Science.gov

Sample records for active thyroid hormone

  1. An improved thyroid hormone reporter assay to determine the thyroid hormone-like activity of amiodarone, bithionol, closantel and rafoxanide.

    PubMed

    Matsubara, Kana; Sanoh, Seigo; Ohta, Shigeru; Kitamura, Shigeyuki; Sugihara, Kazumi; Fujimoto, Nariaki

    2012-01-01

    A number of environmental chemicals have been reported to exhibit thyroid hormone-like activity. Since thyroid hormones play a crucial role in development, it is important to identify chemicals in the environment that are capable of endocrine disruption of thyroid hormone homeostasis. In order to detect thyroid hormone-like activity, the growth of pituitary cell lines has been commonly used as a sensitive marker, albeit with limited specificity to thyroid hormones. Reporter gene assays using the thyroid hormone responsive element (TRE) connected to the luciferase reporter gene have also been developed. Thus far however, this type of assay appears to have limited sensitivity compared to cell growth assays. In the present study, we developed a highly sensitive TRE reporter gene assay by using a pituitary cell line, MtT/E-2, and by culturing cells in a serum-free medium. Our assay was developed in order to detect T3 activity at a concentration of 10(-11)M. This assay identified thyroid hormone-like activity from the antiarrhythmic drug, amiodarone, and from three anti-parasitic drugs, bithionol, closantel and rafoxanide, all commonly used in veterinary medicine. Thyroid hormone-like activity of these compounds was further confirmed by the induction of BCL3 gene expression in MtT/E-2, which is known to be regulated by thyroid hormones. Our improved assay was proved to be a sensitive tool for assessing thyroid hormone-like activity of environmental chemicals. PMID:22015988

  2. Regulation of Seasonal Reproduction by Hypothalamic Activation of Thyroid Hormone

    PubMed Central

    Shinomiya, Ai; Shimmura, Tsuyoshi; Nishiwaki-Ohkawa, Taeko; Yoshimura, Takashi

    2014-01-01

    Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication. PMID:24600435

  3. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  4. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  5. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  6. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  7. 21 CFR 201.316 - Drugs with thyroid hormone activity for human use; required warning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drugs with thyroid hormone activity for human use... Drug Products § 201.316 Drugs with thyroid hormone activity for human use; required warning. (a) Drugs with thyroid hormone activity have been promoted for, and continue to be dispensed and prescribed...

  8. Coupling between Nutrient Availability and Thyroid Hormone Activation.

    PubMed

    Lartey, Lattoya J; Werneck-de-Castro, João Pedro; O-Sullivan, InSug; Unterman, Terry G; Bianco, Antonio C

    2015-12-18

    The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of constitutively active FOXO1. ChIP studies indicate that 4 h after 10% FBS-containing medium, FOXO1 binding markedly decreases, and the DIO2 promoter is activated. Studies in the insulin receptor FOXO1 KO mouse indicate that insulin is a key signaling molecule in this process. We conclude that FOXO1 represses DIO2 during fasting and that derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway. PMID:26499800

  9. Active metabolism of thyroid hormone during metamorphosis of amphioxus.

    PubMed

    Paris, Mathilde; Hillenweck, Anne; Bertrand, Stéphanie; Delous, Georges; Escriva, Hector; Zalko, Daniel; Cravedi, Jean-Pierre; Laudet, Vincent

    2010-07-01

    Thyroid hormones (THs), and more precisely the 3,3',5-triiodo-l-thyronine (T(3)) acetic derivative 3,3',5-triiodothyroacetic acid (TRIAC), have been shown to activate metamorphosis in amphioxus. However, it remains unknown whether TRIAC is endogenously synthesized in amphioxus and more generally whether an active TH metabolism is regulating metamorphosis. Here we show that amphioxus naturally produces TRIAC from its precursors T(3) and l-thyroxine (T(4)), supporting its possible role as the active TH in amphioxus larvae. In addition, we show that blocking TH production inhibits metamorphosis and that this effect is compensated by exogenous T(3), suggesting that a peak of TH production is important for advancement of proper metamorphosis. Moreover, several amphioxus genes encoding proteins previously proposed to be involved in the TH signaling pathway display expression profiles correlated with metamorphosis. In particular, thyroid hormone receptor (TR) and deiodinases gene expressions are either up- or down-regulated during metamorphosis and by TH treatments. Overall, these results suggest that an active TH metabolism controls metamorphosis in amphioxus, and that endogenous TH production and metabolism as well as TH-regulated metamorphosis are ancestral in the chordate lineage.

  10. Increased Thyroid Hormone Activation Accompanies the Formation of Thyroid Hormone-Dependent Negative Feedback in Developing Chicken Hypothalamus.

    PubMed

    Mohácsik, P; Füzesi, T; Doleschall, M; Szilvásy-Szabó, A; Vancamp, P; Hadadi, É; Darras, V M; Fekete, C; Gereben, B

    2016-03-01

    The hypothalamic-pituitary-thyroid axis is governed by hypophysiotropic TRH-synthesizing neurons located in the hypothalamic paraventricular nucleus under control of the negative feedback of thyroid hormones. The mechanisms underlying the ontogeny of this phenomenon are poorly understood. We aimed to determine the onset of thyroid hormone-mediated hypothalamic-negative feedback and studied how local hypothalamic metabolism of thyroid hormones could contribute to this process in developing chicken. In situ hybridization revealed that whereas exogenous T4 did not induce a statistically significant inhibition of TRH expression in the paraventricular nucleus at embryonic day (E)19, T4 treatment was effective at 2 days after hatching (P2). In contrast, TRH expression responded to T3 treatment in both age groups. TSHβ mRNA expression in the pituitary responded to T4 in a similar age-dependent manner. Type 2 deiodinase (D2) was expressed from E13 in tanycytes of the mediobasal hypothalamus, and its activity increased between E15 and P2 both in the mediobasal hypothalamus and in tanycyte-lacking hypothalamic regions. Nkx2.1 was coexpressed with D2 in E13 and P2 tanycytes and transcription of the cdio2 gene responded to Nkx2.1 in U87 glioma cells, indicating its potential role in the developmental regulation of D2 activity. The T3-degrading D3 enzyme was also detected in tanycytes, but its level was not markedly changed before and after the period of negative feedback acquisition. These findings suggest that increasing the D2-mediated T3 generation during E18-P2 could provide the sufficient local T3 concentration required for the onset of T3-dependent negative feedback in the developing chicken hypothalamus. PMID:26779746

  11. Increased Thyroid Hormone Activation Accompanies the Formation of Thyroid Hormone-Dependent Negative Feedback in Developing Chicken Hypothalamus.

    PubMed

    Mohácsik, P; Füzesi, T; Doleschall, M; Szilvásy-Szabó, A; Vancamp, P; Hadadi, É; Darras, V M; Fekete, C; Gereben, B

    2016-03-01

    The hypothalamic-pituitary-thyroid axis is governed by hypophysiotropic TRH-synthesizing neurons located in the hypothalamic paraventricular nucleus under control of the negative feedback of thyroid hormones. The mechanisms underlying the ontogeny of this phenomenon are poorly understood. We aimed to determine the onset of thyroid hormone-mediated hypothalamic-negative feedback and studied how local hypothalamic metabolism of thyroid hormones could contribute to this process in developing chicken. In situ hybridization revealed that whereas exogenous T4 did not induce a statistically significant inhibition of TRH expression in the paraventricular nucleus at embryonic day (E)19, T4 treatment was effective at 2 days after hatching (P2). In contrast, TRH expression responded to T3 treatment in both age groups. TSHβ mRNA expression in the pituitary responded to T4 in a similar age-dependent manner. Type 2 deiodinase (D2) was expressed from E13 in tanycytes of the mediobasal hypothalamus, and its activity increased between E15 and P2 both in the mediobasal hypothalamus and in tanycyte-lacking hypothalamic regions. Nkx2.1 was coexpressed with D2 in E13 and P2 tanycytes and transcription of the cdio2 gene responded to Nkx2.1 in U87 glioma cells, indicating its potential role in the developmental regulation of D2 activity. The T3-degrading D3 enzyme was also detected in tanycytes, but its level was not markedly changed before and after the period of negative feedback acquisition. These findings suggest that increasing the D2-mediated T3 generation during E18-P2 could provide the sufficient local T3 concentration required for the onset of T3-dependent negative feedback in the developing chicken hypothalamus.

  12. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-01-01

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. PMID:27347891

  13. Thyroid Hormone Treatment

    MedlinePlus

    ... is to closely replicate normal thyroid functioning. Pure, synthetic thyroxine (T4) works in the same way as ... needing thyroid hormone replacement (see Hypothyroidism brochure ). Pure synthetic thyroxine (T4), taken once daily by mouth, successfully ...

  14. Treatment with thyroid hormone.

    PubMed

    Biondi, Bernadette; Wartofsky, Leonard

    2014-06-01

    Thyroid hormone deficiency can have important repercussions. Treatment with thyroid hormone in replacement doses is essential in patients with hypothyroidism. In this review, we critically discuss the thyroid hormone formulations that are available and approaches to correct replacement therapy with thyroid hormone in primary and central hypothyroidism in different periods of life such as pregnancy, birth, infancy, childhood, and adolescence as well as in adult patients, the elderly, and in patients with comorbidities. Despite the frequent and long term use of l-T4, several studies have documented frequent under- and overtreatment during replacement therapy in hypothyroid patients. We assess the factors determining l-T4 requirements (sex, age, gender, menstrual status, body weight, and lean body mass), the major causes of failure to achieve optimal serum TSH levels in undertreated patients (poor patient compliance, timing of l-T4 administration, interferences with absorption, gastrointestinal diseases, and drugs), and the adverse consequences of unintentional TSH suppression in overtreated patients. Opinions differ regarding the treatment of mild thyroid hormone deficiency, and we examine the recent evidence favoring treatment of this condition. New data suggesting that combined therapy with T3 and T4 could be indicated in some patients with hypothyroidism are assessed, and the indications for TSH suppression with l-T4 in patients with euthyroid multinodular goiter and in those with differentiated thyroid cancer are reviewed. Lastly, we address the potential use of thyroid hormones or their analogs in obese patients and in severe cardiac diseases, dyslipidemia, and nonthyroidal illnesses.

  15. Hormone Activity of Hydroxylated Polybrominated Diphenyl Ethers on Human Thyroid Receptor-β: In Vitro and In Silico Investigations

    PubMed Central

    Li, Fei; Xie, Qing; Li, Xuehua; Li, Na; Chi, Ping; Chen, Jingwen; Wang, Zijian; Hao, Ce

    2010-01-01

    Background Hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disrupt thyroid hormone status because of their structural similarity to thyroid hormone. However, the molecular mechanisms of interactions with thyroid hormone receptors (TRs) are not fully understood. Objectives We investigated the interactions between HO-PBDEs and TRβ to identify critical structural features and physicochemical properties of HO-PBDEs related to their hormone activity, and to develop quantitative structure–activity relationship (QSAR) models for the thyroid hormone activity of HO-PBDEs. Methods We used the recombinant two-hybrid yeast assay to determine the hormone activities to TRβ and molecular docking to model the ligand–receptor interaction in the binding site. Based on the mechanism of action, molecular structural descriptors were computed, selected, and employed to characterize the interactions, and finally a QSAR model was constructed. The applicability domain (AD) of the model was assessed by Williams plot. Results The 18 HO-PBDEs tested exhibited significantly higher thyroid hormone activities than did PBDEs (p < 0.05). Hydrogen bonding was the characteristic interaction between HO-PBDE molecules and TRβ, and aromaticity had a negative effect on the thyroid hormone activity of HO-PBDEs. The developed QSAR model had good robustness, predictive ability, and mechanism interpretability. Conclusions Hydrogen bonding and electrostatic interactions between HO-PBDEs and TRβ are important factors governing thyroid hormone activities. The HO-PBDEs with higher ability to accept electrons tend to have weak hydrogen bonding with TRβ and lower thyroid hormone activities. PMID:20439171

  16. In Vitro, Ex Vivo, and In Vivo Determination of Thyroid Hormone Modulating Activity of Benzothiazoles.

    PubMed

    Hornung, Michael W; Kosian, Patricia A; Haselman, Jonathan T; Korte, Joseph J; Challis, Katie; Macherla, Chitralekha; Nevalainen, Erica; Degitz, Sigmund J

    2015-08-01

    As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of 6 benzothiazoles to affect endpoints related to thyroid hormone synthesis inhibition were assessed using in vitro, ex vivo, and in vivo assays. Inhibition of thyroid peroxidase (TPO) derived from pig thyroid glands was determined for benzothiazole (BTZ), 2-mercaptobenzothiazole (MBT), 5-chloro-2-mercaptobenzothiazole (CMBT), 2-aminobenzothiazole (ABT), 2-hydroxybenzothiazole (HBT), and 2-methylthiobenzothiazole (MTBT). Their rank order potency for TPO inhibition was MBT=CMBT>ABT>BTZ, whereas HBT and MTBT exhibited no inhibitory activity. The benzothiazoles were tested further in a Xenopus laevis thyroid gland explant culture assay in which inhibition of thyroxine (T4) release was the measured endpoint. In this assay all 6 benzothiazoles inhibited T4 release. The activity of the benzothiazoles for disrupting thyroid hormone activity was verified in vivo using X. laevis tadpoles in a 7-day assay. The 2 most potent chemicals for TPO inhibition, MBT and CMBT, produced responses in vivo indicative of T4 synthesis inhibition including induction of sodium iodide symporter mRNA and decreases in glandular and circulating thyroid hormones. The capability to measure thyroid hormone levels in the glands and blood by ultrahigh performance LC-MS/MS methods optimized for small tissue samples was critical for effects interpretation. These results indicate that inhibition of TPO activity in vitro was a good indicator of a chemical's potential for thyroid hormone disruption in vivo and may be useful for prioritizing chemicals for further investigation. PMID:25953703

  17. Thyroid hormones directly activate the expression of the human and mouse uncoupling protein-3 genes through a thyroid response element in the proximal promoter region

    PubMed Central

    2004-01-01

    The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle. PMID:15496137

  18. Activation of the RhoB Signaling Pathway by Thyroid Hormone Receptor β in Thyroid Cancer Cells

    PubMed Central

    Ichijo, Sayaka; Furuya, Fumihiko; Shimura, Hiroki; Hayashi, Yoshitaka; Takahashi, Kazuya; Ohta, Kazuyasu; Kobayashi, Tetsuro; Kitamura, Kenichiro

    2014-01-01

    Thyroid hormone receptor (TR) mediates the crucial effects of the thyroid hormone (T3) on cellular growth, development, and differentiation. Decreased expression or inactivating somatic mutations of TRs have been found in human cancers of the liver, breast, lung, and thyroid. The mechanisms of TR-associated carcinogenesis are still not clear. To establish the function of TRβ in thyroid cancer cell proliferation, we constructed a recombinant adenovirus vector, AdTRβ, which expresses human TRβ1 cDNA. Thyroid cancer cell lines in which TRβ protein levels were significantly decreased as compared to intact thyroid tissues were infected with AdTRβ and the function of TRβ on cell proliferation and migration was analyzed. Ligand-bound TRβ induced HDAC1 and HDAC3 dissociation from, and histone acetylation associated with the RhoB promoter and enhanced the expression of RhoB mRNA and protein. In AdTRβ-infected cells, T3 and farnesyl transferase inhibitor (FTI)-treatment induced the distribution of RhoB on the cell membrane and enhanced the abundance of active GTP-bound RhoB. This RhoB protein led to p21-associated cell-cycle arrest in the G0/G1 phase, following inhibition of cell proliferation and invasion. Conversely, lowering cellular RhoB by small interfering RNA knockdown in AdTRβ-infected cells led to downregulation of p21 and inhibited cell-cycle arrest. The growth of BHP18-21v tumor xenografts in vivo was significantly inhibited by AdTRβ injection with FTIs-treatment, as compared to control virus-injected tumors. This novel signaling pathway triggered by ligand-bound TRβ provides insight into possible mechanisms of proliferation and invasion of thyroid cancer and may provide new therapeutic targets for thyroid cancers. PMID:25548921

  19. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy.

    PubMed

    Sinha, Rohit Anthony; You, Seo-Hee; Zhou, Jin; Siddique, Mobin M; Bay, Boon-Huat; Zhu, Xuguang; Privalsky, Martin L; Cheng, Sheue-Yann; Stevens, Robert D; Summers, Scott A; Newgard, Christopher B; Lazar, Mitchell A; Yen, Paul M

    2012-07-01

    For more than a century, thyroid hormones (THs) have been known to exert powerful catabolic effects, leading to weight loss. Although much has been learned about the molecular mechanisms used by TH receptors (TRs) to regulate gene expression, little is known about the mechanisms by which THs increase oxidative metabolism. Here, we report that TH stimulation of fatty acid β-oxidation is coupled with induction of hepatic autophagy to deliver fatty acids to mitochondria in cell culture and in vivo. Furthermore, blockade of autophagy by autophagy-related 5 (ATG5) siRNA markedly decreased TH-mediated fatty acid β-oxidation in cell culture and in vivo. Consistent with this model, autophagy was altered in livers of mice expressing a mutant TR that causes resistance to the actions of TH as well as in mice with mutant nuclear receptor corepressor (NCoR). These results demonstrate that THs can regulate lipid homeostasis via autophagy and help to explain how THs increase oxidative metabolism.

  20. Thyroid hormone resistance.

    PubMed

    Olateju, Tolulope O; Vanderpump, Mark P J

    2006-11-01

    Resistance to thyroid hormone (RTH) is a rare autosomal dominant inherited syndrome of reduced end-organ responsiveness to thyroid hormone. Patients with RTH have elevated serum free thyroxine (FT4) and free triiodothyronine (FT3) concentrations and normal or slightly elevated serum thyroid stimulating hormone (TSH) level. Despite a variable clinical presentation, the common characteristic clinical features are goitre but an absence of the usual symptoms and metabolic consequences of thyroid hormone excess. Patients with RTH can be classified on clinical grounds alone into either generalized resistance (GRTH), pituitary resistance (PRTH) or combined. Mutations in the thyroid hormone receptor (TR) beta gene are responsible for RTH and 122 different mutations have now been identified belonging to 300 families. With the exception of one family found to have complete deletion of the TRbeta gene, all others have been demonstrated to have minor alterations at the DNA level. The differential diagnosis includes a TSH-secreting pituitary adenoma and the presence of endogenous antibodies directed against thyroxine (T4) and triiodothyronine (T3). Failure to differentiate RTH from primary thyrotoxicosis has resulted in the inappropriate treatment of nearly one-third of patients. Although occasionally desirable, no specific treatment is available for RTH; however, the diagnosis allows appropriate genetic counselling. PMID:17132274

  1. Thyroid hormones and bone development.

    PubMed

    Combs, C E; Nicholls, J J; Duncan Bassett, J H; Williams, G R

    2011-03-01

    Thyroid hormones are critical determinants of postnatal skeletal development. Thyroid hormone deficiency or excess in children results in severe abnormalities of linear growth and bone maturation. These clinical observations have been recapitulated in mutant mice and these models have facilitated studies of the mechanisms of thyroid hormone action in the developing skeleton. In this review, we consider in detail the direct and indirect effects of thyroid hormone on bone and the molecular mechanisms involved.

  2. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    PubMed Central

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  3. Thyroid Hormone and Wound Healing

    PubMed Central

    Safer, Joshua D.

    2013-01-01

    Although thyroid hormone is one of the most potent stimulators of growth and metabolic rate, the potential to use thyroid hormone to treat cutaneous pathology has never been subject to rigorous investigation. A number of investigators have demonstrated intriguing therapeutic potential for topical thyroid hormone. Topical T3 has accelerated wound healing and hair growth in rodents. Topical T4 has been used to treat xerosis in humans. It is clear that the use of thyroid hormone to treat cutaneous pathology may be of large consequence and merits further study. This is a review of the literature regarding thyroid hormone action on skin along with skin manifestations of thyroid disease. The paper is intended to provide a context for recent findings of direct thyroid hormone action on cutaneous cells in vitro and in vivo which may portend the use of thyroid hormone to promote wound healing. PMID:23577275

  4. Thyroid: biological actions of 'nonclassical' thyroid hormones.

    PubMed

    Senese, Rosalba; Cioffi, Federica; de Lange, Pieter; Goglia, Fernando; Lanni, Antonia

    2014-05-01

    Thyroid hormones (THs) are produced by the thyroid gland and converted in peripheral organs by deiodinases. THs regulate cell functions through two distinct mechanisms: genomic (nuclear) and nongenomic (non-nuclear). Many TH effects are mediated by the genomic pathway--a mechanism that requires TH activation of nuclear thyroid hormone receptors. The overall nongenomic processes, emerging as important accessory mechanisms in TH actions, have been observed at the plasma membrane, in the cytoplasm and cytoskeleton, and in organelles. Some products of peripheral TH metabolism (besides triiodo-L-thyronine), now termed 'nonclassical THs', were previously considered as inactive breakdown products. However, several reports have recently shown that they may have relevant biological effects. The recent accumulation of knowledge on how classical and nonclassical THs modulate the activity of membrane receptors, components of the mitochondrial respiratory chain, kinases and deacetylases, opened the door to the discovery of new pathways through which they act. We reviewed the current state-of-the-art on the actions of the nonclassical THs, discussing the role that these endogenous TH metabolites may have in the modulation of thyroid-related effects in organisms with differing complexity, ranging from nonmammals to humans.

  5. Occurrence of thyroid hormone activities in drinking water from eastern China: contributions of phthalate esters.

    PubMed

    Shi, Wei; Hu, Xinxin; Zhang, Fengxian; Hu, Guanjiu; Hao, Yingqun; Zhang, Xiaowei; Liu, Hongling; Wei, Si; Wang, Xinru; Giesy, John P; Yu, Hongxia

    2012-02-01

    Thyroid hormone is essential for the development of humans. However, some synthetic chemicals with thyroid disrupting potentials are detectable in drinking water. This study investigated the presence of thyroid active chemicals and their toxicity potential in drinking water from five cities in eastern China by use of an in vitro CV-1 cell-based reporter gene assay. Waters were examined from several phases of drinking water processing, including source water, finished water from waterworks, tap water, and boiled tap water. To identify the responsible compounds, concentrations and toxic equivalents of a list of phthalate esters were quantitatively determined. None of the extracts exhibited thyroid receptor (TR) agonist activity. Most of the water samples exhibited TR antagonistic activities. None of the boiled water displayed the TR antagonistic activity. Dibutyl phthalate accounted for 84.0-98.1% of the antagonist equivalents in water sources, while diisobutyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate also contributed. Approximately 90% of phthalate esters and TR antagonistic activities were removable by waterworks treatment processes, including filtration, coagulation, aerobic biodegradation, chlorination, and ozonation. Boiling water effectively removed phthalate esters from tap water. Thus, this process was recommended to local residents to reduce certain potential thyroid related risks through drinking water. PMID:22191625

  6. Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta.

    PubMed

    Shi, Wei; Zhang, Feng-Xian; Hu, Guan-Jiu; Hao, Ying-Qun; Zhang, Xiao-Wei; Liu, Hong-Ling; Wei, Si; Wang, Xin-Ru; Giesy, John P; Yu, Hong-Xia

    2012-07-01

    Thyroid hormone disrupting compounds in water sources is a concern. Thyroid hormone (TH) agonist and antagonist activities of water sources from the Yangtze River, Huaihe River, Taihu Lake and ground water in the Yangtze River Delta region were evaluated by use of a TH reporter gene assay based on the green monkey kidney fibroblast (CV-1). While weak TH receptor (TR) agonist potency was observed in only one of 15 water sources, antagonist potency was present in most of the water sources. TR antagonist equivalents could be explained by the presence of dibutyl phthalate (DBP), with concentrations ranging from 2.8×10(1) to 1.6×10(3) μg DBP /L (ATR-EQ(50)s). None of the ground waters exhibited TH agonist potencies while all of the samples from Taihu Lake displayed notable TR antagonist potencies. To identify the responsible thyroid active compounds, instrumental analysis was conducted to measure a list of potential thyroid-disrupting chemicals, including organochlorine (OC) pesticides and phthalate esters. Combining the results of the instrumental analysis with those of the bioassay, DBP was determined to account for 17% to 144% of ATR-EQ(50)s in water sources. Furthermore, ATR-EQ(20-80) ranges for TR antagonist activities indicated that samples from locations WX-1 and WX-2 posed the greatest health concern and the associated uncertainty may warrant further investigation.

  7. Thyroid hormones regulate the onset of osmotic activity of rat liver mitochondria after birth.

    PubMed

    Almeida, A; Lopez-Mediavilla, C; Medina, J M

    1997-02-01

    The effect of thyroid hormone deprivation on the osmotic activity of liver mitochondria from early newborn rats was studied. Experimentally induced hypothyroidism prevented the increase in the osmotic activity of mitochondria observed immediately after birth. Osmotic activity was restored by T4 and T3 treatment to hypothyroid newborns but not when this treatment was supplemented with cycloheximide. Under the same circumstances, streptomycin had no effect. Hypothyroidism abolished the change in the slope of the osmotic curve (plot of inverse absorbance of mitochondrial suspensions incubated in sucrose solutions vs. inverse sucrose concentration) observed in mitochondria from euthyroid newborns at 110-120 mOsm sucrose, suggesting that hypothyroidism prevents the formation of tight physical connections between mitochondrial outer and inner membranes. Thyroid hormone deprivation increased the passive permeability of the mitochondrial inner membrane to protons, resulting in a decreased respiratory control ratio. Hypothyroidism prevented the sharp decrease in the affinity of mitochondria for ATP observed in euthyroid newborns immediately after birth. These results corroborate our previous suggestion (Endocrinology, 1995, 136:4448) that, during the early neonatal period, thyroid hormones control the synthesis of some nucleus-coded protein(s) involved in the assembly of F0,F1-ATPase.

  8. Thyroid hormone signaling in energy homeostasis and energy metabolism

    PubMed Central

    McAninch, Elizabeth A.; Bianco, Antonio C.

    2014-01-01

    The thyroid hormone plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. Thyroid hormone signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the thyroid hormone exerts its effects after concerted mechanisms facilitate binding to the thyroid hormone receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma thyroid hormone at the appropriate level to preserve energy homeostasis. At the tissue level, thyroid hormone actions on metabolism are controlled by transmembrane transporters, deiodinases, and thyroid hormone receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and thus understanding the contribution of the thyroid hormone to cellular and organism metabolism is increasingly relevant. PMID:24697152

  9. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  10. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  11. Thyroid hormone regulation of metabolism.

    PubMed

    Mullur, Rashmi; Liu, Yan-Yun; Brent, Gregory A

    2014-04-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.

  12. Thyroid hormones increase Na -H exchange activity in renal brush border membranes

    SciTech Connect

    Kinsella, J.; Sacktor, B.

    1985-06-01

    Na -H exchange activity, i.e., amiloride-sensitive Na and H flux, in renal proximal tubule brush border (luminal) membrane vesicles was increased in the hyperthyroid rat and decreased in the hypothyroid rat, relative to the euthyroid animal. A positive correlation was found between Na -H exchange activity and serum concentrations of thyroxine (T4) and triiodothyronine (T3). The thyroid status of the animal did not alter amiloride-insensitive Na uptake. The rate of passive pH gradient dissipation was higher in membrane vesicles from hyperthyroid rats compared to the rate in vesicles from hypothyroid animals, a result which would tend to limit the increase in Na uptake in vesicles from hyperthyroid animals. Na -dependent phosphate uptake was increased in membrane vesicles from hyperthyroid rats; Na -dependent D-glucose and L-proline uptakes were not changed by the thyroid status of the animal. The effect of thyroid hormones in increasing the uptake of Na in the brush border membrane vesicle is consistent with the action of the hormones in enhancing renal Na reabsorption.

  13. Thyroid hormone disrupting activities of sediment from the Guanting Reservoir, Beijing, China.

    PubMed

    Li, Jian; Li, Morui; Ren, Shujuan; Feng, Chenglian; Li, Na

    2014-06-15

    In the present study, yeast bioassays were used to evaluate and characterize the thyroid receptor (TR) disrupting activities of the organic extracts and elutriates of the sediments from the Guanting Reservoir, Beijing, China. An accelerated solvent extraction was used to separate the organic extracts, which were subjected to a yeast bioassay. The organic extracts could affect thyroid hormone signaling by decreasing the binding of the thyroid hormone. The TR antagonistic activity equivalents (TEQbio) referring to amiodarone hydrochloride were calculated and the observed TEQbio-organic extracts ranged from 25.4 ± 3.7 to 176.9 ± 18.0 μg/g. Elutriate toxicity tests using the modified yeast bioassay revealed that the elutriates also significantly antagonized the TR, with the TEQbio-elutriates ranging from N.D. to 7.8 ± 0.8 μg/L. To characterize the toxic compounds, elutriates were extracted by using a C18 cartridge or treated with ethylenediaminetetraacetic acid (EDTA, 30 mg/L). The results suggested that the addition of EDTA eliminated over 74.3% of the total effects, and the chemical analysis revealed that heavy metals, some of which exhibited TR disrupting potency, for example Zn and Cd, were detectable with higher concentrations in the elutriates. Thus, the cause(s) of toxicity in the elutriate appear to be partly related to the heavy metals.

  14. Thyroid Hormone Activates Brown Adipose Tissue and Increases Non-Shivering Thermogenesis - A Cohort Study in a Group of Thyroid Carcinoma Patients

    PubMed Central

    Broeders, Evie P. M.; Vijgen, Guy H. E. J.; Havekes, Bas; Bouvy, Nicole D.; Mottaghy, Felix M.; Kars, Marleen; Schaper, Nicolaas C.; Schrauwen, Patrick; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2016-01-01

    Background/Objectives Thyroid hormone receptors are present on brown adipose tissue (BAT), indicating a role for thyroid hormone in the regulation of BAT activation. The objective of this study was to examine the effect of thyroid hormone withdrawal followed by thyroid hormone in TSH-suppressive dosages, on energy expenditure and brown adipose tissue activity. Subjects/Methods This study was a longitudinal study in an academic center, with a follow-up period of 6 months. Ten patients with well-differentiated thyroid carcinoma eligible for surgical treatment and subsequent radioactive iodine ablation therapy were studied in a hypothyroid state after thyroidectomy and in a subclinical hyperthyroid state (TSH-suppression according to treatment protocol). Paired two-tailed t-tests and linear regression analyses were used. Results Basal metabolic rate (BMR) was significantly higher after treatment with synthetic thyroid hormone (levothyroxine) than in the hypothyroid state (BMR 3.8 ± 0.5 kJ/min versus 4.4 ± 0.6 kJ/min, P = 0.012), and non-shivering thermogenesis (NST) significantly increased from 15 ± 10% to 25 ± 6% (P = 0.009). Mean BAT activity was significantly higher in the subclinical hyperthyroid state than in the hypothyroid state (BAT standard uptake value (SUVMean) 4.0 ± 2.9 versus 2.4 ± 1.8, P = 0.039). Conclusions Our study shows that higher levels of thyroid hormone are associated with a higher level of cold-activated BAT. Trial Registration ClinicalTrials.gov NCT02499471 PMID:26784028

  15. Thyroid Hormone Levels and TSH Activity in Patients with Obstructive Sleep Apnea Syndrome.

    PubMed

    Bielicki, P; Przybyłowski, T; Kumor, M; Barnaś, M; Wiercioch, M; Chazan, R

    2016-01-01

    Obstructive sleep apnea syndrome (OSAS) is characterized by complete cessation of inspiratory flow (apnea) or upper airway airflow limitation (hypopnea) with increased respiratory muscle activity, which is repeatedly observed during sleep. Hypothyroidism has been described as a rare cause of OSAS, but it is considered to be the main cause of breathing disorders during sleep in patients in whom an improvement of OSAS is observed after thyroid hormone replacement therapy. Nevertheless, euthyreosis due to thyroxine replacement in patients with OSAS often does not improve the breathing disorder and treatment with continuous positive airway pressure is usually applied. The aim of this study was to assess thyroid function in patients with OSAS. We studied 813 patients in whom severe OSAS was diagnosed; the mean apnea-hypopnea index was 44.0. Most of the patients were obese (mean BMI 33.1 ± 6.6 kg/m2) and had excessive daytime sleepiness (ESS 12.8 ± 6.6). With the thyroid stimulating hormone (TSH) concentration as the major criterion, hypothyroidism was diagnosed in 38 (4.7%) and hyperthyroidism was diagnosed in 31 (3.8%) patients. Analysis of basic anthropometric data, selected polysomnography results, and TSH, fT3, and fT4 values did not reveal any significant correlations. In conclusion, the incidence of thyroid function disorders seems to be no different in OSAS than that in the general population. We did not find correlations between TSH activity and the severity of breathing disorders during sleep. PMID:26542600

  16. Global expression profiling reveals gain-of-function onco-genic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis

    PubMed Central

    Lu, Changxue; Mishra, Alok; Zhu, Yuelin J; Meltzer, Paul; Cheng, Sheue-yann

    2011-01-01

    Thyroid hormone receptors (TRs) are critical in regulating gene expression in normal physiological processes. Decreased expression and/or somatic mutations of TRs have been shown to be associated several types of human cancers including liver, breast, lung, and thyroid. To understand the molecular mechanisms by which mutated TRs promote carcinogenesis, an animal model of follicular thyroid carcinoma (FTC) (Thrbpv/pv mice) was used in the present study. The Thrbpv/pv mouse harbors a knockin dominant negative PV mutation, identified in a patient with resistance to thyroid hormone. To understand whether oncogenic actions of PV involve not only the loss of normal TR functions but also gain-of-function activities, we compared the gene expression profiles of thyroid lesions in Thrbpv/pv mice and Thra1-/- Thrb-/- mice that also spontaneously develop FTC, but with less severe malignancy. Analysis of the cDNA microarray data derived from microdissected thyroid tumor cells of these two mice showed contrasting global gene expression profiles. With stringent selection using 2.5-fold change (p<0.01) in cDNA microarray analysis, 241 genes with altered gene expression were identified. Nearly half of the genes (n=103: 42.7% of total) with altered gene expression in thyroid tumor cells of Thrbpv/pv mice were associated with tumorigenesis and metastasis; some of these genes function as oncogenes in human thyroid cancers. The remaining genes were found to function in transcriptional regulation, RNA processing, cell proliferation, apoptosis, angiogenesis, and cytoskeleton modification. These results indicate that the more aggressive thyroid tumor progression in Thrbpv/pv mice was not due simply to the loss of tumor suppressor functions of TR via mutation but also, importantly, to gain-of-function in the oncogenic activities of PV to drive thyroid carcinogenesis. Thus, the present study identifies a novel mechanism by which a mutated TRβ evolves with an oncogenic advantage to promote

  17. Screening methods for thyroid hormone disruptors.

    PubMed Central

    DeVito, M; Biegel, L; Brouwer, A; Brown, S; Brucker-Davis, F; Cheek, A O; Christensen, R; Colborn, T; Cooke, P; Crissman, J; Crofton, K; Doerge, D; Gray, E; Hauser, P; Hurley, P; Kohn, M; Lazar, J; McMaster, S; McClain, M; McConnell, E; Meier, C; Miller, R; Tietge, J; Tyl, R

    1999-01-01

    The U.S. Congress has passed legislation requiring the EPA to implement screening tests for identifying endocrine-disrupting chemicals. A series of workshops was sponsored by the EPA, the Chemical Manufacturers Association, and the World Wildlife Fund; one workshop focused on screens for chemicals that alter thyroid hormone function and homeostasis. Participants at this meeting identified and examined methods to detect alterations in thyroid hormone synthesis, transport, and catabolism. In addition, some methods to detect chemicals that bind to the thyroid hormone receptors acting as either agonists or antagonists were also identified. Screening methods used in mammals as well as other vertebrate classes were examined. There was a general consensus that all known chemicals which interfere with thyroid hormone function and homeostasis act by either inhibiting synthesis, altering serum transport proteins, or by increasing catabolism of thyroid hormones. There are no direct data to support the assertion that certain environmental chemicals bind and activate the thyroid hormone receptors; further research is indicated. In light of this, screening methods should reflect known mechanisms of action. Most methods examined, albeit useful for mechanistic studies, were thought to be too specific and therefore would not be applicable for broad-based screening. Determination of serum thyroid hormone concentrations following chemical exposure in rodents was thought to be a reasonable initial screen. Concurrent histologic evaluation of the thyroid would strengthen this screen. Similar methods in teleosts may be useful as screens, but would require indicators of tissue production of thyroid hormones. The use of tadpole metamorphosis as a screen may also be useful; however, this method requires validation and standardization prior to use as a broad-based screen. PMID:10210697

  18. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    SciTech Connect

    Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui; Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I; Chen, Wei-Jan; Lin, Kwang-Huei

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  19. Thyroid Hormone and Vascular Remodeling.

    PubMed

    Ichiki, Toshihiro

    2016-01-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  20. Thyroid hormone and vitamin D regulate VGF expression and promoter activity

    PubMed Central

    Lewis, Jo E; Brameld, John M; Hill, Phil; Wilson, Dana; Barrett, Perry; Ebling, Francis J P; Jethwa, Preeti H

    2016-01-01

    The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VGF expression (P<0.05) and VGF promoter activity (P<0.0001). Similarly, treatment with 1,25-dihydroxyvitamin D3 increased endogenous VGF mRNA expression (P<0.05) and VGF promoter activity (P<0.0001), whereas triiodothyronine (T3) decreased both (P<0.01 and P<0.0001). Finally, intra-hypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure. PMID:26643910

  1. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat.

    PubMed

    Lin, Jean Z; Martagón, Alexandro J; Cimini, Stephanie L; Gonzalez, Daniel D; Tinkey, David W; Biter, Amadeo; Baxter, John D; Webb, Paul; Gustafsson, Jan-Åke; Hartig, Sean M; Phillips, Kevin J

    2015-11-24

    The functional conversion of white adipose tissue (WAT) into a tissue with brown adipose tissue (BAT)-like activity, often referred to as "browning," represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR) activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action.

  2. The chemical chaperones tauroursodeoxycholic and 4-phenylbutyric acid accelerate thyroid hormone activation and energy expenditure

    PubMed Central

    da-Silva, Wagner S.; Ribich, Scott; e Drigo, Rafael Arrojo; Castillo, Melany; Patty, Mary-Elizabeth; Bianco, Antonio C.

    2011-01-01

    Exposure of cell lines endogenously expressing the thyroid hormone activating enzyme type 2 deiodinase (D2) to the chemical chaperones tauroursodeoxycholic acid (TUDCA) or 4-phenylbutiric acid (4-PBA) increases D2 expression, activity and T3 production. In brown adipocytes, TUDCA or 4-PBA induced T3-dependent genes and oxygen consumption (~2-fold), an effect partially lost in D2 knockout cells. In wild type, but not in D2 knockout mice, administration of TUDCA lowered the respiratory quotient, doubled brown adipose tissue D2 activity and normalized the glucose intolerance associated with high fat feeding. Thus, D2 plays a critical role in the metabolic effects of chemical chaperones. PMID:21237159

  3. Illness-induced changes in thyroid hormone metabolism: focus on the tissue level.

    PubMed

    Kwakkel, J; Fliers, E; Boelen, A

    2011-05-01

    During illness changes in thyroid hormone metabolism occur, collectively known as the non-thyroidal illness syndrome (NTIS). NTIS is characterised by low serum thyroid hormone levels without the expected rise in serum thyroid-stimulating hormone, indicating a major change in thyroid hormone feedback regulation. Recent studies have made clear that during NTIS differential changes in thyroid hormone metabolism occur in various tissues, the net effect of which may be either activation or inhibition of thyroid hormone action. In this review we discuss systemic and local changes in thyroid hormone metabolism during illness, highlighting their physiological implications in terms of disease course.

  4. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    SciTech Connect

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang; Wang, Xinzhou; Liu, Hongling; Zhu, Yongliang; Yu, Hongxia

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 and non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.

  5. Thyroid hormone receptor binding to DNA and T3-dependent transcriptional activation are inhibited by uremic toxins

    PubMed Central

    Santos, Guilherme M; Pantoja, Carlos J; Costa e Silva, Aluízio; Rodrigues, Maria C; Ribeiro, Ralff C; Simeoni, Luiz A; Lomri, Noureddine; Neves, Francisco AR

    2005-01-01

    Background There is a substantial clinical overlap between chronic renal failure (CRF) and hypothyroidism, suggesting the presence of hypothyroidism in uremic patients. Although CRF patients have low T3 and T4 levels with normal thyroid-stimulating hormone (TSH), they show a higher prevalence of goiter and evidence for blunted tissue responsiveness to T3 action. However, there are no studies examining whether thyroid hormone receptors (TRs) play a role in thyroid hormone dysfunction in CRF patients. To evaluate the effects of an uremic environment on TR function, we investigated the effect of uremic plasma on TRβ1 binding to DNA as heterodimers with the retinoid X receptor alpha (RXRα) and on T3-dependent transcriptional activity. Results We demonstrated that uremic plasma collected prior to hemodialysis (Pre-HD) significantly reduced TRβ1-RXRα binding to DNA. Such inhibition was also observed with a vitamin D receptor (VDR) but not with a peroxisome proliferator-activated receptor gamma (PPARγ). A cell-based assay confirmed this effect where uremic pre-HD ultrafiltrate inhibited the transcriptional activation induced by T3 in U937 cells. In both cases, the inhibitory effects were reversed when the uremic plasma and the uremic ultrafiltrate were collected and used after hemodialysis (Post-HD). Conclusion These results suggest that dialyzable toxins in uremic plasma selectively block the binding of TRβ1-RXRα to DNA and impair T3 transcriptional activity. These findings may explain some features of hypothyroidism and thyroid hormone resistance observed in CRF patients. PMID:15807894

  6. In vitro, ex vivo, and in vivo determination of thyroid hormone modulating activity of benzothiazoles

    EPA Science Inventory

    As in vitro assays are increasingly used to screen chemicals for their potential to produce endocrine disrupting adverse effects, it is important to understand their predictive capacity. The potential for a set of six benzothiazoles to affect endpoints related to thyroid hormone ...

  7. Identification of Thyroid Hormone Receptor Active Compounds Using a Quantitative High-Throughput Screening Platform

    PubMed Central

    Freitas, Jaime; Miller, Nicole; Mengeling, Brenda J.; Xia, Menghang; Huang, Ruili; Houck, Keith; Rietjens, Ivonne M.C.M.; Furlow, J. David; Murk, Albertinka J.

    2014-01-01

    To adapt the use of GH3.TRE-Luc reporter gene cell line for a quantitative high-throughput screening (qHTS) platform, we miniaturized the reporter gene assay to a 1536-well plate format. 1280 chemicals from the Library of Pharmacologically Active Compounds (LOPAC) and the National Toxicology Program (NTP) 1408 compound collection were analyzed to identify potential thyroid hormone receptor (TR) agonists and antagonists. Of the 2688 compounds tested, eight scored as potential TR agonists when the positive hit cut-off was defined at ≥10% efficacy, relative to maximal triiodothyronine (T3) induction, and with only one of those compounds reaching ≥20% efficacy. One common class of compounds positive in the agonist assays were retinoids such as all-trans retinoic acid, which are likely acting via the retinoid-X receptor, the heterodimer partner with the TR. Five potential TR antagonists were identified, including the antiallergy drug tranilast and the anxiolytic drug SB 205384 but also some cytotoxic compounds like 5-fluorouracil. None of the inactive compounds were structurally related to T3, nor had been reported elsewhere to be thyroid hormone disruptors, so false negatives were not detected. None of the low potency (>100µM) TR agonists resembled T3 or T4, thus these may not bind directly in the ligand-binding pocket of the receptor. For TR agonists, in the qHTS, a hit cut-off of ≥20% efficacy at 100 µM may avoid identification of positives with low or no physiological relevance. The miniaturized GH3.TRE-Luc assay offers a promising addition to the in vitro test battery for endocrine disruption, and given the low percentage of compounds testing positive, its high-throughput nature is an important advantage for future toxicological screening. PMID:24772387

  8. Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters.

    PubMed

    Richardson, Samantha J; Wijayagunaratne, Roshen C; D'Souza, Damian G; Darras, Veerle M; Van Herck, Stijn L J

    2015-01-01

    Thyroid hormones are key players in regulating brain development. Thus, transfer of appropriate quantities of thyroid hormones from the blood into the brain at specific stages of development is critical. The choroid plexus forms the blood-cerebrospinal fluid barrier. In reptiles, birds and mammals, the main protein synthesized and secreted by the choroid plexus is a thyroid hormone distributor protein: transthyretin. This transthyretin is secreted into the cerebrospinal fluid and moves thyroid hormones from the blood into the cerebrospinal fluid. Maximal transthyretin synthesis in the choroid plexus occurs just prior to the period of rapid brain growth, suggesting that choroid plexus-derived transthyretin moves thyroid hormones from blood into cerebrospinal fluid just prior to when thyroid hormones are required for rapid brain growth. The structure of transthyretin has been highly conserved, implying strong selection pressure and an important function. In mammals, transthyretin binds T4 (precursor form of thyroid hormone) with higher affinity than T3 (active form of thyroid hormone). In all other vertebrates, transthyretin binds T3 with higher affinity than T4. As mammals are the exception, we should not base our thinking about the role of transthyretin in the choroid plexus solely on mammalian data. Thyroid hormone transmembrane transporters are involved in moving thyroid hormones into and out of cells and have been identified in many tissues, including the choroid plexus. Thyroid hormones enter the choroid plexus via thyroid hormone transmembrane transporters and leave the choroid plexus to enter the cerebrospinal fluid via either thyroid hormone transmembrane transporters or via choroid plexus-derived transthyretin secreted into the cerebrospinal fluid. The quantitative contribution of each route during development remains to be elucidated. This is part of a review series on ontogeny and phylogeny of brain barrier mechanisms.

  9. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics.

    PubMed

    Butt, Craig M; Stapleton, Heather M

    2013-11-18

    Many halogenated organic contaminants (HOCs) are considered endocrine disruptors and affect the hypothalamic-pituitary-thyroid axis, often by interfering with circulating levels of thyroid hormones (THs). We investigated one potential mechanism for TH disruption, inhibition of sulfotransferase activity. One of the primary roles of TH sulfation is to support the regulation of biologically active T3 through the formation of inactive THs. We investigated TH sulfotransferase inhibition by 14 hydroxylated polybrominated diphenyl ethers (OH BDEs), BDE 47, triclosan, and fluorinated, chlorinated, brominated, and iodinated analogues of 2,4,6-trihalogenated phenol and bisphenol A (BPA). A new mass spectrometry-based method was also developed to measure the formation rates of 3,3'-T2 sulfate (3,3'-T2S). Using pooled human liver cytosol, we investigated the influence of these HOCs on the sulfation of 3,3'-T2, a major substrate for TH sulfation. For the formation of 3,3'-T2S, the Michaelis constant (Km) was 1070 ± 120 nM and the Vmax was 153 ± 6.6 pmol min(-1) (mg of protein)(-1). All chemicals investigated inhibited sulfotransferase activity with the exception of BDE 47. The 2,4,6-trihalogenated phenols were the most potent inhibitors followed by the OH BDEs and then halogenated BPAs. The IC50 values for the OH BDEs were primarily in the low nanomolar range, which may be environmentally relevant. In silico molecular modeling techniques were also used to simulate the binding of OH BDE to SULT1A1. This study suggests that some HOCs, including antimicrobial chemicals and metabolites of flame retardants, may interfere with TH regulation through inhibition of sulfotransferase activity. PMID:24089703

  10. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  11. Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle.

    PubMed

    Lesmana, Ronny; Sinha, Rohit A; Singh, Brijesh K; Zhou, Jin; Ohba, Kenji; Wu, Yajun; Yau, Winifred W Y; Bay, Boon-Huat; Yen, Paul M

    2016-01-01

    Thyroid hormone (TH) and autophagy share similar functions in regulating skeletal muscle growth, regeneration, and differentiation. Although TH recently has been shown to increase autophagy in liver, the regulation and role of autophagy by this hormone in skeletal muscle is not known. Here, using both in vitro and in vivo models, we demonstrated that TH induces autophagy in a dose- and time-dependent manner in skeletal muscle. TH induction of autophagy involved reactive oxygen species (ROS) stimulation of 5'adenosine monophosphate-activated protein kinase (AMPK)-Mammalian target of rapamycin (mTOR)-Unc-51-like kinase 1 (Ulk1) signaling. TH also increased mRNA and protein expression of key autophagy genes, microtubule-associated protein light chain 3 (LC3), Sequestosome 1 (p62), and Ulk1, as well as genes that modulated autophagy and Forkhead box O (FOXO) 1/3a. TH increased mitochondrial protein synthesis and number as well as basal mitochondrial O2 consumption, ATP turnover, and maximal respiratory capacity. Surprisingly, mitochondrial activity and biogenesis were blunted when autophagy was blocked in muscle cells by Autophagy-related gene (Atg)5 short hairpin RNA (shRNA). Induction of ROS and 5'adenosine monophosphate-activated protein kinase (AMPK) by TH played a significant role in the up-regulation of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), the key regulator of mitochondrial synthesis. In summary, our findings showed that TH-mediated autophagy was essential for stimulation of mitochondrial biogenesis and activity in skeletal muscle. Moreover, autophagy and mitochondrial biogenesis were coupled in skeletal muscle via TH induction of mitochondrial activity and ROS generation. PMID:26562261

  12. Leptin stimulates hepatic activation of thyroid hormones and promotes early posthatch growth in the chicken.

    PubMed

    Li, Rongjie; Hu, Yan; Ni, Yingdong; Xia, Dong; Grossmann, Roland; Zhao, Ruqian

    2011-10-01

    Hepatic iodothyronine deiodinases (Ds) are involved in the conversion of thyroid hormones (THs) which interacts with growth hormone (GH) to regulate posthatch growth in the chicken. Previous studies suggest that leptin-like immunoreactive substance deposited in the egg may serve as a maternal signal to program posthatch growth. To test the hypothesis that maternal leptin may affect early posthatch growth through modifying hepatic activation of THs, we injected 5.0μg of recombinant murine leptin into the albumen of breeder eggs before incubation. Furthermore, chicken embryo hepatocytes (CEHs) were treated with leptin in vitro to reveal the direct effect of leptin on expression and activity of Ds. In ovo leptin administration markedly accelerated early posthatch growth, elevated serum levels of total and free triiodothyronine (tT3 and fT3), while that of total thyroxin (tT4) remained unchanged. Hepatic mRNA expression and activity of D1 which converts T4 to T3 or rT3 to T2, were significantly increased in leptin-treated chickens, while those of D3 which converts T3 to T2 or T4 to rT3, were significantly decreased. Moreover, hepatic expression of GHR and IGF-I mRNA was all up-regulated in leptin-treated chickens. Males demonstrated more pronounced responses. A direct effect of leptin on Ds was shown in CEHs cultured in vitro. Expression and activity of D1 were increased, whereas those of D3 were decreased, in leptin-treated cells. These data suggest that in ovo leptin administration improves early posthatch growth, in a gender-specific fashion, probably through improving hepatic activation of THs and up-regulating hepatic expression of GHR and IGF-I.

  13. Effects of thyroid hormones on the heart.

    PubMed

    Vargas-Uricoechea, Hernando; Bonelo-Perdomo, Anilsa; Sierra-Torres, Carlos Hernán

    2014-01-01

    Thyroid hormones have a significant impact on heart function, mediated by genomic and non-genomic effects. Consequently, thyroid hormone deficiencies, as well as excesses, are expected to result in profound changes in cardiac function regulation and cardiovascular hemodynamics. Thyroid hormones upregulate the expression of the sarcoplasmic reticulum calcium-activated ATPase and downregulate the expression of phospholamban. Overall, hyperthyroidism is characterized by an increase in resting heart rate, blood volume, stroke volume, myocardial contractility, and ejection fraction. The development of "high-output heart failure" in hyperthyroidism may be due to "tachycardia-mediated cardiomyopathy". On the other hand, in a hypothyroid state, thyroid hormone deficiency results in lower heart rate and weakening of myocardial contraction and relaxation, with prolonged systolic and early diastolic times. Cardiac preload is decreased due to impaired diastolic function. Cardiac afterload is increased, and chronotropic and inotropic functions are reduced. Subclinical thyroid dysfunction is relatively common in patients over 65 years of age. In general, subclinical hypothyroidism increases the risk of coronary heart disease (CHD) mortality and CHD events, but not of total mortality. The risk of CHD mortality and atrial fibrillation (but not other outcomes) in subclinical hyperthyroidism is higher among patients with very low levels of thyrotropin. Finally, medications such as amiodarone may induce hypothyroidism (mediated by the Wolff-Chaikoff), as well as hyperthyroidism (mediated by the Jod-Basedow effect). In both instances, the underlying cause is the high concentration of iodine in this medication.

  14. Effects of thyroid hormones on the heart.

    PubMed

    Vargas-Uricoechea, Hernando; Bonelo-Perdomo, Anilsa; Sierra-Torres, Carlos Hernán

    2014-01-01

    Thyroid hormones have a significant impact on heart function, mediated by genomic and non-genomic effects. Consequently, thyroid hormone deficiencies, as well as excesses, are expected to result in profound changes in cardiac function regulation and cardiovascular hemodynamics. Thyroid hormones upregulate the expression of the sarcoplasmic reticulum calcium-activated ATPase and downregulate the expression of phospholamban. Overall, hyperthyroidism is characterized by an increase in resting heart rate, blood volume, stroke volume, myocardial contractility, and ejection fraction. The development of "high-output heart failure" in hyperthyroidism may be due to "tachycardia-mediated cardiomyopathy". On the other hand, in a hypothyroid state, thyroid hormone deficiency results in lower heart rate and weakening of myocardial contraction and relaxation, with prolonged systolic and early diastolic times. Cardiac preload is decreased due to impaired diastolic function. Cardiac afterload is increased, and chronotropic and inotropic functions are reduced. Subclinical thyroid dysfunction is relatively common in patients over 65 years of age. In general, subclinical hypothyroidism increases the risk of coronary heart disease (CHD) mortality and CHD events, but not of total mortality. The risk of CHD mortality and atrial fibrillation (but not other outcomes) in subclinical hyperthyroidism is higher among patients with very low levels of thyrotropin. Finally, medications such as amiodarone may induce hypothyroidism (mediated by the Wolff-Chaikoff), as well as hyperthyroidism (mediated by the Jod-Basedow effect). In both instances, the underlying cause is the high concentration of iodine in this medication. PMID:25438971

  15. E-NTPDase 3 (ATP diphosphohydrolase) from cardiomyocytes, activity and expression are modulated by thyroid hormone.

    PubMed

    Barreto-Chaves, Maria Luiza M; Carneiro-Ramos, Marcela Sorelli; Cotomacci, Guilherme; Júnior, Marconi Barbosa Coutinho; Sarkis, João José Freitas

    2006-06-01

    Degradation of adenine nucleotides by myocardial cells occurs, in part, by a cascade of surface-located enzymes converting ATP into adenosine that has important implications for the regulation of the nucleotide/nucleoside ratio modulating the cardiac functions. Thyroid hormones have profound effects on cardiovascular system, as observed in hypo- and hyperthyroidism. Combined biochemical parameters and gene expression analysis approaches were used to investigate the influence of tri-iodothyronine (T3) on ATP and ADP hydrolysis by isolated myocytes. Cultures of cardiomyocytes were submitted to increasing doses of T3 for 24h. Enzymatic activity and expression were evaluated. T3 (0.1 nM) caused an increase in ATP and ADP hydrolysis. Experiments with specific inhibitors suggest the involvement of an NTPDase, which was confirmed by an increase in NTPDase 3 messenger RNA (mRNA) levels. Since T3 promotes an increase in the contractile protein, leading to cardiac hypertrophy, it is tempting to postulate that the increase in ATP hydrolysis and the decrease in the extracellular levels signify an important factor for prevention of excessive contractility. PMID:16584835

  16. Thyroid hormones, learning and memory.

    PubMed

    Rivas, M; Naranjo, J R

    2007-06-01

    Thyroid hormones (THs), T3 and T4, have many physiological actions and are essential for normal behavioral, intellectual and neurological development. THs have a broad spectrum of effects on the developing brain and mediate important effects within the CNS throughout life. Insufficient maternal iodine intake during gestation and TH deficiency during human development are associated to pathological alterations such as cretinism and mental retardation. In adulthood, thyroid dysfunction is related to neurological and behavioral abnormalities, including memory impairment. Analysis of different experimental models suggests that most of the effects on cognition as a result of thyroid dysfunction rely on hippocampal modifications. Insufficiency of THs during development thus alters hippocampal synaptic function and impairs behavioral performance of hippocampal-dependent learning and memory tasks that persist in euthyroid adult animals. In the present review, we summarize the current knowledge obtained by clinical observations and experimental models that shows the importance of THs in learning and mnemonic processes. PMID:17543038

  17. In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River.

    PubMed

    Hu, Xinxin; Shi, Wei; Zhang, Fengxian; Cao, Fu; Hu, Guanjiu; Hao, Yingqun; Wei, Si; Wang, Xinru; Yu, Hongxia

    2013-02-01

    The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential.

  18. Thyroid hormones and renin secretion.

    PubMed

    Ganong, W F

    Circulating angiotensin is produced by the action of renin from the kidneys on circulating angiotensinogen. There are other renin-angiotensin systems in various organs in the body, and recent observations raise the intriguing possibility that angiotensin II is produced by a totally intracellular pathway in the juxtaglomerular cells, the gonadotrops of the anterior pituitary, neurons, in the brain, salivary duct cells, and neuroblastoma cells. Circulating angiotensin II levels depend in large part on the plasma concentration of angiotensinogen, which is hormonally regulated, and on the rate of renin secretion. Renin secretion is regulated by an intrarenal baroreceptor mechanism, a macula densa mechanism, angiotensin II, vasopressin, and the sympathetic nervous system. The increase in renin secretion produced by sympathetic discharge is mediated for the most part by beta-adrenergic receptors, which are probably located on the juxtaglomerular cells. Hyperthyroidism would be expected to be associated with increased renin secretion in view of the increased beta-adrenergic activity in this condition, and hypothyroidism would be associated with decreased plasma renin activity due to decreased beta-adrenergic activity. Our recent research on serotonin-mediated increases in renin secretion that depend on the integrity of the dorsal raphe nucleus and the mediobasal hypothalamus has led us to investigate the effect of the pituitary on the renin response to p-chloroamphetamine. The response is potentiated immediately after hypophysectomy, but 22 days after the operation, it is abolished. This slowly developing decrease in responsiveness may be due to decreased thyroid function.

  19. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  20. Thyroid hormone resistance and its management

    PubMed Central

    Lado-Abeal, Joaquin

    2016-01-01

    The syndrome of impaired sensitivity to thyroid hormone, also known as syndrome of thyroid hormone resistance, is an inherited condition that occurs in 1 of 40,000 live births characterized by a reduced responsiveness of target tissues to thyroid hormone due to mutations on the thyroid hormone receptor. Patients can present with symptoms of hyperthyroidism or hypothyroidism. They usually have elevated thyroid hormones and a normal or elevated thyroid-stimulating hormone level. Due to their nonspecific symptomatic presentation, these patients can be misdiagnosed if the primary care physician is not familiar with the condition. This can result in frustration for the patient and sometimes unnecessary invasive treatment such as radioactive iodine ablation, as in the case presented herein. PMID:27034574

  1. Assessing Waste Water Treatment Plant Effluents For Thyroid Hormone Disrupting Activity

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two ass...

  2. Thyroid hormone antibodies and Hashimoto's thyroiditis in mongrel dogs

    SciTech Connect

    Rajatanavin, R.; Fang, S.L.; Pino, S.; Laurberg, P.; Braverman, L.E.; Smith, M.; Bullock, L.P.

    1989-05-01

    Abnormally elevated serum T3 concentrations measured by RIA were observed in 19 clinically euthyroid or hypothyroid mongrel dogs. The serum T4 concentrations in these sera were low, normal, or high. Measurement of the intensity of thyroid hormone binding to serum proteins was determined by equilibrium dialysis. A marked decrease in the percent free T3 was observed in these abnormal sera. Polyacrylamide gel electrophoresis, pH 7.4, of normal dog serum enriched with tracer /sup 125/I-labeled thyroid hormones demonstrated binding of (/sup 125/I)T4 to transthyretin, thyroid hormone-binding globulin, and albumin and of (/sup 125/I)T3 primarily to thyroid hormone-binding globulin. In all abnormal sera, polyacrylamide gel electrophoresis demonstrated strikingly higher binding of T3 to immunoglobulin (Ig). Eleven of 16 abnormal sera had minimal to moderate binding of T4 to Ig. The percent free T4 was lower only in dogs whose sera demonstrated markedly increased binding of T4 to Ig. All abnormal sera tested had positive antithyroglobulin antibodies, consistent with the diagnosis of autoimmune lymphocytic thyroiditis. As in humans, antibodies to thyroid hormones in dogs are more common in the presence of Hashimoto's thyroiditis and should be considered when elevated serum thyroid hormone concentrations are observed in the absence of clinical thyrotoxicosis. When an antibody to only one thyroid hormone is present, a marked discrepancy in the serum concentrations of T3 and T4 will be observed.

  3. Thyroid hormone, brain development, and the environment.

    PubMed Central

    Zoeller, Thomas R; Dowling, Amy L S; Herzig, Carolyn T A; Iannacone, Eric A; Gauger, Kelly J; Bansal, Ruby

    2002-01-01

    Thyroid hormone is essential for normal brain development. Therefore, it is a genuine concern that thyroid function can be altered by a very large number of chemicals routinely found in the environment and in samples of human and wildlife tissues. These chemicals range from natural to manufactured compounds. They can produce thyroid dysfunction when they are absent from the diet, as in the case of iodine, or when they are present in the diet, as in the case of thionamides. Recent clinical evidence strongly suggests that brain development is much more sensitive to thyroid hormone excess or deficit than previously believed. In addition, recent experimental research provides new insight into the developmental processes affected by thyroid hormone. Based on the authors' research focusing on the ability of polychlorinated biphenyls to alter the expression of thyroid hormone-responsive genes in the developing brain, this review provides background information supporting a new way of approaching risk analysis of thyroid disruptors. PMID:12060829

  4. Direct activation of Xenopus iodotyrosine deiodinase by thyroid hormone receptor in the remodeling intestine during amphibian metamorphosis.

    PubMed

    Fujimoto, Kenta; Matsuura, Kazuo; Das, Biswajit; Fu, Liezhen; Shi, Yun-Bo

    2012-10-01

    Thyroid hormone (TH) plays critical roles during vertebrate postembryonic development. TH production in the thyroid involves incorporating inorganic iodide into thyroglobulin. The expression of iodotyrosine deiodinase (IYD; also known as iodotyrosine dehalogenase 1) in the thyroid gland ensures efficient recycling of iodine from the byproducts of TH biosynthesis: 3'-monoiodotyrosine and 3', 5'-diiodotyrosine. Interestingly, IYD is known to be expressed in other organs in adult mammals, suggesting iodine recycling outside the thyroid. On the other hand, the developmental role of iodine recycling has yet to be investigated. Here, using intestinal metamorphosis as a model, we discovered that the Xenopus tropicalis IYD gene is strongly up-regulated by TH during metamorphosis in the intestine but not the tail. We further demonstrated that this induction was one of the earliest events during intestinal metamorphosis, with IYD being activated directly through the binding of liganded TH receptors to a TH response element in the IYD promoter region. Because iodide is mainly taken up from the diet in the intestine and the tadpole stops feeding during metamorphosis when the intestine is being remodeled, our findings suggest that IYD transcription is activated by liganded TH receptors early during intestinal remodeling to ensure efficient iodine recycling at the climax of metamorphosis when highest levels of TH are needed for the proper transformations of different organs.

  5. [Transthyretin-binding activity of hexabromocyclododecanes (HBCDs) and its thyroid hormone disrupting effects after developmental exposure].

    PubMed

    Ji, Xiu-Ling; Liu, Yang; Liu, Fang; Lu, Yue; Zhong, Gao-Ren

    2010-09-01

    In vivo and in vitro research approaches were carried out to survey the potential health risk of environmental exposure by hexabromocyclododecanes (HBCDs). Transthyretin-binding assay was designed to test for the potency of HBCDs to compete with thyroxine (T4) for binding to the transport protein. The results showed that the binding of 25I-T4 and T4 was only slightly inhabited even at the highest competitive concentration of HBCDs (75.08%, 80 micromol x L(-1)), indicating the marginally interfere potency of HBCDs in the transportation of T4. Sprague-Dawley rats of 3-days old were exposed to 0.2 mg/kg and 1 mg/kg HBCDs for 21 d to examine the thyroid hormones (THs) disrupting effects of HBCDs after developmental exposure. Compared with the controls, levels of total 3,3',5-triiodothyronine (TT3), free 3,3',5-triiodothyronine (FT3), increased significantly (p < 0.05, p < 0.05) in low- and high-dose exposures, thyroid stimulating hormone (TSH) also increased slightly while the total thyroxine (TT4), free thyroxine (FT4) had a decline about two-fold inversely. Combined both the in vivo and in vitro results, the possible mode of action of HBCDs on THs disruption may through the synergy or substitution effect of T3. The findings support further investigation of the potential THs disrupting effects of HBCDs on public health, especially on children during brain development. PMID:21072945

  6. Partial Target Organ Resistance to Thyroid Hormone

    PubMed Central

    Bode, Hans Henning; Danon, Marco; Weintraub, Bruce D.; Maloof, Farahe; Crawford, John D.

    1973-01-01

    An 8-year old boy with a small goiter, normal basal metabolic rate (BMR), and elevated serum thyroid hormone levels (thyroxine [T4] 19.5 μg per 100 ml, free T4 4 ng per 100 ml, triiodothyronine [T3] 505 ng per 100 ml) was studied. He had measurable serum thyroid-stimulating hormone (TSH) levels (average 5.5 μU per ml), and the thyroxine-binding proteins, hearing, and epiphyseal structures were normal. There was no parental consanguinity nor were there thyroid abnormalities either in the parents or six siblings. Methimazole, 50 mg daily, depressed thyroxine synthesis (T4 10.5, free T4 2.5) and caused a rise in TSH to 11 μU per ml. After discontinuation of treatment, TSH declined to 4.2 μU per ml and chemical hyperthyroidism returned (T4 21.0 μg per 100 ml, free T4 4.2, and total T3 475 ng per 100 ml, radioactive iodine [RAI] uptake 68%), but studies of BMR and insensible water loss showed the patient to be clinically euthyroid. Thyrotropin-releasing hormone (TRH), 200 μg i.v., caused a brisk rise in TSH to 28 μU per ml, with T4 rising to 28 μg per 100 ml, free T4 to 5.6, and T3 to 730 ng per 100 ml, thus indicating that the pituitary-thyroid system was intact and that the patient's TSH was biologically active. The unusual sensitivity of the pituitary cells to TRH in spite of the markedly elevated serum thyroid hormone levels also suggested that the pituitary was insensitive to suppression by T3 or T4. Serum dilution studies gave immunochemical evidence that this patient's TSH was normal. Neither propranolol, 60 mg, chlorpromazine, 30 mg, nor prednisone, 15 mg daily, influenced thyroid indices. Steroid treatment, however, suppressed the pituitary response to TRH, T3 in doses increased over a period of 12 days to as much as 150 μg daily caused a rise in serum T3 to above 800 ng per 100 ml, a decline of T4 to euthyroid levels (T4 9.5 μg per 100 ml, free T4 1.6 ng per 100 ml), suppression of the RAI uptake from 68% to 35%, and marked blunting of the responses

  7. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression.

    PubMed Central

    Qi, J S; Desai-Yajnik, V; Yuan, Y; Samuels, H H

    1997-01-01

    Thyroid hormone receptor (T3R) is a member of the steroid hormone receptor gene family of nuclear hormone receptors. In most cells T3R activates gene expression only in the presence of its ligand, L-triiodothyronine (T3). However, in certain cell types (e.g., GH4C1 cells) expression of T3R leads to hormone-independent constitutive activation. This activation by unliganded T3R occurs with a variety of gene promoters and appears to be independent of the binding of T3R to specific thyroid hormone response elements (TREs). Previous studies indicate that this constitutive activation results from the titration of an inhibitor of transcription. Since the tumor suppresser p53 is capable of repressing a wide variety of gene promoters, we considered the possibility that the inhibitor is p53. Evidence to support this comes from studies indicating that expression of p53 blocks T3R-mediated constitutive activation in GH4C1 cells. In contrast with hormone-independent activation by T3R, p53 had little or no effect on T3-dependent stimulation which requires TREs. In addition, p53 mutants which oligomerize with wild-type p53 and interfere with its function also increase promoter activity. This enhancement is of similar magnitude to but is not additive with the stimulation mediated by unliganded T3R, suggesting that they target the same factor. Since p53 mutants are known to target wild-type p53 in the cell, this suggests that T3R also interacts with p53 in vivo and that endogenous levels of p53 act to suppress promoter activity. Evidence supporting both functional and physical interactions of T3R and p53 in the cell is presented. The DNA binding domain (DBD) of T3R is important in mediating constitutive activation, and the receptor DBD appears to functionally interact with the N terminus of p53 in the cell. In vitro binding studies indicate that the T3R DBD is important for interaction of T3R with p53 and that this interaction is reduced by T3. These findings are consistent with

  8. THYROID HORMONE DISRUPTION: FROM KINETICS TO DYNAMICS.

    EPA Science Inventory

    A wide range of chemicals with diverse structures act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are chemicals that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormones (THs), or change circulating or t...

  9. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats

    EPA Science Inventory

    Severe thyroid hormone (TH) deficiency during critical phases of brain development results in irreversible neurological and cognitive impairments. The mechanisms accounting for this are likely multifactorial, and are not fully understood. Here we pursue the possibility that one i...

  10. Thyroid hormone effect in human hepatocytes.

    PubMed

    Miler, Eliana A; Ríos de Molina, María Del Carmen; Domínguez, Gabriela; Guerra, Liliana N

    2008-01-01

    We have already demonstrated that a combined treatment of methimazole and an antioxidant mixture improved the condition of hyperthyroid patients both biochemically and clinically. Elevated thyroid hormone levels might trigger signs and symptoms of hyperthyroidism through the increase of free radicals. To study the direct effect of thyroid hormone on cellular markers of oxidative stress, we carried out in vitro assays in which 0.1-20.0 nM T3 (6.5-1300.0 ng/dl) doses were added to culture media of the human hepatocyte cell line Hep G2 for 1-24 h. T3 increased malondialdehyde (MDA) and intracellular oxidized glutathione (GSSG) levels; SOD activity was also higher with hormone treatment, whereas catalase and glutathione peroxidase activities showed no variation at different T3 doses and during all experimental times. When ascorbic acid was added to the culture, the MDA level decreased and SOD activity was increased. With higher doses of T3 (e.g. 200 nM), cell death occurred (69% of apoptotic cells). The increase in SOD activity was not enough to overcome the effect of T3 since MDA and GSSG remained high during a 24-h experiment. We showed a beneficial effect of ascorbic acid when cells were exposed to a T3 dose of 20 nM, a higher level of hormone than that achieved in hyperthyroidism. PMID:18647489

  11. Hyponatremia after Thyroid Hormone Withdrawal in a Patient with Papillary Thyroid Carcinoma

    PubMed Central

    Jo, Hyo Jin; Shin, Dong Hyun; Kim, Mi Jeoung; Lee, Sang Jin; Jeon, Dong Ok; Im, Sung Gyu; Jang, Sun Kyung; Choi, Jin Young

    2014-01-01

    Hyponatremia is an electrolyte abnormality commonly found in clinical practice. It is important to diagnose the underlying etiology of the hyponatremia and correct it appropriately because severe hyponatremia can cause serious complications and substantially increase the risk of mortality. Although hypothyroidism is known to be a cause of hyponatremia, it is rare that hyponatremia occurs in relation to hypothyroidism induced by thyroid hormone withdrawal in patients with differentiated thyroid cancer. We report a case of a 76-year-old woman with papillary thyroid carcinoma presenting with severe hyponatremia related to hypothyroidism induced by thyroid hormone withdrawal for radio-active iodine whole-body scanning, who was treated by thyroid hormone replacement and hydration. Considering that the incidence of differentiated thyroid cancer is rapidly increasing, physicians should be aware that, although uncommon, hyponatremia can occur in patients undergoing radioiodine therapy or diagnostic testing. PMID:24741458

  12. Thyroid hormone-induced changes in the hepatic monooxygenase system, heme oxygenase activity and epoxide hydrolase activity in adult male, female and immature rats.

    PubMed

    Leakey, J E; Mukhtar, H; Fouts, J R; Bend, J R

    1982-07-01

    In 8-day-old rat pups, pretreatment with a single injection of L-triiodothyronine or L-thyroxine decreased hepatic cytochrome P-450 content, aminopyrine N-demethylase activity and epoxide hydrolase activity but increased hepatic microsomal cytochrome c reductase, 7-ethoxyresorufin O-deethylase and heme oxygenase activities without significantly altering UDP-glucuronosyltransferase activity (towards o-aminophenol) or the microsomal yield. In adult rats of either sex such single injections of L-triiodothyronine failed to significantly alter these enzyme activities. However, multiple injections evoked changes similar to those observed in the pups, in all these enzyme activities, except that 7-ethoxyresorufin O-deethylase activity was slightly decreased rather than increased. These findings demonstrate that: (1) The hepatic monooxygenase system in the rat pup is more responsive to thyroid hormones than that in adult. (2) Thyroid hormones can decrease rat liver cytochrome P-450 content and its dependent monooxygenase activity independently of sexual maturity. (3) Thyroid hormones also decrease hepatic epoxide hydrolase activity in both pups and adults. Thus, hyperthyroidism could render the rat pup more susceptible to hepatotoxicity from electrophilic epoxides which utilize microsomal epoxide hydrolase as the major detoxication pathway.

  13. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  14. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  15. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  16. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  17. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  18. The thyroid gland and thyroid hormones in sheepshead minnow (Cyprinodon variegatus) during early development and metamorphosis.

    PubMed

    Schnitzler, Joseph G; Klaren, Peter H M; Mariavelle, Emeline; Das, Krishna

    2016-04-01

    The sheepshead minnow is widely used in ecotoxicological studies that only recently have begun to focus on disruption of the thyroid axis by xenobiotics and endocrine disrupting compounds. However, reference levels of the thyroid prohormone thyroxine (T4) and biologically active hormone 3,5,3'-triiodothyronine (T3) and their developmental patterns are unknown. This study set out to describe the ontogeny and morphology of the thyroid gland in sheepshead minnow, and to correlate these with whole-body concentrations of thyroid hormones during early development and metamorphosis. Eggs were collected by natural spawning in our laboratory. T4 and T3 were extracted from embryos, larvae and juveniles and an enzyme-linked immunoassay was used to measure whole-body hormone levels. Length and body mass, hatching success, gross morphology, thyroid hormone levels and histology were measured. The onset of metamorphosis at 12-day post-hatching coincided with surges in whole-body T4 and T3 concentrations. Thyroid follicles were first observed in pre-metamorphic larvae at hatching and were detected exclusively in the subpharyngeal region, surrounding the ventral aorta. Follicle size and thyrocyte epithelial cell heights varied during development, indicating fluctuations in thyroid hormone synthesis activity. The increase in the whole-body T3/T4 ratio was indicative of an increase in outer ring deiodination activity. This study establishes a baseline for thyroid hormones in sheepshead minnows, which will be useful for the understanding of thyroid hormone functions and in future studies of thyroid toxicants in this species.

  19. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  20. Role of maternal thyroid hormones in the developing neocortex and during human evolution.

    PubMed

    Stenzel, Denise; Huttner, Wieland B

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  1. Thyroid Hormone Replacement in Patients Following Thyroidectomy for Thyroid Cancer

    PubMed Central

    Hannoush, Zeina C.; Weiss, Roy E.

    2016-01-01

    Thyroid hormone replacement therapy in patients following thyroidectomy for thyroid cancer, although a potentially straightforward clinical problem, can present the clinician and patient with a variety of challenges. Most often the problems are related to the dose and preparation of thyroid hormone (TH) to use. Some patients feel less well following thyroidectomy and/or radioiodine ablation than they did before their diagnosis. We present evidence that levothyroxine (L-T4) is the preparation of choice, and keeping the thyroid-stimulating hormone (TSH) between detectable and 0.1 mU/L should be the standard of care in most cases. In unusual circumstances, when the patient remains clinically hypothyroid despite a suppressed TSH, we acknowledge there may be as yet unidentified factors influencing the body’s response to TH, and individualized therapy may be necessary in such patients. PMID:26886951

  2. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses

    PubMed Central

    2011-01-01

    Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid). A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement). An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid). Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb) of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search revealed new thyroid

  3. Thyroid hormones in fetal growth and prepartum maturation.

    PubMed

    Forhead, A J; Fowden, A L

    2014-06-01

    The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal growth and development of the fetus. Their bioavailability in utero depends on development of the fetal hypothalamic-pituitary-thyroid gland axis and the abundance of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and differentiation near term, fetal thyroid hormones ensure activation of physiological processes essential for survival at birth such as pulmonary gas exchange, thermogenesis, hepatic glucogenesis, and cardiac adaptations. This review examines the developmental control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal growth and development with particular emphasis on maturation of somatic tissues critical for survival immediately at birth.

  4. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-07-12

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems.

  5. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    PubMed Central

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems PMID:27420076

  6. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems. PMID:27420076

  7. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells.

    PubMed

    Wajner, Simone Magagnin; Goemann, Iuri Martin; Bueno, Ana Laura; Larsen, P Reed; Maia, Ana Luiza

    2011-05-01

    Nonthyroidal illness syndrome (NTIS) is a state of low serum 3,5,3' triiodothyronine (T₃) that occurs in chronically ill patients; the degree of reduction in T₃ is associated with overall prognosis and survival. Iodthyronine deiodinases are enzymes that catalyze iodine removal from thyroid hormones; type I and II deiodinase (D1 and D2, respectively) convert the prohormone thyroxine T₄ to active T₃, whereas the type III enzyme (D3) inactivates T₄ and T₃. Increased production of cytokines, including IL-6, is a hallmark of the acute phase of NTIS, but the role of cytokines in altered thyroid hormone metabolism is poorly understood. Here, we measured the effect of IL-6 on both endogenous cofactor-mediated and dithiothreitol-stimulated (DTT-stimulated) cell sonicate deiodinase activities in human cell lines. Active T₃ generation by D1 and D2 in intact cells was suppressed by IL-6, despite an increase in sonicate deiodinases (and mRNAs). N-acetyl-cysteine (NAC), an antioxidant that restores intracellular glutathione (GSH) concentrations, prevented the IL-6-induced inhibitory effect on D1- and D2-mediated T₃ production, which suggests that IL-6 might function by depleting an intracellular thiol cofactor, perhaps GSH. In contrast, IL-6 stimulated endogenous D3-mediated inactivation of T₃. Taken together, these results identify a single pathway by which IL-6-induced oxidative stress can reduce D1- and D2-mediated T₄-to-T₃ conversion as well as increasing D3-mediated T₃ (and T₄) inactivation, thus mimicking events during illness.

  8. Deiodination as an index of chemical disruption of thyroid hormone homeostasis and thyroidal status in fish

    SciTech Connect

    Eales, J.G.; Brown, S.B.; Cyr, D.G.; Adams, B.A.; Finnson, K.R.

    1999-07-01

    Commonly used indices of fish thyroidal status are based on thyroxine (T4) secretion by thyroid tissue under control of the central brain-pituitary-thyroid axis. However, much of the control of the fish thyroid system also occurs in peripheral tissues, such as liver, by regulating T4 prohormone conversion to biologically active 3,5,3{prime}-triiodothyronine (T3) or to biologically inactive 3,3{prime},5{prime}-triiodothyronine and by regulating T3 conversion to inactive 3,3{prime}-diiodothyronine. These extrathyroidal conversions depend on a family of independently-regulated selenocysteine-containing microsomal deiodinases. The authors describe deiodination assays and evaluate their potential as biomarkers for exposure to chemicals that directly or indirectly disrupt thyroid hormone homeostasis or thyroidal status. The authors conclude that deiodination be included in a minimum suite of assays to detect xenobiotic effects on the fish thyroid system.

  9. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling

    PubMed Central

    Xing, Weirong; Cheng, Shaohong; Wergedal, Jon; Mohan, Subburaman

    2015-01-01

    Thyroid hormones (TH) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC), since the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, μCT evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised due to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that while all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of Tshr−/− mice induced expression of Ihh and Osx in Col2 expressing chondrocytes in the SOC at day 7 which subsequently differentiate into Col10/osteocalcin expressing chondro-osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day old mice with10 ng/ml TH increased expression of Osx, Col10, ALP and osteocalcin in the epiphysis by 6–60 fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral shRNA significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro-osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes. PMID:24753031

  10. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    EPA Science Inventory

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  11. Influence of Thyroid Hormones on Tendon Homeostasis.

    PubMed

    Oliva, Francesco; Piccirilli, Eleonora; Berardi, Anna C; Tarantino, Umberto; Maffulli, Nicola

    2016-01-01

    Tendinopathies have a multifactorial etiology driven by extrinsic and intrinsic factors. Recent studies have elucidated the importance of thyroid hormones in the alteration of tendons homeostasis and in the failure of tendon healing after injury. The effects of thyroid hormones are mediated by receptors (TR)-α and -β that seem to be ubiquitous. In particular, T3 and T4 play an antiapoptotic role on tenocytes, causing an increase in vital tenocytes isolated from tendons in vitro and a reduction of apoptotic ones; they are also able to influence extra cellular matrix proteins secretion in vitro from tenocytes, enhancing collagen production. From a clinical point of view, disorders of thyroid function have been investigated only for rotator cuff calcific tendinopathy and tears. In this complex scenario, further research is needed to clarify the role of thyroid hormones on the onset of tendinopathies. PMID:27535255

  12. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  13. Relation of thyroid hormone abnormalities with subclinical inflammatory activity in patients with type 1 and type 2 diabetes mellitus.

    PubMed

    Moura Neto, Arnaldo; Parisi, Maria Candida Ribeiro; Alegre, Sarah Monte; Pavin, Elizabeth Joao; Tambascia, Marcos Antonio; Zantut-Wittmann, Denise Engelbrecht

    2016-01-01

    Thyroid hormone (TH) abnormalities are common in patients with diabetes mellitus (DM). These thyroid hormone abnormalities have been associated with inflammatory activity in several conditions but this link remains unclear in DM. We assessed the influence of subclinical inflammation in TH metabolism in euthyroid diabetic patients. Cross-sectional study involving 258 subjects divided in 4 groups: 70 patients with T2DM and 55 patients with T1DM and two control groups of 70 and 63 non-diabetic individuals, respectively. Groups were paired by age, sex, and body mass index (BMI). We evaluated the association between clinical and hormonal variables [thyrotropin, reverse T3 (rT3), total and free thyroxine (T4), and triiodothyronine (T3)] with the inflammation markers C-reactive protein (hs-CRP), serum amyloid A (SAA), and interleukin-6 (IL-6). Serum T3 and free T3 were lower in patients with diabetes (all P < 0.001) compared to the control groups. Interleukin-6 showed positive correlations with rT3 in both groups (P < 0.05). IL-6 was independently associated to FT3/rT3 (B = -0.193; 95% CI -0.31; -0.076; P = 0.002) and FT4/rT3 (B = -0.107; 95% CI -0.207; -0.006; P = 0.039) in the T1DM group. In the T2DM group, SAA (B = 0.18; 95% CI 0.089; 0.271; P < 0.001) and hs-CRP (B = -0.069; 95% CI -0.132; -0.007; P = 0.03) predicted FT3 levels. SAA (B = -0.16; 95% CI -0.26; -0.061; P = 0.002) and IL6 (B = 0.123; 95% CI 0.005; 0.241; P = 0.041) were related to FT4/FT3. In DM, differences in TH levels compared to non-diabetic individuals were related to increased subclinical inflammatory activity and BMI. Altered deiodinase activity was probably involved. These findings were independent of sex, age, BMI, and HbA1c levels.

  14. Emerging role of thyroid hormone metabolites.

    PubMed

    Gnocchi, D; Steffensen, K R; Bruscalupi, G; Parini, P

    2016-07-01

    Thyroid hormones (THs) are essential for the regulation of development and metabolism in key organs. THs produce biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). Such activations can be either direct, in the case of ion channels, or mediated by membrane or cytoplasmic receptors. Short-term-activated signalling pathways often play a role in the regulation of genomic effects. Several TH intermediate metabolites, which were previously considered without biological activity, have now been associated with a broad range of actions, mostly attributable to short-term effects. Here, we give an overview of the physiological roles and mechanisms of action of THs, focusing on the emerging position that TH metabolites are acquiring as important regulators of physiology and metabolism.

  15. Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.

    PubMed

    Pavelka, S

    2014-01-01

    We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between

  16. Coexistence of resistance to thyroid hormone and papillary thyroid carcinoma

    PubMed Central

    Igata, Motoyuki; Tsuruzoe, Kaku; Kawashima, Junji; Kukidome, Daisuke; Kondo, Tatsuya; Motoshima, Hiroyuki; Shimoda, Seiya; Furukawa, Noboru; Nishikawa, Takeshi; Miyamura, Nobuhiro

    2016-01-01

    Summary Resistance to thyroid hormone (RTH) is a syndrome of reduced tissue responsiveness to thyroid hormones. RTH is majorly caused by mutations in the thyroid hormone receptor beta (THRB) gene. Recent studies indicated a close association of THRB mutations with human cancers, but the role of THRB mutation in carcinogenesis is still unclear. Here, we report a rare case of RTH with a papillary thyroid carcinoma (PTC). A 26-year-old woman was referred to our hospital due to a thyroid tumor and hormonal abnormality. She had elevated serum thyroid hormones and non-suppressed TSH levels. Genetic analysis of THRB identified a missense mutation, P452L, leading to a diagnosis of RTH. Ultrasound-guided fine-needle aspiration biopsy of the tumor and lymph nodes enabled the cytological diagnosis of PTC with lymph node metastases. Total thyroidectomy and neck lymph nodes dissection were performed. Following surgery, thyroxine replacement (≥500 μg) was necessary to avoid the symptoms of hypothyroidism and to maintain her TSH levels within the same range as before the operation. During the follow-up, basal thyroglobulin (Tg) levels were around 6 ng/ml and TSH-stimulated Tg levels were between 12 and 20 ng/ml. Up to present, the patient has had no recurrence of PTC. This indicates that these Tg values are consistent with a biochemical incomplete response or an indeterminate response. There is no consensus regarding the management of thyroid carcinoma in patients with RTH, but aggressive treatments such as total thyroidectomy followed by radioiodine (RAI) and TSH suppression therapy are recommended. Learning points There are only a few cases reporting the coexistence of RTH and thyroid carcinoma. Moreover, our case would be the first case presenting one with lymph node metastases. Recent studies indicated a close association of THRB mutations with human cancers, but the role of THRB mutation in carcinogenesis is still unclear. When total thyroidectomy is performed in

  17. Thyroid hormone metabolism and environmental chemical exposure

    PubMed Central

    2012-01-01

    Background Polychlorinated dioxins and –furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to have a negative influence on thyroid hormone metabolism. The lower brominated flame retardants are now banned in the EU, however higher brominated decabromo-diphenyl ether (DBDE) and the brominated flame retardant hexabromocyclododecane (HBCD) are not yet banned. They too can negatively influence thyroid hormone metabolism. An additional brominated flame retardant that is still in use is tetrabromobisphenol-A (TBBPA), which has also been shown to influence thyroid hormone metabolism. Influences of brominated flame retardants, PCDD/F’s and dioxin like-PCBs (dl-PCB’s) on thyroid hormone metabolism in adolescence in the Netherlands will be presented in this study and determined if there are reasons for concern to human health for these toxins. In the period 1987-1991, a cohort of mother-baby pairs was formed in order to detect abnormalities in relation to dioxin levels in the perinatal period. The study demonstrated that PCDD/Fs were found around the time of birth, suggesting a modulation of the setpoint of thyroid hormone metabolism with a higher 3,3’, 5,5’tetrathyroxine (T4) levels and an increased thyroid stimulating hormone (TSH). While the same serum thyroid hormone tests (- TSH and T4) were again normal by 2 years of age and were still normal at 8-12 years, adolescence is a period with extra stress on thyroid hormone metabolism. Therefore we measured serum levels of TSH, T4, 3,3’,5- triiodothyronine (T3), free T4 (FT4), antibodies and thyroxine-binding globulin (TBG) in our adolescent cohort. Methods Vena puncture was performed to obtain samples for the measurement of thyroid hormone metabolism related parameters and the current serum dioxin (PCDD/Fs), PCB

  18. Tissue specific regulation of lipogenesis by thyroid hormone

    SciTech Connect

    Blennemann, B.; Freake, H. )

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  19. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination

    SciTech Connect

    Ren, Xiao-Min Guo, Liang-Hong Gao, Yu Zhang, Bin-Tian Wan, Bin

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2′-OH-BDE-28, 3′-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3′-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. - Highlights: ► Thyroid hormone (TH) activity of OH-PBDEs with different Br number was evaluated. ► Four different experimental approaches were employed to investigate the mechanism. ► Low-brominated OH-PBDEs were agonists, but high-brominated ones were antagonists.

  20. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  1. Tracing thyroid hormone-disrupting compounds: database compilation and structure-activity evaluation for an effect-directed analysis of sediment.

    PubMed

    Weiss, Jana M; Andersson, Patrik L; Zhang, Jin; Simon, Eszter; Leonards, Pim E G; Hamers, Timo; Lamoree, Marja H

    2015-07-01

    A variety of anthropogenic compounds has been found to be capable of disrupting the endocrine systems of organisms, in laboratory studies as well as in wildlife. The most widely described endpoint is estrogenicity, but other hormonal disturbances, e.g., thyroid hormone disruption, are gaining more and more attention. Here, we present a review and chemical characterization, using principal component analysis, of organic compounds that have been tested for their capacity to bind competitively to the thyroid hormone transport protein transthyretin (TTR). The database contains 250 individual compounds and technical mixtures, of which 144 compounds are defined as TTR binders. Almost one third of these compounds (n = 52) were even more potent than the natural hormone thyroxine (T4). The database was used as a tool to assist in the identification of thyroid hormone-disrupting compounds (THDCs) in an effect-directed analysis (EDA) study of a sediment sample. Two compounds could be confirmed to contribute to the detected TTR-binding potency in the sediment sample, i.e., triclosan and nonylphenol technical mixture. They constituted less than 1% of the TTR-binding potency of the unfractionated extract. The low rate of explained activity may be attributed to the challenges related to identification of unknown contaminants in combination with the limited knowledge about THDCs in general. This study demonstrates the need for databases containing compound-specific toxicological properties. In the framework of EDA, such a database could be used to assist in the identification and confirmation of causative compounds focusing on thyroid hormone disruption. PMID:25986900

  2. Partial end organ resistance to thyroid hormone in congenital hypothyroidism

    PubMed Central

    Connell, John M. C.; McLaren, E. H.

    1981-01-01

    End organ resistance to thyroid hormone has been described for a number of years: the defect may be partial or generalized. A case of partial end organ resistance to thyroid hormone in congenital hypothyroidism is described, with evidence of an alteration in TSH threshold to feedback inhibition by thyroid hormone. The implications of this factor in the management of hypothyroidism are discussed. PMID:7301701

  3. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats.

    PubMed

    Gilbert, M E; Sanchez-Huerta, K; Wood, C

    2016-02-01

    Severe thyroid hormone (TH) deficiency during critical phases of brain development results in irreversible neurological and cognitive impairments. The mechanisms accounting for this are likely multifactorial, and are not fully understood. Here we pursue the possibility that one important element is that TH affects basal and activity-dependent neurotrophin expression in brain regions important for neural processing. Graded exposure to propylthiouracil (PTU) during development produced dose-dependent reductions in mRNA expression of nerve growth factor (Ngf) in whole hippocampus of neonates. These changes in basal expression persisted to adulthood despite the return to euthyroid conditions in blood. In contrast to small PTU-induced reductions in basal expression of several genes, developmental PTU treatment dramatically reduced the activity-dependent expression of neurotrophins and related genes (Bdnft, Bdnfiv, Arc, and Klf9) in adulthood and was accompanied by deficits in hippocampal-based learning. These data demonstrate that mild TH insufficiency during development not only reduces expression of important neurotrophins that persists into adulthood but also severely restricts the activity-dependent induction of these genes. Considering the importance of these neurotrophins for sculpting the structural and functional synaptic architecture in the developing and the mature brain, it is likely that TH-mediated deficits in these plasticity mechanisms contribute to the cognitive deficiencies that accompany developmental TH compromise.

  4. Thyroid Hormone and Leptin in the Testis

    PubMed Central

    Ramos, Cristiane Fonte; Zamoner, Ariane

    2014-01-01

    Leptin is primarily expressed in white adipose tissue; however, it is expressed in the hypothalamus and reproductive tissues as well. Leptin acts by activating the leptin receptors (Ob-Rs). Additionally, the regulation of several neuroendocrine and reproductive functions, including the inhibition of glucocorticoids and enhancement of thyroxine and sex hormone concentrations in human beings and mice are leptin functions. It has been suggested that thyroid hormones (TH) could directly regulate leptin expression. Additionally, hypothyroidism compromises the intracellular integration of leptin signaling specifically in the arcuate nucleus. Two TH receptor isoforms are expressed in the testis, TRa and TRb, with TRa being the predominant one that is present in all stages of development. The effects of TH involve the proliferation and differentiation of Sertoli and Leydig cells during development, spermatogenesis, and steroidogenesis. In this context, TH disorders are associated with sexual dysfunction. An endocrine and/or direct paracrine effect of leptin on the gonads inhibits testosterone production in Leydig cells. Further studies are necessary to clarify the effects of both hormones in the testis during hypothyroidism. The goal of this review is to highlight the current knowledge regarding leptin and TH in the testis. PMID:25505448

  5. Thyroid hormones and growth in health and disease.

    PubMed

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children.

  6. Actions of Thyroid Hormone Analogues on Chemokines.

    PubMed

    Davis, Paul J; Glinsky, Gennadi V; Lin, Hung-Yun; Mousa, Shaker A

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3'-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  7. Actions of Thyroid Hormone Analogues on Chemokines

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    The extracellular domain of plasma membrane integrin αvβ3 contains a receptor for thyroid hormone (L-thyroxine, T4; 3,5,3′-triiodo-L-thyronine, T3); this receptor also binds tetraiodothyroacetic acid (tetrac), a derivative of T4. Tetrac inhibits the binding of T4 and T3 to the integrin. Fractalkine (CX3CL1) is a chemokine relevant to inflammatory processes in the CNS that are microglia-dependent but also important to normal brain development. Expression of the CX3CL1 gene is downregulated by tetrac, suggesting that T4 and T3 may stimulate fractalkine expression. Independently of its specific receptor (CX3CR1), fractalkine binds to αvβ3 at a site proximal to the thyroid hormone-tetrac receptor and changes the physical state of the integrin. Tetrac also affects expression of the genes for other CNS-relevant chemokines, including CCL20, CCL26, CXCL2, CXCL3, and CXCL10. The chemokine products of these genes are important to vascularity of the brain, particularly of the choroid plexus, to inflammatory processes in the CNS and, in certain cases, to neuroprotection. Thyroid hormones are known to contribute to regulation of each of these CNS functions. We propose that actions of thyroid hormone and hormone analogues on chemokine gene expression contribute to regulation of inflammatory processes in brain and of brain blood vessel formation and maintenance. PMID:27493972

  8. Thyroid-stimulating hormone rapidly stimulates inositol polyphosphate formation in FRTL-5 thyrocytes without activating phosphoinositidase C.

    PubMed Central

    Singh, J; Hunt, P; Eggo, M C; Sheppard, M C; Kirk, C J; Michell, R H

    1996-01-01

    The thyroid-stimulating hormone (TSH) receptor is widely regarded as one of a limited number of G-protein-coupled receptors that activate both adenylate cyclase and phosphoinositidase C (PIC) via G-proteins, but the existing experimental evidence for TSH-stimulated PtdIns(4,5)P2 hydrolysis remains inconclusive. We have compared the effects of TSH and of ATP (acting via P2-purinergic receptors) on the inositol lipids and polyphosphates of [2-3H]inositol-labelled FRTL-5 rat thyroid cells. ATP initiated a rapid decrease in 3H-labelled PtdIns4P and PtdIns(4,5)P2, whereas TSH did not. Stimulation with ATP and, less consistently, with noradrenaline (acting via alpha-adrenergic receptors) provoked rapid formation of Ins(1,4,5)P3, Ins(1,3,4,5)P4, Ins(1,3,4)P3 and Ins(1,4)P2, confirming activation of PtdIns(4,5)P2 hydrolysis. No concentration of TSH provoked detectable accumulation of Ins(1,4,5)P3 or Ins(1,4)P2 during the first few minutes of stimulation. However, an InsP3 [with the chromatographic properties of Ins(1,3,4)P3] and two InsP4 isomers [neither of which was Ins(1,3,4,5)P4] accumulated quickly in TSH-stimulated cells. ATP immediately provoked a large increase in intracellular calcium concentration ([Ca2+]i) in Indo 1-AM-loaded cells. TSH provoked a small and delayed [Ca2+]i elevation in only some experiments. We therefore confirm that activation of P2-purinergic receptors and alpha 1-adrenergic receptors provokes PIC activation, an accumulation of Ins(1,4,5)P3 and its metabolites and rapid [Ca2+]i mobilization in FRTL-5 cells. By contrast, TSH provokes no rapid PIC-catalysed PtdIns(4,5)P2 hydrolysis or immediate [Ca2+]i mobilization. These results fail to support the widespread view that the TSH receptor of FRTL-5 cells signals, in part, through PIC activation. Our results suggest that TSH activates another, still undefined, mechanism that causes accumulation of an InsP3 and two isomers of InsP4. PMID:8645202

  9. Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis.

    PubMed

    Wu, Yuanfeng; Beland, Frederick A; Fang, Jia-Long

    2016-04-01

    Triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and bisphenol A (BPA) have been reported to disturb thyroid hormone (TH) homeostasis. We have examined the effects of these chemicals on sodium/iodide symporter (NIS)-mediated iodide uptake and the expression of genes involved in TH synthesis in rat thyroid follicular FRTL-5 cells, and on the activity of thyroid peroxidase (TPO) using rat thyroid microsomes. All four chemicals inhibited NIS-mediated iodide uptake in a concentration-dependent manner. A decrease in the iodide uptake was also observed in the absence of sodium iodide. Kinetic studies showed that all four chemicals were non-competitive inhibitors of NIS, with the order of Ki values being triclosanthyroid transcription factor genes, Pax8, Foxe1, and Nkx2-1, was examined using quantitative real-time PCR. No significant changes in the expression of any genes were observed with triclosan or triclocarban. BDE-47 decreased the level of Tpo, while BPA altered the expression of all six genes. Triclosan and triclocarban inhibited the activity of TPO at 166 and >300 μM, respectively. Neither BDE-47 nor BPA affected TPO activity. In conclusion, triclosan, triclocarban, BDE-47, and BPA inhibited iodide uptake, but had differential effects on the expression of TH synthesis-related genes and the activity of TPO. PMID:26827900

  10. Effect of age and season on the thyroid hormone activity of Mizoram strain female mithun (Bos frontalis)

    PubMed Central

    Lalsangpuii; Ali, M. Ayub; Devi, L. Inaotombi; Behera, Parthasarathi; Ralte, Lalsanglura

    2015-01-01

    Aim: The aim of the present study was to generate baseline data on the normal values of the thyroidhormone (TH) activity as well as their correlation with age and season. Materials and Methods: Blood samples (10 ml) were collected from jugular vein of 30 female mithun’s of three different age groups viz. Calves (6 months to 1 year), heifer (1-3 years) and adult (above 3 years) during the three season’s viz. Monsoon, winter and spring of a year. The serum was analyzed for thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4) activity. Result: The result showed a significantly (p<0.05) a higher T3 level in heifers followed by adults and calves and higher T4 level in adults followed by heifers and calves in all the seasons. The TSH level was higher in heifers in all the seasons. The winter season recorded higher level of T3, T4, and TSH as compared to the other seasons of a year. Conclusion: The TSH and T3 level were the highest for aheifer, whereas T4 level was the highest for adults inall the season. Furthermore, the higher level of TH was observed in winter season. The increased level of the TH during the winter season signifies their calorigenic effect. Similarly in heifers, the increased T3 concentrations show its importance in reproductive physiology and its association with ovarian activity. This indicates that age and season have aprofound effect on TH activity of Mizoram strain female mithun. PMID:27047046

  11. [Sex Specificity in Age-Related Thyroid Hormone Responsiveness].

    PubMed

    Suzuki, Satoru

    2016-01-01

    Similar to other systems, the endocrine system is affected by aging. Thyroid hormone, the action of which is affected by many factors, has been shown to be associated with longevity. The most useful marker for assessment of the thyroid hormone action is the TSH level. Although age and sex are believed to modify the pituitary set point or response to the free thyroid hormone concentration, the precise age- and sex-dependent responses to thyroid hormone have yet to be reported. In this lecture, molecular aspects of resistance to thyroid hormone are initially overviewed. After presentation of the evidence that the TSH-thyroid hormone axis is evolutionarily modified, and that negative feedback mechanisms may start to play roles in homeostatic regulation at the time of delivery, the rationale of age-dependent thyroid hormone resistance is introduced. To assess the age- and sex-dependent resistance to thyroid hormone, the index is provided by the formula based on the relationship between thyroid hormone and TSH levels. The index is calculated by the results of thyroid function tests obtained from the two individual clinical groups. From the results, there were negative relationships between the free T3 resistance index and age in males of both groups, while there were no apparent relationships in females. These findings indicate that there is a male-specific response to thyroid hormone with aging. Furthermore, the specific features of the response may not be affected by environmental factors such as the presence of disorders or medical treatments. PMID:27192800

  12. THE THYROID HORMONE TRANSPORTER, MCT8, SELECTIVELY RESPONDS TO THYROID HORMONE INSUFFICIENCY IN THE DEVELOPMENT RAT BRAIN.

    EPA Science Inventory

    Thyroid hormone (TH) is essential for normal brain development. Therefore, it is not surprising that a variety of adaptive mechanisms are activated in response to TH insufficiency. However, not all brain regions respond in the same fashion to TH insufficiency. This observation...

  13. Growth and development in a child with resistance to thyroid hormone and ectopic thyroid gland.

    PubMed

    Heather, Natasha; Hall, Kate; Neas, Katherine; Potter, Howard; Wiltshire, Esko

    2012-03-01

    Resistance to thyroid hormone is an uncommon problem, which has rarely been associated with thyroid dysgenesis. We report a case with both thyroid gland ectopy and resistance to thyroid hormone and, thus, a reduced capacity to produce and respond to thyroid hormone. The patient presented at 2 years of age with developmental delay, dysmorphic features, and elevation in both thyroxine and thyrotropin. We document her response to therapy with thyroxine, with particular regard to her growth and development. Persistent elevation of thyrotropin is commonly recognized during treatment of congenital hypothyroidism. Resistance to thyroid hormone may be an important additional diagnosis to consider in cases where thyrotropin remains persistently elevated.

  14. Does normal thyroid gland by ultrasonography match with normal serum thyroid hormones and negative thyroid antibodies?

    PubMed

    Trimboli, P; Rossi, F; Condorelli, E; Laurenti, O; Ventura, C; Nigri, G; Romanelli, F; Guarino, M; Valabrega, S

    2010-10-01

    Few papers have shown that a hypoechoic appearance of the thyroid gland at ultrasonography (US) is related to a hypofunction and serum positivity of thyroid antibodies (T-Ab). However, it is not ascertained if normal thyroid appearance at US correspond to normal thyroid laboratory tests. The aim of this study was to assess the value of normal thyroid at US in predicting normal thyroid hormones and negative T-Ab in a cohort of 48 adult patients. All patients (37 females and 11 males) were referred to our hospital to undergo their first thyroid US examination, followed by a thyroid function evaluation. All subjects had normal thyroid gland at US. As a control group 65 patients with hypoechoic and inhomogeneous thyroid gland were enrolled. All 48 patients had normal free-T (3) and free-T (4) levels. While 41 patients (85.4%) showed normal TSH, in 7 subjects (14.6%) TSH was elevated and a significant (p < 0.001) difference was recorded between the two groups in mean TSH value. Positive T-Ab value was found in 5 patients (10.4%) and the remaining 43 patients (89.6%) had negative T-Ab. TSH was not significantly correlated with age, thyroid volume or BMI. The multivariate model showed that only BMI was significantly correlated to thyroid volume (p < 0.01, r(2)=0.31). These results showed that normal thyroid recorded by US matches with normal thyroid laboratory assessment to a large degree. These preliminary data need to be confirmed in a prospective study and in a larger series and should suggest the evaluation of thyrotropin and thyroid antibodies in subjects with normal thyroid gland as assessed by US.

  15. Do thyroid hormones function in insects?

    PubMed

    Davey, K G

    2000-01-01

    Earlier work demonstrated that phenoxy-phenyl compounds such as fenoxycarb and thyroxine mimicked the effects of JH III in causing a reduction in volume of the follicle cells of Locusta migratoria. While these compounds were only moderately effective, a derivative of thyroxine, 3,3',5-triiodothyronine (T3) was as effective as JH III, and T3 has been shown to bind to the same membrane receptor and activate the same pathway as JH III. The current paper shows that other thyroxine derivatives vary in activity. 3,3', 5'-Triiodothyronine (reverse T3) is inactive. 3,5-Diiodothyronine (T2) is more active than JH III, while its relatives (iodines at 3', 5' or at 3,3') are inactive. When follicles are exposed in vitro to rhodamine conjugated T3, the fluorescent compound can be seen to enter the cells and accumulate there: this process is inhibited by cycloheximide or by a temperature of 0 degrees C. The accumulation is antagonised by JH III but not JH I (which does not bind to the JH III membrane receptor) and by an antiserum raised against the putative membrane receptor protein. The action of T3, but not T2, is inhibited by 6-n-propyl-2-thiouracil or by aurothioglucose, both known to inhibit deiodinases. The activity of T3, but not of T2, increases with time of exposure to the follicle cells. These facts suggest that T3 enters the cells by receptor mediated endocytosis and is converted to a more active compound. Immunoreactivity to T3, but not thyroxine, can be detected in the haemolymph of locusts, and the titre varies slightly with the gonotrophic cycle. The food shows immunoreactivity for both thyroxine and T3. These findings suggest that thyroid hormones are ingested by locusts and have the potential to be used as hormonal signals in the control of egg production.

  16. Thyroid hormone signaling controls hair follicle stem cell function.

    PubMed

    Contreras-Jurado, Constanza; Lorz, Corina; García-Serrano, Laura; Paramio, Jesus M; Aranda, Ana

    2015-04-01

    Observations in thyroid patients and experimental animals show that the skin is an important target for the thyroid hormones. We previously showed that deletion in mice of the thyroid hormone nuclear receptors TRα1 and TRβ (the main thyroid hormone-binding isoforms) results in impaired epidermal proliferation, hair growth, and wound healing. Stem cells located at the bulges of the hair follicles are responsible for hair cycling and contribute to the regeneration of the new epidermis after wounding. Therefore a reduction in the number or function of the bulge stem cells could be responsible for this phenotype. Bulge cells show increased levels of epigenetic repressive marks, can retain bromodeoxyuridine labeling for a long time, and have colony-forming efficiency (CFE) in vitro. Here we demonstrate that mice lacking TRs do not have a decrease of the bulge stem cell population. Instead, they show an increase of label-retaining cells (LRCs) in the bulges and enhanced CFE in vitro. Reduced activation of stem cells leading to their accumulation in the bulges is indicated by a strongly reduced response to mobilization by 12-O-tetradecanolyphorbol-13-acetate. Altered function of the bulge stem cells is associated with aberrant activation of Smad signaling, leading to reduced nuclear accumulation of β-catenin, which is crucial for stem cell proliferation and mobilization. LRCs of TR-deficient mice also show increased levels of epigenetic repressive marks. We conclude that thyroid hormone signaling is an important determinant of the mobilization of stem cells out of their niche in the hair bulge. These findings correlate with skin defects observed in mice and alterations found in human thyroid disorders.

  17. Nanogold-functionalized magnetic beads with redox activity for sensitive electrochemical immunoassay of thyroid-stimulating hormone.

    PubMed

    Zhang, Bing; Tang, Dianping; Liu, Bingqian; Cui, Yuling; Chen, Huafeng; Chen, Guonan

    2012-01-20

    A new electrochemical immunosensor for sensitive determination of thyroid-stimulating hormone (TSH) was designed by using redox-active nanogold-functionalized magnetic beads (GoldMag) as signal tags on the nanogold-graphene interface. To construct such GoldMag nanostructures, polyethyleneimine-functionalized magnetic beads (PEI-MBs) were initially prepared by using a wet chemical method, and the electroactive thionine molecules and gold nanoparticles were then alternately immobilized on the surface of PEI-MBs by using an opposite-charged adsorption technique and an in situ synthesis method, respectively. The synthesized GoldMag nanostructures were utilized as signal tags for the label of horseradish peroxidase-anti-TSH conjugates (HRP-anti-TSH). With a sandwich-type immunoassay format, the conjugated signal tags on the transducer were increased with the increasing TSH concentration in the sample, thus enhancing the signal of the electrochemical immunosensor due to the labeled HRP toward the catalytic reduction of H(2)O(2). Under optimal conditions, the current was proportional to the logarithm of TSH concentration ranging from 0.01 to 20 μIU mL(-1) in pH 6.0 HAc-NaAc containing 6 mM H(2)O(2). The detection limit (LOD) was 0.005 μIU mL(-1) TSH at 3s(B). The immunosensor displayed an acceptable reproducibility, stability and selectivity. In addition, the methodology was evaluated with human serum specimens, receiving good correlation with results from commercially available electrochemiluminescent analyzer.

  18. Melatonin in the thyroid gland: regulation by thyroid-stimulating hormone and role in thyroglobulin gene expression.

    PubMed

    Garcia-Marin, R; Fernandez-Santos, J M; Morillo-Bernal, J; Gordillo-Martinez, F; Vazquez-Roman, V; Utrilla, J C; Carrillo-Vico, A; Guerrero, J M; Martin-Lacave, I

    2015-10-01

    Melatonin is an indoleamine with multiple functions in both plant and animal species. In addition to data in literature describing many other important roles for melatonin, such as antioxidant, circadian rhythm controlling, anti-aging, antiproliferative or immunomodulatory activities, our group recently reported that thyroid C-cells synthesize melatonin and suggested a paracrine role for this molecule in the regulation of thyroid activity. To discern the role played by melatonin at thyroid level and its involvement in the hypothalamic-pituitary-thyroid axis, in the present study we have analyzed the effect of thyrotropin in the regulation of the enzymatic machinery for melatonin biosynthesis in C cells as well as the effect of melatonin in the regulation of thyroid hormone biosynthesis in thyrocytes. Our results show that the key enzymes for melatonin biosynthesis (AANAT and ASMT) are regulated by thyroid-stimulating hormone. Furthermore, exogenous melatonin increases thyroglobulin expression at mRNA and protein levels on cultured thyrocytes and this effect is not strictly mediated by the upregulation of TTF1 or, noteworthy, PAX8 transcription factors. The present data show that thyroid C-cells synthesize melatonin under thyroid-stimulating hormone control and, consistently with previous data, support the hypothesis of a paracrine role for C-cell-synthesised melatonin within the thyroid gland. Additionally, in the present study we show evidence for the involvement of melatonin in thyroid function by directly-regulating thyroglobulin gene expression in follicular cells.

  19. H9c2 cardiomyoblasts produce thyroid hormone.

    PubMed

    Meischl, Christof; Buermans, Henk P; Hazes, Thierry; Zuidwijk, Marian J; Musters, René J P; Boer, Christa; van Lingen, Arthur; Simonides, Warner S; Blankenstein, Marinus A; Dupuy, Corrine; Paulus, Walter J; Hack, C Erik; Ris-Stalpers, Carrie; Roos, Dirk; Niessen, Hans W M

    2008-05-01

    Thyroid hormone acts on a wide range of tissues. In the cardiovascular system, thyroid hormone is an important regulator of cardiac function and cardiovascular hemodynamics. Although some early reports in the literature suggested an unknown extrathyroidal source of thyroid hormone, it is currently thought to be produced exclusively in the thyroid gland, a highly specialized organ with the sole function of generating, storing, and secreting thyroid hormone. Whereas most of the proteins necessary for thyroid hormone synthesis are thought to be expressed exclusively in the thyroid gland, we now have found evidence that all of these proteins, i.e., thyroglobulin, DUOX1, DUOX2, the sodium-iodide symporter, pendrin, thyroid peroxidase, and thyroid-stimulating hormone receptor, are also expressed in cardiomyocytes. Furthermore, we found thyroglobulin to be transiently upregulated in an in vitro model of ischemia. When performing these experiments in the presence of 125 I, we found that 125 I was integrated into thyroglobulin and that under ischemia-like conditions the radioactive signal in thyroglobulin was reduced. Concomitantly we observed an increase of intracellularly produced, 125 I-labeled thyroid hormone. In conclusion, our findings demonstrate for the first time that cardiomyocytes produce thyroid hormone in a manner adapted to the cell's environment.

  20. Futures Challenges in Thyroid Hormone Signaling Research.

    PubMed

    Flamant, Frédéric

    2016-01-01

    The canonical pathway of thyroid hormone signaling involves its binding to nuclear receptors (TRs) acting directly on the transcription of a number of genes. Recent genome-wide studies revealed that chromatin occupancy by TR is not sufficient for transactivation of gene expression. Reciprocally, in some cases, DNA binding by TR may not be required for cellular response. This leaves many new questions to be addressed in future research. PMID:27445973

  1. Futures Challenges in Thyroid Hormone Signaling Research

    PubMed Central

    Flamant, Frédéric

    2016-01-01

    The canonical pathway of thyroid hormone signaling involves its binding to nuclear receptors (TRs) acting directly on the transcription of a number of genes. Recent genome-wide studies revealed that chromatin occupancy by TR is not sufficient for transactivation of gene expression. Reciprocally, in some cases, DNA binding by TR may not be required for cellular response. This leaves many new questions to be addressed in future research. PMID:27445973

  2. Thyroid Hormone Response Element Half-Site Organization and Its Effect on Thyroid Hormone Mediated Transcription

    PubMed Central

    Paquette, Martin A.; Atlas, Ella; Wade, Mike G.; Yauk, Carole L.

    2014-01-01

    Thyroid hormone (TH) exerts its effects by binding to the thyroid hormone receptor (TR), which binds to TH response elements (TREs) to regulate target gene expression. We investigated the relative ability of liganded homodimers TR and retinoid X receptor (RXR), and the heterodimer TR/RXR, to regulate gene expression for the TRE half-site organizations: direct repeat 4 (DR4), inverted repeat 0 (IR0) and everted repeat 6 (ER6). Luciferase reporter assays using a DR4 TRE suggest that both the TR homodimer and TR/RXR heterodimer regulate luciferase expression in the presence of their respective ligands. However, in the presence of the IR0 TRE, transfection with TR/RXR and RXR alone increased luciferase activity and there was no effect of TR alone. The presence of 9-cis-retinoic acid was necessary for luciferase expression, whereas TH treatment alone was insufficient. For the ER6 TRE, transfection with TR/RXR, TR alone and RXR alone (in the presence of their respective ligands) all caused a significant increase in luciferase activity. When both ligands were present, transfection with both TR/RXR caused more activation. Finally, we investigated the efficacy of the TR-antagonist 1–850 in inhibiting transcription by TR or TR/RXR at DR4 and ER6 TREs. We found that 1–850 did not suppress luciferase activation in the presence of TR/RXR for the ER6 TRE, suggesting conformational changes of the ligand binding domain of the TR when bound to different TRE half-site organizations. Collectively, the findings indicate that there are fundamental differences between TRE configurations that affect nuclear receptor interactions with the response element and ability to bind ligands and antagonists. PMID:24971931

  3. Clinical implications of thyroid hormones effects on nervous system development.

    PubMed

    Carreón-Rodríguez, Alfonso; Pérez-Martínez, Leonor

    2012-03-01

    Thyroid hormones have an important role throughout prenatal and postnatal nervous system development. They are involved in several processes such as neurogenesis, gliogenesis, myelination, synaptogenesis, etc., as shown in many cases of deficiency like congenital hypothyroidism or hypothyroxinemia. Those pathologies if untreated could lead to severe damages in cognitive, motor, neudoendocrine functions among other effects. Some could be reversed after adequate supplementation of thyroid hormones at birth, however there are other cellular processes highly sensitive to low levels of thyroid hormones and lasting a limited period of time during which if thyroid hormone action is lacking or deficient, the functional and structural damages would produce permanent defects. PMID:22523832

  4. Hypothalamic thyroid hormone feedback in health and disease.

    PubMed

    Fliers, Eric; Alkemade, Anneke; Wiersinga, Wilmar M; Swaab, Dick F

    2006-01-01

    The role of the human hypothalamus in the neuroendocrine response to illness has only recently begun to be explored. Extensive changes in the hypothalamus-pituitary-thyroid (HPT) axis occur within the framework of critical illness. The best-documented change in the HPT axis is a decrease in serum concentrations of the biologically active thyroid hormone triiodothyronine (T3). From studies in post-mortem human hypothalamus it appeared that low serum T3 and thyrotropin (TSH) during illness (nonthyroidal illness, NTI) are paralleled by decreased thyrotropin-releasing hormone (TRH)mRNA expression in the hypothalamic paraventricular nucleus (PVN), pointing to a major alteration in HPT axis setpoint regulation. A strong decrease in TRHmRNA expression is also present in the PVN of patients with major depression as well as in glucocorticoid-treated patients. By inference, hypercortisolism in hospitalized patients with severe depression or in critical illness may induce down-regulation of the HPT axis at the level of the hypothalamus. In order to start defining the determinants and mechanisms of these setpoint changes in various clinical conditions, it is important to note that an increasing number of hypothalamic proteins appears to be involved in central thyroid hormone metabolism. In recent studies, we have investigated the distribution and expression of thyroid hormone receptor (TR) isoforms, type 2 and type 3 deiodinase (D2 and D3), and the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) in the human hypothalamus by a combination of immunocytochemistry, mRNA in situ hybridization and enzyme activity assays. Both D2 and D3 enzyme activities are detectable in the mediobasal hypothalamus. D2 immunoreactivity is prominent in glial cells of the infundibular nucleus/median eminence region and in tanycytes lining the third ventricle. Combined D2, D3, MCT8 or TR immunocytochemistry and TRHmRNA in situ hybridization indicates that D3, MCT8 and TRs are all

  5. Iodotyrosine deiodinase, a novel target of environmental halogenated chemicals for disruption of the thyroid hormone system in mammals.

    PubMed

    Shimizu, Ryo

    2014-01-01

    Many synthetic chemicals have been identified as environmental contaminants with activity to disrupt normal function of the thyroid hormone system. Thyroid hormones play important roles in growth, development, differentiation, and basal metabolic homeostasis, as well as in brain development in human fetus and children, and thyroid dysfunction can have very serious consequences, including mental retardation. Environmental chemicals may affect thyroid hormone action in multiple ways, including reduced thyroid hormone synthesis owing to direct toxicity at the thyroid gland, interaction with thyroid hormone receptors and transporters such as transthyretin, and disturbance of thyroid hormone metabolism (e.g., glucuronidation, sulfation and deiodination). In addition, iodotyrosine deiodinase, which is involved in iodide salvage by catalyzing deiodination of iodinated by-products of thyroid hormone production, was recently identified as a possible new target for disruption of thyroid hormone homeostasis by environmental halogenated chemicals. This topic, after briefly summarizing findings on the thyroid hormone-disrupting action of environmental chemicals in mammals, focuses on the effects of environmental halogenated chemicals on iodotyrosine deiodinase activity. PMID:25177024

  6. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  7. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  8. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  9. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish.

    PubMed

    Yu, Li-Qin; Zhao, Gao-Feng; Feng, Min; Wen, Wu; Li, Kun; Zhang, Pan-Wei; Peng, Xi; Huo, Wei-Jie; Zhou, Huai-Dong

    2014-01-01

    Pentachlorophenol (PCP) is frequently detected in the aquatic environment and has been implicated as an endocrine disruptor in fish. In the present study, 4-month-old zebrafish (Danio rerio) were exposed to 1 of 4 concentrations of PCP (0.1, 1, 9, and 27 µg/L) for 70 d. The effects of PCP exposure on plasma thyroid hormone levels, and the expression levels of selected genes, were measured in the brain and liver. The PCP exposure at 27 µg/L resulted in elevated plasma thyroxine concentrations in male and female zebrafish and depressed 3, 5, 3'-triiodothyronine concentrations in males only. In both sexes, PCP exposure resulted in decreased messenger RNA (mRNA) expression levels of thyroid-stimulating hormone β-subunit (tshβ) and thyroid hormone receptor β (trβ) in the brain, as well as increased liver levels of uridine diphosphoglucuronosyl transferase (ugt1ab) and decreased deiodinase 1 (dio1). The authors also identified several sex-specific effects of PCP exposure, including changes in mRNA levels for deiodinase 2 (dio2), cytosolic sulfotransferase (sult1 st5), and transthyretin (ttr) genes in the liver. Environmental PCP exposure also caused an increased malformation rate in offspring that received maternal exposure to PCP. The present study demonstrates that chronic exposure to environmental levels of PCP alters plasma thyroid hormone levels, as well as the expression of genes associated with thyroid hormone signaling and metabolism in the hypothalamic-pituitary-thyroid (HPT) axis and liver, resulting in abnormal zebrafish development.

  10. The effect of cold on serum thyroid hormones and hepatic 5 prime mono-deiodinase activity

    SciTech Connect

    Hesslink, R.L. Jr.; Quesada, M.; D'Alesandro, M.; Homer, L.D.; Reed, J.L.; Christopherson, R.; Young, B.A. Univ. of Alberta, Edmonton )

    1991-03-11

    Cold exposed swine have an increases serum concentration of triiodothyronine (T{sub 3}) and increased T{sub 3} production rate. It is thought that hepatic thyroxine (T{sub 4}) deiodination (5DI) contributes to circulating T{sub 3} concentrations. The authors investigated the effects of cold exposure (14 days) on energy intake, serum free T{sub 3} (FT{sub 3}) and free T{sub 4} (FT{sub 4}) levels; and 5DI in 5-month boars. Hepatic 5DI activity was determined by measuring the {sup 125}I generated from trace amounts of {sup 125}I T{sub 4}. FT{sub 3} and FT{sub 4} were assayed by RIA. Swine were housed in either 20C (control; n = 5) or 4C (cold; n = 7) chambers and given food ad libitum. Cold exposure increased energy intake by 42%. The increase (93%) in hepatic 5DI V{sub max} after cold exposure parallels the increase in whole animal T{sub 3} production and may account for FT{sub 3} values found after cold exposure.

  11. The role of thyroid hormones in stress response of fish.

    PubMed

    Peter, M C Subhash

    2011-06-01

    Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish.

  12. Thyroid Hormone Signaling and Cone Photoreceptor Viability.

    PubMed

    Ma, Hongwei; Ding, Xi-Qin

    2016-01-01

    Thyroid hormone (TH) signaling regulates cell proliferation, differentiation, and apoptosis. In the retina, TH signaling plays a central role in cone opsin expression. TH signaling inhibits S opsin expression, stimulates M opsin expression, and promotes dorsal-ventral opsin patterning. TH signaling has also been associated with cone photoreceptor viability. Treatment with thyroid hormone triiodothyronine (T3) or induction of high T3 by deleting the hormone-inactivating enzyme type 3 iodothyronine deiodinase (DIO3) causes cone death in mice. This effect is reversed by deletion of the TH receptor (TR) gene. Consistent with the T3 treatment effect, suppressing TH signaling preserves cones in mouse models of retinal degeneration. The regulation of cone survival by TH signaling appears to be independent of its regulatory role in cone opsin expression. The mechanism by which TH signaling regulates cone viability remains to be identified. The current understanding of TH signaling regulation in photoreceptor viability suggests that suppressing TH signaling locally in the retina may represent a novel strategy for retinal degeneration management. PMID:26427466

  13. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  14. Failure to relate thyroid hormones and in vitro 5'-monodeiodination activity to oocyte development and sex steroids in the giant swamp frog Dicroglossus occipitalis at the equator.

    PubMed

    Vandorpe, G; Kühn, E R; Gevaerts, H

    1990-09-01

    Females of the giant swamp frog Dicroglossus occipitalis were captured in Zaïre close to the equator in the course of 1 month. During this period, females with fully developed eggs were found, together with females of which the eggs were still in the first developmental stages. A close relationship was established between the maturation of the eggs and the studied gonadal factors: the gonadosomatic index, the oviduct weight, plasma estradiol-17 beta (E2) concentrations, plasma testosterone concentrations, and the total ovarian E2 concentrations. At the level of the thyroidal axis, the studied factors (plasma thyroxine (T4), plasma triiodothyronine (T3), plasma T3/T4 ratio, T4 and T3 concentrations, and the T3/T4 ratio in the thyroids and the 5'-monodeiodination activity (5'-D-activity) in the skin and kidney homogenates) did not show parallel changes with the maturation process of the eggs. These results indicate that no causal relation has to exist between the annual variation in thyroid hormones and the annual reproductive patterns as found in frogs from the tropical or temperate climatic region.

  15. Neuroendocrine regulation of thyroid-stimulating hormone secretion in amphibians.

    PubMed

    Okada, Reiko; Kobayashi, Tetsuya; Yamamoto, Kazutoshi; Nakakura, Takashi; Tanaka, Shigeyasu; Vaudry, Hubert; Kikuyama, Sakae

    2009-04-01

    The hypothalamic peptides thyrotropin-releasing hormone (TRH), gonadotropin-releasing hormone (GnRH), and corticotropin-releasing factor (CRF), which have been postulated as acting as thyroid-stimulating hormone (TSH)-releasing hormone in amphibians, were tested for their activity by employing a recently developed radioimmunoassay for bullfrog (Rana catesbeiana) TSH. CRF markedly stimulated the release of TSH from both adult and larval bullfrog pituitary cells. Both TRH and GnRH moderately stimulated the release of TSH from adult pituitary cells but not from larval ones. The release of TSH was also enhanced by bullfrog hypothalamic extracts. The hypothalamic extract-evoked release of TSH was markedly reduced by a CRF receptor antagonist, suggesting that CRF and/or CRF-related peptides are the main TSH-releasing factors occurring in the bullfrog hypothalamus. Experiments using CRF receptor agonists and antagonists revealed that CRF acts through the type 2 receptor. With regard to other hypothalamic substances that influence the release of TSH, pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide were found to be potent stimulators and somatostatin an inhibitor of TSH release. Thus, it becomes clear that the main regulatory peptides controlling TSH secretion in amphibians are different from those in mammals. Triiodothyronine did not affect the basal release of TSH from the pituitary of either larval or adult bullfrogs but suppressed the CRF-induced release of TSH, suggesting that negative feedback by thyroid hormone is functioning both in larvae and adults.

  16. American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models

    PubMed Central

    Anderson, Grant; Forrest, Douglas; Galton, Valerie Anne; Gereben, Balázs; Kim, Brian W.; Kopp, Peter A.; Liao, Xiao Hui; Obregon, Maria Jesus; Peeters, Robin P.; Refetoff, Samuel; Sharlin, David S.; Simonides, Warner S.; Weiss, Roy E.; Williams, Graham R.

    2014-01-01

    Background: An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. Summary: Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. Conclusions: It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes. PMID:24001133

  17. TSH (Thyroid-Stimulating Hormone) Test

    MedlinePlus

    ... symptoms of a thyroid disorder , including hyperthyroidism or hypothyroidism . TSH is produced by the pituitary gland , a ... thyroid Monitor thyroid replacement therapy in people with hypothyroidism Monitor anti-thyroid treatment in people with hyperthyroidism ...

  18. [Usefulness of detecting cancer procoagulant activity and thyrotropic hormone concentration in the differentiation of tumor-like changes in the thyroid].

    PubMed

    Snarska, Jadwiga; Szajda, Sławomir D; Knaś, Małgorzata; Mroczko, Barbara; Borzym-Kluczyk, Małgorzata; Kamiński, Fabian; Zwierz, Piotr; Zwierz, Krzysztof

    2006-01-01

    Epidemiological studies have shown the increased incidence of malignant cancer of the thyroid gland observed in the last decade. This increase is connected with the elevated number of benign tumor-like/tuberous changes in the thyroid gland. Since it is difficult to differentiate diagnostically this pathology, it would be justified to search for biochemical markers which can help to confirm this change. The aim of our study was to evaluate the usefulness of detecting cancer procoagulant activity (CP) and thyrotropic hormone concentration (TSH) in the differentiation of tumor-like changes in the thyroid gland. The study included 15 patients (12 women and 3 men) with adenoma glandulae thyreoideae or nodular changes in the character of struma nodosa hyperplastica and 12 patients (11 women and 1 man) with carcinoma glandulae thyreoideae. A control group consisted of 12 healthy people (5 women and 7 men). CP activity was determined in the serum by the coagulation method according to Gordon and Benson and it was expressed as the coagulation time in seconds (s). TSH concentration was measured by the immunoenzymatic method (MEIA) using an analyzer of Axsym (Abbott) and was expressed in microU/ml. The results of our study indicate that the determination of CP activity can be used in the differential diagnosis of tumor-like changes of the thyroid gland. The concentration ofTSH was within the normal values, despite statistically different mean values between particular groups that results from the fact that patients qualified to surgery were in the state of euthyreosis.

  19. Thyroid hormone concentrations in captive and free-ranging West Indian manatees (Trichechus manatus).

    PubMed

    Ortiz, R M; MacKenzie, D S; Worthy, G A

    2000-12-01

    Because thyroid hormones play a critical role in the regulation of metabolism, the low metabolic rates reported for manatees suggest that thyroid hormone concentrations in these animals may also be reduced. However, thyroid hormone concentrations have yet to be examined in manatees. The effects of captivity, diet and water salinity on plasma total triiodothyronine (tT(3)), total thyroxine (tT(4)) and free thyroxine (fT(4)) concentrations were assessed in adult West Indian manatees (Trichechus manatus). Free-ranging manatees exhibited significantly greater tT(4) and fT(4) concentrations than captive adults, regardless of diet, indicating that some aspect of a captive existence results in reduced T(4) concentrations. To determine whether this reduction might be related to feeding, captive adults fed on a mixed vegetable diet were switched to a strictly sea grass diet, resulting in decreased food consumption and a decrease in body mass. However, tT(4) and fT(4) concentrations were significantly elevated over initial values for 19 days. This may indicate that during periods of reduced food consumption manatees activate thyroid-hormone-promoted lipolysis to meet water and energetic requirements. Alterations in water salinity for captive animals did not induce significant changes in thyroid hormone concentrations. In spite of lower metabolic rates, thyroid hormone concentrations in captive manatees were comparable with those for other terrestrial and marine mammals, suggesting that the low metabolic rate in manatees is not attributable to reduced circulating thyroid hormone concentrations.

  20. The role of thyroid hormone signaling in the prevention of digestive system cancers.

    PubMed

    Brown, Adam R; Simmen, Rosalia C M; Simmen, Frank A

    2013-01-01

    Thyroid hormones play a critical role in the growth and development of the alimentary tract in vertebrates. Their effects are mediated by nuclear receptors as well as the cell surface receptor integrin αVβ3. Systemic thyroid hormone levels are controlled via activation and deactivation by iodothyronine deiodinases in the liver and other tissues. Given that thyroid hormone signaling has been characterized as a major effector of digestive system growth and homeostasis, numerous investigations have examined its role in the occurrence and progression of cancers in various tissues of this organ system. The present review summarizes current findings regarding the effects of thyroid hormone signaling on cancers of the esophagus, stomach, liver, pancreas, and colon. Particular attention is given to the roles of different thyroid hormone receptor isoforms, the novel integrin αVβ3 receptor, and thyroid hormone-related nutrients as possible protective agents and therapeutic targets. Future investigations geared towards a better understanding of thyroid hormone signaling in digestive system cancers may provide preventive or therapeutic strategies to diminish risk, improve outcome and avert recurrence in afflicted individuals.

  1. The role of thyroid hormone in testicular development and function.

    PubMed

    Wagner, Márcia Santos; Wajner, Simone Magagnin; Maia, Ana Luiza

    2008-12-01

    Thyroid hormone is a critical regulator of growth, development, and metabolism in virtually all tissues, and altered thyroid status affects many organs and systems. Although for many years testis has been regarded as a thyroid hormone unresponsive organ, it is now evident that thyroid hormone plays an important role in testicular development and function. A considerable amount of data show that thyroid hormone influences steroidogenesis as well as spermatogenesis. The involvement of tri-iodothyronine (T(3)) in the control of Sertoli cell proliferation and functional maturation is widely accepted, as well as its role in postnatal Leydig cell differentiation and steroidogenesis. The presence of thyroid hormone receptors in testicular cells throughout development and in adulthood implies that T(3) may act directly on these cells to bring about its effects. Several recent studies have employed different methodologies and techniques in an attempt to understand the mechanisms underlying thyroid hormone effects on testicular cells. The current review aims at presenting an updated picture of the recent advances made regarding the role of thyroid hormones in male gonadal function.

  2. Effects of substitution and high-dose thyroid hormone therapy on deiodination, sulfoconjugation, and tissue thyroid hormone levels in prolonged critically ill rabbits.

    PubMed

    Debaveye, Yves; Ellger, Björn; Mebis, Liese; Visser, Theo J; Darras, Veerle M; Van den Berghe, Greet

    2008-08-01

    To delineate the metabolic fate of thyroid hormone in prolonged critically ill rabbits, we investigated the impact of two dose regimes of thyroid hormone on plasma 3,3'-diiodothyronine (T(2)) and T(4)S, deiodinase type 1 (D1) and D3 activity, and tissue iodothyronine levels in liver and kidney, as compared with saline and TRH. D2-expressing tissues were ignored. The regimens comprised either substitution dose or a 3- to 5- fold higher dose of T(4) and T(3), either alone or combined, targeted to achieve plasma thyroid hormone levels obtained by TRH. Compared with healthy animals, saline-treated ill rabbits revealed lower plasma T(3) (P=0.006), hepatic T(3) (P=0.02), and hepatic D1 activity (P=0.01). Substitution-dosed thyroid hormone therapy did not affect these changes except a further decline in plasma (P=0.0006) and tissue T(4) (P=0.04). High-dosed thyroid hormone therapy elevated plasma and tissue iodothyronine levels and hepatic D1 activity, as did TRH. Changes in iodothyronine tissue levels mimicked changes in plasma. Tissue T(3) and tissue T(3)/reverse T(3) ratio correlated with deiodinase activities. Neither substitution- nor high-dose treatment altered plasma T(2). Plasma T(4)S was increased only by T(4) in high dose. We conclude that in prolonged critically ill rabbits, low plasma T(3) levels were associated with low liver and kidney T(3) levels. Restoration of plasma and liver and kidney tissue iodothyronine levels was not achieved by thyroid hormone in substitution dose but instead required severalfold this dose. This indicates thyroid hormone hypermetabolism, which in this model of critical illness is not entirely explained by deiodination or by sulfoconjugation. PMID:18450965

  3. Evidence for impaired retinoic acid receptor-thyroid hormone receptor AF-2 cofactor activity in human lung cancer.

    PubMed Central

    Moghal, N; Neel, B G

    1995-01-01

    Retinoic acid (RA) is required for normal airway epithelial cell growth and differentiation both in vivo and in vitro. One of the earliest events following the exposure of bronchial epithelial cells to RA is the strong induction of RA receptor beta (RAR beta) mRNA. Previous work established that many lung cancer cell lines and primary tumors display abnormal RAR beta mRNA expression, most often absence or weak expression of the RAR beta 2 isoform, even after RA treatment. Restoration of RAR beta 2 into RAR beta-negative lung cancer cell lines has been reported to inhibit tumorigenicity. Since RAR beta 2 inactivation may contribute to lung cancer, we have investigated the molecular mechanism of defective RAR beta 2 expression. Nuclear run-on assays and transient transfections with RAR beta 2 promoter constructs indicate the presence of trans-acting transcriptional defects in most lung cancer cell lines, which map to the RA response element (RARE). These defects cannot be complemented by RAR-retinoid X receptor cotransfection and can be separated into two types: (i) one affecting transcription from direct repeat RAREs, but not palindromic RAREs, and (ii) another affecting transcription from both types of RARE. Studies using chimeras between RAR alpha, TR alpha, and other transcription factors suggest the existence of novel RAR-thyroid hormone receptor AF-2-specific cofactors, which are necessary for high levels of transcription. Furthermore, these factors may be frequently inactivated in human lung cancer. PMID:7791800

  4. Cholinergic and VIPergic effects on thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1985-07-01

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.

  5. Neurodevelopmental Consequences of Low-Level Thyroid Hormone Disruption Induced by Environmental Contaminants

    EPA Science Inventory

    Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...

  6. Thyroid

    MedlinePlus

    Thyroid is used to treat the symptoms of hypothyroidism (a condition where the thyroid gland does not produce enough thyroid hormone). Symptoms of hypothyroidism include lack of energy, depression, constipation, weight gain, ...

  7. Thyroiditis

    MedlinePlus

    ... Hashimoto’s thyroiditis is the most common cause of hypothyroidism in the United States. Postpartum thyroiditis, which causes ... hormone levels in the blood) followed by temporary hypothyroidism, is a common cause of thyroid problems after ...

  8. New approaches to thyroid hormones and purinergic signaling.

    PubMed

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.

  9. New Approaches to Thyroid Hormones and Purinergic Signaling

    PubMed Central

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  10. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection.

    PubMed

    Boelen, Anita; Kwakkel, Joan; Fliers, Eric

    2011-10-01

    Decreased serum thyroid hormone concentrations in severely ill patients were first reported in the 1970s, but the functional meaning of the observed changes in thyroid hormone levels, together known as nonthyroidal illness syndrome (NTIS), remains enigmatic. Although the common view was that NTIS results in overall down-regulation of metabolism in order to save energy, recent work has shown a more complex picture. NTIS comprises marked variation in transcriptional and translational activity of genes involved in thyroid hormone metabolism, ranging from inhibition to activation, dependent on the organ or tissue studied. Illness-induced changes in each of these organs appear to be very different during acute or chronic inflammation, adding an additional level of complexity. Organ- and timing-specific changes in the activity of thyroid hormone deiodinating enzymes (deiodinase types 1, 2, and 3) highlight deiodinases as proactive players in the response to illness, whereas the granulocyte is a novel and potentially important cell type involved in NTIS during bacterial infection. Although acute NTIS can be seen as an adaptive response to support the immune response, NTIS may turn disadvantageous when critical illness enters a chronic phase necessitating prolonged life support. For instance, changes in thyroid hormone metabolism in muscle during critical illness may be relevant for the pathogenesis of myopathy associated with prolonged ventilator dependence. This review focuses on NTIS as a timing-related and organ-specific response to illness, occurring independently from the decrease in serum thyroid hormone levels and potentially relevant for disease progression.

  11. TRα receptor mutations extend the spectrum of syndromes of reduced sensitivity to thyroid hormone.

    PubMed

    Vlaeminck-Guillem, Virginie; Espiard, Stéphanie; Flamant, Frédéric; Wémeau, Jean-Louis

    2015-11-01

    Since 2012, eight different abnormalities have been described in the THRA gene (encoding the TRα1 thyroid hormone receptor) of 14 patients from 9 families. These mutations induce a clinical phenotype (resistance to thyroid hormone type α) associating symptoms of untreated mild congenital hypothyroidism and a near-normal range of free and total thyroid hormones and TSH (the T4/T3 ratio is nevertheless usually low). The phenotype can diversely include short stature (due to growth retardation), dysmorphic syndrome (face and limb extremities), psychoneuromotor disorders, constipation and bradycardia. The identified genetic abnormalities are located within the ligand-binding domain and result in defective T3 binding, an abnormally strong interaction with corepressors and a dominant negative activity against still functional receptors. The identification of patients with consistent phenotypes and the underlying mutations are warranted to better delineate the spectrum of the syndromes of reduced sensitivity to thyroid hormone. PMID:26585273

  12. Thyroid Hormone Mediated Modulation of Energy Expenditure

    PubMed Central

    Vaitkus, Janina A.; Farrar, Jared S.; Celi, Francesco S.

    2015-01-01

    Thyroid hormone (TH) has diverse effects on mitochondria and energy expenditure (EE), generating great interest and research effort into understanding and harnessing these actions for the amelioration and treatment of metabolic disorders, such as obesity and diabetes. Direct effects on ATP utilization are a result of TH’s actions on metabolic cycles and increased cell membrane ion permeability. However, the majority of TH induced EE is thought to be a result of indirect effects, which, in turn, increase capacity for EE. This review discusses the direct actions of TH on EE, and places special emphasis on the indirect actions of TH, which include mitochondrial biogenesis and reduced metabolic efficiency through mitochondrial uncoupling mechanisms. TH analogs and the metabolic actions of T2 are also discussed in the context of targeted modulation of EE. Finally, clinical correlates of TH actions on metabolism are briefly presented. PMID:26193258

  13. Differentiated thyroid cancer in patients with resistance to thyroid hormone syndrome. A novel case and a review of the literature.

    PubMed

    Vinagre, João; Borges, Fátima; Costa, António; Alvelos, Maria Inês; Mazeto, Glaúcia; Sobrinho-Simões, Manuel; Soares, Paula

    2014-01-01

    Resistance to thyroid hormone (RTH) represents a syndrome in which patients present elevated circulating thyroid hormones in the presence of non-suppressed TSH. We report a novel case where a patient with RTH presented a differentiated thyroid cancer. A19 year-old female had been referred due to thyroid disease that disclosed features characteristic of a RTH. During the follow up it was detected a follicular tumor that led to the recommendation for thyroid surgical ablation, where an incidental papillary thyroid microcarcinoma (mPTC) was found. The increase of thyroglobulin (TG) levels following thyroid removal referred the patient for radioiodine treatment. Post-treatment, it was detected jugular adenopathies and the patient was subjected to cervical lymph node drainage where metastases of the mPTC were found. RTH syndrome was confirmed by the detection of a THRB germline mutation. A BRAF mutation was also found in the mPTC but not detected in the follicular adenoma or normal adjacent tissue. The young age of the patient, the rarity of BRAF mutations in childhood and the high dissemination of the malignancy, lead us to the speculation that increased TSH stimulation in a RTH background and oncogenic activation of BRAF could have served as (co) drivers and might have triggered an advanced stage of the neoplastic disease. These findings together with a review of published cases add novel information to the management of RTH patients with differentiated thyroid cancer. PMID:25988151

  14. Differentiated thyroid cancer in patients with resistance to thyroid hormone syndrome. A novel case and a review of the literature

    PubMed Central

    Vinagre, João; Borges, Fátima; Costa, António; Alvelos, Maria Inês; Mazeto, Glaúcia; Sobrinho-Simões, Manuel; Soares, Paula

    2014-01-01

    Resistance to thyroid hormone (RTH) represents a syndrome in which patients present elevated circulating thyroid hormones in the presence of non-suppressed TSH. We report a novel case where a patient with RTH presented a differentiated thyroid cancer. A19 year-old female had been referred due to thyroid disease that disclosed features characteristic of a RTH. During the follow up it was detected a follicular tumor that led to the recommendation for thyroid surgical ablation, where an incidental papillary thyroid microcarcinoma (mPTC) was found. The increase of thyroglobulin (TG) levels following thyroid removal referred the patient for radioiodine treatment. Post-treatment, it was detected jugular adenopathies and the patient was subjected to cervical lymph node drainage where metastases of the mPTC were found. RTH syndrome was confirmed by the detection of a THRB germline mutation. A BRAF mutation was also found in the mPTC but not detected in the follicular adenoma or normal adjacent tissue. The young age of the patient, the rarity of BRAF mutations in childhood and the high dissemination of the malignancy, lead us to the speculation that increased TSH stimulation in a RTH background and oncogenic activation of BRAF could have served as (co) drivers and might have triggered an advanced stage of the neoplastic disease. These findings together with a review of published cases add novel information to the management of RTH patients with differentiated thyroid cancer. PMID:25988151

  15. Liganded thyroid hormone receptor inhibits phorbol 12-O-tetradecanoate-13-acetate-induced enhancer activity via firefly luciferase cDNA.

    PubMed

    Misawa, Hiroko; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Iwaki, Hiroyuki; Matsunaga, Hideyuki; Suzuki, Shingo; Ishizuka, Keiko; Oki, Yutaka; Nakamura, Hirotoshi

    2012-01-01

    Thyroid hormone receptor (TR) belongs to the nuclear hormone receptor (NHR) superfamily and regulates the transcription of its target genes in a thyroid hormone (T3)-dependent manner. While the detail of transcriptional activation by T3 (positive regulation) has been clarified, the mechanism of T3-dependent repression (negative regulation) remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR) is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1). Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL) gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT)-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA). TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional activity

  16. The Relationships between Thyroid Hormones and Thyroid-stimulating Hormone with Lipid Profile in Euthyroid Men

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman; Mohamed, Isa Naina; Aminuddin, Amilia; Johari, Mohamad Hanapi; Ngah, Wan Zurinah Wan

    2014-01-01

    Background and Aim: Alteration in lipid profile is a common observation in patients with thyroid dysfunction, but the current knowledge on the relationship between lipids and thyroid hormone levels in euthyroid state is insufficient. The current study aimed to determine the association between thyroid hormones and thyroid-stimulating hormone (TSH) with lipid profile in a euthyroid male population. Methods: A total of 708 Chinese and Malay men aged 20 years and above were recruited in this cross-sectional study. Their blood was collected for the determination of total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglyceride (TG), free thyroxine (FT4), free triiodothyronine (FT3) and TSH levels. The association was analyzed using multiple regression and logistic regression models with adjustment for age, ethnicity, body mass index and FT4/FT3/TSH levels. Results: In multiple regression models, TSH was positively and significantly associated with TG (p<0.05). Free T4 was positively and significantly associated with TC, LDL-C and HDL-C (p<0.05). Free T3 was negatively and significantly associated with HDL-C (p<0.05). In binary logistic models, an increase in TSH was significantly associated with higher prevalence of elevated TG in the subjects (p<0.05), while an increase in FT4 was significantly associated with higher prevalence of elevated TC but a lower prevalence of subnormal HDL in the subjects (p<0.05). Free T3 was not associated with any lipid variables in the logistic regression (p>0.05). Conclusions: In euthyroid Malaysian men, there are positive and significant relationships between TSH level and TG level, and between FT4 level and cholesterol levels. PMID:24578612

  17. Relationships between thyroid hormones and serum energy metabolites with different patterns of postpartum luteal activity in high-producing dairy cows.

    PubMed

    Kafi, M; Tamadon, A; Saeb, M; Mirzaei, A; Ansari-Lari, M

    2012-08-01

    This study investigated the relationships of thyroid hormones, serum energy metabolites, reproductive parameters, milk yield and body condition score with the different patterns of postpartum luteal activity in the postpartum period. A total of 75 multiparous healthy (free of detectable reproductive disorders) Holstein dairy cows (mean peak milk yield = 56.5 ± 7.0 kg/day) were used in this study. Transrectal ultrasound scanning and blood sample collection were performed twice weekly. Serum concentrations of progesterone (P4) were measured twice weekly and beta-hydroxybutyrate (BHBA), non-esterified fatty acids, thyroxine (T4), 3,30,5-tri-iodothyronine (T3), free thyroxine (fT4) and free 3,30,5-tri-iodothyronine (fT3) were measured every 2 weeks from the 1st to the 8th week postpartum. On the basis of the serum P4 profile of the cows, 25 (33.4%) had normal luteal activity (NLA), whereas 30 (40%), 10 (13.3%), 6 (8%) and 4 (5.3%) had prolonged luteal phase (PLP), delayed first ovulation (DOV), anovulation (AOV) and short luteal phase, respectively. Serum T4 concentrations in PLP cows were higher than that in NLA cows at the 3rd week postpartum and did not change during the period of study, whereas in the NLA cows the concentrations increased (P < 0.05). Further, the least square (LS) mean of serum fT4 concentrations in the DOV and AOV cows were significantly lower than in the NLA cows during the study period (P < 0.05). In addition, the AOV cows had higher LS mean serum BHBA and T4 concentrations than the NLA cows in early weeks postpartum (P < 0.05). In conclusion, the serum thyroid hormones' profile differs in high-producing dairy cows showing PLP, AOV and DOV in comparison with the postpartum NLA cows.

  18. JNK pathway decreases thyroid hormones via TRH receptor: a novel mechanism for disturbance of thyroid hormone homeostasis by PCB153.

    PubMed

    Liu, Changjiang; Ha, Mei; Cui, Yushan; Wang, Chengmin; Yan, Maosheng; Fu, Wenjuan; Quan, Chao; Zhou, Jun; Yang, Kedi

    2012-12-01

    PCBs, widespread and well-characterized endocrine disruptors, cause the disruption of thyroid hormone (TH) homeostasis in humans and animals. In order to verify the hypotheses that MAPK pathways would play roles in disturbance of TH levels caused by PCBs, and that TH-associated receptors could function in certain MAPK pathway, Sprague-Dawley rats were dosed with PCB153 intraperitoneally (i.p.) at 0, 4, 16 and 32mg/kg for 5 consecutive days, and Nthy-ori 3-1 cells were treated with PCB153 (0, 1, 5, 10μM) for 30min. Results showed that after the treatment with PCB153, serum total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3) and thyrotropin releasing hormone (TRH) were decreased, whereas free triiodothyronine (FT3) and serum thyroid stimulating hormone (TSH) were not altered. In vivo and in vitro studies indicated that JNK pathway was activated after PCB153 exposure. Moreover, TRH receptor (TRHr) level was suppressed after the activation of JNK pathway and was elevated after the inhibition of JNK pathway, but TSH receptor (TSHr) level was not affected by the status of JNK pathway though it was reduced after PCB153 treatment. The activated signs of ERK and P38 pathways were not observed in this study. Taken together, observed effects suggested that JNK pathway could decrease TH levels via TRHr, and that would be one novel mechanism of PCB153-mediated disruption of THs.

  19. Prenatal exposure to perfluorinated compounds affects thyroid hormone levels in newborn girls.

    PubMed

    Shah-Kulkarni, Surabhi; Kim, Byung-Mi; Hong, Yun-Chul; Kim, Hae Soon; Kwon, Eun Jin; Park, Hyesook; Kim, Young Ju; Ha, Eun-Hee

    2016-09-01

    Perfluorinated compounds (PFCs) are ubiquitous in the environment and have been detected in humans and wildlife. Exposure to PFCs has decreased in the United States recently, while exposure to PFCs continues in Asian countries, which represents a public health concern. Various mechanisms by which PFCs affect fetal growth have been proposed, such as activation of peroxisome proliferators, disruption of thyroid hormones and changes in lipid metabolism. However, the overall evidence for an association with thyroid hormones is not strong. Therefore, we examined the effect of various prenatal PFCs on cord blood thyroid hormones: triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH) levels, and explored the endocrine disrupting effect of these PFCs on thyroid hormone levels in children according to gender. Two hundred and seventy-nine study participants were selected from among the enrolled participants in the Ewha Birth & Growth Retrospective Cohort, a retrospective birth cohort study conducted at Ewha Womans University Hospital, Seoul, Korea between 2006 and 2010. A generalized linear model was constructed to explore the association of PFCs and thyroid hormones. Further, an analysis stratified by gender was conducted. Our study shows that cord blood perfluoro n-pentanoic acid (PFPeA) was positively associated with cord blood T4 (p=0.01) level. Gender-specific analysis showed that prenatal PFCs: PFPeA and Perfluorohexane sulfonic acid (PFHxS) exposure significantly increased T4 (p<0.01) and T3 (p=0.03), respectively, while perfluorononanoic acid (PFNA) decreased TSH (p=0.04) concentration in newborn girls. Thus, prenatal PFC exposure may disrupt thyroid hormone homeostasis. Thyroid hormones play a crucial role in fetal development and may have gender specific action. Hence, these results are of utmost importance in high-risk groups, such as pregnant women and children. PMID:27395336

  20. Thyroid Hormone Mimetics: the Past, Current Status and Future Challenges.

    PubMed

    Elbers, L P B; Kastelein, J J P; Sjouke, B

    2016-03-01

    The association between thyroid hormone status and plasma levels of low-density lipoprotein cholesterol has raised the awareness for the development of thyroid hormone mimetics as lipid-lowering agents. The discovery of the two main types of thyroid hormone receptors (α and β) as well as the development of novel combinatorial chemistry providing organ specificity has drastically improved the selectivity of these compounds. In the past decades, several thyroid hormone mimetics have been investigated with the purpose of lowering low-density lipoprotein cholesterol levels. However, until now, none of the thyromimetics reached the stage of completing a phase III clinical trial without deleterious side effects. Here, we review the currently available literature on thyromimetics investigated for the treatment of dyslipidemia, their rise, their downfall and the challenges for the development of novel agents.

  1. Developmental Thyroid Hormone Disruption: Prevalence, Environmental Contaminants and Neurodevelopmental Consequences

    EPA Science Inventory

    Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to...

  2. Evaluation of thyroid hormone levels in chronic kidney disease patients.

    PubMed

    Rajeev, Gandham; Chickballapur Rayappa, Wilma Delphine Silvia; Vijayalakshmi, Ravella; Swathi, Manchala; Kumar, Sunil

    2015-01-01

    We attempted in this study to determine the thyroid hormone levels in 45 adult chronic kidney disease (CKD) patients and 45 ageand sex-matched healthy subjects as controls. The serum thyroid hormone levels were measured by a radioimmunoassay. Serum concentrations of creatinine, urea, electrolytes and total proteins and albumin were measured as well. There was a significant decrease in the levels of serum total T3, total T4 and total protein and albumin levels in CKD patients when compared with the controls. There was a significant increase in the level of thyroid stimulating hormone in the CKD patients compared with the controls. Our study suggests that CKD leads to significant changes in the thyroid hormone levels, which need to be interpreted carefully in these patients.

  3. Inhibition of the Thyroid Hormone Pathway in Xenopus by Mercaptobenzothiazole

    EPA Science Inventory

    Amphibian metamorphosis is a thyroid hormone-dependent process that provides a potential model system to assess chemicals for their ability to disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Several studies have demonstrated the sensitivity of this system to a variety of ...

  4. Thyroid hormone-disrupting activity and ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and in silico approaches.

    PubMed

    Zhang, Quan; Ji, Chenyang; Yin, Xiaohui; Yan, Lu; Lu, Meiya; Zhao, Meirong

    2016-03-01

    In recent years, phosphorus-containing flame retardants (PFRs) have been frequently detected in various environmental media and biota - and in humans - as the result of steady increase in global usage of PFRs. However, studies on the potential health and ecological risks of PFRs are still scarce. In this study, we investigated the thyroid hormone-disrupting activity and ecological risk of nine frequently detected PFRs by in vitro, in vivo and in silico approaches. Results from the dual-luciferase reporter gene assay showed that tributyl phosphate (TNBP), tricresyl phosphate (TMPP), tris(2-chloroisopropyl)phosphate (TCIPP) and tris(2-chloro-1-(chloromethyl)ethyl)phosphate (TDCIPP) exerted thyroid receptor β (TRβ) antagonistic activity, with the values of RIC20 of 5.2 × 10(-7), 2.7 × 10(-7), 1.2 × 10(-6) and 6.8 × 10(-6) M, respectively. Molecular docking platform simulations suggested that the observed effects may be attributed to direct binding of PFRs to TR. Results from the T-screen assay indicated that TNBP and TMPP showed T3 antagonistic activity and thus significantly decreased the viability of GH3 cell lines in the presence of T3. The exposure assay using Xenopus tropicalis embryos revealed the potential teratogenic effect of TNBP, TMPP, TCIPP and TDCIPP. In conclusion, our studies revealed that some PFRs were potential thyroid hormone disruptors and may cause health and ecological risks. However, the mode of action of PFRs on TR remains uncertain. The correlation between the predicted affinity and the amplitude of the effect observed in cell based assay is encouraging, but not decisive. Further in vitro binding experiments of TR and PFRs are required. At the same time, the results provided here also demonstrated that multi-model approaches are of great importance to comprehensively evaluate the potential risks of emerging contaminants. PMID:26701863

  5. Effects of acute microinjections of the thyroid hormone derivative 3-iodothyronamine to the preoptic region of adult male rats on sleep, thermoregulation and motor activity.

    PubMed

    James, Thomas D; Moffett, Steven X; Scanlan, Thomas S; Martin, Joseph V

    2013-06-01

    The decarboxylated thyroid hormone derivative 3-iodothyronamine (T1AM) has been reported as having behavioral and physiological consequences distinct from those of thyroid hormones. Here, we investigate the effects of T1AM on EEG-defined sleep after acute administration to the preoptic region of adult male rats. Our laboratory recently demonstrated a decrease in EEG-defined sleep after administration of 3,3',5-triiodo-l-thyronine (T3) to the same brain region. After injection of T1AM or vehicle solution, EEG, EMG, activity, and core body temperature were recorded for 24h. Sleep parameters were determined from EEG and EMG data. Earlier investigations found contrasting systemic effects of T3 and T1AM, such as decreased heart rate and body temperature after intraperitoneal T1AM injection. However, nREM sleep was decreased in the present study after injections of 1 or 3 μg T1AM, but not after 0.3 or 10 μg, closely mimicking the previously reported effects of T3 administration to the preoptic region. The biphasic dose-response observed after either T1AM or T3 administration seems to indicate shared mechanisms and/or functions of sleep regulation in the preoptic region. Consistent with systemic administration of T1AM, however, microinjection of T1AM decreased body temperature. The current study is the first to show modulation of sleep by T1AM, and suggests that T1AM and T3 have both shared and independent effects in the adult mammalian brain.

  6. Effects of acute microinjections of the thyroid hormone derivative 3-iodothyronamine to the preoptic region of adult male rats on sleep, thermoregulation and motor activity.

    PubMed

    James, Thomas D; Moffett, Steven X; Scanlan, Thomas S; Martin, Joseph V

    2013-06-01

    The decarboxylated thyroid hormone derivative 3-iodothyronamine (T1AM) has been reported as having behavioral and physiological consequences distinct from those of thyroid hormones. Here, we investigate the effects of T1AM on EEG-defined sleep after acute administration to the preoptic region of adult male rats. Our laboratory recently demonstrated a decrease in EEG-defined sleep after administration of 3,3',5-triiodo-l-thyronine (T3) to the same brain region. After injection of T1AM or vehicle solution, EEG, EMG, activity, and core body temperature were recorded for 24h. Sleep parameters were determined from EEG and EMG data. Earlier investigations found contrasting systemic effects of T3 and T1AM, such as decreased heart rate and body temperature after intraperitoneal T1AM injection. However, nREM sleep was decreased in the present study after injections of 1 or 3 μg T1AM, but not after 0.3 or 10 μg, closely mimicking the previously reported effects of T3 administration to the preoptic region. The biphasic dose-response observed after either T1AM or T3 administration seems to indicate shared mechanisms and/or functions of sleep regulation in the preoptic region. Consistent with systemic administration of T1AM, however, microinjection of T1AM decreased body temperature. The current study is the first to show modulation of sleep by T1AM, and suggests that T1AM and T3 have both shared and independent effects in the adult mammalian brain. PMID:23702093

  7. Paracrine Interactions of Thyroid Hormones and Thyroid Stimulation Hormone in the Female Reproductive Tract have an Impact on Female Fertility

    PubMed Central

    Stavreus Evers, Anneli

    2012-01-01

    Thyroid disease often causes menstrual disturbances and infertility problems. Thyroid hormone (TH) acts through its receptors, transcription factors present in most cell types in the body. Thyroid stimulating hormone (TSH) stimulates TH synthesis in the thyroid gland, but seems to have other functions as well in the female reproductive tract. The receptors of both TH and TSH increase in the receptive endometrium, suggesting that they are important for implantation, possible by influencing inflammatory mediators such as leukemia inhibitory factor. The roles of these receptors in the ovary need further studies. However, it is likely that the thyroid system is important for both follicular and embryo development. The association between thyroid disease and infertility indicate that TH and TSH affect the endometrium and ovary on the paracrine level. PMID:22649421

  8. Hypertrophic response of the Association of Thyroid Hormone and Exercise in the Heart of Rats

    PubMed Central

    de Souza, Fernanda Rodrigues; Resende, Elmiro Santos; Lopes, Leandro; Gonçalves, Alexandre; Chagas, Rafaella; Fidale, Thiago; Rodrigues, Poliana

    2014-01-01

    Background Cardiac hypertrophy is a component of cardiac remodeling occurring in response to an increase of the activity or functional overload of the heart. Objective Assess hypertrophic response of the association of thyroid hormone and exercise in the rat heart. Methods We used 37 Wistar rats, male, adults were randomly divided into four groups: control, hormone (TH), exercise (E), thyroid hormone and exercise (H + E); the group received daily hormone levothyroxine sodium by gavage at a dose of 20 μg thyroid hormone/100g body weight, the exercise group took swimming five times a week, with additional weight corresponding to 20% of body weight for six weeks; in group H + E were applied simultaneously TH treatment groups and E. The statistics used was analysis of variance, where appropriate, by Tukey test and Pearson correlation test. Results The T4 was greater in groups TH and H + E. The total weight of the heart was greater in patients who received thyroid hormone and left ventricular weight was greater in the TH group. The transverse diameter of cardiomyocytes increased in groups TH, E and H + E. The percentage of collagen was greater in groups E and H + E Correlation analysis between variables showed distinct responses. Conclusion The association of thyroid hormone with high-intensity exercise produced cardiac hypertrophy, and generated a standard hypertrophy not directly correlated to the degree of fibrosis. PMID:24676374

  9. Prolonged weightlessness effect on postflight plasma thyroid hormones.

    PubMed

    Leach, C S; Johnson, P C; Driscoll, T B

    1977-07-01

    Blood drawn before and after spaceflight from the nine Skylab astronauts showed a statistically significant increase in mean plasma thyroxine (T-4) of 1.4 microgram/dl and in thyroid-stimulating hormone (TSH) of 4 muU/ml. Concurrent triiodothyronine (T-3) levels decreased 27 ng/dl indicating inhibited conversion of T-4 to T-3. The T-3 decrease is postulated to be a result of the increased cortisol levels noted during and following each mission. These results confirm the thyroidal changes noted after the shorter Apollo flights and show that thyroid hormone levels change during spaceflight.

  10. Prolonged weightlessness effect on postflight plasma thyroid hormones

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Driscoll, T. B.

    1977-01-01

    Blood drawn before and after spaceflight from the nine Skylab astronauts showed a statistically significant increase in mean plasma thyroxine (T-4) of 1.4 micro g/dl and in thyroid-stimulating hormone (TSH) of 4 microunits ml. Concurrent triiodothyronine (T-3) levels decreased 27 ng/dl indicating inhibited conversion of T-4 to T-3. The T-3 decrease is postulated to be a result of the increased cortisol levels noted during and following each mission. These results confirm the thyroidal changes noted after the shorter Apollo flights and show that thyroid hormone levels change during spaceflight.

  11. Thyroid-stimulating Hormone (TSH): Measurement of Intracellular, Secreted, and Circulating Hormone in Xenopus laevis and Xenopus tropicalis.

    EPA Science Inventory

    Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...

  12. The case of thyroid hormones: how to learn physiology by solving a detective case.

    PubMed

    Lellis-Santos, Camilo; Giannocco, Gisele; Nunes, Maria Tereza

    2011-06-01

    Thyroid diseases are prevalent among endocrine disorders, and careful evaluation of patients' symptoms is a very important part in their diagnosis. Developing new pedagogical strategies, such as problem-based learning (PBL), is extremely important to stimulate and encourage medical and biomedical students to learn thyroid physiology and identify the signs and symptoms of thyroid dysfunction. The present study aimed to create a new pedagogical approach to build deep knowledge about hypo-/hyperthyroidism by proposing a hands-on activity based on a detective case, using alternative materials in place of laboratory animals. After receiving a description of a criminal story involving changes in thyroid hormone economy, students collected data from clues, such as body weight, mesenteric vascularization, visceral fat, heart and thyroid size, heart rate, and thyroid-stimulating hormone serum concentration to solve the case. Nevertheless, there was one missing clue for each panel of data. Four different materials were proposed to perform the same practical lesson. Animals, pictures, small stuffed toy rats, and illustrations were all effective to promote learning, and the detective case context was considered by students as inviting and stimulating. The activity can be easily performed independently of the institution's purchasing power. The practical lesson stimulated the scientific method of data collection and organization, discussion, and review of thyroid hormone actions to solve the case. Hence, this activity provides a new strategy and alternative materials to teach without animal euthanization. PMID:21652508

  13. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio).

    PubMed

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-02-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  14. Subacute microcystin-LR exposure alters the metabolism of thyroid hormones in juvenile zebrafish (Danio Rerio).

    PubMed

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-01-30

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs.

  15. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio)

    PubMed Central

    Liu, Zidong; Tang, Rong; Li, Dapeng; Hu, Qing; Wang, Ying

    2015-01-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. PMID:25647779

  16. BRAIN, LIVER AND THYROID BIOMARKERS REFLECT ENHANCED SENSITIVITY OF THE DEVELOPING RAT TO THYROID HORMONE DEPLETION.

    EPA Science Inventory

    Many developmental events are regulated at least in part by thyroid hormones. It was hypothesized that tissue biomarkers of thyroid status would be more accurate predictors of neurotoxicity than serum biomarkers in rats treated with the goitrogen propylthiouracil (PTU). Over seve...

  17. Control of pituitary thyroid-stimulating hormone synthesis and secretion by thyroid hormones during Xenopus metamorphosis.

    PubMed

    Sternberg, Robin M; Thoemke, Kara R; Korte, Joseph J; Moen, Scott M; Olson, Jessica M; Korte, Lisa; Tietge, Joseph E; Degitz, Sigmund J

    2011-09-15

    We used ex vivo and in vivo experiments with Xenopus laevis tadpoles to examine the hypothesis that the set-point for negative feedback on pituitary thyroid-stimulating hormone (TSH) synthesis and secretion by thyroid hormones (THs) increases as metamorphosis progresses to allow for the previously documented concomitant increase in serum TH concentrations and pituitary TSH mRNA expression during this transformative process. First, pituitaries from climactic tadpoles were cultured for up to 96 h to characterize the ability of pituitary explants to synthesize and secrete TSHβ in the absence of hypothalamic and circulating hormones. Next, pituitary explants from tadpoles NF stages 54-66 were exposed to physiologically-relevant concentrations of THs to determine whether stage-specific differences exist in pituitary sensitivity to negative feedback by THs. Finally, in vivo exposures of tadpoles to THs were conducted to confirm the results of the ex vivo experiments. When pituitaries from climactic tadpoles were removed from the influence of endogenous hormones, TSHβ mRNA expression increased late or not at all whereas the rate of TSHβ secreted into media increased dramatically, suggesting that TSH secretion, but not TSH mRNA expression, is under the negative regulation of an endogenous signal during the climactic stages of metamorphosis. Pituitaries from pre- and prometamorphic tadpoles were more sensitive to TH-induced inhibition of TSHβ mRNA expression and secretion than pituitaries from climactic tadpoles. The observed decrease in sensitivity of pituitary TSHβ mRNA expression to negative feedback by THs from premetamorphosis to metamorphic climax was confirmed by in vivo experiments in which tadpoles were reared in water containing THs. Based on the results of this study, a model is proposed to explain the seemingly paradoxical, concurrent rise in serum TH concentrations and pituitary TSH mRNA expression during metamorphosis in larval anurans.

  18. Effects of thyroid hormones on human breast cancer cell proliferation.

    PubMed

    Hall, Linda C; Salazar, Eddie P; Kane, Staci R; Liu, Nan

    2008-03-01

    The involvement of estrogens in breast cancer development and growth has been well established. However, the effects of thyroid hormones and their combined effects with estrogens are not well studied. We investigated the response of human breast cancer cells to thyroid hormone, particularly the role of T3 in mediating cell proliferation and gene expression. We demonstrated that 17beta-estradiol (E2) or triiodothyronine (T3) promoted cell proliferation in a dose-dependent manner in both MCF-7 and T47-D cell lines. The E2- or T3-dependent cell proliferation was suppressed by co-administration of the ER antagonist ICI. We also demonstrated that T3 could enhance the effect of E2 on cell proliferation in T47-D cells. Using an estrogen response element (ERE)-mediated luciferase assay, we determined that T3 was able to induce the activation of ERE-mediated gene expression in MCF-7 cells, although the effects were much weaker than that induced by E2. These results suggest that T3 can promote breast cancer cell proliferation and increase the effect of E2 on cell proliferation in some breast cancer cell lines and thus that T3 may play a role in breast cancer development and progression. PMID:18328691

  19. Thyroid Hormone and P-Glycoprotein in Tumor Cells

    PubMed Central

    Davis, Paul J.; Lin, Hung-Yun; Sudha, Thangirala; Mousa, Shaker A.

    2015-01-01

    P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1) is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1) and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin αvβ3 also binds tetraiodothyroacetic acid (tetrac), a derivative of L-thyroxine (T4) that blocks nongenomic actions of T4 and of 3,5,3′-triiodo-L-thyronine (T3) at αvβ3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1) and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF) and osteopontin (OPN), apparently via αvβ3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein. PMID:25866761

  20. Effects of acute microinjections of thyroid hormone to the preoptic region of euthyroid adult male rats on sleep and motor activity.

    PubMed

    Martin, Joseph V; Giannopoulos, Phillip F; Moffett, Steven X; James, Thomas D

    2013-06-21

    In adult brain tissue, thyroid hormones are known to have multiple effects which are not mediated by chronic influences of the hormones on heterodimeric thyroid hormone nuclear receptors. Previous work has shown that acute microinjections of l-triiodothyronine (T3) to the preoptic region significantly influence EEG-defined sleep in hypothyroid rats. The current study examined the effects of similar microinjections in euthyroid rats. In 7 rats with histologically confirmed microinjection sites bilaterally placed in the preoptic region, slow-wave sleep time was significantly decreased, but REM and waking were increased as compared to vehicle-injected controls. The EEG-defined parameters were significantly influenced by the microinjections in a biphasic dose-response relationship; the lowest (0.3μg) and highest (10μg) doses tested were without significant effect while intermediate doses (1 and 3μg) induced significant differences from controls. There were significant diurnal variations in the measures, yet no significant interactions between the effect of hormone and time of day were demonstrated. Core body temperature was not significantly altered in the current study. The demonstration of effects of T3 within hours instead of days is consistent with a rapid mechanism of action such as a direct influence on neurotransmission. Since the T3-mediated effects were robust in the current work, euthyroid rats retain thyroid hormone sensitivity which would be needed if sleep-regulatory mechanisms in the preoptic region are continuously modulated by the hormones. This article is part of a Special Issue entitled LInked: BRES-D-12-01552 & BRES-D-12-01363R2.

  1. Effects of acute microinjections of thyroid hormone to the preoptic region of euthyroid adult male rats on sleep and motor activity.

    PubMed

    Martin, Joseph V; Giannopoulos, Phillip F; Moffett, Steven X; James, Thomas D

    2013-06-21

    In adult brain tissue, thyroid hormones are known to have multiple effects which are not mediated by chronic influences of the hormones on heterodimeric thyroid hormone nuclear receptors. Previous work has shown that acute microinjections of l-triiodothyronine (T3) to the preoptic region significantly influence EEG-defined sleep in hypothyroid rats. The current study examined the effects of similar microinjections in euthyroid rats. In 7 rats with histologically confirmed microinjection sites bilaterally placed in the preoptic region, slow-wave sleep time was significantly decreased, but REM and waking were increased as compared to vehicle-injected controls. The EEG-defined parameters were significantly influenced by the microinjections in a biphasic dose-response relationship; the lowest (0.3μg) and highest (10μg) doses tested were without significant effect while intermediate doses (1 and 3μg) induced significant differences from controls. There were significant diurnal variations in the measures, yet no significant interactions between the effect of hormone and time of day were demonstrated. Core body temperature was not significantly altered in the current study. The demonstration of effects of T3 within hours instead of days is consistent with a rapid mechanism of action such as a direct influence on neurotransmission. Since the T3-mediated effects were robust in the current work, euthyroid rats retain thyroid hormone sensitivity which would be needed if sleep-regulatory mechanisms in the preoptic region are continuously modulated by the hormones. This article is part of a Special Issue entitled LInked: BRES-D-12-01552 & BRES-D-12-01363R2. PMID:23348377

  2. Thyroid hormone levels and cigarette smoking in baboons.

    PubMed

    Sepkovic, D W; Marshall, M V; Rogers, W R; Cronin, P A; Colosimo, S G; Haley, N J

    1988-02-01

    Using a primate animal model, two studies were undertaken to examine the effects of cigarette smoking on thyroid hormone levels. In study 1, mean total triiodothyronine (total T3) and mean total thyroxine (total T4) levels were measured in two groups of baboons (Papio cynocephalus) who were taught to smoke cigarettes using operant conditioning techniques. The smokers were divided into established and naive smokers according to pack-years of exposure. A control group of never-smoker baboons was included for comparison. Blood sampling was done after long-term cigarette consumption and again 1 week after cigarette deprivation. In the naive smoker group, mean total T3 concentrations were reduced below control group values (P less than 0.05). After cigarette deprivation for 1 week, mean total T3 values returned to normal. No significant differences in total T4 levels were observed in either group. In study 2, we assessed some other indices of thyroid function. The same groups of baboons were divided into good and poor smokers by plasma cotinine and blood carboxyhemoglobin (% COHb) levels during 28 weeks of cigarette smoking activity. Immediate fluctuations and reductions in total T3 levels were observed that were not accompanied by reductions in total T4. The animals were then cigarette deprived for 1 week and blood samples were obtained every other day during this period. Significant increases in total T3 concentrations were observed in poor smokers immediately after cessation. Both groups also exhibited significant reductions (P less than 0.05) in T3 uptake and free T4 index (FT4I) when compared to control group values. These data suggest that poor smokers are more susceptible to thyroid hormone level shifts than more established smokers, since the established smokers become habituated to the compounds contained in cigarette smoke through repeated exposure.

  3. Early Temporal Effects of Three Thyroid Hormone Synthesis Inhibitors in Xenopus laevis

    EPA Science Inventory

    Thyroid axis disruption is an important consideration when evaluating the risks associated with chemicals. Bioassay methods that include thyroid-related endpoints have been developed in a variety of species, including amphibians, whose metamorphic development is thyroid hormone ...

  4. Cellular and Molecular Basis of Deiodinase-Regulated Thyroid Hormone Signalinga

    PubMed Central

    Gereben, Balázs; Zavacki, Ann Marie; Ribich, Scott; Kim, Brian W.; Huang, Stephen A.; Simonides, Warner S.; Zeöld, Anikó; Bianco, Antonio C.

    2008-01-01

    The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T3 during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-κB, growth factors, bile acids, hypoxia-inducible factor-1α, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults. PMID:18815314

  5. Liver X receptor β: new player in the regulatory network of thyroid hormone and 'browning' of white fat.

    PubMed

    Miao, Yifei; Warner, Margaret; Gustafsson, Jan-Ke

    2016-01-01

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type II diabetes. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride and glucose metabolism. Following our previous finding that LXRs serve as repressors of UCP1 in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyrotropin releasing hormone positive neurons in the paraventricular area of the hypothalamus, and thus stimulated secretion of thyroid-stimulating hormone from the pituitary. Consequently production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. One unexpected finding of our study is that LXRs are indispensable in the thyroid hormone negative feedback loop at the level of the hypothalamus. LXRs maintain expression of thyroid receptors in the brain and when they are inactivated there is no negative feedback of thyroid hormone in the hypothalamus. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knock-out mice and provided support for targeting LXRs in treatment of obesity. PMID:27386163

  6. Effects of glucocorticoids on plasma levels of thyroid hormones (T4 and T3) and testicular activity in catfish, Clarias gariepinus during different phases of annual breeding cycle.

    PubMed

    Suchiang, P; Varkey, S; Gupta, B B P

    2012-06-01

    Effects of short-term administration of corticosterone and cortisol on plasma levels of thyroid hormones, gonado-somatic index and testicular histology have been reported in catfish, Clarias gariepinus during different phases of its breeding cycle. Corticosterone administration had no significant effect on plasma levels of T4, T3 and T3/T4 ratio, irrespective of doses and phases of breeding cycle. However, 5 microg dose of cortisol significantly increased plasma levels of T3 and the T3/T4 ratio during quiescent and regressive phases, while it significantly decreased plasma levels of T4 during progressive phase. During breeding phase, 2 microg and 5 microg doses of cortisol significantly decreased plasma levels of T4 and T3, respectively, while 5 microg dose of cortisol alone reduced T3/T4 ratio. Irrespective of phases of annual breeding cycle and doses, short-term administration of corticosterone and cortisol had no significant effect either on GSI or testicular histology. These findings suggest that corticosterone is ineffective in stimulating plasma levels of thyroid hormones, while cortisol, depending on dose and phase/season, may differentially increase, decrease or have no effect on plasma levels of thyroid hormones in C. gariepinus.

  7. Maternal iron deficiency alters circulating thyroid hormone levels in developing neonatal rats

    EPA Science Inventory

    Thyroid hormone insufficiency and iron deficiency (FeD) during fetal and neonatal life are both similarly deleterious to mammalian development suggesting a possible linkage between iron and thyroid hormone insufficiencies. Recent published data from our laboratory demonstrate a r...

  8. Establishing Adverse Outcome Pathways of Thyroid Hormone Disruption in an Amphibian Model

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) provides a framework for understanding the relevance of toxicology data in ecotoxicological hazard assessments. The AOP concept can be applied to many toxicological pathways including thyroid hormone disruption. Thyroid hormones play a critical r...

  9. Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay

    PubMed Central

    Miyata, Kaori; Ose, Keiko

    2012-01-01

    There are continued concerns about endocrine-disrupting chemical effects, and appropriate vertebrate models for assessment of risk are a high priority. Frog tadpoles are very sensitive to environmental substances because of their habitat and the complex processes of metamorphosis regulated by the endocrine system, mainly thyroid hormones. During metamorphosis, marked alteration in hormonal factors occurs, as well as dramatic structural and functional changes in larval tissues. There are a variety of mechanisms determining thyroid hormone balance or disruption directly or indirectly. Direct-acting agents can cause changes in thyroxine synthesis and/or secretion in thyroid through effects on peroxidases, thyroidal iodide uptake, deiodinase, and proteolysis. At the same time, indirect action may result from biochemical processes such as sulfation, deiodination and glucuronidation. Because their potential to disrupt thyroid hormones has been identified as an important consideration for the regulation of chemicals, the OECD and the EPA have each established guidelines that make use of larval African clawed frogs (Xenopus laevis) and frog metamorphosis for screening and testing of potential endocrine disrupters. The guidelines are based on evaluation of alteration in the hypothalamic-pituitary-thyroid axis. One of the primary endpoints is thyroid gland histopathology. Others are mortality, developmental stage, hind limb length, snout-vent length and wet body weight. Regarding histopathological features, the guidelines include core criteria and additional qualitative parameters along with grading. Taking into account the difficulties in evaluating amphibian thyroid glands, which change continuously throughout metamorphosis, histopathological examination has been shown to be a very sensitive approach. PMID:22481853

  10. Vitamin D interferes with transactivation of the growth hormone gene by thyroid hormone and retinoic acid.

    PubMed Central

    Garcia-Villalba, P; Jimenez-Lara, A M; Aranda, A

    1996-01-01

    The thyroid hormone, retinoic acid (RA), and vitamin D regulate gene expression by binding to similar receptors which act as ligand-inducible transcription factors. Incubation of pituitary GH4C1 cells with nanomolar concentrations of vitamin D markedly reduces the response of the rat growth hormone mRNA to thyroid hormone triiodothyronine (T3) and RA. The stimulation of growth hormone gene expression by both ligands is mediated by a common hormone response element (TREGH) present in the 5'-flanking region of the gene, and the inhibition caused by vitamin D is due to transcriptional interference of the vitamin D receptor on this DNA element. No inhibition of the basal promoter activity by the vitamin was observed. The response to T3 and RA of a heterologous promoter containing this element, the palindromic T3- and RA-responsive sequence TREPAL, or a direct repeat of the same motif is also inhibited by vitamin D. In contrast, vitamin D strongly induces the activity of constructs containing a vitamin D response element, and neither T3 nor RA reduces vitamin D-mediated transactivation. Transfection with an expression vector for the retinoid X receptor alpha (RXR alpha) increases transactivation by T3 and RA but does not abolish the inhibition caused by the vitamin. Gel retardation experiments show that the vitamin D receptor (VDR) as a heterodimer with RXR weakly binds to the T3- and RA-responsive elements. Additionally, VDR displaces binding of T3 and RA receptors in a dose-dependent manner. Our data suggest the formation of TR-VDR and RAR-VDR heterodimers with RXR. The fact that the same response element mediates opposite effects of at least four different nuclear receptors provides a greater complexity and flexibility of the transcriptional responses to their ligands. PMID:8524311

  11. The role of thyroid hormone and brown adipose tissue in energy homoeostasis.

    PubMed

    Bianco, Antonio C; McAninch, Elizabeth A

    2013-11-01

    The presence of brown adipose tissue (BAT) in adults has become increasingly well defined as a result of functional imaging studies of thermogenically active BAT. Findings from these studies have created a surge of scientific interest in BAT, because it represents a potential therapeutic target for obesity--a condition with profound health consequences and few successful therapies. BAT contributes to overall energy expenditure in small mammals and neonates through adaptive thermogenesis. Thyroid-hormone signalling, particularly through induction of type II deiodinase, has a central role in brown adipogenesis in vitro and BAT development in mouse embryos. Additionally, because of high intracellular expression of type II deiodinase, adult BAT has enhanced thyroid-hormone signalling with several thyroid-hormone-dependent thermogenic pathways, including expression of the genes Ppargc1a and Ucp1. BAT thermogenesis explains the essential part played by thyroid hormone in energy homoeostasis and adaptation to cold. Stimulation of BAT in adults, specifically through thyroid-hormone-mediated pathways, is a promising therapeutic target for obesity.

  12. Neonatal detection of generalized resistance to thyroid hormone

    SciTech Connect

    Weiss, R.E.; Balzano, S.; Scherberg, N.H.; Refetoff, S. )

    1990-11-07

    Generalized resistance to thyroid hormone (GRTH) is an inherited disease that is usually suspected when elevated serum thyroid hormone levels are associated with nonsuppressed thyrotropin. Often these test results are obtained because of short stature, decreased intelligence, and/or hyperactivity with learning disability noted in childhood and adolescence, or because of goiter in adulthood. The authors detected GRTH at birth by analysis of blood obtained during routine neonatal screening. The proposita, born to a mother with GRTH, had a thyrotropin level of 26 mU/L and a corresponding thyroxine concentration of 656 nmol/L. Administration of thyroid hormone in doses eightfold to 10-fold above replacement levels were required to reduce serum thyrotropin to normal levels without induction of hypermetabolism. This case, and the retrospective finding of high thyroxine levels in five newborns subsequently diagnosed as having GRTH, suggest that measurement of thyroxine at birth, in conjunction with thyrotropin, could allow the early detection of GRTH.

  13. Energy regulation in context: Free-living female arctic ground squirrels modulate the relationship between thyroid hormones and activity among life history stages.

    PubMed

    Wilsterman, Kathryn; Buck, C Loren; Barnes, Brian M; Williams, Cory T

    2015-09-01

    Thyroid hormones (THs), key regulators of lipid and carbohydrate metabolism, are likely modulators of energy allocation within and among animal life history stages. Despite their role in modulating metabolism, few studies have investigated whether THs vary among life history stages in free-living animals or if they exhibit stage-specific relationships to total energy expenditure and activity levels. We measured plasma total triiodothyronine (tT3) and thyroxine (tT4) at four, discrete life history stages of female arctic ground squirrels from two different populations in northern Alaska to test whether plasma THs correlate with life history stage-specific changes in metabolic rate and energy demand. We also tested whether THs explained individual variation in aboveground activity levels within life history stages. T3 peaked during lactation and was lowest during pre-hibernation fattening, consistent with known changes in basal metabolism and core body temperature. In contrast, T4 was elevated shortly after terminating hibernation but remained low and stable across other life-history stages in the active season. THs were consistently higher in the population that spent more time above-ground but the relationship between THs and activity varied among life history stages. T3 was positively correlated with activity only during lactation (r(2)=0.50) whereas T4 was positively correlated with activity immediately following lactation (r(2)=0.48) and during fattening (r(2)=0.53). Our results support the hypothesis that THs are an important modulator of basal metabolism but also suggest that the relationship between THs and activity varies among life history stages.

  14. Multiple genetic factors in the heterogeneity of thyroid hormone resistance

    SciTech Connect

    Weiss, R.E.; Refetoff, S. ); Marcocci, C.; Bruno-Bossio, G. )

    1993-01-01

    Generalized resistance to thyroid hormone (GRTH), a syndrome of inherited tissue hyposensitivity to thyroid hormone, is linked to thyroid hormone receptor (TR) mutations. A typical feature of GRTH is variable severity of organ involvement among families that, surprisingly, does not correlate with the degree of T[sub 3]-binding impairment of the corresponding in vitro synthesized mutant TRs. Furthermore, variations in the clinical severity among family members harboring identical TR[beta] mutations have been reported. The authors compared serum levels of thyroid hormones that maintained a normal TSH in members of a large family with GRTH divided in three groups: Group A, 8 affected subjects with a mutation replacing arginine-320 with a histidine in the T[sub 3]-binding domain of TR[beta]; Group B, 11 first degree relatives (sibs and children of affected subjects) with no TR[beta] mutation; Group C, 16 controls related by marriage. TSH values were not different among the three groups. As expected, total and free T[sub 4] and T[sub 3], and rT[sub 3] levels were significantly higher in Group A vs Groups B and C. However, with the exception of T[sub 3], the same tests were also significantly higher in Group B vs Group C. The latter differences are not due to thyroid hormone transport in serum since TBG concentrations were not different. It is postulated that genetic variability of factors that contribute to the action of thyroid hormone modulate the phenotype of GRTH associated with TR[beta] mutations. 23 refs., 2 figs., 1 tab.

  15. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance

    PubMed Central

    Bassett, J. H. Duncan

    2016-01-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888

  16. Iodine and thyroid hormones during pregnancy and postpartum.

    PubMed

    Pérez-López, Faustino R

    2007-07-01

    Iodine is a trace element essential for synthesis of the thyroid hormones, triiodothyronine and thyroxine. These hormones play a vital role in the early growth and development stages of most organs, especially the brain. The World Health Organization (WHO) has declared that, after famine, iodine deficiency is the most avoidable cause of cerebral lesions including different degrees of mental retardation and cerebral paralysis. The main function of iodine in vertebrates is to interact with the thyroid hormones. During pregnancy sufficient quantities of iodine are required to prevent the appearance of hypothyroidism, trophoblastic and embryonic or fetal disorders, neonatal and maternal hypothyroidism, and permanent sequelae in infants. Thyroid hormone receptors and iodothyronine deiodinases are present in placenta and central nervous tissue of the fetus. A number of environmental factors influence the epidemiology of thyroid disorders, and even relatively small abnormalities and differences in the level of iodine intake in a population have profound effects on the occurrence of thyroid abnormalities. The prevalence of disorders related to iodine deficit during pregnancy and postpartum has increased. Iodine supplementation is an effective measure in the case of pregnant and lactating women. However, it is not implemented and the problem is still present even in societies with theoretically advanced health systems. During pregnancy and postpartum, the WHO recommends iodine intake be increased to at least 200 microg/day. Side-effects provoked by iodine supplementation are rare during pregnancy at the recommended doses. PMID:17701774

  17. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance.

    PubMed

    Bassett, J H Duncan; Williams, Graham R

    2016-04-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.

  18. Liganded thyroid hormone receptor induces nucleosome removal and histone modifications to activate transcription during larval intestinal cell death and adult stem cell development.

    PubMed

    Matsuura, Kazuo; Fujimoto, Kenta; Fu, Liezhen; Shi, Yun-Bo

    2012-02-01

    Thyroid hormone (T(3)) plays an important role in regulating multiple cellular and metabolic processes, including cell proliferation, cell death, and energy metabolism, in vertebrates. Dysregulation of T(3) signaling results in developmental abnormalities, metabolic defects, and even cancer. We used T(3)-dependent Xenopus metamorphosis as a model to study how T(3) regulates transcription during vertebrate development. T(3) exerts its metamorphic effects through T(3) receptors (TR). TR recruits, in a T(3)-dependent manner, cofactor complexes that can carry out chromatin remodeling/histone modifications. Whether and how histone modifications change upon gene regulation by TR during vertebrate development is largely unknown. Here we analyzed histone modifications at T(3) target genes during intestinal metamorphosis, a process that involves essentially total apoptotic degeneration of the simple larval epithelium and de novo development of the adult epithelial stem cells, followed by their proliferation and differentiation into the complex adult epithelium. We demonstrated for the first time in vivo during vertebrate development that TR induces the removal of core histones at the promoter region and the recruitment of RNA polymerase. Furthermore, a number of histone activation and repression marks have been defined based on correlations with mRNA levels in cell cultures. Most but not all correlate with gene expression induced by liganded TR during development, suggesting that tissue and developmental context influences the roles of histone modifications in gene regulation. Our findings provide important mechanistic insights on how chromatin remodeling affects developmental gene regulation in vivo.

  19. Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus).

    PubMed

    Gabrielsen, Kristin Møller; Krokstad, Julie Stene; Villanger, Gro Dehli; Blair, David A D; Obregon, Maria-Jesus; Sonne, Christian; Dietz, Rune; Letcher, Robert J; Jenssen, Bjørn Munro

    2015-01-01

    Previous studies have shown relationships between organohalogen contaminants (OHCs) and circulating levels of thyroid hormones (THs) in arctic wildlife. However, there is a lack of knowledge concerning the possible functional effects of OHCs on TH status in target tissues for TH-dependent activity. The relationships between circulating (plasma) levels of OHCs and various TH variables in plasma as well as in liver, muscle and kidney tissues from East Greenland sub-adult polar bears (Ursus maritimus) sampled in 2011 (n=7) were therefore investigated. The TH variables included 3.3',5.5'-tetraiodothyronine or thyroxine (T4), 3.3',5-triiodothyronine (T3) and type 1 (D1) and type 2 (D2) deiodinase activities. Principal component analysis (PCA) combined with correlation analyses demonstrated negative relationships between individual polychlorinated biphenyls (PCBs) and their hydroxylated (OH-) metabolites and T4 in both plasma and muscle. There were both positive and negative relationships between individual OHCs and D1 and D2 activities in muscle, liver and kidney tissues. In general, PCBs, OH-PCBs and polybrominated dipehenyl ethers (PBDEs) were positively correlated to D1 and D2 activities, whereas organochlorine pesticides and byproducts (OCPs) were negatively associated with D1 and D2 activities. These results support the hypothesis that OHCs can affect TH status and action in the target tissues of polar bears. TH levels and deiodinase activities in target tissues can be sensitive endpoints for exposure of TH-disrupting compounds in arctic wildlife, and thus, tissue-specific responses in target organs should be further considered when assessing TH disruption in wildlife studies. PMID:25460663

  20. Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus).

    PubMed

    Gabrielsen, Kristin Møller; Krokstad, Julie Stene; Villanger, Gro Dehli; Blair, David A D; Obregon, Maria-Jesus; Sonne, Christian; Dietz, Rune; Letcher, Robert J; Jenssen, Bjørn Munro

    2015-01-01

    Previous studies have shown relationships between organohalogen contaminants (OHCs) and circulating levels of thyroid hormones (THs) in arctic wildlife. However, there is a lack of knowledge concerning the possible functional effects of OHCs on TH status in target tissues for TH-dependent activity. The relationships between circulating (plasma) levels of OHCs and various TH variables in plasma as well as in liver, muscle and kidney tissues from East Greenland sub-adult polar bears (Ursus maritimus) sampled in 2011 (n=7) were therefore investigated. The TH variables included 3.3',5.5'-tetraiodothyronine or thyroxine (T4), 3.3',5-triiodothyronine (T3) and type 1 (D1) and type 2 (D2) deiodinase activities. Principal component analysis (PCA) combined with correlation analyses demonstrated negative relationships between individual polychlorinated biphenyls (PCBs) and their hydroxylated (OH-) metabolites and T4 in both plasma and muscle. There were both positive and negative relationships between individual OHCs and D1 and D2 activities in muscle, liver and kidney tissues. In general, PCBs, OH-PCBs and polybrominated dipehenyl ethers (PBDEs) were positively correlated to D1 and D2 activities, whereas organochlorine pesticides and byproducts (OCPs) were negatively associated with D1 and D2 activities. These results support the hypothesis that OHCs can affect TH status and action in the target tissues of polar bears. TH levels and deiodinase activities in target tissues can be sensitive endpoints for exposure of TH-disrupting compounds in arctic wildlife, and thus, tissue-specific responses in target organs should be further considered when assessing TH disruption in wildlife studies.

  1. [Thyroid hormones and their precursors. II. Species-specific properties].

    PubMed

    Tóth, Gergo; Noszál, Béla

    2014-01-01

    This paper surveys the species-specific physico-chemical parameters (basicity and lipophilicity) and related biological functions of thyroid hormones (thyroxine, liothyronine and reverse liothyronine) and their biological precursors (tyrosine, monoiodotyrosine and diiodotyrosine). The protonation macroconstants were determined by 1H NMR-pH titrations while the microconstants were determined by a multimodal spectroscopic-deductive methodology using auxiliary derivatives of reduced complexity. Our results show that the different number and/or position of iodine are the key factors to influence the phenolate basicity. The ionization state of the phenolate site is crucial in the biosynthesis and protein binding of thyroid hormones. The role of the protonation state in the receptor binding was investigated by an in silico docking method. Microspecies of thyroid hormones were docked to the thyroid hormone receptor isoforms. Our results quantitate at the molecular level how the ionization stage and the charge distribution influence the protein binding. The anionic form of the carboxyl group is essential for the protein binding, whereas the protonated form of the amino group loosens it. The protonation state of the phenolate plays a role of secondary importance in the receptor binding. The combined results of docking and microspeciation studies show that microspecies of the highest concentration at the pH of blood are not the strongest binding ones. The site-specific lipophilicity of our investigated molecules was determined with the measurement of distribution coefficients at different pH using carboxymethyl- and O-methyl-derivatives to mimic the partition of some of the individual microspecies. Correction factors were determined and introduced. Our data show that the iodinated aromatic ring system is the definitive structural element that fundamentally determines the lipophilicity of thyroid hormones, whereas the protonation state of the aliphatic part is essential in

  2. Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis.

    PubMed

    Pereira, Jose Carlos; Pradella-Hallinan, Marcia; Lins Pessoa, Hugo de

    2010-05-01

    Data collected from medical literature indicate that dopaminergic agonists alleviate Restless Legs Syndrome symptoms while dopaminergic agonists antagonists aggravate them. Dopaminergic agonists is a physiological regulator of thyroid-stimulating hormone. Dopaminergic agonists infusion diminishes the levels of thyroid hormones, which have the ability to provoke restlessness, hyperkinetic states, tremors, and insomnia. Conditions associated with higher levels of thyroid hormones, such as pregnancy or hyperthyroidism, have a higher prevalence of Restless Legs Syndrome symptoms. Low iron levels can cause secondary Restless Legs Syndrome or aggravate symptoms of primary disease as well as diminish enzymatic activities that are involved in dopaminergic agonists production and the degradation of thyroid hormones. Moreover, as a result of low iron levels, dopaminergic agonists diminishes and thyroid hormones increase. Iron therapy improves Restless Legs Syndrome symptoms in iron deprived patients. Medical hypothesis. To discuss the theory that thyroid hormones, when not counterbalanced by dopaminergic agonists, may precipitate the signs and symptoms underpinning Restless Legs Syndrome. The main cause of Restless Legs Syndrome might be an imbalance between the dopaminergic agonists system and thyroid hormones. PMID:20535374

  3. Syndrome of Reduced Sensitivity to Thyroid Hormones: Two Case Reports and a Literature Review

    PubMed Central

    Anyfantakis, Anastasios; Vourliotaki, Irene

    2016-01-01

    Resistance to thyroid hormone (RTH) is an extremely rare dominantly inherited condition of impaired tissue responsiveness to thyroid hormone (TH). Most patients with RTH have mutations in the gene that encodes the β isoform of the receptor of thyroid hormone (THR-β gene). Mutant receptors are unable to activate or repress target genes. The majority of them are asymptomatic or rarely have hypo- or hyperthyroidism. RTH is suspected by the finding of persistent elevation of serum levels of free T3 (FT3) and free T4 (FT4) and nonsuppressed TSH. We present two cases of RTH diagnosed after total thyroidectomy. The first patient was initially diagnosed with primary hyperthyroidism due to toxic multinodular goiter. The second patient had undergone thyroidectomy for multinodular goiter 16 years before diagnosis of RTH. After thyroidectomy, although on relatively high doses of levothyroxine, both of them presented with the laboratory findings of RTH. Genetic analysis revealed RTH. PMID:27774323

  4. A new point mutation (C446R) in the thyroid hormone receptor-{beta} gene of a family with resistance to thyroid hormone

    SciTech Connect

    Weiss, R.E.; Chyna, B.; Hayashi, Yoshitaka; Sunthornthepvarakul, T.; Refetoff, S.; Duell, P.B.

    1994-05-01

    Resistance to thyroid hormone (RTH) is a condition of impaired end-organ responsiveness to thyroid hormone characterized by goiter and elevated thyroid hormone levels with an appropriately normal TSH. RTH has been associated with mutations in the thyroid hormone receptor-{beta} (TR{beta}) gene. The authors report studies carried out in 21 members of a family (F119), 12 of whom exhibited the RTH phenotype. A point mutation was detected in the T{sub 3}-binding domain of the TR{beta} gene. It resulted in replacement of the normal cysteine-446 with an arginine (C446R) that has not been previously reported. The clinical characteristics of this family are similar to those reported in other families with RTH, namely goiter, tachycardia, and learning disabilities. Thyroid function tests are also typical of other subjects with RTH. The mean values ({+-}SD) in untreated affected subjects compared to those in unaffected family members were: free T{sub 4} index, 250 {+-} 21 vs. 108 {+-} 13; total T{sub 3}, 4.3 {+-} 0.4 vs. 2.4 {+-} 0.4 nmol/L; and TSH, 4.5 {+-} 1.1 vs. 2.4 {+-} 1.1 mU/L. DNA samples from 18 family members were screened for the TR{beta} mutation, which results in the loss of a BsmI restriction site, and each of the 11 subjects with abnormal thyroid function tests were heterozygous for the mutant allele. The mutant TR{beta} expressed in Cos-I cells did not bind T{sub 3} (K{sub a} of C446R/wild-type, <0.05). T{sub 3} at a concentration up to 100 nmol/L failed to enhance the transactivation of a reporter gene, and the mutant receptor inhibited the T{sub 3}-mediated transcriptional activation of the wild-type TR{beta}. 17 refs., 3 figs., 1 tab.

  5. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    PubMed

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  6. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    PubMed

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  7. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System

    PubMed Central

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks

  8. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone.

    PubMed Central

    Koenig, R J; Brent, G A; Warne, R L; Larsen, P R; Moore, D D

    1987-01-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor. Images PMID:3475698

  9. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. PMID:26188619

  10. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  11. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor.

  12. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones. PMID:25913319

  13. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones.

  14. Role of TSH in the spontaneous development of asymmetrical thyroid carcinoma in mice with a targeted mutation in a single allele of the thyroid hormone-β receptor.

    PubMed

    Zhao, Li; Zhu, Xuguang; Won Park, Jeong; Fozzatti, Laura; Willingham, Mark; Cheng, Sheue-yann

    2012-10-01

    Mutations of the thyroid hormone receptor-β gene (THRB) cause resistance to thyroid hormone (RTH). A mouse model of RTH harboring a homozygous thyroid hormone receptor (TR)-β mutation known as PV (Thrb(PV/PV) mouse) spontaneously develops follicular thyroid cancer (FTC). Similar to RTH patients with mutations of two alleles of the THRB gene, the Thrb(PV/PV) mouse exhibits elevated thyroid hormones accompanied by highly nonsuppressible TSH. However, the heterozygous Thrb(PV/+) mouse with mildly elevated TSH (~2-fold) does not develop FTC. The present study examined whether the mutation of a single allele of the Thrb gene is sufficient to induce FTC in Thrb(PV/+) mice under stimulation by high TSH. Thrb(PV/+) mice and wild-type siblings were treated with propylthiouracil (PTU) to elevate serum TSH. Thrb(PV/+)mice treated with PTU (Thrb(PV/+)-PTU) spontaneously developed FTC similar to human thyroid cancer, but wild-type siblings treated with PTU did not. Interestingly, approximately 33% of Thrb(PV/+)-PTU mice developed asymmetrical thyroid tumors, as is frequently observed in human thyroid cancer. Molecular analyses showed activation of the cyclin 1-cyclin-dependent kinase-4-transcription factor E2F1 pathway to increase thyroid tumor cell proliferation of Thrb(PV/+)-PTU mice. Moreover, via extranuclear signaling, the PV also activated the integrin-Src-focal adhesion kinase-AKT-metalloproteinase pathway to increase migration and invasion of tumor cells. Therefore, mutation of a single allele of the Thrb gene is sufficient to drive the TSH-simulated hyperplastic thyroid follicular cells to undergo carcinogenesis. The present study suggests that the Thrb(PV/+)-PTU mouse model potentially could be used to gain insights into the molecular basis underlying the association between thyroid cancer and RTH seen in some affected patients.

  15. Nitric oxide rectifies acid-base disturbance and modifies thyroid hormone activity during net confinement of air-breathing fish (Anabas testudineus Bloch).

    PubMed

    Peter, Valsa S

    2013-01-15

    Nitric oxide (NO), a short-lived freely diffusible radical gas that acts as an important biological signal, regulates an impressive spectrum of physiological functions in vertebrates including fishes. The action of NO, however, on thyroid hormone status and its role in the integration of acid-base, osmotic and metabolic balances during stress are not yet delineated in fish. Sodium nitroprusside (SNP), a NO donor, was employed in the present study to investigate the role of NO in the stressed air-breathing fish Anabas testudineus. Short-term SNP treatment (1 mM; 30 min) interacted negatively with thyroid axis, as evident in the fall of plasma thyroxine in both stressed and non-stressed fish. In contrast, the cortisol responsiveness to NO was negligible. SNP challenge produced systemic alkalosis, hypocapnia and hyperglycemia in non-stressed fish. Remarkable acid-base compensation was found in fish kept for 60 min net confinement where a rise in blood pH and HCO(3) content occurred with a reduction in PCO(2) content. SNP challenge in these fish, on the contrary, produced a rise in oxygen load together with hypocapnia but without an effect on HCO(3) content, indicating a modulator role of NO in respiratory gas transport during stress response. SNP treatment reduced Na(+), K(+) ATPase activity in the gill, intestine and liver of both stressed and non-stressed fish, and this suggests that stress state has little effect on the NO-driven osmotic competence of these organs. On the other hand, a modulatory effect of NO was found in the kidney which showed a differential response to SNP, emphasizing a key role of NO in kidney ion transport and its sensitivity to stressful condition. H(+)-ATPase activity, an index of H(+) secretion, downregulated in all the organs of both non-stressed and stressed fish except in the gill of non-stressed fish and this supports a role for NO in promoting alkalosis. The data indicate that, (1) NO interacts antagonistically with T(4), (2) modifies

  16. Thyroid hormones in chronic heat exposed men

    NASA Astrophysics Data System (ADS)

    Gertner, A.; Israeli, R.; Lev, A.; Cassuto, Y.

    1983-03-01

    Previous reports have indicated that thyroid gland activity, is depressed in the heat. Total thyroxine (T4) and triiodothyronine (T3) serum levels in 17 workers of the metal work shop at a plant near the Dead Sea and 8 workers in Beer Sheva, Israel were examined. The metal workshop of the plant near the Dead Sea is part of a large chemical plant. The one in Beer Sheva is part of a large construction company. Maintenance work, as well as metal work projects are performed in both workshops. During the work shifts, the workers of the Dead Sea plant were exposed to temperatures ranging from 30 36°C (May Oct.) and 14 21°C (Dec. Feb). In Beer Sheva the range was 25 32°C (June Sept.) and 10 17°C (Dec. Feb.). Total T4 was measured by competitive protein binding and total T3 by radioimmunoassay in blood drawn before work (0700) in July and January. In summer. T4 was higher and T3 was lower for both groups than in winter. The observed summer T3 decrease may result from depressed extrathyroidal conversion of T4 to T3. We conclude that the regulation of energy metabolism in hot climates may be related to extrathyroidal conversion of T4 to T3.

  17. Low level exposure to the flame retardant BDE-209 reduces thyroid hormone levels and disrupts thyroid signaling in fathead minnows

    PubMed Central

    Noyes, Pamela D.; Lema, Sean C.; Macaulay, Laura J.; Douglas, Nora K.; Stapleton, Heather M.

    2013-01-01

    Polybrominated diphenyl ether (PBDE) flame retardants have been shown to disrupt thyroid hormone regulation, neurodevelopment, and reproduction in some animals. However, effects of the most heavily used PBDE, decabromodiphenyl ether (BDE-209), on thyroid functioning remain unclear. This study examined low-dose effects of BDE-209 on thyroid hormone levels and signaling in fathead minnows. Adult males received dietary exposures of BDE-209 at a low dose (~3 ng/g bw-day) and high dose (~300 ng/g bw-day) for 28 days followed by a 14-day depuration to evaluate recovery. Compared to controls, fish exposed to the low dose for 28 days experienced a 53% and 46% decline in circulating total thyroxine (TT4) and 3,5,3'-triiodothyronine (TT3), respectively, while TT4 and TT3 deficits at the high dose were 59% and 62%. Brain deiodinase activity (T4-ORD) was reduced by ~65% at both doses. BDE-209 elevated the relative mRNA expression of genes encoding deiodinases, nuclear thyroid receptors, and membrane transporters in the brain and liver in patterns that varied with time and dose, likely in compensation to hypothyroidism. Declines in the gonadal-somatic index (GSI) and increased mortality were also measured. Effects at the low dose were consistent with the high dose, suggesting non-linear relationships between BDE-209 exposures and thyroid dysfunction. PMID:23899252

  18. Thyroid hormone receptor can modulate retinoic acid-mediated axis formation in frog embryogenesis.

    PubMed Central

    Banker, D E; Eisenman, R N

    1993-01-01

    Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in normal anterior-posterior axis formation.) We have previously shown that thyroid hormone receptor RNA (alpha isotype) is expressed and polysome-associated during Xenopus embryogenesis preceding thyroid gland maturation and endogenous thyroid hormone production (D. E. Banker, J. Bigler, and R. N. Eisenman, Mol. Cell. Biol. 11:5079-5089, 1991). To determine whether thyroid hormone receptor might influence the effects of retinoic acid in early frog development, we have examined the results of ectopic thyroid hormone receptor expression on retinoic acid teratogenesis. We demonstrate that microinjections of full-length thyroid hormone receptor RNA protect injected embryos from retinoic acid teratogenesis. DNA binding is apparently essential to this protective function, as truncated thyroid hormone receptors, lacking DNA-binding domains but including hormone-binding and dimerization domains, do not protect from retinoic acid. We have shown that microinjections of these dominant-interfering thyroid hormone receptors, as well as anti-thyroid hormone receptor antibodies, increase retinoic acid teratogenesis in injected embryos, presumably by inactivating endogenous thyroid hormone receptor. This finding suggests that endogenous thyroid hormone receptors may act to limit retinoic acid sensitivity. On the other hand, after thyroid hormone treatment, ectopic thyroid hormone receptor mediates teratogenesis that is indistinguishable from the dorsoanterior deficiencies produced in retinoic acid

  19. Enhancer/Promoter Activities of the Long/Middle Wavelength-Sensitive Opsins of Vertebrates Mediated by Thyroid Hormone Receptor β2 and COUP-TFII

    PubMed Central

    Iida, Atsumi; Itoh, Toshio; Watanabe, Sumiko

    2013-01-01

    Cone photopigments (opsins) are crucial elements of, and the first detection module in, color vision. Individual opsins have different wavelength sensitivity patterns, and the temporal and spatial expression patterns of opsins are unique and stringently regulated. Long and middle wavelength-sensitive (L/M) opsins are of the same phylogenetic type. Although the roles of thyroid hormone/TRß2 and COUP-TFs in the transcriptional regulation of L/M opsins have been explored, the detailed mechanisms, including the target sequence in the enhancer of L/M opsins, have not been revealed. We aimed to reveal molecular mechanisms of L/M opsins in vertebrates. Using several human red opsin enhancer/promoter-luciferase reporter constructs, we found that TRß2 increased luciferase activities through the 5′-UTR and intron 3–4 region, whereas the presence of T3 affected only the intron 3–4 region-dependent luciferase activity. Furthermore, COUP-TFII suppressed intron 3–4 region-dependent luciferase activities. However, luciferase expression driven by the mouse M opsin intron 3–4 region was only slightly increased by TRß2, and rather enhanced by COUP-TFII. To determine whether these differential responses reflect differences between primates and rodents, we examined the enhancer/promoter region of the red opsin of the common marmoset. Interestingly, while TRß2 increased 5′-UTR- or intron 3–4 region-driven luciferase expression, as observed for the human red opsin, expression of the latter luciferase was not suppressed by COUP-TFII. In fact, immunostaining of common marmoset retinal sections revealed expression of COUP-TFII and red opsin in the cone cells. PMID:24058409

  20. Role and Mechanisms of Actions of Thyroid Hormone on the Skeletal Development.

    PubMed

    Kim, Ha-Young; Mohan, Subburaman

    2013-06-01

    The importance of the thyroid hormone axis in the regulation of skeletal growth and maintenance has been well established from clinical studies involving patients with mutations in proteins that regulate synthesis and/or actions of thyroid hormone. Data from genetic mouse models involving disruption and overexpression of components of the thyroid hormone axis also provide direct support for a key role for thyroid hormone in the regulation of bone metabolism. Thyroid hormone regulates proliferation and/or differentiated actions of multiple cell types in bone including chondrocytes, osteoblasts and osteoclasts. Thyroid hormone effects on the target cells are mediated via ligand-inducible nuclear receptors/transcription factors, thyroid hormone receptor (TR) α and β, of which TRα seems to be critically important in regulating bone cell functions. In terms of mechanisms for thyroid hormone action, studies suggest that thyroid hormone regulates a number of key growth factor signaling pathways including insulin-like growth factor-I, parathyroid hormone related protein, fibroblast growth factor, Indian hedgehog and Wnt to influence skeletal growth. In this review we describe findings from various genetic mouse models and clinical mutations of thyroid hormone signaling related mutations in humans that pertain to the role and mechanism of action of thyroid hormone in the regulation of skeletal growth and maintenance.

  1. Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes.

    PubMed

    Paolino, Donatella; Cosco, Donato; Gaspari, Marco; Celano, Marilena; Wolfram, Joy; Voce, Pasquale; Puxeddu, Efisio; Filetti, Sebastiano; Celia, Christian; Ferrari, Mauro; Russo, Diego; Fresta, Massimo

    2014-08-01

    Various tissue-specific antibodies have been attached to nanoparticles to obtain targeted delivery. In particular, nanodelivery systems with selectivity for breast, prostate and cancer tissue have been developed. Here, we have developed a nanodelivery system that targets the thyroid gland. Nanoliposomes have been conjugated to the thyroid-stimulating hormone (TSH), which binds to the TSH receptor (TSHr) on the surface of thyrocytes. The results indicate that the intracellular uptake of TSH-nanoliposomes is increased in cells expressing the TSHr. The accumulation of targeted nanoliposomes in the thyroid gland following intravenous injection was 3.5-fold higher in comparison to untargeted nanoliposomes. Furthermore, TSH-nanoliposomes encapsulated with gemcitabine showed improved anticancer efficacy in vitro and in a tumor model of follicular thyroid carcinoma. This drug delivery system could be used for the treatment of a broad spectrum of thyroid diseases to reduce side effects and improve therapeutic efficacy.

  2. Thyroid hormone resistance in two patients with papillary thyroid microcarcinoma and their BRAFV600E mutation status.

    PubMed

    Karakose, Melia; Caliskan, Mustafa; Arslan, Muyesser Sayki; Cakal, Erman; Yesilyurt, Ahmet; Delibasi, Tuncay

    2015-08-01

    Resistance to thyroid hormone (RTH) is a rare autosomal dominant hereditary disorder. Here in, we report two patients with RTH in whom differentiated thyroid cancer was diagnosed. Two patients were admitted to our clinic and their laboratory results were elevated thyroid hormone levels with unsuppressed TSH. We considered this situation thyroid hormone resistance in the light of laboratory and clinical datas. Thyroid nodule was palpated on physical examination. Thyroid ultrasonography showed multiple nodules in both lobes. Total thyroidectomy was performed. The pathological findings were consistent with papillary thyroid microcarcinoma. BRAFV600E mutation analysis results were negative. RTH is very rare and might be overlooked. There is no consensus on how to overcome the persistently high TSH in patients with RTH and differentiated thyroid cancer (DTC). Further studies are needed to explain the relationship between RTH and DTC which might be helpful for the treatment of these patients.

  3. μ-Crystallin controls muscle function through thyroid hormone action.

    PubMed

    Seko, Daiki; Ogawa, Shizuka; Li, Tao-Sheng; Taimura, Akihiro; Ono, Yusuke

    2016-05-01

    μ-Crystallin (Crym), a thyroid hormone-binding protein, is abnormally up-regulated in the muscles of patients with facioscapulohumeral muscular dystrophy, a dominantly inherited progressive myopathy. However, the physiologic function of Crym in skeletal muscle remains to be elucidated. In this study, Crym was preferentially expressed in skeletal muscle throughout the body. Crym-knockout mice exhibited a significant hypertrophy of fast-twitch glycolytic type IIb fibers, causing an increase in grip strength and high intensity running ability in Crym-null mice. Genetic inactivation of Crym or blockade of Crym by siRNA-mediated knockdown up-regulated the gene expression of fast-glycolytic contractile fibers in satellite cell-derived myotubes in vitro These alterations in Crym-inactivated muscle were rescued by inhibition of thyroid hormone, even though Crym is a positive regulator of thyroid hormone action in nonmuscle cells. The results demonstrated that Crym is a crucial regulator of muscle plasticity, controlling metabolic and contractile properties of myofibers, and thus the selective inactivation of Crym may be a potential therapeutic target for muscle-wasting diseases, such as muscular dystrophies and age-related sarcopenia.-Seko, D., Ogawa, S., Li, T.-S., Taimura, A., Ono, Y. μ-Crystallin controls muscle function through thyroid hormone action. PMID:26718889

  4. TRICLOSAN ALTERS THYROID HORMONES HOMEOSTASIS VIA UP-REGULATION OF HEPATIC CATABOLISM.

    EPA Science Inventory

    Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound used in household and hygiene products. The structural similarity of triclosan to thyroid hormones, in vitro studies demonstrating activation of the human pregnane X receptor (PXR)...

  5. TRICLOSAN AND ENDOCRINE DISRUPTION: EVIDENCE FOR ALTERATIONS IN THYROID HORMONE HOMEOSTASIS.

    EPA Science Inventory

    Impact Statement: Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a chlorinated phenolic antibacterial compound found as an active ingredient in many personal care and household products. Recent studies suggest that triclosan may alter thyroid hormone (TH) homeostasis via ...

  6. Thyroid metabolism in the recessive sex-linked dwarf female chicken. 1. Age related changes in thyroid hormone synthesis and circulating thyroid hormone levels.

    PubMed

    Grandhi, R R; Brown, R G

    1975-03-01

    Age related changes in the levels of circulating thyroid hormones as well as the type of hormones synthesized in the thyroid glands from normal and sex-linked recessive dwarf, female chickens were studied. The impact of the presence of the dwarf gene on the parameters measured was minimal but significant alterations in the types of hormones produced in the thyroid gland with increasing age were observed. As the birds approached sexual maturity, the synthesis of triiodothyronine increased sharply such that the ratio of triiodothyronine (T3): tetraiodothyronine (T4) was approximately 15:1. This was in contrast to the T3:T4 ratio of younger birds which was approximately 0.7:1.0. This shift in hormone synthesis was reflected in relatively more circulating T3 in laying hens when compared with younger birds. It was also noted that four week old dwarf birds had higher circulating T3 values than those found for the normals.

  7. Identification of a new hormone-binding site on the surface of thyroid hormone receptor.

    PubMed

    Souza, P C T; Puhl, A C; Martínez, L; Aparício, R; Nascimento, A S; Figueira, A C M; Nguyen, P; Webb, P; Skaf, M S; Polikarpov, I

    2014-04-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.

  8. Thyroid Diseases

    MedlinePlus

    ... of the thyroid gland Hyperthyroidism - when your thyroid gland makes more thyroid hormones than your body needs Hypothyroidism - when your thyroid gland does not make enough thyroid hormones Thyroid cancer ...

  9. Thyroid hormone promotes transient nerve growth factor synthesis in rat cerebellar neuroblasts.

    PubMed

    Charrasse, S; Jehan, F; Confort, C; Brachet, P; Clos, J

    1992-01-01

    Primary cultures of cerebellum from 5-day-old rats indicated that proliferating neuroblasts synthesize and release nerve growth factor (NGF). Since NGF promotes DNA synthesis in these cells, our findings demonstrate that the early developing cerebellum is a suitable physiological model for studying the autocrine mitogenic action of NGF. Thyroid deficiency led to a greater reduction in the NGF content of the cerebellum than of the olfactory bulbs or hippocampus. Cerebellar NGF mRNA was also very sensitive to hormone deprivation. Physiological amounts of thyroid hormone stimulated both the mitotic activity and NGF production of cultured cerebellar neuroblasts. A lack of thyroid hormone is known to markedly alter cell formation in the cerebellum where postnatal neurogenesis is highly significant, in contrast to the olfactory bulbs and hippocampus. Taken together, these results suggest that the hormonal control of cell formation in the cerebellum is, at least partly, mediated by the autocrine mitogenic action of NGF. The thyroid hormone could temporally regulate the transient NGF synthesis by cerebellar neuroblasts directly and/or through its ontogenetic action, and hence all the NGF-dependent trophic effects.

  10. Thyroid hormone promotes transient nerve growth factor synthesis in rat cerebellar neuroblasts.

    PubMed

    Charrasse, S; Jehan, F; Confort, C; Brachet, P; Clos, J

    1992-01-01

    Primary cultures of cerebellum from 5-day-old rats indicated that proliferating neuroblasts synthesize and release nerve growth factor (NGF). Since NGF promotes DNA synthesis in these cells, our findings demonstrate that the early developing cerebellum is a suitable physiological model for studying the autocrine mitogenic action of NGF. Thyroid deficiency led to a greater reduction in the NGF content of the cerebellum than of the olfactory bulbs or hippocampus. Cerebellar NGF mRNA was also very sensitive to hormone deprivation. Physiological amounts of thyroid hormone stimulated both the mitotic activity and NGF production of cultured cerebellar neuroblasts. A lack of thyroid hormone is known to markedly alter cell formation in the cerebellum where postnatal neurogenesis is highly significant, in contrast to the olfactory bulbs and hippocampus. Taken together, these results suggest that the hormonal control of cell formation in the cerebellum is, at least partly, mediated by the autocrine mitogenic action of NGF. The thyroid hormone could temporally regulate the transient NGF synthesis by cerebellar neuroblasts directly and/or through its ontogenetic action, and hence all the NGF-dependent trophic effects. PMID:1295750

  11. Silent pituitary macroadenoma co-secreting growth hormone and thyroid stimulating hormone.

    PubMed

    Sen, Orhan; Ertorer, M Eda; Aydin, M Volkan; Erdogan, Bulent; Altinors, Nur; Zorludemir, Suzan; Guvener, Nilgun

    2005-04-01

    Silent pituitary adenomas are a group of tumors showing heterogenous morphological features with no hormonal function observed clinically. To date no explanation has been provided as to why these tumors remain "silent". We report a case of a silent macroadenoma with both growth hormone (GH) and thyroid stimulating hormone (TSH) staining and secretion but with no clinical manifestations, in particular, the absence of features of acromegaly or hyperthyroidism. The relevant literature is reviewed. PMID:15851094

  12. A major thyroid hormone response element in the third intron of the rat growth hormone gene.

    PubMed Central

    Sap, J; de Magistris, L; Stunnenberg, H; Vennström, B

    1990-01-01

    The rat growth hormone (RGH) gene constitutes a well-documented model system for the direct regulation of transcription by thyroid hormones. In order to analyse its interaction with sequences in the RGH gene, we have overproduced the thyroid hormone receptor-alpha (c-erbA) protein using a vaccinia virus expression system. The expressed protein bound T3 and DNA-cellulose with expected affinities, and the major binding site for the receptor protein was found to be located in the third intron of the RGH gene. This site displayed significantly higher affinity for the receptor protein than a previously described thyroid hormone response element (TRE) in the promoter of this gene, and also conferred stronger hormone responsiveness in vivo to a heterologous promoter. The data suggest that this novel TRE plays a major role in the regulation of rat growth hormone gene expression by thyroid hormones. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2155782

  13. Induction of adrenomedullin 2/intermedin expression by thyroid stimulating hormone in thyroid.

    PubMed

    Nagasaki, Shuji; Fukui, Motoko; Asano, Satoko; Ono, Katsuhiko; Miki, Yasuhiro; Araki, Sei-ichi; Isobe, Mitsui; Nakashima, Noriaki; Takahashi, Kazuhiro; Sasano, Hironobu; Sato, Jun

    2014-09-01

    TSH is the important regulator of thyroid function but detailed molecular mechanisms have not been clarified. We first generated the iodine deficient (ID) rat in which goiter is induced by accelerated endogenous TSH secretion. The result of microarray analysis demonstrated markedly increased levels of adrenomedullin 2/intermedin (AM2/IMD) expression in the ID rat thyroid. AM2/IMD is a potent vasodilator. AM2/IMD mRNA expression was induced by TSH in a rat thyroid follicular cell line FRTL-5. Immunohistochemical analysis in human normal and Graves' disease thyroid revealed that AM2/IMD immunoreactivity was detected in follicular cells and more pronounced in Graves' disease. These results indicated that TSH induced AM2/IMD expression in the rat thyroid gland and it could locally work as a potent vasodilator, resulting in the expansion of thyroid inter-follicular capillaries. AM2/IMD could also contribute to facilitate thyroid hormone synthesis possibly via vasodilation effects and/or cAMP stimulating effects in the human thyroid gland.

  14. Thyroid Hormones, Autoantibodies, Ultrasonography, and Clinical Parameters for Predicting Thyroid Cancer

    PubMed Central

    He, Lin-zheng; Zeng, Tian-shu; Pu, Lin; Pan, Shi-xiu; Xia, Wen-fang; Chen, Lu-lu

    2016-01-01

    Our objective was to evaluate thyroid nodule malignancy prediction using thyroid function tests, autoantibodies, ultrasonographic imaging, and clinical data. We conducted a retrospective cohort study in 1400 patients with nodular thyroid disease (NTD). The thyroid stimulating hormone (TSH) concentration was significantly higher in patients with differentiated thyroid cancer (DTC) versus benign thyroid nodular disease (BTND) (p = 0.004). The receiver operating characteristic curve of TSH showed an AUC of 0.58 (95% CI 0.53–0.62, p = 0.001), sensitivity of 74%, and specificity of 57% at a cut-off of 1.59 mIU/L. There was an incremental increase in TSH concentration along with the increasing tumor size (p < 0.001). Thyroglobulin antibody (TgAb) concentration was associated with an increased risk of malignancy (p = 0.029), but this association was lost when the effect of TSH was taken into account (p = 0.11). Thyroid ultrasonographic characteristics, including fewer than three nodules, hypoechoic appearance, solid component, poorly defined margin, intranodular or peripheral-intranodular flow, and punctate calcification, can be used to predict the risk of thyroid cancer. In conclusion, our study suggests that preoperative serum TSH concentration, age, and ultrasonographic features can be used to predict the risk of malignancy in patients with NTD. PMID:27313612

  15. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses.

    PubMed

    Alonso-Merino, Elvira; Martín Orozco, Rosa; Ruíz-Llorente, Lidia; Martínez-Iglesias, Olaia A; Velasco-Martín, Juan Pedro; Montero-Pedrazuela, Ana; Fanjul-Rodríguez, Luisa; Contreras-Jurado, Constanza; Regadera, Javier; Aranda, Ana

    2016-06-14

    TGF-β, the most potent profibrogenic factor, acts by activating SMAD (mothers against decapentaplegic) transcription factors, which bind to SMAD-binding elements in target genes. Here, we show that the thyroid hormone triiodothyronine (T3), through binding to its nuclear receptors (TRs), is able to antagonize transcriptional activation by TGF-β/SMAD. This antagonism involves reduced phosphorylation of SMADs and a direct interaction of the receptors with SMAD3 and SMAD4 that is independent of T3-mediated transcriptional activity but requires residues in the receptor DNA binding domain. T3 reduces occupancy of SMAD-binding elements in response to TGF-β, reducing histone acetylation and inhibiting transcription. In agreement with this transcriptional cross-talk, T3 is able to antagonize fibrotic processes in vivo. Liver fibrosis induced by carbon tetrachloride is attenuated by thyroid hormone administration to mice, whereas aged TR knockout mice spontaneously accumulate collagen. Furthermore, skin fibrosis induced by bleomycin administration is also reduced by the thyroid hormones. These findings define an important function of the thyroid hormone receptors and suggest TR ligands could have beneficial effects to block the progression of fibrotic diseases.

  16. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses.

    PubMed

    Alonso-Merino, Elvira; Martín Orozco, Rosa; Ruíz-Llorente, Lidia; Martínez-Iglesias, Olaia A; Velasco-Martín, Juan Pedro; Montero-Pedrazuela, Ana; Fanjul-Rodríguez, Luisa; Contreras-Jurado, Constanza; Regadera, Javier; Aranda, Ana

    2016-06-14

    TGF-β, the most potent profibrogenic factor, acts by activating SMAD (mothers against decapentaplegic) transcription factors, which bind to SMAD-binding elements in target genes. Here, we show that the thyroid hormone triiodothyronine (T3), through binding to its nuclear receptors (TRs), is able to antagonize transcriptional activation by TGF-β/SMAD. This antagonism involves reduced phosphorylation of SMADs and a direct interaction of the receptors with SMAD3 and SMAD4 that is independent of T3-mediated transcriptional activity but requires residues in the receptor DNA binding domain. T3 reduces occupancy of SMAD-binding elements in response to TGF-β, reducing histone acetylation and inhibiting transcription. In agreement with this transcriptional cross-talk, T3 is able to antagonize fibrotic processes in vivo. Liver fibrosis induced by carbon tetrachloride is attenuated by thyroid hormone administration to mice, whereas aged TR knockout mice spontaneously accumulate collagen. Furthermore, skin fibrosis induced by bleomycin administration is also reduced by the thyroid hormones. These findings define an important function of the thyroid hormone receptors and suggest TR ligands could have beneficial effects to block the progression of fibrotic diseases. PMID:27247403

  17. Waterborne exposure to microcystin-LR causes thyroid hormone metabolism disturbances in juvenile Chinese rare minnow (Gobiocypris rarus).

    PubMed

    Liu, Zidong; Li, Dapeng; Wang, Ying; Guo, Wei; Gao, Yu; Tang, Rong

    2015-09-01

    Microcystin-LR (MC-LR) has the potential to disturb thyroid hormone homeostasis, but little is known about the underlying mechanisms of MC-LR in fish. In the present study, juvenile Chinese rare minnows (Gobiocypris rarus) were exposed to various concentrations of MC-LR (0 µg/L, 50 µg/L, 100 µg/L, and 500 µg/L) for 7 d. The whole-body thyroid hormone content, the histology of thyroid follicle epithelial cells, the activities of hepatic iodothyronine deiodinases, and the transcription of selected genes associated with thyroid hormone synthesis, transport, and metabolism were analyzed. Following exposure to MC-LR, whole-body concentrations of both thyroxine (T4 ) and triiodothyronine (T3 ) were significantly decreased. The levels of messenger RNA for sodium/iodide symporter, transthyretin, thyroid hormone receptor-α, iodothyronine deiodinase2, and iodothyronine deiodinase3 were significantly down-regulated after exposure to 500 µg/L MC-LR. A significant decrease in ID2 activity was also observed in the 500-µg/L MC-LR exposure group. Moreover, hypertrophy of thyroid follicle epithelial cells was observed after exposure to MC-LR. The results indicate that acute MC-LR exposure has the potential to disturb the homeostasis of thyroid hormone metabolism, leading to a hypothyroidism state in the juvenile Chinese rare minnow. PMID:25900717

  18. Waterborne exposure to microcystin-LR causes thyroid hormone metabolism disturbances in juvenile Chinese rare minnow (Gobiocypris rarus).

    PubMed

    Liu, Zidong; Li, Dapeng; Wang, Ying; Guo, Wei; Gao, Yu; Tang, Rong

    2015-09-01

    Microcystin-LR (MC-LR) has the potential to disturb thyroid hormone homeostasis, but little is known about the underlying mechanisms of MC-LR in fish. In the present study, juvenile Chinese rare minnows (Gobiocypris rarus) were exposed to various concentrations of MC-LR (0 µg/L, 50 µg/L, 100 µg/L, and 500 µg/L) for 7 d. The whole-body thyroid hormone content, the histology of thyroid follicle epithelial cells, the activities of hepatic iodothyronine deiodinases, and the transcription of selected genes associated with thyroid hormone synthesis, transport, and metabolism were analyzed. Following exposure to MC-LR, whole-body concentrations of both thyroxine (T4 ) and triiodothyronine (T3 ) were significantly decreased. The levels of messenger RNA for sodium/iodide symporter, transthyretin, thyroid hormone receptor-α, iodothyronine deiodinase2, and iodothyronine deiodinase3 were significantly down-regulated after exposure to 500 µg/L MC-LR. A significant decrease in ID2 activity was also observed in the 500-µg/L MC-LR exposure group. Moreover, hypertrophy of thyroid follicle epithelial cells was observed after exposure to MC-LR. The results indicate that acute MC-LR exposure has the potential to disturb the homeostasis of thyroid hormone metabolism, leading to a hypothyroidism state in the juvenile Chinese rare minnow.

  19. Iodine Deficiency Induces a Thyroid Stimulating Hormone-Independent Early Phase of Microvascular Reshaping in the Thyroid

    PubMed Central

    Gérard, Anne-Catherine; Poncin, Sylvie; Caetano, Bertrand; Sonveaux, Pierre; Audinot, Jean-Nicolas; Feron, Olivier; Colin, Ides M.; Soncin, Fabrice

    2008-01-01

    Expansion of the thyroid microvasculature is the earliest event during goiter formation, always occurring before thyrocyte proliferation; however, the precise mechanisms governing this physiological angiogenesis are not well understood. Using reverse transcriptase-polymerase chain reaction and immunohistochemistry to measure gene expression and laser Doppler to measure blood flow in an animal model of goitrogenesis, we show that thyroid angiogenesis occurred into two successive phases. The first phase lasted a week and involved vascular activation; this process was thyroid-stimulating hormone (TSH)-independent and was directly triggered by expression of vascular endothelial growth factor (VEGF) by thyrocytes as soon as the intracellular iodine content decreased. This early reaction was followed by an increase in thyroid blood flow and endothelial cell proliferation, both of which were mediated by VEGF and inhibited by VEGF-blocking antibodies. The second, angiogenic, phase was TSH-dependent and was activated as TSH levels increased. This phase involved substantial up-regulation of the major proangiogenic factors VEGF-A, fibroblast growth factor-2, angiopoietin 1, and NG2 as well as their receptors Flk-1/VEGFR2, Flt-1/VEGFR1, and Tie-2. In conclusion, goiter-associated angiogenesis promotes thyroid adaptation to iodine deficiency. Specifically, as soon as the iodine supply is limited, thyrocytes produce proangiogenic signals that elicit early TSH-independent microvascular activation; if iodine deficiency persists, TSH plasma levels increase, triggering the second angiogenic phase that supports thyrocyte proliferation. PMID:18276786

  20. Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2014-09-15

    Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical.

  1. Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2014-09-15

    Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical. PMID:25101840

  2. The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells.

    PubMed

    Psarra, A-M G; Solakidi, S; Sekeris, C E

    2006-02-26

    Mitochondria are key cellular organelles that regulate events related to energy production and apoptosis. These processes are modulated, in turn, by steroid and thyroid hormones in the course of their actions on metabolism, growth and development. In this context, a direct effect of these hormones on the mitochondrial-linked processes, possibly by way of cognate mitochondrial receptors, has been proposed. In this paper we review data from the literature and present new findings supporting this concept. Receptors for steroid hormones, glucocorticoids and estrogens, and for T(3), have been detected in mitochondria by immunofluorescence labeling and confocal laser microscopy, by Western blotting of mitochondrial proteins and by immunogold electron microscopy. Furthermore, the mitochondrial genome contains nucleotide sequences with high similarity to known hormone-responsive elements, which interact with the appropriate receptors to confer hormone-dependent activation of reporter genes in transfection experiments. Thus, thyroid hormone stimulates mitochondrial transcription mediated by the cognate receptor when added to an in organello mitochondrial system, capable of faithful transcription.

  3. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    PubMed

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  4. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  5. Rapid and transient reduction in circulating thyroid hormones following systemic antigen priming: implications for functional collaboration between dendritic cells and thyroid.

    PubMed

    Bagriacik, E U; Zhou, Q; Wang, H C; Klein, J R

    2001-09-15

    The thyroid hormones T(3) (tri-iodothyronine) and T(4) (thyroxine) are disseminated throughout the body via the circulation and are maintained across a range of physiological concentrations under the control of thyroid-stimulating hormone (TSH). T(3) (and T(4) after conversion to T(3)) influences many biological activities, including gene expression and protein synthesis, though little is known about the nature of pituitary-thyroid immune interactions. In the present study we show that serum T(3) and T(4) levels are sharply but transiently reduced during the first 24 h of systemic antigen exposure and that this is followed by suppressed levels of free T(4), after which there is rapid recovery to normal levels. Splenic dendritic cells, depending upon the stage of maturation/activation, were found to be a rich source of TSH, and CD11c(+) cells with dendritic cell morphology were present in the thyroid 1-3 days after antigen exposure. Moreover, antigen priming of hypophysectomized mice that are unable to make pituitary-derived TSH resulted in significant increases in circulating T(4), implying that compensation in the drop in thyroid hormones can be regulated from extrapituitary sources. These findings thus identify a novel set of immune-endocrine interactions that transpire during the early phase of antigen exposure, and they suggest that under appropriate conditions the immune system directly participates in the process of maintaining physiological homeostasis by contributing to the regulatory control of thyroid hormone activity.

  6. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    PubMed

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  7. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia.

    PubMed

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-08-03

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections.

  8. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia

    PubMed Central

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-01-01

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112

  9. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia.

    PubMed

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-01-01

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112

  10. Thyroid Hormones and Thyroid Disease in Relation to Perchlorate Dose and Residence Near a Superfund Site

    PubMed Central

    Gold, Ellen B.; Blount, Benjamin C.; Rasor, Marianne O’Neill; Lee, Jennifer S.; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-01-01

    Background Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. Objectives In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Methods Residential blocks were randomly selected from areas: 1) with potential perchlorate exposure via drinking water; 2) with potential exposure to environmental contaminants; and 3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20–50 years during 1988–1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone [TSH] and free thyroxine [fT4]) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Results Residential location and current perchlorate dose were not associated with thyroid function or disease. Conclusions No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped. PMID:22968349

  11. Free and total thyroid hormones in humans at extreme altitude

    NASA Astrophysics Data System (ADS)

    Basu, Minakshi; Pal, K.; Malhotra, A. S.; Prasad, R.; Sawhney, R. C.

    1995-03-01

    Alterations in circulatory levels of total T4 (TT4), total T3 (TT3), free T4 (FT4), free T3 (FT3), thyrotropin (TSH) and T3 uptake (T3U) were studied in male and female sea-level residents (SLR) at sea level, in Armed forces personnel staying at high altitude (3750 m) for prolonged duration (acclimatized lowlanders, ALL) and in high-altitude natives (HAN). Identical studies were also performed on male ALL who trekked to an extreme altitude of 5080 m and stayed at an altitude of more than 6300 m for about 6 months. The total as well as free thyroid hormones were found to be significantly higher in ALL and HAN as compared to SLR values. Both male as well as female HAN had higher levels of thyroid hormones. The rise in hormone levels in different ALL ethnic groups drawn from amongst the southern and northern parts of the country was more or less identical. In both HAN and ALL a decline in FT3 and FT4 occurred when these subjects trekked at subzero temperatures to extreme altitude of 5080 m but the levels were found to be higher in ALL who stayed at 6300 m for a prolonged duration. Plasma TSH did not show any appreciable change at lower altitudes but was found to be decreased at extreme altitude. The increase in thyroid hormones at high altitude was not due to an increase in hormone binding proteins, since T3U was found to be higher at high altitudes. A decline in TSH and hormone binding proteins and an increase in the free moiety of the hormones is indicative of a subtle degree of tissue hyperthyroidism which may be playing an important role in combating the extreme cold and hypoxic environment of high altitudes.

  12. Autoinduction of thyroid hormone receptor during metamorphosis is reproduced in Xenopus XTC-2 cells.

    PubMed

    Machuca, I; Tata, J R

    1992-09-01

    To determine if the autoinduction of thyroid hormone receptor (TR) alpha and beta mRNAs during metamorphosis in Xenopus tadpoles can be reproduced in cultured cells, we have screened four Xenopus cell lines (XTC-2, XL-177, XL2 and Kr) for receptor transcripts and their response to thyroid hormone. Exposure of XTC-2 cells to 10(-9) M triiodothyronine (T3) for 24 h upregulated TR alpha and beta mRNAs by 2-4- and 10-40-fold, respectively. In view of the marked similarity of the differential distribution of the two transcripts and their upregulation by T3 to the pattern of autoinduction seen in whole tadpoles, the process was studied in greater detail in XTC-2 cells. The time-course of autoinduction of TR alpha and beta mRNAs in these cells also resembled that in vivo, the two transcripts being significantly induced by 3-6 h after T3. Dose-response to T3, and the relative responses to its active and inactive analogs, confirmed that the process of autoinduction was initiated by thyroid hormone receptor with the same functional characteristics as that found in all amphibian and mammalian tissues. Experiments performed with cycloheximide suggested that intermediary protein(s) were involved in autoinduction, so that TR genes cannot be considered as 'immediate early' genes for this process. The possible advantages of studying thyroid hormone action in metamorphosis in XTC-2 cells are briefly discussed.

  13. Visualisation of thyroid hormone synthesis by ion imaging

    NASA Astrophysics Data System (ADS)

    Audinot, J. N.; Senou, M.; Migeon, H.-N.; Many, M.-C.

    2008-12-01

    The main function of the thyroid gland is to make hormones, T4 and T3, which are essential for the regulation of metabolic processes throughout the body. Caveolae harbour is the key enzymes involved in this iodide organification. The analyses of thyroids from normal mice and caveolin-1 Knockout mice (mice deficient in caveolin) have been performed using the SIMS imaging. In the thyroid of control mice, the epithelium is homogeneous and iodine ( 127I) is observed in the follicle lumen. In Knockout mice, we observe an accumulation of intracellular vesicles and apoptotic nuclei resulting from oxidative stress due to H 2O 2 overproduction also inducing apical lesions of the thyrocytes, at the site of iodine organification and H 2O 2 generation. We also observe in the Knockout mice an accumulation of 127I in the cellular cytoplasm and an absence of the iodine in some follicular lumina, indicating a problem at the level of iodine organification.

  14. Thyroid hormones according to gestational age in pregnant Spanish women

    PubMed Central

    2009-01-01

    Background Thyroid function changes during pregnancy and maternal thyroid dysfunction have been associated with adverse outcomes. Our aim was to evaluate thyroid hormones levels in pregnant women resident in Aragon, Spain. Findings Samples for 1198 pregnant women with no apparent thyroid disorders were analyzed, using paramagnetic microparticle and chemiluminescent detection technologies, in order to determine levels of thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), thyroid peroxidase antibodies (TPO-Ab), and thyroglobulin antibodies (Tg-Ab). Of the women in our sample, 85.22% had normal values for TPO-Ab and Tg-Ab and 14.77% had results revealing the presence of autoimmune diseases of the thyroid. The thyroid hormone reference values obtained according to gestational age (in brackets) were as follows: for free T3, values were 3.38 ± 0.52 pg/mL (<11 weeks), 3.45 ± 0.54 pg/mL (11-20 weeks), 3.32 ± 0.43 pg/mL (21-30 weeks), 3.21 ± 0.53 pg/mL (31-36 weeks), and 3.23 ± 0.41 pg/mL (>36 weeks); for free T4, values were 1.10 ± 0.14 ng/dL (<10 weeks), 1.04 ± 0.14 ng/dL (11-20 weeks), 0.93 ± 0.12 ng/dL (21-30 weeks), 0.90 ± 0.13 ng/dL (31-36 weeks), and 0.80 ± 0.21 ng/dL (>36 weeks); and for TSH, values were (μIU/mL): 1.12 ± 0.69 (<10 weeks), 1.05 ± 0.67 (11-20 weeks), 1.19 ± 0.60 (21-30 weeks), 1.38 ± 0.76 (31-36 weeks), and 1.46 ± 0.72 (>36 weeks). Conclusion Pregnant women with normal antibody values according to gestational age had values for FT4 and TSH, but not for FT3, that differed to a statistically significant degree. The values we describe can be used as reference values for the Aragon region of Spain. PMID:19939287

  15. A Pathway Approach to Predicting Thyroid Hormone Disrupting Activity of Chemicals Using in vitro, ex vivo and in vivo Assays

    EPA Science Inventory

    The potential for commercial and industrial chemicals that may be released into the environment to have endocrine disrupting activity is of concern for human health and wildlife. Most initial endocrine disruptor research has focused on estrogen- or androgen-mediated pathways. In ...

  16. Developmental thyroid hormone insufficiency and brain development: A role for brain-derived neurotrophic factor (BDNF)?*

    EPA Science Inventory

    Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...

  17. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS)

    EPA Science Inventory

    Perfluorooctanesulfonate (PFOS) is widely distributed and persistent in humans and wildlife. Prior toxicological studies have reported decreased total and free thyroid hormones in serum without a major compensatory rise in thyrotropin (TSH) or altered thyroid gland histology. Alt...

  18. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  19. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    PubMed

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins. PMID:25552505

  20. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    PubMed

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins.

  1. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  2. Thyroid function and stress hormones in children with stress hyperglycemia.

    PubMed

    Bordbar, Mohammad Reza; Taj-Aldini, Reza; Karamizadeh, Zohre; Haghpanah, Sezaneh; Karimi, Mehran; Omrani, Gholam Hossein

    2012-12-01

    The purpose of the study is to determine the prevalence of stress hyperglycemia and to investigate how thyroid and stress hormones alter during stress hyperglycemia in children admitted to pediatric emergency wards. A prospective cross-sectional study was conducted in children, less than 19 years old, who were admitted to pediatric emergency wards of Nemazee and Dastgheib Hospitals, Shiraz, Southern Iran. Those patients taking steroids, beta-agonists or intravenously administered glucose before venipuncture, and patients with diabetes mellitus (DM) or thyroid diseases were excluded. Children with blood glucose ≥ 150 mg/dL during admission were regarded as cases. The controls were age- and- sex- matched, euglycemic children. Stress hormones including cortisol, insulin, growth hormone, and prolactin were measured, and thyroid function was tested with a radioimmunoassay (RIA) method in all cases and controls. The results showed that among 1,054 screened children, 39 cases (3.7 %) had stress hyperglycemia and 89 controls were included in the study. The occurrence of hyperglycemia was independent of sex, but it occurred mostly in children under 6 years old. Hyperglycemia occurred more frequently in patients with a positive family history of DM (odds ratio = 3.2, 95 % CI = 1.3-7.9, and P = 0.009). There were no significant differences between cases and controls regarding any hormones except higher cortisol, and lower total T3 and T4 in cases compared with controls. Neither of cases developed diabetes in the 24-month follow-up period. These findings led us to the conclusion that stress hyperglycemia is occasionally seen in critically ill patients. Among the stress hormones measured, only cortisol increased during hyperglycemia. It seems that hyperglycemia is not an important risk factor for future diabetes.

  3. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8.

    PubMed

    Trajkovic, Marija; Visser, Theo J; Mittag, Jens; Horn, Sigrun; Lukas, Jan; Darras, Veerle M; Raivich, Genadij; Bauer, Karl; Heuer, Heike

    2007-03-01

    In humans, inactivating mutations in the gene of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8; SLC16A2) lead to severe forms of psychomotor retardation combined with imbalanced thyroid hormone serum levels. The MCT8-null mice described here, however, developed without overt deficits but also exhibited distorted 3,5,3'-triiodothyronine (T3) and thyroxine (T4) serum levels, resulting in increased hepatic activity of type 1 deiodinase (D1). In the mutants' brains, entry of T4 was not affected, but uptake of T3 was diminished. Moreover, the T4 and T3 content in the brain of MCT8-null mice was decreased, the activity of D2 was increased, and D3 activity was decreased, indicating the hypothyroid state of this tissue. In the CNS, analysis of T3 target genes revealed that in the mutants, the neuronal T3 uptake was impaired in an area-specific manner, with strongly elevated thyrotropin-releasing hormone transcript levels in the hypothalamic paraventricular nucleus and slightly decreased RC3 mRNA expression in striatal neurons; however, cerebellar Purkinje cells appeared unaffected, since they did not exhibit dendritic outgrowth defects and responded normally to T3 treatment in vitro. In conclusion, the circulating thyroid hormone levels of MCT8-null mice closely resemble those of humans with MCT8 mutations, yet in the mice, CNS development is only partially affected. PMID:17318265

  4. THYROID HORMONE INSUFFICIENCY AND BRAIN DEVELOPMENT -- DETERMINATION OF NEUROTOXICITY AT LOW LEVELS OF HORMONE DISRUPTION.

    EPA Science Inventory

    Thyroid hormone (TH) deficiencies during development produce deleterious effects on brain structure and function. The degree to which TH must be perturbed to induce neurotoxicity remains unclear. The present study was conducted as part of a Cooperative Agreement between US EPA, U...

  5. Deiodination of thyroid hormones by the perfused rat liver

    PubMed Central

    Hillier, A. P.

    1972-01-01

    1. An investigation has been made into the deiodination of thyroid hormones by the perfused rat liver. The hormones were labelled with 125I in the phenolic ring and the rate of deiodination was estimated by measuring the release of radio-iodide into the perfusate. 2. At tracer concentrations, 0·98% of the liver thyroxine is deiodinated/5 min. The deiodination of tri-iodothyronine is considerably faster, 3·3%/5 min. 3. Deiodination is very sensitive to changes in temperature. 4. The reaction shows saturation kinetics typical of many enzymes, the reciprocal of the rate of deiodination being proportional to the reciprocal of the hormone concentration in the tissue. The maximum rate of deiodination of each hormone is about 1·5 μg/min for a whole liver preparation weighing 16 g. 5. Tri-iodothyronine inhibits thyroxine deiodination and vice versa, suggesting that a single enzyme is responsible for both reactions. 6. Propyl thiouracil (PTU) at high concentrations inhibits the deiodination of both hormones. 7. An abnormally high rate of deiodination is associated with the actual injection of hormone into the preparation. This suggests that only the free (unbound) hormone in the tissue is directly available to the deiodinating enzyme. 8. About half of the whole body deiodination of thyroxine is relatively insensitive to PTU. It is suggested that most of this type of deiodination is performed in the liver and that the process is one of inactivation. PMID:5033472

  6. Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis).

    PubMed

    Sun, Hong-Jie; Xiang, Ping; Tang, Ming-Hu; Sun, Li; Ma, Lena Q

    2016-02-13

    Arsenic (As) contamination in aquatic environment adversely impacts aquatic organisms. The present study assessed the toxicity of different As species and concentrations on bighead carp (Hypophthalmichthys nobilis) at early life stage, a major fish in Yangtze River, China. We measured the changes in embryo and larvae survival rate, larvae aberration, concentrations of thyroid hormone thyroxine, and transcription levels of thyroid hormone receptors (TRs) in fish larvae after exposing to arsenite (AsIII) or arsenate (AsV) at 0, 10, 30, 50, 100, or 150 μg L(-1) for 78 h. As concentrations ≤ 150 μg L(-1) had limited effect on embryo survival rate (6-8% inhibition), but larvae survival rate decreased to 53-57% and larvae aberration rate increased to 20-24% after As exposure. Moreover, thyroxine levels elevated by 23% and 50% at 100 μg L(-1) AsIII and 150 μg L(-1) AsV. Besides, AsIII and AsV decreased the transcriptional levels of TRα by 72 and 53%, and TRβ by 91 and 81% at 150 μg L(-1) As. Our data showed that AsIII and AsV had limited effect on carp embryo survival, but they were both toxic to carp larvae, with AsIII showing more effect than AsV. As concentrations <150μg L(-1) adversely influenced the development of bighead carp larvae and disturbed their thyroid hormone homeostasis. PMID:26513566

  7. Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis).

    PubMed

    Sun, Hong-Jie; Xiang, Ping; Tang, Ming-Hu; Sun, Li; Ma, Lena Q

    2016-02-13

    Arsenic (As) contamination in aquatic environment adversely impacts aquatic organisms. The present study assessed the toxicity of different As species and concentrations on bighead carp (Hypophthalmichthys nobilis) at early life stage, a major fish in Yangtze River, China. We measured the changes in embryo and larvae survival rate, larvae aberration, concentrations of thyroid hormone thyroxine, and transcription levels of thyroid hormone receptors (TRs) in fish larvae after exposing to arsenite (AsIII) or arsenate (AsV) at 0, 10, 30, 50, 100, or 150 μg L(-1) for 78 h. As concentrations ≤ 150 μg L(-1) had limited effect on embryo survival rate (6-8% inhibition), but larvae survival rate decreased to 53-57% and larvae aberration rate increased to 20-24% after As exposure. Moreover, thyroxine levels elevated by 23% and 50% at 100 μg L(-1) AsIII and 150 μg L(-1) AsV. Besides, AsIII and AsV decreased the transcriptional levels of TRα by 72 and 53%, and TRβ by 91 and 81% at 150 μg L(-1) As. Our data showed that AsIII and AsV had limited effect on carp embryo survival, but they were both toxic to carp larvae, with AsIII showing more effect than AsV. As concentrations <150μg L(-1) adversely influenced the development of bighead carp larvae and disturbed their thyroid hormone homeostasis.

  8. Thyroid Hormone T3 Counteracts STZ Induced Diabetes in Mouse

    PubMed Central

    Madaro, Luca; Ranieri, Danilo; Lupoi, Lorenzo; Stigliano, Antonio; Torrisi, Maria Rosaria; Bouchè, Marina; Toscano, Vincenzo; Misiti, Silvia

    2011-01-01

    This study intended to demonstrate that the thyroid hormone T3 counteracts the onset of a Streptozotocin (STZ) induced diabetes in wild type mice. To test our hypothesis diabetes has been induced in Balb/c male mice by multiple low dose Streptozotocin injection; and a group of mice was contemporaneously injected with T3. After 48 h mice were tested for glucose tolerance test, insulin serum levels and then sacrified. Whole pancreata were utilized for morphological and biochemical analyses, while protein extracts and RNA were utilized for expression analyses of specific molecules. The results showed that islets from T3 treated mice were comparable to age- and sex-matched control, untreated mice in number, shape, dimension, consistency, ultrastructure, insulin and glucagon levels, Tunel positivity and caspases activation, while all the cited parameters and molecules were altered by STZ alone. The T3-induced pro survival effect was associated with a strong increase in phosphorylated Akt. Moreover, T3 administration prevented the STZ-dependent alterations in glucose blood level, both during fasting and after glucose challenge, as well as in insulin serum level. In conclusion we demonstrated that T3 could act as a protective factor against STZ induced diabetes. PMID:21637761

  9. Thyroid Hormone Potentially Benefits Multiple Sclerosis via Facilitating Remyelination.

    PubMed

    Zhang, Mao; Ma, Ziyi; Qin, Haochen; Yao, Zhongxiang

    2016-09-01

    Myelin destruction due to inflammatory damage of oligodendrocytes (OLs) in conjunction with axonal degeneration is one of the major histopathological hallmarks of multiple sclerosis (MS), a common autoimmune disorder affecting the central nervous system (CNS). Therapies over the last 20 years mainly focus on the immune system and, more specifically, on the modulation of immune cell behavior. It seems to be effective in MS with relapse, while it is of little benefit to progressive MS in which neurodegeneration following demyelination outweighs inflammation. Otherwise, remyelination, as a result of oligodendrocyte production from oligodendrocyte precursor cells (OPCs), is considered to be a potential target for the treatment of progressive MS. In this review, positive effects of remyelination on MS will be discussed in view of the critical role played by thyroid hormone (TH), focusing on the following points: (1) promising treatment of TH on MS that potentially targets to remyelination; (2) the active role of TH that is able to promote remyelination; (3) the regulative role of TH that works on endogenous stem and precursor cells; (4) the effect of TH on gene transcription; and (5) a working hypothesis which is developed that TH can alleviate MS by promoting remyelination, and the mechanism of which is its regulative role in gene transcription of OPCs. PMID:26243185

  10. The role of thyroid hormone therapy in acutely ill cardiac patients

    PubMed Central

    Wyne, Kathleen L

    2005-01-01

    The presence of a 'low T3 syndrome' in the setting of nonthyroidal illness has long been recognized as the 'euthyroid sick syndrome', with the recommendation to observe and not treat with thyroid hormone replacement therapy. That approach has recently been challenged in the setting of critical cardiac illness. Research demonstrating that thyroid hormone therapy may improve hemodynamic parameters has rekindled interest in the use of thyroid hormone therapy in critical illness. Continued improvements in survival after critical cardiac illness provokes the question of whether thyroid hormone therapy would provide further incremental benefit. PMID:16137376

  11. Thyroid Stimulating Hormone and Cognition during Severe, Transient Hypothyroidism

    PubMed Central

    Schraml, Frank V.; Goslar, Pamela W.; Baxter, Leslie; Beason-Held, Lori L.

    2011-01-01

    OBJECTIVE The purpose of our pilot study was to explore the relationship between serum thyroid stimulating hormone (TSH) levels during overt hypothyroidism (OH) and hypothyroid-related neuropsychological symptoms. We hypothesized that TSH level may reflect the degree of ‘brain hypothyroidism’ such that an inverse correlation may exist between serum TSH and cognitive function in patients experiencing overt hypothyroidism (OH), and sought to explore this hypothesis. METHODS Eleven thyroidectomized patients underwent neuropsychological and thyroid function testing while overtly hypothyroid, and again following thyroid hormone replacement. Their test performance was compared with that of eleven healthy controls at a similarly separated two points in time, and the change over time for the patient group and the controls was likewise assessed and compared. The patients’ neuropsychological test scores were then correlated with their serum TSH levels while hypothyroid. RESULTS The patients’ performance while hypothyroid was worse than that of the controls in only one neurocognitive measure--Working Memory Index. The subjects improved similarly or to a greater degree than the controls, when the subjects were thyroid hormone replaced, on all but one neurocognitive measure--Thurstone Word Fluency. TSH level during hypothyroidism was inversely proportional to the patients’ performance on these same two measures, but no others. CONCLUSION Serum TSH level during hypothyroidism was inversely proportional to performance on the only two neurocognitive measures evidencing an adverse effect from hypothyroidism in our cohort. This suggests that serum TSH level may reflect the severity of ‘brain hypothyroidism’ during the overt stage of this condition. PMID:21712772

  12. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences.

    PubMed

    Gilbert, Mary E; Rovet, Joanne; Chen, Zupei; Koibuchi, Noriyuki

    2012-08-01

    Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to neurodevelopment, there is less information regarding the consequences of modest degrees of thyroid. The impact of low level TH disruptions induced by environmental contaminants has not been defined. This paper is a synopsis from four invited speakers who presented at the 13th International Neurotoxicology Association meeting held in Xi'an, China during the summer of 2011. An overview of the role of TH in brain development and a review of human and animal data on the neurological sequelae of disruption of the thyroid axis in the pre- and early post-natal periods were presented by Mary Gilbert and Joanne Rovet. Iodine deficiency, a common cause of TH insufficiency and mental retardation in many countries, including China, was addressed by Zupei Chen. In this presentation the current incidence of iodine deficiency and neurological outcome in China and the efficacy of recently implemented iodinization programs to eliminate this cause of mental retardation were reviewed. Joanne Rovet described the impact of TH disruption during pregnancy and under conditions of congenital hypothyroidism. Children born with normal thyroid function, but who experienced TH insufficiency in the womb, display subtle cognitive impairments and abnormalities in brain imaging. Despite early detection and treatment, deficiencies also exist in children born with thyroid disorders. Different patterns of cognitive effects result from prenatal versus postnatal TH insufficiency. Mary Gilbert reported on the effects of environmental contaminants with thyroid disrupting action on brain development in animals. Results of neurophysiological, behavioral, structural and molecular alterations that accompany modest perturbations of

  13. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    PubMed

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.

  14. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue

    PubMed Central

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-01-01

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity. PMID:26504234

  15. Stimulation of thyroid hormone secretion by thyrotropin in beluga whales, Delphinapterus leucas.

    PubMed

    St Aubin, D J

    1987-07-01

    Bovine thyroid stimulating hormone administered to three beluga whales, Delphinapterus leucas, was effective in producing an increase in circulating levels of triiodothyronine and thyroxine. A single dose of 10 I.U. of thyroid stimulating hormone resulted in a 145% increase in triiodothyronine and a 35% increase in thyroxine after nine hours in a whale tested within two hours after capture. The response was less pronounced in an animal tested with the same does on two occasions after four and eight weeks in captivity. In the third whale, 10 I.U. of thyroid stimulating hormone given on each of three consecutive days produced a marked increase in triiodothyronine and thyroxine. The elevation of thyroxine concentration persisted for at least two days after the last injection of thyroid stimulating hormone. A subsequent decrease in thyroxine to levels below baseline signalled the suppression of endogenous thyroid stimulating hormone. This preliminary study helps to establish a protocol for testing thyroid function in cetaceans. PMID:3651900

  16. Stimulation of thyroid hormone secretion by thyrotropin in beluga whales, Delphinapterus leucas.

    PubMed

    St Aubin, D J

    1987-07-01

    Bovine thyroid stimulating hormone administered to three beluga whales, Delphinapterus leucas, was effective in producing an increase in circulating levels of triiodothyronine and thyroxine. A single dose of 10 I.U. of thyroid stimulating hormone resulted in a 145% increase in triiodothyronine and a 35% increase in thyroxine after nine hours in a whale tested within two hours after capture. The response was less pronounced in an animal tested with the same does on two occasions after four and eight weeks in captivity. In the third whale, 10 I.U. of thyroid stimulating hormone given on each of three consecutive days produced a marked increase in triiodothyronine and thyroxine. The elevation of thyroxine concentration persisted for at least two days after the last injection of thyroid stimulating hormone. A subsequent decrease in thyroxine to levels below baseline signalled the suppression of endogenous thyroid stimulating hormone. This preliminary study helps to establish a protocol for testing thyroid function in cetaceans.

  17. Alterations in TSH and Thyroid Hormones following Mobile Phone Use

    PubMed Central

    Mortavazi, Seyed; Habib, Asadollah; Ganj-Karami, Amir; Samimi-Doost, Razieh; Pour-Abedi, Atefe; Babaie, Ali

    2009-01-01

    Objectives In recent years, the widespread use of mobile phones has lead to a public debate about possible detrimental effects on human health. In spite of years of research, there is still a great controversy regarding the possibility of induction of any significant physiological effects in humans by microwave radiations emitted by mobile phones. This study aims to investigate the effects of electromagnetic fields induced by the Global System for Mobile communications (GSM) mobile phones on the Thyroid Stimulating Hormone (TSH) and thyroid hormones in humans. Methods 77 healthy university students participated in this study. The levels of T3, T4 and TSH were measured by using appropriate enzyme-linked immunosorbent assay (ELISA) kits (Human, Germany). Results The average levels of T3, T4 and TSH in students who moderately used mobile phones were 1.25±0.27 ng/ml, 7.76±1.73 µg/dl and 4.25±2.12 µu/l respectively. The levels in the students who severely used mobile phones were 1.18±0.30, 7.75±1.14 and 3.75±2.05 respectively. In non-users, the levels were 1.15±0.27, 8.42±2.72 and 2.70±1.75, respectively. The difference among the levels of TSH in these 3 groups was statistically significant (P<0.05). Conclusion As far as the study is concerned, this is the first human study to assess the associations between mobile phone use and alterations in the levels of TSH and thyroid hormones. Based on the findings, a higher than normal TSH level, low mean T4 and normal T3 concentrations in mobile users were observed. It seems that minor degrees of thyroid dysfunction with a compensatory rise in TSH may occur following excessive use of mobile phones. It may be concluded that possible deleterious effects of mobile microwaves on hypothalamic-pituitary-thyroid axis affects the levels of these hormones. PMID:22216380

  18. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.

    PubMed

    Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter

    2015-06-01

    Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

  19. IN VITRO METABOLISM OF THYROID HORMONES BY RECOMBINANT HUMAN UDP-GLUCORONOSYLTRANSFERASES AND SULFOTRANSFERASES

    EPA Science Inventory

    Endocrine disruptors can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferases (UGTs) and sulfotransferases (SULTs). Due to their ability to catalyze glucuronidation and sulfation of hormones and xenobiotics, UGTs and SULTs play ...

  20. Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways

    SciTech Connect

    Vickers, Alison E.M.; Heale, Jason; Sinclair, John R.; Morris, Stephen; Rowe, Josh M.; Fisher, Robyn L.

    2012-04-01

    Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24–48 h) and human (24 h) with ≥ 10 μM MMI. Thyroid from rats treated with single doses of MMI (30–1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (∼ 15–84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24 h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ∼ 2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24 h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. -- Highlights: ► Novel model of rat thyroid or human thyroid slices to evaluate pathways of injury. ► TPO inhibition by MMI or PTU altered

  1. Initiating egg production in turkey breeder hens: thyroid hormone involvement.

    PubMed

    Siopes, T D; Millam, J R; Steinman, M Q

    2010-10-01

    The role of thyroid hormones in the expression of photosensitivity-photorefractoriness in female turkeys was investigated through the use of an antithyroidal agent, 6-n-propyl-2-thiouracil (PTU). In experiment 1, females held continuously from hatch on long day lengths (16L:8D; LD) and fed 0.1% PTU from 0 to 16 wk, began laying eggs at 26 wk of age, peaking at 75% hen-day egg production by 29 wk, whereas controls initiated lay 3 wk earlier but only achieved less than 50% hen-day egg production. In experiment 2, PTU treatment from 10 to 18 wk severely suppressed plasma triiodothyronine and thyroxine, as confirmed by RIA. Egg production of PTU and control hens held on LD from hatch began by 23 wk, with PTU hens reaching a substantially greater rate of lay than controls. Eggs were smaller initially in both treatments but exceeded 75 g by 28 wk. In experiment 3, recycled hens on short day lengths (8L:16D) received PTU for 2 wk before LD and 12 wk thereafter; a subset of these hens was killed after 48 h of LD for immunohistochemical analysis of fos-related antigen (FRA) expression in the tuberal hypothalamus as a marker of photoinduced neuronal activity. The PTU treatment completely forestalled egg production until its withdrawal; egg production then rose sharply to control levels before resuming, along with controls, a typical seasonal decline. The PTU treatment did not impair photoinduced FRA expression. Together, these results demonstrate the following: 1) that a period of pharmacological suppression of triiodothyronine and thyroxine can substitute for short day exposure in conferring photosensitivity on juvenile-aged turkeys (and is actually superior to short day exposure), 2) that reproductive development does not limit egg production of turkey hens photostimulated as young as approximately 20 wk of age, and 3) that effects of thyroid suppression on photostimulation lie downstream of photoinduced FRA expression. Taken together, these results suggest that there is

  2. Thyroid stimulating hormone assay as the first line biochemical parameter to determine thyroid gland abnormalities.

    PubMed

    Olooto, Wasiu Eniola; Adeleye, Adebambo Olufemi; Amballi, Adebayo Adetola; Mosuro, Ademola Oladipupo; Banjo, Taiwo Abayomi

    2014-01-01

    Increased cellular catabolic activities observed in hyperthyroid state had been established. This is consequent to excessive hormones secreted by the thyroid gland during this condition. A total of 60 subjects comprising of 45 females mean age 43.02 +/- 1.90 (range 22-70 years) and 15 males mean age 50.40 +/- 3.59 (range 25-68) and 60 controls comprising of 45 females mean age 41.18 +/- 1.68 (range 22-68 years) and 15 males mean age 40.53 +/- 2.88 (range 25-65) were recruited for the study. The plasma level of T4, T3 and TSH were determined in both the experiment group and the controls. A significant increase (p < 0.05) in plasma T4, T3 and a significant decrease (p < 0.05) in plasma TSH were observed in the experiment group in comparison to the controls. Also, an inverse relationship was noted to exist between the plasma T4 and T3; and TSH in primary hyperthyroid state.

  3. Gender-specific regulation of response to thyroid hormone in aging

    PubMed Central

    2012-01-01

    Background Similar to other systems, the endocrine system is affected by aging. Thyroid hormone, the action of which is affected by many factors, has been shown to be associated with longevity. The most useful marker for the assessment of thyroid hormone action is TSH level. Although age and gender are believed to modify the pituitary set point or response to free thyroid hormone concentration, the precise age- and gender-dependent responses to thyroid hormone have yet to be reported. Methods We analyzed the results of 3564 thyroid function tests obtained from patients who received medication at both out- and inpatient clinics of Shinshu University Hospital. Subjects were from among those with thyroid function test results in the normal or mildly abnormal range. Based on a log-linear relationship between the concentrations of FHs and TSH, we established the putative resistance index to assess the relation between serum FH and TSH levels. Results Free thyroid hormone and TSH concentration showed an inverse log-linear relation. In males, there was a negative relationship between the free T3 resistance index and age. In females, although there were no relationships between age and FHs, the indices were positively related to age. Conclusions These findings indicated that there is a gender-specific response to thyroid hormone with aging. Although the TSH level is a useful marker for the assessment of peripheral thyroid hormone action, the values should be interpreted carefully, especially with regard to age- and gender-related differences. PMID:22280879

  4. Thyroid-stimulating hormone receptor levels and binding affinity in the thyroid gland of growth-retarded mice.

    PubMed

    Kobayashi, Kenichi; Sato, Mirei; Machida, Takeo; Kobayashi, Tetsuya

    2005-09-01

    Growth-retarded (grt/grt) mice are congenitally primary hypothyroid. Our previous study indicated that thyroid-stimulating hormone (TSH) responsiveness was defective in the grt/grt thyroid gland. We now report additional studies of impaired grt/grt thyroid function. Semiquantitative RT-PCR confirmed that TSH receptor (TSHR) mRNA expression in the grt/grt thyroid was significantly decreased compared with +/+ thyroids. Scatchard analysis revealed that grt/grt and +/+ mice have only one type of TSH binding site. grt/grt thyroids had fewer TSH binding sites, although this did not apparently affect the affinity of TSH for its receptor. The present data suggest that reduced TSHR levels or defects in TSHR signaling could be one of the possible defective sites in the grt/grt thyroid gland.

  5. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of "inappropriate secretion of TSH".

    PubMed Central

    Gershengorn, M C; Weintraub, B D

    1975-01-01

    An 18-yr-old woman with clinical and laboratory features of hyperthyroidism had persistently elevated serum levels of immunoreative thyrotropin (TSH). During 11 yr of follow-up there had been no evidence of a pituitary tumor. After thyrotropin-releasing hormone (TRH), there was a marked increase in TSH and secondarily in triiodothyronine (T3), the latter observation confirming the biologic activity of the TSH. Exogenous T3 raised serum T3 and several measurements of peripheral thyroid hormone effect, while decreasing serum TSH, thyroxine (T4), and thyroidal radioiodine uptake. After T3, the TRH-stimulated TSH response was decreased but was still inappropriate for the elevated serum T3 levels. Dexamethasone reduced serum TSH but did not inhibit TRH stimulation of TSH. Propylthiouracil reduced serum T4 and T3 and raised TSH. This patient represents a new syndrome of TSH-induced hyperthyroidism, differing from previous reports in the absence of an obvious pituitary tumor and in the responsiveness of the TSH to TRH stimulation and thyroid hormone suppression. This syndrome appears to be caused by a selective, partial resistance of the pituitary to the action of thyroid hormone. This case is also compared with previous reports in the literature of patients with elevated serum levels of immunoreactive TSH in the presence of elevated total and free thyroid hormones. A classification of these cases, termed "inappropriate secretion of TSH," is proposed. PMID:1159077

  6. β1-Adrenergic and M2 Muscarinic Autoantibodies and Thyroid Hormone Facilitate Induction of Atrial Fibrillation in Male Rabbits.

    PubMed

    Li, Hongliang; Murphy, Taylor; Zhang, Ling; Huang, Bing; Veitla, Vineet; Scherlag, Benjamin J; Kem, David C; Yu, Xichun

    2016-01-01

    Activating autoantibodies to the β1-adrenergic and M2 muscarinic receptors are present in a very high percentage of patients with Graves' disease and atrial fibrillation (AF). The objective of this study was to develop a reproducible animal model and thereby to examine the impact of these endocrine-like autoantibodies alone and with thyroid hormone on induction of thyroid-associated atrial tachyarrhythmias. Five New Zealand white rabbits were coimmunized with peptides from the second extracellular loops of the β1-adrenergic and M2 muscarinic receptors to produce both sympathomimetic and parasympathomimetic antibodies. A catheter-based electrophysiological study was performed on anesthetized rabbits before and after immunization and subsequent treatment with thyroid hormone. Antibody expression facilitated the induction of sustained sinus, junctional and atrial tachycardias, but not AF. Addition of excessive thyroid hormone resulted in induced sustained AF in all animals. AF induction was blocked acutely by the neutralization of these antibodies with immunogenic peptides despite continued hyperthyroidism. The measured atrial effective refractory period as one parameter of AF propensity shortened significantly after immunization and was acutely reversed by peptide neutralization. No further decrease in the effective refractory period was observed after the addition of thyroid hormone, suggesting other cardiac effects of thyroid hormone may contribute to its role in AF induction. This study demonstrates autonomic autoantibodies and thyroid hormone potentiate the vulnerability of the heart to AF, which can be reversed by decoy peptide therapy. These data help fulfill Witebsky's postulates for an increased autoimmune/endocrine basis for Graves' hyperthyroidism and AF. PMID:26517045

  7. Assessing Waste Water Treatment Plant Effluent for Thyroid Hormone Disruption

    EPA Science Inventory

    Much information has been coming to light on the estrogenic and androgenic activity of chemicals present in the waste water stream and in surface waters, but much less is known about the presence of chemicals with thyroid activity. To address this issue, we have utilized two assa...

  8. Prenatal and Neonatal Thyroid Stimulating Hormone Levels and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yau, Vincent M.; Lutsky, Marta; Yoshida, Cathleen K.; Lasley, Bill; Kharrazi, Martin; Windham, Gayle; Gee, Nancy; Croen, Lisa A.

    2015-01-01

    Thyroid hormones are critical for normal brain development. This study examined autism spectrum disorders (ASD) and thyroid stimulating hormone (TSH) levels measured in mid-pregnancy maternal serum and infant blood after birth. Three groups of children born in Orange County, CA in 2000-2001 were identified: ASD (n = 78), developmental delay…

  9. Crosstalk between Integrin αvβ3 and Estrogen Receptor-α Is Involved in Thyroid Hormone-Induced Proliferation in Human Lung Carcinoma Cells

    PubMed Central

    Meng, Ran; Tang, Heng-Yuan; Westfall, Jennifer; London, David; Cao, James H.; Mousa, Shaker A.; Luidens, Mary; Hercbergs, Aleck; Davis, Faith B.; Davis, Paul J.; Lin, Hung-Yun

    2011-01-01

    A cell surface receptor for thyroid hormone that activates extracellular regulated kinase (ERK) 1/2 has been identified on integrin αvβ3. We have examined the actions of thyroid hormone initiated at the integrin on human NCI-H522 non-small cell lung carcinoma and NCI-H510A small cell lung cancer cells. At a physiologic total hormone concentration (10−7 M), T4 significantly increased proliferating cell nuclear antigen (PCNA) abundance in these cell lines, as did 3, 5, 3′-triiodo-L-thyronine (T3) at a supraphysiologic concentration. Neutralizing antibody to integrin αvβ3 and an integrin-binding Arg-Gly-Asp (RGD) peptide blocked thyroid hormone-induced PCNA expression. Tetraiodothyroacetic acid (tetrac) lacks thyroid hormone function but inhibits binding of T4 and T3 to the integrin receptor; tetrac eliminated thyroid hormone-induced lung cancer cell proliferation and ERK1/2 activation. In these estrogen receptor-α (ERα)-positive lung cancer cells, thyroid hormone (T4>T3) caused phosphorylation of ERα; the specific ERα antagonist ICI 182,780 blocked T4-induced, but not T3-induced ERK1/2 activation, as well as ERα phosphorylation, proliferating-cell nuclear antigen (PCNA) expression and hormone-dependent thymidine uptake by tumor cells. Thus, in ERα-positive human lung cancer cells, the proliferative action of thyroid hormone initiated at the plasma membrane is at least in part mediated by ERα. In summary, thyroid hormone may be one of several endogenous factors capable of supporting proliferation of lung cancer cells. Activity as an inhibitor of lung cancer cell proliferation induced at the integrin receptor makes tetrac a novel anti-proliferative agent. PMID:22132110

  10. Polybrominated Diphenyl Ether (DE-71)Interferes with Thyroid Hormone Action Independent Of Effects On Circulating Levels of Thyroid Hormone in Male Rats

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological stud...

  11. Evaluation of oxidative stress and thyroid hormone status in hemodialysis patients in Gorgan

    PubMed Central

    Velayeti, Javad; Mansourian, Azad Reza; Mojerloo, Mohammad; Marjani, Abdoljalal

    2016-01-01

    Aims: The aim of this study focused on serum malondialdehyde (MDA) levels and erythrocyte superoxide dismutase (SOD) and catalase (CAT) activities in hemodialysis patients and compared with control groups. Materials and Methods: Forty-five hemodialyzed patients and 45 control groups recruited in this study. Serum creatinine and urea, thyroid hormones (THs) levels and erythrocyte antioxidant enzyme activities were determined. Results: Hemodialysis (HD) patients showed higher levels of MDA than control groups (P < 0.01), but the levels of thyroxin (T3), free triiodothyronine (fT3), and free thyroxin (fT4), SOD and CAT were low in HD patients (P < 0.01). Serum T3, fT3, and fT4 levels were significantly negative correlated with MDA (P < 0.01). Conclusion: It is concluded that serum lipid peroxidation is markedly increased in HD patients. This means that elevated reactive oxygen species may interact with the lipid molecules in HD patients. HD may cause significant changes in TH levels. Thyroid-stimulating hormone level in HD patients is slightly similar to that of control groups. This suggests that thyroid is able to resynthesize for hormonal urinary losses. PMID:27186552

  12. Identification of thyroid hormone receptor homologs in the fluke Opisthorchis felineus (Platyhelminthes).

    PubMed

    Pakharukova, Maria Y; Ershov, Nikita I; Vorontsova, Elena V; Shilov, Alexander G; Merkulova, Tatyana I; Mordvinov, Viatcheslav A

    2014-01-01

    The liver fluke, Opisthorchis felineus of the Opisthorchiidae family, is a well-known causative agent of opisthorchiasis in Russia and Europe. The aim of this work was to identify genes encoding thyroid hormone receptors in O. felineus, and to analyze the expression of possible target genes in response to treatment with exogenous thyroid hormones. We identified two genes encoding thyroid hormone receptors in the O. felineus genome, THRA and THRB. The genes were differentially expressed through the life cycle. The maximal level of mRNA expression of THRA1 and THRB was observed in adult worms. Treatment of the worms with triiodothyronine and thyroxine resulted in an increase in glucose 6-phosphatase mRNA expression and a decrease in malate dehydrogenase mRNA expression, potential gene targets of thyroid hormones. These data indicate that thyroid hormone receptors may perform essential roles in physiological processes in adult O. felineus.

  13. Thyroid Storm Caused by a Chinese Herb Contaminated with Thyroid Hormones

    PubMed Central

    St-Onge, Maude; Vandenberghe, Hilde; Thompson, Margaret

    2015-01-01

    Patient: Male, 70 Final Diagnosis: Thyroid storm Symptoms: Atrial fibrillation • confusion • hyperthermia • tachycardia Medication: — Clinical Procedure: Intubation • cardioversion Specialty: Critical Care Medicine Objective: Adverse events of drug therapy Background: We report a case of thyroid storm caused by consuming a Chinese herb contaminated with thyroid hormones. Case Report: A 70-year-old man presented to an emergency department after 2 days of nausea, vomiting, and weakness. Three days previously, he had started taking Cordyceps powder and “Flower Man Sang Hung” as recommended by his Chinese physician. Following admission, the patient deteriorated and was eventually diagnosed with thyroid storm complicated by rapid atrial fibrillation requiring cardioversion, intubation, and intensive care admission. The analysis of the Chinese herb “Flower Man Sang Hung” was positive for levothyroxine. The patient was extubated 11 days after admission and discharged to a rehabilitation centre after 17 days of hospitalization. The Chinese medicine physician was informed of the events. Conclusions: Herbal products can be the source of illness, medication interactions, and contamination. Awareness should be raised among Chinese medicine physicians, allopathic physicians, and their patients. Clinicians should also have a low threshold of suspicion to seek laboratory analysis of suspect substances when the cause of the clinical presentation is unclear. PMID:25644333

  14. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus

    SciTech Connect

    Koller, K.J.; Wolff, R.S.; Warden, M.K.; Zoeller, R.T.

    1987-10-01

    Cellular levels of messenger RNA encoding thyrotropin-releasing hormone (TRH) were measured in the paraventricular nucleus of the hypothalamus and the reticular nucleus of the thalamus in male rats after chemical thyroidectomy and thyroid hormone, replacement. TRH mRNA levels were measured by quantitative in situ hybridization histochemistry using a /sup 35/S-labeled synthetic 48-base oligodeoxynucleotide probe and quantitative autoradiography. Chemical thyroidectomy, produced by the administration of 6-(n-propyl)-2-thiouracil (PrSur), reduced plasma thyroxine below detection limits and significantly increased TRH mRNA in the paraventricular nucleus. Treatments with exogenous L-triiodothyronine (T/sub 3/) reduced TRH mRNA to the same level in both hypothyroid and euthyroid animals. Neither PrSur treatment nor T/sub 3/ replacement influenced TRH mRNA levels in the reticular nucleus of the thalamus. Blot hybridization analysis of electrophoretically fractionated total RNA from pituitaries of these animals indicated that thyrotropin-..beta.. mRNA levels were elevated after thyroidectomy and reduced by T/sub 3/ treatment, showing that the pituitary-thyroid axis was indeed stimulated by PrSur treatment. These results suggest that thyroid hormones are involved, either directly or indirectly, in regulating the biosynthesis of TRH in the thyrotropic center of the hypothalamus.

  15. The Thyroid Hormone Receptor Is a Suppressor of ras-Mediated Transcription, Proliferation, and Transformation

    PubMed Central

    García-Silva, Susana; Aranda, Ana

    2004-01-01

    The thyroid hormone triiodothyronine (T3) has a profound effect on growth, differentiation, and metabolism in higher organisms. Here we demonstrate that T3 inhibits ras-induced proliferation in neuroblastoma cells and blocks induction of cyclin D1 expression by the oncogene. The hormone, at physiological concentrations, strongly antagonizes the transcriptional response mediated by the Ras/mitogen-activated protein kinase/ribosomal-S6 subunit kinase (Rsk) signaling pathway in cells expressing thyroid hormone receptors (TRs). T3 blocks the response to the oncogenic forms of the three ras isoforms (H-, K-, and N-ras) and both TRα and TRβ can mediate this action. The main target for induction of cyclin D1 transcription by oncogenic ras in neuroblastoma cells is a cyclic AMP response element (CRE) located in proximal promoter sequences, and T3 represses the transcriptional activity of b-Zip transcription factors such as CREB (CRE-binding protein) or ATF-2 (activation transcription factor 2) that are direct targets of Rsk2 and bind to this sequence. The hormone also blocks fibroblast transformation by oncogenic ras when TR is expressed. Furthermore, TRs act as suppressors of tumor formation by the oncogene in vivo in nude mice. The TRβ isoform has stronger antitransforming properties than the α isoform and can inhibit tumorigenesis even in hypothyroid mice. These results show the existence of a previously unrecognized transcriptional cross talk between the TRs and the ras oncogene which influences relevant processes such as cell proliferation, transformation, or tumorigenesis. PMID:15314161

  16. Isolation of a thyroid hormone-responsive gene by immunoprecipitation of thyroid hormone receptor-DNA complexes.

    PubMed Central

    Bigler, J; Eisenman, R N

    1994-01-01

    Thyroid hormone (T3) receptor (TR) is a ligand-dependent transcription factor that acts through specific binding sites in the promoter region of target genes. In order to identify new genes that are regulated by T3, we used anti-TR antiserum to immunoprecipitate TR-DNA complexes from GH4 cell nuclei that had previously been treated with a restriction enzyme. Screening of the immunopurified, cloned DNA for TR binding sites by electrophoretic mobility shift assay yielded 53 positive clones. A subset of these clones was specifically immunoprecipitated with anti-TR antiserum and may therefore represent biologically significant binding sites. One of these clones, clone 122, was characterized in detail. It includes sequences highly related to the NICER long terminal repeat-like element and contains three TR binding sites as determined by DNase I footprinting. Two of the clone 122 TR binding sites are located upstream of the TATA box, and one is located downstream. The TR binding site downstream from the promoter was necessary and sufficient to confer T3-dependent regulation in transient transfection experiments. Expression of a reporter construct under the control of the clone 122 promoter region was activated by TR in the absence of ligand and returned to basal levels after T3 addition. Clone 122 sequences hybridize to at least two different mRNAs of approximately 6 and 10 kb from GH4 cells. The levels of both of these mRNAs increased upon removal of T3. Our studies suggest that specific immunoprecipitation of chromatin allows identification of binding sites and target genes for transcription factors. Images PMID:7935476

  17. Postnatal overnutrition programs the thyroid hormone metabolism and function in adulthood.

    PubMed

    Lisboa, Patricia C; Conceição, Ellen P S; de Oliveira, Elaine; Moura, Egberto G

    2015-09-01

    Early overnutrition (EO) during lactation leads to obesity, leptin resistance and lower thyroid hormone (TH) levels during adulthood. To better understand the biological significance of this thyroid hypofunction, we studied the long-term effects of postnatal EO on both the function of hypothalamic-pituitary-thyroid (HPT) axis and the metabolism and action of TH. To induce EO, the litter size was reduced to three pups per litter (small litter (SL) group) on the third day of lactation. In the controls (normal litter group), litter size was adjusted to 10 pups per litter. Rats were killed at PN180. TRH content and in vitro TSH were evaluated. Iodothyronine deiodinase (D1 and D2) activities were measured in different tissues. Mitochondrial α-glycerol-3-phosphate dehydrogenase (mGPD), uncoupling protein 1 (UCP1) and TH receptor (TRβ1) were evaluated to assess TH action. The SL group presented lower TRH, intra-pituitary and released TSH levels, despite unchanged plasma TSH. They presented lower D1 activity in thyroid, muscle and white adipose tissue (WAT) and higher D2 activity in the hypothalamus, pituitary, brown adipose tissue (BAT) and WAT, which confirmed the hypothyroidism. UCP1 in BAT and TRβ1 in WAT were decreased, which can contribute to a lower catabolic status. Despite the lower TH, the D2 activity in the thyroid, heart and testes was unchanged. Hepatic D1, mGPD and TRβ1 were also unchanged in SL rats, suggesting that the TH conversion and action were preserved in the liver, even with lower TH. Thus, this model indicates that postnatal EO changes thyroid function in adult life in a tissue-specific way, which can help in the understanding of obesogenesis. PMID:26203167

  18. Gene Expression as a Biomarker of Effect of Thyroid Hormone Action in Developing Brain: Relation to Serum Hormones.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have proved more diffic...

  19. Patterns of thyroid hormone receptor expression in zebrafish and generation of a novel model of resistance to thyroid hormone action.

    PubMed

    Marelli, Federica; Carra, Silvia; Agostini, Maura; Cotelli, Franco; Peeters, Robin; Chatterjee, Krishna; Persani, Luca

    2016-03-15

    Resistance to thyroid hormone can be due to heterozygous, dominant negative (DN) THRA (RTHα) or THRB (RTHβ) mutations, but the underlying mechanisms are incompletely understood. Here, we delineate the spatiotemporal expression of TH receptors (TRs) in zebrafish and generated morphants expressing equivalent amounts of wild-type and DN TRαs (thraa_MOs) and TRβs (thrb_MOs) in vivo. Both morphants show severe developmental abnormalities. The phenotype of thraa_MOs includes brain and cardiac defects, but normal thyroid volume and tshba expression. A combined modification of dio2 and dio3 expression can explain the high T3/T4 ratio seen in thraa_MOs, as in RTHα. Thrb_MOs show abnormal eyes and otoliths, with a typical RTHβ pattern of thyroid axis. The coexpression of wild-type, but not mutant, human TRs can rescue the phenotype in both morphants. High T3 doses can partially revert the dominant negative action of mutant TRs in morphant fish. Therefore, our morphants recapitulate the RTHα and RTHβ key manifestations representing new models in which the functional consequences of human TR mutations can be rapidly and faithfully evaluated. PMID:26802880

  20. In vivo interaction of steroid receptor coactivator (SRC)-1 and the activation function-2 domain of the thyroid hormone receptor (TR) beta in TRbeta E457A knock-in and SRC-1 knockout mice.

    PubMed

    Alonso, Manuela; Goodwin, Charles; Liao, Xiaohui; Ortiga-Carvalho, Tania; Machado, Danielle S; Wondisford, Fredric E; Refetoff, Samuel; Weiss, Roy E

    2009-08-01

    The activation function-2 (AF-2) domain of the thyroid hormone (TH) receptor (TR)-beta is a TH-dependent binding site for nuclear coactivators (NCoA), which modulate TH-dependent gene transcription. In contrast, the putative AF-1 domain is a TH-independent region interacting with NCoA. We determined the specificity of the AF-2 domain and NCoA interaction by evaluating thyroid function in mice with combined disruption of the AF-2 domain in TRbeta, due to a point mutation (E457A), and deletion of one of the NCoAs, steroid receptor coactivator (SRC)-1. The E457A mutation was chosen because it abolishes NCoA recruitment in vitro while preserving normal TH binding and corepressor interactions resulting in resistance to TH. At baseline, disruption of SRC-1 in the homozygous knock-in (TRbeta(E457A/E457A)) mice worsened the degree of resistance to TH, resulting in increased serum T(4) and TSH. During TH deprivation, disruption of AF-2 and SRC-1 resulted in a TSH rise 50% of what was seen when AF-2 alone was removed, suggesting that SRC-1 was interacting outside of the AF-2 domain. Therefore, 1) during TH deprivation, SRC-1 is necessary for activating the hypothalamic-pituitary-thyroid axis; 2) ligand-dependent repression of TSH requires an intact AF-2; and 3) SRC-1 may interact with the another region of the TRbeta or the TRalpha to regulate TH action in the pituitary. This report demonstrates the dual interaction of NCoA in vivo: the TH-independent up-regulation possibly through another domain and TH-dependent down-regulation through the AF-2 domain. PMID:19406944

  1. The controversy of the treatment of critically ill patients with thyroid hormone.

    PubMed

    Stathatos, N; Levetan, C; Burman, K D; Wartofsky, L

    2001-12-01

    There is currently a vast literature available on the changes in thyroid function tests that occur during non-thyroidal illness. The aetiology of these changes is, however, controversial, especially with respect to whether they play an adaptive role for the organism in order to cope with stress or whether they represent primary pathology of the pituitary-thyroid axis. This is particularly true for critically ill patients, in whom the most significant changes in thyroid function are observed. The changes include low levels of thyroxine and very low levels of tri-iodothyronine, which would, on the surface, appear to indicate hypothyroidism. Therapy with thyroid hormone, as either L-T4 or L-T3, has therefore been suggested because of these low values for thyroid hormones in the blood. It is, however, unclear whether treating these patients with thyroid hormone is beneficial or harmful. Multiple studies have addressed this issue with patients with cardiac disease, sepsis, pulmonary disease (e.g. acute respiratory distress syndrome) or severe infection, or with burn and trauma patients. In spite of a very large number of published studies, it is very difficult to form clear recommendations for treatment with thyroid hormone in the intensive care unit. Instead, we find the evidence far from compelling, and would advise withholding thyroid hormone therapy in the critical care setting in the absence of clear clinical or laboratory evidence for hypothyroidism.

  2. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function.

    PubMed Central

    Forrest, D; Hanebuth, E; Smeyne, R J; Everds, N; Stewart, C L; Wehner, J M; Curran, T

    1996-01-01

    The diverse functions of thyroid hormone (T3) are presumed to be mediated by two genes encoding the related receptors, TRalpha and TRbeta. However, the in vivo functions of TRalpha and TRbeta are undefined. Here, we report that targeted inactivation of the mouse TRbeta gene results in goitre and elevated levels of thyroid hormone. Also, thyroid-stimulating hormone (TSH), which is released by pituitary thyrotropes and which is normally suppressed by increased levels of thyroid hormone, was present at elevated levels in homozygous mutant (Thrb-/-) mice. These findings suggest a unique role for TRbeta that cannot be substituted by TRalpha in the T3-dependent feedback regulation of TSH transcription. Thrb-/- mice provide a recessive model for the human syndrome of resistance to thyroid hormone (RTH) that exhibits a similar endocrine disorder but which is typically caused by dominant TRbeta mutants that are transcriptional inhibitors. It is unknown whether TRalpha, TRbeta or other receptors are targets for inhibition in dominant RTH; however, the analysis of Thrb-/- mice suggests that antagonism of TRbeta-mediated pathways underlies the disorder of the pituitary-thyroid axis. Interestingly, in the brain, the absence of TRbeta may not mimic the defects often associated with dominant RTH, since no overt behavioural or neuroanatomical abnormalities were detected in Thrb-/- mice. These data define in vivo functions for TRbeta and indicate that specificity in T3 signalling is conferred by distinct receptor genes. Images PMID:8670802

  3. Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers

    SciTech Connect

    Lacasana, Marina; Lopez-Flores, Inmaculada; Rodriguez-Barranco, Miguel; Aguilar-Garduno, Clemente; Blanco-Munoz, Julia; Perez-Mendez, Oscar; Gamboa, Ricardo; Bassol, Susana; Cebrian, Mariano E.

    2010-02-15

    The ability of organophosphate pesticides to disturb thyroid gland function has been demonstrated by experimental studies on animal, but evidence of such effects on human remains scarce. The aim of this study was to assess the association between exposure to organophosphate compounds and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the State of Mexico and Morelos, Mexico, occupationally exposed to organophosphate pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on sociodemographic characteristics, anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Urine and blood samples were taken the day after pesticide application to determine urine dialkylphosphate (DAP) levels, serum levels of TSH, total T{sub 3}, total T{sub 4}, serum PON1 activity, and serum p,p'-DEE levels. The analysis of the association between DAP levels and thyroid hormonal profile was carried out using multivariate generalized estimating equation (GEE) models. Our results showed an increase in both TSH and T{sub 4} hormones in serum associated with a increase in total dimethylphosphate levels (SIGMADMP) in urine (p-trend < 0.001) and a decrease in total T{sub 3} serum levels with an increase of SIGMADMP levels in the urine (p-trend = 0.053). These results suggest that exposure to organophosphate pesticides may be responsible of increasing TSH and T{sub 4} serum hormone levels and decreasing T{sub 3} serum hormone levels, therefore supporting the hypothesis that organophosphate pesticides act as endocrine disruptors in humans.

  4. Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers.

    PubMed

    Lacasaña, Marina; López-Flores, Inmaculada; Rodríguez-Barranco, Miguel; Aguilar-Garduño, Clemente; Blanco-Muñoz, Julia; Pérez-Méndez, Oscar; Gamboa, Ricardo; Bassol, Susana; Cebrian, Mariano E

    2010-02-15

    The ability of organophosphate pesticides to disturb thyroid gland function has been demonstrated by experimental studies on animal, but evidence of such effects on human remains scarce. The aim of this study was to assess the association between exposure to organophosphate compounds and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the State of Mexico and Morelos, Mexico, occupationally exposed to organophosphate pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on sociodemographic characteristics, anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Urine and blood samples were taken the day after pesticide application to determine urine dialkylphosphate (DAP) levels, serum levels of TSH, total T(3), total T(4), serum PON1 activity, and serum p,p'-DEE levels. The analysis of the association between DAP levels and thyroid hormonal profile was carried out using multivariate generalized estimating equation (GEE) models. Our results showed an increase in both TSH and T(4) hormones in serum associated with a increase in total dimethylphosphate levels (SigmaDMP) in urine (p-trend<0.001) and a decrease in total T(3) serum levels with an increase of SigmaDMP levels in the urine (p-trend=0.053). These results suggest that exposure to organophosphate pesticides may be responsible of increasing TSH and T(4) serum hormone levels and decreasing T(3) serum hormone levels, therefore supporting the hypothesis that organophosphate pesticides act as endocrine disruptors in humans.

  5. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues

    SciTech Connect

    Nakai, A.; Seino, S.; Sakurai, A.; Szilak, I.; Bell, G.I.; DeGroot, L.J.

    1988-04-01

    A cDNA encoding a specific form of thyroid hormone receptor expressed in human liver, kidney, placenta, and brain was isolated from a human kidney library. Identical clones were found in human placenta and HepG2 cDNA libraries. The cDNA encodes a 490-amino acid protein. When expressed and translated in vitro, the protein products binds triiodothyronine with K/sub a/ of 2.3 /times/ 10/sup 9/ M/sup /minus/1/. This protein, designated human thyroid hormone receptor type ..cap alpha..2 (hTR..cap alpha..2), has the same domain structure as other members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type ..cap alpha.. described in chicken and rat and less similar to human thyroid hormone receptor type ..beta.. (formerly referred to as c-erbA..beta..) from placenta. However, it is distinguished from these receptors by an extension of the C-terminal hormone binding domain making it 80 amino acids longer than rat thyroid hormone receptor type ..cap alpha..1. Different sizes of mRNA found in liver and kidney suggest that there may be tissue-specific processing of the primary transcript of this gene. Identification of human thyroid hormone receptor type ..cap alpha..2 indicates that two or more forms of thyroid hormone receptor exist in human tissues and may explain the normal variation in thyroid hormone responsiveness of various organs and the selective tissue abnormalities found in the thyroid hormone resistance syndromes.

  6. The Effect of Thyroid-Stimulating Hormone on Tumor Size in Differentiated Thyroid Carcinoma.

    PubMed

    Ozemir, I A; Gurbuz, B; Bayraktar, B; Aslan, S; Başkent, A; Yalman, H; Yigitbasi, R; Alimoglu, O

    2015-12-01

    We evaluated the correlation between serum thyroid-stimulating hormone (TSH) levels and tumor size and other invasiveness parameters of tumor in patients with differentiated thyroid carcinoma (DTC). Several clinical studies have reported that TSH may also have a role as a regulator of the development and function of the thyroid gland. It is currently not clear whether TSH is involved in the existence of thyroid cancer or progression of thyroid cancer or both. Patients with DTC who underwent thyroid surgery between 2003 and 2008 were included this study. Preoperative serum T3, T4, and TSH levels were compared with the size and invasiveness of cancer, retrospectively. DTC was observed in 110 patients over the 5-year period. Seventy-seven (70 %) of them were euthyroid and classified as the "normal-TSH group" (NTG), and 33 (30 %) have an overt or subclinical hyperthyroidism, classified as the "low-TSH group" (LTG). The mean tumor diameter in the LTG was found to be 8.91 ± 8.03 mm; however, it was found to be 18.19 ± 16.24 mm in the NTG. There were significantly differences among the groups related to the diameter of tumor (p = 0.001). Microcarcinoma was determined in 36 patients (46.8 %) in the NTG and 23 patients (69.7 %) in the LTG (p = 0.027). Although there were no significant differences, tumor capsule invasion (33.8 vs. 18.2 %, p = 0.099) and lymphovascular invasion (16.9 vs. 6.1 %, p = 0.130) rates were higher in the NTG. These findings suggest that TSH has effects on growing and proliferation of not only normal thyroid cells but also cancer cells in DTC. This study revealed that serum TSH level can be explored as an important factor that affects the size and invasiveness of tumor in DTC.

  7. The Effect of Thyroid-Stimulating Hormone on Tumor Size in Differentiated Thyroid Carcinoma.

    PubMed

    Ozemir, I A; Gurbuz, B; Bayraktar, B; Aslan, S; Başkent, A; Yalman, H; Yigitbasi, R; Alimoglu, O

    2015-12-01

    We evaluated the correlation between serum thyroid-stimulating hormone (TSH) levels and tumor size and other invasiveness parameters of tumor in patients with differentiated thyroid carcinoma (DTC). Several clinical studies have reported that TSH may also have a role as a regulator of the development and function of the thyroid gland. It is currently not clear whether TSH is involved in the existence of thyroid cancer or progression of thyroid cancer or both. Patients with DTC who underwent thyroid surgery between 2003 and 2008 were included this study. Preoperative serum T3, T4, and TSH levels were compared with the size and invasiveness of cancer, retrospectively. DTC was observed in 110 patients over the 5-year period. Seventy-seven (70 %) of them were euthyroid and classified as the "normal-TSH group" (NTG), and 33 (30 %) have an overt or subclinical hyperthyroidism, classified as the "low-TSH group" (LTG). The mean tumor diameter in the LTG was found to be 8.91 ± 8.03 mm; however, it was found to be 18.19 ± 16.24 mm in the NTG. There were significantly differences among the groups related to the diameter of tumor (p = 0.001). Microcarcinoma was determined in 36 patients (46.8 %) in the NTG and 23 patients (69.7 %) in the LTG (p = 0.027). Although there were no significant differences, tumor capsule invasion (33.8 vs. 18.2 %, p = 0.099) and lymphovascular invasion (16.9 vs. 6.1 %, p = 0.130) rates were higher in the NTG. These findings suggest that TSH has effects on growing and proliferation of not only normal thyroid cells but also cancer cells in DTC. This study revealed that serum TSH level can be explored as an important factor that affects the size and invasiveness of tumor in DTC. PMID:27011492

  8. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon.

    PubMed

    Liu, Shaoying; Chang, Juhua; Zhao, Ying; Zhu, Guonian

    2011-11-01

    In this study, zebrafish was exposed to triadimefon. Thyroid hormones levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSH-beta), deiodinases (dio1 and dio2) and the thyroid hormone receptor (thraa and thrb) were evaluated. After triadimefon exposure, increased T4 can be explained by increased thyroid-stimulating hormone (TSH-beta). The conversion of T4 to T3 (deiodinase type I-dio1) was decreased, which reduced the T3 level. Thyroid hormone receptor beta (thrb) mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones.

  9. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon.

    PubMed

    Liu, Shaoying; Chang, Juhua; Zhao, Ying; Zhu, Guonian

    2011-11-01

    In this study, zebrafish was exposed to triadimefon. Thyroid hormones levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSH-beta), deiodinases (dio1 and dio2) and the thyroid hormone receptor (thraa and thrb) were evaluated. After triadimefon exposure, increased T4 can be explained by increased thyroid-stimulating hormone (TSH-beta). The conversion of T4 to T3 (deiodinase type I-dio1) was decreased, which reduced the T3 level. Thyroid hormone receptor beta (thrb) mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones. PMID:22004968

  10. Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression.

    PubMed

    Decherf, Stéphanie; Seugnet, Isabelle; Kouidhi, Soumaya; Lopez-Juarez, Alejandra; Clerget-Froidevaux, Marie-Stéphanie; Demeneix, Barbara A

    2010-03-01

    The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of Trh and production of the thyroid hormone tri-iodothyronine (T(3)). These facts led us to test the hypothesis that energy homeostasis should require negative feedback by T(3) on Mc4r expression. Quantitative PCR and in situ hybridization showed hyperthyroidism reduces Mc4r mRNA levels in the paraventricular nucleus. Comparative in silico analysis of Mc4r regulatory regions revealed two evolutionarily conserved potential negative thyroid hormone-response elements (nTREs). In vivo ChIP assays on mouse hypothalamus demonstrated association of thyroid hormone receptors (TRs) with a region spanning one nTRE. Further, in vivo gene reporter assays revealed dose-dependent T(3) repression of transcription from the Mc4r promoter in mouse hypothalamus, in parallel with T(3)-dependent Trh repression. Mutagenesis of the nTREs in the Mc4r promoter demonstrated direct regulation by T(3), consolidating the ChIP results. In vivo shRNA knockdown, TR over-expression approaches and use of mutant mice lacking specific TRs showed that both TRalpha and TRbeta contribute to Mc4r regulation. T(3) repression of Mc4r transcription ensures that the energy-saving effects of T(3) feedback on Trh are not overridden by MC4R activation of Trh. Thus parallel repression by T(3) on hypothalamic Mc4r and Trh contributes to energy homeostasis.

  11. Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression

    PubMed Central

    Decherf, Stéphanie; Seugnet, Isabelle; Kouidhi, Soumaya; Lopez-Juarez, Alejandra; Clerget-Froidevaux, Marie-Stéphanie; Demeneix, Barbara A.

    2010-01-01

    The type 4 melanocortin receptor MC4R, a key relay in leptin signaling, links central energy control to peripheral reserve status. MC4R activation in different brain areas reduces food intake and increases energy expenditure. Mice lacking Mc4r are obese. Mc4r is expressed by hypothalamic paraventricular Thyrotropin-releasing hormone (TRH) neurons and increases energy usage through activation of Trh and production of the thyroid hormone tri-iodothyronine (T3). These facts led us to test the hypothesis that energy homeostasis should require negative feedback by T3 on Mc4r expression. Quantitative PCR and in situ hybridization showed hyperthyroidism reduces Mc4r mRNA levels in the paraventricular nucleus. Comparative in silico analysis of Mc4r regulatory regions revealed two evolutionarily conserved potential negative thyroid hormone-response elements (nTREs). In vivo ChIP assays on mouse hypothalamus demonstrated association of thyroid hormone receptors (TRs) with a region spanning one nTRE. Further, in vivo gene reporter assays revealed dose-dependent T3 repression of transcription from the Mc4r promoter in mouse hypothalamus, in parallel with T3-dependent Trh repression. Mutagenesis of the nTREs in the Mc4r promoter demonstrated direct regulation by T3, consolidating the ChIP results. In vivo shRNA knockdown, TR over-expression approaches and use of mutant mice lacking specific TRs showed that both TRα and TRβ contribute to Mc4r regulation. T3 repression of Mc4r transcription ensures that the energy-saving effects of T3 feedback on Trh are not overridden by MC4R activation of Trh. Thus parallel repression by T3 on hypothalamic Mc4r and Trh contributes to energy homeostasis. PMID:20160073

  12. Septic shock non-thyroidal illness syndrome causes hypothyroidism and conditions for reduced sensitivity to thyroid hormone.

    PubMed

    Castro, Isabel; Quisenberry, Leah; Calvo, Rosa-Maria; Obregon, Maria-Jesus; Lado-Abeal, Joaquin

    2013-04-01

    Non-thyroidal illness syndrome (NTIS) is part of the neuroendocrine response to stress, but the significance of this syndrome remains uncertain. The aim of this study was to investigate the effect of lipopolysaccharide (LPS)-induced NTIS on thyroid hormone (TH) levels and TH molecular targets, as well as the relationship between septic shock nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation and TH receptor β (THRB) gene expression at a multi-tissue level in a pig model. Prepubertal domestic pigs were given i.v. saline or LPS for 48 h. Serum and tissue TH was measured by chemiluminescence and RIA. Expression of THRs and cofactors was measured by real-time PCR, and deiodinase (DIO) activity was measured by enzyme assays. Tissue NF-kB nuclear binding activity was evaluated by EMSA. LPS-treated pigs had decreased TH levels in serum and most tissues. DIO1 expression in liver and kidney and DIO1 activity in kidney decreased after LPS. No changes in DIO2 activity were observed between groups. LPS induced an increase in hypothalamus, thyroid, and liver DIO3 activity. Among the other studied genes, monocarboxylate transporter 8 and THRB were the most commonly repressed in endotoxemic pigs. LPS-induced NF-kB activation was associated with a decrease in THRB gene expression only in frontal lobe, adrenal gland, and kidney cortex. We conclude that LPS-induced NTIS in pigs is characterized by hypothyroidism and tissue-specific reduced TH sensitivity. The role of NF-kB in regulating THRB expression during endotoxemia, if any, is restricted to a limited number of tissues.

  13. Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles.

    PubMed

    Vidali, Silvia; Knuever, Jana; Lerchner, Johannes; Giesen, Melanie; Bíró, Tamás; Klinger, Matthias; Kofler, Barbara; Funk, Wolfgang; Poeggeler, Burkhard; Paus, Ralf

    2014-01-01

    Thyroid hormones regulate mitochondrial function. As other hypothalamic-pituitary-thyroid (HPT) axis hormones, i.e., thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), are expressed in human hair follicles (HFs) and regulate mitochondrial function in human epidermis, we investigated in organ-cultured human scalp HFs whether TRH (30 nM), TSH (10 mU ml(-1)), thyroxine (T4) (100 nM), and triiodothyronine (T3) (100 pM) alter intrafollicular mitochondrial energy metabolism. All HPT-axis members increased gene and protein expression of mitochondrial-encoded subunit 1 of cytochrome c oxidase (MTCO1), a subunit of respiratory chain complex IV, mitochondrial transcription factor A (TFAM), and Porin. All hormones also stimulated intrafollicular complex I/IV activity and mitochondrial biogenesis. The TSH effects on MTCO1, TFAM, and porin could be abolished by K1-70, a TSH-receptor antagonist, suggesting a TSH receptor-mediated action. Notably, as measured by calorimetry, T3 and TSH increased follicular heat production, whereas T3/T4 and TRH stimulated ATP production in cultured HF keratinocytes. HPT-axis hormones did not increase reactive oxygen species (ROS) production. Rather, T3 and T4 reduced ROS formation, and all tested HPT-axis hormones increased the transcription of ROS scavengers (catalase, superoxide dismutase 2) in HF keratinocytes. Thus, mitochondrial biology, energy metabolism, and redox state of human HFs are subject to profound (neuro-)endocrine regulation by HPT-axis hormones. The neuroendocrine control of mitochondrial biology in a complex human mini-organ revealed here may be therapeutically exploitable. PMID:23949722

  14. Evidence against benefit from replacement doses of thyroid hormones in nonthyroidal illness (NTI): studies using turpentine oil-injected rat.

    PubMed

    Chopra, I J; Huang, T S; Boado, R; Solomon, D H; Chua Teco, G N

    1987-12-01

    Sprague-Dawley rats were treated with saline or turpentine oil (5 mu 1/g bw sc at 3-day intervals x3) with or without replacement doses of T4 (0.8 g/100 g bw/day ip) or T3(0.3 microgram/100 g bw/day ip). Injection of turpentine oil to the rat consistently caused a significant reduction in serum total T4, total T3, free T4 index and TSH. Despite marked changes in thyroidal economy in experimental rat, iodothyronine 5'-monodeiodinating activity (MA) in the liver, the kidney and the hearth and the hepatic alpha-glycerophosphate dehydrogenase activity were decreased inconsistently and when decreased, the various enzyme activities were not influenced appreciably by treatment with replacement doses of T4 or T3. Cerebral cortical T4 5-MA was normal or increased in the turpentine oil-injected rat. Dermal T4 5-MA was decreased in the turpentine oil-injected rat and replacement doses of thyroid hormones did not normalize it. Urinary excretion of urea nitrogen was normal in the turpentine oil-injected rat and did not change appreciably after treatment with thyroid hormones. Our data suggest that replacement doses of thyroid hormones are not beneficial to a host with altered thyroid economy during a systemic illness. PMID:3440823

  15. Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein.

    PubMed Central

    Muñoz, A; Zenke, M; Gehring, U; Sap, J; Beug, H; Vennström, B

    1988-01-01

    To identify and characterize the hormone-binding domain of the thyroid hormone receptor, we analyzed the ligand-binding capacities of proteins representing chimeras between the normal receptor and P75gag-v-erbA, the retrovirus-encoded form deficient in binding ligand. Our results show that several mutations present in the carboxy-terminal half of P75gag-v-erbA co-operate in abolishing hormone binding, and that the ligand-binding domain resides in a position analogous to that of steroid receptors. Furthermore, a point mutation that is located between the putative DNA and ligand-binding domains of P75gag-v-erbA and that renders it biologically inactive fails to affect hormone binding by the c-erbA protein. These results suggest that the mutation changed the ability of P75gag-v-erbA to affect transcription since it also had no effect on DNA binding. Our data also suggest that hormone-independent activity of P75gag-v-erbA provided a selective advantage to the avian erythroblastosis virus during the original selection for a highly oncogenic strain of the virus. Images PMID:3359993

  16. Postpartum Thyroiditis

    MedlinePlus

    ... high thyroid hormone levels in the blood) and hypothyroidism (low thyroid hormone levels in the blood). In postpartum thyroiditis, thyrotoxicosis occurs first followed by hypothyroidism. What causes postpartum thyroiditis? The exact cause is ...

  17. Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice

    SciTech Connect

    Dong, Hongyan; Yauk, Carole L.; Wade, Michael G.

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined with chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1

  18. Thyroid status affects number and localization of thyroid hormone receptor expressing mast cells in bone marrow.

    PubMed

    Siebler, T; Robson, H; Bromley, M; Stevens, D A; Shalet, S M; Williams, G R

    2002-01-01

    Thyroid hormone (T(3)) plays a key role in endochondral ossification. The process relies on the coordinated synthesis and degradation of cartilage matrix and is disrupted in juvenile hypothyroidism, leading to abnormal skeletal development. Mast cells synthesize and store matrix-degrading enzymes. We examined whether thyroid status influences skeletal mast cell distribution in growing rats to determine whether they might modulate the actions of T(3) in bone. Tibiae were collected for histological, histochemical, immunohistochemical, and immunofluorescence analysis. Mast cells were increased throughout the bone marrow in hypothyroid rats compared with euthyroid, thyrotoxic, and hypothyroid-thyroxine replaced animals. Large numbers were present in metaphyseal marrow adjacent to the growth plate in hypothyroid animals and cells were distributed evenly throughout the marrow. Very few mast cells were present in metaphyseal marrow in other groups, but their numbers increased with increasing distance from the growth plate. T(3) receptor alpha1 (TRalpha1) was expressed in the nucleus and cytoplasm of skeletal mast cells, whereas TRalpha2 and TRbeta1 were restricted to the cytoplasm. Localization of TRs was not affected by altered thyroid status. Thus, disrupted endochondral ossification in hypothyroidism may be mediated in part by skeletal mast cells, which express TR proteins and may function as T(3) target cells.

  19. The Thyroid Hormone Analog DITPA Ameliorates Metabolic Parameters of Male Mice With Mct8 Deficiency.

    PubMed

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Ye, Honggang; Weiss, Roy E; Dumitrescu, Alexandra M; Refetoff, Samuel

    2015-11-01

    Mutations in the gene encoding the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), cause mental retardation in humans associated with a specific thyroid hormone phenotype manifesting high serum T3 and low T4 and rT3 levels. Moreover, these patients have failure to thrive, and physiological changes compatible with thyrotoxicosis. Recent studies in Mct8-deficient (Mct8KO) mice revealed that the high serum T3 causes increased energy expenditure. The TH analog, diiodothyropropionic acid (DITPA), enters cells independently of Mct8 transport and shows thyromimetic action but with a lower metabolic activity than TH. In this study DITPA was given daily ip to adult Mct8KO mice to determine its effect on thyroid tests in serum and metabolism (total energy expenditure, respiratory exchange rate, and food and water intake). In addition, we measured the expression of TH-responsive genes in the brain, liver, and muscles to assess the thyromimetic effects of DITPA. Administration of 0.3 mg DITPA per 100 g body weight to Mct8KO mice brought serum T3 levels and the metabolic parameters studied to levels observed in untreated Wt animals. Analysis of TH target genes revealed amelioration of the thyrotoxic state in liver, somewhat in the soleus, but there was no amelioration of the brain hypothyroidism. In conclusion, at the dose used, DITPA mainly ameliorated the hypermetabolism of Mct8KO mice. This thyroid hormone analog is suitable for the treatment of the hypermetabolism in patients with MCT8 deficiency, as suggested in limited preliminary human trials. PMID:26322373

  20. A 10-amino-acid sequence in the N-terminal A/B domain of thyroid hormone receptor alpha is essential for transcriptional activation and interaction with the general transcription factor TFIIB.

    PubMed Central

    Hadzic, E; Desai-Yajnik, V; Helmer, E; Guo, S; Wu, S; Koudinova, N; Casanova, J; Raaka, B M; Samuels, H H

    1995-01-01

    The effects of the thyroid hormone (3,5,3'-triiodo-L-thyronine [T3]) on gene transcription are mediated by nuclear T3 receptors (T3Rs). alpha- and beta-isoform T3Rs (T3R alpha and -beta) are expressed from different genes and are members of a superfamily of ligand-dependent transcription factors that also includes the receptors for steroid hormones, vitamin D, and retinoids. Although T3 activates transcription by mediating a conformational change in the C-terminal approximately 220-amino-acid ligand-binding domain (LBD), the fundamental mechanisms of T3R-mediated transcriptional activation remain to be determined. We found that deletion of the 50-amino-acid N-terminal A/B domain of chicken T3R alpha (cT3R alpha) decreases T3-dependent stimulation of genes regulated by native thyroid hormone response elements about 10- to 20-fold. The requirement of the A/B region for transcriptional activation was mapped to amino acids 21 to 30, which contain a cluster of five basic amino acids. The A/B region of cT3R alpha is not required for T3 binding or for DNA binding of the receptor as a heterodimer with retinoid X receptor. In vitro binding studies indicate that the N-terminal region of cT3R alpha interacts efficiently with TFIIB and that this interaction requires amino acids 21 to 30 of the A/B region. In contrast, the LBD interacts poorly with TFIIB. The region of TFIIB primarily involved in the binding of cT3R alpha includes an amphipathic alpha helix contained within residues 178 to 201. Analysis using a fusion protein containing the DNA-binding domain of GAL4 and the entire A/B region of cT3R alpha suggests that this region does not contain an intrinsic activation domain. These and other studies indicate that cT3R alpha mediates at least some of its effects through TFIIB in vivo and that the N-terminal region of DNA-bound cT3R alpha acts to recruit and/or stabilize the binding of TFIIB to the transcription complex. T3 stimulation could then result from ligand

  1. Xenopus laevis alpha and beta thyroid hormone receptors.

    PubMed Central

    Yaoita, Y; Shi, Y B; Brown, D D

    1990-01-01

    The Xenopus laevis genome encodes two genes for the alpha (TR alpha) and two genes for the beta (TR beta) thyroid hormone receptors. The two TR alpha genes closely resemble their rat, human, and chicken counterparts. No alternatively spliced TR alpha cDNA clones were found in the 5' untranslated region (5' UTR). In contrast, complex alternative splicing of TR beta mRNA occurs within the 5' UTR as well as possible alternative transcriptional start sites. As many as eight exons encoding mainly the 5' UTR are alternatively spliced, giving rise to at least two amino termini for each of the two TR beta proteins. The 5' UTR of transcripts from both TR alpha and TR beta genes contain multiple AUG sequences with short open reading frames suggesting translational control mechanisms might play a role in expression of TR genes. Images PMID:2402492

  2. Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD.

    PubMed

    Sinha, Rohit Anthony; Yen, Paul M

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a fast-growing silent epidemic that is present in both developed and developing countries. Initially thought as a benign deposition of lipids in the liver, it now has been shown to be a major risk factor for type II diabetes and one of the leading causes of cirrhosis. Recent findings suggest that dysregulation of mitochondrial homeostasis and autophagy play critical roles in the hepatocyte injury and insulin resistance of NAFLD. Thyroid hormone (TH) is a major stimulator of hepatic autophagy and mitochondrial function. Decreased TH action has been associated with NAFLD in man. In this review, we highlight some of the new discoveries that demonstrate the roles of TH in hepatic mitochondrial homeostasis via mitophagy and their implications for NAFLD. PMID:27437098

  3. Thyroid hormones and skeletal muscle — new insights and potential implications

    PubMed Central

    Salvatore, Domenico; Simonides, Warner S.; Dentice, Monica; Zavacki, Ann Marie; Larsen, P. Reed

    2014-01-01

    Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type two (DIO2) and three (DIO3) iodothyronine deiodinases have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyzes outer ring monodeiodination of the secreted prohormone tetraiodothyronine (T4) to generate the active hormone triiodothyronine (T3). T3 may remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T3 through removal of an inner ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T3. This local control of T3 activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how they can be therapeutically harnessed to improve satellite cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury. PMID:24322650

  4. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    PubMed

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.

  5. The syndromes of reduced sensitivity to thyroid hormone

    PubMed Central

    Dumitrescu, Alexandra M.; Refetoff, Samuel

    2012-01-01

    Background Six known steps are required for the circulating thyroid hormone (TH) to exert its action on target tissues. For three of these steps, human mutations and distinct phenotypes have been identified. Scope of Review The clinical, laboratory, genetic and molecular characteristics of these three defects of TH action are the subject of this review. The first defect, recognized 45 years ago, produces resistance to TH and carries the acronym, RTH. In the majority of cases it is caused by TH receptor β gene mutations. It has been found in over 3,000 individuals belonging to approximately 1,000 families. Two relatively novel syndromes presenting reduced sensitivity to TH involve membrane transport and metabolism of TH. One of them, caused by mutations in the TH cell-membrane transporter MCT8, produces severe psychomotor defects. It has been identified in more than 170 males from 90 families. A defect of the intracellular metabolism of TH in 10 individuals from 8 families is caused by mutations in the SECISBP2 gene required for the synthesis of selenoproteins, including TH deiodinases. Major Conclusions Defects at different steps along the pathway leading to TH action at cellular level can manifest as reduced sensitivity to TH. General Significance Knowledge of the molecular mechanisms involved in TH action allows the recognition of the phenotypes caused by defects of TH action. Once previously known defects have been ruled out, new molecular defects could be sought, thus opening the avenue for novel insights in thyroid physiology. PMID:22986150

  6. Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats

    SciTech Connect

    Šošić-Jurjević, Branka; Filipović, Branko; Wirth, Eva Katrin; Živanović, Jasmina; Radulović, Niko; Janković, Snežana; Milošević, Verica; Köhrle, Josef

    2014-07-15

    We previously reported that genistein (G) and daidzein (D) administered subcutaneously (10 mg/kg) induce changes in the angio-follicular units of the thyroid gland, reduce concentration of total thyroid hormones (TH) and increase thyrotropin (TSH) in serum of orchidectomized middle-aged (16-month-old) rats. To further investigate these effects, we now examined expression levels of the thyroglobulin (Tg), thyroperoxidase (Tpo), vascular endothelial growth factor A (Vegfa) and deiodinase type 1 (Dio 1) genes in the thyroid; in the pituitary, genes involved in TH feedback control (Tsh β, Dio 1, Dio 2, Trh receptor); and in the liver and kidney, expression of T{sub 3}-activated genes Dio 1 and Spot 14, as well as transthyretin (Ttr), by quantitative real-time PCR. We also analyzed TPO-immunopositivity and immunofluorescence of T{sub 4} bound to Tg, determined thyroid T{sub 4} levels and measured deiodinase enzyme activities in examined organs. Decreased expression of Tg and Tpo genes (p < 0.05) correlated with immunohistochemical staining results, and together with decreased serum total T{sub 4} levels, indicates decreased Tg and TH synthesis following treatments with both isoflavones. However, expression of Spot 14 (p < 0.05) gene in liver and kidney was up-regulated, and liver Dio 1 expression and activity (p < 0.05) increased. At the level of pituitary, no significant change in gene expression levels, or Dio 1 and 2 enzyme activities was observed. In conclusion, both G and D impaired Tg and TH synthesis, but at the same time increased tissue availability of TH in peripheral tissues of Orx middle-aged rats. - Highlights: • We tested how genistein and daidzein interfere with thyroid hormone homeostasis. • Thyroid: decreased expression of Tg and TPO genes correlated with IHC results. • Serum: total T{sub 4} reduced and TSH increased. • Liver and kidney: expression of Spot 14 and liver Dio 1 activity increased. • Pituitary: expression of T{sub 3}-regulated

  7. Thyroid-stimulating hormone (TSH)-directed induction of the CREM gene in the thyroid gland participates in the long-term desensitization of the TSH receptor.

    PubMed Central

    Lalli, E; Sassone-Corsi, P

    1995-01-01

    Thyroid gland function is regulated by the hypothalamic-pituitary axis via the secretion of TSH, according to environmental, developmental, and circadian stimuli. TSH modulates both the secretion of thyroid hormone and gland trophism through interaction with a specific guanine nucleotide-binding protein-coupled receptor (TSH receptor; TSH-R), which elicits the activation of the cAMP-dependent signaling pathway. After TSH stimulation, the levels of TSH-R RNA are known to decrease dramatically within a few hours. This phenomenon ultimately leads to homologous long-term desensitization of the TSH-R. Here we show that TSH drives the induction of the inducible cAMP early repressor (ICER) isoform of the cAMP response element (CRE) modulator gene both in rat thyroid gland and in the differentiated thyroid cell line FRTL-5. The kinetics of ICER protein induction mirrors the down-regulation of TSH-R mRNA. ICER binds to a CRE-like sequence in the TSH-R promoter and represses its expression. Thus, ICER induction by TSH in the thyroid gland represents a paradigm of the molecular mechanism by which pituitary hormones elicit homologous long-term desensitization. Images Fig. 1 Fig. 2 Fig. 3 PMID:7568187

  8. Mode of action: developmental thyroid hormone insufficiency--neurological abnormalities resulting from exposure to propylthiouracil.

    PubMed

    Zoeller, R Thomas; Crofton, Kevin M

    2005-01-01

    Because thyroid hormone is essential for normal brain development before and after birth, environmental chemicals that interfere with thyroid hormone signaling can adversely affect brain development. Adverse consequences of thyroid hormone insufficiency depend both on severity and developmental timing, indicating that environmental antithyroid factors may produce different effects at different developmental windows of exposure. Mechanistic studies can provide important insight into the potential impact of chemicals on human thyroid function, but relevance to humans must be systematically evaluated. This kind of analysis depends on data sets that include information about animals and humans. The drug 6-n-propyl-2-thiouracil (PTU) is used in animals to experimentally manipulate serum thyroid hormone levels, and in humans to treat patients, including pregnant women, with Graves' disease. A systematic analysis of the mode of action (MOA) of PTU in rats and in humans discloses similar modes of action. While the analysis predicts that PTU doses that produce thyroid hormone insufficiency in humans would adversely affect the developing brain, careful monitoring of PTU administration in pregnant and lactating humans keeps infant serum thyroid hormone levels within the normal range.

  9. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis

    PubMed Central

    Roepke, Torsten K.; King, Elizabeth C.; Reyna-Neyra, Andrea; Paroder, Monika; Purtell, Kerry; Koba, Wade; Fine, Eugene; Lerner, Daniel J.; Carrasco, Nancy; Abbott, Geoffrey W.

    2009-01-01

    Thyroid dysfunction affects 1–4% of the population worldwide, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that KCNQ1 and KCNE2 form a TSH-stimulated, constitutively-active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 impaired thyroid iodide accumulation up to 8-fold, impaired maternal milk ejection and halved milk T4 content, causing hypothyroidism, 50% reduced litter size, dwarfism, alopecia, goiter, and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by T3/T4 administration to pups, by supplementing dams with T4 pre- and postpartum, or by pre-weaning surrogacy with Kcne2+/+ dams; conversely these symptoms were elicited in Kcne2+/+ pups by surrogacy with Kcne2−/− dams. The data identify a critical thyrocyte K+ channel, provide a possible novel therapeutic avenue for thyroid disorders, and predict an endocrine component to some previously-identified KCNE2- and KCNQ1-linked human cardiac arrhythmias. PMID:19767733

  10. Role of thyroid hormone in postnatal circulatory and metabolic adjustments.

    PubMed Central

    Breall, J A; Rudolph, A M; Heymann, M A

    1984-01-01

    To assess the role of the early postnatal surge in plasma thyroid hormone concentrations on cardiovascular and metabolic adaptations, we measured cardiac output, total oxygen consumption, and plasma triiodothyronine (T3) concentrations in three groups of lambs in the first 6 h after delivery. 15 fetal lambs were prepared at gestational ages of 128-129 d by placing catheters in the brachiocephalic artery, descending aorta, distal inferior vena cava, left atrium, and pulmonary artery so that measurements could be made soon after delivery. They were divided into three groups: Group I comprised five control animals; Group II consisted of five fetuses in which thyroidectomy was performed at surgery at 129 d gestation; and Group III consisted of five animals in which thyroidectomy was performed at term gestation during delivery by caesarian section, prior to severing the umbilical cord. The lambs in Group I exhibited a rapid postnatal rise in T3 concentrations, similar to that described previously, reaching a peak value of about 5 ng/ml. Although the postnatal surge in T3 concentration was arrested in Group II and III animals, Group II had no detectable plasma T3, while the Group III animals had T3 concentrations of about 0.8 ng/ml, which were within the range previously reported for term lamb fetuses. The lambs in group II showed 40-50% lower left ventricular outputs (190 vs. 297 ml/kg per min), systemic blood flows (155 vs. 286 ml/kg per min), and oxygen consumptions (9.8 vs. 20.2 ml/kg per min) as compared with Group I animals over the entire 6-h period. The lambs in Group II also had significantly lower heart rates (131 vs. 192 beats/min) and mean systemic arterial pressures (56 vs. 72 torr). However, there were no significant differences for any of these measurements between the Group III and Group I lambs. The reduction in cardiac output in the Group II animals were reflected in a significantly lower blood flow to the peripheral circulation, but there were no

  11. Increased FOG-2 in failing myocardium disrupts thyroid hormone-dependent SERCA2 gene transcription.

    PubMed

    Rouf, Rosanne; Greytak, Sarah; Wooten, Eric C; Wu, Jing; Boltax, Jay; Picard, Michael; Svensson, Eric C; Dillmann, Wolfgang H; Patten, Richard D; Huggins, Gordon S

    2008-08-29

    Reduced expression of sarcoplasmic reticulum calcium ATPase (SERCA)2 and other genes in the adult cardiac gene program has raised consideration of an impaired responsiveness to thyroid hormone (T3) that develops in the advanced failing heart. Here, we show that human and murine cardiomyopathy hearts have increased expression of friend of GATA (FOG)-2, a cardiac nuclear hormone receptor corepressor protein. Cardiac-specific overexpression of FOG-2 in transgenic mice led to depressed cardiac function, activation of the fetal gene program, congestive heart failure, and early death. SERCA2 transcript and protein levels were reduced in FOG-2 transgenic hearts, and FOG-2 overexpression impaired T3-mediated SERCA2 expression in cultured cardiomyocytes. FOG-2 physically interacts with thyroid hormone receptor-alpha1 and abrogated even high levels of T3-mediated SERCA2 promoter activity. These results demonstrate that SERCA2 is an important target of FOG-2 and that increased FOG-2 expression may contribute to a decline in cardiac function in end-stage heart failure by impaired T3 signaling.

  12. Making the gradient: Thyroid hormone regulates cone opsin expression in the developing mouse retina

    PubMed Central

    Roberts, Melanie R.; Srinivas, Maya; Forrest, Douglas; Morreale de Escobar, Gabriella; Reh, Thomas A.

    2006-01-01

    Most mammals have two types of cone photoreceptors, which contain either medium wavelength (M) or short wavelength (S) opsin. The number and spatial organization of cone types varies dramatically among species, presumably to fine-tune the retina for different visual environments. In the mouse, S- and M-opsin are expressed in an opposing dorsal–ventral gradient. We previously reported that cone opsin patterning requires thyroid hormone β2, a nuclear hormone receptor that regulates transcription in conjunction with its ligand, thyroid hormone (TH). Here we show that exogenous TH inhibits S-opsin expression, but activates M-opsin expression. Binding of endogenous TH to TRβ2 is required to inhibit S-opsin and to activate M-opsin. TH is symmetrically distributed in the retina at birth as S-opsin expression begins, but becomes elevated in the dorsal retina at the time of M-opsin onset (postnatal day 10). Our results show that TH is a critical regulator of both S-opsin and M-opsin, and suggest that a TH gradient may play a role in establishing the gradient of M-opsin. These results also suggest that the ratio and patterning of cone types may be determined by TH availability during retinal development. PMID:16606843

  13. An Evo-Devo Approach to Thyroid Hormones in Cerebral and Cerebellar Cortical Development: Etiological Implications for Autism

    PubMed Central

    Berbel, Pere; Navarro, Daniela; Román, Gustavo C.

    2014-01-01

    The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction. PMID:25250016

  14. The response of thyroid hormones, biochemical and enzymological biomarkers to pyrene exposure in common carp (Cyprinus carpio).

    PubMed

    Shirdel, Iman; Kalbassi, Mohammad Reza; Shokri, Milad; Olyaei, Roya; Sharifpour, Issa

    2016-08-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are discharged into aquatic environments through anthropogenic activities mainly industrial and municipal effluents. There is little information on the adverse effects of pyrene, a member of the PAH family which is classified as a priority pollutant by the USEPA, on fish biochemical and physiological endpoints, particularly thyroid hormones. The present study investigated the effects of subacute semi-static pyrene exposure on biochemical, enzymological and ionoregulatory responses as well as thyroid hormones in common carp (Cyprinus carpio). The fish (140±10g, 1(+) year) were exposed to 10, 50 and 100µg/l nominal concentrations of pyrene for 35 days. The results revealed that pyrene at these concentrations significantly altered plasma levels of glucose, cholesterol, triglyceride, total protein, albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP). Moreover, plasma thyroid hormones (T3 and T4) were significantly decreased in fish exposed to pyrene. In contrast, plasma electrolytes (sodium, potassium and calcium) levels remained statistically unchanged after exposure to the various pyrene concentrations. In conclusion, the studied biomarkers may be used as monitoring tools to evaluate pyrene toxicity. Pyrene induced diverse effects on the physiological endpoints of common carp, thus this chemical should be considered in toxicity studies concerning PAHs. Furthermore, this study confirmed that there was an interaction between pyrene and the thyroid system in fish. Therefore, the thyroid system may be used to assess the impact of pyrene on fish. PMID:27123973

  15. An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism.

    PubMed

    Berbel, Pere; Navarro, Daniela; Román, Gustavo C

    2014-01-01

    The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction.

  16. MODEST THYROID HORMONE INSUFFICIENCY DURING DEVELOPMENT INDUCES A CELLULAR MALFORMATION IN THE CORPUS CALLOSUM: A MODEL OF CORTICAL DYSPLASIA.

    EPA Science Inventory

    There is a growing body of evidence that subtle decreases in maternal thyroid hormone during gestation can impact fetal brain development. The present study examined the impact of graded levels of thyroid hormone insufficiency on brain development in rodents. Maternal thyroid ho...

  17. Increased thyroid hormone levels in tree swallows (Tachycineta bicolor) on reclaimed wetlands of the athabasca oil sands.

    PubMed

    Gentes, Marie-Line; McNabb, Anne; Waldner, Cheryl; Smits, Judit E G

    2007-08-01

    The oil sands of Alberta, Canada are one of the world's largest reserves of crude oil. Oil sands mining companies are now investigating the ecological impacts of reclamation strategies in which wetlands are used for the bioremediation of waste materials. To examine the endocrine disrupting potential of chemicals in Oil Sands Process Materials (OSPM), thyroid hormone concentrations were measured in plasma and thyroid glands of nestling tree swallows (Tachycineta bicolor) from wetlands partly filled with mine tailings. Plasma triiodothyronine (T(3)) concentrations and thyroxine (T(4)) content within thyroid glands were elevated in nestlings from OSPM sites compared to those from the reference site. Results suggested enhanced hormone synthesis by the thyroid glands independently of activation of the pituitary-thyroid axis, as well as increased deiodination of T(4) into T(3) in peripheral tissues. This might have resulted from exposure to oil sands associated chemicals such as polycyclic aromatic hydrocarbons and from environmental factors such as food availability. Modulation of thyroid function might have negative effects on metabolism, behavior, feather development, and molt, which could compromise postfledging survival.

  18. Hair thyroid hormones concentration in patients with depression changes with disease episodes in female Chinese.

    PubMed

    Wei, Jinxue; Sun, Guizhi; Zhao, Liansheng; Liu, Xiang; Lin, Dongtao; Li, Tao; Ma, Xiaohong

    2014-12-15

    Abnormal function of thyroid and deregulation of level of blood thyroid hormones, including triiodothyronine (T3) and thyroxine (T4), have been observed in patients with major depression. Nevertheless, no consistent conclusion can be drawn from previous reports. Hair hormones reflect average hormones levels in a certain period and have been involved in the studies of psychiatric diseases. However, no research has elucidated the relation between hair thyroid hormones level and depression. In the present study, we explored the correlation between thyroid hormones and major depression by analyzing and comparing the levels of hair thyroid hormones in patients with depression (n=30) and healthy controls (n=30). Our results showed that the levels of hair T3 and T4 were significantly lower in patients with depression in disease episode than that in pre-disease episode or in healthy controls. Moreover, patients with depression in pre-disease episode had a higher hair T4 level than healthy controls. No significant correlation was observed between hair T3 or T4 levels and the Hamilton depression rating scale and Hamilton anxiety rating scale scores. Our results indicate that hair thyroid hormones levels change with the episodes of depressions, which may be helpful for pathological studies of depression.

  19. Serum levels of sex hormones and expression of their receptors in thyroid tissue in female patients with various types of thyroid neoplasms.

    PubMed

    Liu, Jia; Chen, Guang; Meng, Xian-Ying; Liu, Zhong-Hui; Dong, Su

    2014-12-01

    Previous studies have demonstrated the expression of estrogen receptor (ER) and progesterone receptor (PR) in thyroid cancer; however, little is known regarding the levels of estrogen, progesterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in serum and the expression of ER, PR, FSH receptor (FSHR), and LH receptor (LHR) in thyroid tissues of patients with different types of thyroid neoplasms. Serum levels of estrogen, progesterone, FSH, and LH were measured by chemiluminescence, and expression of ER, PR, FSHR, and LHR in thyroid tissue was detected by immunohistochemistry in female patients with thyroid adenoma (n = 70), nodular goiter (n = 73), thyroid papillary cancer (n = 149), poorly differentiated thyroid carcinoma (n = 12), or undifferentiated thyroid carcinoma (n = 8) and in normal controls (n = 60). The positive rates of serum estrogen level and ERα expression were significantly greater in patients with various types of thyroid neoplasms than in normal controls. The positive rates of ERβ expression were significantly less in various types of thyroid neoplasms than in normal thyroid tissues, especially in poorly differentiated carcinoma and undifferentiated carcinoma. The negative rates of serum progesterone level and positive rates of PR expression in thyroid tissue were significantly greater in patients with thyroid adenoma, nodular goiter, or thyroid papillary cancer than in normal controls. The positive rates of serum FSH and LH levels and FSHR and LHR expression were significantly greater in the thyroid adenoma group than in other groups. Our findings suggest that thyroid neoplasms might be sex hormone-dependent. The positive expression of ERα and PR often indicates thyroid papillary carcinoma, and the ERβ expression status is important for the diagnosis of poorly differentiated carcinoma and undifferentiated carcinoma. In addition, thyroid adenoma is often accompanied by an increase in serum FSH and LH levels, as well as

  20. Immunization of mice with a newly identified thyroid-stimulating hormone receptor splice variant induces Graves'-like disease.

    PubMed

    Endo, Toyoshi; Kobayashi, Teturo

    2013-06-01

    We have cloned a thyroid-stimulating hormone receptor (TSHR) cDNA from mouse thyroid glands. The sequence of this cDNA indicated that it encoded a 739 amino acid TSHR splice variant that lacked exon 5 (TSHR739). In thyroid gland samples from adult mice, the amount of TSHR739 mRNA was about 10% of the amount of full-length TSHR (TSHR764) mRNA. A eCFP-tagged TSHR739 integrated into plasma membrane, but lacked TSH binding activity and it did not produce cAMP in response to TSH. However, thyroid-stimulating antibodies from patients with Graves' disease stimulated cAMP production in HEK293 cells that expressed TSHR739. Quantitative PCR revealed that TSHR739 transcript levels were low in the fetal mouse thyroid samples, but TSHR739 transcript levels increased after birth and as the mice grew. We used plasmid injection combined with electroporation into skeletal muscles to immunize BALB/c mice with TSHR739, TSHR764,, or control plasmid; TSHR739 caused goiters, high (125)I uptake activity, thyrotoxicosis, and production of thyroid-stimulating antibodies, but TSHR764, or control did not. These results indicated that immunization with an autologous TSHR antigen, TSHR739, induced Graves'-like disease in mice, and that TSHR739 is a candidate autoantigen in autoimmune thyroid disease. PMID:23538203

  1. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland.

    PubMed

    Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej

    2015-03-01

    The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken.

  2. Hatching the Cleidoic Egg: The Role of Thyroid Hormones

    PubMed Central

    De Groef, Bert; Grommen, Sylvia V.H.; Darras, Veerle M.

    2013-01-01

    A major life stage transition in birds and other oviparous sauropsids is the hatching of the cleidoic egg. Not unlike amphibian metamorphosis, hatching in these species can be regarded as a transition from a relatively well-protected “aqueous” environment to a more hazardous and terrestrial life outside the egg, a transition in which thyroid hormones (THs) (often in concert with glucocorticoids) play an important role. In precocial birds such as the chicken, the perihatch period is characterized by peak values of THs. THs are implicated in the control of muscle development, lung maturation and the switch from chorioallantoic to pulmonary respiration, yolk sac retraction, gut development and induction of hepatic genes to accommodate the change in dietary energy source, initiation of thermoregulation, and the final stages of brain maturation as well as early post-hatch imprinting behavior. There is evidence that, at least for some of these processes, THs may have similar roles in non-avian sauropsids. In altricial birds such as passerines on the other hand, THs do not rise significantly until well after hatching and peak values coincide with the development of endothermy. It is not known how hatching-associated processes are regulated by hormones in these animals or how this developmental mode evolved from TH-dependent precocial hatching. PMID:23755041

  3. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    EPA Science Inventory

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  4. Developmental Thyroid Hormone Insufficiency Impairs Visual Contrast Sensitivity in Adult Male Offspring.

    EPA Science Inventory

    Severe thyroid hormone (TH) insufficiency during early development results in alterations in brain structure and function. Many environmental agents produce subtle alterations in TH status, but the dose-response relationships for such effects are unclear. We have previously demon...

  5. DEVELOPMENTAL THYROID HORMONE INSUFFICIENCY ALTERS THE AMPLITUDE OF THE ACOUSTIC STARTLE RESPONSE IN RATS

    EPA Science Inventory

    Purpose: The thyroid hormone (TH) system is one of the targets of endocrine disrupting chemicals. Since TH is essential for proper brain development, disruption by exposure to chemicals during development can result in adverse neurological outcomes. Previous studies revealed th...

  6. Neonatal screening for congenital hypothyroidism by measurement of plasma thyroxine and thyroid stimulating hormone concentrations.

    PubMed Central

    Griffiths, K D; Virdi, N K; Rayner, P H; Green, A

    1985-01-01

    Neonatal screening for congenital hypothyroidism was introduced in the City of Birmingham in 1980 by measuring concentrations of both thyroid stimulating hormone and thyroxine in plasma. Over two years 30 108 babies were tested. Thirty one babies were recalled because of thyroid stimulating hormone concentrations greater than 40 mU/l, of whom 12 were treated with replacement thyroxine. Six babies were found to have low thyroxine concentrations because of reduced thyroxine binding globulin and five raised thyroxine values because of increased thyroxine binding globulin. As a result of this study screening was continued with measurement of thyroid stimulating hormone only as the primary test for congenital hypothyroidism, the thyroxine value being measured only when the concentration of thyroid stimulating hormone exceeded 20 mU/l. PMID:3926078

  7. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function.*

    EPA Science Inventory

    The critical role of thyroid hormone (TH) in brain development is well established, severe deficiencies leading to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degr...

  8. MEASUREMENT OF THYROID HORMONES IN THE RAT SERA CONTAINING PERFLUOROOCTANESULFONATE (PFOS)

    EPA Science Inventory

    Perfluorooctanesulfonate (PFOS), a persistent and bioaccumulative acid, is widely distributed in humans and wildlife. Prior studies with PFOS (rats and monkeys) have observed decreased total and free thyroid hormones (TH) in serum without a rise in thyrotropin (TSH). Measuremen...

  9. Computational Modeling of Thyroid Hormone Regulated Neurodevelopment for Chemical Prioritization (SOT)

    EPA Science Inventory

    Thyroid hormones (TH) are critical for normal brain development. Environmental chemicals may disrupt TH homeostasis through a variety of physiological systems including membrane transporters, serum transporters, synthesis and catabolic enzymes, and nuclear receptors. Current comp...

  10. Characterization of Thyroid Hormone Transporter Protein Expression during Tissue-specific Metamorphic Events in Xenopus tropicalis

    EPA Science Inventory

    Thyroid hormone (TH) induces the dramatic morphological and physiological changes that together comprise amphibian metamorphosis. TH-responsive tissues vary widely with developmental timing of TH-induced changes. How larval tadpole tissues are able to employ distinct metamorphi...

  11. Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals

    EPA Science Inventory

    The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endo...

  12. THYROID HORMONE INSUFFICIENCY DURING BRAIN DEVELOPMENT REDUCES PARVALBUMIN IMMUNOREACTIVITY AND INHIBITORY FUNCTION IN THE HIPPOCAMPUS.

    EPA Science Inventory

    The EPA must evaluate the risk of exposure of the developing brain to chemicals with the potential to disrupt thyroid hormone homeostasis. The existing literature identifies morphological and neurochemical indices of severe neonatal hypothyroidism in the early postnatal period i...

  13. RISK ASSESSMENT OF THYROID HORMONE DISRUPTION AND MIXTURES IN MARINE BIOTA

    EPA Science Inventory

    Varieties of chemicals alter thyroid hormones (THs) in vertabrates. The importance of THs during neurodevelopment, suggest that these chemicals would likely be developmental neurotoxicants. A number of epidemiological studies have demonstrated associations between exposure to p...

  14. [The disturbances of the thyroid hormone homeostasis caused by chemical substances occurring in natural environment].

    PubMed

    Kiałka, Marta; Doroszewska, Katarzyna; Mrozińska, Sandra; Milewicz, Tomasz; Stochmal, Ewa; Krzysiek, Józef

    2014-01-01

    The thyroid is an endocrine gland synthesizing, storaging and secreting thyroxine (T4) and triiodothyronine (T3). Currently, there are more and more reports and evidences that various chemical contaminants present in the environment, mainly polychlorinated biphenyls, interfere with stages of regulation, synthesis, secretion, transport of thyroid hormones. That can have a significant negative impact on the human body's endocrine homeostasis.

  15. Analysis of thyroid hormones in gland and serum using liquid chromatography-tandem mass spectrometry

    EPA Science Inventory

    Thyroid hormones (THs), which are critical for growth and development in all vertebrates, can be impacted through chemical perturbation of the hypothalamic-pituitary-thyroid (HPT)-axis. Amphibian and mammalian models are being used to address this research priority within US EPA...

  16. Gene Expression in Developing Brain is Altered by Modest Reductions in Circulating Levels of Thyroid Hormone.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...

  17. HPLC-ICP/MS Analysis of Thyroid Hormone and Related Iodinated Compounds in Tissues and Media

    EPA Science Inventory

    Quantifying thyroid hormone (TH) and the synthetic precursors and metabolic products of TH is important for developing models of the hypothalamic-pituitary-thyroid (HPT) axis as well as for understanding the effects of xenobiotics on HPT axis function. In this study, the developm...

  18. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury.

    PubMed

    Milanesi, Anna; Lee, Jang-Won; Kim, Nam-Ho; Liu, Yan-Yun; Yang, An; Sedrakyan, Sargis; Kahng, Andrew; Cervantes, Vanessa; Tripuraneni, Nikita; Cheng, Sheue-yann; Perin, Laura; Brent, Gregory A

    2016-01-01

    Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and β, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and β, increased myoblast differentiation whereas GC1, a selective TRβ agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/β-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRβ PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration.

  19. Zinc deficiency (ZD) without starvation affects thyroid hormone metabolism of rats

    SciTech Connect

    Lukaski, H.C.; Smith, S.M.; Hall, C.B.; Bucher, D.R. )

    1991-03-15

    Young rats fed diets severely deficient in Zn exhibit impaired growth and endocrine function. These hormone effects may be confounded by cyclical feeding and starvation. To examine the effects of zinc deficiency (ZD) with and without starvation, 40 male weanling Sprague-Dawley rats were fed a semipurified diet containing all essential nutrients and 30 ppm Zn until they weighed 150 g, then were matched by weight into four groups and were fed one of the following diets for 28d: ad lib control Zn diet, marginal ZD diet, severe ZD diet, and C diet pair-fed (PF) in amounts consumed by matched ZD1 rat. Food intake was depressed in ZD1; body weights were reduced in ZD1 and PF. There was no difference in either food intake or weight gain between C and ZD6. ZD reduced liver and femur Zn concentrations. Plasma thyroxine (T{sub 4}) concentration was greater in ZD6 then ZD1 or PF, but less than C; triodothyronine concentration was less in PF than C, but similar to ZD1 and ZD6. Hepatic T{sub 4}-5{prime}-deiodinase activity was greater in ZD6 than ZD1 or PF, but less than C. These findings indicate that altered thyroid hormone metabolism of severe ZD is related to Zn intake and starvation, whereas ZD uncomplicated by starvation affects peripheral deiodination of T{sub 4}, and suggests altered rates of thyroid hormone synthesis or degradation.

  20. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance

    PubMed Central

    Alvarez-Crespo, Mayte; Csikasz, Robert I.; Martínez-Sánchez, Noelia; Diéguez, Carlos; Cannon, Barbara; Nedergaard, Jan; López, Miguel

    2016-01-01

    Objective Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice. Methods Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry. Results We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 °C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging (“browning”) of inguinal white adipose tissue (iWAT). Conclusions We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents. PMID:27069867

  1. Molecular mechanisms of corticosteroid synergy with thyroid hormone during tadpole metamorphosis.

    PubMed

    Bonett, Ronald M; Hoopfer, Eric D; Denver, Robert J

    2010-09-01

    Corticosteroids (CS) act synergistically with thyroid hormone (TH) to accelerate amphibian metamorphosis. Earlier studies showed that CS increase nuclear 3,5,3'-triiodothyronine (T(3)) binding capacity in tadpole tail, and 5' deiodinase activity in tadpole tissues, increasing the generation of T(3) from thyroxine (T(4)). In the present study we investigated CS synergy with TH by analyzing expression of key genes involved in TH and CS signaling using tadpole tail explant cultures, prometamorphic tadpoles, and frog tissue culture cells (XTC-2 and XLT-15). Treatment of tail explants with T(3) at 100 nM, but not at 10 nM caused tail regression. Corticosterone (CORT) at three doses (100, 500 and 3400 nM) had no effect or increased tail size. T(3) at 10 nM plus CORT caused tails to regress similar to 100 nM T(3). Thyroid hormone receptor beta (TRbeta) mRNA was synergistically upregulated by T(3) plus CORT in tail explants, tail and brain in vivo, and tissue culture cells. The activating 5' deiodinase type 2 (D2) mRNA was induced by T(3) and CORT in tail explants and tail in vivo. Thyroid hormone increased expression of glucocorticoid (GR) and mineralocorticoid receptor (MR) mRNAs. Our findings support that the synergistic actions of TH and CS in metamorphosis occur at the level of expression of genes for TRbeta and D2, enhancing tissue sensitivity to TH. Concurrently, TH enhances tissue sensitivity to CS by upregulating GR and MR. Environmental stressors can modulate the timing of tadpole metamorphosis in part by CS enhancing the response of tadpole tissues to the actions of TH.

  2. Ethanol has thyrotropin-like activity in cultured porcine thyroid follicles.

    PubMed

    Nasu, M; Sugawara, M

    1993-01-01

    We describe TSH-like activity of ethanol for thyroid hormone formation in the physiological culture system. Porcine thyroid follicles were preincubated with 0-100 mM (0-0.58%) ethanol in the presence of 0-1280 microU/ml bovine TSH for 24 h; these follicles were then incubated with the mixture of Na125I and NaI to measure iodide uptake, iodine organification, and de novo thyroid hormone formation. Ethanol stimulated iodide uptake in a dose-response manner in TSH-free medium. Ethanol augmented the effect of TSH on iodide uptake, iodide organification, and thyroid hormone formation in the presence of 20-80 microU/ml TSH. When TSH concentration was 320 microU/ml or greater, ethanol no longer stimulated iodide uptake and thyroid hormone formation. Ethanol mediated iodide uptake and iodine organification were inhibited by potassium perchlorate and propylthiouracil respectively. The effect of ethanol on the thyroid follicle was reversible 24 h after removal of ethanol from the medium. The mechanism of TSH-like activity of ethanol was studied by measuring cAMP generation and Na+K+ATPase activity, a sodium pump necessary for iodide transport, in the presence of 0-1280 microU/ml TSH. Ethanol increased cAMP production in TSH-free medium; the increment of cAMP by ethanol was more prominent when 20-80 microU/ml TSH were present. Ethanol also augmented (Bu)2cAMP-mediated iodide uptake and TSH-mediated thyroid Na+K+ATPase activity. Thus, TSH-like activity of ethanol for thyroid hormone formation can be explained by activation of the cAMP system and Na+K+ATPase activity. Our results indicate that ethanol concentrations equivalent to the blood level of moderate to heavy alcohol drinkers exert TSH-like activity in the thyroid follicle. PMID:8380371

  3. Association Between Autoantibodies Against Thyroid Stimulating Hormone Receptor and Thyroid Diseases

    PubMed Central

    Latifi-Pupovci, Hatixhe

    2014-01-01

    Aim: The aim of this study is to determine the relationship between TRAb and different diseases. The highest percentage of increased TRAb levels can be found at patients with Graves’ diseases. Material and methods: Study was performed in 70 patients, grouped in three groups, and 14 persons who based on the clinical status and the levels of thyroid hormones do not have any thyroid disease. The TRAb levels has been determined in patients with Graves’ disease (N=40), Hashimoto’s disease (N=15), Plummer’s disease (N=15) and the control group (N=14). Results: The highest mean TRAb levels exist in patients with Graves’ disease. There exists a positive correlation between TRAb levels and T3, and T4, while there is no correlation between TSH and TRAb levels in patients with Graves’ disease,. On the other hand, the correlation between TRAb and T3 and T4 in patients with Hashimoto’s diseases and Plummers disease was shown to be positive, but of a low levels. PMID:27579477

  4. Predictive Modeling of a Mixture of Thyroid Hormone Disrupting Chemicals that Affect Production and Clearance of Thyroxine

    EPA Science Inventory

    Thyroid hormone (TH) disrupting compounds interfere with both thyroidal and extrathyroidal mechanisms to decrease circulating thyroxine (T4). This research tested the hypothesis that serum T4 concentrations of rodents exposed to a mixture of both TH synthesis inhibitors (pesticid...

  5. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  6. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging.

    PubMed

    Visser, W Edward; Bombardieri, Cíntia R; Zevenbergen, Chantal; Barnhoorn, Sander; Ottaviani, Alexandre; van der Pluijm, Ingrid; Brandt, Renata; Kaptein, Ellen; van Heerebeek, Ramona; van Toor, Hans; Garinis, George A; Peeters, Robin P; Medici, Marco; van Ham, Willy; Vermeij, Wilbert P; de Waard, Monique C; de Krijger, Ronald R; Boelen, Anita; Kwakkel, Joan; Kopchick, John J; List, Edward O; Melis, Joost P M; Darras, Veerle M; Dollé, Martijn E T; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; Visser, Theo J

    2016-01-01

    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging. PMID:26953569

  7. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging.

    PubMed

    Visser, W Edward; Bombardieri, Cíntia R; Zevenbergen, Chantal; Barnhoorn, Sander; Ottaviani, Alexandre; van der Pluijm, Ingrid; Brandt, Renata; Kaptein, Ellen; van Heerebeek, Ramona; van Toor, Hans; Garinis, George A; Peeters, Robin P; Medici, Marco; van Ham, Willy; Vermeij, Wilbert P; de Waard, Monique C; de Krijger, Ronald R; Boelen, Anita; Kwakkel, Joan; Kopchick, John J; List, Edward O; Melis, Joost P M; Darras, Veerle M; Dollé, Martijn E T; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; Visser, Theo J

    2016-01-01

    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.

  8. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging

    PubMed Central

    Visser, W. Edward; Barnhoorn, Sander; Ottaviani, Alexandre; van der Pluijm, Ingrid; Brandt, Renata; Kaptein, Ellen; van Heerebeek, Ramona; van Toor, Hans; Garinis, George A.; Peeters, Robin P.; Medici, Marco; van Ham, Willy; Vermeij, Wilbert P.; de Waard, Monique C.; de Krijger, Ronald R.; Boelen, Anita; Kwakkel, Joan; Kopchick, John J.; List, Edward O.; Melis, Joost P. M.; Darras, Veerle M.; Dollé, Martijn E. T.; van der Horst, Gijsbertus T. J.; Hoeijmakers, Jan H. J.; Visser, Theo J.

    2016-01-01

    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging. PMID:26953569

  9. Associations between Repeated Measures of Maternal Urinary Phthalate Metabolites and Thyroid Hormone Parameters during Pregnancy

    PubMed Central

    Johns, Lauren E.; Ferguson, Kelly K.; McElrath, Thomas F.; Mukherjee, Bhramar; Meeker, John D.

    2016-01-01

    Background: Maintaining thyroid homeostasis during pregnancy is essential for normal fetal growth and development. Growing evidence suggests that phthalates interfere with normal thyroid function. Few human studies have investigated the degree to which phthalates may affect thyroid hormone levels in particularly susceptible populations such as pregnant women. Objectives: We examined the associations between repeated measures of urinary phthalate metabolites and plasma thyroid hormone levels in samples collected at up to four time points per subject in pregnancy. Additionally, we investigated the potential windows of susceptibility to thyroid hormone disturbances related to study visit of sample collection. Methods: Data were obtained from pregnant women (n = 439) participating in a nested case–control study of preterm birth with 116 cases and 323 controls. We measured 9 phthalate metabolite concentrations in urine samples collected at up to four study visits per subject during pregnancy (median = 10, 18, 26, and 35 weeks of gestation, respectively). We also measured a panel of thyroid function markers in plasma collected at the same four time points per subject during pregnancy. Results: Although our results were generally null, in repeated measures analyses we observed that phthalate metabolites were largely inversely associated with thyrotropin and positively associated with free and total thyroid hormones. Cross-sectional analyses by study visit revealed that the magnitude and/or direction of these relationships varied by timing of exposure during gestation. Conclusions: These results support previous reports showing the potential for environmental phthalate exposure to alter circulating levels of thyroid hormones in pregnant women. Citation: Johns LE, Ferguson KK, McElrath TF, Mukherjee B, Meeker JD. 2016. Associations between repeated measures of maternal urinary phthalate metabolites and thyroid hormone parameters during pregnancy. Environ Health Perspect

  10. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice.

    PubMed

    Morte, Beatriz; Ceballos, Ainhoa; Diez, Diego; Grijota-Martínez, Carmen; Dumitrescu, Alexandra M; Di Cosmo, Caterina; Galton, Valerie Anne; Refetoff, Samuel; Bernal, Juan

    2010-05-01

    Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T(3) in the brain depends on T(3) transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T(3) from T(4). The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T(3) because Dio2 inactivation selectively affects the expression of negatively regulated genes. PMID:20211971

  11. [Hypothyroidism Associated to TSH Hormone-Receptor Autoantibodies with Blocking Activity Assessed In Vitro].

    PubMed

    Marques, Pedro; Chikh, Karim; Charrié, Anne; Pina, Rosa; Bugalho, Maria João; Lopes, Lurdes

    2015-01-01

    Thyroid-stimulating hormone-receptor autoantibodies normally causes hyperthyroidism. However, they might have blocking activity causing hypothyroidism. A 11-year-old girl followed due to type 1 diabetes mellitus, celiac disease and euthyroid lymphocytic thyroiditis at diagnosis. Two years after the initial evaluation, thyroid-stimulating hormone was suppressed with normal free T4; nine months later, a biochemical evolution to hypothyroidism with thyroid-stimulating hormone-receptor autoantibodies elevation was seen; the patient remained always asymptomatic. Chinese hamster ovary cells were transfected with the recombinant human thyroid-stimulating hormone -receptor, and then exposed to the patient's serum; it was estimated a 'moderate' blocking activity of these thyroid-stimulating hormone-receptor autoantibodies, and concomitantly excluded stimulating action. In this case, the acknowledgment of the blocking activity of the serum thyroid-stimulating hormone-receptor autoantibodies, supported the hypothesis of a multifactorial aetiology of the hypothyroidism, which in the absence of the in vitro tests, we would consider only as a consequence of the destructive process associated to lymphocytic thyroiditis.

  12. Effects of sub-lethal heroin administration on thyroid stimulating hormone (TSH), thyroid hormones (T3, T4) and thyroid gland of Mus norvegicus.

    PubMed

    Bhoir, Kaminidevi K; Suryawanshi, S A; Pandey, A K

    2009-11-01

    Serum TSH level of control Mus norvegicus fluctuated between 498.20 +/- 21.92 and 506.80 +/- 22.35 ng ml(-1), thyroxine (T4) between 68.17 +/- 3.46 and 69.03 +/- 4.12 microg dl(-1) and triiodothyronine (T3) between 4.76 +/- 0.52 and 5.00 +/- 0.66 microg dl(-1). Sub-lethal heroin administration induced a significant decline in the levels of all the three hormones at 24 hr and 15 days post-administration. Decline in the levels of these hormones registered the lowest values (p<0.001) by day 30 of the treatment. Thyroid gland of control rat consisted of spherical, round follicles lined with low cuboidal and columnar epithelial cells and lumina filled with eosinophilic colloid. Ultrastructurally, the thyroid follicular cells showed the presence of round nuclei, polymorphic mitochondria, Golgi complex as well as lysosomes located on the apical side of the nucleus and cytoplasm with different sizes of lipid droplets and smooth along with rough endoplasmic reticulum. Basal lamina of the follicular cells was often in association with the endothelium of the capillaries. Sub-lethal heroin administration for 30 days elicited degenerative changes in the follicular epithelial cells as evident by the vacuolization of cytoplasm, pycnotic nuclei and reduced colloidal content. Ultrastructurally, the thyroid follicular cells showed indented nuclei with heavy deposition of chromatin material on the inner membrane of nucleus and dilated rough endoplasmic reticulum. Along with RBC infiltration, vesiculated mitochondria owing to the loss of cristae were also seen. Diffused electron-dense material was seen at the periphery of the cell body. Heroin treatment caused cellular necrosis as revealed by the fragmentation of cytoplasmic materials in follicular epithelial cells of the gland.

  13. Economic Evaluation of Recombinant Human Thyroid Stimulating Hormone Stimulation vs. Thyroid Hormone Withdrawal Prior to Radioiodine Ablation for Thyroid Cancer: The Korean Perspective

    PubMed Central

    Sohn, Seo Young; Jang, Hye Won; Cho, Yoon Young; Kim, Sun Wook

    2015-01-01

    Background Previous studies have suggested that recombinant human thyroid stimulating hormone (rhTSH) stimulation is an acceptable alternative to thyroid hormone withdrawal (THW) when radioiodine remnant ablation is planned for thyroid cancer treatment, based on superior short-term quality of life with non-inferior remnant ablation efficacy. This study evaluated the cost-effectiveness of radioiodine remnant ablation using rhTSH, compared with the traditional preparation method which renders patients hypothyroid by THW, in Korean perspective. Methods This economic evaluation considered the costs and benefits to the Korean public healthcare system. Clinical experts were surveyed regarding the current practice of radioiodine ablation in Korea and their responses helped inform assumptions used in a cost effectiveness model. Markov modelling with 17 weekly cycles was used to assess the incremental costs per quality-adjusted life year (QALY) associated with rhTSH. Clinical inputs were based on a multi-center, randomized controlled trial comparing remnant ablation success after rhTSH preparation with THW. The additional costs associated with rhTSH were considered relative to the clinical benefits and cost offsets. Results The additional benefits of rhTSH (0.036 QALY) are achieved with an additional cost of Korean won ₩961,105, equating to cost per QALY of ₩26,697,361. Sensitivity analyses had only a modest impact upon cost-effectiveness, with one-way sensitivity results of approximately ₩33,000,000/QALY. Conclusion The use of rhTSH is a cost-effective alternative to endogenous hypothyroid stimulation prior to radioiodine ablation for patients who have undergone thyroidectomy in Korea. PMID:26394733

  14. The involvement of thyroid hormones and cortisol in the osmotic acclimation of Solea senegalensis.

    PubMed

    Arjona, F J; Vargas-Chacoff, L; Martín del Río, M P; Flik, G; Mancera, J M; Klaren, P H M

    2008-02-01

    The peripheral conversion of the prohormone 3,5,3',5'-tetraiodothyronine (T4) to the biologically active 3,5,3'-triiodothyronine (T3), via enzymatic deiodination by deiodinases, is an important pathway in thyroid hormone metabolism. The aim of this study was to test if thyroid hormones and cortisol, as well as the outer ring deiodination (ORD) metabolic pathway, are involved in the osmoregulatory response of Senegalese sole (Solea senegalensis, Kaup 1858). We measured osmoregulatory and endocrine parameters in immature juveniles S. senegalensis acclimated to seawater (SW, 38 per thousand) and that were transferred and allowed to acclimate to different salinities (5 per thousand, 15 per thousand, 38 per thousand and 55 per thousand) for 17 days. An adjustment and a chronic regulatory period were identified following acclimation. The adjustment period immediately follows the transfer, and is characterized by altered plasma osmolalities. During this period, plasma cortisol levels increased while plasma free T4 (fT4) levels decreased. Both hormones levels returned to normal values on day 3 post-transfer. In the adjustment period, renal and hepatic ORD activities had increased concomitantly with the decrease in plasma fT4 levels in fishes transferred to extreme salinities (5 per thousand and 55 per thousand). In the chronic regulatory period, where plasma osmolality returned to normal values, plasma cortisol had increased, whereas plasma fT4 levels decreased in animals that were transferred to salinities other than SW. No major changes were observed in branchial ORD activity throughout the experiment. The inverse relationship between plasma cortisol and fT4 suggests an interaction between these hormones during both osmoregulatory periods while ORD pathway can be important in the short-term adjustment period.

  15. Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland.

    PubMed

    Postiglione, M P; Parlato, R; Rodriguez-Mallon, A; Rosica, A; Mithbaokar, P; Maresca, M; Marians, R C; Davies, T F; Zannini, M S; De Felice, M; Di Lauro, R

    2002-11-26

    The thyroid-stimulating hormone/thyrotropin (TSH) is the most relevant hormone in the control of thyroid gland physiology in adulthood. TSH effects on the thyroid gland are mediated by the interaction with a specific TSH receptor (TSHR). We studied the role of TSHTSHR signaling on gland morphogenesis and differentiation in the mouse embryo using mouse lines deprived either of TSH (pit(dw)pit(dw)) or of a functional TSHR (tshr(hyt)tshr(hyt) and TSHR-knockout lines). The results reported here show that in the absence of either TSH or a functional TSHR, the thyroid gland develops to a normal size, whereas the expression of thyroperoxidase and the sodium/iodide symporter are reduced greatly. Conversely, no relevant changes are detected in the amounts of thyroglobulin and the thyroid-enriched transcription factors TTF-1, TTF-2, and Pax8. These data suggest that the major role of the TSH/TSHR pathway is in controlling genes involved in iodide metabolism such as sodium/iodide symporter and thyroperoxidase. Furthermore, our data indicate that in embryonic life TSH does not play an equivalent role in controlling gland growth as in the adult thyroid.

  16. Ghrelin suppresses nocturnal secretion of luteinizing hormone (LH) and thyroid stimulating hormone (TSH) in patients with major depression.

    PubMed

    Kluge, Michael; Schmidt, Doreen; Uhr, Manfred; Steiger, Axel

    2013-09-01

    Major depression is associated with various endocrine disturbances. Apart from the well-known hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, also the function of the hypothalamic-pituitary-gonadal (HPG) axis and of the hypothalamic-pituitary-thyroid (HPT) axis may be altered compared to healthy subjects. The orexigenic hormone ghrelin is involved in mood regulation and may have antidepressant effects. In addition, it has been shown to suppress secretion of luteinizing hormone (LH) and thyroid stimulating hormone (TSH) in healthy subjects. Aim of this study was therefore to test the effect of ghrelin on the activity of the HPG and HPT axis in patients with major depression. Therefore, secretion profiles of LH and TSH were determined in 14 unmedicated patients with major depression (7 women) twice, receiving 50 μg ghrelin or placebo at 2200, 2300, 0000, and 0100 h. LH secretion after ghrelin injection as assessed by the AUC (4.05 ± 1.18 mlIU min/ml) was significantly (P = 0.049) lower than after placebo injection (4.75 ± 1.33 mlIU min/ml) during the predefined intervention period (2220-0200 h). In addition, LH pulses occurred significantly (P = 0.045) less frequently after ghrelin injection (3.2 ± 1.4) than after placebo injection (3.9 ± 1.7). Mean TSH plasma levels were significantly lower at 0240 h and from 0320 until 0420 h after ghrelin injection than after placebo injection. In conclusion, ghrelin suppressed nocturnal secretion of LH and TSH in patients with major depression. However, these effects were weaker than previously shown in healthy subjects.

  17. The thyroid hormone nuclear receptor TRα1 controls the Notch signaling pathway and cell fate in murine intestine.

    PubMed

    Sirakov, Maria; Boussouar, Amina; Kress, Elsa; Frau, Carla; Lone, Imtiaz Nisar; Nadjar, Julien; Angelov, Dimitar; Plateroti, Michelina

    2015-08-15

    Thyroid hormones control various aspects of gut development and homeostasis. The best-known example is in gastrointestinal tract remodeling during amphibian metamorphosis. It is well documented that these hormones act via the TR nuclear receptors, which are hormone-modulated transcription factors. Several studies have shown that thyroid hormones regulate the expression of several genes in the Notch signaling pathway, indicating a possible means by which they participate in the control of gut physiology. However, the mechanisms and biological significance of this control have remained unexplored. Using multiple in vivo and in vitro approaches, we show that thyroid hormones positively regulate Notch activity through the TRα1 receptor. From a molecular point of view, TRα1 indirectly controls Notch1, Dll1, Dll4 and Hes1 expression but acts as a direct transcriptional regulator of the Jag1 gene by binding to a responsive element in the Jag1 promoter. Our findings show that the TRα1 nuclear receptor plays a key role in intestinal crypt progenitor/stem cell biology by controlling the Notch pathway and hence the balance between cell proliferation and cell differentiation.

  18. Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement

    PubMed Central

    Bianco, Antonio C.; Bauer, Andrew J.; Burman, Kenneth D.; Cappola, Anne R.; Celi, Francesco S.; Cooper, David S.; Kim, Brian W.; Peeters, Robin P.; Rosenthal, M. Sara; Sawka, Anna M.

    2014-01-01

    Background: A number of recent advances in our understanding of thyroid physiology may shed light on why some patients feel unwell while taking levothyroxine monotherapy. The purpose of this task force was to review the goals of levothyroxine therapy, the optimal prescription of conventional levothyroxine therapy, the sources of dissatisfaction with levothyroxine therapy, the evidence on treatment alternatives, and the relevant knowledge gaps. We wished to determine whether there are sufficient new data generated by well-designed studies to provide reason to pursue such therapies and change the current standard of care. This document is intended to inform clinical decision-making on thyroid hormone replacement therapy; it is not a replacement for individualized clinical judgment. Methods: Task force members identified 24 questions relevant to the treatment of hypothyroidism. The clinical literature relating to each question was then reviewed. Clinical reviews were supplemented, when relevant, with related mechanistic and bench research literature reviews, performed by our team of translational scientists. Ethics reviews were provided, when relevant, by a bioethicist. The responses to questions were formatted, when possible, in the form of a formal clinical recommendation statement. When responses were not suitable for a formal clinical recommendation, a summary response statement without a formal clinical recommendation was developed. For clinical recommendations, the supporting evidence was appraised, and the strength of each clinical recommendation was assessed, using the American College of Physicians system. The final document was organized so that each topic is introduced with a question, followed by a formal clinical recommendation. Stakeholder input was received at a national meeting, with some subsequent refinement of the clinical questions addressed in the document. Consensus was achieved for all recommendations by the task force. Results: We reviewed the

  19. Multifunctional receptor model for dioxin and related compound toxic action: possible thyroid hormone-responsive effector-linked site.

    PubMed Central

    McKinney, J D

    1989-01-01

    Molecular/theoretical modeling studies have revealed that thyroid hormones and toxic chlorinated aromatic hydrocarbons of environmental significance (for which dioxin or TCDD is the prototype) have similar structural properties that could be important in molecular recognition in biochemical systems. These molecular properties include a somewhat rigid, sterically accessible and polarizable aromatic ring and size-limited, hydrophobic lateral substituents, usually contained in opposite adjoining rings of a diphenyl compound. These molecular properties define the primary binding groups thought to be important in molecular recognition of both types of structures in biochemical systems. Similar molecular reactivities are supported by the demonstration of effective specific binding of thyroid hormones and chlorinated aromatic hydrocarbons with four different proteins, enzymes, or receptor preparations that are known or suspected to be involved in the expression of thyroid hormone activity. These binding interactions represent both aromatic-aromatic (stacking) and molecular cleft-type recognition processes. A multiple protein or multifunctional receptor-ligand binding mechanism model is proposed as a way of visualizing the details and possible role of both the stacking and cleft type molecular recognition factors in the expression of biological activity. The model suggests a means by which hormone-responsive effector-linked sites (possible protein-protein-DNA complexes) can maintain highly structurally specific control of hormone action. Finally, the model also provides a theoretical basis for the design and conduct of further biological experimentation on the molecular mechanism(s) of action of toxic chlorinated aromatic hydrocarbons and thyroid hormones. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D PMID:2551666

  20. Simulating alpha/beta selectivity at the human thyroid hormone receptor: consensus scoring using multidimensional QSAR.

    PubMed

    Vedani, Angelo; Zumstein, Martin; Lill, Markus A; Ernst, Beat

    2007-01-01

    We present a consensus-scoring study on the human thyroid hormone receptor alpha and beta using two receptor-modeling concepts (software Quasar and Raptor) that are based on multidimensional QSAR and allow for the explicit simulation of induced fit. The binding mode of 82 agonists and indirect antagonists, spanning an activity range of seven orders of magnitude in K(i), was identified through flexible docking to the respective X-ray crystal structures (Yeti software) and represented by a 4D data set with up to four conformations per compound. The receptor surrogates for the thyroid alpha receptor converged at a cross-validated r(2) of 0.846/0.919 (64 training compounds; for Quasar and Raptor, respectively) and yielded a predictive r(2) of 0.812/0.814 (18 test compounds); the models for the thyroid beta receptor resulted in a cross-validated r(2) of 0.823/0.909 and a predictive r(2) of 0.665/0.796, respectively. Consensus was achieved as, on average, the calculated activities of the training set differ only by a factor of 2.2 in K(i) and those of the test set by a factor of 2.8 when predicted by Quasar and Raptor, respectively.

  1. New avenues for regulation of lipid metabolism by thyroid hormones and analogs

    PubMed Central

    Senese, Rosalba; Lasala, Pasquale; Leanza, Cristina; de Lange, Pieter

    2014-01-01

    Weight loss due to negative energy balance is a goal in counteracting obesity and type 2 diabetes mellitus. The thyroid is known to be an important regulator of energy metabolism through the action of thyroid hormones (THs). The classic, active TH, 3,5,3′-triiodo-L-thyronine (T3) acts predominantly by binding to nuclear receptors termed TH receptors (TRs), that recognize TH response elements (TREs) on the DNA, and so regulate transcription. T3 also acts through “non-genomic” pathways that do not necessarily involve TRs. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. One drawback of using T3 in counteracting obesity has been the occurrence of heart rhythm disturbances. These are mediated through one TR, termed TRα. The end of the previous century saw the exploration of TH mimetics that specifically bind to TR beta in order to prevent cardiac disturbances, and TH derivatives such as 3,5-diiodo-L-thyronine (T2), that possess interesting biological activities. Several TH derivatives and functional analogs have low affinity for the TRs, and are suggested to act predominantly through non-genomic pathways. All this has opened new perspectives in thyroid physiology and TH derivative usage as anti-obesity therapies. This review addresses the pros and cons of these compounds, in light of their effects on energy balance regulation and on lipid/cholesterol metabolism. PMID:25538628

  2. New avenues for regulation of lipid metabolism by thyroid hormones and analogs.

    PubMed

    Senese, Rosalba; Lasala, Pasquale; Leanza, Cristina; de Lange, Pieter

    2014-01-01

    Weight loss due to negative energy balance is a goal in counteracting obesity and type 2 diabetes mellitus. The thyroid is known to be an important regulator of energy metabolism through the action of thyroid hormones (THs). The classic, active TH, 3,5,3'-triiodo-L-thyronine (T3) acts predominantly by binding to nuclear receptors termed TH receptors (TRs), that recognize TH response elements (TREs) on the DNA, and so regulate transcription. T3 also acts through "non-genomic" pathways that do not necessarily involve TRs. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. One drawback of using T3 in counteracting obesity has been the occurrence of heart rhythm disturbances. These are mediated through one TR, termed TRα. The end of the previous century saw the exploration of TH mimetics that specifically bind to TR beta in order to prevent cardiac disturbances, and TH derivatives such as 3,5-diiodo-L-thyronine (T2), that possess interesting biological activities. Several TH derivatives and functional analogs have low affinity for the TRs, and are suggested to act predominantly through non-genomic pathways. All this has opened new perspectives in thyroid physiology and TH derivative usage as anti-obesity therapies. This review addresses the pros and cons of these compounds, in light of their effects on energy balance regulation and on lipid/cholesterol metabolism.

  3. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    PubMed Central

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  4. Thyroid hormones determine developmental mode in sand dollars (Echinodermata: Echinoidea).

    PubMed

    Heyland, Andreas; Reitzel, Adam M; Hodin, Jason

    2004-01-01

    Evolutionary transitions in larval nutritional mode have occurred on numerous occasions independently in many marine invertebrate phyla. Although the evolutionary transition from feeding to nonfeeding development has received considerable attention through both experimental and theoretical studies, mechanisms underlying the change in life history remain poorly understood. Facultative feeding larvae (larvae that can feed but will complete metamorphosis without food) presumably represent an intermediate developmental mode between obligate feeding and nonfeeding. Here we show that an obligatorily feeding larva can be transformed into a facultative feeding larva when exposed to the thyroid hormone thyroxine. We report that larvae of the subtropical sand dollar Leodia sexiesperforata (Echinodermata: Echinoidea) completed metamorphosis without exogenous food when treated with thyroxine, whereas the starved controls (no thyroxine added) did not. Leodia sexiesperforata juveniles from the thyroxine treatment were viable after metamorphosis but were significantly smaller and contained less energy than sibling juveniles reared with exogenous food. In a second starvation experiment, using an L. sexiesperforata female whose eggs were substantially larger than in the first experiment (202+/-5 vs. 187+/-5 microm), a small percentage of starved L. sexiesperforata larvae completed metamorphosis in the absence of food. Still, thyroxine-treated larvae in this experiment completed metamorphosis faster and in much higher numbers than in the starved controls. Furthermore, starved larvae of the sand dollar Mellita tenuis, which developed from much smaller eggs (100+/-2 microm), did not complete metamorphosis either with or without excess thyroxine. Based on these data, and from recent experiments with other echinoids, we hypothesize that thyroxine plays a major role in echinoderm metamorphosis and the evolution of life history transitions in this group. We discuss our results in the

  5. Exposure to difenoconazole causes changes of thyroid hormone and gene expression levels in zebrafish larvae.

    PubMed

    Liang, Xiao; Yu, Liang; Gui, Wenjun; Zhu, Guonian

    2015-11-01

    Difenoconazole was believed to induce a large suite of symptoms during zebrafish development, but little is known about the negative invisible effect known as endocrine disruption. In this study, zebrafish (Danio rerio) embryos were exposed to various concentrations of difenoconazole from fertilization to 120 h post-fertilization (hpf), and the whole body content of thyroid hormone and gene transcription in the hypothalamic-pituitary-thyroid (HPT) axis were investigated. Results showed thyroxine (T4) levels were significantly decreased, while triiodothyronine (T3) concentrations were not changed. Moreover, the mRNA transcription of corticotrophin-releasing hormone (crh), thyroid-stimulating hormone (tshβ), transthyretin (ttr), thyronine deiodinase (dio1 and dio2), uridine diphosphate glucuronosyltransferase (ugt1ab) in the HPT axis were significantly up-regulated, but the transcriptions of thyroglobulin (tg), sodium/iodide symporter (nis) and thyroid hormone receptors trβ were not changed. The overall results showed that exposure to difenoconazole could alter thyroid hormone levels and gene transcription in zebrafish larvae, indicating thyroid endocrine disruption. PMID:26590868

  6. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.

    PubMed

    Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.

  7. Thyroid-stimulating hormone stimulates increases in inositol phosphates as well as cyclic AMP in the FRTL-5 rat thyroid cell line.

    PubMed Central

    Field, J B; Ealey, P A; Marshall, N J; Cockcroft, S

    1987-01-01

    Studies were conducted to determine whether thyroid-stimulating hormone (TSH; thyrotropin), a hormone known to increase cytosol concentrations of cyclic AMP, also stimulates the formation of inositol phosphates in thyroid cells. TSH and noradrenaline both stimulated [3H]inositol phosphate formation in a concentration-dependent manner in the rat thyroid cell line, FRTL-5 cells, which had been prelabelled with [3H]inositol. The threshold concentration of TSH required to stimulate inositol phosphate formation was more than 20 munits/ml, which is approx. 10(3)-fold greater than that required for cyclic AMP accumulation and growth in these cells. We also demonstrate that membranes prepared from FRTL-5 cells possess a guanine nucleotide-activatable polyphosphoinositide phosphodiesterase, which suggests that activation of inositide metabolism in these cells may be coupled to receptors by the G-protein, Gp. Our findings suggest that two second-messenger systems exist to mediate the action of TSH in the thyroid. PMID:2827631

  8. Postprandial thermic effect of chicken involves thyroid hormones and hepatic energy metabolism in rats.

    PubMed

    Wakamatsu, Jun-ichi; Takabayashi, Naomasa; Ezoe, Misako; Hasegawa, Takanori; Fujimura, Tatsuya; Takahata, Yoshihisa; Morimatsu, Fumiki; Nishimura, Takanori

    2013-01-01

    We investigated the postprandial thermic effect of chicken and its mechanisms in rats. A chicken diet showed a strong thermic effect after consumption, and the removal of fat induced more rapid and stronger thermogenesis. Although thermogenesis induced by a purified chicken protein diet was also strong, the thermic reaction was not so rapid and a remarkable rise of peripheral temperatures was not observed. Defatted chicken and purified chicken protein activated the thyroid hormone system and up-regulated rate-limiting enzyme genes of glucose metabolism and the tricarboxylic acid (TCA) cycle in the liver. Moreover, chicken protein up-regulated the mRNA expression of a rate-limiting enzyme of hepatic lipid metabolism. It is possible that the mechanisms by which body temperature is raised are different between chicken protein and defatted chicken. On the other hand, it is possible that chicken fat suppressed the expression of energy metabolism-related genes that was induced by the consumption of lean chicken. As a result, a rise of postprandial body temperature might not have been induced after consumption of chicken fat. These results suggest that the consumption of lean chicken activates the thyroid hormone system and hepatic energy metabolism and consequently induces the postprandial thermic effect of chicken.

  9. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    PubMed

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm. PMID:18641393

  10. Thyroid Hormone Receptor α1 Follows a Cooperative CRM1/Calreticulin-mediated Nuclear Export Pathway*

    PubMed Central

    Grespin, Matthew E.; Bonamy, Ghislain M. C.; Roggero, Vincent R.; Cameron, Nicole G.; Adam, Lindsay E.; Atchison, Andrew P.; Fratto, Victoria M.; Allison, Lizabeth A.

    2008-01-01

    The thyroid hormone receptor α1 (TRα) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T3). Previously, we have shown that TRα, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRα is its ability to exit the nucleus through the nuclear pore complex. TRα export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRα. We show that, in addition to shuttling in heterokaryons, TRα shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRα directly interacts with calreticulin, and point to the intriguing possibility that TRα follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRα from the nucleus to cytoplasm. PMID:18641393

  11. Thyroid hormone responsive QTL and the evolution of paedomorphic salamanders

    PubMed Central

    Voss, S R; Kump, D K; Walker, J A; Shaffer, H B; Voss, G J

    2012-01-01

    The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1–3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size. PMID:22850698

  12. Influence of Thyroid Hormone Disruption on the Incidence of Shingles

    PubMed Central

    Ajavon, Amakoe; Killian, Dennis; Odom, Randy; Figliozzi, Robert W.; Chen, Feng; Balish, Matthew; Parmar, Jayesh; Freeman, Robert; Snitzer, Jack; Hsia, S. Victor

    2015-01-01

    SUMMARY The reactivation of dormant alpha-Human Herpes Virus (αHHV) has been attributed to various causes often referred to as stressors. However, no clinical study investigating the relationship between stressors and reactivation exists in humans at this time. Herpes Simplex Virus Type-1 (HSV-1), an important αHHV, was shown to have its gene expression and replication regulated by Thyroid hormone (TH) using molecular biology approaches. Varicella Zoster Virus (VZV) is categorized in αHHV superfamily and shares similar homology with HSV-1. We hypothesize that a history of TH imbalance may be associated with the incidence of shingles (VZV reactivation). This current pilot study, based on a hospital medical claim database, was conducted as a retrospective case-controlled investigation to determine if a putative link between TH imbalance and incidence of shingles is present. An OR of 2.95 with a Chi-square of 51.74 was calculated for the total population diagnosed with TH disruption and shingles. Further analyses indicated that African American males exhibited much higher chance of simultaneous diagnoses. These results showed that a TH imbalance history may affect VZV reactivation at different incidence rates in different races and age groups. PMID:26189668

  13. Thyroid hormone mediates otolith growth and development during flatfish metamorphosis.

    PubMed

    Schreiber, A M; Wang, X; Tan, Y; Sievers, Q; Sievers, B; Lee, M; Burrall, K

    2010-11-01

    Flatfish begin life as bilaterally symmetrical larvae that swim up-right, then abruptly metamorphose into asymmetrically shaped juveniles with lateralized swimming postures. Flatfish metamorphosis is mediated entirely by thyroid hormone (TH). Changes in flatfish swim posture are thought to be regulated via vestibular remodeling, although the influence of TH on teleost inner ear development remains unclear. This study addresses the role of TH on the development of the three otolith end-organs (sacculus, utricle, and lagena) during southern flounder (Paralichthys lethostigma) metamorphosis. Compared with pre-metamorphosis, growth rates of the sacculus and utricle otoliths increase dramatically during metamorphosis in a manner that is uncoupled from general somatic growth. Treatment of P. lethostigma larvae with methimazol (a pharmacological inhibitor of endogenous TH production) inhibits growth of the sacculus and utricle, whereas treatment with TH dramatically accelerates their growth. In contrast with the sacculus and utricle otoliths that begin to form and mineralize during embryogenesis, a non-mineralized lagena otolith is first visible 10-12 days after hatching. The lagena grows during pre- and pro-metamorphosis, then abruptly mineralizes during metamorphic climax. Mineralization of the lagena, but not growth, can be induced with TH treatment, whereas treatment with methimazol completely inhibits lagena mineralization without inhibiting its growth. These findings suggest that during southern flounder metamorphosis TH exerts differential effects on growth and development among the three types of otolith.

  14. Thyroid disease

    SciTech Connect

    Falk, S.

    1990-01-01

    Presenting a multidisciplinary approach to the diagnosis and treatment of thyroid disease, this volume provides a comprehensive picture of current thyroid medicine and surgery. The book integrates the perspectives of the many disciplines that deal with the clinical manifestations of thyroid disorders. Adding to the clinical usefulness of the book is the state-of-the-art coverage of many recent developments in thyroidology, including the use of highly sensitive two-site TSH immunoradionetric measurements to diagnose thyroid activity; thyroglobulin assays in thyroid cancer and other diseases; new diagnostic applications of MRI and CT; treatment with radionuclides and chemotherapy; new developments in thyroid immunology, pathology, and management of hyperthyroidism; suppressive treatment with thyroid hormone; and management of Graves' ophthalmopathy. The book also covers all aspects of thyroid surgery, including surgical treatment of hyperthyroidism; papillary, follicular, and other carcinomas; thyroidectomy; and prevention and management of complications.

  15. Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California

    PubMed Central

    Steinmaus, Craig; Pearl, Michelle; Kharrazi, Martin; Blount, Benjamin C.; Miller, Mark D.; Pearce, Elizabeth N.; Valentin-Blasini, Liza; DeLorenze, Gerald; Hoofnagle, Andrew N.; Liaw, Jane

    2015-01-01

    Background: Findings from national surveys suggest that everyone in the United States is exposed to perchlorate. At high doses, perchlorate, thiocyanate, and nitrate inhibit iodide uptake into the thyroid and decrease thyroid hormone production. Small changes in thyroid hormones during pregnancy, including changes within normal reference ranges, have been linked to cognitive function declines in the offspring. Objectives: We evaluated the potential effects of low environmental exposures to perchlorate on thyroid function. Methods: Serum thyroid hormones and anti-thyroid antibodies and urinary perchlorate, thiocyanate, nitrate, and iodide concentrations were measured in 1,880 pregnant women from San Diego County, California, during 2000–2003, a period when much of the area’s water supply was contaminated from an industrial plant with perchlorate at levels near the 2007 California regulatory standard of 6 μg/L. Linear regression was used to evaluate associations between urinary perchlorate and serum thyroid hormone concentrations in models adjusted for urinary creatinine and thiocyanate, maternal age and education, ethnicity, and gestational age at serum collection. Results: The median urinary perchlorate concentration was 6.5 μg/L, about two times higher than in the general U.S. population. Adjusted associations were identified between increasing log10 perchlorate and decreasing total thyroxine (T4) [regression coefficient (β) = –0.70; 95% CI: –1.06, –0.34], decreasing free thyroxine (fT4) (β = –0.053; 95% CI: –0.092, –0.013), and increasing log10 thyroid-stimulating hormone (β = 0.071; 95% CI: 0.008, 0.133). Conclusions: These results suggest that environmental perchlorate exposures may affect thyroid hormone production during pregnancy. This could have implications for public health given widespread perchlorate exposure and the importance of thyroid hormone in fetal neurodevelopment. Citation: Steinmaus C, Pearl M, Kharrazi M, Blount BC

  16. Thyroid hormone level is associated with motor symptoms in de novo Parkinson's disease.

    PubMed

    Umehara, Tadashi; Matsuno, Hiromasa; Toyoda, Chizuko; Oka, Hisayoshi

    2015-07-01

    Sympathetic denervation has been observed not only in the myocardium but also in the thyroid of patients with Parkinson's disease (PD). We investigated whether sympathetic denervation as indicated by decreased cardiac (123)I-meta-iodobenzylguanidine uptake is associated with the levels of thyroid hormones and whether the levels of thyroid hormones affect clinical manifestations in patients with PD. The subjects were 75 patients with de novo PD and 20 age-matched healthy controls. We examined the levels of thyroid-stimulating hormone, free triiodothyronine, and free thyroxine, and evaluated the associations of these levels with cardiac (123)I-meta-iodobenzylguanidine uptake and motor symptoms. The results showed that the free triiodothyronine level was below the normal range in 29 patients (approximately 40 %) and was significantly lower in the patients with PD than in the controls. The decreased free triiodothyronine level was associated with akinetic-rigid motor subtype and washout ratio of cardiac (123)I-meta-iodobenzylguanidine scintigraphy. The free triiodothyronine level negatively correlated with disease severity. Thyroid-stimulating hormone level was within normal range. However, its level was lower in patients with tremor-dominant type or mixed type than in those with akinetic-rigid type. All correlations of these variables with the levels of thyroid hormones remained statistically significant on multiple regression analysis. Our results suggest that the thyroid hormone level, especially the free triiodothyronine level, is closely related to motor symptoms in patients with de novo PD. Further studies are needed to clarify whether the decreased hormone levels have functional roles in motor and non-motor symptoms. PMID:25987207

  17. Thyroid-Stimulating Hormone Suppression for Protection Against Hypothyroidism Due to Craniospinal Irradiation for Childhood Medulloblastoma/Primitive Neuroectodermal Tumor

    SciTech Connect

    Massimino, Maura Gandola, Lorenza; Collini, Paola; Seregni, Ettore; Marchiano, Alfonso; Serra, Annalisa; Pignoli, Emanuele Ph.D.; Spreafico, Filippo; Pallotti, Federica; Terenziani, Monica; Biassoni, Veronica; Bombardieri, Emilio; Fossati-Bellani, Franca

    2007-10-01

    Purpose: Hypothyroidism is one of the earliest endocrine effects of craniospinal irradiation (CSI). The effects of radiation also depend on circulating thyroid-stimulating hormone (TSH), which acts as an indicator of thyrocyte function and is the most sensitive marker of thyroid damage. Hence, our study was launched in 1998 to evaluate the protective effect of TSH suppression during CSI for medulloblastoma/primitive neuroectodermal tumor. Patients and Methods: From Jan 1998 to Feb 2001, a total of 37 euthyroid children scheduled for CSI for medulloblastoma/primitive neuroectodermal tumor underwent thyroid ultrasound and free triiodothyronine (FT3), free thyroxine (FT4), and TSH evaluation at the beginning and end of CSI. From 14 days before and up to the end of CSI, patients were administered L-thyroxine at suppressive doses; every 3 days, TSH suppression was checked to ensure a value <0.3 {mu}M/ml. During follow-up, blood tests and ultrasound were repeated after 1 year; primary hypothyroidism was considered an increased TSH level greater than normal range. CSI was done using a hyperfractionated accelerated technique with total doses ranging from 20.8-39 Gy; models were used to evaluate doses received by the thyroid bed. Results: Of 37 patients, 25 were alive a median 7 years after CSI. They were well matched for all clinical features, except that eight children underwent adequate TSH suppression during CSI, whereas 17 did not. Hypothyroidism-free survival rates were 70% for the 'adequately TSH-suppressed' group and 20% for the 'inadequately TSH-suppressed' group (p = 0.02). Conclusions: Thyroid-stimulating hormone suppression with L-thyroxine had a protective effect on thyroid function at long-term follow-up. This is the first demonstration that transient endocrine suppression of thyroid activity may protect against radiation-induced functional damage.

  18. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats.

    PubMed

    Fedail, Jaafar Sulieman; Zheng, Kaizhi; Wei, Quanwei; Kong, Lingfa; Shi, Fangxiong

    2014-08-01

    Thyroid hormones (TH) play a critical role in ovarian follicular development, maturation and the maintenance of various endocrine functions. However, whether TH can affect ovarian follicular development in neonatal and immature rats remains unclear. Therefore, the aim of the present study was to elucidate the effect of TH on ovarian follicular development in neonatal and immature rats. Thirty female post-lactation mothers of Sprague-Dawley rat pups were randomly divided into three groups: control, hyperthyroid (hyper), and hypothyroid (hypo). On postnatal days (PND) 10 and 21, body weights, serum hormones, ovarian histologic changes, and immunohistochemistry of thyroid hormone receptor alpha 1 (TRα1) and nitric oxide synthase types (NOS), and NOS activities, were determined. The data showed that body weights significantly decreased in both hyper and hypo groups compared with the control group (P < 0.05). In addition, the hyper group had increased serum concentrations of T3, T4, and E2; whereas the hypo group manifested reduced serum concentrations of T3, T4, and E2 on PND 10 and 21. The hyper and hypo groups showed significantly reduced total number of primordial, primary and secondary follicles on PND 10 and 21 compared with the control group (P < 0.05). Similarly, antral follicle numbers in the hyper and hypo groups were significantly decreased on PND 21 compared with the control group (P < 0.05). Immunostaining indicated that TRα1 and NOS were expressed in ovarian surface epithelium and oocytes of growing and antral follicles, with strong staining of the granulosa and theca cells of follicles. NOS activities were significantly augmented in the hyper, but diminished in the hypo groups on PND 10 and 21. In summary, our findings suggest that TH play important roles in ovarian functions and in the regulation of NOS activity. Our results also indicate that a relationship exists between the TH and NO signaling pathways during the process of ovarian follicular

  19. Exhaustive exercise and vitamins C and E modulate thyroid hormone levels at low and high altitudes

    PubMed Central

    Al-Hashem, Fahaid; Alkhateeb, Mahmoud; Al-Ani, Bahjat; Sakr, Hussein; Khalil, Mohammad

    2012-01-01

    Thyroid hormones play an important role in cell growth and differentiation and regulation of oxygen consumption and thermogenesis. The effect of altitude and vitamin supplementation on thyroid hormone levels in animals or humans performing acute exhaustive exercise have not been investigated before. Therefore, we thought to test whether exhaustive exercise-induced stress with antioxidant supplementation was capable of modulating the level of thyroid hormones at different altitudes. Serum levels of T4 (Thyroxin), T3 (Triiodothyronine), and TSH (Thyroid Stimulating Hormone) were measured in rats (N=36) born and bred in low altitude (600 m above sea level) and high altitude (2200 m above sea level) following forced swimming with or without vitamins C and E (25 mg/kg) pre-treatments. Thyroid levels were significantly decreased in resting rats at high altitude compared to low altitude, and swimming exercise moderately increased T3 and TSH at both high and low altitudes, whereas T4 was markedly increased (62 %) at low altitude compared to a moderate high altitude increase (28 %). Co-administration of vitamins C and E augmented the observed forced swimming-induced thyroid release. However, the conversion of T4 to T3 was reduced in both altitude areas following swimming exercise and vitamin pre-treatment had no effect. We conclude that acute stress induced thyroidal hormones in rats, which was augmented by antioxidant drugs in both high and low altitude areas. These findings may play an important role in the human pathophysiology of thyroid gland at different altitudes. PMID:27540343

  20. SEX-STEROID AND THYROID HORMONE CONCENTRATIONS IN JUVENILE ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED AND REFERENCE LAKES IN FLORIDA, USA

    EPA Science Inventory

    Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-...

  1. Identification of thyroid hormone receptor binding sites in developing mouse cerebellum

    PubMed Central

    2013-01-01

    Background Thyroid hormones play an essential role in early vertebrate development as well as other key processes. One of its modes of action is to bind to the thyroid hormone receptor (TR) which, in turn, binds to thyroid response elements (TREs) in promoter regions of target genes. The sequence motif for TREs remains largely undefined as does the precise chromosomal location of the TR binding sites. A chromatin immunoprecipitation on microarray (ChIP-chip) experiment was conducted using mouse cerebellum post natal day (PND) 4 and PND15 for the thyroid hormone receptor (TR) beta 1 to map its binding sites on over 5000 gene promoter regions. We have performed a detailed computational analysis of these data. Results By analysing a recent spike-in study, the optimal normalization and peak identification approaches were determined for our dataset. Application of these techniques led to the identification of 211 ChIP-chip peaks enriched for TR binding in cerebellum samples. ChIP-PCR validation of 25 peaks led to the identification of 16 true positive TREs. Following a detailed literature review to identify all known mouse TREs, a position weight matrix (PWM) was created representing the classic TRE sequence motif. Various classes of promoter regions were investigated for the presence of this PWM, including permuted sequences, randomly selected promoter sequences, and genes known to be regulated by TH. We found that while the occurrence of the TRE motif is strongly correlated with gene regulation by TH for some genes, other TH-regulated genes do not exhibit an increased density of TRE half-site motifs. Furthermore, we demonstrate that an increase in the rate of occurrence of the half-site motifs does not always indicate the specific location of the TRE within the promoter region. To account for the fact that TR often operates as a dimer, we introduce a novel dual-threshold PWM scanning approach for identifying TREs with a true positive rate of 0.73 and a false positive

  2. Relationship of thyroid hormone levels and cardiovascular events in patients with type 2 diabetes.

    PubMed

    Moura Neto, A; Parisi, M C R; Tambascia, M A; Pavin, E J; Alegre, S M; Zantut-Wittmann, D E

    2014-02-01

    Alterations in thyroid hormone levels are found associated with inflammation in patients with non-thyroidal illness (NTIS) and are common in patients with type 2 diabetes mellitus (T2DM). Inflammation has also been linked with development of cardiovascular events (CVE) in T2DM. Our objective was to assess whether thyroid hormone abnormalities typical of NTIS in patients with T2DM are related to inflammation and CVE. This was a cross-sectional study of 140 subjects; 70 with T2DM and 70 as a control group paired by age, sex and body mass index (BMI). We recorded age, sex, BMI, waist/hip ratio, diabetes duration, HbA1c, CVE history, serum amyloid A (SAA), TSH, total (T) and free (F) T4 and T3, reverse T3 (rT3) and TT3/rT3 ratio. Patients with T2DM had lower levels of TT4 (p = 0.012), TT3 (p < 0.001), FT3 (p < 0.001) and TT3/rT3 (p = 0.002). They also showed higher FT4 (p < 0.001) and similar TSH levels (p = 0.627) compared to the control group. SAA levels correlated positively with rT3 (r = 0.45; p < 0.001) and inversely with TT3/rT3 (r = -0.38; p = 0.001). Patients with T2DM and history of CVE had higher rT3 (p = 0.006) and lower TT3/rT3 (p = 0.002), along with higher SAA levels (p = 0.002) than patients without this characteristic. Multiple logistic regression showed that factors independently associated with CVE were older age (OR = 1.159, 95 % CI 1.011-1.329), male sex (OR = 4.391, 95 % CI 1.081-17.829) and higher TT3/rT3 (OR = 0.993, 95 % CI 0.987-0.999). We have confirmed the presence of NTIS in T2DM. We also showed that thyroid hormone abnormalities are associated to inflammatory activity and to CVE in these patients.

  3. Subacute thyroiditis

    MedlinePlus

    Laboratory tests that may be done include: Thyroid stimulating hormone (TSH) level T4 (thyroid hormone, thyroxine) and T3 level Radioactive iodine uptake Thyroglobulin level Erythrocyte sedimentation rate (ESR) In some cases, a thyroid ...

  4. The impact of exercise on thyroid hormone metabolism in children and adolescents.

    PubMed

    Kanaka-Gantenbein, C

    2005-09-01

    Thyroid hormones are important regulators of energy metabolism and may influence energy processes during physical exercise. There are controversial results concerning thyroid hormone metabolism during strenuous exercise in adult athletes and only scant data concerning the impact of strenuous exercise on thyroid hormone metabolism in children and adolescents. Although some studies demonstrate a transient change in thyroid hormones during intense physical performance, most studies agree that these changes are of minor impact, practically reflecting the relative negative energy balance during strenuous exercise. This state of hypometabolism during intense physical performance has also been confirmed in highly trained female young athletes, who may be also characterized by reproductive axis dysfunction, manifested either as luteal-phase deficiency or amenorrhea, alongside the typical constellation of low T3, insulin and leptin levels. More importantly, strenuous exercise during childhood or adolescence is mostly accompanied by a delay of skeletal maturation, and height and may have a long-lasting negative effect on growth and acquisition of maximum bone mass. In conclusion, although thyroid hormones are only transiently or insignificantly changed during strenuous exercise, adequate caloric intake should be guaranteed in highly performing young athletes in order to counteract the relative negative energy balance and prevent alterations in endocrine-metabolic profile. Moreover, when growth and pubertal progression in very young athletes are significantly impaired, a reduction in the intensity of the physical exercise should be advocated in order to guarantee better final height and adequate acquisition of bone mass.

  5. Change of body height is regulated by thyroid hormone during metamorphosis in flatfishes and zebrafish.

    PubMed

    Xu, Juan; Ke, Zhonghe; Xia, Jianhong; He, Fang; Bao, Baolong

    2016-09-15

    Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes. PMID:27340040

  6. Thyroid hormones association with depression severity and clinical outcome in patients with major depressive disorder.

    PubMed

    Berent, Dominika; Zboralski, Krzysztof; Orzechowska, Agata; Gałecki, Piotr

    2014-01-01

    The clinical implications of thyroid hormones in depression have been studied extensively and still remains disputable. Supplementation of thyroid hormones is considered to augment and accelerate antidepressant treatment. Studies on the role of thyroid hormones in depression deliver contradictory results. Here we assess theirs impact on depression severity and final clinical outcome in patients with major depression. Thyrotropin, free thyroxine (FT4), and free triiodothyronine (FT3) concentrations were measured with automated quantitative enzyme immunoassay. Depression severity and final clinical outcome were rated with 17-itemic Hamilton Rating Scale for Depression [HDRS(17)] and Clinical Global Impression Scales for severity and for improvement (CGIs, CGIi). FT3 and FT4 concentrations were significantly positively correlated with clinical improvement evaluated with CGIi (R = 0.38, P = 0.012; R = 0.33, P = 0.034, respectively). There was a significant correlation between FT4 concentrations and depression severity assessed in HDRS(17) (R = 0.31, P = 0.047). Male patients presented significantly higher FT3 serum levels (Z = 2.34, P = 0.018) and significantly greater clinical improvement (Z = 2.36, P = 0.018) when compared to female patients. We conclude that free thyroid hormones concentrations are associated with depression severity and have an impact on final clinical outcome. It can be more efficient to augment and accelerate the treatment of major depressive disorder with triiodothyronine instead of levothyroxine because of individual differences in thyroid hormones metabolism.

  7. Targeting Thyroid Hormone Receptor Beta in Triple Negative Breast Cancer

    PubMed Central

    Gu, Guowei; Gelsomino, Luca; Covington, Kyle R.; Beyer, Amanda R.; Wang, John; Rechoum, Yassine; Huffman, Kenneth; Carstens, Ryan; Ando, Sebastiano; Fuqua, Suzanne A.W.

    2015-01-01

    Purpose Discover novel nuclear receptor targets in triple negative breast cancer Methods Expression microarray, western blot, qRT-PCR, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, statistical analysis. Results We performed microarray analysis using 227 triple negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRβ) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRβ low expressing patients were associated with poor outcome. We evaluated the role of TRβ in triple negative breast cancer cell lines representing group 5 tumors. Knockdown of TRβ increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRβ protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRβ knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRβ-specific agonists enhanced TRβ expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. Conclusions TRβ represents a novel nuclear receptor target in triple negative breast cancer; low TRβ levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRβ-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRβ’s effects on response to chemotherapy. PMID:25820519

  8. Genome-Wide Binding Patterns of Thyroid Hormone Receptor Beta

    PubMed Central

    Ayers, Stephen; Switnicki, Michal Piotr; Angajala, Anusha; Lammel, Jan; Arumanayagam, Anithachristy S.; Webb, Paul

    2014-01-01

    Thyroid hormone (TH) receptors (TRs) play central roles in metabolism and are major targets for pharmaceutical intervention. Presently, however, there is limited information about genome wide localizations of TR binding sites. Thus, complexities of TR genomic distribution and links between TRβ binding events and gene regulation are not fully appreciated. Here, we employ a BioChIP approach to capture TR genome-wide binding events in a liver cell line (HepG2). Like other NRs, TRβ appears widely distributed throughout the genome. Nevertheless, there is striking enrichment of TRβ binding sites immediately 5′ and 3′ of transcribed genes and TRβ can be detected near 50% of T3 induced genes. In contrast, no significant enrichment of TRβ is seen at negatively regulated genes or genes that respond to unliganded TRs in this system. Canonical TRE half-sites are present in more than 90% of TRβ peaks and classical TREs are also greatly enriched, but individual TRE organization appears highly variable with diverse half-site orientation and spacing. There is also significant enrichment of binding sites for TR associated transcription factors, including AP-1 and CTCF, near TR peaks. We conclude that T3-dependent gene induction commonly involves proximal TRβ binding events but that far-distant binding events are needed for T3 induction of some genes and that distinct, indirect, mechanisms are often at play in negative regulation and unliganded TR actions. Better understanding of genomic context of TR binding sites will help us determine why TR regulates genes in different ways and determine possibilities for selective modulation of TR action. PMID:24558356

  9. Low intelligence but not attention deficit hyperactivity disorder is associated with resistance to thyroid hormone caused by mutation R316H in the thyroid hormone receptor {beta} gene

    SciTech Connect

    Weiss, R.E.; Stein, M.A.; Chyna, B.; Phillips, W.; O`Brien, T.; Gutermuth, L.; Refetoff, S.; Duck, S.C.

    1994-06-01

    Resistance to thyroid hormone (RTH) is a syndrome of reduced responsiveness of tissues to thyroid hormone. The clinical manifestations are variable and 46-50% of children with RTH have attention deficit hyperactivity disorder (ADD). The authors present a new family with RTH (F120) found to have a mutation R316H in the thyroid hormone receptor {beta} (TR{beta}) gene identical for that reported in an unrelated family. Assignment of the mutant allele and haplotyping based on CA repeat polymorphism were done on 16 family members. Semistructured diagnostic interviews and psychometric testing were used to determine the psychiatric diagnosis of 12 family members by examiners blinded to the genotype. Three subjects were identified to have the R316H allele as well as mildly elevated free T{sub 4} index (168 {+-} 12; normal range 77-135) and nonsuppressed TSH (4.1 {+-} 1.7 mU/L). Only 2 of the subjects with RTH were found to have ADD, while one family member homozygous for the wild type TR{beta} and normal thyroid function tests also had ADD. Unaffected family members had higher full scale intelligence quotients ({vert_bar}Q) (93 {+-} 7) than any of the 3 family members with RTH (77 {+-} 5, p = 0.006). These data do not support the genetic linkage of ADD and RTH, but do suggest that RTH is associated with lower IQ scores that may confer a high likelihood of exhibiting ADD symptoms. 20 refs., 2 figs., 2 tabs.

  10. Sex-specific changes in thyroid gland function and circulating thyroid hormones in nestling American kestrels (Falco sparverius) following embryonic exposure to polybrominated diphenyl ethers by maternal transfer.

    PubMed

    Fernie, Kim J; Marteinson, Sarah C

    2016-08-01

    High concentrations of polybrominated diphenyl ethers (PBDEs) accumulate in predatory birds. Several PBDE congeners are considered thyroid disruptors; however, avian studies are limited. The authors examined circulating thyroid hormones and thyroid gland function of nestling American kestrels (Falco sparverius) at 17 d to 20 d of age, following embryonic exposure by maternal transfer only to environmentally relevant levels of PBDEs (DE-71 technical mixture). Nestlings were exposed to in ovo sum (Σ) PBDE concentrations of 11 301 ± 95 ng/g wet weight (high exposure), 289 ± 33 ng/g wet weight (low exposure), or 3.0 ± 0.5 ng/g wet weight (controls, background exposure). Statistical comparisons are made to controls of the respective sexes and account for the relatedness of siblings within broods. Circulating concentrations of plasma total thyroxine (TT4 ) and total triiodothyronine (TT3 ) in female nestlings were significantly influenced overall by the exposure to DE-71. Following intramuscular administration of thyroid-stimulating hormone, the temporal response of the thyroid gland in producing and/or releasing TT4 was also significantly affected by the females' exposure to DE-71. The altered availability of T4 for conversion to T3 outside of the gland and/or changes in thyroid-related enzymatic activity may explain the lower TT3 concentrations (baseline, overall) and moderately altered temporal TT3 patterns (p = 0.06) of the treatment females. Controlling for the significant effect on TT3 levels of the delayed hatching of treatment females, baseline TT3 levels were significantly and positively correlated with body mass (10 d, 15 d, 20 d), with PBDE-exposed females generally being smaller and having lower TT3 concentrations. Given that exposure concentrations were environmentally relevant, similar thyroidal changes and associated thyroid-mediated processes relating to growth may also occur in wild female nestlings. Environ Toxicol Chem 2016

  11. Sex-specific changes in thyroid gland function and circulating thyroid hormones in nestling American kestrels (Falco sparverius) following embryonic exposure to polybrominated diphenyl ethers by maternal transfer.

    PubMed

    Fernie, Kim J; Marteinson, Sarah C

    2016-08-01

    High concentrations of polybrominated diphenyl ethers (PBDEs) accumulate in predatory birds. Several PBDE congeners are considered thyroid disruptors; however, avian studies are limited. The authors examined circulating thyroid hormones and thyroid gland function of nestling American kestrels (Falco sparverius) at 17 d to 20 d of age, following embryonic exposure by maternal transfer only to environmentally relevant levels of PBDEs (DE-71 technical mixture). Nestlings were exposed to in ovo sum (Σ) PBDE concentrations of 11 301 ± 95 ng/g wet weight (high exposure), 289 ± 33 ng/g wet weight (low exposure), or 3.0 ± 0.5 ng/g wet weight (controls, background exposure). Statistical comparisons are made to controls of the respective sexes and account for the relatedness of siblings within broods. Circulating concentrations of plasma total thyroxine (TT4 ) and total triiodothyronine (TT3 ) in female nestlings were significantly influenced overall by the exposure to DE-71. Following intramuscular administration of thyroid-stimulating hormone, the temporal response of the thyroid gland in producing and/or releasing TT4 was also significantly affected by the females' exposure to DE-71. The altered availability of T4 for conversion to T3 outside of the gland and/or changes in thyroid-related enzymatic activity may explain the lower TT3 concentrations (baseline, overall) and moderately altered temporal TT3 patterns (p = 0.06) of the treatment females. Controlling for the significant effect on TT3 levels of the delayed hatching of treatment females, baseline TT3 levels were significantly and positively correlated with body mass (10 d, 15 d, 20 d), with PBDE-exposed females generally being smaller and having lower TT3 concentrations. Given that exposure concentrations were environmentally relevant, similar thyroidal changes and associated thyroid-mediated processes relating to growth may also occur in wild female nestlings. Environ Toxicol Chem 2016

  12. Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression.

    PubMed

    Bastian, Thomas W; Prohaska, Joseph R; Georgieff, Michael K; Anderson, Grant W

    2014-03-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression.

  13. Fetal and Neonatal Iron Deficiency Exacerbates Mild Thyroid Hormone Insufficiency Effects on Male Thyroid Hormone Levels and Brain Thyroid Hormone-Responsive Gene Expression

    PubMed Central

    Bastian, Thomas W.; Prohaska, Joseph R.; Georgieff, Michael K.

    2014-01-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression. PMID:24424046

  14. The Relationship between Perchlorate in Drinking Water and Cord Blood Thyroid Hormones: First Experience from Iran

    PubMed Central

    Javidi, Ashraf; Rafiei, Nasim; Amin, Mohammad Mehdi; Hovsepian, Silva; Hashemipour, Mahin; Kelishadi, Roya; Taghian, Zahra; Mofateh, Samaneh; Poursafa, Parinaz

    2015-01-01

    Background: Considering the controversial information regarding the effects of perchlorate on thyroid function of high risk population as neonates, and given the high prevalence rate of thyroid disorders specially congenital hypothyroidism in our region, this study aims to investigate for the first time in Iran, the relationship between drinking groundwater perchlorate and cord blood thyroid hormones level in an industrial region. Methods: In this cross-sectional study, drinking groundwater perchlorate level of rural areas of Zarinshahr, Isfahan was measured. Simultaneously, cord blood level of thyroid hormones of neonates born in the studied region was measured. Thyroid function test of neonates in regions with low and high perchlorate level were compared. Results: In this study, 25 tap water samples were obtained for perchlorate measurement. Level of cord blood thyroid stimulating hormone (TSH), T4 and T3 of 25 neonates were measured. Mean (standard deviation) of perchlorate, TSH, T4 and T3 was 3.59 (5.10) μg/l, 7.81 (4.14) mIU/m, 6.06 (0.85) mg/dl, and 63.46 (17.53) mg/dl, respectively. Mean levels of thyroid function tests were not different in low (<5 μg/l) and high level of drinking ground water perchlorate (P > 0.05). Conclusions: Perchlorate did not appear to be related to thyroid function of neonates in the studied industrial region. It seems that iodine status of the regions, as well as other environmental contaminants and genetic background, could impact on its relation with thyroid function of neonates. PMID:25789149

  15. FoxO1 Deacetylation Regulates Thyroid Hormone-induced Transcription of Key Hepatic Gluconeogenic Genes*

    PubMed Central

    Singh, Brijesh Kumar; Sinha, Rohit Anthony; Zhou, Jin; Xie, Sherwin Ying; You, Seo-Hee; Gauthier, Karine; Yen, Paul Michael

    2013-01-01

    Hepatic gluconeogenesis is a concerted process that integrates transcriptional regulation with hormonal signals. A major regulator is thyroid hormone (TH), which acts through its nuclear receptor (TR) to induce the expression of the hepatic gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC). Forkhead transcription factor FoxO1 also is an important regulator of these genes; however, its functional interactions with TR are not known. Here, we report that TR-mediated transcriptional activation of PCK1 and G6PC in human hepatic cells and mouse liver was FoxO1-dependent and furthermore required FoxO1 deacetylation by the NAD+-dependent deacetylase, SirT1. siRNA knockdown of FoxO1 decreased, whereas overexpression of FoxO1 increased, TH-dependent transcriptional activation of PCK1 and G6PC in cultured hepatic cells. FoxO1 siRNA knockdown also decreased TH-mediated transcription in vivo. Additionally, TH was unable to induce FoxO1 deacetylation or hepatic PCK1 gene expression in TH receptor β-null (TRβ−/−) mice. Moreover, TH stimulated FoxO1 recruitment to the PCK1 and G6PC gene promoters in a SirT1-dependent manner. In summary, our results show that TH-dependent deacetylation of a second metabolically regulated transcription factor represents a novel mechanism for transcriptional integration of nuclear hormone action with cellular energy status. PMID:23995837

  16. Effects of perinatal exposure to low-dose cadmium on thyroid hormone-related and sex hormone receptor gene expressions in brain of offspring.

    PubMed

    Ishitobi, Hiromi; Mori, Kohki; Yoshida, Katsumi; Watanabe, Chiho

    2007-07-01

    Perinatal cadmium (Cd) exposure has been shown to alter behaviors and reduce learning ability of offspring. A few studies have shown that Cd reduced serum thyroid hormones (THs), which are important for brain development during the perinatal period. Brain specific genes, neurogranin (RC3) and myelin basic protein (BMP), are known to be regulated by TH through TH receptors (TR). It has been suggested that RC3 may play roles in memory and learning. In addition, Cd has been suggested to have estrogen-like activity. To evaluate the effects of perinatal low-dose exposure to Cd on thyroid hormone-related gene (RC3, TR-beta1, MBP, RAR-beta) and sex hormone receptor gene (ER-alpha, ER-beta and PgR) expressions in the brain and on behaviors of offspring, mice were administered with 10ppm Cd (from gestational day 1 to postnatal day 10) and/or 0.025% methimazole (MMI; anti-thyroid drug) (from gestational day 12 to postnatal day 10) in drinking water. Also, 0.1% MMI was administered as a positive control (high MMI group). RC3 mRNA expression was reduced in the female brain of combined exposure and high MMI groups and was negatively correlated with the activity in the open-field. ER-alpha, ER-beta and PgR mRNA expressions were decreased in male and female Cd, and female Cd+MMI groups, respectively; among these changes the reduced expression of PgR was opposite to estrogenic action. These results suggested that perinatal exposure to Cd disrupted the gene expressions of sex hormone receptors, which could not be considered to be a result of estrogenic action. Our study indicates that alteration in the gene expressions of RC3 and sex hormone receptors in the brain induced by perinatal Cd and MMI exposure might be one mechanism of developmental toxicity of Cd. PMID:17408746

  17. 60 YEARS OF NEUROENDOCRINOLOGY: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis.

    PubMed

    Joseph-Bravo, Patricia; Jaimes-Hoy, Lorraine; Uribe, Rosa-María; Charli, Jean-Louis

    2015-08-01

    This review presents the findings that led to the discovery of TRH and the understanding of the central mechanisms which control hypothalamus-pituitary-thyroid axis (HPT) activity. The earliest studies on thyroid physiology are now dated a century ago when basal metabolic rate was associated with thyroid status. It took over 50 years to identify the key elements involved in the HPT axis. Thyroid hormones (TH: T4 and T3) were characterized first, followed by the semi-purification of TSH whose later characterization paralleled that of TRH. Studies on the effects of TH became possible with the availability of synthetic hormones. DNA recombinant techniques facilitated the identification of all the elements involved in the HPT axis, including their mode of regulation. Hypophysiotropic TRH neurons, which control the pituitary-thyroid axis, were identified among other hypothalamic neurons which express TRH. Three different deiodinases were recognized in various tissues, as well as their involvement in cell-specific modulation of T3 concentration. The role of tanycytes in setting TRH levels due to the activity of deiodinase type 2 and the TRH-degrading ectoenzyme was unraveled. TH-feedback effects occur at different levels, including TRH and TSH synthesis and release, deiodinase activity, pituitary TRH-receptor and TRH degradation. The activity of TRH neurons is regulated by nutritional status through neurons of the arcuate nucleus, which sense metabolic signals such as circulating leptin levels. Trh expression and the HPT axis are activated by energy demanding situations, such as cold and exercise, whereas it is inhibited by negative energy balance situations such as fasting, inflammation or chronic stress. New approaches are being used to understand the activity of TRHergic neurons within metabolic circuits. PMID:26101376

  18. Thyroid Hormone-Otx2 Signaling Is Required for Embryonic Ventral Midbrain Neural Stem Cells Differentiated into Dopamine Neurons.

    PubMed

    Chen, Chunhai; Ma, Qinglong; Chen, Xiaowei; Zhong, Min; Deng, Ping; Zhu, Gang; Zhang, Yanwen; Zhang, Lei; Yang, Zhiqi; Zhang, Kuan; Guo, Lu; Wang, Liting; Yu, Zhengping; Zhou, Zhou

    2015-08-01

    Midbrain dopamine (DA) neurons are essential for maintaining multiple brain functions. These neurons have also been implicated in relation with diverse neurological disorders. However, how these neurons are developed from neuronal stem cells (NSCs) remains largely unknown. In this study, we provide both in vivo and in vitro evidence that the thyroid hormone, an important physiological factor for brain development, promotes DA neuron differentiation from embryonic ventral midbrain (VM) NSCs. We find that thyroid hormone deficiency during development reduces the midbrain DA neuron number, downregulates the expression of tyrosine hydroxylase (TH) and the dopamine transporter (DAT), and impairs the DA neuron-dependent motor behavior. In addition, thyroid hormone treatment during VM NSC differentiation in vitro increases the production of DA neurons and upregulates the expression of TH and DAT. We also found that the thyroid hormone enhances the expression of Otx2, an important determinant of DA neurogenesis, during DA neuron differentiation. Our in vitro gene silencing experiments indicate that Otx2 is required for thyroid hormone-dependent DA neuron differentiation from embryonic VM NSCs. Finally, we revealed both in vivo and in vitro that the thyroid hormone receptor alpha 1 is expressed in embryonic VM NSCs. Furthermore, it participates in the effects of thyroid hormone-induced Otx2 upregulation and DA neuron differentiation. These data demonstrate the role and molecular mechanisms of how the thyroid hormone regulates DA neuron differentiation from embryonic VM NSCs, particularly providing new mechanisms and a potential strategy for generating dopamine neurons from NSCs.

  19. Positive correlation of thyroid hormones and serum copper in children with congenital hypothyroidism.

    PubMed

    Blasig, Sarah; Kühnen, Peter; Schuette, Andrea; Blankenstein, Oliver; Mittag, Jens; Schomburg, Lutz

    2016-09-01

    Thyroid hormones are of central relevance for growth and development. However, the underlying molecular mechanisms are still not fully understood. Recent studies in humans and mice have demonstrated that serum levels of selenium (Se) and copper (Cu) are positively affected by thyroid hormones. Given the importance of these trace elements for many biochemical processes, we tested whether this interaction is found in children at risk for hypothyroidism, potentially providing a novel factor contributing to the disturbed development observed in congenital hypothyroidism (CH). We conducted a cross-sectional analysis of 84 children diagnosed with CH displaying a wide range of thyroid hormone concentrations. Serum Se and Cu concentrations were measured by total reflection X-ray fluorescence. Data for thyrotropin (TSH) were available in all, thyroxine (T4) and free thyroxine (fT4) in the majority and triiodothyronine (T3) in 29 of the children. Spearman rank analyzes were performed. Cu and thyroid hormones showed a strong positive correlation (Cu/T4, rho=0.5241, P=0.0003; Cu/T3, rho=0.6003, P=0.0006). Unlike in adults, no associations were found between Se and any of the thyroid hormones. Our data highlight that serum Cu and thyroid hormones are strongly associated already in early postnatal life. Severely hypothyroid children are thus at risk of developing a Cu deficiency if not adequately nourished or supplemented. This finding needs to be verified in larger groups of children in order not to miss an easily-avoidable risk factor for poor development. PMID:27267969

  20. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development.

    PubMed

    Veldhoen, Nik; Skirrow, Rachel C; Osachoff, Heather; Wigmore, Heidi; Clapson, David J; Gunderson, Mark P; Van Aggelen, Graham; Helbing, Caren C

    2006-12-01

    We investigated whether exposure to environmentally relevant concentrations of the bactericidal agent, triclosan, induces changes in the thyroid hormone-mediated process of metamorphosis of the North American bullfrog, Rana catesbeiana and alters the expression profile of thyroid hormone receptor (TR) alpha and beta, basic transcription element binding protein (BTEB) and proliferating nuclear cell antigen (PCNA) gene transcripts. Premetamorphic tadpoles were immersed in environmentally relevant concentrations of triclosan and injected with 1 x 10(-11)mol/g body weight 3,5,3'-triiodothyronine (T3) or vehicle control. Morphometric measurements and steady-state mRNA levels obtained by quantitative polymerase chain reaction were determined. mRNA abundance was also examined in Xenopus laevis XTC-2 cells treated with triclosan and/or 10nM T3. Tadpoles pretreated with triclosan concentrations as low as 0.15+/-0.03 microg/L for 4 days showed increased hindlimb development and a decrease in total body weight following T3 administration. Triclosan exposure also resulted in decreased T3-mediated TRbeta mRNA expression in the tadpole tail fin and increased levels of PCNA transcript in the brain within 48 h of T3 treatment whereas TRalpha was unaffected [corrected] Triclosan alone altered thyroid hormone receptor alpha transcript levels in the brain of premetamorphic tadpoles and induced a transient weight loss. In XTC-2 cells, exposure to T3 plus nominal concentrations of triclosan as low as 0.03 microg/L for 24h resulted in altered thyroid hormone receptor mRNA expression. Exposure to low levels of triclosan disrupts thyroid hormone-associated gene expression and can alter the rate of thyroid hormone-mediated postembryonic anuran development. PMID:17011055

  1. Do thyroid hormones mediate the effects of starvation on mood in adolescent girls with eating disorders?

    PubMed

    Swenne, Ingemar; Rosling, Agneta

    2010-11-01

    In the eating disorders (ED) comorbid depression is common and clinical experience suggests that it is partly related to starvation. Starvation affects thyroid hormone status and thyroid hypofunction is in turn associated with depressed mood. We have therefore investigated the possibility that thyroid hormones and starvation are associated with mood in ED. Two-hundred and thirty-nine adolescent girls were examined at presentation of an ED. Analyses of thyroid hormones, documentation of weight and weight changes, self-reports of depressive symptomatology and clinical diagnoses of ED and depression were used in the analyses. Of the 239 girls 100 were diagnosed with depression. The girls with and without depression did not differ in age, weight, height, body mass index (BMI), weight loss or duration of disease. Plasma free thyroxine concentrations were lower in depressed girls (11.9±1.7 versus 12.8±1.9 pmol/L; p<0.01). Plasma triodothyronine and thyroid-stimulating hormone concentrations did not differ between groups. In a logistic regression analysis the odds ratio for depression was 41.1 (95% confidence interval 4.18-405; p=0.001) for a 10 pmol/L change of plasma free thyroxine after correction for BMI, weight loss, duration of disease, rate of weight loss, plasma triodothyronine and an interaction between BMI and plasma free thyroxine. BMI did not predict depression. Low circulating thyroxine concentrations may provide a link between starvation and depression in adolescent girls with ED.

  2. The PI3K/Akt and ERK pathways elevate thyroid hormone receptor β1 and TRH receptor to decrease thyroid hormones after exposure to PCB153 and p,p'-DDE.

    PubMed

    Liu, Changjiang; Li, Lianbing; Ha, Mei; Qi, Suqin; Duan, Peng; Yang, Kedi

    2015-01-01

    PCBs and DDT cause the disturbance of thyroid hormone (TH) homeostasis in humans and animals. To test the hypothesis that the PI3K/Akt and MAPK pathways would play significant roles in TH imbalance caused by PCBs and DDT, Sprague-Dawley rats were dosed with PCB153 and p,p'-DDE intraperitoneally for 5 consecutive days, and human thyroid follicular epithelial (Nthy-ori 3-1 cell line) were treated with PCB153 and p,p'-DDE for different time. Results showed that serum total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3) and thyroid stimulating hormone (TSH) were decreased, whereas serum free triiodothyronine (FT3) and thyrotropin releasing hormone (TRH) were not changed. The PI3K/Akt and ERK pathways were activated in vivo and in vitro after the treatment with PCB153 and p,p'-DDE. Moreover, TH receptor β1 (TRβ1) was elevated after the activation of the PI3K/Akt pathway and was depressed after the inhibition of the PI3K/Akt pathway; TRH receptor (TRHr) was increased after the activation of the ERK pathway and was decreased after the inhibition of the ERK pathway. Though TH receptor α1 (TRα1) level was increased in the hypothalamus, TRα1 and TSHr were not influenced by the status of signaling pathways in in vitro study. Taken together, after exposure to PCB153 and p,p'-DDE, activated PI3K/Akt and ERK pathways disrupt the hypothalamic-pituitary-thyroid (HPT) axis via TRβ1 and TRHr and then decrease TH levels, and that would be a potential mechanism by which PCBs and DDT disturb TH homeostasis.

  3. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions.

    PubMed

    Ghisari, Mandana; Bonefeld-Jorgensen, Eva Cecilie

    2009-08-25

    Plasticizers are additives used to increase the flexibility or plasticity of the material to which they are added, normally rigid plastic and as additives in paint and adhesives. They are suspected to interfere with the endocrine system, including the estrogen and the thyroid hormone (TH) systems. We investigated in vitro the thyroid hormone-like and estrogenic activities of a range of widely used plasticizers and phenols including benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), dioctyl phthalate (DOP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), di(2-ethylhexyl) phthalate (DEHP), bis(2-ethylhexyl) adipate (DEHA), 4-tert-octylphenol (tOP), 4-chloro-3-methylphenol (CMP), 2,4-dichlorophenol (2,4-DCP), 2-phenylphenol (2-PP) and resorcinol. The TH disrupting potential was determined by the effect on the TH-dependent rat pituitary GH3 cell proliferation (T-screen). The estrogenic activities of the compounds were assessed in MVLN cells, stably transfected with an estrogen receptor (ER) luciferase reporter vector. Furthermore, the combined effect of a multi-components mixture of six plasticizers was evaluated for its estrogenic and TH-like activities. All the tested compounds, but 2-PP, significantly affected the GH3 cell proliferation. tOP, BBP and DBP activated ER transactivity, whereas DEHP antagonized the 17beta-estradiol induced ER function. The mixture significantly induced ER transactivity in an additive manner, whereas in the T-screen, the observed mixture effect was lower than predicted, suggesting a potential antagonizing effect of the mixture. In conclusion, the tested plasticizers and phenols elicited endocrine-disrupting potential that can be mediated via interference with the estrogen and TH systems. Moreover, the observed mixture effect stresses the importance of considering the combined effect of the compounds for risk assessment of human health. PMID:19463926

  4. Effects of thyroid hormones on cardiac structure: a tissue characterization study in patients with thyroid disorders before and after treatment.

    PubMed

    Ciulla, M M; Paliotti, R; Cortelazzi, D; Tortora, G; Barelli, M V; Buonamici, V; Magrini, F; Beck-Peccoz, P

    2001-07-01

    Experimental evidence suggests an involvement of thyroid hormones in myocardial nonmyocyte component growth. We evaluated the possible role of thyroid hormones in myocardial remodeling by ultrasonic tissue characterization (videodensitometry) in 8 hyperthyroid patients, in 10 hypothyroid patients, and in 2 patients with thyroid hormone resistance syndrome (RTH), before, 60, and 120 days after treatment (T0, T60, T120), and in 10 age-matched euthyroids. According to a previously described procedure, the derived collagen volume fraction (dCVF%, an echocardiographic index estimating the collagen content) was predicted from the pixel-level frequency distribution width (broadband, Bb) of the selected echocardiographic images. Thyrotropin (TSH), free thyroxine (FT4), and free triiodothyronine (FT3) were assessed by immunometric method. QT interval dispersion (QTd) on basal electrocardiogram was measured as a marker of dyshomogeneous ventricular repolarization. At T0, Bb and dCVF% were normal in hyperthyroid and euthyroid patients, and slightly increased in RTH patients, whereas significantly higher values were found in hypothyroids. At T60, a significant reduction in Bb was observed in hypothyroids, with nearly normal dCVF% values. This trend was confirmed at T120 with complete normalization of echoreflectivity. No echoreflectivity changes were observed in hyperthyroid and RTH patients during treatment. QTd was significantly increased in hypothyroids at T0, while no significant differences were found among groups at T60 and T120. Because the different videodeonsitometric myocardial properties observed in hypothyroid versus hyperthyroid patients correspond to an increase of dCVF%, this study suggests that thyroid hormones exert an inhibitory effect on myocardial collagen synthesis in humans.

  5. Changes in thyroid peroxidase activity in response to various chemicals.

    PubMed

    Song, Mee; Kim, Youn-Jung; Park, Yong-Keun; Ryu, Jae-Chun

    2012-08-01

    Thyroperoxidase (TPO) is a large heme-containing glycoprotein that catalyzes the transfer of iodine to thyroglobulin during thyroid hormone (TH) synthesis. Previously, we established an in vitro assay for TPO activity based on human recombinant TPO (hrTPO) stably transfected into human follicular thyroid carcinoma (FTC-238) cells. It is important to determine whether environmental chemicals can disrupt TPO activity because it is an important factor in the TH axis. In this study, we used our assay to examine the changes in TPO activity in response to various chemicals, including benzophenones (BPs), polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs). Overall, BPs, PAHs, and POPs slightly altered TPO activity at low doses, as compared with the positive controls methimazole (MMI), genistein, and 2,2',4,4'-tetrahydroxy BP. Benzophenone, benzhydrol, 3-methylchloranthracene, pyrene, benzo(k)fluoranthene, benzo(e)pyrene, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and heptachlor decreased TPO activity, while 2,4-dihydroxy BP, 2,2'-dihydroxy-4-methoxy BP, and dibenzo(a,h)anthracene increased TPO activity. From these data, we can predict the disruption of TPO activity by various chemicals as a sensitive TH end point. TPO activity should be considered when enacting measures to regulate environmental exposure to thyroid-disrupting chemicals. PMID:22699773

  6. Negative Feedback Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Metamorphosis in Xenopus laevis

    EPA Science Inventory

    A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...

  7. Thyroid hormone deiodinase type 2 mRNA levels in sea lamprey (Petromyzon marinus) are regulated during metamorphosis and in response to a thyroid challenge.

    PubMed

    Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G

    2013-03-01

    Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis.

  8. Growth Hormone-Insulin-Like Growth Factor Axis, Thyroid Axis, Prolactin, and Exercise.

    PubMed

    Hackney, Anthony C; Davis, Hope C; Lane, Amy R

    2016-01-01

    This chapter addresses what is known about the endocrine system components growth hormone (GH)-insulin-like growth factor (IGF) axis, thyroid axis, and prolactin relative to exercise and exercise training. Each one of these hormone axes contributes to the maintenance of homeostasis in the body through impact on a multitude of physiological systems. The homeostatic disruption of exercise causes differing responses in each hormone axis. GH levels increase with sufficient stimulation, and IGFs are released in response to GH from the anterior pituitary providing multiple roles including anabolic properties. Changes in the thyroid hormones T3 and T4 vary greatly with exercise, from increases/decreases to no change in levels across different exercise types, intensities and durations. These ambiguous findings could be due to numerous confounding factors (e.g. nutrition status) within the research. Prolactin increases proportionally to the intensity of the exercise. The magnitude may be augmented with extended durations; conflicting findings have been reported with resistance training. While the responses to exercise vary, it appears there may be overall adaptive and regenerative impacts on the body into recovery by these hormones through immune and tissue inflammatory responses/mediations. Nonetheless, well-designed exercise research studies are still needed on each of these hormones, especially thyroid hormones and prolactin. PMID:27348437

  9. Exposure to2,2',4,4'-tetrabromodiphenyl ether (BDE-47) alters thyroid hormone levels and thyroid hormone-regulated gene transcription in manila clam Ruditapes philippinarum.

    PubMed

    Song, Ying; Miao, Jingjing; Pan, Luqing; Wang, Xin

    2016-06-01

    Polybrominated diphenyl ethers (PBDEs) have the potential to disturb the thyroid endocrine system in vertebrates, but little is known about the disruptive effects of PBDEs on marine bivalves. In this study, we first examined the effects of BDE-47 exposure on growth of juvenile manila clams Ruditapes philippinarum. The result showed that 1.0 and 10 μg L(-1) BDE-47 had adverse effects on 14-d shell-length growth of juvenile clams. Then, one-year-old adult clams were exposed to 0, 0.1 and 1 μg L(-1) BDE-47 for 15 d. BDE-47 (1 μg L(-1)) exposure caused significant decreases of total T4 (thyroxine) by 40% and T3 (3,5,3'-triiodothyronine) by 75% concentrations in haemolymph of the clams. Transcription of genes involved in thyroid hormone synthesis and metabolism were also studied by quantitative RT-PCR. Gene expression levels of sodium iodide symporter (rp-NIS), iodothyronine deiodinase (rp-Deio) and thyroid peroxidase (rp-TPO) were increased in a dose-dependent manner at day 5 and day 10, while monocarboxylate transporter 8 (rp-Mct8) was downregulated at day 5, day 10 and day 15. The effect and preliminary mechanism observed in the present study were consistent with the results from previous studies on rodent and fish, implying that exposure to BDE-47 may pose threat to thyroid hormone homeostasis in bivalves through thyroid synthesis and metabolism pathways. This study may provide a first step towards understanding of the thyroid function disruptive effects of PBDEs on marine bivalves and the underlying mechanism across taxonomic groups and phyla. PMID:26943874

  10. Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages.

    PubMed Central

    Brix, K; Herzog, V

    1994-01-01

    Thyroglobulin appears in the circulation of vertebrates at species-specific concentrations. We have observed that the clearance of thyroglobulin from the circulation occurs in the liver by macrophages. Here we show that the thyroid hormones T3 and T4 were released by incubation of mouse macrophages (J774) with thyroglobulin. Thyroid hormone release was a fast process, with an initial rate of approximately 20 pmol T4/mg per min and approximately 0.6 pmol T3/mg per min, indicating that macrophages preferentially release T4. The bulk of released thyroid hormones appeared after 5 min of incubation of macrophages with thyroglobulin, whereas degradation of the protein was detectable only after several hours. During internalization of thyroglobulin, endocytic vesicles and endosomes were reached at 5 min and lysosomes at 60 min. T4 release started extracellularly by secreted proteases and continued along the endocytic pathway of thyroglobulin, whereas T3 release occurred mainly intracellularly when thyroglobulin had reached the lysosomes. This shows that the release of both hormones occurred at distinct cellular sites. Our in vitro observations suggest that macrophages in situ represent an extrathyroidal source for thyroid hormones from circulating thyroglobulin. Images PMID:8163643

  11. Reproductive and thyroid hormone profiles in captive Western fence lizards (Sceloporus occidentalis) after a period of brumation.

    PubMed

    Brasfield, Sandra M; Talent, Larry G; Janz, David M

    2008-01-01

    Seasonal fluctuation in serum concentrations of sex steroid (testosterone [T] and 17beta-estradiol [E(2)]) and thyroid (triiodothyronine [T(3)] and thyroxine [T(4)]) hormones was determined in captive Western fence lizards (Sceloporus occidentalis). Samples were collected from male and female breeding pairs weekly for a 4-month period after their emergence from artificial brumation. Circulating levels of E(2) corresponded with the expected vitellogenic and ovulatory cycles in females, and surprisingly, E(2) in males followed a similar pattern, indicating a possible role in breeding behavior. Serum T was elevated in male lizards for the first 6 weeks after emergence from brumation, possibly related to an increase in the onset of active spermatogenesis. Thyroid hormones showed little cyclical activity throughout the breeding period, with the exception of small increases of T(3) at weeks 8 and 16, possibly implying an active role of this hormone with ovulation in females. Overall, these baseline hormone data are not only useful in developing this animal as a laboratory reptile model for assessment of endocrine-mediated toxicity, but also of value for understanding herpetological endocrinology and for application in the conservation of threatened species. Zoo Biol 27:36-48, 2008. (c) 2007 Wiley-Liss, Inc. PMID:19360602

  12. Activation of protein kinase C or cAMP-dependent protein kinase increases phosphorylation of the c-erbA-encoded thyroid hormone receptor and of the v-erbA-encoded protein.

    PubMed Central

    Goldberg, Y; Glineur, C; Gesquière, J C; Ricouart, A; Sap, J; Vennström, B; Ghysdael, J

    1988-01-01

    The c-erbA proto-oncogene encodes a nuclear receptor for thyroid hormone (T3), which is believed to stimulate transcription from specific target promoters upon binding to cis-acting DNA sequence elements. The v-erbA oncogene of avian erythroblastosis virus (AEV) encodes a ligand-independent version of this nuclear receptor. The v-erbA product inhibits terminal differentiation of avian erythroblasts, presumably by affecting the transcription of specific genes. We show here that the c-erbA-encoded nuclear receptor (p46c-erbA) is phosphorylated on serine residues on two distinct sites. One of these sites, defined by the limit tryptic phosphopeptide 28SSQCLVK, is retained on the v-erbA-encoded P75gag-v-erbA protein. This site is located in the amino-terminal domain of these molecules, 21 amino acids upstream of the DNA-binding region. Phosphorylation of this site in both p46c-erbA and P75gag-v-erbA is enhanced 10-fold following treatment of cells with activators of either protein kinase C or cAMP-dependent protein kinase. Since cAMP-dependent protein kinase phosphorylates both p46c-erbA and P75gag-v-erbA in vitro at the same site as that observed in vivo, at least part of the cAMP-dependent phosphorylation of erbA molecules in cells could result from direct phosphorylation by this enzyme. The possible role phosphorylation may play in the function of the erbA-encoded transcriptional factors is discussed. Images PMID:2903825

  13. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    PubMed Central

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  14. DNA bending by retinoid X receptor-containing retinoid and thyroid hormone receptor complexes.

    PubMed Central

    Lu, X P; Eberhardt, N L; Pfahl, M

    1993-01-01

    Retinoid X receptors (RXR) have been identified as common subunits in the regulation of multiple hormonal signaling pathways. Using circular permutation and phasing analysis of specific response elements, we present evidence that RXR-retinoic acid receptor and RXR-thyroid hormone receptor heterodimer or RXR-RXR homodimer complexes induce directed DNA bends when bound to their cognate response elements. The extent of DNA bending induced by the RXR alpha-containing complexes varied and depended on the structure of the DNA-binding sites and the RXR partners. The overall bending orientation for RXR-containing complexes is directed toward the major groove of the DNA helix at the center of hormone response elements. Our observation implicates DNA bending as a possible mechanism underlying transcriptional regulation of distinct retinoid and thyroid hormone responsive genes. Images PMID:8413250

  15. Measurement of thyroid stimulating immunoglobulins using a novel thyroid stimulating hormone receptor-guanine nucleotide-binding protein, (GNAS) fusion bioassay.

    PubMed

    Pierce, M; Sandrock, R; Gillespie, G; Meikle, A W

    2012-11-01

    Hyperthyroidism, defined by overproduction of thyroid hormones, has a 2-3% prevalence in the population. The most common form of hyperthyroidism is Graves' disease. A diagnostic biomarker for Graves' disease is the presence of immunoglobulins which bind to, and stimulate, the thyroid stimulating hormone receptor (TSHR), a G-protein coupled receptor (GPCR). We hypothesized that the ectopically expressed TSHR gene in a thyroid stimulating immunoglobulin (TSI) assay could be engineered to increase the accumulation of the GPCR pathway second messenger, cyclic AMP (cAMP), the molecule measured in the assay as a marker for pathway activation. An ectopically expressing TSHR-mutant guanine nucleotide-binding protein, (GNAS) Chinese hamster ovary (CHO) cell clone was constructed using standard molecular biology techniques. After incubation of the new clone with sera containing various levels of TSI, GPCR pathway activation was then quantified by measuring cAMP accumulation in the clone. The clone, together with a NaCl-free cell assay buffer containing 5% polyethylene glycol (PEG)6000, was tested against 56 Graves' patients, 27 toxic thyroid nodule patients and 119 normal patients. Using receiver operating characteristic analysis, when comparing normal with Graves' sera, the assay yielded a sensitivity of 93%, a specificity of 99% and an efficiency of 98%. Total complex precision (within-run, across runs and across days), presented as a percentage coefficient of variation, was found to be 7·8, 8·7 and 7·6% for low, medium and high TSI responding serum, respectively. We conclude that the performance of the new TSI assay provides sensitive detection of TSI, allowing for accurate, early detection of Graves' disease.

  16. A screening assay for thyroid hormone signaling disruption based on thyroid hormone-response gene expression analysis in the frog Pelophylax nigromaculatus.

    PubMed

    Zhang, Yinfeng; Li, Yuanyuan; Qin, Zhanfen; Wang, Huili; Li, Jianzhong

    2015-08-01

    Amphibian metamorphosis provides a wonderful model to study the thyroid hormone (TH) signaling disrupting activity of environmental chemicals, with Xenopus laevis as the most commonly used species. This study aimed to establish a rapid and sensitive screening assay based on TH-response gene expression analysis using Pelophylax nigromaculatus, a native frog species distributed widely in East Asia, especially in China. To achieve this, five candidate TH-response genes that were sensitive to T3 induction were chosen as molecular markers, and T3 induction was determined as 0.2 nmol/L T3 exposure for 48 hr. The developed assay can detect the agonistic activity of T3 with a lowest observed effective concentration of 0.001 nmol/L and EC50 at around 0.118-1.229 nmol/L, exhibiting comparable or higher sensitivity than previously reported assays. We further validated the efficiency of the developed assay by detecting the TH signaling disrupting activity of tetrabromobisphenol A (TBBPA), a known TH signaling disruptor. In accordance with previous reports, we found a weak TH agonistic activity for TBBPA in the absence of T3, whereas a TH antagonistic activity was found for TBBPA at higher concentrations in the presence of T3, showing that the P. nigromaculatus assay is effective for detecting TH signaling disrupting activity. Importantly, we observed non-monotonic dose-dependent disrupting activity of TBBPA in the presence of T3, which is difficult to detect with in vitro reporter gene assays. Overall, the developed P. nigromaculatus assay can be used to screen TH signaling disrupting activity of environmental chemicals with high sensitivity. PMID:26257357

  17. [Effect of space flight aboard "Kosmos-1129" on thyroid hormone content of the blood and thyroid gland of rats].

    PubMed

    Tigranian, R A; Kalita, N F; Makho, L; Langer, P; Knopp, Ia

    1985-01-01

    Thyrotrophin, thyroxine, triiodothyronine, and reverse triiodothyronine were measured in plasma and thyroxine and triiodothyronine in the thyroid gland of the rats flown for 18.5 days onboard Cosmos-1129. Postflight the plasma content of thyrotrophin and triiodothyronine increased and that of thyroxine decreased and the gland content of thyroxine and triiodothyronine diminished. It is postulated that in the flight animals the functional activity of the thyroid gland declined.

  18. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption.

    PubMed

    Préau, Laetitia; Fini, Jean Baptiste; Morvan-Dubois, Ghislaine; Demeneix, Barbara

    2015-02-01

    The essential roles of thyroid hormone (TH) in perinatal brain development have been known for decades. More recently, many of the molecular mechanisms underlying the multiple effects of TH on proliferation, differentiation, migration, synaptogenesis and myelination in the developing nervous system have been elucidated. At the same time data from both epidemiological studies and animal models have revealed that the influence of thyroid signaling on development of the nervous system, extends to all periods of life, from early embryogenesis to neurogenesis in the adult brain. This review focuses on recent insights into the actions of TH during early neurogenesis. A key concept is that, in contrast to the previous ideas that only the unliganded receptor was implicated in these early phases, a critical role of the ligand, T3, is increasingly recognized. These findings are considered in the light of increasing knowledge of cell specific control of T3 availability as a function of deiodinase activity and transporter expression. These requirements for TH in the early stages of neurogenesis take on new relevance given the increasing epidemiological data on adverse effects of TH lack in early pregnancy on children's neurodevelopmental outcome. These ideas lead logically into a discussion on how the actions of TH during the first phases of neurogenesis can be potentially disrupted by gestational iodine lack and/or chemical pollution. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  19. Adaptive Divergence in the Thyroid Hormone Signaling Pathway in the Stickleback Radiation

    PubMed Central

    Kitano, Jun; Lema, Sean C.; Luckenbach, J. Adam; Mori, Seiichi; Kawagishi, Yui; Kusakabe, Makoto; Swanson, Penny; Peichel, Catherine L.

    2010-01-01

    Summary During adaptive radiations, animals colonize diverse environments, which requires adaptation in multiple phenotypic traits [1]. Because hormones mediate the dynamic regulation of suites of phenotypic traits [2–4], evolutionary changes in hormonal signaling pathways might contribute to adaptation to new environments. Here, we report changes in the thyroid hormone signaling pathway in stream-resident ecotypes of threespine stickleback fish (Gasterosteus aculeatus), which have repeatedly evolved from ancestral marine ecotypes [5–8]. Stream-resident fish exhibit a lower plasma concentration of thyroid hormone and a lower metabolic rate, which is likely adaptive for permanent residency in small streams. The thyroid stimulating hormone-β2 (TSHβ2) gene exhibited significantly lower mRNA expression in pituitary glands of stream-resident sticklebacks relative to marine sticklebacks. Some of the difference in TSHβ2 transcript levels can be explained by cis-regulatory differences at the TSHβ2 gene locus. Consistent with these expression differences, a strong signature of divergent natural selection was found at the TSHβ2 genomic locus. By contrast, there were no differences between the marine and stream-resident ecotypes in mRNA levels or genomic sequence in the paralogous TSHβ1 gene. Our data indicate that evolutionary changes in hormonal signaling have played an important role in the postglacial adaptive radiation of sticklebacks. PMID:21093265

  20. Excess iodine and high-fat diet combination modulates lipid profile, thyroid hormone, and hepatic LDLr expression values in mice.

    PubMed

    Han, Hao; Xin, Peng; Zhao, Lina; Xu, Jian; Xia, Yun; Yang, Xuefeng; Sun, Xiufa; Hao, Liping

    2012-06-01

    The aim of this study was to illustrate the combined effect of excess iodine and high-fat diet on lipid metabolism and its potential molecular mechanism. Sixty Balb/c mice were randomly allocated to three control groups or three excess iodine groups and fed with a high-fat diet in the absence or presence of 1,200 μg/L iodine for 1, 3, or 6 months, respectively. Serum lipid parameters and serum thyroid hormones were measured. Expressions of scavenger receptor class B type-I (SR-BI) and low density lipoproteins receptor (LDLr) mRNA and protein in liver were detected. Thyroid histology and liver type 1 iodothyronine deiodinase activity were analyzed. At the end of 3 and 6 months, compared with control, serum TC, TG, and LDL-C in excess iodine group were significantly lower (p < 0.05). LDLr expression in liver was increased significantly (p < 0.05) and parallel to the change of serum TC and TG. TT3 and TT4 levels in serum were elevated and TSH decreased significantly (p < 0.05). Liver type I iodothyronine deiodinase activity was significantly higher (p < 0.05) than control at the end of 6 months. Moreover, a time course damage effect of excess iodine combined with high-fat diet on thyroid glands was observed. The present findings demonstrated that excess iodine combined with high-fat diet could cause damage to thyroid glands and lead to thyroid hormone disorder. Those in turn caused the upregulation of hepatic LDLr gene, which resulted in the disorder in serum lipids. PMID:22222482

  1. Effects of maternal nicotine exposure on thyroid hormone metabolism and function in adult rat progeny.

    PubMed

    Lisboa, P C; de Oliveira, E; Manhães, A C; Santos-Silva, A P; Pinheiro, C R; Younes-Rapozo, V; Faustino, L C; Ortiga-Carvalho, T M; Moura, E G

    2015-03-01

    Postnatal nicotine exposure leads to obesity and hypothyroidism in adulthood. We studied the effects of maternal nicotine exposure during lactation on thyroid hormone (TH) metabolism and function in adult offspring. Lactating rats received implants of osmotic minipumps releasing nicotine (NIC, 6 mg/kg per day s.c.) or saline (control) from postnatal days 2 to 16. Offspring were killed at 180 days. We measured types 1 and 2 deiodinase activity and mRNA, mitochondrial α-glycerol-3-phosphate dehydrogenase (mGPD) activity, TH receptor (TR), uncoupling protein 1 (UCP1), hypothalamic TRH, pituitary TSH, and in vitro TRH-stimulated TSH secretion. Expression of deiodinase mRNAs followed the same profile as that of the enzymatic activity. NIC exposure caused lower 5'-D1 and mGPD activities; lower TRβ1 content in liver as well as lower 5'-D1 activity in muscle; and higher 5'-D2 activity in brown adipose tissue (BAT), heart, and testis, which are in accordance with hypothyroidism. Although deiodinase activities were not changed in the hypothalamus, pituitary, and thyroid of NIC offspring, UCP1 expression was lower in BAT. Levels of both TRH and TSH were lower in offspring exposed to NIC, which presented higher basal in vitro TSH secretion, which was not increased in response to TRH. Thus, the hypothyroidism in NIC offspring at adulthood was caused, in part, by in vivo TRH-TSH suppression and lower sensitivity to TRH. Despite the hypothyroid status of peripheral tissues, these animals seem to develop an adaptive mechanism to preserve thyroxine to triiodothyronine conversion in central tissues. PMID:25653393

  2. Clinical review: Thyroid hormone replacement in children after cardiac surgery – is it worth a try?

    PubMed Central

    Haas, Nikolaus A; Camphausen, Christoph K; Kececioglu, Deniz

    2006-01-01

    Cardiac surgery using cardiopulmonary bypass produces a generalized systemic inflammatory response, resulting in increased postoperative morbidity and mortality. Under these circumstances, a typical pattern of thyroid abnormalities is seen in the absence of primary disease, defined as sick euthyroid syndrome (SES). The presence of postoperative SES mainly in small children and neonates exposed to long bypass times and the pharmacological profile of thyroid hormones and their effects on the cardiovascular physiology make supplementation therapy an attractive treatment option to improve postoperative morbidity and mortality. Many studies have been performed with conflicting results. In this article, we review the important literature on the development of SES in paediatric postoperative cardiac patients, analyse the existing information on thyroid hormone replacement therapy in this patient group and try to summarize the findings for a recommendation. PMID:16719939

  3. Does thyroid-stimulating hormone influence the prognosis of patients with endometrial cancer? A multicentre trial

    PubMed Central

    Seebacher, V; Hofstetter, G; Polterauer, S; Reinthaller, A; Grimm, C; Schwameis, R; Taucher, S; Wagener, A; Marth, C; Concin, N

    2013-01-01

    Background: Thyroid function has been suggested to interfere with tumour biology and prognosis in different cancers. The present study was performed to investigate the impact of pre-therapeutic serum thyroid-stimulating hormone (TSH) levels on the prognosis of patients with endometrial cancer. Methods: Pre-therapeutic serum TSH was investigated in 199 patients with endometrial cancer. After stratification in TSH risk groups, univariate and multivariable survival analyses were performed. Results: Elevated TSH was independently associated with poor disease-specific survival in univariate/multivariable survival analyses (P=0.01 and P=0.03, respectively). Conclusion: Thyroid-stimulating hormone may serve as a novel and independent prognostic parameter for disease-specific survival in patients with endometrial cancer. PMID:23764750

  4. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    PubMed Central

    Jansen, S. W.; Akintola, A. A.; Roelfsema, F.; van der Spoel, E.; Cobbaert, C. M.; Ballieux, B. E.; Egri, P.; Kvarta-Papp, Z.; Gereben, B.; Fekete, C.; Slagboom, P. E.; van der Grond, J.; Demeneix, B. A.; Pijl, H.; Westendorp, R. G. J.; van Heemst, D.

    2015-01-01

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism. PMID:26089239

  5. Resistance to thyroid hormone α, revelation of basic study to clinical consequences.

    PubMed

    Tang, Yaling; Yu, Miao; Lian, Xiaolan

    2016-05-01

    In the past 3 years, 15 patients with resistance to thyroid hormone α (RTHα), nine THRA gene mutations have been reported, reforming classification of RTH. RTHα exhibits distinguished clinical manifestations from RTHβ, including growth retardation, skeletal dysplasia, impaired neurodevelopment, cardiovascular dysfunction, constipation and specific thyroid axis type. This review focuses on possible pathogenesis by revelatory basic science of RTHα animal models in vivo, and patients' mutant thyroid hormone receptor α (TRα) in vitro. Clinical manifestations and L-T4 effects are summarized, showing strong correlation to the severity of mutation mostly within the domain which dominated TR interaction with T3 and its corepressors/coactivators. In particular, we propose the diagnosis clues and promising treatment for clinicians. PMID:26812777