cdh1) is activated upon severe replication stress. Activation of APC/C(Cdh1) prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/C(Cdh1) activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/C(Cdh1) activity correlated with an increase in genomic instability. Taken together, our results define a new APC/C(Cdh1) function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity. PMID:26939887

  11. Mexican-Origin Youth Participation in Extracurricular Activities: Predicting Trajectories of Involvement from 7th to 12th Grade.

    PubMed

    Dawes, Nickki Pearce; Modecki, Kathryn L; Gonzales, Nancy; Dumka, Larry; Millsap, Roger

    2015-11-01

    The potential benefits of participation in extracurricular activities may be especially important for youth who are at risk for academic underachievement, such as low income Mexican-origin youth in the U.S. To advance understanding of factors that drive participation for this population, this study examined Mexican-origin youth's trajectories of participation in extracurricular activities across Grades 7-12 and tested theoretically-derived predictors of these trajectories. Participants were 178 adolescents (53.9 % Female, Mage = 12.28) and their mothers who separately completed in-home interviews. Youth reported the frequency of their participation across a range of extracurricular activities. Latent growth curve models of overall extracurricular activities participation, sports participation, and fine arts participation were individually estimated via structural equation modeling. The findings demonstrated developmental declines in overall participation and in sports participation. For fine arts, declines in participation in middle school were followed by subsequent increases during high school (a curvilinear pattern). Motivationally-salient predictors of participation trajectories included youth's traditional cultural values orientation (sports), the mothers' educational aspirations for the youth (sports, fine arts, overall activity), and youth gender (sports, fine arts). Overall, the results suggest variability in participation trajectories based on program type, and highlight the need for additional research to enhance our understanding of the impact of culturally-relevant predictors on participation over time.

  12. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress.

    PubMed

    Ercilla, Amaia; Llopis, Alba; Feu, Sonia; Aranda, Sergi; Ernfors, Patrik; Freire, Raimundo; Agell, Neus

    2016-06-01

    Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/C(Cdh1) is activated upon severe replication stress. Activation of APC/C(Cdh1) prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/C(Cdh1) activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/C(Cdh1) activity correlated with an increase in genomic instability. Taken together, our results define a new APC/C(Cdh1) function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity.

  13. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane

    PubMed Central

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X. S.

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species. PMID:26729288

  14. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane

    NASA Astrophysics Data System (ADS)

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X. S.

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species.

  15. Climate-driven increase in the variability and multi-year mean level of severe thunderstorm-related losses and thunderstorm forcing environments in the U.S. since 1970

    NASA Astrophysics Data System (ADS)

    Sander, Julia; Eichner, Jan; Faust, Eberhard; Steuer, Markus

    2013-04-01

    In the year 2011, direct losses from thunderstorms reached US 26 billion (insured) and US 47 billion (economic), thus equalling the dimension of losses caused by Hurricane Sandy in the New York area 2012. Beyond doubt the 2011 damages had outlier characteristics due to two cities hit by tornadoes. Nonetheless a substantial increase in the variability of normalised direct economic and insured severe thunderstorm-related losses in the U.S. east of the Rocky Mountains over the period 1970-2009 (March - September) has been detected. Besides the annual variability, also the multi-year mean level of losses has strongly increased. Our study focused on sizeable severe thunderstorm events causing at least US 250 million in normalized economic losses. The high threshold guarantees homogeneity over time, because those events regularly covered several states and thus are very unlikely to have been missed at any time due to reporting variability. To shed light on the question whether the strong increase was driven by an external climate driver, the time series of normalized losses (annual counts and annual loss aggregate) was correlated with the time series of thunderstorm forcing environments. The latter were inferred from NCEP/NCAR reanalysis data and comprise 6-hourly CAPE and vertical wind shear data combined to form a variable called Thunderstorm Severity Potential (TSP). From the notable correlation found between the time series of normalized thunderstorm-related losses and meteorologically registered thunderstorm forcing environments (TSP) it could be inferred that climate was the dominant driver for the increase in variability and average level of thunderstorm-related losses over the period 1970-2009. An important component in the rise of TSP over time could be identified in CAPE, as we found a substantial rise in the annual number of exceedances of a high CAPE threshold in the reanalysis data. Recent studies imply that the changes observed in our study, particularly

  16. Changes of Electron Density in the Ionosphere in Response to Lightning Discharges and Their Parental Thunderstorms (Invited)

    NASA Astrophysics Data System (ADS)

    Shao, X.; Lay, E. H.; Jacobson, A. R.; Carrano, C. S.

    2013-12-01

    Thunderstorms and their lightning discharges have been reported to disturb the lower ionosphere (D-layer) and possibly the upper ionosphere (F-layer) by acoustic and atmospheric gravity waves, by electric field changes produced by lightning discharges, and by conduction current driven by thunderstorm's static electric field. However, many of the perturbative effects are not well understood due to the complexity of the coupling effects and the technical challenges of the relevant measurements. In this talk, we present our recent observational results on the changes of D-layer electron density due to lightning discharges and due to electrically active parental storms. We will also report our recent observations of TEC (total electron content) fluctuations in the ionospheric F-layer related to mesoscale storms. For the D-layer observations, we use VLF/LF time waveforms of lightning signals as probing sources and are able to detect the electron profile in a spatially and temporally-resolved manner. We found that electron density in the nighttime D-layer was reduced significantly in response to lightning discharges atop a small storm, and the extent of the reduction is closely related in time and space to the rate of lightning discharges, supporting the EMP-enhanced electron attachment theories. On the other hand, an electrified storm as whole appears to steadily induce more electrons at the lower level in the nighttime D-layer, apparently due to the static electrical field/current effect. Through these two competing processes the D-layer electron density distribution could become highly inhomogeneous in space and time. The TEC variation near mesoscale storms were observed with an array of ground-based GPS (the Global Positioning System) receivers. We found that anomalous TEC variations are closely associated in time and space with mesoscale storms, apparently related to storm-produced acoustic-gravity waves. The largest variation is observed to be 1.4 TECU (10^16 e/m^2

  17. 12 CFR Appendix A to Subpart D of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (iii) Is inputting information into an online application or other automated system on behalf of the... or gain includes engaging in any of the activities in paragraph (b)(1) of this Appendix in the...

  18. 12 CFR Appendix A to Subpart B of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... responsible for verifying information; (iii) Is inputting information into an online application or other... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  19. 12 CFR Appendix A to Subpart D of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (iii) Is inputting information into an online application or other automated system on behalf of the... or gain includes engaging in any of the activities in paragraph (b)(1) of this Appendix in the...

  20. 12 CFR Appendix A to Part 610 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... responsible for verifying information; (iii) Is inputting information into an online application or other... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  1. 12 CFR Appendix A to Part 610 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... responsible for verifying information; (iii) Is inputting information into an online application or other... activities in paragraph (b)(1) of this appendixin the course of carrying out employment duties, even if...

  2. 12 CFR Appendix A to Subpart I of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... online application or other automated system on behalf of the consumer; or (iv) Is not engaged in... activities in paragraph (b)(1) of this appendix in the course of carrying out employment duties, even if...

  3. 12 CFR Appendix A to Subpart D of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (iii) Is inputting information into an online application or other automated system on behalf of the... or gain includes engaging in any of the activities in paragraph (b)(1) of this Appendix in the...

  4. 12 CFR Appendix A to Subpart B of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... responsible for verifying information; (iii) Is inputting information into an online application or other... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  5. 12 CFR Appendix A to Part 610 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... responsible for verifying information; (iii) Is inputting information into an online application or other... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  6. 12 CFR Appendix A to Subpart D of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (iii) Is inputting information into an online application or other automated system on behalf of the... or gain includes engaging in any of the activities in paragraph (b)(1) of this Appendix in the...

  7. 12 CFR Appendix A to Subpart I of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... online application or other automated system on behalf of the consumer; or (iv) Is not engaged in... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  8. 12 CFR Appendix A to Subpart I of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... online application or other automated system on behalf of the consumer; or (iv) Is not engaged in... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  9. 12 CFR Appendix A to Subpart I of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... online application or other automated system on behalf of the consumer; or (iv) Is not engaged in... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  10. 12 CFR Appendix A to Subpart B of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... responsible for verifying information; (iii) Is inputting information into an online application or other... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  11. 12 CFR Appendix A to Subpart B of... - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... responsible for verifying information; (iii) Is inputting information into an online application or other... activities in paragraph (b)(1) of this Appendix in the course of carrying out employment duties, even if...

  12. Identification and compatibility of the major active principles in some new natural origin antiseptics

    NASA Astrophysics Data System (ADS)

    Nikolić, G. S.; Zlatković, S.; Nikolić, N.

    2009-09-01

    The newly established instrumentation of HPLC/DAD, FTIR, and NMR techniques have been applied for simultaneous identification and physicochemical compatibility determination of the potential major antiseptic constituents ( Hypericum perforatum L. and Usnea barbata extracts) which can be present in some new origin pharmaceutical preparation. Based on the obtained results the conclusion is that a simultaneous use of the analyzed constituents in production of some new preparations with antiseptic properties is possible. The chromatographic separation of antiseptic mixture was performed on a RP-HPLC C18 column. For the NMR detection, the analytes eluted from LC column were trapped and hereafter transported into the NMR flow-cell. The NMR and FTIR techniques allowed the characterization of the major constituent of Hypericum perforatum L., mainly hypericin, as well as of Usnea barbata, mainly usnic acid.

  13. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A. ); Siemiginowska, A. )

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such star tails'' with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  14. Star-disk collisions in active galactic nuclei and the origin of the broad line region

    SciTech Connect

    Zurek, W.H.; Colgate, S.A.; Siemiginowska, A.

    1991-12-05

    Stars of a cluster surrounding the central black hole in an AGN will collide with the accretion disk. For a central black hole of 10{sup 8} M{circle_dot} and a cluster with 10{sup 7} {minus} 10{sup 8} stars within a parsec, one estimates that {approximately}10{sup 4} such collisions will occur per year. Collisions are hypersonic (Mach number M {much_gt} 1). Some of the wake of the star -- the disk material shocked by its passage -- will follow it out of the disk. Such ``star tails`` with the estimated masses {delta}m {approximately} 10{sup 25} {minus} 10{sup 27} g subsequently expand, cool and begin to recombine. We propose that -- when illuminated by the ionizing flux from the central source -- they are likely to be the origin of the observed broad emission lines.

  15. Projections of Active and Break Spells of the Indian Summer Monsoon using Original and Statistical Downscaled CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    Singh, S.; Salvi, K.; Ghosh, S.; Karmakar, S.

    2014-12-01

    The dual nature of Indian monsoon system viz. south-west and the north-east is a potent advantage for Indian economy, which is mainly supported by agriculture industry. Out of these, the south-west monsoon contributes around 70% of the total annual rainfall over India and hence, forms the major source of water for agriculture. However, the south-west monsoon possesses variability on different temporal scales such as daily, intra-seasonal, annual and decadal time-scales. Among these, understanding of the intra-seasonal variability of south-west monsoon, which is characterized by spells of good/excess rainfall (active spells) and spells of less/no rainfall (break spells) over core monsoon zone in the peak monsoon months (July and August), is the most important for crop cycle planning. Long and intense active (break) spells may lead to flood (drought) and both these situations are crucial for the critical (initial) growth period of the crops and these situations may lead to reduced yield. So, accurate prediction of these events is essential for better agricultural planning. Therefore, we evaluate the ability of, General Circulation Models (GCMs) and statistically downscaled rainfall simulations at 0.5˚ resolution, to capture the intra-seasonal variability (in terms of active and break spells) revealed by observed rainfall data. We also project the duration and frequency of active and break spells with original and downscaled GCM simulations. The analysis is performed over spatially averaged rainfall time series (over core monsoon zone) for July and August, simulated with five GCMs simulations (both with original and downscaled) over historic period (1951-2005) and extreme future (RCP45, 2071-2100). Comparison results revealed that the GCMs simulations (original and downscaled) lack the skills to reproduce active/break spells shown by observed data. Both original and downscaled GCMs showed increase/decrease in active/break spells in future and changes are more in

  16. Characterisation of faecal protease activity in irritable bowel syndrome with diarrhoea: origin and effect of gut transit

    PubMed Central

    Tooth, David; Garsed, Klara; Singh, Gulzar; Marciani, Luca; Lam, Ching; Fordham, Imogen; Fields, Annie; Banwait, Rawinder; Lingaya, Melanie; Layfield, Robert; Hastings, Maggie; Whorwell, Peter; Spiller, Robin

    2014-01-01

    Objectives Faecal serine proteases (FSPs) may play a role in irritable bowel syndrome with diarrhoea (IBS-D), but their origin is unclear. We aimed to structurally characterise them and define the impact of colonic cleansing and transit time. Design Faecal samples were obtained from 30 healthy volunteers (HV) and 79 patients with IBS-D participating in a trial of ondansetron versus placebo. Colonic transit was measured using radio-opaque markers. Samples were also obtained from 24 HV before and after colonic cleansing with the osmotic laxative MoviPrep. FSPs were purified from faecal extracts using benzamidine-Sepharose affinity chromatography. SDS-PAGE profiled components were identified using trypsinolysis and tandem mass spectrometry. Functional protease activity in faecal extracts was measured using a colorimetric assay based on the proteolysis of azo-casein. Results Protein analysis identified the most abundant FSPs as being of human origin and probably derived from pancreatic juice. Functional assays showed increased faecal protease (FP) and amylase in patients with IBS-D compared with HV. Those with higher amylase had significantly higher FP and greater anxiety. FP activity correlated negatively with whole gut transit in patients with IBS-D (Spearman r=−0.32, p=0.005) and HV (r=−0.55, p=0.014). Colon cleansing caused a significant rise in FP activity in HV from a baseline of median (IQR) 253 (140–426) to 1031 (435–2296), levels similar to those seen in patients with IBS-D. FSP activity correlated positively with days/week with urgency. Conclusions The most abundant FSPs are of human origin. Rapid transit through the colon and/or decreased (possibly bacterial) proteolytic degradation increases their faecal concentration and could contribute to visceral hypersensitivity in patients with IBS-D. ClinicalTrials.gov NCT00745004. PMID:23911555

  17. The NASA Thunderstorm Observations and Research (ThOR) Mission: Lightning Mapping from Space to Improve the Short-term Forecasting of Severe Storms

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Christian, H. J.; Boccippio, D. J.; Koshak, W. J.; Cecil, D. J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The ThOR mission uses a lightning mapping sensor in geostationary Earth orbit to provide continuous observations of thunderstorm activity over the Americas and nearby oceans. The link between lightning activity and cloud updrafts is the basis for total lightning observations indicating the evolving convective intensification and decay of storms. ThOR offers a national operational demonstration of the utility of real-time total lightning mapping for earlier and more reliable identification of potentially severe and hazardous storms. Regional pilot projects have already demonstrated that the dominance in-cloud lightning and increasing in-cloud lash rates are known to precede severe weather at the surface by tens of minutes. ThOR is currently planned for launch in 2005 on a commercial or research satellite. Real-time data will be provided to selected NWS Weather Forecast Offices and National Centers (EMC/AWC/SPC) for evaluation.

  18. An investigation on the evolution process of thunderstorms over a metropolis of India using DWR Max_ Z products and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Khan, Fatema; Pal, Jayanti; Goswami, Sayantika; Middey, Anirban

    2015-02-01

    Thunderstorms are well-known severe weather phenomena of the Gangetic West Bengal (GWB) region of India. The objective of the present study is to identify the ranges of Max_ Z parameters of Doppler Weather Radar (DWR) associated with precipitating clouds that eventually grow into thunderstorms and to obtain a model to assess the predictability of thunderstorm and non-thunderstorm events with maximum possible accuracy during the pre-monsoon season (April-May) over the metropolis Kolkata (22.6°N; 88.4°E) enclosed within GWB (20-26°N, 85-91°E), India. The DWR imageries are analyzed to identify the stages of thunderstorm development. The survival of the fittest principle of genetic algorithm (GA) is implemented to find a suitable combination of the DWR Max_ Z parameters; the reflectivity, distance of the first detected echo from Kolkata where the DWR is installed and the echo top height for the genesis of thunderstorms. The problem is posed as an optimization problem and the values of the parameters are converted into binary strings. The result reveals that the echoes with reflectivity between 44 and 48 dBZ at a distance of 250-300 km from Kolkata with echo top height between 13 and 15 km have the maximum possibility to grow into a thunderstorm. The artificial neural network (ANN) model is developed with the values of the Max_ Z parameters optimized by GA as the inputs. The target of the ANN model is to forecast the type of the echo cells leading either to thunderstorm or non-thunderstorm events. The result further reveals that the ANN model with three hidden layers and one node in each layer is the most suitable model for estimating the likelihood of thunderstorm/non-thunderstorm events with mean absolute error (MAE) of 0.71/2.81. The result of the study is validated with the observation of India Meteorological Department.

  19. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA

    NASA Technical Reports Server (NTRS)

    Opitz, J. G.; Ciglic, M. I.; Haugg, M.; Trautwein-Fritz, K.; Raillard, S. A.; Jermann, T. M.; Benner, S. A.

    1998-01-01

    Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic activity. These experiments have been guided in part by experimental reconstructions of ancestral RNases from extinct organisms that were intermediates in the evolution of the RNase superfamily. It is shown that the enhanced interactions between bovine seminal RNase and double-stranded nucleic acid do not arise from the increased number of basic residues carried by the seminal enzyme. Rather, a combination of a dimeric structure and the introduction of two glycine residues at positions 38 and 111 on the periphery of the active site confers the full catalytic activity of bovine seminal RNase against duplex RNA. A structural model is presented to explain these data, the use of evolutionary reconstructions to guide protein engineering experiments is discussed, and a new variant of RNase A, A(Q28L K31C S32C D38G E111G), which contains all of the elements identified in these experiments as being important for duplex activity, is prepared. This is the most powerful catalyst within this subfamily yet observed, some 46-fold more active against duplex RNA than RNase A.

  20. Use of RegCM gridded dataset for thunderstorm favorable conditions analysis over Poland—climatological approach

    NASA Astrophysics Data System (ADS)

    Walawender, Ewelina; Kielar, Rafał; Ustrnul, Zbigniew

    2015-09-01

    The paper analyzes equivalent data for a low density meteorological station network (spatially discontinuous data) and poor temporal homogeneity of thunderstorm observational data. Due to that, a Regional Climate Model (RegCM) dataset was tested. The Most Unstable Convective Available Potential Energy index value (MUCAPE) above the 200 J kg-1 threshold was selected as a predictor describing favorable conditions for the occurrence of thunderstorms. The quality of the dataset was examined through a comparison between model results and soundings from several aerological stations in Central Europe. Good, statistically significant (0.05 significance level) results were obtained through correlation analysis; the value of Pearson's correlation coefficient was above 0.8 in every single case. Then, using methods associated with gridded climatology, data series for 44 weather stations were derived and an analysis of correlation between RegCM modeled data and in situ thunderstorm observations was conducted with coefficients in the range of 0.75-0.90. The possibility of employing the dataset in thunderstorm climatology analysis was checked via a few examples by mapping monthly, seasonal, and annual means. Moreover, long-term variability and trend analysis along with modeled MUCAPE data were tested. As a result, the RegCM modeled MUCAPE gridded dataset was proposed as an easily available, suitable, and valuable predictor for thunderstorm climatology analysis and mapping. Finally, some limitations are discussed and recommendations for further improvements are given.

  1. Local and thalamic origins of correlated ongoing and sensory-evoked cortical activities

    PubMed Central

    Cohen-Kashi Malina, Katayun; Mohar, Boaz; Rappaport, Akiva N.; Lampl, Ilan

    2016-01-01

    Thalamic inputs of cells in sensory cortices are outnumbered by local connections. Thus, it was suggested that robust sensory response in layer 4 emerges due to synchronized thalamic activity. To investigate the role of both inputs in the generation of correlated cortical activities, we isolated the thalamic excitatory inputs of cortical cells by optogenetically silencing cortical firing. In anaesthetized mice, we measured the correlation between isolated thalamic synaptic inputs of simultaneously patched nearby layer 4 cells of the barrel cortex. Here we report that in contrast to correlated activity of excitatory synaptic inputs in the intact cortex, isolated thalamic inputs exhibit lower variability and asynchronous spontaneous and sensory-evoked inputs. These results are further supported in awake mice when we recorded the excitatory inputs of individual cortical cells simultaneously with the local field potential in a nearby site. Our results therefore indicate that cortical synchronization emerges by intracortical coupling. PMID:27615520

  2. A THEORY ON THE CONVECTIVE ORIGINS OF ACTIVE LONGITUDES ON SOLAR-LIKE STARS

    SciTech Connect

    Weber, Maria A.; Fan Yuhong; Miesch, Mark S.

    2013-06-20

    Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective flows, we find that the distribution of emerging flux tubes in our simulation is inhomogeneous in longitude, with properties similar to those of active longitudes on the Sun and other solar-like stars. The large-scale pattern of flux emergence our simulations produce exhibits preferred longitudinal modes of low order, drift with respect to a fixed reference system, and alignment across the equator at low latitudes between {+-}15 Degree-Sign . We suggest that these active-longitude-like emergence patterns are the result of columnar, rotationally aligned giant cells present in our convection simulation at low latitudes. If giant convecting cells exist in the bulk of the solar convection zone, this phenomenon, along with differential rotation, could in part provide an explanation for the behavior of active longitudes.

  3. Metabolism of d-Arabinose: Origin of a d-Ribulokinase Activity in Escherichia coli1

    PubMed Central

    LeBlanc, Donald J.; Mortlock, Robert P.

    1971-01-01

    The kinase responsible for the phosphorylation of d-ribulose was purified 45.5-fold from a strain of Escherichia coli K-12 capable of growth on d-arabinose with no separation of d-ribulo- or l-fuculokinase activities. Throughout the purification, the ratios of activities remained essentially constant. A nonadditive effect of combining both substrates in an assay mixture; identical Km values for adenosine triphosphate with either l-fuculose or d-ribulose as substrate; and, the irreversible loss of activity on both substrates, after removal of magnesium ions from the enzyme preparation, suggest that the dual activity is due to the same enzyme. A fourfold greater affinity of the enzyme for l-fuculose than for d-ribulose, as well as a higher relative activity on l-fuculose, suggest that the natural substrate for this enzyme is l-fuculose. The product of the purified enzyme, with d-ribulose as substrate, was prepared. The ratio of total phosphorous to ribulose phosphate was 1.01:1, indicating that the product was ribulose monophosphate. The behavior of the kinase product in the cysteine-carbazole and orcinol reactions, as well as the results of periodate oxidation assays, provided evidence that it was not d-ribulose-5-phosphate. Reaction of this compound with a cell-free extract of E. coli possessing l-fuculose-l-phosphate aldolase activity resulted in the production of dihydroxyacetone phosphate and glycolaldehyde. The kinase product failed to reduce 2,3,5-triphenyltetrazolium and possessed a half-life of approximately 1.5 min in the presence of 1 n HCl at 100 C. These properties suggested that the phosphate group was attached to carbon atom 1 of d-ribulose. PMID:4323967

  4. neutron activation analysis using thermochromatography. III. analysis of samples of biological origin

    SciTech Connect

    Sattarov, G.; Davydov, A.V.; Khamatov, S.; Kist, A.A.

    1986-07-01

    The use of gas thermochromatography (GTC) in the radioactivation analysis of biological materials is discussed. A group separation of a number of highly volatile elements from sodium and bromine radionuclides has been achieved. The limit of detection of the elements by INAA and neutron activation analysis was estimated using GTC. The advantages of the procedure and the analytical parameters are discussed.

  5. Troublesome Sentiments: The Origins of Dewey's Antipathy to Children's Imaginative Activities

    ERIC Educational Resources Information Center

    Waddington, David I.

    2010-01-01

    One of the interesting aspects of Dewey's early educational thought is his apparent hostility toward children's imaginative pursuits, yet the question of why this antipathy exists remains unanswered. As will become clear, Dewey's hostility towards imaginative activities stemmed from a broad variety of concerns. In some of his earliest work, Dewey…

  6. 12 CFR Appendix A to Part 1008 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... aid in the understanding of activities that would cause an individual to fall within or outside the... responsible for verification, an individual can still “take a residential mortgage loan application” even if...) Generally describes for a borrower or prospective borrower the loan application process without a...

  7. 12 CFR Appendix A to Part 1008 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... aid in the understanding of activities that would cause an individual to fall within or outside the... responsible for verification, an individual can still “take a residential mortgage loan application” even if...) Generally describes for a borrower or prospective borrower the loan application process without a...

  8. 12 CFR Appendix A to Part 1008 - Examples of Mortgage Loan Originator Activities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... aid in the understanding of activities that would cause an individual to fall within or outside the... responsible for verification, an individual can still “take a residential mortgage loan application” even if...) Generally describes for a borrower or prospective borrower the loan application process without a...

  9. Seismic structure and origin of active intraplate volcanoes in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Duan, Yonghong; Zhao, Dapeng; Zhang, Xiankang; Xia, Shaohong; Liu, Zhi; Wang, Fuyun; Li, Li

    2009-05-01

    Three-dimensional P-wave velocity structure beneath the Changbai and other intraplate volcanic areas in Northeast Asia is determined by inverting 1378 high-quality P-wave arrival times from 186 teleseismic events recorded by 61 broadband seismic stations. Low-velocity (low-V) anomalies are revealed beneath the Changbai, Longgan, Xianjindao volcanoes. High-velocity (high-V) anomalies are found in the mantle transition zone, where deep-focus earthquakes under Hunchun occur at depths of 500-600 km. The high-V anomaly reflects the deep subduction of the Pacific slab under NE Asia which may have contributed to the formation of the Changbai, Longgang, Xianjindao and Jingpohu intraplate volcanoes. A low-V anomaly is also revealed in the mantle transition zone, which may have a close relationship with the occurrence of deep earthquakes under the Hunchun area. Our results support the Big Mantle Wedge (BMW) model by Zhao et al. [Zhao, D., Lei, J., Tang, Y., 2004. Origin of the Changbai volcano in northeast China: evidence from seismic tomography, Chin. Sci. Bull. 49, 1401-1408; Zhao, D., Maruyama, S., Omori, S., 2007. Mantle dynamics of western Pacific and East Asia: insight from seismic tomography and mineral physics. Gondwana Res. 11, 120-131.] who proposed that the intraplate volcanoes in NE Asia are caused by the back-arc magmatism associated with the deep dehydration process of the subducting slab and convective circulation process in the BMW above the stagnant Pacific slab.

  10. [Discovery of Novel Biologically Active Compounds of Natural Origin, with a Focus on Anti-tumor Activity].

    PubMed

    Yokosuka, Akihito

    2015-01-01

    Numerous clinically valuable medicines, including anticancer drugs, have been developed from biologically active natural compounds and their structurally related derivatives. This review discusses novel natural compounds with promising biological activities and those with novel chemical structures. Glaziovianin A, an isoflavone isolated from the leaves of Ateleia glazioviana (Legminosae), inhibited cell cycle progression at the M-phase with an abnormal spindle structure. AU-1 and YG-1, 5β-steroidal glycosides isolated from the whole plants of Agave utahensis and the underground parts of Yucca glauca (Agavaceae), induced apoptosis of HL-60 cells via caspase-3 activation. Lycolicidinol, an alkaloid isolated from the bulbs of Lycoris albiflora (Amaryllidaceae), induced transient autophagy and morphological changes in mitochondria in the early stage of the apoptotic cell death process in HSC-2 cells. Taccasterosides isolated from the rhizomes of Tacca chantrieri (Taccaceae) and stryphnosides isolated from the pericarps of Stryphnodendron fissuratum (Legminosae) are steroidal and triterpene glycosides with unique chemical structures having novel sugar sequences.

  11. A virtual tornadic thunderstorm enabling students to construct knowledge about storm dynamics through data collection and analysis

    NASA Astrophysics Data System (ADS)

    Gallus, W. A., Jr.; Cervato, C.; Cruz-Neira, C.; Faidley, G.

    2006-06-01

    A visually realistic tornadic supercell thunderstorm has been constructed in a fully immersive virtual reality environment to allow students to better understand the complex small-scale dynamics present in such a storm through data probing. Less-immersive versions have been created that run on PCs, facilitating broader dissemination. The activity has been tested in introductory meteorology classes over the last four years. An exercise involving the virtual storm was first used by a subset of students from a large introductory meteorology course in spring 2002. Surveys were used at that time to evaluate the impact of this activity as a constructivist learning tool. More recently, data probe capabilities were added to the virtual storm activity enabling students to take measurements of temperature, wind, pressure, relative humidity, and vertical velocity at any point within the 3-D volume of the virtual world, and see the data plotted via a graphical user interface. Similar surveys applied to groups of students in 2003 and 2004 suggest that the addition of data probing improved the understanding of storm-scale features, but the improved understanding may not be statistically significant when evaluated using quizzes reflecting short-term retention. The use of the activity was revised in 2005 to first have students pose scientific questions about these storms and think about a scientific strategy to answer their questions before exploring the storm. Once again, scores on quizzes for students who used the virtual storm activity were slightly better than those of students who were exposed to only a typical lecture, but differences were not statistically significant.

  12. Activation of budding yeast replication origins and suppression of lethal DNA damage effects on origin function by ectopic expression of the co-chaperone protein Mge1.

    PubMed

    Trabold, Peter A; Weinberger, Martin; Feng, Li; Burhans, William C

    2005-04-01

    Initiation of DNA replication in eukaryotes requires the origin recognition complex (ORC) and other proteins that interact with DNA at origins of replication. In budding yeast, the temperature-sensitive orc2-1 mutation alters these interactions in parallel with defects in initiation of DNA replication and in checkpoints that depend on DNA replication forks. Here we show that DNA-damaging drugs modify protein-DNA interactions at budding yeast replication origins in association with lethal effects that are enhanced by the orc2-1 mutation or suppressed by a different mutation in ORC. A dosage suppressor screen identified the budding yeast co-chaperone protein Mge1p as a high copy suppressor of the orc2-1-specific lethal effects of adozelesin, a DNA-alkylating drug. Ectopic expression of Mge1p also suppressed the temperature sensitivity and initiation defect conferred by the orc2-1 mutation. In wild type cells, ectopic expression of Mge1p also suppressed the lethal effects of adozelesin in parallel with the suppression of adozelesin-induced alterations in protein-DNA interactions at origins, stimulation of initiation of DNA replication, and binding of the precursor form of Mge1p to nuclear chromatin. Mge1p is the budding yeast homologue of the Escherichia coli co-chaperone protein GrpE, which stimulates initiation at bacterial origins of replication by promoting interactions of initiator proteins with origin sequences. Our results reveal a novel, proliferation-dependent cytotoxic mechanism for DNA-damaging drugs that involves alterations in the function of initiation proteins and their interactions with DNA. PMID:15647270

  13. Adaptation to visual and proprioceptive rearrangement - Origin of the differential effectiveness of active and passive movements

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.

    1977-01-01

    Experiments were conducted to measure and compare the accuracy with which subjects pointed to visual targets before and after an exposure period in which they received systematic proprioceptive misinformation about the locations of visual targets. The crucial factor determining whether adaptation will be elicited is shown to be the presence of a discordance in the positional information being conveyed over two different sensory modalities. Another experiment was carried out to study the effectiveness of active and passive movements in eliciting adaptation when the subjects were exposed to a systematic discordance between the visual and proprioceptive locations of external targets without being permitted sight of their hands. Superiority of active over passive movements in producing adaptation to visual rearrangement is due to the greater accuracy of position sense information about voluntarily moved limbs, partly derived from the contribution of muscle afferent signals.

  14. ON THE ORIGIN OF THE ASYMMETRIC HELICITY INJECTION IN EMERGING ACTIVE REGIONS

    SciTech Connect

    Fan, Y.; Alexander, D.; Tian, L.

    2009-12-10

    To explore the possible causes of the observed asymmetric helicity flux in emerging active regions between the leading and following polarities reported in a recent study by Tian and Alexander, we examine the subsurface evolution of buoyantly rising OMEGA-shaped flux tubes using three-dimensional, spherical-shell anelastic MHD simulations. We find that due to the asymmetric stretching of the OMEGA-shaped tube by the Coriolis force, the leading side of the emerging tube has a greater field strength, is more buoyant, and remains more cohesive compared to the following side. As a result, the magnetic field lines in the leading leg show more coherent values of local twist alpha ident to (nabla x B) centre dot B/B {sup 2}, whereas the values in the following leg show large fluctuations and are of mixed sign. On average, however, the field lines in the leading leg do not show a systematically greater mean twist compared to the following leg. Due to the higher rise velocity of the leading leg, the upward helicity flux through a horizontal cross section at each depth in the upper half of the convection zone is significantly greater in the leading polarity region than that in the following leg. This may contribute to the observed asymmetric helicity flux in emerging active regions. Furthermore, based on a simplified model of active region flux emergence into the corona by Longcope and Welsch, we show that a stronger field strength in the leading tube can result in a faster rotation of the leading polarity sunspot driven by torsional Alfven waves during flux emergence into the corona, contributing to a greater helicity injection rate in the leading polarity of an emerging active region.

  15. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    NASA Technical Reports Server (NTRS)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  16. The active site of oxidative phosphorylation and the origin of hyperhomocysteinemia in aging and dementia.

    PubMed

    McCully, Kilmer S

    2015-01-01

    The active site of oxidative phosphorylation and adenosine triphosphate (ATP) synthesis in mitochondria is proposed to consist of two molecules of thioretinamide bound to cobalamin, forming thioretinaco, complexed with ozone, oxygen, nicotinamide adenine dinucleotide. and inorganic phosphate, TR2CoO3O2NAD(+)H2PO4(-). Reduction of the pyridinium nitrogen of the nicotinamide group by an electron from electron transport complexes initiates polymerization of phosphate with adenosine diphosphate, yielding nicotinamide riboside and ATP bound to thioretinaco ozonide oxygen. A second electron reduces oxygen to hydroperoxyl radical, releasing ATP from the active site. A proton gradient is created within F1F0 ATPase complexes of mitochondria by reaction of protons with reduced nicotinamide riboside and with hydroperoxyl radical, yielding reduced nicotinamide riboside and hydroperoxide. The hyperhomocysteinemia of aging and dementia is attributed to decreased synthesis of adenosyl methionine by thioretinaco ozonide and ATP, causing decreased allosteric activation of cystathionine synthase and decreased allosteric inhibition of methylenetetrahydrofolate reductase and resulting in dysregulation of methionine metabolism. PMID:25887881

  17. Origins of the semiannual variation of geomagnetic activity in 1954 and 1996

    NASA Astrophysics Data System (ADS)

    Cliver, E.; Svalgaard, L.; Ling, A.

    2004-01-01

    . We investigate the cause of the unusually strong semiannual variation of geomagnetic activity observed in the solar minimum years of 1954 and 1996. For 1996 we separate the contributions of the three classical modulation mechanisms (axial, equinoctial, and Russell-McPherron) to the six-month wave in the index and find that all three contribute about equally. This is in contrast to the longer run of geomagnetic activity (1868-1998) over which the equinoctial effect accounts for 70% of the semiannual variation. For both 1954 and 1996, we show that the Russell-McPherron effect was enhanced by the Rosenberg-Coleman effect (an axial polarity effect) which increased the amount of the negative (toward Sun) [positive (away from Sun)] polarity field observed during the first [second] half of the year; such fields yield a southward component in GSM coordinates. Because this favourable condition occurs only for alternate solar cycles, the marked semiannual variation in 1954 and 1996 is a manifestation of the 22-year cycle of geomagnetic activity. The 11-year evolution of the heliospheric current sheet (HCS) also contributes to the strong six-month wave during these years. At solar minimum, the streamer belt at the base of the HCS is located near the solar equator, permitting easier access to high speed streams from polar coronal holes when the Earth is at its highest heliographic latitudes in March and September. Such an axial variation in solar wind speed was observed for 1996 and is inferred for 1954.

  18. Origin of photogenerated carrier recombination at the metal-active layer interface in polymer solar cells.

    PubMed

    Kumar, Mukesh; Dubey, Ashish; Reza, Khan Mamun; Adhikari, Nirmal; Qiao, Qiquan; Bommisetty, Venkat

    2015-11-01

    The role of the metal-active layer interface in photogenerated recombination has been investigated using nanoscale current sensing atomic force microscopy (CS-AFM) and intensity modulated photocurrent spectroscopy (IMPS) in as-deposited, pre-annealed and post-annealed bulk heterojunction (BHJ) solar cells. Aluminum (Al) confined post-annealed BHJ solar cells exhibited a significantly improved device efficiency compared to pre-annealed BHJ solar cells having similar photocarrier harvesting ability in the active layer. The nanoscale topography and CS-AFM results indicate a uniform PCBM rich phase at the metal-active layer interface in the post-annealed cells, but PCBM segregation in the pre-annealed cells. These two different annealing processes showed different carrier dynamics revealed using IMPS under various light intensities. The IMPS results suggest reduced photo generated carrier recombination in uniform PCBM rich post-annealed BHJ solar cells. This study reveals the importance of the metal-bend interface in BHJ solar cells in order to obtain efficient charge carrier extraction for high efficiency. PMID:26431263

  19. The Impact of One- and Two-Moment Microphysical Schemes on Precipitation in an Ordinary Thunderstorm

    NASA Astrophysics Data System (ADS)

    Parker, E.; Igel, A. L.; van den Heever, S. C.

    2013-12-01

    Simulations of idealized thunderstorms were performed with the Regional Atmospheric Modeling System (RAMS) using single- and double-moment microphysics schemes. Analyzing the outcomes of storm simulations such as these allows us to better imitate what is observed in nature through enhancing our understanding of which parameters to implement when using such models, either for research or forecasting purposes. In this study, five different model simulations were examined, four of which used single-moment schemes, and one of which used a double-moment scheme. Each of the four single-moment simulations used either a fixed value of mean cloud droplet diameter or number concentration; the values chosen were 5 μm and 25 μm for the mean diameter, and 100 cc-1 and 1000 cc-1 for number concentration. These fixed values were chosen as approximate upper and lower limits of the two parameters. The double-moment simulation predicted the mixing ratio and number concentration. The results of these five simulations indicate that the thunderstorm simulations for the diameter of 25 μm and the double-moment are the strongest storms, are able to dynamically sustain themselves, and accumulate the most precipitation, due to their (a) ability to better create rain through collision-coalescence and melting of ice; (b) deeper evaporative cooling in the lower two kilometers; and (c) greater cold pool intensities. These findings show that atmospheric models are highly sensitive to the fixed values of various cloud microphysical properties in single-moment schemes. It was also observed that accumulated precipitation was more sensitive to changes in the cloud droplet diameter than to changes in cloud droplet number concentration. Investigating the differences in these simulations can give better insight into how changes in the microphysical parameterization schemes impact the life of a simulated thunderstorm.

  20. Balticolid: a new 12-membered macrolide with antiviral activity from an ascomycetous fungus of marine origin.

    PubMed

    Shushni, Muftah A M; Singh, Rajinder; Mentel, Renate; Lindequist, Ulrike

    2011-01-01

    A new 12-membered macrolide, balticolid (1) was isolated from the EtOAc extract of the culture broth of fungal strain 222 belonging to the Ascomycota, which was found on driftwood collected from the coast of the Greifswalder Bodden, Baltic Sea, Germany. The structure of balticolid was determined to be (3R,11R), (4E,8E)-3-hydroxy-11-methyloxacyclododeca-4,8-diene-1,7-dione using extensive spectral data as well as the modified Mosher ester method. Balticolid (1) displayed anti-HSV-1 activity with an IC₅₀ value of 0.45 μM.