Science.gov

Sample records for active transcriptional complex

  1. The transcriptional corepressor DSP1 inhibits activated transcription by disrupting TFIIA-TBP complex formation.

    PubMed Central

    Kirov, N C; Lieberman, P M; Rushlow, C

    1996-01-01

    Transcriptional repression of eukaryotic genes is essential for many cellular and developmental processes, yet the precise mechanisms of repression remain poorly understood. The Dorsal Switch Protein (DSP1) was identified in a genetic screen for activities which convert Dorsal into a transcriptional repressor. DSP1 shares structural homology with the HMG-1/2 family and inhibits activation by the rel transcription factors Dorsal and NF-kappaB in transfection studies. Here we investigate the mechanism of transcriptional repression by DSP1. We found that DSP1 protein can act as a potent transcriptional repressor for multiple activator families in vitro and in transfection studies. DSP1 bound directly to the TATA binding protein (TBP), and formed a stable ternary complex with TBP bound to DNA. DSP1 preferentially disrupted the DNA binding of TBP complexes containing TFIIA and displaced TFIIA from binding to TBP. Consistent with the inhibition of TFIIA-bound complexes, DSP1 was shown to inhibit activated but not basal transcription reactions in vitro. The ability of DSP1 to interact with TBP and to repress transcription was mapped to the carboxy-terminal domain which contains two HMG boxes. Our results support the model that DSP1 represses activated transcription by interfering with the binding of TFIIA, a general transcription factor implicated in activated transcription pathways. Images PMID:9003783

  2. Genome-wide activities of Polycomb complexes control pervasive transcription.

    PubMed

    Lee, Hun-Goo; Kahn, Tatyana G; Simcox, Amanda; Schwartz, Yuri B; Pirrotta, Vincenzo

    2015-08-01

    Polycomb group (PcG) complexes PRC1 and PRC2 are well known for silencing specific developmental genes. PRC2 is a methyltransferase targeting histone H3K27 and producing H3K27me3, essential for stable silencing. Less well known but quantitatively much more important is the genome-wide role of PRC2 that dimethylates ∼70% of total H3K27. We show that H3K27me2 occurs in inverse proportion to transcriptional activity in most non-PcG target genes and intergenic regions and is governed by opposing roaming activities of PRC2 and complexes containing the H3K27 demethylase UTX. Surprisingly, loss of H3K27me2 results in global transcriptional derepression proportionally greatest in silent or weakly transcribed intergenic and genic regions and accompanied by an increase of H3K27ac and H3K4me1. H3K27me2 therefore sets a threshold that prevents random, unscheduled transcription all over the genome and even limits the activity of highly transcribed genes. PRC1-type complexes also have global roles. Unexpectedly, we find a pervasive distribution of histone H2A ubiquitylated at lysine 118 (H2AK118ub) outside of canonical PcG target regions, dependent on the RING/Sce subunit of PRC1-type complexes. We show, however, that H2AK118ub does not mediate the global PRC2 activity or the global repression and is predominantly produced by a new complex involving L(3)73Ah, a homolog of mammalian PCGF3. PMID:25986499

  3. Distinct TFIID complexes mediate the effect of different transcriptional activators.

    PubMed Central

    Brou, C; Chaudhary, S; Davidson, I; Lutz, Y; Wu, J; Egly, J M; Tora, L; Chambon, P

    1993-01-01

    Multiple chromatographically separable complexes containing the TATA binding protein (TBP), which exhibit different functional properties, exist in HeLa cells. At least three distinct subpopulations of such complexes can be functionally defined as TFIID since they function with RNA polymerase II. Using a partially reconstituted HeLa cell in vitro transcription system and immunoprecipitation with a monoclonal antibody directed against TBP, we show that stimulation of transcription by the chimeric activators GAL-VP16, GAL-TEF-1 and GAL-ER(EF) requires the presence of factors which are tightly associated with these TFIID complexes. Moreover, the activity of GAL-TEF-1 appears to be mediated by at least two chromatographically distinct populations of TFIID. The factor(s) associated with one of these populations is also required for the activity of GAL-ER (EF) and GAL-VP16, while the factor(s) associated with the other population functions selectively with GAL-TEF-1. These two TFIID populations are composed of both common and unique TBP associated factors (TAFs). Images PMID:8440239

  4. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity

    PubMed Central

    Horn, Abigail E.; Kugel, Jennifer F.; Goodrich, James A.

    2016-01-01

    Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity. PMID:27112574

  5. On the way of revealing coactivator complexes cross-talk during transcriptional activation.

    PubMed

    Krasnov, Aleksey N; Mazina, Marina Yu; Nikolenko, Julia V; Vorobyeva, Nadezhda E

    2016-01-01

    Transcriptional activation is a complex, multistage process implemented by hundreds of proteins. Many transcriptional proteins are organized into coactivator complexes, which participate in transcription regulation at numerous genes and are a driver of this process. The molecular action mechanisms of coactivator complexes remain largely understudied. Relevant publications usually deal with the involvement of these complexes in the entire process of transcription, and only a few studies are aimed to elucidate their functions at its particular stages. This review summarizes available information on the participation of key coactivator complexes in transcriptional activation. The timing of coactivator complex binding/removal has been used for restructuring previously described information about the transcriptional process. Several major stages of transcriptional activation have been distinguished based on the presence of covalent histone modifications and general transcriptional factors, and the recruitment and/or removal phases have been determined for each coactivator included in analysis. Recruitment of Mediator, SWItch/Sucrose Non-Fermentable and NUcleosome Remodeling Factor complexes during transcription activation has been investigated thoroughly; CHD and INOsitol auxotrophy 80 families are less well studied. In most cases, the molecular mechanisms responsible for the removal of certain coactivator complexes after the termination of their functions at the promoters are still not understood. On the basis of the summarized information, we propose a scheme that illustrates the involvement of coactivator complexes in different stages of the transcription activation process. This scheme may help to gain a deeper insight into the molecular mechanism of functioning of coactivator complexes, find novel participants of the process, and reveal novel structural or functional connections between different coactivators. PMID:26913181

  6. TAR RNA decoys inhibit tat-activated HIV-1 transcription after preinitiation complex formation.

    PubMed Central

    Bohjanen, P R; Liu, Y; Garcia-Blanco, M A

    1997-01-01

    The ability of the HIV-1 Tat protein to trans -activate HIV-1 transcription in vitro is specifically inhibited by a circular TAR RNA decoy. This inhibition is not overcome by adding an excess of Tat to the reaction but is partially overcome by adding Tat in combination with nuclear extract, suggesting that TAR RNA might function by interacting with a complex containing Tat and cellular factor(s). A cell-free transcription system involving immobilized DNA templates was used to further define the factor(s) that interact with TAR RNA. Preinitiation complexes formed in the presence or absence of Tat were purified on immobilized templates containing the HIV-1 promoter. After washing, nucleotides and radiolabelled UTP were added and transcription was measured. The presence of Tat during preinitiation complex formation resulted in an increase in the level of full-length HIV-1 transcripts. This Tat-activated increase in HIV-1 transcription was not inhibited by circular TAR decoys added during preinitiation complex formation but was inhibited by circular TAR decoys subsequently added during the transcription reaction. These results suggest that TAR decoys inhibit Tat-activated HIV-1 transcription after preinitiation complex formation, perhaps by interacting with components of transcription complexes. PMID:9358155

  7. PU.1 can participate in an active enhancer complex without its transcriptional activation domain

    PubMed Central

    Pongubala, Jagan M. R.; Atchison, Michael L.

    1997-01-01

    The transcription factor PU.1 is necessary for the development of multiple hematopoietic lineages and contributes to the activity of the immunoglobulin κ 3′ enhancer. A variety of proteins bind to the 3′ enhancer (PU.1, PIP, ATF1, CREM, c-Fos, c-Jun, and E2A), but the mechanism of 3′-enhancer activity and the proteins necessary for its activity are presently unclear. We show here that PU.1 participates with other transcription factors in forming a higher-order complex with 3′-enhancer DNA sequences. Each protein is necessary for formation of this complex. Individually, transcription factors that bind to the 3′ enhancer do not appreciably stimulate transcription in a cell type in which the 3′ enhancer is normally silent (NIH 3T3). However, mixture of multiple transcription factors (PU.1, PIP, c-Fos, and c-Jun) can greatly activate the enhancer. PU.1 is necessary for maximal enhancer activity, but mutants of PU.1 that lack the transcriptional activation domain are nearly as efficient at stimulating enhancer activity as the wild-type PU.1 protein. PU.1 apparently can activate transcription by playing an architectural role in interactions with other transcription factors. PMID:8990172

  8. Activation Domain-Specific and General Transcription Stimulation by Native Histone Acetyltransferase Complexes

    PubMed Central

    Ikeda, Keiko; Steger, David J.; Eberharter, Anton; Workman, Jerry L.

    1999-01-01

    Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions. PMID:9858608

  9. The Small Molecule IMR-1 Inhibits the Notch Transcriptional Activation Complex to Suppress Tumorigenesis.

    PubMed

    Astudillo, Luisana; Da Silva, Thiago G; Wang, Zhiqiang; Han, Xiaoqing; Jin, Ke; VanWye, Jeffrey; Zhu, Xiaoxia; Weaver, Kelly; Oashi, Taiji; Lopes, Pedro E M; Orton, Darren; Neitzel, Leif R; Lee, Ethan; Landgraf, Ralf; Robbins, David J; MacKerell, Alexander D; Capobianco, Anthony J

    2016-06-15

    In many cancers, aberrant Notch activity has been demonstrated to play a role in the initiation and maintenance of the neoplastic phenotype and in cancer stem cells, which may allude to its additional involvement in metastasis and resistance to therapy. Therefore, Notch is an exceedingly attractive therapeutic target in cancer, but the full range of potential targets within the pathway has been underexplored. To date, there are no small-molecule inhibitors that directly target the intracellular Notch pathway or the assembly of the transcriptional activation complex. Here, we describe an in vitro assay that quantitatively measures the assembly of the Notch transcriptional complex on DNA. Integrating this approach with computer-aided drug design, we explored potential ligand-binding sites and screened for compounds that could disrupt the assembly of the Notch transcriptional activation complex. We identified a small-molecule inhibitor, termed Inhibitor of Mastermind Recruitment-1 (IMR-1), that disrupted the recruitment of Mastermind-like 1 to the Notch transcriptional activation complex on chromatin, thereby attenuating Notch target gene transcription. Furthermore, IMR-1 inhibited the growth of Notch-dependent cell lines and significantly abrogated the growth of patient-derived tumor xenografts. Taken together, our findings suggest that a novel class of Notch inhibitors targeting the transcriptional activation complex may represent a new paradigm for Notch-based anticancer therapeutics, warranting further preclinical characterization. Cancer Res; 76(12); 3593-603. ©2016 AACR. PMID:27197169

  10. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes.

    PubMed Central

    Rudd, M D; Izban, M G; Luse, D S

    1994-01-01

    RNA polymerase II may become arrested during transcript elongation, in which case the ternary complex remains intact but further RNA synthesis is blocked. To relieve arrest, the nascent transcript must be cleaved from the 3' end. RNAs of 7-17 nt are liberated and transcription continues from the newly exposed 3' end. Factor SII increases elongation efficiency by strongly stimulating the transcript cleavage reaction. We show here that arrest relief can also occur by the addition of pyrophosphate. This generates the same set of cleavage products as factor SII, but the fragments produced with pyrophosphate have 5'-triphosphate termini. Thus, the active site of RNA polymerase II, in the presence of pyrophosphate, appears to be capable of cleaving phosphodiester linkages as far as 17 nt upstream of the original site of polymerization, leaving the ternary complex intact and transcriptionally active. Images PMID:8058756

  11. Transcriptional activation by simian virus 40 large T antigen: interactions with multiple components of the transcription complex.

    PubMed Central

    Gruda, M C; Zabolotny, J M; Xiao, J H; Davidson, I; Alwine, J C

    1993-01-01

    Simian virus 40 (SV40) large T antigen is a potent transcriptional activator of both viral and cellular promoters. Within the SV40 late promoter, a specific upstream element necessary for T-antigen transcriptional activation is the binding site for transcription-enhancing factor 1 (TEF-1). The promoter structure necessary for T-antigen-mediated transcriptional activation appears to be simple. For example, a promoter consisting of upstream TEF-1 binding sites (or other factor-binding sites) and a downstream TATA or initiator element is efficiently activated. It has been demonstrated that transcriptional activation by T antigen does not require direct binding to the DNA; thus, the most direct effect that T antigen could have on these simple promoters would be through protein-protein interactions with either upstream-bound transcription factors, the basal transcription complex, or both. To determine whether such interactions occur, full-length T antigen or segments of it was fused to the glutathione-binding site (GST fusions) or to the Gal4 DNA-binding domain (amino acids 1 to 147) (Gal4 fusions). With the GST fusions, it was found that TEF-1 and the TATA-binding protein (TBP) bound different regions of T antigen. A GST fusion containing amino acids 5 to 172 (region T1) efficiently bound TBP. TEF-1 bound neither region T1 nor a region between amino acids 168 and 373 (region T2); however, it bound efficiently to the combined region (T5) containing amino acids 5 to 383.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8423815

  12. Identification of functional targets of the Zta transcriptional activator by formation of stable preinitiation complex intermediates.

    PubMed Central

    Lieberman, P

    1994-01-01

    Transcriptional activator proteins stimulate the formation of a preinitiation complex that may be distinct from a basal-level transcription complex in its composition and stability. Components of the general transcription factors that form activator-dependent stable intermediates were determined by the use of Sarkosyl and oligonucleotide challenge experiments. High-level transcriptional activation by the Epstein-Barr virus-encoded Zta protein required an activity in the TFIID fraction that is distinct from the TATA-binding protein (TBP) and the TBP-associated factors. This additional activity copurifies with and is likely to be identical to the previously defined coactivator, USA (M. Meisterernst, A. L. Roy, H. M. Lieu, and R. G. Roeder, Cell 66:981-994, 1991). The formation of a stable preinitiation complex intermediate resistant to Sarkosyl required the preincubation of the promoter DNA with Zta, holo-TFIID (TBP and TBP-associated factors), TFIIB, TFIIA, and the coactivator USA. The formation of a Zta response element-resistant preinitiation complex required the preincubation of promoter DNA with Zta, holo-TFIID, TFIIB, and TFIIA. Agarose gel electrophoretic mobility shift showed that a preformed Zta-holo-TFIID-TFIIA complex was resistant to Sarkosyl and to Zta response element oligonucleotide challenge. DNase I footprinting suggests that only Zta, holo-TFIID, and TFIIA make significant contacts with the promoter DNA. These results provide functional and physical evidence that the Zta transcriptional activator influences at least two distinct steps in preinitiation complex assembly, the formation of the stable holo-TFIID-TFIIA-promoter complex and the subsequent binding of TFIIB and a USA-like coactivator. Images PMID:7969171

  13. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex.

    PubMed Central

    Fondell, J D; Ge, H; Roeder, R G

    1996-01-01

    Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8710870

  14. Transcriptional activators in yeast

    PubMed Central

    2006-01-01

    Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested ∼6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix–loop–helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2). PMID:16464826

  15. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex

    PubMed Central

    Konermann, Silvana; Brigham, Mark D.; Trevino, Alexandro E.; Joung, Julia; Abudayyeh, Omar O.; Barcena, Clea; Hsu, Patrick D.; Habib, Naomi; Gootenberg, Jonathan S.; Nishimasu, Hiroshi; Nureki, Osamu; Zhang, Feng

    2015-01-01

    Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. We describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We use these engineered Cas9 activation complexes to investigate sgRNA targeting rules for effective transcriptional activation, demonstrate multiplexed activation of 10 genes simultaneously, and upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesize a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes which, upon activation, confer resistance to a BRAF inhibitor. Expected and potentially novel resistance genes are enriched in the top hits and are validated using individual sgRNA as well as cDNA overexpression. The signature of our top screening hits is significantly correlated with gene expression data from clinical melanoma samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology. PMID:25494202

  16. Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation.

    PubMed

    Li, LiQi; Freudenberg, Johannes; Cui, Kairong; Dale, Ryan; Song, Sang-Hyun; Dean, Ann; Zhao, Keji; Jothi, Raja; Love, Paul E

    2013-05-30

    Erythropoiesis is dependent on the lineage-specific transcription factors Gata1, Tal1, and Klf1. Several erythroid genes have been shown to require all 3 factors for their expression, suggesting that they function synergistically; however, there is little direct evidence for widespread cooperation. Gata1 and Tal1 can assemble within higher-order protein complexes (Ldb1 complexes) that include the adapter molecules Lmo2 and Ldb1. Ldb1 proteins are capable of coassociation, and long-range Ldb1-mediated oligomerization of enhancer- and promoter-bound Ldb1 complexes has been shown to be required for β-globin gene expression. In this study, we generated a genomewide map of Ldb1 complex binding sites that revealed widespread binding at erythroid genes and at known erythroid enhancer elements. Ldb1 complex binding sites frequently colocalized with Klf1 binding sites and with consensus binding motifs for other erythroid transcription factors. Transcriptomic analysis demonstrated a strong correlation between Ldb1 complex binding and Ldb1 dependency for gene expression and identified a large cohort of genes coregulated by Ldb1 complexes and Klf1. Together, these results provide a foundation for defining the mechanism and scope of Ldb1 complex activity during erythropoiesis. PMID:23610375

  17. Three-dimensional EM Structure of an Intact Activator-dependent Transcription Initiation Complex

    SciTech Connect

    Hudson, B.; Quispe, J; Lara-González, S; Kim, Y; Berman, H; Arnold, E; Ebright, R; Lawson, C

    2009-01-01

    We present the experimentally determined 3D structure of an intact activator-dependent transcription initiation complex comprising the Escherichia coli catabolite activator protein (CAP), RNA polymerase holoenzyme (RNAP), and a DNA fragment containing positions -78 to +20 of a Class I CAP-dependent promoter with a CAP site at position -61.5 and a premelted transcription bubble. A 20-{angstrom} electron microscopy reconstruction was obtained by iterative projection-based matching of single particles visualized in carbon-sandwich negative stain and was fitted using atomic coordinate sets for CAP, RNAP, and DNA. The structure defines the organization of a Class I CAP-RNAP-promoter complex and supports previously proposed interactions of CAP with RNAP {alpha} subunit C-terminal domain ({alpha}CTD), interactions of {alpha}CTD with {sigma}70 region 4, interactions of CAP and RNAP with promoter DNA, and phased-DNA-bend-dependent partial wrapping of DNA around the complex. The structure also reveals the positions and shapes of species-specific domains within the RNAP {beta}{prime}, {beta}, and {sigma}70 subunits.

  18. A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching.

    PubMed

    Pimprikar, Priya; Carbonnel, Samy; Paries, Michael; Katzer, Katja; Klingl, Verena; Bohmer, Monica J; Karl, Leonhard; Floss, Daniela S; Harrison, Maria J; Parniske, Martin; Gutjahr, Caroline

    2016-04-25

    Intracellular arbuscular mycorrhiza symbiosis between plants and glomeromycotan fungi leads to formation of highly branched fungal arbuscules that release mineral nutrients to the plant host. Their development is regulated in plants by a mechanistically unresolved interplay between symbiosis, nutrient, and hormone (gibberellin) signaling. Using a positional cloning strategy and a retrotransposon insertion line, we identify two novel alleles of Lotus japonicus REDUCED ARBUSCULAR MYCORRHIZA1 (RAM1) encoding a GRAS protein. We confirm that RAM1 is a central regulator of arbuscule development: arbuscule branching is arrested in L. japonicus ram1 mutants, and ectopic expression of RAM1 activates genes critical for arbuscule development in the absence of fungal symbionts. Epistasis analysis places RAM1 downstream of CCaMK, CYCLOPS, and DELLA because ectopic expression of RAM1 restores arbuscule formation in cyclops mutants and in the presence of suppressive gibberellin. The corresponding proteins form a complex that activates RAM1 expression via binding of CYCLOPS to a cis element in the RAM1 promoter. We thus reveal a transcriptional cascade in arbuscule development that employs the promoter of RAM1 as integrator of symbiotic (transmitted via CCaMK and CYCLOPS) and hormonal (gibberellin) signals. PMID:27020747

  19. Spatial Interplay between Polycomb and Trithorax Complexes Controls Transcriptional Activity in T Lymphocytes.

    PubMed

    Onodera, Atsushi; Tumes, Damon J; Watanabe, Yukiko; Hirahara, Kiyoshi; Kaneda, Atsushi; Sugiyama, Fumihiro; Suzuki, Yutaka; Nakayama, Toshinori

    2015-11-01

    Trithorax group (TrxG) and Polycomb group (PcG) proteins are two mutually antagonistic chromatin modifying complexes, however, how they together mediate transcriptional counter-regulation remains unknown. Genome-wide analysis revealed that binding of Ezh2 and menin, central members of the PcG and TrxG complexes, respectively, were reciprocally correlated. Moreover, we identified a developmental change in the positioning of Ezh2 and menin in differentiated T lymphocytes compared to embryonic stem cells. Ezh2-binding upstream and menin-binding downstream of the transcription start site was frequently found at genes with higher transcriptional levels, and Ezh2-binding downstream and menin-binding upstream was found at genes with lower expression in T lymphocytes. Interestingly, of the Ezh2 and menin cooccupied genes, those exhibiting occupancy at the same position displayed greatly enhanced sensitivity to loss of Ezh2. Finally, we also found that different combinations of Ezh2 and menin occupancy were associated with expression of specific functional gene groups important for T cell development. Therefore, spatial cooperative gene regulation by the PcG and TrxG complexes may represent a novel mechanism regulating the transcriptional identity of differentiated cells. PMID:26324324

  20. Elk3 from hamster--a ternary complex factor with strong transcriptional repressor activity.

    PubMed

    Hjortoe, Gertrud Malene; Weilguny, Dietmar; Willumsen, Berthe Marie

    2005-01-01

    Elk3 belongs to the Ets family of transcription factors, which are regulated by the Ras/mitogen-activated protein kinase-signaling pathway. In the absence of Ras, this protein is a strong inhibitor of transcription and may be directly involved in regulation of growth by downregulating the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3 is a target of the Ras-Raf-MAPK pathway, and cotransfections with constitutively active H-ras relieves its negative transcriptional activity. No cells stably expressing exogenous Elk3 could be obtained, possibly due to an unspecified toxic or growth retarding effect. These findings support a possible role for Elk3 in growth regulation and reveal a high degree of homology for this protein across species. PMID:15684718

  1. The IKAROS Interaction with a Complex Including Chromatin Remodeling and Transcription Elongation Activities Is Required for Hematopoiesis

    PubMed Central

    Bottardi, Stefania; Mavoungou, Lionel; Pak, Helen; Daou, Salima; Bourgoin, Vincent; Lakehal, Yahia A.; Affar, El Bachir; Milot, Eric

    2014-01-01

    IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of IkNULL hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation. PMID:25474253

  2. Structural basis of transcription activation.

    PubMed

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. PMID:27284196

  3. The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms

    PubMed Central

    Ruiz-Roig, Clàudia; Noriega, Núria; Duch, Alba; Posas, Francesc; de Nadal, Eulàlia

    2012-01-01

    Cells modulate expression of nuclear genes in response to alterations in mitochondrial function, a response termed retrograde (RTG) regulation. In budding yeast, the RTG pathway relies on Rtg1 and Rtg3 basic helix-loop-helix leucine Zipper transcription factors. Exposure of yeast to external hyperosmolarity activates the Hog1 stress-activated protein kinase (SAPK), which is a key player in the regulation of gene expression upon stress. Several transcription factors, including Sko1, Hot1, the redundant Msn2 and Msn4, and Smp1, have been shown to be directly controlled by the Hog1 SAPK. The mechanisms by which Hog1 regulates their activity differ from one to another. In this paper, we show that Rtg1 and Rtg3 transcription factors are new targets of the Hog1 SAPK. In response to osmostress, RTG-dependent genes are induced in a Hog1-dependent manner, and Hog1 is required for Rtg1/3 complex nuclear accumulation. In addition, Hog1 activity regulates Rtg1/3 binding to chromatin and transcriptional activity. Therefore Hog1 modulates Rtg1/3 complex activity by multiple mechanisms in response to stress. Overall our data suggest that Hog1, through activation of the RTG pathway, contributes to ensure mitochondrial function as part of the Hog1-mediated osmoadaptive response. PMID:22956768

  4. Cell Signaling Switches HOX-PBX Complexes from Repressors to Activators of Transcription Mediated by Histone Deacetylases and Histone Acetyltransferases

    PubMed Central

    Saleh, Maya; Rambaldi, Isabel; Yang, Xiang-Jiao; Featherstone, Mark S.

    2000-01-01

    The Hoxb1 autoregulatory element comprises three HOX-PBX binding sites. Despite the presence of HOXB1 and PBX1, this enhancer fails to activate reporter gene expression in retinoic acid-treated P19 cell monolayers. Activation requires cell aggregation in addition to RA. This suggests that HOX-PBX complexes may repress transcription under some conditions. Consistent with this, multimerized HOX-PBX binding sites repress reporter gene expression in HEK293 cells. We provide a mechanistic basis for repressor function by demonstrating that a corepressor complex, including histone deacetylases (HDACs) 1 and 3, mSIN3B, and N-CoR/SMRT, interacts with PBX1A. We map a site of interaction with HDAC1 to the PBX1 N terminus and show that the PBX partner is required for repression by the HOX-PBX complex. Treatment with the deacetylase inhibitor trichostatin A not only relieves repression but also converts the HOX-PBX complex to a net activator of transcription. We show that this activation function is mediated by the recruitment of the coactivator CREB-binding protein by the HOX partner. Interestingly, HOX-PBX complexes are switched from transcriptional repressors to activators in response to protein kinase A signaling or cell aggregation. Together, our results suggest a model whereby the HOX-PBX complex can act as a repressor or activator of transcription via association with corepressors and coactivators. The model implies that cell signaling is a direct determinant of HOX-PBX function in the patterning of the animal embryo. PMID:11046157

  5. Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch.

    PubMed

    Yeh, Tien-Shun; Lin, Yu-Min; Hsieh, Rong-Hong; Tseng, Min-Jen

    2003-10-24

    Notch receptors are evolutionarily conserved from Drosophila to human and play important roles in cell fate decisions. After ligand binding, Notch receptors are cleaved to release their intracellular domains. The intracellular domains, the activated form of Notch receptors, are then translocated into the nucleus where they interact with other transcriptional machinery to regulate the expression of cellular genes. To dissect the molecular mechanisms of Notch signaling, the cellular targets that interact with Notch1 receptor intracellular domain (N1IC) were screened. In this study, we found that endogenous transcription factor Ying Yang 1 (YY1) was associated with exogenous N1IC in human K562 erythroleukemic cells. The ankyrin (ANK) domain of N1IC and zinc finger domains of YY1 were essential for the association of N1IC and YY1 according to the pull-down assay of glutathione S-transferase fusion proteins. Furthermore, both YY1 and N1IC were present in a large complex of the nucleus to suppress the luciferase reporter activity transactivated by Notch signaling. The transcription factor YY1 indirectly regulated the transcriptional activity of the wild-type CBF1-response elements via the direct interaction of N1IC and CBF1. We also demonstrated the association between endogenous N1IC and intrinsic YY1 in human acute T-cell lymphoblastic leukemia cell lines. Taken together, these results indicate that transcription factor YY1 may modulate Notch signaling via association with the high molecular weight Notch complex. PMID:12913000

  6. Nucleotide-dependent interactions between a fork junction–RNA polymerase complex and an AAA+ transcriptional activator protein

    PubMed Central

    Cannon, W. V.; Schumacher, J.; Buck, M.

    2004-01-01

    Enhancer-dependent transcriptional activators that act upon the σ54 bacterial RNA polymerase holoenzyme belong to the extensive AAA+ superfamily of mechanochemical ATPases. Formation and collapse of the transition state for ATP hydrolysis engenders direct interactions between AAA+ activators and the σ54 factor, required for RNA polymerase isomerization. A DNA fork junction structure present within closed complexes serves as a nucleation point for the DNA melting seen in open promoter complexes and restricts spontaneous activator-independent RNA polymerase isomerization. We now provide physical evidence showing that the ADP·AlFx bound form of the AAA+ domain of the transcriptional activator protein PspF changes interactions between σ54-RNA polymerase and a DNA fork junction structure present in the closed promoter complex. The results suggest that one functional state of the nucleotide-bound activator serves to alter DNA binding by σ54 and σ54-RNA polymerase and appears to drive events that precede DNA opening. Clear evidence for a DNA-interacting activity in the AAA+ domain of PspF was obtained, suggesting that PspF may make a direct contact to the DNA component of a basal promoter complex to promote changes in σ54-RNA polymerase–DNA interactions that favour open complex formation. We also provide evidence for two distinct closed promoter complexes with differing stabilities. PMID:15333692

  7. The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript

    PubMed Central

    Malone, Colin D.; Mestdagh, Claire; Akhtar, Junaid; Kreim, Nastasja; Deinhard, Pia; Sachidanandam, Ravi; Treisman, Jessica

    2014-01-01

    The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing. PMID:25104425

  8. YY1 and Sp1 activate transcription of the human NDUFS8 gene encoding the mitochondrial complex I TYKY subunit.

    PubMed

    Lescuyer, Pierre; Martinez, Pascal; Lunardi, Joël

    2002-03-19

    Complex I is the most complicated of the multimeric enzymes that constitute the mitochondrial respiratory chain. It is encoded by both mitochondrial and nuclear genomes. We have previously characterized the human NDUFS8 gene that encodes the TYKY subunit. This essential subunit is thought to participate in the electron transfer and proton pumping activities of complex I. Here, we have analyzed the transcriptional regulation of the NDUFS8 gene. Using primer extension assays, we have identified two transcription start sites. The basal promoter was mapped to a 247 bp sequence upstream from the main transcription start site by reporter gene analysis in HeLa cells and in differentiated or non-differentiated C2C12 cells. Three Sp1 sites and one YY1 site were identified in this minimal promoter. Through gel shift analysis, all sites were shown to bind to their cognate transcription factors. Site-directed mutagenesis revealed that the YY1 site and two upstream adjacent Sp1 sites drive most of the promoter activity. This work represents the first promoter analysis for a complex I gene. Together with previous studies, our results indicate that YY1 and Sp1 control the expression of genes encoding proteins that are involved in almost all steps of the oxidative phosphorylation metabolism. PMID:11955626

  9. Bordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes.

    PubMed

    Boulanger, Alice; Moon, Kyung; Decker, Kimberly B; Chen, Qing; Knipling, Leslie; Stibitz, Scott; Hinton, Deborah M

    2015-02-10

    Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetella pertussis RR, BvgA, in its nonphosphorylated or phosphorylated (BvgA∼P) state at P(fim3), the promoter for the virulence gene fim3 (fimbrial subunit), using gel retardation, potassium permanganate and DNase I footprinting, cleavage reactions with protein conjugated with iron bromoacetamidobenzyl-EDTA, and in vitro transcription. Previous work has shown that the level of nonphosphorylated BvgA remains high in vivo under conditions in which BvgA is phosphorylated. Our results here indicate that surprisingly both BvgA and BvgA∼P form open and initiating complexes with RNA polymerase at P(fim3). However, phosphorylation of BvgA is needed to generate the correct conformation that can transition to competent elongation. Footprints obtained with the complexes made with nonphosphorylated BvgA are atypical; while the initiating complex with BvgA synthesizes short RNA, it does not generate full-length transcripts. Extended incubation of the BvgA/RNA polymerase initiated complex in the presence of heparin generates a stable, but defective species that depends on the initial transcribed sequence of fim3. We suggest that the presence of nonphosphorylated BvgA down-regulates P(fim3) activity when phosphorylated BvgA is present and may allow the bacterium to quickly adapt to the loss of inducing conditions by rapidly eliminating P(fim3) activation once the signal for BvgA phosphorylation is removed. PMID:25624471

  10. Sequential Recruitment and Combinatorial Assembling of Multiprotein Complexes in Transcriptional Activation

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent; Lee, Chiu Fan; Lei, Jinzhi; Métivier, Raphaël; Glass, Leon

    2006-05-01

    In human cells, estrogenic signals induce cyclical association and dissociation of specific proteins with the DNA in order to activate transcription of estrogen-responsive genes. These oscillations can be modeled by assuming a large number of sequential reactions represented by linear kinetics with random kinetic rates. Application of the model to experimental data predicts robust binding sequences in which proteins associate with the DNA at several different phases of the oscillation. Our methods circumvent the need to derive detailed kinetic graphs, and are applicable to other oscillatory biological processes involving a large number of sequential steps.

  11. Complex domain interactions regulate stability and activity of closely related proneural transcription factors

    PubMed Central

    McDowell, Gary S.; Hardwick, Laura J.A.; Philpott, Anna

    2014-01-01

    Characterising post-translational regulation of key transcriptional activators is crucial for understanding how cell division and differentiation are coordinated in developing organisms and cycling cells. One important mode of protein post-translational control is by regulation of half-life via ubiquitin-mediated proteolysis. Two key basic Helix-Loop-Helix transcription factors, Neurogenin 2 (Ngn2) and NeuroD, play central roles in development of the central nervous system but despite their homology, Ngn2 is a highly unstable protein whilst NeuroD is, by comparison, very stable. The basis for and the consequences of the difference in stability of these two structurally and functionally related proteins has not been explored. Here we see that ubiquitylation alone does not determine Ngn2 or NeuroD stability. By making chimeric proteins, we see that the N-terminus of NeuroD in particular has a stabilising effect, whilst despite their high levels of homology, the most conserved bHLH domains of these proneural proteins alone can confer significant changes in protein stability. Despite widely differing stabilities of Ngn2, NeuroD and the chimeric proteins composed of domains of both, there is little correlation between protein half-life and ability to drive neuronal differentiation. Therefore, we conclude that despite significant homology between Ngn2 and NeuroD, the regulation of their stability differs markedly and moreover, stability/instability of the proteins is not a direct correlate of their activity. PMID:24998442

  12. Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit.

    PubMed Central

    Buratowski, S; Sharp, P A

    1990-01-01

    RNA polymerase II assembles with other factors on the adenovirus type 2 major late promoter to generate pairs of transcription initiation complexes resolvable by nondenaturing gel electrophoresis. The pairing of the complexes is caused by the presence or absence of the C-terminal domain of the largest subunit. This domain is not required for transcription stimulation by the major late transcription factor in vitro. Images PMID:2398901

  13. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    SciTech Connect

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  14. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity

    PubMed Central

    Holden, Jennifer M.; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V.; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T.; Aitchison, John D.; Rout, Michael P.; Field, Mark C.

    2014-01-01

    The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina. PMID:24600046

  15. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation

    PubMed Central

    Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven

    2015-01-01

    Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5′ → 3′ direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA. PMID:25775526

  16. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription.

    PubMed

    Martell, Danya J; Joshi, Chandra P; Gaballa, Ahmed; Santiago, Ace George; Chen, Tai-Yen; Jung, Won; Helmann, John D; Chen, Peng

    2015-11-01

    Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ(70)-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator-DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)--a Cu(+)-responsive MerR-family metalloregulator--modulates RNAP interactions with CueR's cognate suboptimal promoter PcopA, and how RNAP affects CueR-PcopA interactions. We find that RNAP can form two noninterconverting complexes at PcopA in the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a "biased sampling" instead of "dynamic equilibrium shifting" mechanism in regulating transcription initiation; it modulates RNAP's binding-unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopA into its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription. PMID:26483469

  17. Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex.

    PubMed Central

    Griffiths, M R; Black, E J; Culbert, A A; Dickens, M; Shaw, P E; Gillespie, D A; Tavaré, J M

    1998-01-01

    The activator protein-1 (AP-1) transcriptional complex is made up of members of the Fos (c-Fos, FosB, Fra1, Fra2) and Jun (c-Jun, JunB, JunD) families and is stimulated by insulin in several cell types. The mechanism by which insulin activates this complex is not well understood but it is dependent on the activation of the Erk1 and Erk2 isoforms of mitogen-activated protein kinases. In the current study we show that the AP-1 complex isolated from insulin-stimulated cells contained c-Fos, Fra1, c-Jun and JunB. The activation of the AP-1 complex by insulin was accompanied by (i) a transient increase in c-fos expression, and the transactivation of the ternary complex factors Elk1 and Sap1a, in an Erk1/Erk2-dependent fashion; (ii) a substantial increase in the expression of Fra1 protein and mRNA, which was preceded by a transient decrease in its electrophoretic mobility upon SDS/PAGE, indicative of phosphorylation; and (iii) a sustained increase in c-jun expression without increasing c-Jun phosphorylation on serines 63 and 73 or activation of the stress-activated kinase JNK/SAPK. In conclusion, insulin appears to stimulate the activity of the AP-1 complex primarily through a change in the abundance of the components of this complex, although there may be an additional role for Fra1 phosphorylation. PMID:9742208

  18. Linking Smads and transcriptional activation.

    PubMed

    Inman, Gareth J

    2005-02-15

    TGF-beta1 (transforming growth factor-beta1) is the prototypical member of a large family of pleiotropic cytokines that regulate diverse biological processes during development and adult tissue homoeostasis. TGF-beta signals via membrane bound serine/threonine kinase receptors which transmit their signals via the intracellular signalling molecules Smad2, Smad3 and Smad4. These Smads contain conserved MH1 and MH2 domains separated by a flexible linker domain. Smad2 and Smad3 act as kinase substrates for the receptors, and, following phosphorylation, they form complexes with Smad4 and translocate to the nucleus. These Smad complexes regulate gene expression and ultimately determine the biological response to TGF-beta. In this issue of the Biochemical Journal, Wang et al. have shown that, like Smad4, the linker domain of Smad3 contains a Smad transcriptional activation domain. This is capable of recruiting the p300 transcriptional co-activator and is required for Smad3-dependent transcriptional activation. This study raises interesting questions about the nature and regulation of Smad-regulated gene activation and elevates the status of the linker domain to rival that of the much-lauded MH1 and MH2 domains. PMID:15702493

  19. Anti-activator ExsD Forms a 1:1 Complex with ExsA to Inhibit Transcription of Type III Secretion Operons*

    PubMed Central

    Thibault, Julie; Faudry, Eric; Ebel, Christine; Attree, Ina; Elsen, Sylvie

    2009-01-01

    The ExsA protein is a Pseudomonas aeruginosa transcriptional regulator of the AraC/XylS family that is responsible for activating the type III secretion system operons upon host cell contact. Its activity is known to be controlled in vivo through interaction with its negative regulator ExsD. Using a heterologous expression system, we demonstrated that ExsD is sufficient to inhibit the transcriptional activity of ExsA. Gel shift assays with ExsA- and ExsD-containing cytosolic extracts revealed that ExsD does not block DNA target sites but affects the DNA binding activity of the transcriptional activator. The ExsA-ExsD complex was purified after coproduction of the two partners in Escherichia coli. Size exclusion chromatography and ultracentrifugation analysis revealed a homogeneous complex with a 1:1 ratio. When in interaction with ExsD, ExsA is not able to bind to its specific target any longer, as evidenced by gel shift assays. Size exclusion chromatography further showed a partial dissociation of the complex in the presence of a specific DNA sequence. A model of the molecular inhibitory role of ExsD toward ExsA is proposed, in which, under noninducing conditions, the anti-activator ExsD sequesters ExsA and hinders its binding to DNA sites, preventing the transcription of type III secretion genes. PMID:19369699

  20. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane*

    PubMed Central

    De Gois, Stéphanie; Slama, Patrick; Pietrancosta, Nicolas; Erdozain, Amaia M.; Louis, Franck; Bouvrais-Veret, Caroline; Daviet, Laurent; Giros, Bruno

    2015-01-01

    Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking. PMID:26048990

  1. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor1[OPEN

    PubMed Central

    Kim, Mi Jung

    2016-01-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15. However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. PMID:27246098

  2. Cooperative Transcriptional Activation of Antimicrobial Genes by STAT and NF-κB Pathways by Concerted Recruitment of the Mediator Complex.

    PubMed

    Wienerroither, Sebastian; Shukla, Priyank; Farlik, Matthias; Majoros, Andrea; Stych, Bernadette; Vogl, Claus; Cheon, HyeonJoo; Stark, George R; Strobl, Birgit; Müller, Mathias; Decker, Thomas

    2015-07-14

    The transcriptional response to infection with the bacterium Listeria monocytogenes (Lm) requires cooperative signals of the type I interferon (IFN-I)-stimulated JAK-STAT and proinflammatory NF-κB pathways. Using ChIP-seq analysis, we define genes induced in Lm-infected macrophages through synergistic transcriptional activation by NF-κB and the IFN-I-activated transcription factor ISGF3. Using the Nos2 and IL6 genes as prime examples of this group, we show that NF-κB functions to recruit enzymes that establish histone marks of transcriptionally active genes. In addition, NF-κB regulates transcriptional elongation by employing the mediator kinase module for the recruitment of the pTEFb complex. ISGF3 has a major role in associating the core mediator with the transcription start as a prerequisite for TFIID and RNA polymerase II (Pol II) binding. Our data suggest that the functional cooperation between two major antimicrobial pathways is based on promoter priming by NF-κB and the engagement of the core mediator for Pol II binding by ISGF3. PMID:26146080

  3. Cooperative Transcriptional Activation of Antimicrobial Genes by STAT and NF-κB Pathways by Concerted Recruitment of the Mediator Complex

    PubMed Central

    Wienerroither, Sebastian; Shukla, Priyank; Farlik, Matthias; Majoros, Andrea; Stych, Bernadette; Vogl, Claus; Cheon, HyeonJoo; Stark, George R.; Strobl, Birgit; Müller, Mathias; Decker, Thomas

    2015-01-01

    Summary The transcriptional response to infection with the bacterium Listeria monocytogenes (Lm) requires cooperative signals of the type I interferon (IFN-I)-stimulated JAK-STAT and proinflammatory NF-κB pathways. Using ChIP-seq analysis, we define genes induced in Lm-infected macrophages through synergistic transcriptional activation by NF-κB and the IFN-I-activated transcription factor ISGF3. Using the Nos2 and IL6 genes as prime examples of this group, we show that NF-κB functions to recruit enzymes that establish histone marks of transcriptionally active genes. In addition, NF-κB regulates transcriptional elongation by employing the mediator kinase module for the recruitment of the pTEFb complex. ISGF3 has a major role in associating the core mediator with the transcription start as a prerequisite for TFIID and RNA polymerase II (Pol II) binding. Our data suggest that the functional cooperation between two major antimicrobial pathways is based on promoter priming by NF-κB and the engagement of the core mediator for Pol II binding by ISGF3. PMID:26146080

  4. The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB.

    PubMed

    Felinski, E A; Quinn, P G

    2001-11-01

    A specific TATA binding protein-associated factor (TAF), dTAF(II)110/hTAF(II)135, interacts with cAMP response element binding protein (CREB) through its constitutive activation domain (CAD), which recruits a polymerase complex and activates transcription. The simplest explanation is that the TAF is a coactivator, but several studies have questioned this role of TAFs. Using a reverse two-hybrid analysis in yeast, we previously mapped the interaction between dTAF(II)110 (amino acid 1-308) and CREB to conserved hydrophobic amino acid residues in the CAD. That mapping was possible only because CREB fails to activate transcription in yeast, where all TAFs are conserved, except for the TAF recognizing CREB. To test whether CREB fails to activate transcription in yeast because it lacks a coactivator, we fused dTAF(II)110 (amino acid 1-308) to the TATA binding protein domain of the yeast scaffolding TAF, yTAF(II)130. Transformation of yeast with this hybrid TAF conferred activation by the CAD, indicating that interaction with yTFIID is sufficient to recruit a polymerase complex and activate transcription. The hybrid TAF did not mediate activation by VP16 or vitamin D receptor, each of which interacts with TFIIB, but not with dTAF(II)110 (amino acid 1-308). Enhancement of transcription activation by dTAF(II)110 in mammalian cells required interaction with both the CAD and TFIID and was inhibited by mutation of core hydrophobic residues in the CAD. These data demonstrate that dTAF(II)110/hTAF(II)135 acts as a coactivator to recruit TFIID and polymerase and that this mechanism of activation is conserved in eukaryotes. PMID:11687654

  5. Transcription initiation complex structures elucidate DNA opening.

    PubMed

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts. PMID:27193681

  6. Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC-1α/ERRγ complex.

    PubMed

    Devarakonda, Srikripa; Gupta, Kushol; Chalmers, Michael J; Hunt, John F; Griffin, Patrick R; Van Duyne, Gregory D; Spiegelman, Bruce M

    2011-11-15

    Peroxisome proliferator activated receptor (PPAR) γ coactivator-1α (PGC-1α) is a potent transcriptional coactivator of oxidative metabolism and is induced in response to a variety of environmental cues. It regulates a broad array of target genes by coactivating a whole host of transcription factors. The estrogen-related receptor (ERR) family of nuclear receptors are key PGC-1α partners in the regulation of mitochondrial and tissue-specific oxidative metabolic pathways; these receptors also demonstrate strong physical and functional interactions with this coactivator. Here we perform comprehensive biochemical, biophysical, and structural analyses of the complex formed between PGC-1α and ERRγ. PGC-1α activation domain (PGC-1α(2-220)) is intrinsically disordered with limited secondary and no defined tertiary structure. Complex formation with ERRγ induces significant changes in the conformational mobility of both partners, highlighted by significant stabilization of the ligand binding domain (ERRγLBD) as determined by HDX (hydrogen/deuterium exchange) and an observed disorder-to-order transition in PGC-1α(2-220). Small-angle X-ray scattering studies allow for modeling of the solution structure of the activation domain in the absence and presence of ERRγLBD, revealing a stable and compact binary complex. These data show that PGC-1α(2-220) undergoes a large-scale conformational change when binding to the ERRγLBD, leading to substantial compaction of the activation domain. This change results in stable positioning of the N-terminal part of the activation domain of PGC-1α, favorable for assembly of an active transcriptional complex. These data also provide structural insight into the versatile coactivation profile of PGC-1α and can readily be extended to understand other transcriptional coregulators. PMID:22049338

  7. Sp1 and the ets-related transcription factor complex GABP alpha/beta functionally cooperate to activate the utrophin promoter.

    PubMed

    Gyrd-Hansen, Mads; Krag, Thomas O B; Rosmarin, Alan G; Khurana, Tejvir S

    2002-05-15

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease caused by the absence of dystrophin. Utrophin is the autosomal homolog of dystrophin and capable of compensating for the absence of dystrophin, when overexpressed. In skeletal muscle, utrophin plays an important role in the formation of neuromuscular junctions. This selective enrichment occurs, in part by transcriptional regulation of the utrophin gene at the sub-synaptic nuclei in muscle. Utrophin's complex transcriptional regulation is not yet fully understood, however, GABP alpha / beta has recently been shown to bind the N box and activate the utrophin promoter in response to heregulin. In this study, we show that the transcription factor Sp1 binds and activates the utrophin promoter in Drosophila S2 cells as well as define a Sp1 response element. We demonstrate that heregulin treatment of cultured muscle cells activates the ERK pathway and phosphorylates serine residue(s) in the consensus ERK recognition site of Sp1. Finally, Sp1 is shown to functionally cooperate with GABP alpha / beta and cause a 58-fold increase of de novo utrophin promoter transcription. Taken together, these findings help define mechanisms used for transcriptional regulation of utrophin expression as well as identify new targets for achieving potentially therapeutic upregulation of utrophin in DMD. PMID:11997063

  8. Transcriptional activation in yeast cells lacking transcription factor IIA.

    PubMed Central

    Chou, S; Chatterjee, S; Lee, M; Struhl, K

    1999-01-01

    The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA. PMID:10581267

  9. Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes[OPEN

    PubMed Central

    Hartwig, Benjamin; James, Geo Velikkakam

    2016-01-01

    In multicellular organisms, Polycomb Repressive Complex 1 (PRC1) and PRC2 repress target genes through histone modification and chromatin compaction. Arabidopsis thaliana mutants strongly compromised in the pathway cannot develop differentiated organs. LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is so far the only known plant PRC1 component that directly binds to H3K27me3, the histone modification set by PRC2, and also associates genome-wide with trimethylation of lysine 27 of histone H3 (H3K27me3). Surprisingly, lhp1 mutants show relatively mild phenotypic alterations. To explain this paradox, we screened for genetic enhancers of lhp1 mutants to identify novel components repressing target genes together with, or in parallel to, LHP1. Two enhancing mutations were mapped to TELOMERE REPEAT BINDING PROTEIN1 (TRB1) and its paralog TRB3. We show that TRB1 binds to thousands of genomic sites containing telobox or related cis-elements with a significant increase of sites and strength of binding in the lhp1 background. Furthermore, in combination with lhp1, but not alone, trb1 mutants show increased transcription of LHP1 targets, such as floral meristem identity genes, which are more likely to be bound by TRB1 in the lhp1 background. By contrast, expression of a subset of LHP1-independent TRB1 target genes, many involved in primary metabolism, is decreased in the absence of TRB1 alone. Thus, TRB1 is a bivalent transcriptional modulator that maintains downregulation of Polycomb Group (PcG) target genes in lhp1 mutants, while it sustains high expression of targets that are regulated independently of PcG. PMID:26721861

  10. Structure determination of transient transcription complexes.

    PubMed

    Cramer, Patrick

    2016-08-15

    The determination of detailed 3D structures of large and transient multicomponent complexes remains challenging. Here I describe the approaches that were used and developed by our laboratory to achieve structure solution of eukaryotic transcription complexes. I hope this collection serves as a resource for structural biologists seeking solutions for difficult structure determination projects. PMID:27528766

  11. An Estrogen Receptor-α/p300 Complex Activates the BRCA-1 Promoter at an AP-1 Site That Binds Jun/Fos Transcription Factors: Repressive Effects of p53 on BRCA-1 Transcription1

    PubMed Central

    Jeffy, Brandon D; Hockings, Jennifer K; Kemp, Michael Q; Morgan, Sherif S; Hager, Jill A; Beliakoff, Jason; Whitesell, Luke J; Bowden, G. Timothy; Romagnolo, Donato F

    2005-01-01

    Abstract One of the puzzles in cancer predisposition is that women carrying BRCA-1 mutations preferentially develop tumors in epithelial tissues of the breast and ovary. Moreover, sporadic breast tumors contain lower levels of BRCA-1 in the absence of mutations in the BRCA-1 gene. The problem of tissue specificity requires analysis of factors that are unique to tissues of the breast. For example, the expression of estrogen receptor-α (ERα) is inversely correlated with breast cancer risk, and 90% of BRCA-1 tumors are negative for ERα. Here, we show that estrogen stimulates BRCA-1 promoter activity in transfected cells and the recruitment of ERα and its cofactor p300 to an AP-1 site that binds Jun/Fos transcription factors. The recruitment of ERα/p300 coincides with accumulation in the S-phase of the cell cycle and is antagonized by the antiestrogen tamoxifen. Conversely, we document that overexpression of wild-type p53 prevents the recruitment of ERα to the AP-1 site and represses BRCA-1 promoter activity. Taken together, our findings support a model in which an ERα/AP-1 complex modulates BRCA-1 transcription under conditions of estrogen stimulation. Conversely, the formation of this transcription complex is abrogated in cells overexpressing p53. PMID:16229810

  12. Crystallization and X-ray analysis of the transcription-activator protein C1 of bacteriophage P22 in complex with the PRE promoter element.

    PubMed

    Mondal, Avisek; Chattopadhyaya, Rajagopal; Datta, Ajit Bikram; Parrack, Pradeep

    2015-10-01

    The transcription-activator protein C1 of the temperate phage P22 of Salmonella typhimurium plays a key role in the lytic versus lysogenic switch of the phage. A homotetramer of 92-residue polypeptides, C1 binds to an approximate direct repeat similar to the transcription activator CII of coliphage λ. Despite this and several other similarities, including 57% sequence identity to coliphage CII, many biochemical observations on P22 C1 cannot be explained based on the structure of CII. To understand the molecular basis of these differences, C1 was overexpressed and purified and subjected to crystallization trials. Although no successful hits were obtained for the apoprotein, crystals could be obtained when the protein was subjected to crystallization trials in complex with a 23-mer promoter DNA fragment (PRE). These crystals diffracted very well at the home source, allowing the collection of a 2.2 Å resolution data set. The C1-DNA crystals belonged to space group P21, with unit-cell parameters a = 87.27, b = 93.58, c = 111.16 Å, β = 94.51°. Solvent-content analysis suggests that the asymmetric unit contains three tetramer-DNA complexes. The three-dimensional structure is expected to shed light on the mechanism of activation by C1 and the molecular basis of its specificity. PMID:26457520

  13. Replication and transcription activities of ribonucleoprotein complexes reconstituted from avian H5N1, H1N1pdm09 and H3N2 influenza A viruses.

    PubMed

    Ngai, Karry L K; Chan, Martin C W; Chan, Paul K S

    2013-01-01

    Avian influenza viruses pose a serious pandemic threat to humans. Better knowledge on cross-species adaptation is important. This study examined the replication and transcription efficiency of ribonucleoprotein complexes reconstituted by plasmid co-transfection between H5N1, H1N1pdm09 and H3N2 influenza A viruses, and to identify mutations in the RNA polymerase subunit that affect human adaptation. Viral RNA polymerase subunits PB1, PB2, PA and NP derived from influenza viruses were co-expressed with pPolI-vNP-Luc in human cells, and with its function evaluated by luciferase reporter assay. A quantitative RT-PCR was used to measure vRNA, cRNA, and mRNA levels for assessing the replication and transcription efficiency. Mutations in polymerase subunit were created to identify signature of increased human adaptability. H5N1 ribonucleoprotein complexes incorporated with PB2 derived from H1N1pdm09 and H3N2 viruses increased the polymerase activity in human cells. Furthermore, single amino acid substitutions at PB2 of H5N1 could affect polymerase activity in a temperature-dependent manner. By using a highly sensitive quantitative reverse transcription-polymerase chain reaction, an obvious enhancement in replication and transcription activities of ribonucleoproteins was observed by the introduction of lysine at residue 627 in the H5N1 PB2 subunit. Although less strongly in polymerase activity, E158G mutation appeared to alter the accumulation of H5N1 RNA levels in a temperature-dependent manner, suggesting a temperature-dependent mechanism in regulating transcription and replication exists. H5N1 viruses can adapt to humans either by acquisition of PB2 from circulating human-adapted viruses through reassortment, or by mutations at critical sites in PB2. This information may help to predict the pandemic potential of newly emerged influenza strains, and provide a scientific basis for stepping up surveillance measures and vaccine production. PMID:23750226

  14. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex.

    PubMed

    Brzovic, Peter S; Heikaus, Clemens C; Kisselev, Leonid; Vernon, Robert; Herbig, Eric; Pacheco, Derek; Warfield, Linda; Littlefield, Peter; Baker, David; Klevit, Rachel E; Hahn, Steven

    2011-12-23

    The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets. PMID:22195967

  15. Transcriptional responses to complex mixtures: a review.

    PubMed

    Sen, Banalata; Mahadevan, Brinda; DeMarini, David M

    2007-01-01

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after exposure to such an array of compounds, permitting a characterization of the biological effects of such exposures. This review summarizes the published literature on the transcriptional profiles resulting from exposure of cells or organisms to complex environmental mixtures such as cigarette smoke, diesel emissions, urban air, motorcycle exhaust, carbon black, jet fuel, and metal ore and fumes. The majority of the mixtures generally up-regulate gene expression, with heme oxygenase 1 and CYP1A1 being up-regulated by all of the mixtures. Most of the mixtures altered the expression of genes involved in oxidative stress response (OH-1, metallothioneins), immune/inflammation response (IL-1b, protein kinase), xenobiotic metabolism (CYP1A1, CYP1B1), coagulation and fibrinolysis (plasminogen activator/inhibitor), proto-oncogenes (FUS1, JUN), heat-shock response (HSP60, HSP70), DNA repair (PCNA, GADD45), structural unit of condensed DNA (Crf15Orf16, DUSP 15), and extracellular matrix degradation (MMP1, 8, 9, 11, 12). Genes involved in aldehyde metabolism, such as ALDH3, appeared to be uniquely modulated by cigarette smoke. Cigarette smoke-exposed populations have been successfully distinguished from control nonexposed populations based on the expression pattern of a subset of genes, thereby demonstrating the utility of this approach in identifying biomarkers of exposure and susceptibility. The analysis of gene-expression data at the pathway and functional level, along with a systems biology approach, will provide a more comprehensive insight into the biological effects of complex mixtures and will improve risk assessment of the same. We suggest critical components of study design and reporting that will

  16. Creating small transcription activating RNAs.

    PubMed

    Chappell, James; Takahashi, Melissa K; Lucks, Julius B

    2015-03-01

    We expanded the mechanistic capability of small RNAs by creating an entirely synthetic mode of regulation: small transcription activating RNAs (STARs). Using two strategies, we engineered synthetic STAR regulators to disrupt the formation of an intrinsic transcription terminator placed upstream of a gene in Escherichia coli. This resulted in a group of four highly orthogonal STARs that had up to 94-fold activation. By systematically modifying sequence features of this group, we derived design principles for STAR function, which we then used to forward engineer a STAR that targets a terminator found in the Escherichia coli genome. Finally, we showed that STARs could be combined in tandem to create previously unattainable RNA-only transcriptional logic gates. STARs provide a new mechanism of regulation that will expand our ability to use small RNAs to construct synthetic gene networks that precisely control gene expression. PMID:25643173

  17. The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p.

    PubMed

    Bali, Mehtap; Zhang, Bin; Morano, Kevin A; Michels, Corinne A

    2003-11-28

    Induction of the Saccharomyces MAL structural genes encoding maltose permease and maltase requires the MAL activator, a DNA-binding transcription activator. Genetic analysis of MAL activator mutations suggested that protein folding and stability play an important role in MAL activator regulation and led us to explore the role of the Hsp90 molecular chaperone complex in the regulation of the MAL activator. Strains carrying mutations in genes encoding components of the Hsp90 chaperone complex, hsc82 Delta hsp82-T101I and hsc82 Delta cpr7 Delta, are defective for maltase induction and exhibit significantly reduced growth rates on media containing a limiting concentration of maltose (0.05%). This growth defect is suppressed by providing maltose in excess. Using epitope-tagged alleles of the MAL63 MAL activator, we showed that Mal63p levels are drastically reduced following depletion of cellular Hsp90. Overexpression ( approximately 3-fold) of Mal63p in the hsc82 Delta hsp82-T101I and hsc82 Delta cpr7 Delta strains suppresses their Mal- growth phenotype, suggesting that Mal63p levels are limiting for maltose utilization in strains with abrogated Hsp90 activity. Consistent with this, the half-life of Mal63p is significantly shorter in the hsc82 Delta cpr7 Delta strain (reduced about 6-fold) and modestly affected in the Hsp90-ts strain (reduced about 2-fold). Most importantly, triple hemagglutinin-tagged Mal63p protein is found in association with Hsp90 as demonstrated by co-immunoprecipitation. Taken together, these results identify the inducible MAL activator as a client protein of the Hsp90 molecular chaperone complex and point to a critical role for chaperone function in alternate carbon source utilization in Saccharomyces cerevisiae. PMID:14500708

  18. Dynamics of the Ternary Complex Formed by c-Myc Interactor JPO2, Transcriptional Co-activator LEDGF/p75, and Chromatin*

    PubMed Central

    Hendrix, Jelle; van Heertum, Bart; Vanstreels, Els; Daelemans, Dirk; De Rijck, Jan

    2014-01-01

    Lens epithelium-derived growth factor (LEDGF/p75) is a transcriptional co-activator involved in targeting human immunodeficiency virus (HIV) integration and the development of MLL fusion-mediated acute leukemia. A previous study revealed that LEDGF/p75 dynamically scans the chromatin, and upon interaction with HIV-1 integrase, their complex is locked on chromatin. At present, it is not known whether LEDGF/p75-mediated chromatin locking is typical for interacting proteins. Here, we employed continuous photobleaching and fluorescence correlation and cross-correlation spectroscopy to investigate in vivo chromatin binding of JPO2, a LEDGF/p75- and c-Myc-interacting protein involved in transcriptional regulation. In the absence of LEDGF/p75, JPO2 performs chromatin scanning inherent to transcription factors. However, whereas the dynamics of JPO2 chromatin binding are decelerated upon interaction with LEDGF/p75, very strong locking of their complex onto chromatin is absent. Similar results were obtained with the domesticated transposase PogZ, another cellular interaction partner of LEDGF/p75. We furthermore show that diffusive JPO2 can oligomerize; that JPO2 and LEDGF/p75 interact directly and specifically in vivo through the specific interaction domain of JPO2 and the C-terminal domain of LEDGF/p75, comprising the integrase-binding domain; and that modulation of JPO2 dynamics requires a functional PWWP domain in LEDGF/p75. Our results suggest that the dynamics of the LEDGF/p75-chromatin interaction depend on the specific partner and that strong chromatin locking is not a property of all LEDGF/p75-binding proteins. PMID:24634210

  19. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis.

    PubMed

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-02-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  20. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    PubMed Central

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  1. Axon Regeneration Is Regulated by Ets–C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways

    PubMed Central

    Matsumoto, Kunihiro

    2015-01-01

    The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+–p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration. PMID:26484536

  2. B Cell-Activating Transcription Factor Plays a Critical Role in the Pathogenesis of Anti-Major Histocompatibility Complex-Induced Obliterative Airway Disease.

    PubMed

    Xu, Z; Ramachandran, S; Gunasekaran, M; Nayak, D; Benshoff, N; Hachem, R; Gelman, A; Mohanakumar, T

    2016-04-01

    Antibodies (Abs) against major histocompatibility complex (MHC) results in T helper-17 (Th17)-mediated immunity against lung self-antigens (SAgs), K-α1 tubulin and collagen V and obliterative airway disease (OAD). Because B cell-activating transcription factor (BATF) controls Th17 and autoimmunity, we proposed that BATF may play a critical role in OAD. Anti-H2K(b) was administered intrabronchially into Batf (-/-) and C57BL/6 mice. Histopathology of the lungs on days 30 and 45 after Ab administration to Batf (-/-) mice resulted in decreased cellular infiltration, epithelial metaplasia, fibrosis, and obstruction. There was lack of Abs to SAgs, reduction of Sag-specific interleukin (IL)-17 T cells, IL-6, IL-23, IL-17, IL-1β, fibroblast growth factor-6, and CXCL12 and decreased Janus kinase 2, signal transducer and activator of transcription 3 (STAT3), and retinoid-related orphan receptor γT. Further, micro-RNA (miR)-301a, a regulator of Th17, was reduced in Batf (-/-) mice in contrast to upregulation of miR-301a and downregulation of protein inhibitor of activated STAT3 (PIAS3) in anti-MHC-induced OAD animals. We also demonstrate an increase in miR-301a in the bronchoalveolar lavage cells from lung transplant recipients with Abs to human leukocyte antigen. This was accompanied by reduction in PIAS3 mRNA. Therefore, we conclude that BATF plays a critical role in the immune responses to SAgs and pathogenesis of anti-MHC-induced rejection. Targeting BATF should be considered for preventing chronic rejection after human lung transplantation. PMID:26844425

  3. MiR-23b Regulates CDK-activating Kinase complex through Cyclin H Repression to Modulate Endothelial Transcription and Growth under Flow

    PubMed Central

    Wang, Kuei-Chun; Nguyen, Phu; Weiss, Anna; Yeh, Yi-Ting; Chien, Hou Su; Lee, Alicia; Teng, Dayu; Subramaniam, Shankar; Li, Yi-Shuan; Chien, Shu

    2014-01-01

    Objective The site-specificity of endothelial phenotype is attributable to the local hemodynamic forces. The flow regulation of microRNAs (miRNAs) in endothelial cells (ECs) plays a significant role invascular homeostasis and diseases. The objective of this study is to elucidate the molecular mechanism by which the pulsatile shear flow (PS)-induced miR-23b exerts anti-proliferative effects on ECs. Approach and Results We used a combination of a cell perfusion system and experimental animals to examine the flow regulation of miR-23b in modulating EC proliferation. Our results demonstrated that PS induces the transcription factor KLF2 to promote miR-23b biosynthesis; the increase in miR-23b then represses cyclin H to impair the activity and integrity of CDK-activating kinase complex (CAK). The inhibitory effect of miR-23b on CAK exerts dual actions to (1) suppress cell cycle progression, and (2) reduce basal transcription by deactivating RNA polymerase II. While PS regulates the miR-23b/CAK pathway to exert anti-proliferative effects on ECs, oscillatory shear flow (OS) has little effect on the miR-23b/CAK pathway and hence does not cause EC growth arrest. Such flow pattern-dependent phenomena are validated with an in vivo model on rat carotid artery: the flow disturbance induced by partial carotid ligation led to a lower expression of miR-23b and a higher EC proliferation in comparison to the pulsatile flow regions of the unligated vessels. Local delivery of miR-23b mitigated the proliferative EC phenotype in partially ligated vessels. Conclusions Our findings unveil a novel mechanism by which hemodynamic forces modulate EC proliferative phenotype through the miR-23b/CAK pathway. PMID:24855060

  4. Activating transcription factor 2 in mesenchymal tumors.

    PubMed

    Endo, Makoto; Su, Le; Nielsen, Torsten O

    2014-02-01

    Activating transcription factor 2 (ATF2) is a member of activator protein 1 superfamily, which can heterodimerize with other transcription factors regulating cell differentiation and survival. ATF2 assembles into a complex with the synovial sarcoma translocation, chromosome 18 (SS18)-synovial sarcoma, X breakpoint (SSX) fusion oncoprotein, and the transducin-like enhancer of split 1 (TLE1) corepressor, driving oncogenesis in synovial sarcoma. The fusion oncoproteins in many other translocation-associated sarcomas incorporate transcription factors from the ATF/cAMP response element binding or E26 families, which potentially form heterodimers with ATF2 to regulate transcription. ATF2 may therefore play an important role in the oncogenesis of many mesenchymal tumors, but as yet, little is known about its protein expression in patient specimens. Herein we perform immunohistochemical analyses using a validated specific antibody for ATF2 expression and intracellular localization on a cohort of 594 malignant and 207 benign mesenchymal tumors representing 47 diagnostic entities. Melanoma served as a positive control for nuclear and cytoplasmic staining. High nuclear ATF2 expression was mainly observed in translocation-associated and/or spindle cell sarcomas including synovial sarcoma, desmoplastic small round cell tumor, endometrial stromal sarcoma, gastrointestinal stromal tumor, malignant peripheral nerve sheath tumor, and solitary fibrous tumor. Cytoplasmic ATF2 expression was less frequently seen than nuclear expression in malignant mesenchymal tumors. Benign mesenchymal tumors mostly showed much lower nuclear and cytoplasmic ATF2 expression. PMID:24289970

  5. Conformational locking upon cooperative assembly of Notch transcription complexes

    PubMed Central

    Choi, Sung Hee; Wales, Thomas E.; Nam, Yunsun; O’Donovan, Daniel; Sliz, Piotr; Engen, John R.; Blacklow, Stephen C.

    2012-01-01

    The Notch intracellular domain (NICD) forms a transcriptional activation complex with the DNA-binding factor CSL and a transcriptional co-activator of the Mastermind family (MAML). The "RAM" region of NICD recruits Notch to CSL, facilitating the binding of MAML at the interface between the ankyrin (ANK) repeat domain of NICD and CSL. Here, we report the X-ray structure of a human MAML1/RAM/ANK/CSL/DNA complex, and probe changes in component dynamics upon stepwise assembly of a MAML1/NICD/CSL complex using HX-MS. Association of CSL with NICD exerts remarkably little effect on the exchange kinetics of the ANK domain, whereas MAML1 binding greatly retards the exchange kinetics of ANK repeats 2–3. These exchange patterns identify critical features contributing to the cooperative assembly of Notch transcription complexes (NTCs), highlight the importance of MAML recruitment in rigidifying the ANK domain and stabilizing its interface with CSL, and rationalize the requirement for MAML1 in driving cooperative dimerization of NTCs on paired site DNA. PMID:22325781

  6. Mechanisms of specificity in neuronal activity-regulated gene transcription

    PubMed Central

    Lyons, Michelle R.; West, Anne E.

    2011-01-01

    The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929

  7. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control. PMID:15588252

  8. Novel scanning force microscopy methods for investigation of transcription complexes

    NASA Astrophysics Data System (ADS)

    Guthold, Martin

    1997-11-01

    Scanning force microscopy (SFM) methods were developed to investigate the structure and the dynamics of E. coli transcription complexes. The described techniques will also be applicable to the study of other protein-nucleic acid complexes. First, the deposition process of DNA molecules onto a mica surface was investigated using polymer chain statistics. Conditions were found in which DNA molecules, and also protein-DNA complexes, are able to equilibrate on the surface. These findings imply that DNA and protein-DNA complexes attain a lowest energy state on the surface, and that meaningful structural information can, therefore, be obtained from the corresponding SFM images. Using these imaging conditions, SFM was then used to investigate various transcription complexes. The structures of crucial intermediates in the transcriptional activation of RNA polymeraseċsigma54 by NtrC were visualized and analyzed. Moreover, a new method was pioneered to identify the position of specific subunits in multi- protein assemblies. In this method, a specific subunit is tagged with a short piece of DNA which renders it easily recognizable in SFM images. This technique was employed to determine the positions of the two α subunits and the βsp/prime subunit in RNA polymerase-DNA complexes. Finally, SFM imaging in liquid was used to investigate the dynamics of the specific and non-specific interactions between RNA polymerase and DNA. Image sequences of an RNA polymerase actively transcribing a DNA template were obtained and analyzed. Image sequences of non-specific complexes were also obtained, and showed the RNA polymerase moving along the DNA in a one- dimensional random walk. The latter experiments provide some of the first direct evidence that RNA polymerase diffuses along DNA to facilitate promoter location. Chapters II, III, V and VI of this dissertation include material which has been previously published with co- authors. The co-authors are acknowledged at the beginning of

  9. A sustained deficiency of mitochondrial respiratory complex III induces an apoptotic cell death through the p53-mediated inhibition of pro-survival activities of the activating transcription factor 4

    PubMed Central

    Evstafieva, A G; Garaeva, A A; Khutornenko, A A; Klepikova, A V; Logacheva, M D; Penin, A A; Novakovsky, G E; Kovaleva, I E; Chumakov, P M

    2014-01-01

    Generation of energy in mitochondria is subjected to physiological regulation at many levels, and its malfunction may result in mitochondrial diseases. Mitochondrial dysfunction is associated with different environmental influences or certain genetic conditions, and can be artificially induced by inhibitors acting at different steps of the mitochondrial electron transport chain (ETC). We found that a short-term (5 h) inhibition of ETC complex III with myxothiazol results in the phosphorylation of translation initiation factor eIF2α and upregulation of mRNA for the activating transcription factor 4 (ATF4) and several ATF4-regulated genes. The changes are characteristic for the adaptive integrated stress response (ISR), which is known to be triggered by unfolded proteins, nutrient and metabolic deficiency, and mitochondrial dysfunctions. However, after a prolonged incubation with myxothiazol (13–17 h), levels of ATF4 mRNA and ATF4-regulated transcripts were found substantially suppressed. The suppression was dependent on the p53 response, which is triggered by the impairment of the complex III-dependent de novo biosynthesis of pyrimidines by mitochondrial dihydroorotate dehydrogenase. The initial adaptive induction of ATF4/ISR acted to promote viability of cells by attenuating apoptosis. In contrast, the induction of p53 upon a sustained inhibition of ETC complex III produced a pro-apoptotic effect, which was additionally stimulated by the p53-mediated abrogation of the pro-survival activities of the ISR. Interestingly, a sustained inhibition of ETC complex I by piericidine did not induce the p53 response and stably maintained the pro-survival activation of ATF4/ISR. We conclude that a downregulation of mitochondrial ETC generally induces adaptive pro-survival responses, which are specifically abrogated by the suicidal p53 response triggered by the genetic risks of the pyrimidine nucleotide deficiency. PMID:25375376

  10. Forcing FAK into Transcriptional Activity.

    PubMed

    Lietha, Daniel

    2016-08-01

    Focal adhesion kinase (FAK) has known signaling roles in cytoplasmic adhesion structures, but was recently shown to act as a transcriptional regulator in the nucleus. In this issue of Structure, Cardoso et al. (2016) report that mechanical forces translocate FAK to the nucleus of cardiomyocytes, and provide structural insights into how FAK interacts with the MEF2 transcription factor to control cardiac hypertrophy. PMID:27486913

  11. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer.

    PubMed

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-10-01

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. PMID:26282204

  12. Stalled transcription complexes promote DNA repair at a distance

    PubMed Central

    Haines, Nia M.; Kim, Young-In T.; Smith, Abigail J.; Savery, Nigel J.

    2014-01-01

    Transcription-coupled nucleotide excision repair (TCR) accelerates the removal of noncoding lesions from the template strand of active genes, and hence contributes to genome-wide variations in mutation frequency. Current models for TCR suppose that a lesion must cause RNA polymerase (RNAP) to stall if it is to be a substrate for accelerated repair. We have examined the substrate requirements for TCR using a system in which transcription stalling and damage location can be uncoupled. We show that Mfd-dependent TCR in bacteria involves the formation of a damage search complex that can detect lesions downstream of a stalled RNAP, and that the strand specificity of the accelerated repair pathway is independent of the requirement for a lesion to stall RNAP. We also show that an ops (operon polarity suppressor) transcription pause site, which causes backtracking of RNAP, can promote the repair of downstream lesions when those lesions do not themselves cause the polymerase to stall. Our findings indicate that the transcription-repair coupling factor Mfd, which is an ATP-dependent superfamily 2 helicase that binds to RNAP, continues to translocate along DNA after RNAP has been displaced until a lesion in the template strand is located. The discovery that pause sites can promote the repair of nonstalling lesions suggests that TCR pathways may play a wider role in modulating mutation frequencies in different parts of the genome than has previously been suspected. PMID:24554077

  13. The complex choreography of transcription-coupled repair.

    PubMed

    Spivak, Graciela; Ganesan, Ann K

    2014-07-01

    A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations. PMID:24751236

  14. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex

    PubMed Central

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-01-01

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT-rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. PMID:25311862

  15. Antioxidant-induced changes of the AP-1 transcription complex are paralleled by a selective suppression of human papillomavirus transcription.

    PubMed Central

    Rösl, F; Das, B C; Lengert, M; Geletneky, K; zur Hausen, H

    1997-01-01

    Considering the involvement of a redox-regulatory pathway in the expression of human papillomaviruses (HPVs), HPV type 16 (HPV-16)-immortalized human keratinocytes were treated with the antioxidant pyrrolidine-dithiocarbamate (PDTC). PDTC induces elevated binding of the transcription factor AP-1 to its cognate recognition site within the viral regulatory region. Despite of increased AP-1 binding, normally indispensable for efficient HPV-16 transcription, viral gene expression was selectively suppressed at the level of initiation of transcription. Electrophoretic mobility supershift assays showed that the composition of the AP-1 complex, predominantly consisting of Jun homodimers in untreated cells, was altered. Irrespective of enhanced c-fos expression, c-jun was phosphorylated and became primarily heterodimerized with fra-1, which was also induced after PDTC incubation. Additionally, there was also an increased complex formation between c-jun and junB. Because both fra-1 and junB overexpression negatively interferes with c-jun/c-fos trans-activation of AP-1-responsive genes, our results suggest that the observed block in viral transcription is mainly the consequence of an antioxidant-induced reconstitution of the AP-1 transcription complex. Since expression of the c-jun/c-fos gene family is tightly regulated during cellular differentiation, defined reorganization of a central viral transcription factor may represent a novel mechanism controlling the transcription of pathogenic HPVs during keratinocyte differentiation and in the progression to cervical cancer. PMID:8985358

  16. Activation of 12/23-RSS-Dependent RAG Cleavage by hSWI/SNF Complex in the Absence of Transcription

    PubMed Central

    Du, Hansen; Ishii, Haruhiko; Pazin, Michael J.; Sen, Ranjan

    2015-01-01

    SUMMARY Maintenance of genomic integrity during antigen receptor gene rearrangements requires (1) regulated access of the V(D)J recombinase to specific loci and (2) generation of double-strand DNA breaks only after recognition of a pair of matched recombination signal sequences (RSSs). Here we recapitulate both key aspects of regulated recombinase accessibility in a cell-free system using plasmid substrates assembled into chromatin. We show that recruitment of the SWI/SNF chromatin-remodeling complex to both RSSs increases coupled cleavage by RAG1 and RAG2 proteins. SWI/SNF functions by altering local chromatin structure in the absence of RNA polymerase II-dependent transcription or histone modifications. These observations demonstrate a direct role for cis-sequence-regulated local chromatin remodeling in RAG1/2-dependent initiation of V(D)J recombination. PMID:18775324

  17. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.; Bogdanove, Adam J.

    2016-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  18. Cyclin D1 transcriptional activation in MCL.

    PubMed

    Beà, Sílvia

    2014-03-27

    In this issue of Blood, Allinne et al propose the nucleolin-dependent activation of the translocated CCND1 allele in mantle cell lymphoma (MCL) because of its relocalization to a transcriptionally favorable area in the perinucleolar region. PMID:24677400

  19. Regulation of maternal transcript destabilization during egg activation in Drosophila.

    PubMed Central

    Tadros, Wael; Houston, Simon A; Bashirullah, Arash; Cooperstock, Ramona L; Semotok, Jennifer L; Reed, Bruce H; Lipshitz, Howard D

    2003-01-01

    In animals, the transfer of developmental control from maternal RNAs and proteins to zygotically derived products occurs at the midblastula transition. This is accompanied by the destabilization of a subset of maternal transcripts. In Drosophila, maternal transcript destabilization occurs in the absence of fertilization and requires specific cis-acting instability elements. We show here that egg activation is necessary and sufficient to trigger transcript destabilization. We have identified 13 maternal-effect lethal loci that, when mutated, result in failure of maternal transcript degradation. All mutants identified are defective in one or more additional processes associated with egg activation. These include vitelline membrane reorganization, cortical microtubule depolymerization, translation of maternal mRNA, completion of meiosis, and chromosome condensation (the S-to-M transition) after meiosis. The least pleiotropic class of transcript destabilization mutants consists of three genes: pan gu, plutonium, and giant nuclei. These three genes regulate the S-to-M transition at the end of meiosis and are thought to be required for the maintenance of cyclin-dependent kinase (CDK) activity during this cell cycle transition. Consistent with a possible functional connection between this S-to-M transition and transcript destabilization, we show that in vitro-activated eggs, which exhibit aberrant postmeiotic chromosome condensation, fail to initiate transcript degradation. Several genetic tests exclude the possibility that reduction of CDK/cyclin complex activity per se is responsible for the failure to trigger transcript destabilization in these mutants. We propose that the trigger for transcript destabilization occurs coincidently with the S-to-M transition at the end of meiosis and that pan gu, plutonium, and giant nuclei regulate maternal transcript destabilization independent of their role in cell cycle regulation. PMID:12871909

  20. Integrator complex and transcription regulation: Recent findings and pathophysiology.

    PubMed

    Rienzo, Monica; Casamassimi, Amelia

    2016-10-01

    In the last decade, a novel molecular complex has been added to the RNA polymerase II-mediated transcription machinery as one of the major components. This multiprotein complex, named Integrator, plays a pivotal role in the regulation of most RNA Polymerase II-dependent genes. This complex consists of at least 14 different subunits. However, studies investigating its structure and composition are still lacking. Although it was originally discovered as a complex implicated in the 3'-end formation of noncoding small nuclear RNAs, recent studies indicate additional roles for Integrator in transcription regulation, for example during transcription pause-release and elongation of polymerase, in the biogenesis of transcripts derived from enhancers, as well as in DNA and RNA metabolism for some of its components. Noteworthy, several subunits have been emerging to play roles during development and differentiation; more importantly, their alterations are likely to be involved in several human pathologies, including cancer and lung diseases. PMID:27427483

  1. Chromatin insulation by a transcriptional activator

    PubMed Central

    Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.

    2003-01-01

    In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916

  2. NF-Y activates mouse tryptophan hydroxylase transcription.

    PubMed

    Reed, G E; Kirchner, J E; Carr, L G

    1995-06-01

    Tryptophan hydroxylase catalyses the rate-limiting step in the biosynthesis of serotonin, a neurotransmitter which has been implicated in the etiologies of clinically important psychiatric illnesses. Tryptophan hydroxylase is expressed in a tissue-specific manner, but little is known about its transcriptional regulation. By analysing transcriptional activities of a set 5'-deletion constructs of promoter-reporter plasmids in P815-HTR mastocytoma cells, we found that transcription was activated by sequences between nucleotides -343 and -21. DNase I footprint analysis, using nuclear protein extracts from P815-HTR cells, revealed a protein-DNA interaction between nucleotides -77 and -46. A double stranded oligonucleotide, representing this binding site, specifically bound nuclear protein in a gel shift assay. Methylation interference analysis of this complex revealed that nuclear protein interacted with an inverted GGCCAAT element, which is a high-affinity binding motif for the transcription factor NF-Y (also known as CP1 or CBF). An NF-Y specific antibody abolished protein binding in a gel shift assay. Mutagenesis of specific base pairs abolished protein binding in vitro, and mutagenesis of the same base pairs in a reporter gene construct resulted in a 65% decrease in transcriptional activity. Our results suggest that the transcription factor NF-Y binds to a GGCCAAT motif in the tph proximal promoter and activates transcription. PMID:7552299

  3. RNA polymerase II ternary transcription complexes generated in vitro.

    PubMed Central

    Ackerman, S; Bunick, D; Zandomeni, R; Weinmann, R

    1983-01-01

    Ternary transcription complexes have been formed with a HeLa cell extract, a specific DNA template, and nucleoside triphosphates. The assay depends on the formation of sarkosyl-resistant initiation complexes which contain RNA polymerase II, template DNA, and radioactive nucleoside triphosphates. Separation from the other elements in the in vitro reaction is achieved by electrophoresis in agarose - 0.25% sarkosyl gels. The mobility of the ternary complexes in this system cannot be distinguished from naked DNA. Formation of this complex is dependent on all parameters necessary for faithful in vitro transcription. Complexes are formed with both the plasmid vector and the specific adenovirus DNA insert containing a eucaryotic promoter. The formation of the complex on the eucaryotic DNA is sequence-dependent. An undecaribonucleotide predicted from the template DNA sequence remains associated with the DNA in the ternary complex and can be isolated if the chain terminator 3'-0-methyl GTP is used, or after T1 ribonuclease treatment of the RNA, or if exogenous GTP is omitted from the in vitro reaction. This oligonucleotide is not detected in association with the plasmid vector. Phosphocellulose fractionation of the extract indicates that at least one of the column fractions required for faithful runoff transcription is required for complex formation. A large molar excess of abortive initiation events was detected relative to the level of productive transcription events, indicating a 40-fold higher efficiency of transcription initiation vs. elongation. Images PMID:6193489

  4. Pleiotropic effects of gold(I) mixed-ligand complexes of 9-deazahypoxanthine on transcriptional activity of receptors for steroid hormones, nuclear receptors and xenoreceptors in human hepatocytes and cell lines.

    PubMed

    Kubešová, Kateřina; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-10-01

    Development of metal-based compounds is an important research avenue in anti-cancer and anti-inflammatory drug discovery. Here we examined the effects of three gold (I) mixed-ligand complexes with the general formula [Au(Ln)(PPh3)] (1, 2, 3) involving triphenylphosphine (PPh3) and a deprotonated form of O-substituted derivatives of 9-deazahypoxanthine (Ln) on the transcriptional activity of aryl hydrocarbon receptor (AhR), androgen receptor (AR), glucocorticoid receptor (GR), thyroid receptor (TR), pregnane X receptor (PXR) and vitamin D receptor (VDR), employing gene reporter assays. In addition, we measured mRNA (RT-PCR) and protein (western blot) expression of target genes for those receptors, including drug-metabolizing P450s, in primary human hepatocytes and cancer cell lines LS180 and HepG2. The tested compounds displayed anti-glucocorticoid effects, as revealed by inhibition of dexamethasone-inducible transcriptional activity of GR and down-regulation of tyrosine aminotransferase. All the compounds slightly and dose-dependently activated PXR and AhR, and moderately induced CYP3A4 and CYP1A1/2 genes in human hepatocytes and LS180 cells. The complexes antagonized basal and ligand-activated AR and VDR, indicating inverse agonist behaviour. Both basal and thyroid hormone-inducible transcriptional activity of TR was dose-dependently increased by all tested compounds. In contrast, the expression of SPOT14 mRNA was decreased by tested compounds in human hepatocytes and HepG2 cells. In conclusion, if intended for human pharmacotherapy, the potential of the complexes 1-3 to influence studied receptors should be taken in account. PMID:27318977

  5. MafG Sumoylation Is Required for Active Transcriptional Repression

    PubMed Central

    Motohashi, Hozumi; Katsuoka, Fumiki; Miyoshi, Chika; Uchimura, Yasuhiro; Saitoh, Hisato; Francastel, Claire; Engel, James Douglas; Yamamoto, Masayuki

    2006-01-01

    A straightforward mechanism for eliciting transcriptional repression would be to simply block the DNA binding site for activators. Such passive repression is often mediated by transcription factors that lack an intrinsic repressor activity. MafG is a bidirectional regulator of transcription, a repressor in its homodimeric state but an activator when heterodimerized with p45. Here, we report that MafG is conjugated to SUMO-2/3 in vivo. To clarify the possible physiological role(s) for sumoylation in regulating MafG activity, we evaluated mutant and wild-type MafG in transgenic mice and cultured cells. Whereas sumoylation-deficient MafG activated p45-dependent transcription normally and did not affect heterodimer activity, repression by the sumoylation-deficient MafG mutant was severely compromised in vivo. Furthermore, the SUMO-dependent repression activity of MafG was sensitive to histone deacetylase inhibition. Thus, repression by MafG is not achieved through simple passive repression by competing for the activator binding site but requires sumoylation, which then mediates transcriptional repression through recruitment of a repressor complex containing histone deacetylase activity. PMID:16738329

  6. Transcriptional responses to complex mixtures - A review

    EPA Science Inventory

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after expos...

  7. A Functional Complex of Adenovirus Proteins E1B-55kDa and E4orf6 Is Necessary To Modulate the Expression Level of p53 but Not Its Transcriptional Activity

    PubMed Central

    Cathomen, Toni; Weitzman, Matthew D.

    2000-01-01

    In adenovirus-infected cells, binding of E1B-55kDa and E4orf6 to the tumor suppressor protein p53 inhibits its transcriptional activity and causes rapid turnover of the protein. To investigate the requirements of the E1B-E4orf6 complex to modulate p53 function, we generated an E4orf6 mutant that failed to associate functionally and physically with E1B-55kDa but still interacted with p53. We confirm that E4orf6 and E1B-55kDa reduce p53 transactivation individually and show that their combined inhibition is additive rather than synergistic. Furthermore, we found that downregulation of p53's expression level, but not transcriptional inhibition of p53, depends on a functional E1B-E4 complex. A functional interaction of E1B-55kDa with p53, on the other hand, is a prerequisite for both transcriptional repression and downregulation of p53. The separation of these two functions will enable further dissection of the requirements for oncogenicity by the E4orf6 protein. PMID:11070042

  8. Theory on the dynamic memory in the transcription-factor-mediated transcription activation

    NASA Astrophysics Data System (ADS)

    Murugan, R.

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τL≫max(τR,τE), (b) τLT≫τT, and (c) τI⩾(τEL+τTR) where τL is the average time required for the looping-mediated spatial interactions of enhancer—transcription-factor complex with the corresponding promoter—RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τR,τE) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τLT is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τT is the time required to generate a complete transcript, τI is the transcription initiation time, τEL is the elongation time, and τTR is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  9. Mapping the Escherichia coli transcription elongation complex with exonuclease III

    PubMed Central

    Liu, Zhaokun; Artsimovitch, Irina

    2014-01-01

    Summary RNA polymerase interactions with the nucleic acids control every step of the transcription cycle. These contacts mediate RNA polymerase recruitment to promoters; induce pausing during RNA chain synthesis, and control transcription termination. These interactions are dissected using footprinting assays, in which a bound protein protects nucleic acids from the digestion by nucleases or modification by chemical probes. Exonuclease III is frequently employed to study protein-DNA interactions owing to relatively simple procedures and low background. Exonuclease III has been used to determine RNA polymerase position in transcription initiation and elongation complexes and to infer the translocation register of the enzyme. In this chapter, we describe probing the location and the conformation of transcription elongation complexes formed by walking of the RNA polymerase along an immobilized template. PMID:25665555

  10. Divergent transcriptional activities determine limb identity

    PubMed Central

    Ouimette, Jean-François; Jolin, Marisol Lavertu; L'honoré, Aurore; Gifuni, Anthony; Drouin, Jacques

    2010-01-01

    Limbs develop using a common genetic programme despite widely differing morphologies. This programme is modulated by limb-restricted regulators such as hindlimb (HL) transcription factors Pitx1 and Tbx4 and the forelimb (FL) Tbx5. Both Tbx factors have been implicated in limb patterning and growth, but their relative activities and underlying mechanisms remain unclear. In this paper, we show that Tbx4 and Tbx5 harbour conserved and divergent transcriptional regulatory domains that account for their roles in limb development. In particular, both factors share an activator domain and the ability to stimulate limb growth. However, we find that Tbx4 is the primary effector of HL identity for both skeletal and muscle development; this activity relies on a repressor domain that is inactivated by a human TBX4 small-patella syndrome mutation. We propose that limb identity is largely achieved by default in FL, whereas a specific repressor activity unique to Tbx4 determines HL identity. PMID:20975709

  11. Organization of the human mitochondrial transcription initiation complex

    PubMed Central

    Yakubovskaya, Elena; Guja, Kip E.; Eng, Edward T.; Choi, Woo Suk; Mejia, Edison; Beglov, Dmitri; Lukin, Mark; Kozakov, Dima; Garcia-Diaz, Miguel

    2014-01-01

    Initiation of transcription in human mitochondria involves two factors, TFAM and TFB2M, in addition to the mitochondrial RNA polymerase, POLRMT. We have investigated the organization of the human mitochondrial transcription initiation complex on the light-strand promoter (LSP) through solution X-ray scattering, electron microscopy (EM) and biochemical studies. Our EM results demonstrate a compact organization of the initiation complex, suggesting that protein–protein interactions might help mediate initiation. We demonstrate that, in the absence of DNA, only POLRMT and TFAM form a stable interaction, albeit one with low affinity. This is consistent with the expected transient nature of the interactions necessary for initiation and implies that the promoter DNA acts as a scaffold that enables formation of the full initiation complex. Docking of known crystal structures into our EM maps results in a model for transcriptional initiation that strongly correlates with new and existing biochemical observations. Our results reveal the organization of TFAM, POLRMT and TFB2M around the LSP and represent the first structural characterization of the entire mitochondrial transcriptional initiation complex. PMID:24413562

  12. Redundant cooperative interactions for assembly of a human U6 transcription initiation complex.

    PubMed

    Ma, Beicong; Hernandez, Nouria

    2002-11-01

    The core human U6 promoter consists of a proximal sequence element (PSE) located upstream of a TATA box. The PSE is recognized by the snRNA-activating protein complex (SNAP(c)), which consists of five types of subunits, SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. The TATA box is recognized by TATA box binding protein (TBP). In addition, basal U6 transcription requires the SANT domain protein Bdp1 and the transcription factor IIB-related factor Brf2. SNAP(c) and mini-SNAP(c), which consists of just SNAP43, SNAP50, and the N-terminal third of SNAP190, bind cooperatively with TBP to the core U6 promoter. By generating complexes smaller than mini-SNAP(c), we have identified a 50-amino-acid region within SNAP190 that is (i) required for cooperative binding with TBP in the context of mini-SNAP(c) and (ii) sufficient for cooperative binding with TBP when fused to a heterologous DNA binding domain. We show that derivatives of mini-SNAP(c) lacking this region are active for transcription and that with such complexes, TBP can still be recruited to the U6 promoter through cooperative interactions with Brf2. Our results identify complexes smaller than mini-SNAP(c) that are transcriptionally active and show that there are at least two redundant mechanisms to stably recruit TBP to the U6 transcription initiation complex. PMID:12391172

  13. Redundant Cooperative Interactions for Assembly of a Human U6 Transcription Initiation Complex

    PubMed Central

    Ma, Beicong; Hernandez, Nouria

    2002-01-01

    The core human U6 promoter consists of a proximal sequence element (PSE) located upstream of a TATA box. The PSE is recognized by the snRNA-activating protein complex (SNAPc), which consists of five types of subunits, SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. The TATA box is recognized by TATA box binding protein (TBP). In addition, basal U6 transcription requires the SANT domain protein Bdp1 and the transcription factor IIB-related factor Brf2. SNAPc and mini-SNAPc, which consists of just SNAP43, SNAP50, and the N-terminal third of SNAP190, bind cooperatively with TBP to the core U6 promoter. By generating complexes smaller than mini-SNAPc, we have identified a 50-amino-acid region within SNAP190 that is (i) required for cooperative binding with TBP in the context of mini-SNAPc and (ii) sufficient for cooperative binding with TBP when fused to a heterologous DNA binding domain. We show that derivatives of mini-SNAPc lacking this region are active for transcription and that with such complexes, TBP can still be recruited to the U6 promoter through cooperative interactions with Brf2. Our results identify complexes smaller than mini-SNAPc that are transcriptionally active and show that there are at least two redundant mechanisms to stably recruit TBP to the U6 transcription initiation complex. PMID:12391172

  14. Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC.

    PubMed

    Yang, Hongchun; Howard, Martin; Dean, Caroline

    2016-08-16

    Establishment and maintenance of gene expression states is central to development and differentiation. Transcriptional and epigenetic mechanisms interconnect in poorly understood ways to determine these states. We explore these mechanisms through dissection of the regulation of Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC can be present in a transcriptionally active state marked by H3K36me3 or a silent state marked by H3K27me3. Here, we investigate the trans factors modifying these opposing histone states and find a physical coupling in vivo between the H3K36 methyltransferase, SDG8, and the H3K27me3 demethylase, ELF6. Previous modeling has predicted this coupling would exist as it facilitates bistability of opposing histone states. We also find association of SDG8 with the transcription machinery, namely RNA polymerase II and the PAF1 complex. Delivery of the active histone modifications is therefore likely to be through transcription at the locus. SDG8 and ELF6 were found to influence the localization of each other on FLC chromatin, showing the functional importance of the interaction. In addition, both influenced accumulation of the associated H3K27me3 and H3K36me3 histone modifications at FLC We propose the physical coupling of activation and derepression activities coordinates transcriptional activity and prevents ectopic silencing. PMID:27482092

  15. Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC

    PubMed Central

    Yang, Hongchun; Howard, Martin; Dean, Caroline

    2016-01-01

    Establishment and maintenance of gene expression states is central to development and differentiation. Transcriptional and epigenetic mechanisms interconnect in poorly understood ways to determine these states. We explore these mechanisms through dissection of the regulation of Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC can be present in a transcriptionally active state marked by H3K36me3 or a silent state marked by H3K27me3. Here, we investigate the trans factors modifying these opposing histone states and find a physical coupling in vivo between the H3K36 methyltransferase, SDG8, and the H3K27me3 demethylase, ELF6. Previous modeling has predicted this coupling would exist as it facilitates bistability of opposing histone states. We also find association of SDG8 with the transcription machinery, namely RNA polymerase II and the PAF1 complex. Delivery of the active histone modifications is therefore likely to be through transcription at the locus. SDG8 and ELF6 were found to influence the localization of each other on FLC chromatin, showing the functional importance of the interaction. In addition, both influenced accumulation of the associated H3K27me3 and H3K36me3 histone modifications at FLC. We propose the physical coupling of activation and derepression activities coordinates transcriptional activity and prevents ectopic silencing. PMID:27482092

  16. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    PubMed

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  17. TBP domain symmetry in basal and activated archaeal transcription.

    PubMed

    Ouhammouch, Mohamed; Hausner, Winfried; Geiduschek, E Peter

    2009-01-01

    The TATA box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in the Methanococcales and Thermoplasmatales, including complete conservation of their N- and C-terminal stirrups; along with helix H'1, the C-terminal stirrup of TBP forms the main interface with TFB/TFIIB. Here, we show that, in stark contrast to its eukaryotic counterparts, multiple substitutions in the C-terminal stirrup of Methanocaldococcus jannaschii (Mja) TBP do not completely abrogate basal transcription. Using DNA affinity cleavage, we show that, by assembling TFB through its conserved N-terminal stirrup, Mja TBP is in effect ambidextrous with regard to basal transcription. In contrast, substitutions in either its N- or the C-terminal stirrup abrogate activated transcription in response to the Lrp-family transcriptional activator Ptr2. PMID:19007415

  18. Akirin Links Twist-Regulated Transcription with the Brahma Chromatin Remodeling Complex during Embryogenesis

    PubMed Central

    Nowak, Scott J.; Aihara, Hitoshi; Gonzalez, Katie; Nibu, Yutaka; Baylies, Mary K.

    2012-01-01

    The activities of developmentally critical transcription factors are regulated via interactions with cofactors. Such interactions influence transcription factor activity either directly through protein–protein interactions or indirectly by altering the local chromatin environment. Using a yeast double-interaction screen, we identified a highly conserved nuclear protein, Akirin, as a novel cofactor of the key Drosophila melanogaster mesoderm and muscle transcription factor Twist. We find that Akirin interacts genetically and physically with Twist to facilitate expression of some, but not all, Twist-regulated genes during embryonic myogenesis. akirin mutant embryos have muscle defects consistent with altered regulation of a subset of Twist-regulated genes. To regulate transcription, Akirin colocalizes and genetically interacts with subunits of the Brahma SWI/SNF-class chromatin remodeling complex. Our results suggest that, mechanistically, Akirin mediates a novel connection between Twist and a chromatin remodeling complex to facilitate changes in the chromatin environment, leading to the optimal expression of some Twist-regulated genes during Drosophila myogenesis. We propose that this Akirin-mediated link between transcription factors and the Brahma complex represents a novel paradigm for providing tissue and target specificity for transcription factor interactions with the chromatin remodeling machinery. PMID:22396663

  19. Akirin links twist-regulated transcription with the Brahma chromatin remodeling complex during embryogenesis.

    PubMed

    Nowak, Scott J; Aihara, Hitoshi; Gonzalez, Katie; Nibu, Yutaka; Baylies, Mary K

    2012-01-01

    The activities of developmentally critical transcription factors are regulated via interactions with cofactors. Such interactions influence transcription factor activity either directly through protein-protein interactions or indirectly by altering the local chromatin environment. Using a yeast double-interaction screen, we identified a highly conserved nuclear protein, Akirin, as a novel cofactor of the key Drosophila melanogaster mesoderm and muscle transcription factor Twist. We find that Akirin interacts genetically and physically with Twist to facilitate expression of some, but not all, Twist-regulated genes during embryonic myogenesis. akirin mutant embryos have muscle defects consistent with altered regulation of a subset of Twist-regulated genes. To regulate transcription, Akirin colocalizes and genetically interacts with subunits of the Brahma SWI/SNF-class chromatin remodeling complex. Our results suggest that, mechanistically, Akirin mediates a novel connection between Twist and a chromatin remodeling complex to facilitate changes in the chromatin environment, leading to the optimal expression of some Twist-regulated genes during Drosophila myogenesis. We propose that this Akirin-mediated link between transcription factors and the Brahma complex represents a novel paradigm for providing tissue and target specificity for transcription factor interactions with the chromatin remodeling machinery. PMID:22396663

  20. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries

    PubMed Central

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2016-01-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection–based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization. PMID:26054766

  1. Combinatorial complexity in a transcriptionally centered signaling hub in Arabidopsis.

    PubMed

    Pfeiffer, Anne; Shi, Hui; Tepperman, James M; Zhang, Yu; Quail, Peter H

    2014-11-01

    A subfamily of four Phytochrome (phy)-Interacting bHLH transcription Factors (PIFs) collectively promote skotomorphogenic development in dark-grown seedlings. This activity is reversed upon exposure to light, by photoactivated phy molecules that induce degradation of the PIFs, thereby triggering the transcriptional changes that drive a transition to photomorphogenesis. The PIFs function both redundantly and partially differentially at the morphogenic level in this process. To identify the direct targets of PIF transcriptional regulation genome-wide, we analyzed the DNA-binding sites for all four PIFs by ChIP-seq analysis, and defined the genes transcriptionally regulated by each PIF, using RNA-seq analysis of pif mutants. Despite the absence of detectable differences in DNA-binding-motif recognition between the PIFs, the data show a spectrum of regulatory patterns, ranging from single PIF dominance to equal contributions by all four. Similarly, a broad array of promoter architectures was found, ranging from single PIF-binding sites, containing single sequence motifs, through multiple PIF-binding sites, each containing one or more motifs, with each site occupied preferentially by one to multiple PIFs. Quantitative analysis of the promoter occupancy and expression level induced by each PIF revealed an intriguing pattern. Although there is no robust correlation broadly across the target-gene population, examination of individual genes that are shared targets of multiple PIFs shows a gradation in correlation from strongly positive, through uncorrelated, to negative. This finding suggests a dual-layered mechanism of transcriptional regulation, comprising both a continuum of binding-site occupancy by each PIF and a superimposed layer of local regulation that acts differentially on each PIF, to modulate its intrinsic transcriptional activation capacity at each site, in a quantitative pattern that varies between the individual PIFs from gene to gene. These findings provide

  2. TRIC: Capturing the direct cellular targets of promoter-bound transcriptional activators.

    PubMed

    Dugan, Amanda; Pricer, Rachel; Katz, Micah; Mapp, Anna K

    2016-08-01

    Transcriptional activators coordinate the dynamic assembly of multiprotein coactivator complexes required for gene expression to occur. Here we combine the power of in vivo covalent chemical capture with p-benzoyl-L-phenylalanine (Bpa), a genetically incorporated photo-crosslinking amino acid, and chromatin immunoprecipitation (ChIP) to capture the direct protein interactions of the transcriptional activator VP16 with the general transcription factor TBP at the GAL1 promoter in live yeast. PMID:27213278

  3. A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells.

    PubMed Central

    Clark, M E; Dasgupta, A

    1990-01-01

    In HeLa cells, RNA polymerase III (pol III)-mediated transcription is severely inhibited by poliovirus infection. This inhibition is due primarily to the reduction in transcriptional activity of the pol III transcription factor TFIIIC in poliovirus-infected cells. However, the specific binding of TFIIIC to the VAI gene B-box sequence, as assayed by DNase I footprinting, is not altered by poliovirus infection. We have used gel retardation analysis to analyze TFIIIC-DNA complexes formed in nuclear extracts prepared from mock- and poliovirus-infected cells. In mock-infected cell extracts, two closely migrating TFIIIC-containing complexes, complexes I and II, were detected in the gel retardation assay. The slower migrating complex, complex I, was absent in poliovirus-infected cell extracts, and an increase occurred in the intensity of the faster-migrating complex (complex II). Also, in poliovirus-infected cell extracts, a new, rapidly migrating complex, complex III, was formed. Complex III may have been the result of limited proteolysis of complex I or II. These changes in TFIIIC-containing complexes in poliovirus-infected cell extracts correlated kinetically with the decrease in TFIIIC transcriptional activity. Complexes I, II, and III were chromatographically separated; only complex I was transcriptionally active and specifically restored pol III transcription when added to poliovirus-infected cell extracts. Acid phosphatase treatment partially converted complex I to complex II but did not affect the binding of complex II or III. Dephosphorylation and limited proteolysis of TFIIIC are discussed as possible mechanisms for the inhibition of pol III-mediated transcription by poliovirus. Images PMID:2204807

  4. Complex SUMO-1 Regulation of Cardiac Transcription Factor Nkx2-5

    PubMed Central

    Costa, Mauro W.; Lee, Stella; Furtado, Milena B.; Xin, Li; Sparrow, Duncan B.; Martinez, Camila G.; Dunwoodie, Sally L.; Kurtenbach, Eleonora; Mohun, Tim; Rosenthal, Nadia; Harvey, Richard P.

    2011-01-01

    Reversible post-translational protein modifications such as SUMOylation add complexity to cardiac transcriptional regulation. The homeodomain transcription factor Nkx2-5/Csx is essential for heart specification and morphogenesis. It has been previously suggested that SUMOylation of lysine 51 (K51) of Nkx2-5 is essential for its DNA binding and transcriptional activation. Here, we confirm that SUMOylation strongly enhances Nkx2-5 transcriptional activity and that residue K51 of Nkx2-5 is a SUMOylation target. However, in a range of cultured cell lines we find that a point mutation of K51 to arginine (K51R) does not affect Nkx2-5 activity or DNA binding, suggesting the existence of additional Nkx2-5 SUMOylated residues. Using biochemical assays, we demonstrate that Nkx2-5 is SUMOylated on at least one additional site, and this is the predominant site in cardiac cells. The second site is either non-canonical or a “shifting” site, as mutation of predicted consensus sites and indeed every individual lysine in the context of the K51R mutation failed to impair Nkx2-5 transcriptional synergism with SUMO, or its nuclear localization and DNA binding. We also observe SUMOylation of Nkx2-5 cofactors, which may be critical to Nkx2-5 regulation. Our data reveal highly complex regulatory mechanisms driven by SUMOylation to modulate Nkx2-5 activity. PMID:21931855

  5. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex

    SciTech Connect

    Surapureddi, Sailesh; Viswakarma, Navin; Yu Songtao; Guo Dongsheng; Rao, M. Sambasiva; Reddy, Janardan K. . E-mail: jkreddy@northwestern.edu

    2006-05-05

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320 kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPAR{alpha}, CAR, ER{alpha}, and RXR, but only minimally with PPAR{gamma}. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPAR{alpha} and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPAR{alpha}-mediated transcription. We conclude that ciprofibrate, a PPAR{alpha} ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.

  6. Cell cycle-dependent regulation of RNA polymerase II basal transcription activity.

    PubMed Central

    Yonaha, M; Chibazakura, T; Kitajima, S; Yasukochi, Y

    1995-01-01

    Regulation of transcription by RNA polymerase II (pol II) in eukaryotic cells requires both basal and regulatory transcription factors. In this report we have investigated in vitro pol II basal transcription activity during the cell cycle by using nuclear extracts from synchronized HeLa cells. It is shown that pol II basal transcription activity is low in the S and G2 phases and high in early G1 phase and TFIID is the rate limiting component of pol II basal transcription activity during the cell cycle. Further analyses reveal that TFIID exists as a less active form in the S and G2 phases and nuclear extracts from S and G2 phase cells contain a heat-sensitive repressor(s) of TATA box binding protein (TBP). These results suggest that pol II basal transcription activity is regulated by a qualitative change in the TFIID complex, which could involve repression of TBP, during the cell cycle. Images PMID:7479063

  7. Transcription factor IIIB generates extended DNA interactions in RNA polymerase III transcription complexes on tRNA genes.

    PubMed Central

    Kassavetis, G A; Riggs, D L; Negri, R; Nguyen, L H; Geiduschek, E P

    1989-01-01

    Transcription complexes that assemble on tRNA genes in a crude Saccharomyces cerevisiae cell extract extend over the entire transcription unit and approximately 40 base pairs of contiguous 5'-flanking DNA. We show here that the interaction with 5'-flanking DNA is due to a protein that copurifies with transcription factor TFIIIB through several steps of purification and shares characteristic properties that are normally ascribed to TFIIIB: dependence on prior binding of TFIIIC and great stability once the TFIIIC-TFIIIB-DNA complex is formed. SUP4 gene (tRNATyr) DNA that was cut within the 5'-flanking sequence (either 31 or 28 base pairs upstream of the transcriptional start site) was no longer able to stably incorporate TFIIIB into a transcription complex. The TFIIIB-dependent 5'-flanking DNA protein interaction was predominantly not sequence specific. The extension of the transcription complex into this DNA segment does suggest two possible explanations for highly diverse effects of flanking-sequence substitutions on tRNA gene transcription: either (i) proteins that are capable of binding to these upstream DNA segments are also potentially capable of stimulating or interfering with the incorporation of TFIIIB into transcription complexes or (ii) 5'-flanking sequence influences the rate of assembly of TFIIIB into stable transcription complexes. Images PMID:2668737

  8. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription

    PubMed Central

    Portnoy, Victoria; Lin, Szu Hua Sharon; Li, Kathy H; Burlingame, Alma; Hu, Zheng-Hui; Li, Hao; Li, Long-Cheng

    2016-01-01

    Small activating RNAs (saRNAs) targeting specific promoter regions are able to stimulate gene expression at the transcriptional level, a phenomenon known as RNA activation (RNAa). It is known that RNAa depends on Ago2 and is associated with epigenetic changes at the target promoters. However, the precise molecular mechanism of RNAa remains elusive. Using human CDKN1A (p21) as a model gene, we characterized the molecular nature of RNAa. We show that saRNAs guide Ago2 to and associate with target promoters. saRNA-loaded Ago2 facilitates the assembly of an RNA-induced transcriptional activation (RITA) complex, which, in addition to saRNA-Ago2 complex, includes RHA and CTR9, the latter being a component of the PAF1 complex. RITA interacts with RNA polymerase II to stimulate transcription initiation and productive elongation, accompanied by monoubiquitination of histone 2B. Our results establish the existence of a cellular RNA-guided genome-targeting and transcriptional activation mechanism and provide important new mechanistic insights into the RNAa process. PMID:26902284

  9. The natural diterpene ent-16β-17α-dihydroxykaurane down-regulates Bcl-2 by disruption of the Ap-2α/Rb transcription activating complex and induces E2F1 up-regulation in MCF-7 cells.

    PubMed

    Morales, Alvaro; Alvarez, Annamil; Arvelo, Francisco; Suárez, Alírica I; Compagnone, Reinaldo S; Galindo-Castro, Iván

    2011-12-01

    ent-Kauranes are diterpene-type compounds commonly found in most plant species, especially from the Euphorbiaceae family. These compounds have been studied due to their anti-inflammatory and anti-tumor properties. Regulation of apoptosis, or programmed cell death, is commonly bypassed by tumoral cells, giving rise to uncontrolled proliferating cells, which eventually become carcinogenic. In a previous work, we showed that both mRNA and protein expression levels of the antiapoptotic gene Bcl-2 are reduced in MCF-7 cancer cells by the effect of the natural diterpene ent-16β-17α-dihydroxykaurane (DHK). This effect was not directly associated with the inactivation of NF-κB, as has been shown with other diterpenes compounds. Herein, we report that DHK is dissociating the Ap2α-Rb activating complex, affecting its binding ability for the Bcl-2 gene promoter. These events down-regulate Bcl-2 and is temporally accompanied by the induction of E2F1 and its target pro-apoptotic gene Puma. Disruption of the Rb-Ap2α activation complex was corroborated by chromatin immunoprecipitation and protein immunolocalization, which also revealed that Ap2α sorts out from the nucleus and relocalizes in the cell periphery. Taken together, our study confirms the regulation of Bcl-2 gene transcription by the Ap2α-Rb complex and describes a singular protein relocalization for Ap2α induced by DHK, implicating a new potential therapeutic target to differentially onset apoptosis in tumor cells. PMID:21850486

  10. Affinity Purification Strategies for Proteomic Analysis of Transcription Factor Complexes

    PubMed Central

    2013-01-01

    Affinity purification (AP) coupled to mass spectrometry (MS) has been successful in elucidating protein molecular networks of mammalian cells. These approaches have dramatically increased the knowledge of the interconnectivity present among proteins and highlighted biological functions within different protein complexes. Despite significant technical improvements reached in the past years, it is still challenging to identify the interaction networks and the subsequent associated functions of nuclear proteins such as transcription factors (TFs). A straightforward and robust methodology is therefore required to obtain unbiased and reproducible interaction data. Here we present a new approach for TF AP-MS, exemplified with the CCAAT/enhancer binding protein alpha (C/EBPalpha). Utilizing the advantages of a double tag and three different MS strategies, we conducted a total of six independent AP-MS strategies to analyze the protein–protein interactions of C/EBPalpha. The resultant data were combined to produce a cohesive C/EBPalpha interactome. Our study describes a new methodology that robustly identifies specific molecular complexes associated with transcription factors. Moreover, it emphasizes the existence of TFs as protein complexes essential for cellular biological functions and not as single, static entities. PMID:23937658

  11. Complementary Quantitative Proteomics Reveals that Transcription Factor AP-4 Mediates E-box-dependent Complex Formation for Transcriptional Repression of HDM2*

    PubMed Central

    Ku, Wei-Chi; Chiu, Sung-Kay; Chen, Yi-Ju; Huang, Hsin-Hung; Wu, Wen-Guey; Chen, Yu-Ju

    2009-01-01

    Transcription factor activating enhancer-binding protein 4 (AP-4) is a basic helix-loop-helix protein that binds to E-box elements. AP-4 has received increasing attention for its regulatory role in cell growth and development, including transcriptional repression of the human homolog of murine double minute 2 (HDM2), an important oncoprotein controlling cell growth and survival, by an unknown mechanism. Here we demonstrate that AP-4 binds to an E-box located in the HDM2-P2 promoter and represses HDM2 transcription in a p53-independent manner. Incremental truncations of AP-4 revealed that the C-terminal Gln/Pro-rich domain was essential for transcriptional repression of HDM2. To further delineate the molecular mechanism(s) of AP-4 transcriptional control and its potential implications, we used DNA-affinity purification followed by complementary quantitative proteomics, cICAT and iTRAQ labeling methods, to identify a previously unknown E-box-bound AP-4 protein complex containing 75 putative components. The two labeling methods complementarily quantified differentially AP-4-enriched proteins, including the most significant recruitment of DNA damage response proteins, followed by transcription factors, transcriptional repressors/corepressors, and histone-modifying proteins. Specific interaction of AP-4 with CCCTC binding factor, stimulatory protein 1, and histone deacetylase 1 (an AP-4 corepressor) was validated using AP-4 truncation mutants. Importantly, inclusion of trichostatin A did not alleviate AP-4-mediated repression of HDM2 transcription, suggesting a previously unidentified histone deacetylase-independent repression mechanism. In contrast, the complementary quantitative proteomics study suggested that transcription repression occurs via coordination of AP-4 with other transcription factors, histone methyltransferases, and/or a nucleosome remodeling SWI·SNF complex. In addition to previously known functions of AP-4, our data suggest that AP-4 participates in

  12. The Mediator complex: a central integrator of transcription

    PubMed Central

    Allen, Benjamin L.; Taatjes, Dylan J.

    2016-01-01

    The RNA polymerase II (pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator, a large, conformationally flexible protein complex with variable subunit composition (for example, a four-subunit CDK8 module can reversibly associate). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes important for transcription, including organization of chromatin architecture and regulation of pol II pre-initiation, initiation, re-initiation, pausing, and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions appear to be specific to metazoans, indicative of more diverse regulatory requirements. PMID:25693131

  13. Rb binds c-Jun and activates transcription.

    PubMed Central

    Nead, M A; Baglia, L A; Antinore, M J; Ludlow, J W; McCance, D J

    1998-01-01

    The retinoblastoma protein (Rb) acts as a critical cell-cycle regulator and loss of Rb function is associated with a variety of human cancer types. Here we report that Rb binds to members of the AP-1 family of transcription factors, including c-Jun, and stimulates c-Jun transcriptional activity from an AP-1 consensus sequence. The interaction involves the leucine zipper region of c-Jun and the B pocket of Rb as well as a C-terminal domain. We also present evidence that the complexes are found in terminally differentiating keratinocytes and cells entering the G1 phase of the cell cycle after release from serum starvation. The human papillomavirus type 16 E7 protein, which binds to both c-Jun and Rb, inhibits the ability of Rb to activate c-Jun. The results provide evidence of a role for Rb as a transcriptional activator in early G1 and as a potential modulator of c-Jun expression during keratinocyte differentiation. PMID:9545246

  14. Post-transcriptional gene silencing activity of human GIGYF2.

    PubMed

    Kryszke, Marie-Hélène; Adjeriou, Badia; Liang, Feifei; Chen, Hong; Dautry, François

    2016-07-01

    In mammalian post-transcriptional gene silencing, the Argonaute protein AGO2 indirectly recruits translation inhibitors, deadenylase complexes, and decapping factors to microRNA-targeted mRNAs, thereby repressing mRNA translation and accelerating mRNA decay. However, the exact composition and assembly pathway of the microRNA-induced silencing complex are not completely elucidated. As the GYF domain of human GIGYF2 was shown to bind AGO2 in pulldown experiments, we wondered whether GIGYF2 could be a novel protein component of the microRNA-induced silencing complex. Here we show that full-length GIGYF2 coimmunoprecipitates with AGO2 in human cells, and demonstrate that, upon tethering to a reporter mRNA, GIGYF2 exhibits strong, dose-dependent silencing activity, involving both mRNA destabilization and translational repression. PMID:27157137

  15. A position-dependent transcription-activating domain in TFIIIA.

    PubMed

    Mao, X; Darby, M K

    1993-12-01

    Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain. PMID:8246967

  16. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    SciTech Connect

    Wang Bei; Suzuki, Hiroyuki Kato, Mitsuyasu

    2008-11-14

    TGF-{beta} activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-{beta} enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-{beta} type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.

  17. Transcriptional complexity of vaccinia virus in vivo and in vitro.

    PubMed Central

    Paoletti, E; Grady, L J

    1977-01-01

    The transcriptional complexity of vaccinia virus both in vivo and in vitro has been measured by using DNA:RNA hybridization with RNA in excess. In vivo, "early" or prereplicative RNA was found to saturate at 25% or one-half of the viral genome. "Late" or postreplicative RNA from infected HeLa cells saturated at 52% or essentially the entire genome. This well-regulated transcriptional pattern of the virus in vivo was not maintained in vitro. In a number of experiments a range of saturation values from 40 to 50% was obtained for in vitro synthesized RNA. The complexity of polyadenylated and non-polyadenylated RNA, as well as total purified 8 to 12S RNA released from the virus, was indistinguishable from purified high-molecular-weight virion-associated RNA with a sedimentation value of greater than 20S and equivalent to total in vitro synthesized RNA. No additional hybrid formation was observed in experiments in which total in vitro RNA and late in vivo RNA from infected HeLa cells were combined, suggesting that the virus does not transcribe in vitro DNA sequences that are not also transcribed during productive infection. Approximately 15% complementary RNA was detected when radiolabeled total in vitro RNA was allowed to reanneal with late in vivo RNA, while as much as 8% of the in vitro synthesized RNA was found to be complementary. PMID:894791

  18. The PBAF chromatin remodeling complex represses transcription and promotes rapid repair at DNA double-strand breaks

    PubMed Central

    Kakarougkas, Andreas; Downs, Jessica A; Jeggo, Penny A

    2015-01-01

    Transcription in the vicinity of DNA double-strand breaks (DSBs) is suppressed via a process involving ataxia telangiectasia mutated protein (ATM) and H2AK119 ubiquitylation.1 We discuss recent findings that components of the Polybromo and Brahma-related gene 1 (BRG1)-associated factor (PBAF) remodeling complex and the polycomb repressive complex (PRC1/2) are also required.2 Failure to activate transcriptional suppression impedes a rapid DSB repair process. PMID:27308404

  19. Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes

    SciTech Connect

    Arnett, Kelly L.; Hass, Matthew; McArthur, Debbie G.; Ilagan, Ma Xenia G.; Aster, Jon C.; Kopan, Raphael; Blacklow, Stephen C.

    2010-11-12

    Ligand-induced proteolysis of Notch produces an intracellular effector domain that transduces essential signals by regulating the transcription of target genes. This function relies on the formation of transcriptional activation complexes that include intracellular Notch, a Mastermind co-activator and the transcription factor CSL bound to cognate DNA. These complexes form higher-order assemblies on paired, head-to-head CSL recognition sites. Here we report the X-ray structure of a dimeric human Notch1 transcription complex loaded on the paired site from the human HES1 promoter. The small interface between the Notch ankyrin domains could accommodate DNA bending and untwisting to allow a range of spacer lengths between the two sites. Cooperative dimerization occurred on the human and mouse Hes5 promoters at a sequence that diverged from the CSL-binding consensus at one of the sites. These studies reveal how promoter organizational features control cooperativity and, thus, the responsiveness of different promoters to Notch signaling.

  20. A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80.

    PubMed Central

    Parthun, M R; Jaehning, J A

    1992-01-01

    The GAL4 activator and GAL80 repressor proteins regulate the expression of yeast genes in response to galactose. A complex of the two proteins isolated from glucose-grown cells is inactive in an in vitro transcription reaction but binds DNA and blocks activation by the GAL4-VP16 chimeric activator. The complex purified from galactose-grown cells contains a mixture of phosphorylated and unphosphorylated forms of GAL4. The galactose-induced form of GAL4 activates in vitro transcription to levels similar to those seen with GAL4-VP16. The induced GAL4 complex is indistinguishable in size and apparent shape from the uninduced complex, consistent with a continued association with GAL80. These results confirm in vivo analyses that correlate GAL4 phosphorylation with galactose induction and support a model of transcriptional activation that does not require GAL80 dissociation. Images PMID:1406674

  1. PTEN represses RNA polymerase III-dependent transcription by targeting the TFIIIB complex.

    PubMed

    Woiwode, Annette; Johnson, Sandra A S; Zhong, Shuping; Zhang, Cheng; Roeder, Robert G; Teichmann, Martin; Johnson, Deborah L

    2008-06-01

    PTEN, a tumor suppressor whose function is frequently lost in human cancers, possesses a lipid phosphatase activity that represses phosphatidylinositol 3-kinase (PI3K) signaling, controlling cell growth, proliferation, and survival. The potential for PTEN to regulate the synthesis of RNA polymerase (Pol) III transcription products, including tRNAs and 5S rRNAs, was evaluated. The expression of PTEN in PTEN-deficient cells repressed RNA Pol III transcription, whereas decreased PTEN expression enhanced transcription. Transcription repression by PTEN was uncoupled from PTEN-mediated effects on the cell cycle and was independent of p53. PTEN acts through its lipid phosphatase activity, inhibiting the PI3K/Akt/mTOR/S6K pathway to decrease transcription. PTEN, through the inactivation of mTOR, targets the TFIIIB complex, disrupting the association between TATA-binding protein and Brf1. Kinetic analysis revealed that PTEN initially induces a decrease in the serine phosphorylation of Brf1, leading to a selective reduction in the occupancy of all TFIIIB subunits on tRNA(Leu) genes, whereas prolonged PTEN expression results in the enhanced serine phosphorylation of Bdp1. Together, these results demonstrate a new class of genes regulated by PTEN through its ability to repress the activation of PI3K/Akt/mTOR/S6K signaling. PMID:18391023

  2. Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus embryogenesis.

    PubMed Central

    Almouzni, G; Wolffe, A P

    1995-01-01

    We have examined the cause of transcriptional quiescence prior to the mid-blastula transition (MBT) in Xenopus laevis. We have found distinct requirements for transcription of class II and class III genes. An artificial increase of the amount of DNA present within the embryo over that found at the MBT allows precocious transcription of tRNA genes, but not of the adenovirus E4 or human cytomegalovirus (CMV) promoters. Thus titration of an inhibitor by exogenous DNA determines class III but not class II gene activation. We demonstrate that the action of the inhibitor depends on the association of core histones with DNA. The addition of exogenous TBP, together with an increase in the amount of DNA within the embryo, allows significant basal transcription of class II genes prior to the MBT, whereas it does not increase transcription of tRNA genes. To examine the activation of transcription above basal levels, we used a defined minimal promoter containing five Gal4 binding sites and the activator Gal4-VP16. Precocious transcriptional activation is directed by Gal4-VP16 prior to the MBT, demonstrating that a functional transcriptional machinery exists at this early developmental stage. Furthermore, since this activation can occur in the absence of exogenous TBP or chromatin titration, a transcription factor that can penetrate chromatin is sufficient for recruitment of this machinery to a promoter. Our results support the hypothesis that the temporal regulation of transcription during early embryogenesis in Xenopus reflects not only a titration of inhibitors by DNA, but also a deficiency in the activity of transcriptional activators prior to the MBT. Images PMID:7737126

  3. Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism.

    PubMed

    Liu, Xin; Bushnell, David A; Wang, Dong; Calero, Guillermo; Kornberg, Roger D

    2010-01-01

    Previous x-ray crystal structures have given insight into the mechanism of transcription and the role of general transcription factors in the initiation of the process. A structure of an RNA polymerase II-general transcription factor TFIIB complex at 4.5 angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termed the "B finger," reaching into the active center of the polymerase where it may interact with both DNA and RNA, but this structure showed little of the carboxyl-terminal region. A new crystal structure of the same complex at 3.8 angstrom resolution obtained under different solution conditions is complementary with the previous one, revealing the carboxyl-terminal region of TFIIB, located above the polymerase active center cleft, but showing none of the B finger. In the new structure, the linker between the amino- and carboxyl-terminal regions can also be seen, snaking down from above the cleft toward the active center. The two structures, taken together with others previously obtained, dispel long-standing mysteries of the transcription initiation process. PMID:19965383

  4. Structure of an RNA Polymerase II-TFIIB Complex and the Transcription Initiation Mechanism

    SciTech Connect

    Liu, Xin; Bushnell, David A; Wang, Dong; Calero, Guillermo; Kornberg, Roger D

    2010-01-14

    Previous x-ray crystal structures have given insight into the mechanism of transcription and the role of general transcription factors in the initiation of the process. A structure of an RNA polymerase II-general transcription factor TFIIB complex at 4.5 angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termed the 'B finger,' reaching into the active center of the polymerase where it may interact with both DNA and RNA, but this structure showed little of the carboxyl-terminal region. A new crystal structure of the same complex at 3.8 angstrom resolution obtained under different solution conditions is complementary with the previous one, revealing the carboxyl-terminal region of TFIIB, located above the polymerase active center cleft, but showing none of the B finger. In the new structure, the linker between the amino- and carboxyl-terminal regions can also be seen, snaking down from above the cleft toward the active center. The two structures, taken together with others previously obtained, dispel long-standing mysteries of the transcription initiation process.

  5. Mediator protein mutations that selectively abolish activated transcription.

    PubMed

    Myers, L C; Gustafsson, C M; Hayashibara, K C; Brown, P O; Kornberg, R D

    1999-01-01

    Deletion of any one of three subunits of the yeast Mediator of transcriptional regulation, Med2, Pgd1 (Hrs1), and Sin4, abolished activation by Gal4-VP16 in vitro. By contrast, other Mediator functions, stimulation of basal transcription and of TFIIH kinase activity, were unaffected. A different but overlapping Mediator subunit dependence was found for activation by Gcn4. The genetic requirements for activation in vivo were closely coincident with those in vitro. A whole genome expression profile of a Deltamed2 strain showed diminished transcription of a subset of inducible genes but only minor effects on "basal" transcription. These findings make an important connection between transcriptional activation in vitro and in vivo, and identify Mediator as a "global" transcriptional coactivator. PMID:9874773

  6. Distance and Helical Phase Dependence of Synergistic Transcription Activation in cis-Regulatory Module

    PubMed Central

    Huang, Qilai; Gong, Chenguang; Li, Jiahuang; Zhuo, Zhu; Chen, Yuan; Wang, Jin; Hua, Zi-Chun

    2012-01-01

    Deciphering of the spatial and stereospecific constraints on synergistic transcription activation mediated between activators bound to cis-regulatory elements is important for understanding gene regulation and remains largely unknown. It has been commonly believed that two activators will activate transcription most effectively when they are bound on the same face of DNA double helix and within a boundary distance from the transcription initiation complex attached to the TATA box. In this work, we studied the spatial and stereospecific constraints on activation by multiple copies of bound model activators using a series of engineered relative distances and stereospecific orientations. We observed that multiple copies of the activators GAL4-VP16 and ZEBRA bound to engineered promoters activated transcription more effectively when bound on opposite faces of the DNA double helix. This phenomenon was not affected by the spatial relationship between the proximal activator and initiation complex. To explain these results, we proposed the novel concentration field model, which posits the effective concentration of bound activators, and therefore the transcription activation potential, is affected by their stereospecific positioning. These results could be used to understand synergistic transcription activation anew and to aid the development of predictive models for the identification of cis-regulatory elements. PMID:22299056

  7. A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex

    PubMed Central

    Clanton, Joshua A.; Dean, Benjamin J.; Gamse, Joshua T.

    2016-01-01

    The zebrafish pineal complex consists of four cell types (rod and cone photoreceptors, projection neurons and parapineal neurons) that are derived from a single pineal complex anlage. After specification, parapineal neurons migrate unilaterally away from the rest of the pineal complex whereas rods, cones and projection neurons are non-migratory. The transcription factor Tbx2b is important for both the correct number and migration of parapineal neurons. We find that two additional transcription factors, Flh and Nr2e3, negatively regulate parapineal formation. Flh induces non-migratory neuron fates and limits the extent of parapineal specification, in part by activation of Nr2e3 expression. Tbx2b is positively regulated by Flh, but opposes Flh action during specification of parapineal neurons. Loss of parapineal neuron specification in Tbx2b-deficient embryos can be partially rescued by loss of Nr2e3 or Flh function; however, parapineal migration absolutely requires Tbx2b activity. We conclude that cell specification and migration in the pineal complex are regulated by a network of at least three transcription factors. PMID:27317804

  8. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  9. The transcriptional activity of human Chromosome 22

    PubMed Central

    Rinn, John L.; Euskirchen, Ghia; Bertone, Paul; Martone, Rebecca; Luscombe, Nicholas M.; Hartman, Stephen; Harrison, Paul M.; Nelson, F. Kenneth; Miller, Perry; Gerstein, Mark; Weissman, Sherman; Snyder, Michael

    2003-01-01

    A DNA microarray representing nearly all of the unique sequences of human Chromosome 22 was constructed and used to measure global-transcriptional activity in placental poly(A)+ RNA. We found that many of the known, related and predicted genes are expressed. More importantly, our study reveals twice as many transcribed bases as have been reported previously. Many of the newly discovered expressed fragments were verified by RNA blot analysis and a novel technique called differential hybridization mapping (DHM). Interestingly, a significant fraction of these novel fragments are expressed antisense to previously annotated introns. The coding potential of these novel expressed regions is supported by their sequence conservation in the mouse genome. This study has greatly increased our understanding of the biological information encoded on a human chromosome. To facilitate the dissemination of these results to the scientific community, we have developed a comprehensive Web resource to present the findings of this study and other features of human Chromosome 22 at http://array.mbb.yale.edu/chr22. PMID:12600945

  10. TBP binds the transcriptionally inactive TA5 sequence but the resulting complex is not efficiently recognised by TFIIB and TFIIA.

    PubMed Central

    Bernués, J; Carrera, P; Azorin, F

    1996-01-01

    The binding of TBP (TFIID) to the TATA box has been considered to direct promoter recognition and pre-initiation complex formation because it is the first event leading to basal transcription by RNA polymerase II. Here, we analyse the binding of yeast TBP to a consensus TATAAA box and two point mutations, TAAAAA (inactive) and TATATA (active). Despite the fact that the TAAAAA sequence does not support transcription in vitro, yeast TBP binds the three sequences showing, in this sense, only a limited sequence specificity. However, the TBP-TAAAAA complex cannot be recognised by other basal transcription factors, in particular by TFIIB. DNase I footprinting patterns of the TBP-TAAAAA complex are different from those observed in functional TBP-TATA box complexes, indicating that, most likely, it is a different spatial arrangement of the TBP-DNA complex that prevents formation of the TFIIB-TBP-TAAAAA complex, also seriously impairing entry of TFIIA to the complex. DNA deformability of the A/T-rich sequences appears to be an important determinant in the formation of a productive TBP-TATA complex. These results indicate that the transcriptional competence of A/T-rich sequences is determined not only by TBP binding, but also by the ability of other basal transcription factors to recognise the preformed TBP-DNA complexes. PMID:8760879

  11. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis

    SciTech Connect

    Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan; Jiang, Yanwen; Kost, Nils; Soong, T. David; Chen, Wei-Yi; Tang, Zhanyun; Nakadai, Tomoyoshi; Elemento, Olivier; Fischle, Wolfgang; Melnick, Ari; Patel, Dinshaw J.; Nimer, Stephen D.; Roeder, Robert G.

    2013-06-30

    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.

  12. Endoplasmic Reticulum Stress-responsive Transcription Factor ATF6α Directs Recruitment of the Mediator of RNA Polymerase II Transcription and Multiple Histone Acetyltransferase Complexes*♦

    PubMed Central

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P.; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C.

    2012-01-01

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription. PMID:22577136

  13. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism.

    PubMed

    Liu, Bin; Zuo, Yuhong; Steitz, Thomas A

    2016-04-12

    In bacteria, multiple σ factors compete to associate with the RNA polymerase (RNAP) core enzyme to form a holoenzyme that is required for promoter recognition. During transcription initiation RNAP remains associated with the upstream promoter DNA via sequence-specific interactions between the σ factor and the promoter DNA while moving downstream for RNA synthesis. As RNA polymerase repetitively adds nucleotides to the 3'-end of the RNA, a pyrophosphate ion is generated after each nucleotide incorporation. It is currently unknown how the release of pyrophosphate affects transcription. Here we report the crystal structures of E coli transcription initiation complexes (TICs) containing the stress-responsive σ(S) factor, a de novo synthesized RNA oligonucleotide, and a complete transcription bubble (σ(S)-TIC) at about 3.9-Å resolution. The structures show the 3D topology of the σ(S) factor and how it recognizes the promoter DNA, including likely specific interactions with the template-strand residues of the -10 element. In addition, σ(S)-TIC structures display a highly stressed pretranslocated initiation complex that traps a pyrophosphate at the active site that remains closed. The position of the pyrophosphate and the unusual phosphodiester linkage between the two terminal RNA residues suggest an unfinished nucleotide-addition reaction that is likely at equilibrium between nucleotide addition and pyrophosphorolysis. Although these σ(S)-TIC crystals are enzymatically active, they are slow in nucleotide addition, as suggested by an NTP soaking experiment. Pyrophosphate release completes the nucleotide addition reaction and is associated with extensive conformational changes around the secondary channel but causes neither active site opening nor transcript translocation. PMID:27035955

  14. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism

    PubMed Central

    Liu, Bin; Zuo, Yuhong; Steitz, Thomas A.

    2016-01-01

    In bacteria, multiple σ factors compete to associate with the RNA polymerase (RNAP) core enzyme to form a holoenzyme that is required for promoter recognition. During transcription initiation RNAP remains associated with the upstream promoter DNA via sequence-specific interactions between the σ factor and the promoter DNA while moving downstream for RNA synthesis. As RNA polymerase repetitively adds nucleotides to the 3′-end of the RNA, a pyrophosphate ion is generated after each nucleotide incorporation. It is currently unknown how the release of pyrophosphate affects transcription. Here we report the crystal structures of E. coli transcription initiation complexes (TICs) containing the stress-responsive σS factor, a de novo synthesized RNA oligonucleotide, and a complete transcription bubble (σS-TIC) at about 3.9-Å resolution. The structures show the 3D topology of the σS factor and how it recognizes the promoter DNA, including likely specific interactions with the template-strand residues of the −10 element. In addition, σS-TIC structures display a highly stressed pretranslocated initiation complex that traps a pyrophosphate at the active site that remains closed. The position of the pyrophosphate and the unusual phosphodiester linkage between the two terminal RNA residues suggest an unfinished nucleotide-addition reaction that is likely at equilibrium between nucleotide addition and pyrophosphorolysis. Although these σS-TIC crystals are enzymatically active, they are slow in nucleotide addition, as suggested by an NTP soaking experiment. Pyrophosphate release completes the nucleotide addition reaction and is associated with extensive conformational changes around the secondary channel but causes neither active site opening nor transcript translocation. PMID:27035955

  15. Activation domains of transcription factors mediate replication dependent transcription from a minimal HIV-1 promoter.

    PubMed Central

    Williams, R D; Lee, B A; Jackson, S P; Proudfoot, N J

    1996-01-01

    Transcription from a minimal HIV-1 promoter containing the three Sp1 binding sites and TATA box can be activated without Tat by template DNA replication. Here we show that this activation can also be mediated by recombinant GAL4 fusion proteins containing the activation domains of Sp1, VP16 or CTF (or by full-length GAL4) targeted to the HIV-1 promoter by replacing the Sp1 sites with five GAL4 binding sites. Thus Sp1 is not unique in its ability to mediate replication activated transcription, although the degree of processivity elicited by the different activators varied significantly from strongly processive (GAL4-VP16) to relatively non-processive (GAL4-Sp1 or -CTF). Processive GAL4-VP16-activated transcription, but not efficient initiation, required multiple GAL4 binding sites. In the presence of Tat, transcription with GAL4-SP1 and GAL4-CTF was further activated (principally at the level of processivity) but GAL4-VP16-potentiated transcription was only slightly stimulated. The Tat-dependent switch from non-processive to fully processive transcription was particularly marked for GAL4-Sp1, an effect which may be relevant to the selection of Sp1 binding sites by the HIV-1 promoter. PMID:8604293

  16. Protein Inhibitors of Activated STAT (Pias1 and Piasy) Differentially Regulate Pituitary Homeobox 2 (PITX2) Transcriptional Activity*

    PubMed Central

    Wang, Jianbo; Sun, Zhao; Zhang, Zichao; Saadi, Irfan; Wang, Jun; Li, Xiao; Gao, Shan; Engle, Jamison J.; Kuburas, Adisa; Fu, Xueyao; Yu, Wenjie; Klein, William H.; Russo, Andrew F.; Amendt, Brad A.

    2013-01-01

    Protein inhibitors of activated STAT (Pias) proteins can act independent of sumoylation to modulate the activity of transcription factors and Pias proteins interacting with transcription factors can either activate or repress their activity. Pias proteins are expressed in many tissues and cells during development and we asked if Pias proteins regulated the pituitary homeobox 2 (PITX2) homeodomain protein, which modulates developmental gene expression. Piasy and Pias1 proteins are expressed during craniofacial/tooth development and directly interact and differentially regulate PITX2 transcriptional activity. Piasy and Pias1 are co-expressed in craniofacial tissues with PITX2. Yeast two-hybrid, co-immunoprecipitation and pulldown experiments demonstrate Piasy and Pias1 interactions with the PITX2 protein. Piasy interacts with the PITX2 C-terminal tail to attenuate its transcriptional activity. In contrast, Pias1 interacts with the PITX2 C-terminal tail to increase PITX2 transcriptional activity. The E3 ligase activity associated with the RING domain in Piasy is not required for the attenuation of PITX2 activity, however, the RING domain of Pias1 is required for enhanced PITX2 transcriptional activity. Bimolecular fluorescence complementation assays reveal PITX2 interactions with Piasy and Pias1 in the nucleus. Piasy represses the synergistic activation of PITX2 with interacting co-factors and Piasy represses Pias1 activation of PITX2 transcriptional activity. In contrast, Pias1 did not affect the synergistic interaction of PITX2 with transcriptional co-factors. Last, we demonstrate that Pias proteins form a complex with PITX2 and Lef-1, and PITX2 and β-catenin. Lef-1, β-catenin, and Pias interactions with PITX2 provide new molecular mechanisms for the regulation of PITX2 transcriptional activity and the activity of Pias proteins. PMID:23515314

  17. The SIX1-EYA transcriptional complex as a therapeutic target in cancer

    PubMed Central

    Blevins, Melanie A; Towers, Christina Garlington; Patrick, Aaron N.

    2015-01-01

    Introduction The SIX homeodomain proteins and the EYA family of co-activators form a bipartite transcription factor complex that promotes the proliferation and survival of progenitor cells during organogenesis and is down-regulated in most adult tissues. Abnormal over-expression of SIX1 and EYA in adult tissue is associated with the initiation and progression of diverse tumor types. Importantly, SIX1 and EYA are often co-overexpressed in tumors, and the SIX1-EYA2 interaction has been shown to be critical for metastasis in a breast cancer model. The EYA proteins also contain protein tyrosine phosphatase activity, which plays an important role in breast cancer growth and metastasis as well as directing cells to the repair pathway upon DNA damage. Areas covered This review provides a summary of the SIX1/EYA complex as it relates to development and disease and the current efforts to therapeutically target this complex. Expert opinion Recently, there have been an increasing number of studies suggesting that targeting the SIX1/EYA transcriptional complex will potently inhibit tumor progression. Although current attempts to develop inhibitors targeting this complex are still in the early stages, continued efforts towards developing better compounds may ultimately result in effective anti-cancer therapies. PMID:25555392

  18. Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11.

    PubMed

    Kim, Hye Young; Lee, Sung Bae; Kang, Hyen Sam; Oh, Goo Taeg; Kim, TaeSoo

    2014-06-27

    Flo8 is a transcriptional activator essential for the inducible expression of a set of target genes such as STA1, FLO11, and FLO1 encoding an extracellular glucoamylase and two cell surface proteins, respectively. However, the molecular mechanism of Flo8-mediated transcriptional activation remains largely elusive. By generating serial deletion constructs, we revealed here that a novel transcriptional activation domain on its extreme C-terminal region plays a crucial role in activating transcription. On the other hand, the N-terminal LisH motif of Flo8 appears to be required for its physical interaction with another transcriptional activator, Mss11, for their cooperative transcriptional regulation of the shared targets. Additionally, GST pull-down experiments uncovered that Flo8 and Mss11 can directly form either a heterodimer or a homodimer capable of binding to DNA, and we also showed that this formed complex of two activators interacts functionally and physically with the Swi/Snf complex. Collectively, our findings provide valuable clues for understanding the molecular mechanism of Flo8-mediated transcriptional control of multiple targets. PMID:24813990

  19. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation.

    PubMed

    Helfer, Christine M; Yan, Junpeng; You, Jianxin

    2014-08-01

    The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription activation, is important for E2's transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP) analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2's interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+), a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV) life cycle. PMID:25140737

  20. Zinc finger transcription factor CASZ1 interacts with histones, DNA repair proteins and recruits NuRD complex to regulate gene transcription.

    PubMed

    Liu, Zhihui; Lam, Norris; Thiele, Carol J

    2015-09-29

    The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs. PMID:26296975

  1. Multiple steps in the regulation of transcription-factor level and activity.

    PubMed Central

    Calkhoven, C F; Ab, G

    1996-01-01

    This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different signal-transduction pathways affecting a given gene. It is obvious that the regulation of these regulators themselves is of crucial importance for differential gene expression during development and in terminally differentiated cells. Transcription factors can be regulated at two, principally different, levels, namely concentration and activity, each of which can be modulated in a variety of ways. The concentrations of transcription factors, as of intracellular proteins in general, may be regulated at any of the steps leading from DNA to protein, including transcription, RNA processing, mRNA degradation and translation. The activity of a transcription factor is often regulated by (de) phosphorylation, which may affect different functions, e.g. nuclear localization DNA binding and trans-activation. Ligand binding is another mode of transcription-factor activation. It is typical for the large super-family of nuclear hormone receptors. Heterodimerization between transcription factors adds another dimension to the regulatory diversity and signal integration. Finally, non-DNA-binding (accessory) factors may mediate a diverse range of functions, e.g. serving as a bridge between the transcription factor and the basal transcription machinery, stabilizing the DNA-binding complex or changing the specificity of the target sequence recognition. The present review presents an overview of different modes of transcription-factor regulation, each illustrated by typical examples. PMID:8713055

  2. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    NASA Astrophysics Data System (ADS)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  3. Maturation of the HIV reverse transcription complex: putting the jigsaw together.

    PubMed

    Warrilow, David; Tachedjian, Gilda; Harrich, David

    2009-11-01

    Upon HIV attachment, fusion and entry into the host cell cytoplasm, the viral core undergoes rearrangement to become the mature reverse transcription complex (RTC). Reduced infectivity of viral deletion mutants of the core proteins, capsid and negative factor (Nef), can be complemented by vesicular stomatitis virus (VSV) pseudotyping suggesting a role for these viral proteins in a common event immediately post-entry. This event may be necessary for correct trafficking of the early complex. Enzymatic activation of the complex occurs either before or during RTC maturation, and may be dependent on the presence of deoxynucleotides in the host cell. The RTC initially becomes enlarged immediately after entry, which is followed by a decrease in its sedimentation rate consistent with core uncoating. Several HIV proteins associated with the RTC and recently identified host-cell proteins are important for reverse transcription while genome-wide siRNA knockdown studies have identified additional host cell factors that may be required for reverse transcription. Determining precisely how these proteins assist the RTC function needs to be addressed. PMID:19750561

  4. Transcriptional Control by A-Factor of strR, the Pathway-Specific Transcriptional Activator for Streptomycin Biosynthesis in Streptomyces griseus

    PubMed Central

    Tomono, Ayami; Tsai, Yisan; Yamazaki, Haruka; Ohnishi, Yasuo; Horinouchi, Sueharu

    2005-01-01

    A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) triggers streptomycin production by inducing the transcription of strR, encoding the pathway-specific transcriptional activator, through signal transduction in the A-factor regulatory cascade in Streptomyces griseus. AdpA, one of the key transcriptional activators in the cascade, bound two upstream activation sites, approximately at nucleotide positions −270 and −50 with respect to the transcriptional start point of strR, as determined by gel mobility shift assays and DNase I footprinting. Transcriptional analysis of the strR promoter with mutated AdpA-binding sites showed that both sites were required for full transcriptional activation of strR by AdpA. Potassium permanganate footprinting showed that AdpA assisted RNA polymerase in forming an open complex at an appropriate position for transcriptional initiation of strR. Nine transcriptional units within the streptomycin biosynthesis gene cluster, including the strR-aphD operon, depended on StrR, indicating that StrR is the pathway-specific transcriptional activator for the whole gene cluster. Consistent with this, expression of strR under the control of a constitutively expressed promoter in an adpA null mutant caused the host to produce streptomycin. PMID:16077104

  5. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  6. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives

    PubMed Central

    Charlier, Jean-Benoit; Polese, Catherine; Nouet, Cécile; Carnol, Monique; Bosman, Bernard; Krämer, Ute; Motte, Patrick; Hanikenne, Marc

    2015-01-01

    In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of β-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation. PMID:25900619

  7. Activation of archaeal transcription mediated by recruitment of transcription factor B.

    PubMed

    Ochs, Simon M; Thumann, Sybille; Richau, Renate; Weirauch, Matt T; Lowe, Todd M; Thomm, Michael; Hausner, Winfried

    2012-05-25

    Archaeal promoters consist of a TATA box and a purine-rich adjacent upstream sequence (transcription factor B (TFB)-responsive element (BRE)), which are bound by the transcription factors TATA box-binding protein (TBP) and TFB. Currently, only a few activators of archaeal transcription have been experimentally characterized. The best studied activator, Ptr2, mediates activation by recruitment of TBP. Here, we present a detailed biochemical analysis of an archaeal transcriptional activator, PF1088, which was identified in Pyrococcus furiosus by a bioinformatic approach. Operon predictions suggested that an upstream gene, pf1089, is polycistronically transcribed with pf1088. We demonstrate that PF1088 stimulates in vitro transcription by up to 7-fold when the pf1089 promoter is used as a template. By DNase I and hydroxyl radical footprinting experiments, we show that the binding site of PF1088 is located directly upstream of the BRE of pf1089. Mutational analysis indicated that activation requires the presence of the binding site for PF1088. Furthermore, we show that activation of transcription by PF1088 is dependent upon the presence of an imperfect BRE and is abolished when the pf1089 BRE is replaced with a BRE from a strong archaeal promoter. Gel shift experiments showed that TFB recruitment to the pf1089 operon is stimulated by PF1088, and TFB seems to stabilize PF1088 operator binding even in the absence of TBP. Taken together, these results represent the first biochemical evidence for a transcriptional activator working as a TFB recruitment factor in Archaea, for which the designation TFB-RF1 is suggested. PMID:22496454

  8. Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF).

    PubMed

    Yoshimura, Kimihiro; Kitagawa, Hirochika; Fujiki, Ryoji; Tanabe, Masahiko; Takezawa, Shinichiro; Takada, Ichiro; Yamaoka, Ikuko; Yonezawa, Masayoshi; Kondo, Takeshi; Furutani, Yoshiyuki; Yagi, Hisato; Yoshinaga, Shin; Masuda, Takeyoshi; Fukuda, Toru; Yamamoto, Yoko; Ebihara, Kanae; Li, Dean Y; Matsuoka, Rumiko; Takeuchi, Jun K; Matsumoto, Takahiro; Kato, Shigeaki

    2009-06-01

    A number of nuclear complexes modify chromatin structure and operate as functional units. However, the in vivo role of each component within the complexes is not known. ATP-dependent chromatin remodeling complexes form several types of protein complexes, which reorganize chromatin structure cooperatively with histone modifiers. Williams syndrome transcription factor (WSTF) was biochemically identified as a major subunit, along with 2 distinct complexes: WINAC, a SWI/SNF-type complex, and WICH, an ISWI-type complex. Here, WSTF(-/-) mice were generated to investigate its function in chromatin remodeling in vivo. Loss of WSTF expression resulted in neonatal lethality, and all WSTF(-/-) neonates and approximately 10% of WSTF(+/-) neonates suffered cardiovascular abnormalities resembling those found in autosomal-dominant Williams syndrome patients. Developmental analysis of WSTF(-/-) embryos revealed that Gja5 gene regulation is aberrant from E9.5, conceivably because of inappropriate chromatin reorganization around the promoter regions where essential cardiac transcription factors are recruited. In vitro analysis in WSTF(-/-) mouse embryonic fibroblast (MEF) cells also showed impaired transactivation functions of cardiac transcription activators on the Gja5 promoter, but the effects were reversed by overexpression of WINAC components. Likewise in WSTF(-/-) MEF cells, recruitment of Snf2h, an ISWI ATPase, to PCNA and cell survival after DNA damage were both defective, but were ameliorated by overexpression of WICH components. Thus, the present study provides evidence that WSTF is shared and is a functionally indispensable subunit of the WICH complex for DNA repair and the WINAC complex for transcriptional control. PMID:19470456

  9. Biochemical Analysis of Distinct Activation Functions in p300 That Enhance Transcription Initiation with Chromatin Templates

    PubMed Central

    Kraus, W. Lee; Manning, E. Tory; Kadonaga, James T.

    1999-01-01

    To investigate the mechanisms of transcriptional enhancement by the p300 coactivator, we analyzed wild-type and mutant versions of p300 with a chromatin transcription system in vitro. Estrogen receptor, NF-κB p65 plus Sp1, and Gal4-VP16 were used as different sequence-specific activators. The CH3 domain (or E1A-binding region) was found to be essential for the function of each of the activators tested. The bromodomain was also observed to be generally important for p300 coactivator activity, though to a lesser extent than the CH3 domain/E1A-binding region. The acetyltransferase activity and the C-terminal region (containing the steroid receptor coactivator/p160-binding region and the glutamine-rich region) were each found to be important for activation by estrogen receptor but not for that by Gal4-VP16. The N-terminal region of p300, which had been previously found to interact with nuclear hormone receptors, was not seen to be required for any of the activators, including estrogen receptor. Single-round transcription experiments revealed that the functionally important subregions of p300 contribute to its ability to promote the assembly of transcription initiation complexes. In addition, the acetyltransferase activity of p300 was observed to be distinct from the broadly essential activation function of the CH3 domain/E1A-binding region. These results indicate that specific regions of p300 possess distinct activation functions that are differentially required to enhance the assembly of transcription initiation complexes. Interestingly, with the estrogen receptor, four distinct regions of p300 each have an essential role in the transcription activation process. These data exemplify a situation in which a network of multiple activation functions is required to achieve gene transcription. PMID:10567538

  10. Mapping neural circuits with activity-dependent nuclear import of a transcription factor.

    PubMed

    Masuyama, Kaoru; Zhang, Yi; Rao, Yi; Wang, Jing W

    2012-03-01

    Abstract: Nuclear factor of activated T cells (NFAT) is a calcium-responsive transcription factor. We describe here an NFAT-based neural tracing method-CaLexA (calcium-dependent nuclear import of LexA)-for labeling active neurons in behaving animals. In this system, sustained neural activity induces nuclear import of the chimeric transcription factor LexA-VP16-NFAT, which in turn drives green fluorescent protein (GFP) reporter expression only in active neurons. We tested this system in Drosophila and found that volatile sex pheromones excite specific neurons in the olfactory circuit. Furthermore, complex courtship behavior associated with multi-modal sensory inputs activated neurons in the ventral nerve cord. This method harnessing the mechanism of activity-dependent nuclear import of a transcription factor can be used to identify active neurons in specific neuronal population in behaving animals. PMID:22236090

  11. Helix-loop-helix transcription factors mediate activation and repression of the p75LNGFR gene.

    PubMed Central

    Chiaramello, A; Neuman, K; Palm, K; Metsis, M; Neuman, T

    1995-01-01

    Sequence analysis of rat and human low-affinity nerve growth factor receptor p75LNGFR gene promoter regions revealed a single E-box cis-acting element, located upstream of the major transcription start sites. Deletion analysis of the E-box sequence demonstrated that it significantly contributes to p75LNGFR promoter activity. This E box has a dual function; it mediates either activation or repression of the p75LNGFR promoter activity, depending on the interacting transcription factors. We showed that the two isoforms of the class A basic helix-loop-helix (bHLH) transcription factor ME1 (ME1a and ME1b), the murine homolog of the human HEB transcription factor, specifically repress p75LNGFR promoter activity. This repression can be released by coexpression of the HLH Id2 transcriptional regulator. In vitro analyses demonstrated that ME1a forms a stable complex with the p75LNGFR E box and likely competes with activating E-box-binding proteins. By using ME1a-overexpressing PC12 cells, we showed that the endogenous p75LNGFR gene is a target of ME1a repression. Together, these data demonstrate that the p75LNGFR E box and the interacting bHLH transcription factors are involved in the regulation of p75LNGFR gene expression. These results also show that class A bHLH transcription factors can repress and Id-like negative regulators can stimulate gene expression. PMID:7565756

  12. Proteins of the ETS family with transcriptional repressor activity.

    PubMed

    Mavrothalassitis, G; Ghysdael, J

    2000-12-18

    ETS proteins form one of the largest families of signal-dependent transcriptional regulators, mediating cellular proliferation, differentiation and tumorigenesis. Most of the known ETS proteins have been shown to activate transcription. However, four ETS proteins (YAN, ERF, NET and TEL) can act as transcriptional repressors. In three cases (ERF, NET and TEL) distinct repression domains have been identified and there are indications that NET and TEL may mediate transcription via Histone Deacetylase recruitment. All four proteins appear to be regulated by MAPKs, though for YAN and ERF this regulation seems to be restricted to ERKs. YAN, ERF and TEL have been implicated in cellular proliferation although there are indications suggesting a possible involvement of YAN and TEL in differentiation as well. Other ETS-domain proteins have been shown to repress transcription in a context specific manner, and there are suggestions that the ETS DNA-binding domain may act as a transcriptional repressor. Transcriptional repression by ETS domain proteins adds an other level in the orchestrated regulation by this diverse family of transcription factors that often recognize similar if not identical binding sites on DNA and are believed to regulate critical genes in a variety of biological processes. Definitive assessment of the importance of this novel regulatory level will require the identification of ETS proteins target genes and the further analysis of transcriptional control and biological function of these proteins in defined pathways. PMID:11175368

  13. A transcriptional regulatory role of the THAP11-HCF-1 complex in colon cancer cell function.

    PubMed

    Parker, J Brandon; Palchaudhuri, Santanu; Yin, Hanwei; Wei, Jianjun; Chakravarti, Debabrata

    2012-05-01

    The recently identified Thanatos-associated protein (THAP) domain is an atypical zinc finger motif with sequence-specific DNA-binding activity. Emerging data suggest that THAP proteins may function in chromatin-dependent processes, including transcriptional regulation, but the roles of most THAP proteins in normal and aberrant cellular processes remain largely unknown. In this work, we identify THAP11 as a transcriptional regulator differentially expressed in human colon cancer. Immunohistochemical analysis of human colon cancers revealed increased THAP11 expression in both primary tumors and metastases. Knockdown of THAP11 in SW620 colon cancer cells resulted in a significant decrease in cell proliferation, and profiling of gene expression in these cells identified a novel gene set composed of 80 differentially expressed genes, 70% of which were derepressed by THAP11 knockdown. THAP11 was found to associate physically with the transcriptional coregulator HCF-1 (host cell factor 1) and recruit HCF-1 to target promoters. Importantly, THAP11-mediated gene regulation and its chromatin association require HCF-1, while HCF-1 recruitment at these genes requires THAP11. Collectively, these data provide the first characterization of THAP11-dependent gene expression in human colon cancer cells and suggest that the THAP11-HCF-1 complex may be an important transcriptional and cell growth regulator in human colon cancer. PMID:22371484

  14. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  15. Photoaffinity labelling of the pea chloroplast transcriptional complex by nascent RNA in vitro.

    PubMed Central

    Khanna, N C; Lakhani, S; Tewari, K K

    1991-01-01

    We have used photoaffinity labelling to examine the chloroplast RNA polymerase components which come into contact with nascent transcripts during the in vitro transcription of plastid DNA. The transcripts were synthesized in the presence of a photoactive analogue (4-thio UTP) and alpha-32P-ATP, using enriched pea chloroplast RNA polymerase preparation and a recombinant plasmid containing the plastid 16S rRNA promoter. Brief irradiation of the transcriptional complex crosslinked the photoactive nascent RNA to proximal proteins. Labelling of the transcriptional complex was dependent on 4-thio UTP and template DNA. Two polypeptides of 51 and 54 kDa were consistently crosslinked to the nascent transcripts; about 60% of the total radioactivity of the crosslinked RNA was associated with these polypeptides. In some experiments, two additional polypeptides of 38 and 75 kDa were also found to be associated with about 13% and 17% of the total crosslinked RNA radioactivity, respectively. The UV-crosslinked transcriptional complexes were stable to either DNase or S1 nuclease hydrolysis but partially sensitive to RNase T1. Insensitivity of the complex to hydrolysis with RNase H suggested that the nascent transcripts were not crosslinked to the template. The complexes could also be hydrolysed by proteinase K and thermolysin. No crosslinkage was observed when labelled RNA molecules containing 4-thio UMP residues were added after synthesis to the polymerase preparation. This suggested that the method identified only those polypeptides which came into close contact with the transcript during its synthesis. Antibodies raised against the RNA-protein complex confirmed the presence of the polypeptides in the chloroplast RNA polymerase preparation on Western blots. Preincubation of these antibodies with the chloroplast RNA polymerase inhibited plastid DNA transcription. These data showed that the transcript-binding polypeptides were functional components of the chloroplast

  16. Transcription activation at class II CRP-dependent promoters: the role of different activating regions.

    PubMed Central

    Rhodius, V A; West, D M; Webster, C L; Busby, S J; Savery, N J

    1997-01-01

    Transcription activation by the Escherichia coli cyclic AMP receptor protein (CRP) at Class II promoters is dependent on direct interactions between two surface-exposed activating regions (AR1 and AR2) and two contact sites in RNA polymerase. The effects on transcription activation of disrupting either AR1 or AR2 have been measured at different Class II promoters. AR2 but not AR1 is essential for activation at all the Class II promoters that were tested. The effects of single positive control substitutions in AR1 and AR2 vary from one promoter to another: the effects of the different substitutions are contingent on the -35 hexamer sequence. Abortive initiation assays have been used to quantify the effects of positive control substitutions in each activating region on the kinetics of transcription initiation at the Class II CRP- dependent promoter pmelRcon. At this promoter, the HL159 substitution in AR1 results in a defect in the initial binding of RNA polymerase whilst the KE101 substitution in AR2 reduces the rate of isomerization from the closed to the open complex. PMID:9016561

  17. EGR1 Functions as a Potent Repressor of MEF2 Transcriptional Activity

    PubMed Central

    Cooper, Olivia; Kontor, Akuah; Nocco, Sarah E.; Naya, Francisco J.

    2015-01-01

    The myocyte enhancer factor 2 (MEF2) transcription factor requires interactions with co-factors for precise regulation of its target genes. Our lab previously reported that the mammalian MEF2A isoform regulates the cardiomyocyte costamere, a critical muscle-specific focal adhesion complex involved in contractility, through its transcriptional control of genes encoding proteins localized to this cytoskeletal structure. To further dissect the transcriptional mechanisms of costamere gene regulation and identify potential co-regulators of MEF2A, a bioinformatics analysis of transcription factor binding sites was performed using the proximal promoter regions of selected costamere genes. One of these predicted sites belongs to the early growth response (EGR) transcription factor family. The EGR1 isoform has been shown to be involved in a number of pathways in cardiovascular homeostasis and disease, making it an intriguing candidate MEF2 coregulator to further characterize. Here, we demonstrate that EGR1 interacts with MEF2A and is a potent and specific repressor of MEF2 transcriptional activity. Furthermore, we show that costamere gene expression in cardiomyocytes is dependent on EGR1 transcriptional activity. This study identifies a mechanism by which MEF2 activity can be modulated to ensure that costamere gene expression is maintained at levels commensurate with cardiomyocyte contractile activity. PMID:26011708

  18. Potential Role of Activating Transcription Factor 5 during Osteogenesis.

    PubMed

    Vicari, Luisa; Calabrese, Giovanna; Forte, Stefano; Giuffrida, Raffaella; Colarossi, Cristina; Parrinello, Nunziatina Laura; Memeo, Lorenzo

    2016-01-01

    Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB) family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2), encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology. PMID:26770207

  19. Cohesin and Polycomb Proteins Functionally Interact to Control Transcription at Silenced and Active Genes

    PubMed Central

    Schaaf, Cheri A.; Misulovin, Ziva; Gause, Maria; Koenig, Amanda; Gohara, David W.; Watson, Audrey; Dorsett, Dale

    2013-01-01

    Cohesin is crucial for proper chromosome segregation but also regulates gene transcription and organism development by poorly understood mechanisms. Using genome-wide assays in Drosophila developing wings and cultured cells, we find that cohesin functionally interacts with Polycomb group (PcG) silencing proteins at both silenced and active genes. Cohesin unexpectedly facilitates binding of Polycomb Repressive Complex 1 (PRC1) to many active genes, but their binding is mutually antagonistic at silenced genes. PRC1 depletion decreases phosphorylated RNA polymerase II and mRNA at many active genes but increases them at silenced genes. Depletion of cohesin reduces long-range interactions between Polycomb Response Elements in the invected-engrailed gene complex where it represses transcription. These studies reveal a previously unrecognized role for PRC1 in facilitating productive gene transcription and provide new insights into how cohesin and PRC1 control development. PMID:23818863

  20. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a)

    PubMed Central

    Emerling, Brooke M.; Weinberg, Frank; Liu, Juinn-Lin; Mak, Tak W.; Chandel, Navdeep S.

    2008-01-01

    The tumor suppressor PTEN is mutated or deleted in many tumors, causing the activation of the PI3K pathway. Here, we show that the loss of PTEN increases the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) through the inactivation of Forkhead transcription factors (FOXO) in PTEN-null cells. Reintroduction of PTEN into the nucleus, overexpression of a nonphosphorylatable FOXO3a, which accumulates in the nucleus, or inhibition of nuclear export of FOXO3a by leptomycin B represses HIF-1 transcriptional activity in PTEN-null cells. HIF-1 transcriptional activity increases in PTEN-positive cells depleted of FOXO3a with siRNA. PTEN and FOXO3a regulate the transactivation domain of HIF-1α. Chromatin immunoprecipitation indicates that FOXO3a complexes with HIF-1α and p300 on the Glut-1 promoter, a HIF-1 target gene. Overexpression of p300 reverses FOXO3a-mediated repression of HIF-1 transcriptional activity. Coimmunoprecipitation and GAL4-HIF-1α transactivation assays reveal that FOXO3a interferes with p300-dependent HIF-1 transcriptional activity. Thus, FOXO3a negatively regulates HIF-1 transcriptional activity. PMID:18268343

  1. The Nuclear Matrix Protein, NRP/B, Acts as a Transcriptional Repressor of E2F-mediated Transcriptional Activity

    PubMed Central

    Choi, Jina; Yang, Eun Sung; Cha, Kiweon; Whang, John; Choi, Woo-Jung; Avraham, Shalom; Kim, Tae-Aug

    2014-01-01

    Background: NRP/B, a family member of the BTB/Kelch repeat proteins, is implicated in neuronal and cancer development, as well as the regulation of oxidative stress responses in breast and brain cancer. Our previous studies indicate that the NRP/B-BTB/POZ domain is involved in the dimerization of NRP/B and in a complex formation with the tumor suppressor, retinoblastoma protein. Although much evidence supports the potential role of NRP/B as a tumor suppressor, the molecular mechanisms of NRP/B action on E2F transcription factors have not been elucidated. Methods: Three-dimensional modeling of NRP/B was used to generate point mutations in the BTB/Kelch domains. Tet-on inducible NRP/B expression was established. The NRP/B deficient breast cancer cell line, MDA-MB-231, was generated using lentiviral shNRP/B to evaluate the effect of NRP/B on cell proliferation, invasion and migration. Immunoprecipitation was performed to verify the interaction of NRP/B with E2F and histone deacetylase (HDAC-1), and the expression level of NRP/B protein was analyzed by Western blot analysis. Changes in cell cycle were determined by flow cytometry. Transcriptional activities of E2F transcription factors were measured by chloramphenicol acetyltransferase (CAT) activity. Results: Ectopic overexpression of NRP/B demonstrated that the NRP/B-BTB/POZ domain plays a critical role in E2F-mediated transcriptional activity. Point mutations within the BTB/POZ domain restored E2-promoter activity inhibited by NRP/B. Loss of NRP/B enhanced the proliferation and migration of breast cancer cells. Endogenous NRP/B interacted with E2F and HDAC1. Treatement with an HDAC inhibitor, trichostatin A (TSA), abolished the NRP/B-mediated suppression of E2-promoter activity. Gain or loss of NRP/B in HeLa cells confirmed the transcriptional repressive capability of NRP/B on the E2F target genes, Cyclin E and HsORC (Homo sapiens Origin Recognition Complex). Conclusions: The present study shows that NRP/B acts as a

  2. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor

    PubMed Central

    Matsuda, Shun; Adachi, Jun; Ihara, Masaru; Tanuma, Nobuhiro; Shima, Hiroshi; Kakizuka, Akira; Ikura, Masae; Ikura, Tsuyoshi; Matsuda, Tomonari

    2016-01-01

    Pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase complex (PDC) regulate production of acetyl-CoA, which functions as an acetyl donor in diverse enzymatic reactions, including histone acetylation. However, the mechanism by which the acetyl-CoA required for histone acetylation is ensured in a gene context-dependent manner is not clear. Here we show that PKM2, the E2 subunit of PDC and histone acetyltransferase p300 constitute a complex on chromatin with arylhydrocarbon receptor (AhR), a transcription factor associated with xenobiotic metabolism. All of these factors are recruited to the enhancer of AhR-target genes, in an AhR-dependent manner. PKM2 contributes to enhancement of transcription of cytochrome P450 1A1 (CYP1A1), an AhR-target gene, acetylation at lysine 9 of histone H3 at the CYP1A1 enhancer. Site-directed mutagenesis of PKM2 indicates that this enhancement of histone acetylation requires the pyruvate kinase activity of the enzyme. Furthermore, we reveal that PDC activity is present in nuclei. Based on these findings, we propose a local acetyl-CoA production system in which PKM2 and PDC locally supply acetyl-CoA to p300 from abundant PEP for histone acetylation at the gene enhancer, and our data suggest that PKM2 sensitizes AhR-mediated detoxification in actively proliferating cells such as cancer and fetal cells. PMID:26405201

  3. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

    PubMed Central

    Petroni, M; Sardina, F; Heil, C; Sahún-Roncero, M; Colicchia, V; Veschi, V; Albini, S; Fruci, D; Ricci, B; Soriani, A; Di Marcotullio, L; Screpanti, I; Gulino, A; Giannini, G

    2016-01-01

    The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions. PMID:26068589

  4. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution.

    PubMed

    Gnatt, A L; Cramer, P; Fu, J; Bushnell, D A; Kornberg, R D

    2001-06-01

    The crystal structure of RNA polymerase II in the act of transcription was determined at 3.3 A resolution. Duplex DNA is seen entering the main cleft of the enzyme and unwinding before the active site. Nine base pairs of DNA-RNA hybrid extend from the active center at nearly right angles to the entering DNA, with the 3' end of the RNA in the nucleotide addition site. The 3' end is positioned above a pore, through which nucleotides may enter and through which RNA may be extruded during back-tracking. The 5'-most residue of the RNA is close to the point of entry to an exit groove. Changes in protein structure between the transcribing complex and free enzyme include closure of a clamp over the DNA and RNA and ordering of a series of "switches" at the base of the clamp to create a binding site complementary to the DNA-RNA hybrid. Protein-nucleic acid contacts help explain DNA and RNA strand separation, the specificity of RNA synthesis, "abortive cycling" during transcription initiation, and RNA and DNA translocation during transcription elongation. PMID:11313499

  5. Subunit dynamics and nucleotide-dependent asymmetry of an AAA(+) transcription complex.

    PubMed

    Zhang, Nan; Gordiyenko, Yuliya; Joly, Nicolas; Lawton, Edward; Robinson, Carol V; Buck, Martin

    2014-01-01

    Bacterial enhancer binding proteins (bEBPs) are transcription activators that belong to the AAA(+) protein family. They form higher-order self-assemblies to regulate transcription initiation at stress response and pathogenic promoters. The precise mechanism by which these ATPases utilize ATP binding and hydrolysis energy to remodel their substrates remains unclear. Here we employed mass spectrometry of intact complexes to investigate subunit dynamics and nucleotide occupancy of the AAA(+) domain of one well-studied bEBP in complex with its substrate, the σ(54) subunit of RNA polymerase. Our results demonstrate that the free AAA(+) domain undergoes significant changes in oligomeric states and nucleotide occupancy upon σ(54) binding. Such changes likely correlate with one transition state of ATP and are associated with an open spiral ring formation that is vital for asymmetric subunit function and interface communication. We confirmed that the asymmetric subunit functionality persists for open promoter complex formation using single-chain forms of bEBP lacking the full complement of intact ATP hydrolysis sites. Outcomes reconcile low- and high-resolution structures and yield a partial sequential ATP hydrolysis model for bEBPs. PMID:24055699

  6. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    SciTech Connect

    Adegbola, Onikepe; Pasternack, Gary R. . E-mail: gpastern@jhmi.edu

    2005-08-26

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing.

  7. Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters.

    PubMed

    Rivas-Marín, Elena; Floriano, Belén; Santero, Eduardo

    2016-01-01

    Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators. PMID:27087658

  8. Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters

    PubMed Central

    Rivas-Marín, Elena; Floriano, Belén; Santero, Eduardo

    2016-01-01

    Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators. PMID:27087658

  9. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS.

    PubMed

    García, Patricia; Encinar Del Dedo, Javier; Ayté, José; Hidalgo, Elena

    2016-01-01

    In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides. PMID:26567340

  10. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  11. Oxytocin-Stimulated NFAT Transcriptional Activation in Human Myometrial Cells

    PubMed Central

    McArdle, Craig A.; López Bernal, Andrés

    2012-01-01

    Oxytocin (OXT) is a peptide hormone that binds the OXT receptor on myometrial cells, initiating an intracellular signaling cascade, resulting in accumulation of intracellular calcium and smooth muscle contraction. In other systems, an elevation of intracellular Ca2+ stimulates nuclear translocation of the transcription factor, nuclear factor of activated T cells (NFAT), which is transcriptionally active in arterial and ileal smooth muscle. Here we have investigated the role of NFAT in the mechanism of action of OXT. Human myometrial cells expressed all five NFAT isoforms (NFATC1–C4 and -5). Myometrial cells were transduced with a recombinant adenovirus expressing a NFATC1-EFP reporter, and a semi-automated imaging system was used to monitor effects of OXT on reporter localization in live cells. OXT induced a concentration-dependent nuclear translocation of NFATC1-EFP in a reversible manner, which was inhibited by OXT antagonists and calcineurin inhibitors. Pulsatile stimulation with OXT caused intermittent, pulse-frequency-dependent, nuclear translocation of NFATC1-EFP, which was more efficient than sustained stimulation. OXT induced nuclear translocation of endogenous NFAT that was transcriptionally active, because OXT stimulated activity of a NFAT-response element-luciferase reporter and induced calcineurin-NFAT dependent expression of RGS2, RCAN1, and PTGS2 (COX2) mRNA. Furthermore, OXT-dependent transcription was dependent on protein neosynthesis; cycloheximide abolished RGS2 transcription but augmented RCAN1 and COX2 transcriptional readouts. This study identifies a novel signaling mechanism within the myometrium, whereby calcineurin-NFAT signaling mediates OXT-induced transcriptional activity. Furthermore, we show NFATC1-EFP is responsive to pulses of OXT, a mechanism by which myometrial cells could decode OXT pulse frequency. PMID:22902539

  12. The Basal Transcription Complex Component TAF3 Transduces Changes in Nuclear Phosphoinositides into Transcriptional Output

    PubMed Central

    Stijf-Bultsma, Yvette; Sommer, Lilly; Tauber, Maria; Baalbaki, Mai; Giardoglou, Panagiota; Jones, David R.; Gelato, Kathy A.; van Pelt, Jason; Shah, Zahid; Rahnamoun, Homa; Toma, Clara; Anderson, Karen E.; Hawkins, Philip; Lauberth, Shannon M.; Haramis, Anna-Pavlina G.; Hart, Daniel; Fischle, Wolfgang; Divecha, Nullin

    2015-01-01

    Summary Phosphoinositides (PI) are important signaling molecules in the nucleus that influence gene expression. However, if and how nuclear PI directly affects the transcriptional machinery is not known. We report that the lipid kinase PIP4K2B regulates nuclear PI5P and the expression of myogenic genes during myoblast differentiation. A targeted screen for PI interactors identified the PHD finger of TAF3, a TATA box binding protein-associated factor with important roles in transcription regulation, pluripotency, and differentiation. We show that the PI interaction site is distinct from the known H3K4me3 binding region of TAF3 and that PI binding modulates association of TAF3 with H3K4me3 in vitro and with chromatin in vivo. Analysis of TAF3 mutants indicates that TAF3 transduces PIP4K2B-mediated alterations in PI into changes in specific gene transcription. Our study reveals TAF3 as a direct target of nuclear PI and further illustrates the importance of basal transcription components as signal transducers. PMID:25866244

  13. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output.

    PubMed

    Stijf-Bultsma, Yvette; Sommer, Lilly; Tauber, Maria; Baalbaki, Mai; Giardoglou, Panagiota; Jones, David R; Gelato, Kathy A; van Pelt, Jason; Shah, Zahid; Rahnamoun, Homa; Toma, Clara; Anderson, Karen E; Hawkins, Philip; Lauberth, Shannon M; Haramis, Anna-Pavlina G; Hart, Daniel; Fischle, Wolfgang; Divecha, Nullin

    2015-05-01

    Phosphoinositides (PI) are important signaling molecules in the nucleus that influence gene expression. However, if and how nuclear PI directly affects the transcriptional machinery is not known. We report that the lipid kinase PIP4K2B regulates nuclear PI5P and the expression of myogenic genes during myoblast differentiation. A targeted screen for PI interactors identified the PHD finger of TAF3, a TATA box binding protein-associated factor with important roles in transcription regulation, pluripotency, and differentiation. We show that the PI interaction site is distinct from the known H3K4me3 binding region of TAF3 and that PI binding modulates association of TAF3 with H3K4me3 in vitro and with chromatin in vivo. Analysis of TAF3 mutants indicates that TAF3 transduces PIP4K2B-mediated alterations in PI into changes in specific gene transcription. Our study reveals TAF3 as a direct target of nuclear PI and further illustrates the importance of basal transcription components as signal transducers. PMID:25866244

  14. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1

    PubMed Central

    Hong, Wei; Nakazawa, Minako; Chen, Ying-Yu; Kori, Rajashree; Vakoc, Christopher R; Rakowski, Carrie; Blobel, Gerd A

    2005-01-01

    Transcription factor GATA-1 and its cofactor FOG-1 coordinate erythroid cell maturation by activating erythroid-specific genes and repressing genes associated with the undifferentiated state. Here we show that FOG-1 binds to the NuRD corepressor complex in vitro and in vivo. The interaction is mediated by a small conserved domain at the extreme N-terminus of FOG-1 that is necessary and sufficient for NuRD binding. This domain defines a novel repression module found in diverse transcriptional repressors. NuRD is present at GATA-1/FOG-1-repressed genes in erythroid cells in vivo. Point mutations near the N-terminus of FOG-1 that abrogate NuRD binding block gene repression by FOG-1. Finally, the ability of GATA-1 to repress transcription was impaired in erythroid cells expressing mutant forms of FOG-1 that are defective for NuRD binding. Together, these studies show that FOG-1 and likely other FOG-like proteins are corepressors that link GATA factors to histone deacetylation and nucleosome remodeling. PMID:15920470

  15. The CREB Transcription Factor Controls Transcriptional Activity of the Human RIC8B Gene.

    PubMed

    Maureira, Alejandro; Sánchez, Rodolfo; Valenzuela, Nicole; Torrejón, Marcela; Hinrichs, María V; Olate, Juan; Gutiérrez, José L

    2016-08-01

    Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPβ to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPβ. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729411

  16. HMG1 interacts with HOX proteins and enhances their DNA binding and transcriptional activation.

    PubMed Central

    Zappavigna, V; Falciola, L; Helmer-Citterich, M; Mavilio, F; Bianchi, M E

    1996-01-01

    High mobility group protein 1 (HMG1) is a non-histone, chromatin-associated nuclear protein with a proposed role in the regulation of eukaryotic gene expression. We show that HMG1 interacts with proteins encoded by the HOX gene family by establishing protein-protein contacts between the HMG box domains and the HOX homeodomain. The functional role of these interactions was studied using the transcriptional activity of the human HOXD9 protein as a model. HMG1 enhances, in a dose-dependent fashion, the sequence-specific DNA binding activity in vitro, and the transcriptional activation in a co-transfection assay in vivo, of the HOXD9 protein. Functional interaction between HMG1 and HOXD9 is dependent on the DNA binding activity of the homeodomain, and requires the HOXD9 transcriptional activation domain. HMG1 enhances activation by HOXD9, but not by HOXD8, of the HOXD9-controlled element. Specific target recognition and functional interaction with HMG1 can be transferred to HOXD8 by homeodomain swapping. We propose that HMG1-like proteins might be general co-factors in HOX-mediated transcriptional activation, which facilitate access of HOX proteins to specific DNA targets, and/or introduce architectural constraints in the assembly of HOX-containing transcriptional complexes. Images PMID:8890171

  17. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems

    PubMed Central

    Bialek, Julia K.; Dunay, Gábor A.; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C.

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5’ long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination. PMID:27341108

  18. ZXDC, a novel zinc finger protein that binds CIITA and activates MHC gene transcription

    PubMed Central

    Al-Kandari, Wafa; Jambunathan, Srikarthika; Navalgund, Vandana; Koneni, Rupa; Freer, Margot; Parimi, Neeta; Mudhasani, Rajini; Fontes, Joseph D.

    2006-01-01

    The class II trans-activator (CIITA) is recognized as the master regulator of major histocompatibility complex (MHC) class II gene transcription and contributes to the transcription of MHC class I genes. To better understand the function of CIITA, we performed yeast two-hybrid with the C-terminal 807 amino acids of CIITA, and cloned a novel human cDNA named zinc finger, X-linked, duplicated family member C (ZXDC). The 858 amino acid ZXDC protein contains 10 zinc fingers and a transcriptional activation domain, and was found to interact with the region of CIITA containing leucine-rich repeats. Over-expression of ZXDC in human cell lines resulted in super-activation of MHC class I and class II promoters by CIITA. Conversely, silencing of ZXDC expression reduced the ability of CIITA to activate transcription of MHC class II genes. Given the specific interaction between the ZXDC and CIITA proteins, as well as the effect of ZXDC on MHC gene transcription, it appears that ZXDC is an important regulator of both MHC class I and class II transcription. PMID:16600381

  19. RNA helicase A activity is inhibited by oncogenic transcription factor EWS-FLI1

    PubMed Central

    Erkizan, Hayriye Verda; Schneider, Jeffrey A.; Sajwan, Kamal; Graham, Garrett T.; Griffin, Brittany; Chasovskikh, Sergey; Youbi, Sarah E.; Kallarakal, Abraham; Chruszcz, Maksymilian; Padmanabhan, Radhakrishnan; Casey, John L.; Üren, Aykut; Toretsky, Jeffrey A.

    2015-01-01

    RNA helicases impact RNA structure and metabolism from transcription through translation, in part through protein interactions with transcription factors. However, there is limited knowledge on the role of transcription factor influence upon helicase activity. RNA helicase A (RHA) is a DExH-box RNA helicase that plays multiple roles in cellular biology, some functions requiring its activity as a helicase while others as a protein scaffold. The oncogenic transcription factor EWS-FLI1 requires RHA to enable Ewing sarcoma (ES) oncogenesis and growth; a small molecule, YK-4-279 disrupts this complex in cells. Our current study investigates the effect of EWS-FLI1 upon RHA helicase activity. We found that EWS-FLI1 reduces RHA helicase activity in a dose-dependent manner without affecting intrinsic ATPase activity; however, the RHA kinetics indicated a complex model. Using separated enantiomers, only (S)-YK-4-279 reverses the EWS-FLI1 inhibition of RHA helicase activity. We report a novel RNA binding property of EWS-FLI1 leading us to discover that YK-4-279 inhibition of RHA binding to EWS-FLI1 altered the RNA binding profile of both proteins. We conclude that EWS-FLI1 modulates RHA helicase activity causing changes in overall transcriptome processing. These findings could lead to both enhanced understanding of oncogenesis and provide targets for therapy. PMID:25564528

  20. FOXP3 can modulate TAL1 transcriptional activity through interaction with LMO2.

    PubMed

    Fleskens, V; Mokry, M; van der Leun, A M; Huppelschoten, S; Pals, C E G M; Peeters, J; Coenen, S; Cardoso, B A; Barata, J T; van Loosdregt, J; Coffer, P J

    2016-08-01

    T-cell acute lymphoblastic leukemia (T-ALL) frequently involves aberrant expression of TAL1 (T-cell acute lymphocytic leukemia 1) and LMO2, oncogenic members of the TAL1 transcriptional complex. Transcriptional activity of the TAL1-complex is thought to have a pivotal role in the transformation of thymocytes and is associated with a differentiation block and self-renewal. The transcription factor Forkhead Box P3 (FOXP3) was recently described to be expressed in a variety of malignancies including T-ALL. Here we show that increased FOXP3 levels negatively correlate with expression of genes regulated by the oncogenic TAL1-complex in human T-ALL patient samples as well as a T-ALL cell line ectopically expressing FOXP3. In these cells, FOXP3 expression results in altered regulation of cell cycle progression and reduced cell viability. Finally, we demonstrate that FOXP3 binds LMO2 in vitro, resulting in decreased interaction between LMO2 and TAL1, providing a molecular mechanism for FOXP3-mediated transcriptional modulation in T-ALL. Collectively, our findings provide initial evidence for a novel role of FOXP3 as a tumor suppressor in T-ALL through modulation of TAL1 transcriptional activity. PMID:26686090

  1. Sug1 modulates yeast transcription activation by Cdc68.

    PubMed Central

    Xu, Q; Singer, R A; Johnston, G C

    1995-01-01

    The Cdc68 protein is required for the transcription of a variety of genes in the yeast Saccharomyces cerevisiae. In a search for proteins involved in the activity of the Cdc68 protein, we identified four suppressor genes in which mutations reverse the temperature sensitivity caused by the cdc68-1 allele. We report here the molecular characterization of mutations in one suppressor gene, the previously identified SUG1 gene. The Sug1 protein has been implicated in both transcriptional regulation and proteolysis. sug1 suppressor alleles reversed most aspects of the cdc68-1 mutant phenotype but did not suppress the lethality of a cdc68 null allele, indicating that sug1 suppression is by restoration of Cdc68 activity. Our evidence suggests that suppression by sug1 is unlikely to be due to increased stability of mutant Cdc68 protein, despite the observation that Sug1 affected proteolysis of mutant Cdc68. We report here that attenuated Sug1 activity strengthens mutant Cdc68 activity, whereas increased Sug1 activity further inhibits enfeebled Cdc68 activity, suggesting that Sug1 antagonizes the activator function of Cdc68 for transcription. Consistent with this hypothesis, we find that Sug1 represses transcription in vivo. PMID:7565755

  2. Molecular Mechanisms of Transcription Initiation-Structure, Function, and Evolution of TFE/TFIIE-Like Factors and Open Complex Formation.

    PubMed

    Blombach, Fabian; Smollett, Katherine L; Grohmann, Dina; Werner, Finn

    2016-06-19

    Transcription initiation requires that the promoter DNA is melted and the template strand is loaded into the active site of the RNA polymerase (RNAP), forming the open complex (OC). The archaeal initiation factor TFE and its eukaryotic counterpart TFIIE facilitate this process. Recent structural and biophysical studies have revealed the position of TFE/TFIIE within the pre-initiation complex (PIC) and illuminated its role in OC formation. TFE operates via allosteric and direct mechanisms. Firstly, it interacts with the RNAP and induces the opening of the flexible RNAP clamp domain, concomitant with DNA melting and template loading. Secondly, TFE binds physically to single-stranded DNA in the transcription bubble of the OC and increases its stability. The identification of the β-subunit of archaeal TFE enabled us to reconstruct the evolutionary history of TFE/TFIIE-like factors, which is characterised by winged helix (WH) domain expansion in eukaryotes and loss of metal centres including iron-sulfur clusters and Zinc ribbons. OC formation is an important target for the regulation of transcription in all domains of life. We propose that TFE and the bacterial general transcription factor CarD, although structurally and evolutionary unrelated, show interesting parallels in their mechanism to enhance OC formation. We argue that OC formation is used as a way to regulate transcription in all domains of life, and these regulatory mechanisms coevolved with the basal transcription machinery. PMID:27107643

  3. Effect Of Simulated Microgravity On Activated T Cell Gene Transcription

    NASA Technical Reports Server (NTRS)

    Morrow, Maureen A.

    2003-01-01

    Studies of T lymphocytes under the shear stress environment of clinorotation have demonstrated an inhibition of activation in response to TCR mediated signaling. These results mimic those observed during space flight. This work investigates the molecular signaling events of T lymphocyte activation with clinorotation. Purified human T lymphocytes and the T cell clone Jurkat exhibit an uncoupling of signaling as mediated through the TCR. Activation of the transcription factor AP-1 is inhibited while activation of NFAT occurs. NFAT dephosphorylation and activation is dependent on sustained Ca(++) influx. Alternatively, AP-1, which consists of two transcription factors, jun and fos, is activated by PKC and Ras mediated pathways. TCR signaling is known to be dependent on cytoskeletal rearrangements, in particular, raft aggregation is critical. Raft aggregation, as mediated through GM, crosslinking, overcomes the inhibition of T lymphocyte activation with clinorotation, indicating that the block is occurring upstream of raft aggregation. Clinorotation is shown to have an effect similar to a weak TCR signal.

  4. An arcane role of DNA in transcription activation.

    PubMed Central

    Ryu, S; Garges, S; Adhya, S

    1994-01-01

    The mechanism by which the cAMP receptor protein (CRP) activates transcription has been investigated using the lac promoter of Escherichia coli. For transcription activation, an interaction between DNA-bound CRP and RNA polymerase is not sufficient. CRP must bind to a site in the same DNA and close to the promoter. CRP action requires an intact spacer DNA to provide a rigid support in building a CRP-RNA polymerase protein bridge or to allow a conformational change in the DNA to be transmitted to the lac promoter using the protein bridge as a structural support. Images PMID:7811325

  5. Nucleosomes unfold completely at a transcriptionally active promoter.

    PubMed

    Boeger, Hinrich; Griesenbeck, Joachim; Strattan, J Seth; Kornberg, Roger D

    2003-06-01

    It has long been known that promoter DNA is converted to a nuclease-sensitive state upon transcriptional activation. Recent findings have raised the possibility that this conversion reflects only a partial unfolding or other perturbation of nucleosomal structure, rather than the loss of nucleosomes. We report topological, sedimentation, nuclease digestion, and ChIP analyses, which demonstrate the complete unfolding of nucleosomes at the transcriptionally active PHO5 promoter of the yeast Saccharomyces cerevisiae. Although nucleosome loss occurs at all promoter sites, it is not complete at any of them, suggesting the existence of an equilibrium between the removal of nucleosomes and their reformation. PMID:12820971

  6. DREAM Controls the On/Off Switch of Specific Activity-Dependent Transcription Pathways

    PubMed Central

    Mellström, Britt; Sahún, Ignasi; Ruiz-Nuño, Ana; Murtra, Patricia; Gomez-Villafuertes, Rosa; Savignac, Magali; Oliveros, Juan C.; Gonzalez, Paz; Kastanauskaite, Asta; Knafo, Shira; Zhuo, Min; Higuera-Matas, Alejandro; Errington, Michael L.; Maldonado, Rafael; DeFelipe, Javier; Jefferys, John G. R.; Bliss, Tim V. P.; Dierssen, Mara

    2014-01-01

    Changes in nuclear Ca2+ homeostasis activate specific gene expression programs and are central to the acquisition and storage of information in the brain. DREAM (downstream regulatory element antagonist modulator), also known as calsenilin/KChIP-3 (K+ channel interacting protein 3), is a Ca2+-binding protein that binds DNA and represses transcription in a Ca2+-dependent manner. To study the function of DREAM in the brain, we used transgenic mice expressing a Ca2+-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Using genome-wide analysis, we show that DREAM regulates the expression of specific activity-dependent transcription factors in the hippocampus, including Npas4, Nr4a1, Mef2c, JunB, and c-Fos. Furthermore, DREAM regulates its own expression, establishing an autoinhibitory feedback loop to terminate activity-dependent transcription. Ablation of DREAM does not modify activity-dependent transcription because of gene compensation by the other KChIP family members. The expression of daDREAM in the forebrain resulted in a complex phenotype characterized by loss of recurrent inhibition and enhanced long-term potentiation (LTP) in the dentate gyrus and impaired learning and memory. Our results indicate that DREAM is a major master switch transcription factor that regulates the on/off status of specific activity-dependent gene expression programs that control synaptic plasticity, learning, and memory. PMID:24366545

  7. PKG-1α mediates GATA4 transcriptional activity.

    PubMed

    Ma, Yanlin; Wang, Jun; Yu, Yanhong; Schwartz, Robert J

    2016-06-01

    GATA4, a zinc-finger transcription factor, is central for cardiac development and diseases. Here we show that GATA4 transcriptional activity is mediated by cell signaling via cGMP dependent PKG-1α activity. Protein kinase G (PKG), a serine/tyrosine specific kinase is the major effector of cGMP signaling. We observed enhanced transcriptional activity elicited by co-expressed GATA4 and PKG-1α. Phosphorylation of GATA4 by PKG-1α was detected on serine 261 (S261), while the C-terminal activation domain of GATA4 associated with PKG-1α. GATA4's DNA binding activity was enhanced by PKG-1α via by both phosphorylation and physical association. More importantly, a number of human disease-linked GATA4 mutants exhibited impaired S261 phosphorylation, pointing to defective S261 phosphorylation in the elaboration of human heart diseases. We showed S261 phosphorylation was favored by PKG-1α but not by PKA, and several other kinase signaling pathways such as MAPK and PKC. Our observations demonstrate that cGMP-PKG signaling mediates transcriptional activity of GATA4 and links defective GATA4 and PKG-1α mutations to the development of human heart disease. PMID:26946174

  8. A role for Yin Yang-1 (YY1) in the assembly of snRNA transcription complexes.

    PubMed

    Emran, Farida; Florens, Laurence; Ma, Beicong; Swanson, Selene K; Washburn, Michael P; Hernandez, Nouria

    2006-08-01

    The RNA polymerase (pol) II and III human small nuclear RNA (snRNA) genes have very similar promoters and recruit a number of common factors. In particular, both types of promoters utilize the small nuclear RNA activating protein complex (SNAP(c)) and the TATA box binding protein (TBP) for basal transcription, and are activated by Oct-1. We find that SNAP(c) purified from cell lines expressing tagged SNAP(c) subunits is associated with Yin Yang-1 (YY1), a factor implicated in both activation and repression of transcription. Recombinant YY1 accelerates the binding of SNAP(c) to the proximal sequence element, its target within snRNA promoters. Moreover, it enhances the formation of a complex on the pol III U6 snRNA promoter containing all the factors (SNAP(c), TBP, TFIIB-related factor 2 (Brf2), and B double prime 1 (Bdp1)) that are sufficient to direct in vitro U6 transcription when complemented with purified pol III, as well as that of a subcomplex containing TBP, Brf2, and Bdp1. YY1 is found on both the RNA polymerase II U1 and the RNA polymerase III U6 promoters as determined by chromatin immunoprecipitations. Thus, YY1 represents a new factor that participates in transcription complexes formed on both pol II and III promoters. PMID:16769183

  9. Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination.

    PubMed

    Austenaa, Liv M I; Barozzi, Iros; Simonatto, Marta; Masella, Silvia; Della Chiara, Giulia; Ghisletti, Serena; Curina, Alessia; de Wit, Elzo; Bouwman, Britta A M; de Pretis, Stefano; Piccolo, Viviana; Termanini, Alberto; Prosperini, Elena; Pelizzola, Mattia; de Laat, Wouter; Natoli, Gioacchino

    2015-11-01

    Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. PMID:26593720

  10. Structural basis for the assembly and nucleic acid binding of the TREX-2 transcription-export complex

    PubMed Central

    Ellisdon, Andrew M.; Dimitrova, Lyudmila; Hurt, Ed; Stewart, Murray

    2012-01-01

    The conserved TREX-2 transcription-export complex integrates transcription and processing of many actively-transcribed nascent mRNAs with the recruitment of export factors at nuclear pores and also contributes to transcriptional memory and genomic stability. We report the crystal structure of the Sac3–Thp1–Sem1 segment of Saccharomyces cerevisiae TREX-2 that interfaces with the gene expression machinery. Sac3–Thp1–Sem1 forms a novel PCI-domain complex characterized by the juxtaposition of Sac3 and Thp1 winged helix domains, forming a platform that mediates nucleic acid binding. Structure-guided mutations underline the essential requirement of the Thp1–Sac3 interaction for mRNA binding and for the coupling of transcription and processing with mRNP assembly and export. These results provide insight into how newly synthesized transcripts are efficiently transferred from TREX-2 to the principal mRNA export factor and, identify how Sem1 stabilizes PCI domain-containing proteins and promotes complex assembly. PMID:22343721

  11. Human Mitochondrial Transcription Initiation Complexes Have Similar Topology on the Light and Heavy Strand Promoters.

    PubMed

    Morozov, Yaroslav I; Temiakov, Dmitry

    2016-06-24

    Transcription is a highly regulated process in all domains of life. In human mitochondria, transcription of the circular genome involves only two promoters, called light strand promoter (LSP) and heavy strand promoter (HSP), located in the opposite DNA strands. Initiation of transcription occurs upon sequential assembly of an initiation complex that includes mitochondrial RNA polymerase (mtRNAP) and the initiation factors mitochondrial transcription factor A (TFAM) and TFB2M. It has been recently suggested that the transcription initiation factor TFAM binds to HSP and LSP in opposite directions, implying that the mechanisms of transcription initiation are drastically dissimilar at these promoters. In contrast, we found that binding of TFAM to HSP and the subsequent recruitment of mtRNAP results in a pre-initiation complex that is remarkably similar in topology and properties to that formed at the LSP promoter. Our data suggest that assembly of the pre-initiation complexes on LSP and HSP brings these transcription units in close proximity, providing an opportunity for regulatory proteins to simultaneously control transcription initiation in both mtDNA strands. PMID:27226527

  12. Drosophila homologs of transcriptional mediator complex subunits are required for adult cell and segment identity specification

    PubMed Central

    Boube, Muriel; Faucher, Christian; Joulia, Laurent; Cribbs, David L.; Bourbon, Henri-Marc

    2000-01-01

    The origins of specificity in gene expression are a central concern in understanding developmental control. Mediator protein complexes regulate transcriptional initiation, acting as modular adaptors linking specific transcription factors to core RNA polymerase II. Here, we identified the Drosophila homologs of 23 human mediator genes and mutations of two, dTRAP240 and of dTRAP80 (the putative fly homolog of yeast SRB4). Clonal analysis indicates a general role for dTRAP80 necessary for cell viability. The dTRAP240 gene is also essential, but cells lacking its function are viable and proliferate normally. Clones reveal localized developmental activities including a sex comb cell identity function. This contrasts with the ubiquitous nuclear accumulation of dTRAP240 protein in imaginal discs. Synergistic genetic interactions support shared developmental cell and segment identity functions of dTRAP240 and dTRAP80, potentially within a common complex. Further, they identify the homeotic Sex combs reduced product, required for the same cell/tissue identities, as a functional partner of these mediator proteins. PMID:11090137

  13. Ubiquitously expressed transcript is a novel interacting protein of protein inhibitor of activated signal transducer and activator of transcription 2

    PubMed Central

    KONG, XIANG; MA, SHIKUN; GUO, JIAQIAN; MA, YAN; HU, YANQIU; WANG, JIANJUN; ZHENG, YING

    2015-01-01

    Protein inhibitor of activated signal transducer and activator of transcription 2 (PIAS2) is a member of the PIAS protein family. This protein family modulates the activity of several transcription factors and acts as an E3 ubiquitin ligase in the sumoylation pathway. To improve understanding of the physiological roles of PIAS2, the current study used a yeast two-hybrid system to screen mouse stem cell cDNA libraries for proteins that interact with PIAS2. The screening identified an interaction between PIAS2 and ubiquitously expressed transcript (UXT). UXT, also termed androgen receptor trapped clone-27, is an α-class prefoldin-type chaperone that acts as a coregulator for various transcription factors, including nuclear factor-κB and androgen receptor (AR). A direct interaction between PIAS2 and UXT was confirmed by direct yeast two-hybrid analysis. In vitro evidence of the association of UXT with PIAS2 was obtained by co-immunoprecipitation. Colocalization between PIAS2 and UXT was identified in the nucleus and cytoplasm of HEK 293T and human cervical carcinoma HeLa cells. The results of the current study suggested that UXT is a binding protein of PIAS2, and interaction between PIAS2 and UXT may be important for the transcriptional activation of AR. PMID:25434787

  14. A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression.

    PubMed

    Wilson, William C; Hornig-Do, Hue-Tran; Bruni, Francesco; Chang, Jeong Ho; Jourdain, Alexis A; Martinou, Jean-Claude; Falkenberg, Maria; Spåhr, Henrik; Larsson, Nils-Göran; Lewis, Richard J; Hewitt, Lorraine; Baslé, Arnaud; Cross, Harold E; Tong, Liang; Lebel, Robert R; Crosby, Andrew H; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N

    2014-12-01

    The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes. PMID:25008111

  15. Differential roles of phosphorylation in the formation of transcriptional active RNA polymerase I

    PubMed Central

    Fath, Stephan; Milkereit, Philipp; Peyroche, Gerald; Riva, Michel; Carles, Christophe; Tschochner, Herbert

    2001-01-01

    Regulation of rDNA transcription depends on the formation and dissociation of a functional complex between RNA polymerase I (pol I) and transcription initiation factor Rrn3p. We analyzed whether phosphorylation is involved in this molecular switch. Rrn3p is a phosphoprotein that is predominantly phosphorylated in vivo when it is not bound to pol I. In vitro, Rrn3p is able both to associate with pol I and to enter the transcription cycle in its nonphosphorylated form. By contrast, phosphorylation of pol I is required to form a stable pol I-Rrn3p complex for efficient transcription initiation. Furthermore, association of pol I with Rrn3p correlates with a change in the phosphorylation state of pol I in vivo. We suggest that phosphorylation at specific sites of pol I is a prerequisite for proper transcription initiation and that phosphorylation/dephosphorylation of pol I is one possibility to modulate cellular rDNA transcription activity. PMID:11717393

  16. Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells

    PubMed Central

    Cattoglio, Claudia; Zhang, Elisa T.; Grubisic, Ivan; Chiba, Kunitoshi; Fong, Yick W.; Tjian, Robert

    2015-01-01

    The embryonic stem cell (ESC) state is transcriptionally controlled by OCT4, SOX2, and NANOG with cofactors, chromatin regulators, noncoding RNAs, and other effectors of signaling pathways. Uncovering components of these regulatory circuits and their interplay provides the knowledge base to deploy ESCs and induced pluripotent stem cells. We recently identified the DNA-repair complex xeroderma pigmentosum C (XPC)-RAD23B-CETN2 as a stem cell coactivator (SCC) required for OCT4/SOX2 transcriptional activation. Here we investigate the role of SCC genome-wide in murine ESCs by mapping regions bound by RAD23B and analyzing transcriptional profiles of SCC-depleted ESCs. We establish OCT4 and SOX2 as the primary transcription factors recruiting SCC to regulatory regions of pluripotency genes and identify the XPC subunit as essential for interaction with the two proteins. The present study reveals new mechanistic and functional aspects of SCC transcriptional activity, and thus underscores the diversified functions of this regulatory complex. PMID:25901318

  17. Aerobic glycolysis tunes YAP/TAZ transcriptional activity

    PubMed Central

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-01-01

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ. PMID:25796446

  18. Distinct function of 2 chromatin remodeling complexes that share a common subunit, Williams syndrome transcription factor (WSTF)

    PubMed Central

    Yoshimura, Kimihiro; Kitagawa, Hirochika; Fujiki, Ryoji; Tanabe, Masahiko; Takezawa, Shinichiro; Takada, Ichiro; Yamaoka, Ikuko; Yonezawa, Masayoshi; Kondo, Takeshi; Furutani, Yoshiyuki; Yagi, Hisato; Yoshinaga, Shin; Masuda, Takeyoshi; Fukuda, Toru; Yamamoto, Yoko; Ebihara, Kanae; Li, Dean Y.; Matsuoka, Rumiko; Takeuchi, Jun K.; Matsumoto, Takahiro; Kato, Shigeaki

    2009-01-01

    A number of nuclear complexes modify chromatin structure and operate as functional units. However, the in vivo role of each component within the complexes is not known. ATP-dependent chromatin remodeling complexes form several types of protein complexes, which reorganize chromatin structure cooperatively with histone modifiers. Williams syndrome transcription factor (WSTF) was biochemically identified as a major subunit, along with 2 distinct complexes: WINAC, a SWI/SNF-type complex, and WICH, an ISWI-type complex. Here, WSTF−/− mice were generated to investigate its function in chromatin remodeling in vivo. Loss of WSTF expression resulted in neonatal lethality, and all WSTF−/− neonates and ≈10% of WSTF+/− neonates suffered cardiovascular abnormalities resembling those found in autosomal-dominant Williams syndrome patients. Developmental analysis of WSTF−/− embryos revealed that Gja5 gene regulation is aberrant from E9.5, conceivably because of inappropriate chromatin reorganization around the promoter regions where essential cardiac transcription factors are recruited. In vitro analysis in WSTF−/− mouse embryonic fibroblast (MEF) cells also showed impaired transactivation functions of cardiac transcription activators on the Gja5 promoter, but the effects were reversed by overexpression of WINAC components. Likewise in WSTF−/− MEF cells, recruitment of Snf2h, an ISWI ATPase, to PCNA and cell survival after DNA damage were both defective, but were ameliorated by overexpression of WICH components. Thus, the present study provides evidence that WSTF is shared and is a functionally indispensable subunit of the WICH complex for DNA repair and the WINAC complex for transcriptional control. PMID:19470456

  19. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme.

    PubMed Central

    Li, Y; Bjorklund, S; Jiang, Y W; Kim, Y J; Lane, W S; Stillman, D J; Kornberg, R D

    1995-01-01

    Sin4 and Rgr1 proteins, previously shown by genetic studies to play both positive and negative roles in the transcriptional regulation of many genes, are identified here as components of mediator and RNA polymerase II holoenzyme complexes. Results with Sin4 deletion and Rgr1 truncation strains indicate the association of these proteins in a subcomplex comprising Sin4, Rgr1, Gal11, and a 50-kDa polypeptide. Taken together with the previous genetic evidence, our findings point to a role of the mediator in repression as well as in transcriptional activation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7479899

  20. Varying levels of complexity in transcription factor binding motifs

    PubMed Central

    Keilwagen, Jens; Grau, Jan

    2015-01-01

    Binding of transcription factors to DNA is one of the keystones of gene regulation. The existence of statistical dependencies between binding site positions is widely accepted, while their relevance for computational predictions has been debated. Building probabilistic models of binding sites that may capture dependencies is still challenging, since the most successful motif discovery approaches require numerical optimization techniques, which are not suited for selecting dependency structures. To overcome this issue, we propose sparse local inhomogeneous mixture (Slim) models that combine putative dependency structures in a weighted manner allowing for numerical optimization of dependency structure and model parameters simultaneously. We find that Slim models yield a substantially better prediction performance than previous models on genomic context protein binding microarray data sets and on ChIP-seq data sets. To elucidate the reasons for the improved performance, we develop dependency logos, which allow for visual inspection of dependency structures within binding sites. We find that the dependency structures discovered by Slim models are highly diverse and highly transcription factor-specific, which emphasizes the need for flexible dependency models. The observed dependency structures range from broad heterogeneities to sparse dependencies between neighboring and non-neighboring binding site positions. PMID:26116565

  1. Combinatorial influence of environmental parameters on transcription factor activity

    PubMed Central

    Knijnenburg, T.A.; Wessels, L.F.A.; Reinders, M.J.T.

    2008-01-01

    Motivation: Cells receive a wide variety of environmental signals, which are often processed combinatorially to generate specific genetic responses. Changes in transcript levels, as observed across different environmental conditions, can, to a large extent, be attributed to changes in the activity of transcription factors (TFs). However, in unraveling these transcription regulation networks, the actual environmental signals are often not incorporated into the model, simply because they have not been measured. The unquantified heterogeneity of the environmental parameters across microarray experiments frustrates regulatory network inference. Results: We propose an inference algorithm that models the influence of environmental parameters on gene expression. The approach is based on a yeast microarray compendium of chemostat steady-state experiments. Chemostat cultivation enables the accurate control and measurement of many of the key cultivation parameters, such as nutrient concentrations, growth rate and temperature. The observed transcript levels are explained by inferring the activity of TFs in response to combinations of cultivation parameters. The interplay between activated enhancers and repressors that bind a gene promoter determine the possible up- or downregulation of the gene. The model is translated into a linear integer optimization problem. The resulting regulatory network identifies the combinatorial effects of environmental parameters on TF activity and gene expression. Availability: The Matlab code is available from the authors upon request. Contact: t.a.knijnenburg@tudelft.nl Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18586711

  2. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  3. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  4. MEIS C termini harbor transcriptional activation domains that respond to cell signaling.

    PubMed

    Huang, He; Rastegar, Mojgan; Bodner, Caroline; Goh, Siew-Lee; Rambaldi, Isabel; Featherstone, Mark

    2005-03-18

    MEIS proteins form heteromeric DNA-binding complexes with PBX monomers and PBX.HOX heterodimers. We have shown previously that transcriptional activation by PBX.HOX is augmented by either protein kinase A (PKA) or the histone deacetylase inhibitor trichostatin A (TSA). To examine the contribution of MEIS proteins to this response, we used the chromatin immunoprecipitation assay to show that MEIS1 in addition to PBX1, HOXA1, and HOXB1 was recruited to a known PBX.HOX target, the Hoxb1 autoregulatory element following Hoxb1 transcriptional activation in P19 cells. Subsequent to TSA treatment, MEIS1 recruitment lagged behind that of HOX and PBX partners. MEIS1A also enhanced the transcriptional activation of a reporter construct bearing the Hoxb1 autoregulatory element after treatment with TSA. The MEIS1 homeodomain and protein-protein interaction with PBX contributed to this activity. We further mapped TSA-responsive and CREB-binding protein-dependent PKA-responsive transactivation domains to the MEIS1A and MEIS1B C termini. Fine mutation of the 56-residue MEIS1A C terminus revealed four discrete regions required for transcriptional activation function. All of the mutations impairing the response to TSA likewise reduced activation by PKA, implying a common mechanistic basis. C-terminal deletion of MEIS1 impaired transactivation without disrupting DNA binding or complex formation with HOX and PBX. Despite sequence similarity to MEIS and a shared ability to form heteromeric complexes with PBX and HOX partners, the PREP1 C terminus does not respond to TSA or PKA. Thus, MEIS C termini possess transcriptional regulatory domains that respond to cell signaling and confer functional differences between MEIS and PREP proteins. PMID:15654074

  5. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes

    PubMed Central

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A.; Engeland, Kurt

    2012-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G0/G1. It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G0. Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G0/G1, but also for activation in S, G2 and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  6. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes.

    PubMed

    Müller, Gerd A; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A; Engeland, Kurt

    2012-02-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  7. tRNAs Promote Nuclear Import of HIV-1 Intracellular Reverse Transcription Complexes

    PubMed Central

    Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto

    2006-01-01

    Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3′ CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle–arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import. PMID:17020411

  8. Upstream activation sequence-dependent alteration of chromatin structure and transcription activation of the yeast GAL1-GAL10 genes.

    PubMed Central

    Fedor, M J; Kornberg, R D

    1989-01-01

    Conversion of the positioned nucleosome array characteristic of the repressed GAL1-GAL10 promoter region to the more accessible conformation of the induced state was found to depend on the upstream activation sequence, GAL4 protein, a positive regulator of transcription, and galactose, the inducing agent. The effect of the GAL4 protein-upstream activation sequence complex on the structure of adjacent chromatin required no other promoter sequences. Although sequences protected by histones in the repressed state became more accessible to micrococcal nuclease and (methidiumpropyl-EDTA)iron(II) cleavage following induction of transcription, DNA-protein particles containing these sequences retained the electrophoretic mobility of nucleosomes, indicating that the promoter region can be associated with nucleosomes under conditions of transcription activation. Images PMID:2657404

  9. Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex

    PubMed Central

    Nangle, Shannon N; Rosensweig, Clark; Koike, Nobuya; Tei, Hajime; Takahashi, Joseph S; Green, Carla B; Zheng, Ning

    2014-01-01

    The mammalian circadian clock is driven by a transcriptional–translational feedback loop, which produces robust 24-hr rhythms. Proper oscillation of the clock depends on the complex formation and periodic turnover of the Period and Cryptochrome proteins, which together inhibit their own transcriptional activator complex, CLOCK-BMAL1. We determined the crystal structure of the CRY-binding domain (CBD) of PER2 in complex with CRY2 at 2.8 Å resolution. PER2-CBD adopts a highly extended conformation, embracing CRY2 with a sinuous binding mode. Its N-terminal end tucks into CRY adjacent to a large pocket critical for CLOCK-BMAL1 binding, while its C-terminal half flanks the CRY2 C-terminal helix and sterically hinders the recognition of CRY2 by the FBXL3 ubiquitin ligase. Unexpectedly, a strictly conserved intermolecular zinc finger, whose integrity is important for clock rhythmicity, further stabilizes the complex. Our structure-guided analyses show that these interspersed CRY-interacting regions represent multiple functional modules of PERs at the CRY-binding interface. DOI: http://dx.doi.org/10.7554/eLife.03674.001 PMID:25127877

  10. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription.

    PubMed

    Bell, A; Gaston, K; Williams, R; Chapman, K; Kolb, A; Buc, H; Minchin, S; Williams, J; Busby, S

    1990-12-25

    The effects of a number of mutations in the E. coli cyclic AMP receptor protein (CRP) have been determined by monitoring the in vivo expression and in vitro open complex formation at two semi-synthetic promoters that are totally CRP-dependent. At one promoter the CRP-binding site is centered around 41.5 base pairs upstream from the transcription start whilst at the other promoter it is 61.5 base pairs upstream. The CRP mutation E171K reduces expression from both promoters whilst H159L renders CRP totally inactive: neither mutation stops CRP binding at either promoter. The mutations K52N and K52Q reverse the effect of H159L and 'reeducate' CRP to activate transcription. CRP carrying both H159L and K52N activates transcription from the promoter with the CRP site at -41.5 better than wild type CRP. In sharp contrast, this doubly changed CRP is totally inactive with respect to the activation of transcription from the promoter carrying the CRP site at -61.5. Our results suggest that CRP can use different contacts and/or conformations during transcription activation at promoters with different architectures. PMID:2259621

  11. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription.

    PubMed Central

    Bell, A; Gaston, K; Williams, R; Chapman, K; Kolb, A; Buc, H; Minchin, S; Williams, J; Busby, S

    1990-01-01

    The effects of a number of mutations in the E. coli cyclic AMP receptor protein (CRP) have been determined by monitoring the in vivo expression and in vitro open complex formation at two semi-synthetic promoters that are totally CRP-dependent. At one promoter the CRP-binding site is centered around 41.5 base pairs upstream from the transcription start whilst at the other promoter it is 61.5 base pairs upstream. The CRP mutation E171K reduces expression from both promoters whilst H159L renders CRP totally inactive: neither mutation stops CRP binding at either promoter. The mutations K52N and K52Q reverse the effect of H159L and 'reeducate' CRP to activate transcription. CRP carrying both H159L and K52N activates transcription from the promoter with the CRP site at -41.5 better than wild type CRP. In sharp contrast, this doubly changed CRP is totally inactive with respect to the activation of transcription from the promoter carrying the CRP site at -61.5. Our results suggest that CRP can use different contacts and/or conformations during transcription activation at promoters with different architectures. Images PMID:2259621

  12. CCAR1 promotes chromatin loading of androgen receptor (AR) transcription complex by stabilizing the association between AR and GATA2

    PubMed Central

    Seo, Woo-Young; Jeong, Byong Chang; Yu, Eun Ji; Kim, Hwa Jin; Kim, Seok-Hyung; Lim, Joung Eun; Kwon, Ghee Young; Lee, Hyun Moo; Kim, Jeong Hoon

    2013-01-01

    Androgen receptor (AR), a ligand-dependent transcription factor, plays a critical role in prostate cancer onset and progression, and its transcriptional function is mediated largely by distinct nuclear receptor co-regulators. Here, we show that cell cycle and apoptosis regulator 1 (CCAR1) functions as an AR co-activator. CCAR1 interacted with and enhanced the transcriptional activity of AR. Depletion of CCAR1 caused reduction in androgen-dependent expression of a subset of AR target genes. We further showed that CCAR1 is required for recruitment of AR, MED1 and RNA polymerase II to the enhancers of AR target genes and for androgen-induced long-range prostate specific antigen enhancer–promoter interaction. The molecular mechanism underlying CCAR1 function in AR-mediated transcription involves CCAR1-mediated enhanced recruitment of GATA2, a pioneer factor for AR, to AR-binding sites. CCAR1 stabilized the interaction between AR and GATA2 by interacting directly with both proteins, thereby facilitating AR and GATA2 occupancy on the enhancers. Furthermore, CCAR1 depletion inhibited the growth, migration, invasion of prostate cancer cells and reduced the tumorigenicity of prostate cancer cells in vivo. Our results firmly established CCAR1 as an AR co-activator that plays a key role in AR transcription complex assembly and has an important physiological role in androgen signaling and prostate tumorigenesis. PMID:23887938

  13. A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho.

    PubMed Central

    Geiselmann, J; Wang, Y; Seifried, S E; von Hippel, P H

    1993-01-01

    Transcription termination protein Rho of Escherichia coli interacts with newly synthesized RNA chains and brings about their release from elongation complexes paused at specific Rho-dependent termination sites. Rho is thought to accomplish this by binding to a specific Rho "loading site" on the nascent RNA and then translocating preferentially along the transcript in a 5'-->3' direction. On reaching the elongation complex, Rho releases the nascent RNA by a 5'-->3' RNA.DNA helicase activity. These translocation and helicase activities are driven by the RNA-dependent ATPase activity of Rho. In this paper we propose a mechanism for these processes that is based on the structure and properties of the Rho protein. Rho is a hexamer of identical subunits that are arranged as a trimer of asymmetric dimers with D3 symmetry. The binding of ATP and RNA to Rho also reflects this pattern; the Rho hexamer carries three strong and three weak binding sites for each of these entities. The asymmetric dimers of Rho correspond to functional dimers that can undergo conformational transitions driven by ATP hydrolysis. We propose that the quaternary structure of Rho coordinates the ATP-driven RNA binding and release processes to produce a biased random walk of the Rho hexamer along the RNA, followed by RNA.DNA helicase activity and transcript release. The proposed model may have implications for other hexameric DNA.DNA, RNA.DNA, and RNA.RNA helicases that function in replication and transcription. Images Fig. 2 PMID:7689228

  14. Transcriptional Activation of the Cyclin A Gene by the Architectural Transcription Factor HMGA2

    PubMed Central

    Tessari, Michela A.; Gostissa, Monica; Altamura, Sandro; Sgarra, Riccardo; Rustighi, Alessandra; Salvagno, Clio; Caretti, Giuseppina; Imbriano, Carol; Mantovani, Roberto; Del Sal, Giannino; Giancotti, Vincenzo; Manfioletti, Guidalberto

    2003-01-01

    The HMGA2 protein belongs to the HMGA family of architectural transcription factors, which play an important role in chromatin organization. HMGA proteins are overexpressed in several experimental and human tumors and have been implicated in the process of neoplastic transformation. Hmga2 knockout results in the pygmy phenotype in mice and in a decreased growth rate of embryonic fibroblasts, thus indicating a role for HMGA2 in cell proliferation. Here we show that HMGA2 associates with the E1A-regulated transcriptional repressor p120E4F, interfering with p120E4F binding to the cyclin A promoter. Ectopic expression of HMGA2 results in the activation of the cyclin A promoter and induction of the endogenous cyclin A gene. In addition, chromatin immunoprecipitation experiments show that HMGA2 associates with the cyclin A promoter only when the gene is transcriptionally activated. These data identify the cyclin A gene as a cellular target for HMGA2 and, for the first time, suggest a mechanism for HMGA2-dependent cell cycle regulation. PMID:14645522

  15. An Essential Viral Transcription Activator Modulates Chromatin Dynamics

    PubMed Central

    Gibeault, Rebecca L.; Bildersheim, Michael D.

    2016-01-01

    Although ICP4 is the only essential transcription activator of herpes simplex virus 1 (HSV-1), its mechanisms of action are still only partially understood. We and others propose a model in which HSV-1 genomes are chromatinized as a cellular defense to inhibit HSV-1 transcription. To counteract silencing, HSV-1 would have evolved proteins that prevent or destabilize chromatinization to activate transcription. These proteins should act as HSV-1 transcription activators. We have shown that HSV-1 genomes are organized in highly dynamic nucleosomes and that histone dynamics increase in cells infected with wild type HSV-1. We now show that whereas HSV-1 mutants encoding no functional ICP0 or VP16 partially enhanced histone dynamics, mutants encoding no functional ICP4 did so only minimally. Transient expression of ICP4 was sufficient to enhance histone dynamics in the absence of other HSV-1 proteins or HSV-1 DNA. The dynamics of H3.1 were increased in cells expressing ICP4 to a greater extent than those of H3.3. The dynamics of H2B were increased in cells expressing ICP4, whereas those of canonical H2A were not. ICP4 preferentially targets silencing H3.1 and may also target the silencing H2A variants. In infected cells, histone dynamics were increased in the viral replication compartments, where ICP4 localizes. These results suggest a mechanism whereby ICP4 activates transcription by disrupting, or preventing the formation of, stable silencing nucleosomes on HSV-1 genomes. PMID:27575707

  16. A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation.

    PubMed

    Sahni, Hemant; Ross, Susan; Barbarulo, Alessandro; Solanki, Anisha; Lau, Ching-In; Furmanski, Anna; Saldaña, José Ignacio; Ono, Masahiro; Hubank, Mike; Barenco, Martino; Crompton, Tessa

    2015-10-01

    Developing thymocytes require pre-TCR signalling to differentiate from CD4-CD8- double negative to CD4+CD8+ double positive cell. Here we followed the transcriptional response to pre-TCR signalling in a synchronised population of differentiating double negative thymocytes. This time series analysis revealed a complex transcriptional response, in which thousands of genes were up and down-regulated before changes in cell surface phenotype were detected. Genome-wide measurement of RNA degradation of individual genes showed great heterogeneity in the rate of degradation between different genes. We therefore used time course expression and degradation data and a genome wide transcriptional modelling (GWTM) strategy to model the transcriptional response of genes up-regulated on pre-TCR signal transduction. This analysis revealed five major temporally distinct transcriptional activities that up regulate transcription through time, whereas down-regulation of expression occurred in three waves. Our model thus placed known regulators in a temporal perspective, and in addition identified novel candidate regulators of thymocyte differentiation. PMID:26415229

  17. The Complex of Ciliary Neurotrophic Factor-Ciliary Neurotrophic Factor Receptor α Up-Regulates Connexin43 and Intercellular Coupling in Astrocytes via the Janus Tyrosine Kinase/Signal Transducer and Activator of Transcription PathwayD⃞

    PubMed Central

    Ozog, Mark A.; Bernier, Suzanne M.; Bates, Dave C.; Chatterjee, Bishwanath; Lo, Cecilia W.; Naus, Christian C.G.

    2004-01-01

    Cytokines regulate numerous cell processes, including connexin expression and gap junctional coupling. In this study, we examined the effect of ciliary neurotrophic factor (CNTF) on connexin43 (Cx43) expression and intercellular coupling in astrocytes. Murine cortical astrocytes matured in vitro were treated with CNTF (20 ng/ml), soluble ciliary neurotrophic factor receptor α (CNTFRα) (200 ng/ml), or CNTF-CNTFRα. Although CNTF and CNTFRα alone had no effect on Cx43 expression, the heterodimer CNTF-CNTFRα significantly increased both Cx43 mRNA and protein levels. Cx43 immunostaining correlated with increased intercellular coupling as determined by dye transfer analysis. By using the pharmacological inhibitor α-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG490), the increase in Cx43 was found to be dependent on the Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Immunocytochemical analysis revealed that CNTF-CNTFRα treatment produced nuclear localization of phosphorylated STAT3, whereas CNTF treatment alone did not. Transient transfection of constructs containing various sequences of the Cx43 promoter tagged to a LacZ reporter into ROS 17/2.8 cells confirmed that the promoter region between -838 to -1693 was deemed necessary for CNTF-CNTFRα to induce heightened expression. CNTF-CNTFRα did not alter Cx30 mRNA levels, suggesting selectivity of CNTF-CNTFRα for connexin signaling. Together in the presence of soluble receptor, CNTF activates the JAK/STAT pathway leading to enhanced Cx43 expression and intercellular coupling. PMID:15342787

  18. In Vitro Activation of the Transcription of araBAD Operon by araC Activator

    PubMed Central

    Lee, Nancy; Wilcox, Gary; Gielow, William; Arnold, John; Cleary, Paul; Englesberg, Ellis

    1974-01-01

    The transcription of araBAD operon requires araC activator and cyclic AMP. D-Fucose inhibits ara mRNA synthesis. Our results indicate that the positive control by araC activator is exerted at the level of transcription. PMID:4362626

  19. Transcriptional cross-activation between toxin-antitoxin systems of Escherichia coli

    PubMed Central

    2013-01-01

    Background Bacterial toxin-antitoxin (TA) systems are formed by potent regulatory or suicide factors (toxins) and their short-lived inhibitors (antitoxins). Antitoxins are DNA-binding proteins and auto-repress transcription of TA operons. Transcription of multiple TA operons is activated in temporarily non-growing persister cells that can resist killing by antibiotics. Consequently, the antitoxin levels of persisters must have been dropped and toxins are released of inhibition. Results Here, we describe transcriptional cross-activation between different TA systems of Escherichia coli. We find that the chromosomal relBEF operon is activated in response to production of the toxins MazF, MqsR, HicA, and HipA. Expression of the RelE toxin in turn induces transcription of several TA operons. We show that induction of mazEF during amino acid starvation depends on relBE and does not occur in a relBEF deletion mutant. Induction of TA operons has been previously shown to depend on Lon protease which is activated by polyphospate accumulation. We show that transcriptional cross-activation occurs also in strains deficient for Lon, ClpP, and HslV proteases and polyphosphate kinase. Furthermore, we find that toxins cleave the TA mRNA in vivo, which is followed by degradation of the antitoxin-encoding fragments and selective accumulation of the toxin-encoding regions. We show that these accumulating fragments can be translated to produce more toxin. Conclusion Transcriptional activation followed by cleavage of the mRNA and disproportionate production of the toxin constitutes a possible positive feedback loop, which can fire other TA systems and cause bistable growth heterogeneity. Cross-interacting TA systems have a potential to form a complex network of mutually activating regulators in bacteria. PMID:23432955

  20. Signal Transducer and Activator of Transcription-3, Inflammation, and Cancer

    PubMed Central

    Aggarwal, Bharat B.; Kunnumakkara, Ajaikumar B.; Harikumar, Kuzhuvelil B.; Gupta, Shan R.; Tharakan, Sheeja T.; Koca, Cemile; Dey, Sanjit; Sung, Bokyung

    2011-01-01

    Signal transducer and activator of transcription-3 (STAT-3) is one of six members of a family of transcription factors. It was discovered almost 15 years ago as an acute-phase response factor. This factor has now been associated with inflammation, cellular transformation, survival, proliferation, invasion, angiogenesis, and metastasis of cancer. Various types of carcinogens, radiation, viruses, growth factors, oncogenes, and inflammatory cytokines have been found to activate STAT-3. STAT-3 is constitutively active in most tumor cells but not in normal cells. Phosphorylation of STAT-3 at tyrosine 705 leads to its dimerization, nuclear translocation, DNA binding, and gene transcription. The phosphorylation of STAT-3 at serine 727 may regulate its activity negatively or positively. STAT-3 regulates the expression of genes that mediate survival (survivin, bcl-xl, mcl-1, cellular FLICE-like inhibitory protein), proliferation (c-fos, c-myc, cyclin D1), invasion (matrix metalloproteinase-2), and angiogenesis (vascular endothelial growth factor). STAT-3 activation has also been associated with both chemoresistance and radioresistance. STAT-3 mediates these effects through its collaboration with various other transcription factors, including nuclear factor-κB, hypoxia-inducible factor-1, and peroxisome proliferator activated receptor-γ. Because of its critical role in tumorigenesis, inhibitors of this factor’s activation are being sought for both prevention and therapy of cancer. This has led to identification of small peptides, oligonucleotides, and small molecules as potential STAT-3 inhibitors. Several of these small molecules are chemo-preventive agents derived from plants. This review discusses the intimate relationship between STAT-3, inflammation, and cancer in more detail. PMID:19723038

  1. Isolation of the protein and RNA content of active sites of transcription from mammalian cells.

    PubMed

    Melnik, Svitlana; Caudron-Herger, Maïwen; Brant, Lilija; Carr, Ian M; Rippe, Karsten; Cook, Peter R; Papantonis, Argyris

    2016-03-01

    Mammalian cell nuclei contain three RNA polymerases (RNAP I, RNAP II and RNAP III), which transcribe different gene subsets, and whose active forms are contained in supramolecular complexes known as 'transcription factories.' These complexes are difficult to isolate because they are embedded in the 3D structure of the nucleus. Factories exchange components with the soluble nucleoplasmic pool over time as gene expression programs change during development or disease. Analysis of their content can provide information on the nascent transcriptome and its regulators. Here we describe a protocol for the isolation of large factory fragments under isotonic salt concentrations in <72 h. It relies on DNase I-mediated detachment of chromatin from the nuclear substructure of freshly isolated, unfixed cells, followed by caspase treatment to release multi-megadalton factory complexes. These complexes retain transcriptional activity, and isolation of their contents is compatible with downstream analyses by mass spectrometry (MS) or RNA-sequencing (RNA-seq) to catalog the proteins and RNA associated with sites of active transcription. PMID:26914315

  2. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4.

    PubMed Central

    Neuman, E; Ladha, M H; Lin, N; Upton, T M; Miller, S J; DiRenzo, J; Pestell, R G; Hinds, P W; Dowdy, S F; Brown, M; Ewen, M E

    1997-01-01

    Cyclin D1 plays an important role in the development of breast cancer and is required for normal breast cell proliferation and differentiation associated with pregnancy. We show that ectopic expression of cyclin D1 can stimulate the transcriptional activity of the estrogen receptor in the absence of estradiol and that this activity can be inhibited by 4-hydroxytamoxifen and ICI 182,780. Cyclin D1 can form a specific complex with the estrogen receptor. Stimulation of the estrogen receptor by cyclin D1 is independent of cyclin-dependent kinase 4 activation. Cyclin D1 may manifest its oncogenic potential in breast cancer in part through binding to the estrogen receptor and activation of the transcriptional activity of the receptor. PMID:9271411

  3. Isolated HIV-1 core is active for reverse transcription.

    PubMed

    Warrilow, David; Stenzel, Deborah; Harrich, David

    2007-01-01

    Whether purified HIV-1 virion cores are capable of reverse transcription or require uncoating to be activated is currently controversial. To address this question we purified cores from a virus culture and tested for the ability to generate authentic reverse transcription products. A dense fraction (approximately 1.28 g/ml) prepared without detergent, possibly derived from disrupted virions, was found to naturally occur as a minor sub-fraction in our preparations. Core-like particles were identified in this active fraction by electron microscopy. We are the first to report the detection of authentic strong-stop, first-strand transfer and full-length minus strand products in this core fraction without requirement for an uncoating activity. PMID:17956635

  4. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis.

    PubMed

    Hai, T; Hartman, M G

    2001-07-25

    The mammalian ATF/CREB family of transcription factors represents a large group of basic region-leucine zipper (bZip) proteins which was originally defined in the late 1980s by their ability to bind to the consensus ATF/CRE site 'TGACGTCA'. Over the past decade, cDNA clones encoding identical or homologous proteins have been isolated by different laboratories and given different names. These proteins can be grouped into subgroups according to their amino acid similarity. In this review, we will briefly describe the classification of these proteins with a historical perspective of their nomenclature. We will then review three members of the ATF/CREB family of proteins: ATF3, ATF4 and ATF6. We will address four issues for each protein: (a) homologous proteins and alternative names, (b) dimer formation with other bZip proteins, (c) transcriptional activity, and (d) potential physiological functions. Although the name Activating Transcription Factor (ATF) implies that they are transcriptional activators, some of these proteins are transcriptional repressors. ATF3 homodimer is a transcriptional repressor and ATF4 has been reported to be either an activator or a repressor. We will review the reports on the transcriptional activities of ATF4, and propose potential explanations for the discrepancy. Although the physiological functions of these proteins are not well understood, some clues can be gained from studies with different approaches. When the data are available, we will address the following questions. (a) How is the expression (at the mRNA level or protein level) regulated? (b) How are the transcriptional activities regulated? (c) What are the interacting proteins (other than bZip partners)? (d) What are the consequences of ectopically expressing the gene (gain-of-function) or deleting the gene (loss-of-function)? Although answers to these questions are far from being complete, together they provide clues to the functions of these ATF proteins. Despite the

  5. “Co-transcriptionality” - the transcription elongation complex as a nexus for nuclear transactions

    PubMed Central

    Perales, Roberto; Bentley, David

    2009-01-01

    Much of the complex process of RNP biogenesis takes place at the gene, co-transcriptionally. The target for RNA binding and processing factors is therefore not a solitary RNA molecule, but a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized co-transcriptionally around the TEC scaffold. In addition DNA repair, covalent chromatin modification, “gene gating” at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a co-transcriptional component. From this perspective, TEC’s can be viewed as potent “community organizers” within the nucleus. PMID:19854129

  6. Transcriptional Activation of Human Matrix Metalloproteinase-9 Gene Expression by Multiple Coactivators

    PubMed Central

    Zhao, Xueyan; Benveniste, Etty N.

    2008-01-01

    Summary Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme for matrix proteins, chemokines and cytokines, is a major target in cancer and autoimmune diseases since it is aberrantly upregulated. To control MMP-9 expression in pathological conditions, it is necessary to understand the regulatory mechanisms of MMP-9 expression. MMP-9 gene expression is regulated primarily at the transcriptional level. In this study, we investigated the role of multiple coactivators in regulating MMP-9 transcription. We demonstrate that multiple transcriptional coactivators are involved in MMP-9 promoter activation, including CBP/p300, PCAF, CARM1 and GRIP1. Furthermore, enhancement of MMP-9 promoter activity requires the histone acetyltransferase activity of PCAF but not that of CBP/p300, and the methyltransferase activity of CARM1. More importantly, these coactivators are not only able to activate MMP-9 promoter activity independently, but also function in a synergistic manner. Significant synergy was observed among CARM1, p300 and GRIP1, which is dependent on the interaction of p300 and CARM1 with the AD1 and AD2 domains of GRIP1, respectively. This suggests the formation of a ternary coactivator complex on the MMP-9 promoter. Chromatin immunoprecipitation assays demonstrate that these coactivators associate with the endogenous MMP-9 promoter, and that siRNA knockdown of expression of these coactivators reduces endogenous MMP-9 expression. Taken together, these studies demonstrate a new level of transcriptional regulation of MMP-9 expression by the cooperative action of coactivators. PMID:18790699

  7. Potentiation of glucocorticoid receptor transcriptional activity by sumoylation.

    PubMed

    Le Drean, Yves; Mincheneau, Nathalie; Le Goff, Pascale; Michel, Denis

    2002-09-01

    The glucocorticoid receptor (GR) is a transcription factor, subject to several types of posttranslational modifications including phosphorylation and ubiquitination. We showed that the GR is covalently modified by the small ubiquitin-related modifier-1 (SUMO-1) peptide in mammalian cells. We demonstrated that GR sumoylation is not dependent on the presence of the ligand and regulates the stability of the protein as well as its transcriptional activity. SUMO-1 overexpression induces dramatic GR degradation, abolished by proteasome inhibition. We also found that SUMO-1 stimulates the transactivation capacity of GRs to an extent largely exceeding those observed so far for other sumoylated transcription factors. Overexpression of SUMO-1 specifically enhances the ligand-induced transactivation of GR up to 8-fold. However, this hyperactivation occurs only in the context of a synergy between multiple molecules of GRs. It requires more than one receptor DNA-binding site in promoter and becomes more prominent as the number of sites increases. Interestingly, these observations may be related to the transcriptional properties of the synergy control region of GRs, which precisely contains two evolutionary conserved sumoylation sites. We propose a model in which SUMO-1 regulates the synergy control function of GR and serves as a unique signal for activation and destruction. PMID:12193561

  8. SUMOylation can regulate the activity of ETS-like transcription factor 4.

    PubMed

    Kaikkonen, Sanna; Makkonen, Harri; Rytinki, Miia; Palvimo, Jorma J

    2010-08-01

    ETS-like transcription factor 4 (ELK4) (a.k.a. serum response factor accessory protein 1) belongs to the ternary complex factor (TCF) subfamily of E twenty-six (ETS) domain transcription factors. Compared to the other TCF subfamily members, ELK1 and ELK3 (NET), there is limited information of the mechanisms regulating the ELK4 activity. Here, we show that the ELK4 can be covalently modified (SUMOylated) by small ubiquitin-related modifier (SUMO) 1 protein, an important regulator of signaling and transcription. SUMOylation of ELK4 was reversed by SUMO-specific proteases (SENP) 1 and 2 and stimulated by SUMO E3 ligase PIAS3. Conserved lysine residue 167 that is located in the NET inhibitory domain of ELK4 was identified as the main site of SUMO-1 conjugation. Interestingly, mutation of the K167 disrupting the SUMOylation markedly enhanced the transcriptional activity of the ELK4, but weakened its repressive function on c-fos promoter. In conclusion, our results suggest that covalent modification by SUMO-1 can regulate the activity of ELK4, contributing to the transcriptional repression by the ELK4. PMID:20637912

  9. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease.

    PubMed

    Lackey, Lela; McArthur, Evonne; Laederach, Alain

    2015-01-01

    Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer's, Parkinson's and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer's, Parkinson's and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer's and Parkinson's disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently expressed in

  10. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Lackey, Lela; McArthur, Evonne; Laederach, Alain

    2015-01-01

    Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently

  11. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development

    PubMed Central

    Smaczniak, Cezary; Immink, Richard G. H.; Muiño, Jose M.; Blanvillain, Robert; Busscher, Marco; Busscher-Lange, Jacqueline; Dinh, Q. D. (Peter); Liu, Shujing; Westphal, Adrie H.; Boeren, Sjef; Parcy, François; Xu, Lin; Carles, Cristel C.; Angenent, Gerco C.; Kaufmann, Kerstin

    2012-01-01

    Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, and SEP3) interact in floral tissues as proposed in the “floral quartet” model. In vitro studies confirmed a flexible composition of MADS-domain protein complexes depending on relative protein concentrations and DNA sequence. In situ bimolecular fluorescent complementation assays demonstrate that MADS-domain proteins interact during meristematic stages of flower development. By applying a targeted proteomics approach we were able to establish a MADS-domain protein interactome that strongly supports a mechanistic link between MADS-domain proteins and chromatin remodeling factors. Furthermore, members of other transcription factor families were identified as interaction partners of floral MADS-domain proteins suggesting various specific combinatorial modes of action. PMID:22238427

  12. Stimulation of ribosomal RNA gene promoter by transcription factor Sp1 involves active DNA demethylation by Gadd45-NER pathway.

    PubMed

    Rajput, Pallavi; Pandey, Vijaya; Kumar, Vijay

    2016-08-01

    The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation. PMID:27156884

  13. The homeobox gene Mohawk represses transcription by recruiting the sin3A/HDAC co-repressor complex.

    PubMed

    Anderson, Douglas M; Beres, Brian J; Wilson-Rawls, Jeanne; Rawls, Alan

    2009-03-01

    Mohawk is an atypical homeobox gene expressed in embryonic progenitor cells of skeletal muscle, tendon, and cartilage. We demonstrate that Mohawk functions as a transcriptional repressor capable of blocking the myogenic conversion of 10T1/2 fibroblasts. The repressor activity is located in three small, evolutionarily conserved domains (MRD1-3) in the carboxy-terminal half of the protein. Point mutation analysis revealed six residues in MRD1 are sufficient for repressor function. The carboxy-terminal half of Mohawk is able to recruit components of the Sin3A/HDAC co-repressor complex (Sin3A, Hdac1, and Sap18) and a subset of Polymerase II general transcription factors (Tbp, TFIIA1 and TFIIB). Furthermore, Sap18, a protein that bridges the Sin3A/HDAC complex to DNA-bound transcription factors, is co-immunoprecipitated by MRD1. These data predict that Mohawk can repress transcription through recruitment of the Sin3A/HDAC co-repressor complex, and as a result, repress target genes required for the differentiation of cells to the myogenic lineage. PMID:19235719

  14. HMGA proteins as modulators of chromatin structure during transcriptional activation

    PubMed Central

    Ozturk, Nihan; Singh, Indrabahadur; Mehta, Aditi; Braun, Thomas; Barreto, Guillermo

    2013-01-01

    High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer. PMID:25364713

  15. Chromatin dynamics associated with HIV-1 Tat activated transcription

    PubMed Central

    Easley, Rebecca; Van Duyne, Rachel; Coley, Will; Guendel, Irene; Dadgar, Sherry; Kehn-Hall, Kylene; Kashanchi, Fatah

    2009-01-01

    Summary Chromatin remodeling is an essential event for HIV-1 transcription. Over the last two decades this field of research has come to the forefront, as silencing of the HIV-1 provirus through chromatin modifications has been linked to latency. Here, we focus on chromatin remodeling, especially in relation to the transactivator Tat, and review the most important and newly emerging studies that investigate remodeling mechanisms. We begin by discussing covalent modifications that can alter chromatin structure including acetylation, deacetylation, and methylation, as well as topics addressing the interplay between chromatin remodeling and splicing. Next, we focus on complexes that use the energy of ATP to remove or secure nucleosomes and can additionally act to control HIV-1 transcription. Finally, we cover recent literature on viral microRNAs which have been shown to alter chromatin structure by inducing methylation or even by remodeling nucleosomes. PMID:19716452

  16. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    PubMed Central

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation. PMID:23050242

  17. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  18. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes

    PubMed Central

    Raab, Jesse R.; Resnick, Samuel; Magnuson, Terry

    2015-01-01

    Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain) subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer. PMID:26716708

  19. Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes.

    PubMed

    Raab, Jesse R; Resnick, Samuel; Magnuson, Terry

    2015-12-01

    Multiple positions within the SWI/SNF chromatin remodeling complex can be filled by mutually exclusive subunits. Inclusion or exclusion of these proteins defines many unique forms of SWI/SNF and has profound functional consequences. Often this complex is studied as a single entity within a particular cell type and we understand little about the functional relationship between these biochemically distinct forms of the remodeling complex. Here we examine the functional relationships among three complex-specific ARID (AT-Rich Interacting Domain) subunits using genome-wide chromatin immunoprecipitation, transcriptome analysis, and transcription factor binding maps. We find widespread overlap in transcriptional regulation and the genomic binding of distinct SWI/SNF complexes. ARID1B and ARID2 participate in wide-spread cooperation to repress hundreds of genes. Additionally, we find numerous examples of competition between ARID1A and another ARID, and validate that gene expression changes following loss of one ARID are dependent on the function of an alternative ARID. These distinct regulatory modalities are correlated with differential occupancy by transcription factors. Together, these data suggest that distinct SWI/SNF complexes dictate gene-specific transcription through functional interactions between the different forms of the SWI/SNF complex and associated co-factors. Most genes regulated by SWI/SNF are controlled by multiple biochemically distinct forms of the complex, and the overall expression of a gene is the product of the interaction between these different SWI/SNF complexes. The three mutually exclusive ARID family members are among the most frequently mutated chromatin regulators in cancer, and understanding the functional interactions and their role in transcriptional regulation provides an important foundation to understand their role in cancer. PMID:26716708

  20. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5

    PubMed Central

    Nezich, Catherine L.; Wang, Chunxin; Fogel, Adam I.

    2015-01-01

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats–generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy. PMID:26240184

  1. Formation and fate of a complete 31-protein RNA polymerase II transcription preinitiation complex.

    PubMed

    Murakami, Kenji; Calero, Guillermo; Brown, Christopher R; Liu, Xin; Davis, Ralph E; Boeger, Hinrich; Kornberg, Roger D

    2013-03-01

    Whereas individual RNA polymerase II (pol II)-general transcription factor (GTF) complexes are unstable, an assembly of pol II with six GTFs and promoter DNA could be isolated in abundant homogeneous form. The resulting complete pol II transcription preinitiation complex (PIC) contained equimolar amounts of all 31 protein components. An intermediate in assembly, consisting of four GTFs and promoter DNA, could be isolated and supplemented with the remaining components for formation of the PIC. Nuclease digestion and psoralen cross-linking mapped the PIC between positions -70 and -9, centered on the TATA box. Addition of ATP to the PIC resulted in quantitative conversion to an open complex, which retained all 31 proteins, contrary to expectation from previous studies. Addition of the remaining NTPs resulted in run-off transcription, with an efficiency that was promoter-dependent and was as great as 17.5% with the promoters tested. PMID:23303183

  2. Activation of BPV-1 replication in vitro by the transcription factor E2

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Li, Rong; Mohr, Ian J.; Clark, Robin; Botchan, Michael R.

    1991-10-01

    Soluble extracts from uninfected murine cells supplemented with purified viral E1 and E2 proteins support the replication of exogenously added papilloma virus DNA. The E2 transactivator stimulates the binding of the E1 replication protein to the minimal origin of replication and activates DNA replication. These results support the concept that transcription factors have a direct role in the initiation of DNA replication in eukaryotes by participating in the assembly of a complex at the origin of replication.

  3. Dynamic Protein Associations Define Two Phases of IL-1β Transcriptional Activation

    PubMed Central

    Zhang, Yue; Saccani, Simona; Shin, Hyunjin; Nikolajczyk, Barbara S.

    2010-01-01

    IL-1β is a key proinflammatory cytokine with roles in multiple diseases. Monocytes package the IL-1β promoter into a “poised architecture” characterized by a histone-free transcription start site and constitutive transcription factor associations. Upon LPS stimulation, multiple proteins inducibly associate with the IL-1β gene. To understand how the complex combination of constitutive and inducible transcription factors activate the IL-1β gene from a poised structure, we measured temporal changes in NF-κB and IFN regulatory factor (IRF) association with IL-1β regulatory elements. Association of the p65 subunit of NF-κB peaks 30–60 min post-monocyte stimulation, and it shortly precedes IRF-4 recruitment to the IL-1β enhancer and maximal mRNA production. In contrast, IRF-8/enhancer association decreases poststimulation. To test the importance of delayed IRF-4/enhancer association, we introduced a mutated PU.1 protein shown to prevent PU.1-mediated IRF-4 recruitment to the enhancer sequence. Mutated PU.1 initially increased IL-1β mRNA followed by decreased mRNA levels 2–3 h poststimulation. Taken together, these data support a dynamic model of IL-1β transcriptional activation in which a combination of IRF-8 and p65 drives the initial phase of IL-1β transcription, while PU.1-mediated IRF-4 recruitment to the enhancer is important for the second phase. We further demonstrate that activation of both NF-κB and IRF-4 depends on CK2 kinase activity. Because IRF-4/enhancer association requires CK2 but not p65 activation, we conclude that CK2 triggers the IRF-4 and p65 pathways independently to serve as a master regulator of IL-1β transcription. PMID:18566416

  4. Transcriptional activation of the nitrogenase promoter in vitro: adenosine nucleotides are required for inhibition of NIFA activity by NIFL.

    PubMed

    Eydmann, T; Söderbäck, E; Jones, T; Hill, S; Austin, S; Dixon, R

    1995-03-01

    The enhancer-binding protein NIFA is required for transcriptional activation of nif promoters by the alternative holoenzyme form of RNA polymerase, which contains the sigma factor sigma 54 (sigma N). NIFA hydrolyzes nucleoside triphosphates to catalyze the isomerization of closed promoter complexes to transcriptionally competent open complexes. The activity of NIFA is antagonized by the regulatory protein NIFL in response to oxygen and fixed nitrogen in vivo. We have investigated the requirement for nucleotides in the formation and stability of open promoter complexes by NIFA and inhibition of its activity by NIFL at the Klebsiella pneumoniae nifH promoter. Open complexes formed by sigma 54-containing RNA polymerase are considerably more stable to heparin challenge in the presence of GTP than in the presence of ATP. This differential stability is most probably a consequence of GTP being the initiating nucleotide at this promoter. Adenosine nucleosides are specifically required for Azotobacter vinelandii NIFL to inhibit open complex formation by native NIFA, and the nucleoside triphosphatase activity of NIFA is strongly inhibited by NIFL under these conditions. We propose a model in which NIFL modulates the activity of NIFA via an adenosine nucleotide switch. PMID:7868590

  5. A transcription activator-like effector induction system mediated by proteolysis

    PubMed Central

    Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.

    2016-01-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666

  6. The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes

    PubMed Central

    Pascual-Ahuir, Amparo; Proft, Markus

    2007-01-01

    The yeast Sch9 kinase has been implicated in the cellular adjustment to nutrient availability and in the regulation of aging. Here, we define a novel role for Sch9 in the transcriptional activation of osmostress inducible genes. Loss-of-function mutants sch9 are sensitive to hyperosmotic stress and show an impaired transcriptional response upon osmotic shock of several defense genes. We show that Sch9 is required for gene expression regulated by Sko1, a transcription factor, which is directly targeted by the Hog1 MAP kinase. Sch9 interacts in vitro with both Sko1 and Hog1. Additionally, Sch9 phosphorylates Sko1 in vitro. When artificially tethered to promoter DNA, Sch9 strongly activates transcription independently of osmotic stress. Using in vivo chromatin immunoprecipitation, we demonstrate that Sch9 is recruited to the GRE2 and CTT1 genes exclusively under osmostress conditions, and that this recruitment is dependent on Hog1 and Sko1. Furthermore, Sch9 is required for the proper recruitment of Hog1 at the same genes. Our data reveal the complexity of stress-induced transcription by the regulated association of signaling kinases to chromatin. PMID:17568771

  7. The Positive Transcription Elongation Factor b Is an Essential Cofactor for the Activation of Transcription by Myocyte Enhancer Factor 2

    PubMed Central

    Nojima, Masanori; Huang, Yehong; Tyagi, Mudit; Kao, Hung-Ying; Fujinaga, Koh

    2014-01-01

    The positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1, stimulates the elongation of transcription by hyperphosphorylating the C-terminal region of RNA polymerase II. Aberrant activation of P-TEFb results in manifestations of cardiac hypertrophy in mice, suggesting that P-TEFb is an essential factor for cardiac myocyte function and development. Here, we present evidence that P-TEFb selectively activates transcription mediated by the myocyte enhancer factor 2 (MEF2) family of transcription factors, key regulatory factors for myocyte development. Knockdown of endogenous cyclin T1 in murine C2C12 cells abolishes MEF2-dependent reporter gene expression as well as transcription of endogenous MEF2 target genes, whereas overexpression of P-TEFb enhances MEF2-dependent transcription. P-TEFb interacts with MEF2 both in vitro and in vivo. Activation of MEF2-dependent transcription induced by serum starvation is mediated by a rapid dissociation of P-TEFb from its inhibitory subunit, HEXIM1, and a subsequent recruitment of P-TEFb to MEF2 binding sites in the promoter region of MEF2 target genes. These results indicate that recruitment of P-TEFb is a critical step for stimulation of MEF2-dependent transcription, therefore providing a fundamentally important regulatory mechanism underlying the transcriptional program in muscle cells. PMID:18662700

  8. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  9. ADR1-Mediated Transcriptional Activation Requires the Presence of an Intact TFIID Complex†

    PubMed Central

    Komarnitsky, Philip B.; Klebanow, Edward R.; Weil, P. Anthony; Denis, Clyde L.

    1998-01-01

    The yeast transcriptional activator ADR1, which is required for ADH2 and other genes’ expression, contains four transactivation domains (TADs). While previous studies have shown that these TADs act through GCN5 and ADA2, and presumably TFIIB, other factors are likely to be involved in ADR1 function. In this study, we addressed the question of whether TFIID is also required for ADR1 action. In vitro binding studies indicated that TADI of ADR1 was able to retain TAFII90 from yeast extracts and TADII could retain TBP and TAFII130/145. TADIV, however, was capable of retaining multiple TAFIIs, suggesting that TADIV was binding TFIID from yeast whole-cell extracts. The ability of TADIV truncation derivatives to interact with TFIID correlated with their transcription activation potential in vivo. In addition, the ability of LexA-ADR1-TADIV to activate transcription in vivo was compromised by a mutation in TAFII130/145. ADR1 was found to associate in vivo with TFIID in that immunoprecipitation of either TAFII90 or TBP from yeast whole-cell extracts specifically coimmunoprecipitated ADR1. Most importantly, depletion of TAFII90 from yeast cells dramatically reduced ADH2 derepression. These results indicate that ADR1 physically associates with TFIID and that its ability to activate transcription requires an intact TFIID complex. PMID:9742103

  10. Different functional modes of p300 in activation of RNA polymerase III transcription from chromatin templates.

    PubMed

    Mertens, Claudia; Roeder, Robert G

    2008-09-01

    Transcriptional coactivators that regulate the activity of human RNA polymerase III (Pol III) in the context of chromatin have not been reported. Here, we describe a completely defined in vitro system for transcription of a human tRNA gene assembled into a chromatin template. Transcriptional activation and histone acetylation in this system depend on recruitment of p300 by general initiation factor TFIIIC, thus providing a new paradigm for recruitment of histone-modifying coactivators. Beyond its role as a chromatin-modifying factor, p300 displays an acetyltransferase-independent function at the level of preinitiation complex assembly. Thus, direct interaction of p300 with TFIIIC stabilizes binding of TFIIIC to core promoter elements and results in enhanced transcriptional activity on histone-free templates. Additional studies show that p300 is recruited to the promoters of actively transcribed tRNA and U6 snRNA genes in vivo. These studies identify TFIIIC as a recruitment factor for p300 and thus may have important implications for the emerging concept that tRNA genes or TFIIIC binding sites act as chromatin barriers to prohibit spreading of silenced heterochromatin domains. PMID:18644873

  11. Different Functional Modes of p300 in Activation of RNA Polymerase III Transcription from Chromatin Templates▿

    PubMed Central

    Mertens, Claudia; Roeder, Robert G.

    2008-01-01

    Transcriptional coactivators that regulate the activity of human RNA polymerase III (Pol III) in the context of chromatin have not been reported. Here, we describe a completely defined in vitro system for transcription of a human tRNA gene assembled into a chromatin template. Transcriptional activation and histone acetylation in this system depend on recruitment of p300 by general initiation factor TFIIIC, thus providing a new paradigm for recruitment of histone-modifying coactivators. Beyond its role as a chromatin-modifying factor, p300 displays an acetyltransferase-independent function at the level of preinitiation complex assembly. Thus, direct interaction of p300 with TFIIIC stabilizes binding of TFIIIC to core promoter elements and results in enhanced transcriptional activity on histone-free templates. Additional studies show that p300 is recruited to the promoters of actively transcribed tRNA and U6 snRNA genes in vivo. These studies identify TFIIIC as a recruitment factor for p300 and thus may have important implications for the emerging concept that tRNA genes or TFIIIC binding sites act as chromatin barriers to prohibit spreading of silenced heterochromatin domains. PMID:18644873

  12. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes.

    PubMed

    Gamper, H B; Hearst, J E

    1982-05-01

    DNA unwinding induced by Escherichia coli RNA polymerase is measured for binary, initiation and ternary complexes formed from a unique promoter sequence on simian virus 40 DNA. At 37 degrees C the complexes all have an unwinding angle of 17 +/- 1 base pairs (580 degrees +/- 30 degrees). This unwinding is attributed to an enzyme-stabilized separation of the double helix at the promoter site, which is maintained throughout initiation and elongation. There is no heterogeneity in the unwinding angle of the ternary complex as it progresses down the helical template. The constant DNA unwinding during all phases of transcription leads us to propose the existence of unwindase and rewindase activities on the enzyme that allow it to travel down the helix like a nut on a DNA bolt. During elongation, the unwindase unwinds the DNA helix while the rewindase, lagging by 17 base pairs, displaces the RNA transcript and reseals the helix. Both activities induce a rotation in the DNA double helix relative to the polymerase. The RNA-DNA hybrid also rotates, maintaining both ends of that helix fixed relative to the catalytic and windase sites. Formation of an RNA-DNA hybrid which spans the distal end of the DNA unwound region is proposed as a possible mechanism for polymerase pausing and termination. This model requires that the polymerase direct the transcript past the noncoding DNA strand. Pausing occurs 16-20 nucleotides downstream from the centers of appropriately sized dyad symmetry elements. PMID:6286146

  13. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters

    PubMed Central

    Marinello, Jessica; Bertoncini, Stefania; Aloisi, Iris; Cristini, Agnese; Malagoli Tagliazucchi, Guidantonio; Forcato, Mattia; Sordet, Olivier; Capranico, Giovanni

    2016-01-01

    Topoisomerase I-DNA-cleavage complexes (Top1cc) stabilized by camptothecin (CPT) have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs) levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop) in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5’-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning. PMID:26784695

  14. p53 represses the transcription of snRNA genes by preventing the formation of little elongation complex.

    PubMed

    Anwar, Delnur; Takahashi, Hidehisa; Watanabe, Masashi; Suzuki, Masanobu; Fukuda, Satoshi; Hatakeyama, Shigetsugu

    2016-08-01

    The regulation of transcription by RNA polymerase II (Pol II) is important for a variety of cellular functions. ELL/EAF-containing little elongation complex (LEC) was found to be required for transcription of Pol II-dependent small nuclear RNA (snRNA) genes. It was shown that the tumor suppressor p53 interacts with ELL and inhibits transcription elongation activity of ELL. Here, we show that p53 inhibits interaction between ELL/EAF and ICE1 in LEC and thereby p53 represses transcription of Pol II-dependent snRNA genes through inhibiting LEC function. Furthermore, induction of p53 expression by ultraviolet (UV) irradiation decreases the occupancy of ICE1 at Pol II-dependent snRNA genes. Consistent with the results, knockdown of p53 increased both the expression of snRNA genes and the occupancy of Pol II and components of LEC at snRNA genes. Our results indicate that p53 interferes with the interaction between ELL/EAF and ICE1 and represses transcription of snRNA genes by Pol II. PMID:27268141

  15. A new type of NtrC transcriptional activator.

    PubMed Central

    Foster-Hartnett, D; Cullen, P J; Monika, E M; Kranz, R G

    1994-01-01

    The enteric NtrC (NRI) protein has been the paradigm for a class of bacterial enhancer-binding proteins (EBPs) that activate transcription of RNA polymerase containing the sigma 54 factor. Activators in the NtrC class are characterized by essentially three properties: (i) they bind to sites distant from the promoters that they activate (> 100 bp upstream of the transcriptional start site), (ii) they contain a conserved nucleotide-binding fold and exhibit ATPase activity that is required for activation, and (iii) they activate the sigma 54 RNA polymerase. We have characterized the NtrC protein from a photosynthetic bacterium, Rhodobacter capsulatus, which represents a metabolically versatile group of bacteria found in aquatic environments. We have shown that the R. capsulatus NtrC protein (RcNtrC) binds to two tandem sites that are distant from promoters that it activates, nifA1 and nifA2. These tandem binding sites are shown to be important for RcNtrC-dependent nitrogen regulation in vivo. Moreover, the conserved nucleotide-binding fold of RcNtrC is required to activate nifA1 and nifA2 but is not required for DNA binding of RcNtrC to upstream activation sequences. However, nifA1 and nifA2 genes do not require the sigma 54 for activation and do not contain the highly conserved nucleotides that are present in all sigma 54-type, EBP-activated promoters. Thus, the NtrC from this photosynthetic bacterium represents a novel member of the class of bacterial EBPs. It is probable that this class of EBPs is more versatile in prokaryotes than previously envisioned. Images PMID:7928986

  16. Promoter occlusion: transcription through a promoter may inhibit its activity.

    PubMed

    Adhya, S; Gottesman, M

    1982-07-01

    Induction of prophage lambda inhibits the expression of the gal operon from its cognate promoters. The effect is observed only in cis, and is due to frequent transcription of the gal promoter region by RNA polymerase molecules initiating upstream at the prophage PL promoter. The frequency of transcription initiation at PL is some 30 times greater than that at the gal promoter, Pg1. PL is one of the strongest procaryotic promoters. This "promoter occlusion" is essentially complete when the distance between gal and PL is small (less than or equal to 10 kb); and when PL is fully active (that is, in the absence of the cl or cro repressors). We discuss the possibility that promoter occlusion at two lambda promoters, Pint and PR', might play a role in the sequential expression of viral functions. PMID:6217898

  17. Different STAT transcription complexes drive early and delayed responses to type I Interferons

    PubMed Central

    Plumlee, Courtney R.; Perry, Stuart; Gu, Ai Di; Lee, Carolyn; Shresta, Sujan; Decker, Thomas; Schindler, Christian

    2015-01-01

    Interferons, which transduce pivotal signals through signal transducer and activator of transcription (Stat)1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Whereas the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-α/β unexpectedly suppresses L. pneumophila growth in both Stat1 and Stat2 deficient macrophages. New studies demonstrating that the robust response to IFN-α/β is lost in Stat1-Stat2 double knockout macrophages, suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response towards L. pneumophila. Since the ability of IFN-α/β to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-α/β in the absence of Stat1. These studies reveal that IFN-α/β is able to drive the formation of a Stat2 and IRF9 complex that drives the expression of a subset of IFN stimulated genes (ISGs), but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1 dependent responses. PMID:26019270

  18. CBFA2T3-ZNF652 corepressor complex regulates transcription of the E-box gene HEB.

    PubMed

    Kumar, Raman; Cheney, Kelly M; McKirdy, Ross; Neilsen, Paul M; Schulz, Renèe B; Lee, Jaclyn; Cohen, Juliane; Booker, Grant W; Callen, David F

    2008-07-01

    Transcriptional repression plays a critical role in development and homeostasis. The ETO family represents a group of highly conserved and ubiquitously expressed transcriptional regulatory proteins that are components of a diverse range of multiprotein repressor complexes. ETO proteins function as transcriptional repressors by interacting with a number of transcription factors that bind to their cognate consensus DNA binding sequences within the promoters of target genes. We previously reported that the classical C(2)H(2) zinc finger DNA-binding protein, ZNF652, specifically and functionally interacts with the ETO protein CBFA2T3 and has a role in the suppression of breast oncogenesis. Here we report the identification and validation of the ZNF652 consensus DNA binding sequence. Our results show that the E-box gene HEB is a direct target of CBFA2T3-ZNF652-mediated transcriptional repression. The CBFA2T3-ZNF652 complex regulates HEB expression by binding to a single ZNF652 response element located within the promoter sequence of HEB. This study also shows that the NHR3 and NHR4 domains of CBFA2T3 interact with a conserved proline-rich region located within the C terminus of ZNF652. Our results, together with previous reports, indicate that HEB has a complex relationship with CBFA2T3; CBFA2T3 interacts with ZNF652 to repress HEB expression, and in addition CBFA2T3 interacts with the HEB protein to inhibit its activator function. These findings suggest that CBFA2T3-ZNF652-mediated HEB regulation may play an important role in hematopoiesis and myogenesis. PMID:18456661

  19. The mechanism of transcriptional activation by the topologically DNA-linked sliding clamp of bacteriophage T4.

    PubMed

    Kolesky, Scott E; Ouhammouch, Mohamed; Geiduschek, E Peter

    2002-08-30

    Three viral proteins participate directly in transcription of bacteriophage T4 late genes: the sigma-family protein gp55 provides promoter recognition, gp33 is the co-activator, and gp45 is the activator of transcription; gp33 also represses transcription in the absence of gp45. Transcriptional activation by gp45, the toroidal sliding clamp of the T4 DNA polymerase holoenzyme, requires assembly at primer-template junctions by its clamp loader. The mechanism of transcriptional activation has been analyzed by examining rates of formation of open promoter complexes. The basal gp55-RNA polymerase holoenzyme is only weakly held in its initially formed closed promoter complex, which subsequently opens very slowly. Activation ( approximately 320-fold in this work) increases affinity in the closed complex and accelerates promoter opening. Promoter opening by gp55 is also thermo-irreversible: the T4 late promoter does not open at 0 degrees C, but once opened at 30 degrees C remains open upon shift to the lower temperature. At a hybrid promoter for sigma(70) and gp55-holoenzymes, only gp55 confers thermo-irreversibility of promoter opening. Interaction of gp45 with a C-terminal epitope of gp33 is essential for the co-activator function of gp33. PMID:12206760

  20. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    PubMed

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles. PMID:27050271

  1. Ldb1 complexes: the new master regulators of erythroid gene transcription.

    PubMed

    Love, Paul E; Warzecha, Claude; Li, LiQi

    2014-01-01

    Elucidation of the genetic pathways that control red blood cell development has been a central goal of erythropoiesis research over the past decade. Notably, data from several recent studies have provided new insights into the regulation of erythroid gene transcription. Transcription profiling demonstrates that erythropoiesis is mainly controlled by a small group of lineage-restricted transcription factors [Gata binding protein 1 (Gata1), T cell acute lymphocytic leukemia 1 protein (Tal1), and Erythroid Kruppel-like factor (EKLF; henceforth referred to as Klf1)]. Binding-site mapping using ChIP-Seq indicates that most DNA-bound Gata1 and Tal1 proteins are contained within higher order complexes (Ldb1 complexes) that include the nuclear adapters Ldb1 and Lmo2. Ldb1 complexes regulate Klf1, and Ldb1 complex-binding sites frequently colocalize with Klf1 at erythroid genes and cis-regulatory elements, indicating strong functional synergy between Gata1, Tal1, and Klf1. Together with new data demonstrating that Ldb1 can mediate long-range promoter-enhancer interactions, these findings provide a foundation for the first comprehensive models of the global regulation of erythroid gene transcription. PMID:24290192

  2. The Integrator complex controls the termination of transcription at diverse classes of gene targets

    PubMed Central

    Skaar, Jeffrey R; Ferris, Andrea L; Wu, Xiaolin; Saraf, Anita; Khanna, Kum Kum; Florens, Laurence; Washburn, Michael P; Hughes, Stephen H; Pagano, Michele

    2015-01-01

    Complexes containing INTS3 and either NABP1 or NABP2 were initially characterized in DNA damage responses, but their biochemical function remained unknown. Using affinity purifications and HIV Integration targeting-sequencing (HIT-Seq), we find that these complexes are part of the Integrator complex, which binds RNA Polymerase II and regulates specific target genes. Integrator cleaves snRNAs as part of their processing to their mature form in a mechanism that is intimately coupled with transcription termination. However, HIT-Seq reveals that Integrator also binds to the 3′ end of replication-dependent histones and promoter proximal regions of genes with polyadenylated transcripts. Depletion of Integrator subunits results in transcription termination failure, disruption of histone mRNA processing, and polyadenylation of snRNAs and histone mRNAs. Furthermore, promoter proximal binding of Integrator negatively regulates expression of genes whose transcripts are normally polyadenylated. Integrator recruitment to all three gene classes is DSIF-dependent, suggesting that Integrator functions as a termination complex at DSIF-dependent RNA Polymerase II pause sites. PMID:25675981

  3. The Interaction Surface of a Bacterial Transcription Elongation Factor Required for Complex Formation with an Antiterminator during Transcription Antitermination*

    PubMed Central

    Mishra, Saurabh; Mohan, Shalini; Godavarthi, Sapna; Sen, Ranjan

    2013-01-01

    The bacterial transcription elongation factor, NusA, functions as an antiterminator when it is bound to the lambdoid phage derived antiterminator protein, N. The mode of N-NusA interaction is unknown, knowledge of which is essential to understand the antitermination process. It was reported earlier that in the absence of the transcription elongation complex (EC), N interacts with the C-terminal AR1 domain of NusA. However, the functional significance of this interaction is obscure. Here we identified mutations in NusA N terminus (NTD) specifically defective for N-mediated antitermination. These are located at a convex surface of the NusA-NTD, situated opposite its concave RNA polymerase (RNAP) binding surface. These NusA mutants disrupt the N-nut site interactions on the nascent RNA emerging out of a stalled EC. In the N/NusA-modified EC, a Cys-53 (S53C) from the convex surface of the NusA-NTD forms a specific disulfide (S-S) bridge with a Cys-39 (S39C) of the NusA binding region of the N protein. We conclude that when bound to the EC, the N interaction surface of NusA shifts from the AR1 domain to its NTD domain. This occurred due to a massive away-movement of the adjacent AR2 domain of NusA upon binding to the EC. We propose that the close proximity of this altered N-interaction site of NusA to its RNAP binding surface, enables N to influence the NusA-RNAP interaction during transcription antitermination that in turn facilitates the conversion of NusA into an antiterminator. PMID:23913688

  4. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  5. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  6. Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish

    PubMed Central

    Halpern, Marnie E.

    2011-01-01

    Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds. PMID:21540282

  7. Clinical application of transcriptional activators of bile salt transporters☆

    PubMed Central

    Baghdasaryan, Anna; Chiba, Peter; Trauner, Michael

    2014-01-01

    Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na+-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis. PMID:24333169

  8. Regulating the regulators: modulators of transcription factor activity.

    PubMed

    Everett, Logan; Hansen, Matthew; Hannenhalli, Sridhar

    2010-01-01

    Gene transcription is largely regulated by DNA-binding transcription factors (TFs). However, the TF activity itself is modulated via, among other things, post-translational modifications (PTMs) by specific modification enzymes in response to cellular stimuli. TF-PTMs thus serve as "molecular switchboards" that map upstream signaling events to the downstream transcriptional events. An important long-term goal is to obtain a genome-wide map of "regulatory triplets" consisting of a TF, target gene, and a modulator gene that specifically modulates the regulation of the target gene by the TF. A variety of genome-wide data sets can be exploited by computational methods to obtain a rough map of regulatory triplets, which can guide directed experiments. However, a prerequisite to developing such computational tools is a systematic catalog of known instances of regulatory triplets. We first describe PTM-Switchboard, a recent database that stores triplets of genes such that the ability of one gene (the TF) to regulate a target gene is dependent on one or more PTMs catalyzed by a third gene, the modifying enzyme. We also review current computational approaches to infer regulatory triplets from genome-wide data sets and conclude with a discussion of potential future research. PTM-Switchboard is accessible at http://cagr.pcbi.upenn.edu/PTMswitchboard / PMID:20827600

  9. Discovery Proteomics Identifies a Molecular Link between the Coatomer Protein Complex I and Androgen Receptor-dependent Transcription*

    PubMed Central

    Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.

    2016-01-01

    Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR

  10. Protein kinase A activation enhances β-catenin transcriptional activity through nuclear localization to PML bodies.

    PubMed

    Zhang, Mei; Mahoney, Emilia; Zuo, Tao; Manchanda, Parmeet K; Davuluri, Ramana V; Kirschner, Lawrence S

    2014-01-01

    The Protein Kinase A (PKA) and Wnt signaling cascades are fundamental pathways involved in cellular development and maintenance. In the osteoblast lineage, these pathways have been demonstrated functionally to be essential for the production of mineralized bone. Evidence for PKA-Wnt crosstalk has been reported both during tumorigenesis and during organogenesis, and the nature of the interaction is thought to rely on tissue and cell context. In this manuscript, we analyzed bone tumors arising from mice with activated PKA caused by mutation of the PKA regulatory subunit Prkar1a. In primary cells from these tumors, we observed relocalization of β-catenin to intranuclear punctuate structures, which were identified as PML bodies. Cellular redistribution of β-catenin could be recapitulated by pharmacologic activation of PKA. Using 3T3-E1 pre-osteoblasts as a model system, we found that PKA phosphorylation sites on β-catenin were required for nuclear re-localization. Further, β-catenin's transport to the nucleus was accompanied by an increase in canonical Wnt-dependent transcription, which also required the PKA sites. PKA-Wnt crosstalk in the cells was bi-directional, including enhanced interactions between β-catenin and the cAMP-responsive element binding protein (CREB) and transcriptional crosstalk between the Wnt and PKA signaling pathways. Increases in canonical Wnt/β-catenin signaling were associated with a decrease in the activity of the non-canonical Wnt/Ror2 pathway, which has been shown to antagonize canonical Wnt signaling. Taken together, this study provides a new understanding of the complex regulation of the subcellular distribution of β-catenin and its differential protein-protein interaction that can be modulated by PKA signaling. PMID:25299576

  11. RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts.

    PubMed

    Xiol, Jordi; Spinelli, Pietro; Laussmann, Maike A; Homolka, David; Yang, Zhaolin; Cora, Elisa; Couté, Yohann; Conn, Simon; Kadlec, Jan; Sachidanandam, Ravi; Kaksonen, Marko; Cusack, Stephen; Ephrussi, Anne; Pillai, Ramesh S

    2014-06-19

    Germline-specific Piwi-interacting RNAs (piRNAs) protect animal genomes against transposons and are essential for fertility. piRNAs targeting active transposons are amplified by the ping-pong cycle, which couples Piwi endonucleolytic slicing of target RNAs to biogenesis of new piRNAs. Here, we describe the identification of a transient Amplifier complex that mediates biogenesis of secondary piRNAs in insect cells. Amplifier is nucleated by the DEAD box RNA helicase Vasa and contains the two Piwi proteins participating in the ping-pong loop, the Tudor protein Qin/Kumo and antisense piRNA guides. These components assemble on the surface of Vasa's helicase domain, which functions as an RNA clamp to anchor Amplifier onto transposon transcripts. We show that ATP-dependent RNP remodeling by Vasa facilitates transfer of 5' sliced piRNA precursors between ping-pong partners, and loss of this activity causes sterility in Drosophila. Our results reveal the molecular basis for the small RNA amplification that confers adaptive immunity against transposons. PMID:24910301

  12. Polycomb Repressive Complex 2-Dependent and -Independent Functions of Jarid2 in Transcriptional Regulation in Drosophila

    PubMed Central

    Herz, Hans-Martin; Mohan, Man; Garrett, Alexander S.; Miller, Caitlynn; Casto, David; Zhang, Ying; Seidel, Christopher; Haug, Jeffrey S.; Florens, Laurence; Washburn, Michael P.; Yamaguchi, Masamitsu; Shiekhattar, Ramin

    2012-01-01

    Jarid2 was recently identified as an important component of the mammalian Polycomb repressive complex 2 (PRC2), where it has a major effect on PRC2 recruitment in mouse embryonic stem cells. Although Jarid2 is conserved in Drosophila, it has not previously been implicated in Polycomb (Pc) regulation. Therefore, we purified Drosophila Jarid2 and its associated proteins and found that Jarid2 associates with all of the known canonical PRC2 components, demonstrating a conserved physical interaction with PRC2 in flies and mammals. Furthermore, in vivo studies with Jarid2 mutants in flies demonstrate that among several histone modifications tested, only methylation of histone 3 at K27 (H3K27), the mark implemented by PRC2, was affected. Genome-wide profiling of Jarid2, Su(z)12 (Suppressor of zeste 12), and H3K27me3 occupancy by chromatin immunoprecipitation with sequencing (ChIP-seq) indicates that Jarid2 and Su(z)12 have very similar distribution patterns on chromatin. However, Jarid2 and Su(z)12 occupancy levels at some genes are significantly different, with Jarid2 being present at relatively low levels at many Pc response elements (PREs) of certain Homeobox (Hox) genes, providing a rationale for why Jarid2 was never identified in Pc screens. Gene expression analyses show that Jarid2 and E(z) (Enhancer of zeste, a canonical PRC2 component) are not only required for transcriptional repression but might also function in active transcription. Identification of Jarid2 as a conserved PRC2 interactor in flies provides an opportunity to begin to probe some of its novel functions in Drosophila development. PMID:22354997

  13. P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig.

    PubMed

    Oqani, Reza K; Lin, Tao; Lee, Jae Eun; Choi, Ki Myung; Shin, Hyun Young; Jin, Dong Il

    2016-01-01

    Positive transcription elongation factor b (P-TEFb) is a RNA polymerase II carboxyl-terminal domain (Pol II CTD) kinase that phosphorylates Ser2 of the CTD and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in mammalian early developmental events. In this study, using immunocytochemical analyses, we found that the P-TEFb components, CDK9, Cyclin T1 and Cyclin T2 were localized to nuclear speckles, as well as in nucleolar-like bodies in pig germinal vesicle oocytes. Using nascent RNA labeling and small molecule inhibitors, we showed that inhibition of CDK9 activity abolished the transcription of GV oocytes globally. Moreover, using fluorescence in situ hybridization, in absence of CDK9 kinase activity the production of ribosomal RNAs was impaired. We also presented the evidences indicating that P-TEFb kinase activity is essential for resumption of oocyte meiosis and embryo development. Treatment with CDK9 inhibitors resulted in germinal vesicle arrest in maturing oocytes in vitro. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when in vitro produced zygotes were treated with CDK9 inhibitors, their development beyond the 4-cell stage was impaired. In these embryos, inhibition of CDK9 abrogated global transcriptional activity and rRNA production. Collectively, our data suggested that P-TEFb kinase activity is crucial for oocyte maturation, embryo development and regulation of RNA transcription in pig. PMID:27011207

  14. P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig

    PubMed Central

    Oqani, Reza K.; Lin, Tao; Lee, Jae Eun; Choi, Ki Myung; Shin, Hyun Young; Jin, Dong Il

    2016-01-01

    Positive transcription elongation factor b (P-TEFb) is a RNA polymerase II carboxyl-terminal domain (Pol II CTD) kinase that phosphorylates Ser2 of the CTD and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in mammalian early developmental events. In this study, using immunocytochemical analyses, we found that the P-TEFb components, CDK9, Cyclin T1 and Cyclin T2 were localized to nuclear speckles, as well as in nucleolar-like bodies in pig germinal vesicle oocytes. Using nascent RNA labeling and small molecule inhibitors, we showed that inhibition of CDK9 activity abolished the transcription of GV oocytes globally. Moreover, using fluorescence in situ hybridization, in absence of CDK9 kinase activity the production of ribosomal RNAs was impaired. We also presented the evidences indicating that P-TEFb kinase activity is essential for resumption of oocyte meiosis and embryo development. Treatment with CDK9 inhibitors resulted in germinal vesicle arrest in maturing oocytes in vitro. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when in vitro produced zygotes were treated with CDK9 inhibitors, their development beyond the 4-cell stage was impaired. In these embryos, inhibition of CDK9 abrogated global transcriptional activity and rRNA production. Collectively, our data suggested that P-TEFb kinase activity is crucial for oocyte maturation, embryo development and regulation of RNA transcription in pig. PMID:27011207

  15. Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1

    PubMed Central

    Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.

    2014-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783

  16. The RNA binding complexes NF45-NF90 and NF45-NF110 associate dynamically with the c-fos gene and function as transcriptional coactivators.

    PubMed

    Nakadai, Tomoyoshi; Fukuda, Aya; Shimada, Miho; Nishimura, Ken; Hisatake, Koji

    2015-10-30

    The c-fos gene is rapidly induced to high levels by various extracellular stimuli. We used a defined in vitro transcription system that utilizes the c-fos promoter to purify a coactivator activity in an unbiased manner. We report here that NF45-NF90 and NF45-NF110, which possess archetypical double-stranded RNA binding motifs, have a direct function as transcriptional coactivators. The transcriptional activities of the nuclear factor (NF) complexes (NF45-NF90 and NF45-NF110) are mediated by both the upstream enhancer and core promoter regions of the c-fos gene and do not require their double-stranded RNA binding activities. The NF complexes cooperate with general coactivators, PC4 and Mediator, to elicit a high level of transcription and display multiple interactions with activators and the components of the general transcriptional machinery. Knockdown of the endogenous NF90/NF110 in mouse cells shows an important role for the NF complexes in inducing c-fos transcription. Chromatin immunoprecipitation assays demonstrate that the NF complexes occupy the c-fos enhancer/promoter region before and after serum induction and that their occupancies within the coding region of the c-fos gene increase in parallel to that of RNAPII upon serum induction. In light of their dynamic occupancy on the c-fos gene as well as direct functions in both transcription and posttranscriptional processes, the NF complexes appear to serve as multifunctional coactivators that coordinate different steps of gene expression to facilitate rapid response of inducible genes. PMID:26381409

  17. Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Drosophila Genome

    PubMed Central

    Miura, Kota; Luscombe, Nicholas M.; Akhtar, Asifa

    2010-01-01

    Transcriptional regulation is one of the most important processes for modulating gene expression. Though much of this control is attributed to transcription factors, histones, and associated enzymes, it is increasingly apparent that the spatial organization of chromosomes within the nucleus has a profound effect on transcriptional activity. Studies in yeast indicate that the nuclear pore complex might promote transcription by recruiting chromatin to the nuclear periphery. In higher eukaryotes, however, it is not known whether such regulation has global significance. Here we establish nucleoporins as a major class of global regulators for gene expression in Drosophila melanogaster. Using chromatin-immunoprecipitation combined with microarray hybridisation, we show that Nup153 and Megator (Mtor) bind to 25% of the genome in continuous domains extending 10 kb to 500 kb. These Nucleoporin-Associated Regions (NARs) are dominated by markers for active transcription, including high RNA polymerase II occupancy and histone H4K16 acetylation. RNAi–mediated knock-down of Nup153 alters the expression of ∼5,700 genes, with a pronounced down-regulatory effect within NARs. We find that nucleoporins play a central role in coordinating dosage compensation—an organism-wide process involving the doubling of expression of the male X chromosome. NARs are enriched on the male X chromosome and occupy 75% of this chromosome. Furthermore, Nup153-depletion abolishes the normal function of the male-specific dosage compensation complex. Finally, by extensive 3D imaging, we demonstrate that NARs contribute to gene expression control irrespective of their sub-nuclear localization. Therefore, we suggest that NAR–binding is used for chromosomal organization that enables gene expression control. PMID:20174442

  18. Development of Transcriptional Fusions to Assess Leptospira interrogans Promoter Activity

    PubMed Central

    Cerqueira, Gustavo M.; Souza, Natalie M.; Araújo, Eduardo R.; Barros, Aline T.; Morais, Zenaide M.; Vasconcellos, Sílvio A.; Nascimento, Ana L. T. O.

    2011-01-01

    Background Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field. Methodology and Principal Findings A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP) were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA) and Sphingomielynase 2 (sph2) promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain. Conclusions The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa. PMID:21445252

  19. Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4.

    PubMed

    Garaeva, Alisa A; Kovaleva, Irina E; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-01-01

    We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments. PMID:26771712

  20. Direct interaction between nucleosome assembly protein 1 and the papillomavirus E2 proteins involved in activation of transcription.

    PubMed

    Rehtanz, Manuela; Schmidt, Hanns-Martin; Warthorst, Ursula; Steger, Gertrud

    2004-03-01

    Using a yeast two-hybrid screen, we identified human nucleosome assembly protein 1 (hNAP-1) as a protein interacting with the activation domain of the transcriptional activator encoded by papillomaviruses (PVs), the E2 protein. We show that the interaction between E2 and hNAP-1 is direct and not merely mediated by the transcriptional coactivator p300, which is bound by both proteins. Coexpression of hNAP-1 strongly enhances activation by E2, indicating a functional interaction as well. E2 binds to at least two separate domains within hNAP-1, one within the C terminus and an internal domain. The binding of E2 to hNAP-1 is necessary for cooperativity between the factors. Moreover, the N-terminal 91 amino acids are crucial for the transcriptional activity of hNAP-1, since deletion mutants lacking this N-terminal portion fail to cooperate with E2. We provide evidence that hNAP-1, E2, and p300 can form a ternary complex efficient in the activation of transcription. We also show that p53 directly interacts with hNAP-1, indicating that transcriptional activators in addition to PV E2 interact with hNAP-1. These results suggest that the binding of sequence-specific DNA binding proteins to hNAP-1 may be an important step contributing to the activation of transcription. PMID:14966293

  1. Protein Kinase A and Mitogen-Activated Protein Kinase Pathways Antagonistically Regulate Fission Yeast fbp1 Transcription by Employing Different Modes of Action at Two Upstream Activation Sites

    PubMed Central

    Neely, Lori A.; Hoffman, Charles S.

    2000-01-01

    A significant challenge to our understanding of eukaryotic transcriptional regulation is to determine how multiple signal transduction pathways converge on a single promoter to regulate transcription in divergent fashions. To study this, we have investigated the transcriptional regulation of the Schizosaccharomyces pombe fbp1 gene that is repressed by a cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway and is activated by a stress-activated mitogen-activated protein kinase (MAPK) pathway. In this study, we identified and characterized two cis-acting elements in the fbp1 promoter required for activation of fbp1 transcription. Upstream activation site 1 (UAS1), located approximately 900 bp from the transcriptional start site, resembles a cAMP response element (CRE) that is the binding site for the atf1-pcr1 heterodimeric transcriptional activator. Binding of this activator to UAS1 is positively regulated by the MAPK pathway and negatively regulated by PKA. UAS2, located approximately 250 bp from the transcriptional start site, resembles a Saccharomyces cerevisiae stress response element. UAS2 is bound by transcriptional activators and repressors regulated by both the PKA and MAPK pathways, although atf1 itself is not present in these complexes. Transcriptional regulation of fbp1 promoter constructs containing only UAS1 or UAS2 confirms that the PKA and MAPK regulation is targeted to both sites. We conclude that the PKA and MAPK signal transduction pathways regulate fbp1 transcription at UAS1 and UAS2, but that the antagonistic interactions between these pathways involve different mechanisms at each site. PMID:10938120

  2. KPC2 relocalizes HOXA2 to the cytoplasm and decreases its transcriptional activity.

    PubMed

    Bridoux, Laure; Bergiers, Isabelle; Draime, Amandine; Halbout, Mathias; Deneyer, Noémie; Twizere, Jean-Claude; Rezsohazy, René

    2015-10-01

    Regulation of transcription factor activity relies on molecular interactions or enzymatic modifications which influence their interaction with DNA cis-regulatory sequences, their transcriptional activation or repression, and stability or intracellular distribution of these proteins. Regarding the well-conserved Hox protein family, a restricted number of activity regulators have been highlighted thus far. In the framework of a proteome-wide screening aiming at identifying proteins interacting with Hoxa2, KPC2, an adapter protein constitutive of the KPC ubiquitin-ligase complex, was identified. In this work, KPC2 was confirmed as being a genuine interactor of Hoxa2 by co-precipitation and bimolecular fluorescence complementation assays. At functional level, KPC2 diminishes the transcriptional activity and induces the nuclear exit of Hoxa2. Gene expression analyses revealed that Kpc2 is active in restricted areas of the developing mouse embryo which overlap with the Hoxa2 expression domain. Together, our data support that KPC2 regulates Hoxa2 by promoting its relocation to the cytoplasm. PMID:26303204

  3. The murine Sim-2 gene product inhibits transcription by active repression and functional interference.

    PubMed

    Moffett, P; Reece, M; Pelletier, J

    1997-09-01

    The Drosophila single-minded (Dsim) gene encodes a master regulatory protein involved in cell fate determination during midline development. This protein is a member of a rapidly expanding family of gene products possessing basic helix-loop-helix (bHLH) and hydrophobic PAS (designated a conserved region among PER, ARNT [aryl hydrocarbon receptor nuclear translocator] and SIM) protein association domains. Members of this family function as central transcriptional regulators in cellular differentiation and in the response to environmental stimuli such as xenobiotics and hypoxia. We have previously identified a murine member of this family, called mSim-2, showing sequence homology to the bHLH and PAS domains of Dsim. Immunoprecipitation experiments with recombinant proteins indicate that mSIM-2 associates with the arnt gene product. In the present work, by using fine-structure mapping we found that the HLH and PAS motifs of both proteins are required for optimal association. Forced expression of GAL4/mSIM-2 fusion constructs in mammalian cells demonstrated the presence of two separable repression domains within the carboxy terminus of mSIM-2. We found that mSIM-2 is capable of repressing ARNT-mediated transcriptional activation in a mammalian two-hybrid system. This effect (i) is dependent on the ability of mSIM-2 and ARNT to heterodimerize, (ii) is dependent on the presence of the mSIM-2 carboxy-terminal repression domain, and (iii) is not specific to the ARNT activation domain. These results suggest that mSIM-2 repression activity can dominantly override the activation potential of adjacent transcription factors. We also demonstrated that mSIM-2 can functionally interfere with hypoxia-inducible factor 1alpha (HIF-1alpha)/ARNT transcription complexes, providing a second mechanism by which mSIM-2 may inhibit transcription. PMID:9271372

  4. Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells

    PubMed Central

    Hao, L; Rizzo, P; Osipo, C; Pannuti, A; Wyatt, D; Cheung, LW-K; Sonenshein, G; Osborne, BA; Miele, L

    2016-01-01

    Approximately 80% of breast cancers express the estrogen receptor-α (ERα) and are treated with anti-estrogens. Resistance to these agents is a major cause of mortality. We have shown that estrogen inhibits Notch, whereas anti-estrogens or estrogen withdrawal activate Notch signaling. Combined inhibition of Notch and estrogen signaling has synergistic effects in ERα-positive breast cancer models. However, the mechanisms whereby Notch-1 promotes the growth of ERα-positive breast cancer cells are unknown. Here, we demonstrate that Notch-1 increases the transcription of ERα-responsive genes in the presence or absence of estrogen via a novel chromatin crosstalk mechanism. Our data support a model in which Notch-1 can activate the transcription of ERα-target genes via IKKα-dependent cooperative chromatin recruitment of Notch–CSL–MAML1 transcriptional complexes (NTC) and ERα, which promotes the recruitment of p300. CSL binding elements frequently occur in close proximity to estrogen-responsive elements (EREs) in the human and mouse genomes. Our observations suggest that a hitherto unknown Notch-1/ERα chromatin crosstalk mediates Notch signaling effects in ERα-positive breast cancer cells and contributes to regulate the transcriptional functions of ERα itself. PMID:19838210

  5. Human general transcription factor TFIIA: characterization of a cDNA encoding the small subunit and requirement for basal and activated transcription.

    PubMed Central

    DeJong, J; Bernstein, R; Roeder, R G

    1995-01-01

    The human general transcription factor TFIIA is one of several factors involved in specific transcription by RNA polymerase II, possibly by regulating the activity of the TATA-binding subunit (TBP) of TFIID. TFIIA purified from HeLa extracts consists of 35-, 19-, and 12-kDa subunits. Here we describe the isolation of a cDNA clone (hTFIIA gamma) encoding the 12-kDa subunit. Using expression constructs derived from hTFIIA gamma and TFIIA alpha/beta (which encodes a 55-kDa precursor to the alpha and beta subunits of natural TFIIA), we have constructed a synthetic TFIIA with a polypeptide composition similar to that of natural TFIIA. The recombinant complex supports the formation of a DNA-TBP-TFIIA complex and mediates both basal and Gal4-VP16-activated transcription by RNA polymerase II in TFIIA-depleted nuclear extracts. In contrast, TFIIA has no effect on tRNA and 5S RNA transcription by RNA polymerase III in this system. We also present evidence that both the p55 and p12 recombinant subunits interact with TBP and that the basic region of TBP is critical for the TFIIA-dependent function of TBP in nuclear extracts. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7724559

  6. Dynamic Mechanism for the Transcription Apparatus Orchestrating Reliable Responses to Activators

    NASA Astrophysics Data System (ADS)

    Wang, Yaolai; Liu, Feng; Wang, Wei

    2012-05-01

    The transcription apparatus (TA) is a huge molecular machine. It detects the time-varying concentrations of transcriptional activators and initiates mRNA transcripts at appropriate rates. Based on the general structural organizations of the TA, we propose how the TA dynamically orchestrates transcriptional responses. The activators rapidly cycle in and out of a clamp-like space temporarily formed between the enhancer and the Mediator, with the concentration of activators encoded as their temporal occupancy rate (RTOR) within the space. The entry of activators into this space induces allostery in the Mediator, resulting in a facilitated circumstance for transcriptional reinitiation. The reinitiation rate is much larger than the cycling rate of activators, thereby RTOR guiding the amount of transcripts. Based on this mechanism, stochastic simulations can qualitatively reproduce and interpret multiple features of gene expression, e.g., transcriptional bursting is not mere noise as traditionally believed, but rather the basis of reliable transcriptional responses.

  7. Hsp70-Hsp40 Chaperone Complex Functions in Controlling Polarized Growth by Repressing Hsf1-Driven Heat Stress-Associated Transcription

    PubMed Central

    Liu, Jianhua; Oliferenko, Snezhana

    2013-01-01

    How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments. PMID:24146635

  8. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2.

    PubMed

    Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José Manuel; Nombela, César; Arroyo, Javier

    2016-09-01

    The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway. PMID:27112564

  9. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2

    PubMed Central

    Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José Manuel; Nombela, César; Arroyo, Javier

    2016-01-01

    The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway. PMID:27112564

  10. BCL11B is a General Transcriptional Repressor of the HIV-1 Long Terminal Repeat in T Lymphocytes through recruitment of the NuRD Complex

    PubMed Central

    Cismasiu, Valeriu B.; Paskaleva, Elena; Daya, Sneha Suman; Canki, Mario; Duus, Karen; Avram, Dorina

    2008-01-01

    In this study we provide evidence that the transcription factor BCL11B represses expression from the HIV-1 long terminal repeat (LTR) in T lymphocytes through direct association with the HIV-1 LTR. We also demonstrate that the NuRD corepressor complex mediates BCL11B transcriptional repression of the HIV-1 LTR. In addition, BCL11B and the NuRD complex repressed TAT-mediated transactivation of the HIV-1 LTR in T lymphocytes, pointing to a potential role in initiation of silencing. In support of all the above results, we demonstrate that BCL11B affects HIV-1 replication and virus production, most likely by blocking LTR transcriptional activity. BCL11B showed specific repression for the HIV-1 LTR sequences isolated from seven different HIV-1 subtypes, demonstrating that it is a general transcriptional repressor for all LTRs. PMID:18768194

  11. Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble

    PubMed Central

    Barnes, Christopher O.; Calero, Monica; Malik, Indranil; Graham, Brian W.; Spahr, Henrik; Lin, Guowu; Cohen, Aina; Brown, Ian S.; Zhang, Qiangmin; Pullara, Filippo; Trakselis, Michael A.; Kaplan, Craig D.; Calero, Guillermo

    2015-01-01

    Summary Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop-1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the Trigger Loop (TL), allowing visualization of its open state. Overall, our observations suggest that “open/closed” conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation. PMID:26186291

  12. A Transcriptional Regulatory Role of the THAP11–HCF-1 Complex in Colon Cancer Cell Function

    PubMed Central

    Parker, J. Brandon; Palchaudhuri, Santanu; Yin, Hanwei; Wei, Jianjun

    2012-01-01

    The recently identified Thanatos-associated protein (THAP) domain is an atypical zinc finger motif with sequence-specific DNA-binding activity. Emerging data suggest that THAP proteins may function in chromatin-dependent processes, including transcriptional regulation, but the roles of most THAP proteins in normal and aberrant cellular processes remain largely unknown. In this work, we identify THAP11 as a transcriptional regulator differentially expressed in human colon cancer. Immunohistochemical analysis of human colon cancers revealed increased THAP11 expression in both primary tumors and metastases. Knockdown of THAP11 in SW620 colon cancer cells resulted in a significant decrease in cell proliferation, and profiling of gene expression in these cells identified a novel gene set composed of 80 differentially expressed genes, 70% of which were derepressed by THAP11 knockdown. THAP11 was found to associate physically with the transcriptional coregulator HCF-1 (host cell factor 1) and recruit HCF-1 to target promoters. Importantly, THAP11-mediated gene regulation and its chromatin association require HCF-1, while HCF-1 recruitment at these genes requires THAP11. Collectively, these data provide the first characterization of THAP11-dependent gene expression in human colon cancer cells and suggest that the THAP11–HCF-1 complex may be an important transcriptional and cell growth regulator in human colon cancer. PMID:22371484

  13. DNA recognition by a σ(54) transcriptional activator from Aquifex aeolicus.

    PubMed

    Vidangos, Natasha K; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E

    2014-10-23

    Transcription initiation by bacterial σ(54)-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain (DBD). The structurally characterized DBDs from activators all belong to the Fis (factor for inversion stimulation) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DBD of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ(54) activators. Two NtrC4-binding sites were identified upstream (-145 and -85bp) from the start of the lpxC gene, which is responsible for the first committed step in lipid A biosynthesis. This is the first experimental evidence for σ(54) regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145-binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homolog, Fis. The greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base-specific contacts contributing to affinity than for Fis. PMID:25158097

  14. DNA-recognition by a σ54 transcriptional activator from Aquifex aeolicus

    PubMed Central

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G.; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E.

    2014-01-01

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ54 activators. Two NtrC4 binding sites were identified upstream (−145 and −85 base pairs) from the start of the lpxC gene, which is responsible for the first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the −145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. The greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis. PMID:25158097

  15. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2

    SciTech Connect

    Lee, Sang-Wang . E-mail: umsj@sejong.ac.kr

    2006-01-27

    To understand the molecular mechanism underlying HIPK2 regulation of the transcriptional activation by p53, we sought to identify the protein that interacts with HIPK2. From our yeast two-hybrid screen, we found that four and a half LIM domains 2 (FHL2) could bind to the C-terminal half of HIPK2. Further assays in yeast mapped the minimal interaction domain to amino acids 812-907 in HIPK2. The interaction was confirmed using a GST pull-down assay in vitro, and an immunoprecipitation (IP) assay and fluorescence microscopy in vivo. FHL2 alone spread throughout both the cytoplasm and nucleus but was redistributed to dot-like structures in the nucleus when HIPK2 was coexpressed in HEK293 cells. When tethered to the Gal4-responsive promoter through the Gal4 DBD fusion, FHL2 showed autonomous transcriptional activity that was enhanced by wild-type HIPK2, but not by the kinase-defective mutant. In addition, FHL2 increased the p53-dependent transcriptional activation and had an additive effect on the activation when coexpressed with HIPK2, which was again not observed with the kinase-defective mutant of HIPK2. Finally, we found a ternary complex of p53, HIPK2, and FHL2 using IP, and their recruitment to the p53-responsive p21Waf1 promoter in chromatin IP assays. Overall, our findings indicate that FHL2 can also regulate p53 via a direct association with HIPK2.

  16. DNA Recognition by a σ54 Transcriptional Activator from Aquifex aeolicus

    SciTech Connect

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G.; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E.

    2014-08-23

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ54 activators. Two NtrC4 binding sites were identified upstream (-145 and -85 base pairs) from the start of the lpxC gene, which is responsible for the first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. Ultimately, the greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis.

  17. DNA Recognition by a σ54 Transcriptional Activator from Aquifex aeolicus

    DOE PAGESBeta

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G.; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E.

    2014-08-23

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ54 activators. Two NtrC4 binding sites were identified upstream (-145 and -85 base pairs) from the start of the lpxC gene, which is responsible for themore » first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. Ultimately, the greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis.« less

  18. Structure of human heat-shock transcription factor 1 in complex with DNA.

    PubMed

    Neudegger, Tobias; Verghese, Jacob; Hayer-Hartl, Manajit; Hartl, F Ulrich; Bracher, Andreas

    2016-02-01

    Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA. PMID:26727489

  19. Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation.

    PubMed Central

    Denis, C L; Chiang, Y C; Cui, Y; Chen, J

    2001-01-01

    The CCR4-NOT complex is involved in the regulation of gene expression both positively and negatively. The repressive effects of the complex appear to result in part from restricting TBP access to noncanonical TATAA binding sites presumably through interaction with multiple TAF proteins. We provide here genetic evidence that the CCR4-NOT complex also plays a role in transcriptional elongation. First, defects in CCR4-NOT components as well as overexpression of the NOT4 gene elicited 6-azauracil (6AU) and mycophenolic acid sensitivities, hallmarks of transcriptional elongation defects. A number of other transcription initiation factors known to interact with the CCR4-NOT complex did not elicit these phenotypes nor did defects in factors that reduced mRNA degradation and hence the recycling of NTPs. Second, deletion of ccr4 resulted in severe synthetic effects with mutations or deletions in the known elongation factors RPB2, TFIIS, and SPT16. Third, the ccr4 deletion displayed allele-specific interactions with rpb1 alleles that are thought to be important in the control of elongation. Finally, we found that a ccr4 deletion as well as overexpression of the NOT1 gene specifically suppressed the cold-sensitive phenotype associated with the spt5-242 allele. The only other known suppressors of this spt5-242 allele are factors involved in slowing transcriptional elongation. These genetic results are consistent with the model that the CCR4-NOT complex, in addition to its known effects on initiation, plays a role in aiding the elongation process. PMID:11404327

  20. Nemo phosphorylates Eyes absent and enhances output from the Eya-Sine oculis transcriptional complex during Drosophila retinal determination

    PubMed Central

    Morillo, Santiago A.; Braid, Lorena R.; Verheyen, Esther M.; Rebay, Ilaria

    2013-01-01

    The retinal determination gene network comprises a collection of transcription factors that respond to multiple signaling inputs to direct Drosophila eye development. Previous genetic studies have shown that nemo (nmo), a gene encoding a proline-directed serine/threonine kinase, can promote retinal specification through interactions with the retinal determination gene network, although the molecular point of cross-talk was not defined. Here, we report that the Nemo kinase positively and directly regulates Eyes absent (Eya). Genetic assays show that Nmo catalytic activity enhances Eya-mediated ectopic eye formation and potentiates induction of the Eya-Sine oculis (So) transcriptional targets dachshund and lozenge. Biochemical analyses demonstrate that Nmo forms a complex with and phosphorylates Eya at two consensus mitogen-activated protein kinase (MAPK) phosphorylation sites. These same sites appear crucial for Nmo-mediated activation of Eya function in vivo. Thus, we propose that Nmo phosphorylation of Eya potentiates its transactivation function to enhance transcription of Eya-So target genes during eye specification and development. PMID:22394486

  1. Complex Coordination of Cell Plasticity by a PGC-1α-controlled Transcriptional Network in Skeletal Muscle

    PubMed Central

    Kupr, Barbara; Handschin, Christoph

    2015-01-01

    Skeletal muscle cells exhibit an enormous plastic capacity in order to adapt to external stimuli. Even though our overall understanding of the molecular mechanisms that underlie phenotypic changes in skeletal muscle cells remains poor, several factors involved in the regulation and coordination of relevant transcriptional programs have been identified in recent years. For example, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a central regulatory nexus in the adaptation of muscle to endurance training. Intriguingly, PGC-1α integrates numerous signaling pathways and translates their activity into various transcriptional programs. This selectivity is in part controlled by differential expression of PGC-1α variants and post-translational modifications of the PGC-1α protein. PGC-1α-controlled activation of transcriptional networks subsequently enables a spatio-temporal specification and hence allows a complex coordination of changes in metabolic and contractile properties, protein synthesis and degradation rates and other features of trained muscle. In this review, we discuss recent advances in our understanding of PGC-1α-regulated skeletal muscle cell plasticity in health and disease. PMID:26617528

  2. Alternative poly(A) site selection in complex transcription units: means to an end?

    PubMed Central

    Edwalds-Gilbert, G; Veraldi, K L; Milcarek, C

    1997-01-01

    Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors. PMID:9185563

  3. Transcriptional and replicational activation functions in the bovine papillomavirus type 1 E2 protein are encoded by different structural determinants.

    PubMed Central

    Abroi, A; Kurg, R; Ustav, M

    1996-01-01

    A set of E2 proteins with mutations in the amino-terminal transactivation domain was made by a scheme called clustered charged-to-alanine scan. These mutant E2 proteins were tested for expression, stability, and compartmentalization in cells and for sequence-specific DNA binding, as well as in functional assays for transcriptional and replicational activation. We identified four groups of mutants. First, mutants K111A, K112A, and E176A were unable to activate replication and transcription because of oligomerization-induced retention of oligomers in the cytoplasm. Second, although fractions of the mutant proteins E74A and D143A/ R172C existed in the oligomeric form, they were localized in the nucleus. Certain fractions of these proteins existed as a dimer able to form a specific complex and activate replication; however, these proteins were inactive in transcriptional activation. Third, mutants R37A and D122A were localized in the nucleus, existed in the dimeric form, supported replication efficiently, and were severely crippled in transcriptional activation. The fourth group of mutants did not differ considerably from the wild-type protein. The activation of transcription by the wild type as well as mutant E2 proteins was dependent on the concentration of input E2 expression vector DNA and had a bell-like shape. We suggest that the reduction of transcriptional activation at higher E2 concentrations, the self-squelching activity, is caused by oligomerization of the E2 transactivator and is one of the mechanisms for the regulation of E2 activity. Our results also show that transcriptional and replicational activation activities are encoded by different determinants in the E2 protein. PMID:8709243

  4. PIASγ Enhanced SUMO-2 Modification of Nurr1 Activation-Function-1 Domain Limits Nurr1 Transcriptional Synergy

    PubMed Central

    Arredondo, Cristian; Orellana, Marcelo; Vecchiola, Andrea; Pereira, Luis Alberto; Galdames, Leopoldo; Andrés, María Estela

    2013-01-01

    Nurr1 (NR4A2) is a transcription factor that belongs to the orphan NR4A group of the nuclear receptor superfamily. Nurr1 plays key roles in the origin and maintenance of midbrain dopamine neurons, and peripheral inflammatory processes. PIASγ, a SUMO-E3 ligase, represses Nurr1 transcriptional activity. We report that Nurr1 is SUMOylated by SUMO-2 in the lysine 91 located in the transcriptional activation function 1 domain of Nurr1. Nurr1 SUMOylation by SUMO-2 is markedly facilitated by overexpressing wild type PIASγ, but not by a mutant form of PIASγ lacking its first LXXLL motif (PIASγmut1). This PIASγmut1 is also unable to interact with Nurr1 and to repress Nurr1 transcriptional activity. Interestingly, the mutant PIASγC342A that lacks SUMO ligase activity is still able to significantly repress Nurr1-dependent transcriptional activity, but not to enhance Nurr1 SUMOylation. A SUMOylation-deficient Nurr1 mutant displays higher transcriptional activity than the wild type Nurr1 only in promoters harboring more than one Nurr1 response element. Furthermore, lysine 91, the major target of Nurr1 SUMOylation is contained in a canonical synergy control motif, indicating that SUMO-2 posttranslational modification of Nurr1 regulates its transcriptional synergy in complex promoters. In conclusion, PIASγ can exert two types of negative regulations over Nurr1. On one hand, PIASγ limits Nurr1 transactivation in complex promoters by SUMOylating its lysine 91. On the other hand, PIASγ fully represses Nurr1 transactivation through a direct interaction, independently of its E3-ligase activity. PMID:23358114

  5. WDR5 Supports an N-Myc Transcriptional Complex That Drives a Protumorigenic Gene Expression Signature in Neuroblastoma.

    PubMed

    Sun, Yuting; Bell, Jessica L; Carter, Daniel; Gherardi, Samuele; Poulos, Rebecca C; Milazzo, Giorgio; Wong, Jason W H; Al-Awar, Rima; Tee, Andrew E; Liu, Pei Y; Liu, Bing; Atmadibrata, Bernard; Wong, Matthew; Trahair, Toby; Zhao, Quan; Shohet, Jason M; Haupt, Ygal; Schulte, Johannes H; Brown, Peter J; Arrowsmith, Cheryl H; Vedadi, Masoud; MacKenzie, Karen L; Hüttelmaier, Stefan; Perini, Giovanni; Marshall, Glenn M; Braithwaite, Antony; Liu, Tao

    2015-12-01

    MYCN gene amplification in neuroblastoma drives a gene expression program that correlates strongly with aggressive disease. Mechanistically, trimethylation of histone H3 lysine 4 (H3K4) at target gene promoters is a strict prerequisite for this transcriptional program to be enacted. WDR5 is a histone H3K4 presenter that has been found to have an essential role in H3K4 trimethylation. For this reason, in this study, we investigated the relationship between WDR5-mediated H3K4 trimethylation and N-Myc transcriptional programs in neuroblastoma cells. N-Myc upregulated WDR5 expression in neuroblastoma cells. Gene expression analysis revealed that WDR5 target genes included those with MYC-binding elements at promoters such as MDM2. We showed that WDR5 could form a protein complex at the MDM2 promoter with N-Myc, but not p53, leading to histone H3K4 trimethylation and activation of MDM2 transcription. RNAi-mediated attenuation of WDR5 upregulated expression of wild-type but not mutant p53, an effect associated with growth inhibition and apoptosis. Similarly, a small-molecule antagonist of WDR5 reduced N-Myc/WDR5 complex formation, N-Myc target gene expression, and cell growth in neuroblastoma cells. In MYCN-transgenic mice, WDR5 was overexpressed in precancerous ganglion and neuroblastoma cells compared with normal ganglion cells. Clinically, elevated levels of WDR5 in neuroblastoma specimens were an independent predictor of poor overall survival. Overall, our results identify WDR5 as a key cofactor for N-Myc-regulated transcriptional activation and tumorigenesis and as a novel therapeutic target for MYCN-amplified neuroblastomas. PMID:26471359

  6. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    SciTech Connect

    Shlomai, Amir; Shaul, Yosef

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  7. Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex

    PubMed Central

    Holoch, Daniel; Moazed, Danesh

    2015-01-01

    Argonautes and their small-RNA cofactors form the core effectors of ancient and diverse gene-silencing mechanisms whose roles include regulation of gene expression and defense against foreign genetic elements. Although Argonautes generally act within multisubunit complexes, what governs their assembly into these machineries is not well defined. Here, we show that loading of small RNAs onto Argonaute is a checkpoint for Argonaute’s association with conserved GW-protein components of silencing complexes. We demonstrate that the Argonaute small interfering RNA chaperone (ARC) complex mediates loading of small RNAs onto Ago1 in Schizosaccharomyces pombe and that deletion of its subunits, or mutations in Ago1 that prevent small-RNA loading, abolish the assembly of the GW protein–containing RNA-induced transcriptional silencing (RITS) complex. Our studies uncover a mechanism that ensures that Argonaute loading precedes RITS assembly and thereby averts the formation of inert and potentially deleterious complexes. PMID:25730778

  8. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor.

    PubMed

    Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu

    2003-12-26

    Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner. PMID:14527958

  9. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions.

    PubMed

    Sakai, H; Yasugi, T; Benson, J D; Dowhanick, J J; Howley, P M

    1996-03-01

    The E2 gene products of papillomavirus play key roles in viral replication, both as regulators of viral transcription and as auxiliary factors that act with E1 in viral DNA replication. We have carried out a detailed structure-function analysis of conserved amino acids within the N-terminal domain of the human papillomavirus type 16 (HPV16) E2 protein. These mutants were tested for their transcriptional activation activities as well as transient DNA replication and E1 binding activities. Analysis of the stably expressed mutants revealed that the transcriptional activation and replication activities of HPV16 E2 could be dissociated. The 173A mutant was defective for the transcriptional activation function but retained wild-type DNA replication activity, whereas the E39A mutant wild-type transcriptional activation function but was defective in transient DNA replication assays. The E39A mutant was also defective for HPV16 E1 binding in vitro, suggesting that the ability of E2 protein to form a complex with E1 appears to be essential for its function as an auxiliary replication factor. PMID:8627680

  10. Modified bimolecular fluorescence complementation assay to study the inhibition of transcription complex formation by JAZ proteins.

    PubMed

    Qi, Tiancong; Song, Susheng; Xie, Daoxin

    2013-01-01

    The jasmonate (JA) ZIM-domain (JAZ) proteins of Arabidopsis thaliana repress JA signaling and negatively regulate the JA responses. Recently, JAZ proteins have been found to inhibit the transcriptional function of several transcription factors, among which the basic helix-loop-helix (bHLH) (GLABRA3 [GL3], ENHANCER OF GLABRA3 [EGL3], and TRANSPARENT TESTA8 [TT8]) and R2R3-MYB (GL1 and MYB75) that can interact with each other to form bHLH-MYB complexes and further control gene expression. The bimolecular fluorescence complementation (BiFC) assay is a widely used technique to study protein-protein interactions in living cells. Here we describe a modified BiFC experimental procedure to study the inhibition of the formation of the bHLH (GL3)-MYB (GL1) complex by JAZ proteins. PMID:23615997

  11. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation

    PubMed Central

    Fu, Jianhua

    2012-01-01

    In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. PMID:22982195

  12. FOXR2 Interacts with MYC to Promote Its Transcriptional Activities and Tumorigenesis.

    PubMed

    Li, Xu; Wang, Wenqi; Xi, Yuanxin; Gao, Min; Tran, MyKim; Aziz, Kathryn E; Qin, Jun; Li, Wei; Chen, Junjie

    2016-07-12

    By combining the results of a large-scale proteomic analysis of the human transcription factor interaction network with knowledge databases, we identified FOXR2 as one of the top-ranked candidate proto-oncogenes. Here, we show that FOXR2 forms a stable complex with MYC and MAX and subsequently regulates cell proliferation by promoting MYC's transcriptional activities. We demonstrate that FOXR2 is highly expressed in several breast, lung, and liver cancer cell lines and related patient tumor samples, while reduction of FOXR2 expression in a xenograft model inhibits tumor growth. These results indicate that FOXR2 acts with MYC to promote cancer cell proliferation, which is a potential tumor-specific target for therapeutic intervention against MYC-driven cancers. PMID:27346356

  13. The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress

    SciTech Connect

    Murphy, Brian J. . E-mail: brian.murphy@sri.com; Sato, Barbara G.; Dalton, Timothy P.; Laderoute, Keith R.

    2005-11-25

    Hypoxia-inducible factor-1 (HIF-1), the major transcriptional regulator of the mammalian cellular response to low oxygen (hypoxia), is embedded within a complex network of signaling pathways. We have been investigating the importance of another stress-responsive transcription factor, MTF-1, for the adaptation of cells to hypoxia. This article reports that MTF-1 plays a central role in hypoxic cells by contributing to HIF-1 activity. Loss of MTF-1 in transformed Mtf1 null mouse embryonic fibroblasts (MEFs) results in an attenuation of nuclear HIF-1{alpha} protein accumulation, HIF-1 transcriptional activity, and expression of an established HIF-1 target gene, glucose transporter-1 (Glut1). Mtf1 null (Mtf1 KO) MEFs also have constitutively higher levels of both glutathione (GSH) and the rate-limiting enzyme involved in GSH synthesis-glutamate cysteine ligase catalytic subunit-than wild type cells. The altered cellular redox state arising from increased GSH may perturb oxygen-sensing mechanisms in hypoxic Mtf1 KO cells and decrease the accumulation of HIF-1{alpha} protein. Together, these novel findings define a role for MTF-1 in the regulation of HIF-1 activity.

  14. In vitro transcriptional activation by a metabolic intermediate: activation by Leu3 depends on alpha-isopropylmalate.

    PubMed

    Sze, J Y; Woontner, M; Jaehning, J A; Kohlhaw, G B

    1992-11-13

    In the absence of the leucine biosynthetic precursor alpha-isopropylmalate (alpha-IPM), the yeast LEU3 protein (Leu3p) binds DNA and acts as a transcriptional repressor in an in vitro extract. Addition of alpha-IPM resulted in a dramatic increase in Leu3p-dependent transcription. The presence of alpha-IPM was also required for Leu3p to compete effectively with another transcriptional activator, GAL4/VP16, for limiting transcription factors. Therefore, the addition of alpha-IPM appears to convert a transcriptional repressor into an activator. This represents an example in eukaryotes of direct transcriptional regulation by a small effector molecule. PMID:1439822

  15. Combinatorial Complexity in a Transcriptionally-centered Signaling Hub in Arabidopsis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A subfamily of four Phytochrome (phy)-Interacting bHLH transcription Factors (PIFs) collectively promote skotomorphogenic development in dark-grown seedlings. This activity is reversed upon exposure to light, by photoactivated phy molecules that induce degradation of the PIFs, thereby triggering the...

  16. Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil.

    PubMed Central

    Lamar, R T; Schoenike, B; Vanden Wymelenberg, A; Stewart, P; Dietrich, D M; Cullen, D

    1995-01-01

    Thorough analysis of fungi in complex substrates has been hampered by inadequate experimental tools for assessing physiological activity and estimating biomass. We report a method for the quantitative assessment of specific fungal mRNAs in soil. The method was applied to complex gene families of Phanerochaete chrysosporium, a white-rot fungus widely used in studies of organopollutant degradation. Among the genes implicated in pollutant degradation, two closely related lignin peroxidase transcripts were detected in soil. The pattern of lignin peroxidase gene expression was unexpected; certain transcripts abundant in defined cultures were not detected in soil cultures. Transcripts encoding cellobiohydrolases and beta-tubulin were also detected. The method will aid in defining the roles of specific genes in complex biological processes such as organopollutant degradation, developing strategies for strain improvement, and identifying specific fungi in environmental samples. PMID:7793933

  17. Multifunctional class I transcription in Trypanosoma brucei depends on a novel protein complex

    PubMed Central

    Brandenburg, Jens; Schimanski, Bernd; Nogoceke, Everson; Nguyen, Tu N; Padovan, Júlio C; Chait, Brian T; Cross, George A M; Günzl, Arthur

    2007-01-01

    The vector-borne, protistan parasite Trypanosoma brucei is the only known eukaryote with a multifunctional RNA polymerase I that, in addition to ribosomal genes, transcribes genes encoding the parasite's major cell-surface proteins—the variant surface glycoprotein (VSG) and procyclin. In the mammalian bloodstream, antigenic variation of the VSG coat is the parasite's means to evade the immune response, while procyclin is necessary for effective establishment of trypanosome infection in the fly. Moreover, the exceptionally high efficiency of mono-allelic VSG expression is essential to bloodstream trypanosomes since its silencing caused rapid cell-cycle arrest in vitro and clearance of parasites from infected mice. Here we describe a novel protein complex that recognizes class I promoters and is indispensable for class I transcription; it consists of a dynein light chain and six polypeptides that are conserved only among trypanosomatid parasites. In accordance with an essential transcriptional function of the complex, silencing the expression of a key subunit was lethal to bloodstream trypanosomes and specifically affected the abundance of rRNA and VSG mRNA. The complex was dubbed class I transcription factor A. PMID:17972917

  18. Crystal structure of a transcription factor IIIB core interface ternary complex.

    PubMed

    Juo, Z Sean; Kassavetis, George A; Wang, Jimin; Geiduschek, E Peter; Sigler, Paul B

    2003-04-01

    Transcription factor IIIB (TFIIIB), consisting of the TATA-binding protein (TBP), TFIIB-related factor (Brf1) and Bdp1, is a central component in basal and regulated transcription by RNA polymerase III. TFIIIB recruits its polymerase to the promoter and subsequently has an essential role in the formation of the open initiation complex. The amino-terminal half of Brf1 shares a high degree of sequence similarity with the polymerase II general transcription factor TFIIB, but it is the carboxy-terminal half of Brf1 that contributes most of its binding affinity with TBP. The principal anchoring region is located between residues 435 and 545 of yeast Brf1, comprising its homology domain II. The same region also provides the primary interface for assembling Bdp1 into the TFIIIB complex. We report here a 2.95 A resolution crystal structure of the ternary complex containing Brf1 homology domain II, the conserved region of TBP and 19 base pairs of U6 promoter DNA. The structure reveals the core interface for assembly of TFIIIB and demonstrates how the loosely packed Brf1 domain achieves remarkable binding specificity with the convex and lateral surfaces of TBP. PMID:12660736

  19. Expression and purification of recombinant human c-Fos/c-Jun that is highly active in DNA binding and transcriptional activation in vitro

    PubMed Central

    Ferguson, Heather A.; Goodrich, James A.

    2001-01-01

    c-Fos and c-Jun are members of the AP-1 family of transcriptional activators that regulate the expression of genes during cell proliferation. To facilitate in vitro studies of mechanisms of transcriptional activation by c-Jun and c-Fos we developed a method for obtaining recombinant c-Fos/c-Jun that is highly active in DNA binding and transcriptional activation in vitro. Full-length human c-Fos and c-Jun were expressed in Escherichia coli. The expression of c-Fos was dependent on a helper plasmid that encodes rare ArgtRNAs. Both over-expressed c-Fos and c-Jun were recovered from inclusion bodies. A c-Fos/c-Jun complex was generated by co-renaturation and purified via a His-tag on the full-length human c-Fos. The resulting c-Fos/c-Jun bound DNA with high affinity and specificity, and activated transcription in a reconstituted human RNA polymerase II transcription system. The availability of active recombinant human c-Fos/c-Jun will allow future biochemical studies of these important transcriptional activators. PMID:11600717

  20. The Regulatory Role of Activating Transcription Factor 2 in Inflammation

    PubMed Central

    Yu, Tao; Li, Yong Jun; Bian, Ai Hong; Zuo, Hui Bin; Zhu, Ti Wen; Ji, Sheng Xiang; Kong, Fanming; Yin, De Qing; Wang, Chuan Bao; Wang, Zi Fu; Wang, Hong Qun; Yang, Yanyan; Yoo, Byong Chul

    2014-01-01

    Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA-binding proteins and is widely distributed in tissues including the liver, lung, spleen, and kidney. Like c-Jun and c-Fos, ATF2 responds to stress-related stimuli and may thereby influence cell proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and skeletal remodeling. Recent studies clarify the regulatory role of ATF2 in inflammation and describe potential inhibitors of this protein. In this paper, we summarize the properties and functions of ATF2 and explore potential applications of ATF2 inhibitors as tools for research and for the development of immunosuppressive and anti-inflammatory drugs. PMID:25049453

  1. Transcriptional activation of Epstein-Barr virus BRLF1 by USF1 and Rta.

    PubMed

    Hung, Chen-Chia; Kuo, Chung-Wen; Wang, Wen-Hung; Chang, Tzu-Hsuan; Chang, Pey-Jium; Chang, Li-Kwan; Liu, Shih-Tung

    2015-09-01

    During its lytic cycle, Epstein-Barr virus (EBV) expresses Rta, a factor encoded by BRLF1 that activates the transcription of viral lytic genes. We found that upstream stimulating factor (USF) binds to E1, one of the five E boxes located at - 79 in the BRLF1 promoter (Rp), to activate BRLF1 transcription. Furthermore, Rta was shown to interact with USF1 in coimmunoprecipitation and glutathione S-transferase (GST)-pulldown assays, and confocal laser-scanning microscopy further confirmed that these two proteins colocalize in the nucleus. Rta was also found to bind with the E1 sequence in a biotin-labelled E1 probe, but only in the presence of USF1, suggesting that these two proteins likely form a complex on E1. We subsequently constructed p188mSZ, a reporter plasmid that contained the sequence from - 188 to +5 in Rp, within which the Sp1 site and Zta response element were mutated. In EBV-negative Akata cells cotransfected with p188mSZ and plasmids expressing USF1 and Rta, synergistic activation of Rp transcription was observed. However, after mutating the E1 sequence in p188mSZ, USF1 and Rta were no longer able to transactivate Rp, indicating that Rta autoregulates BRLF1 transcription via its interaction with USF1 on E1. This study showed that pUSF1 transfection after EBV lytic induction in P3HR1 cells increases Rta expression, indicating that USF1 activates Rta expression after the virus enters the lytic cycle. Together, these results reveal a novel mechanism by which USF interacts with Rta to promote viral lytic development, and provide additional insight into the viral-host interactions of EBV. PMID:26297580

  2. Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements.

    PubMed

    Guturu, Harendra; Doxey, Andrew C; Wenger, Aaron M; Bejerano, Gill

    2013-12-19

    Mapping the DNA-binding preferences of transcription factor (TF) complexes is critical for deciphering the functions of cis-regulatory elements. Here, we developed a computational method that compares co-occurring motif spacings in conserved versus unconserved regions of the human genome to detect evolutionarily constrained binding sites of rigid TF complexes. Structural data were used to estimate TF complex physical plausibility, explore overlapping motif arrangements seldom tackled by non-structure-aware methods, and generate and analyse three-dimensional models of the predicted complexes bound to DNA. Using this approach, we predicted 422 physically realistic TF complex motifs at 18% false discovery rate, the majority of which (326, 77%) contain some sequence overlap between binding sites. The set of mostly novel complexes is enriched in known composite motifs, predictive of binding site configurations in TF-TF-DNA crystal structures, and supported by ChIP-seq datasets. Structural modelling revealed three cooperativity mechanisms: direct protein-protein interactions, potentially indirect interactions and 'through-DNA' interactions. Indeed, 38% of the predicted complexes were found to contain four or more bases in which TF pairs appear to synergize through overlapping binding to the same DNA base pairs in opposite grooves or strands. Our TF complex and associated binding site predictions are available as a web resource at http://bejerano.stanford.edu/complex. PMID:24218641

  3. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  4. FAK Forms a Complex with MEF2 to Couple Biomechanical Signaling to Transcription in Cardiomyocytes.

    PubMed

    Cardoso, Alisson Campos; Pereira, Ana Helena Macedo; Ambrosio, Andre Luis Berteli; Consonni, Silvio Roberto; Rocha de Oliveira, Renata; Bajgelman, Marcio Chain; Dias, Sandra Martha Gomes; Franchini, Kleber Gomes

    2016-08-01

    Focal adhesion kinase (FAK) has emerged as a mediator of mechanotransduction in cardiomyocytes, regulating gene expression during hypertrophic remodeling. However, how FAK signaling is relayed onward to the nucleus is unclear. Here, we show that FAK interacts with and regulates myocyte enhancer factor 2 (MEF2), a master cardiac transcriptional regulator. In cardiomyocytes exposed to biomechanical stimulation, FAK accumulates in the nucleus, binds to and upregulates the transcriptional activity of MEF2 through an interaction with the FAK focal adhesion targeting (FAT) domain. In the crystal structure (2.9 Å resolution), FAT binds to a stably folded groove in the MEF2 dimer, known to interact with regulatory cofactors. FAK cooperates with MEF2 to enhance the expression of Jun in cardiomyocytes, an important component of hypertrophic response to mechanical stress. These findings underscore a connection between the mechanotransduction involving FAK and transcriptional regulation by MEF2, with potential relevance to the pathogenesis of cardiac disease. PMID:27427476

  5. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability. PMID:25222563

  6. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity.

    PubMed

    Shelton, Dale; Stranne, Maria; Mikkelsen, Lisbeth; Pakseresht, Nima; Welham, Tracey; Hiraka, Hideki; Tabata, Satoshi; Sato, Shusei; Paquette, Suzanne; Wang, Trevor L; Martin, Cathie; Bailey, Paul

    2012-06-01

    Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors. PMID:22529285

  7. Activated STAT1 Transcription Factors Conduct Distinct Saltatory Movements in the Cell Nucleus

    PubMed Central

    Speil, Jasmin; Baumgart, Eugen; Siebrasse, Jan-Peter; Veith, Roman; Vinkemeier, Uwe; Kubitscheck, Ulrich

    2011-01-01

    The activation of STAT transcription factors is a critical determinant of their subcellular distribution and their ability to regulate gene expression. Yet, it is not known how activation affects the behavior of individual STAT molecules in the cytoplasm and nucleus. To investigate this issue, we injected fluorescently labeled STAT1 in living HeLa cells and traced them by single-molecule microscopy. We determined that STAT1 moved stochastically in the cytoplasm and nucleus with very short residence times (<0.03 s) before activation. Upon activation, STAT1 mobility in the cytoplasm decreased ∼2.5-fold, indicating reduced movement of STAT1/importinα/β complexes to the nucleus. In the nucleus, activated STAT1 displayed a distinct saltatory mobility, with residence times of up to 5 s and intermittent diffusive motion. In this manner, activated STAT1 factors can occupy their putative chromatin target sites within ∼2 s. These results provide a better understanding of the timescales on which cellular signaling and regulated gene transcription operate at the single-molecule level. PMID:22261046

  8. Dual transcriptional activities of SIX proteins define their roles in normal and ectopic eye development.

    PubMed

    Anderson, Abigail M; Weasner, Bonnie M; Weasner, Brandon P; Kumar, Justin P

    2012-03-01

    The SIX family of homeodomain-containing DNA-binding proteins play crucial roles in both Drosophila and vertebrate retinal specification. In flies, three such family members exist, but only two, Sine oculis (So) and Optix, are expressed and function within the eye. In vertebrates, the homologs of Optix (Six3 and Six6) and probably So (Six1 and Six2) are also required for proper eye formation. Depending upon the individual SIX protein and the specific developmental context, transcription of target genes can either be activated or repressed. These activities are thought to occur through physical interactions with the Eyes absent (Eya) co-activator and the Groucho (Gro) co-repressor, but the relative contribution that each complex makes to overall eye development is not well understood. Here, we attempt to address this issue by investigating the role that each complex plays in the induction of ectopic eyes in Drosophila. We fused the VP16 activation and Engrailed repressor domains to both So and Optix, and attempted to generate ectopic eyes with these chimeric proteins. Surprisingly, we find that So and Optix must initially function as transcriptional repressors to trigger the formation of ectopic eyes. Both factors appear to be required to repress the expression of non-retinal selector genes. We propose that during early phases of eye development, SIX proteins function, in part, to repress the transcription of non-retinal selector genes, thereby allowing induction of the retina to proceed. This model of repression-mediated induction of developmental programs could have implications beyond the eye and might be applicable to other systems. PMID:22318629

  9. Effect of salt bridge on transcription activation of CRP-dependent lactose operon in Escherichia coli.

    PubMed

    Tutar, Yusuf; Harman, James G

    2006-09-15

    Expression of catabolite-sensitive operons in Escherichia coli is cAMP-dependent and mediated through the CRP:cAMP complex binding to specific sequences in DNA. Five specific ionic or polar interactions occur in cAMP binding pocket of CRP. E72 interacts with the cAMP 2' OH, R82 and S83 interact with the negatively charged phosphate moiety, and T127 and S128 interact with the adenine ring. There is evidence to suggest that E72 and R82 may mediate an essential CRP molecular switch mechanism. Therefore, stimulation of CRP transcription activation was examined by perturbing these residues. Further, CRP:cAMP complex was treated with a specific DNA sequence containing the lac CRP binding site along with RNA polymerase to mimic in vivo conditions. Biochemical and biophysical results revealed that regulation of transcription activation depends on alignment of CRP tertiary structure through inter-domain communication and it was concluded that positions 72 and 82 are essential in the activation of CRP by cAMP. PMID:16934214

  10. Enhancer-like long-range transcriptional activation by λ CI-mediated DNA looping

    PubMed Central

    Cui, Lun; Murchland, Iain; Shearwin, Keith E.; Dodd, Ian B.

    2013-01-01

    How distant enhancer elements regulate the assembly of a transcription complex at a promoter remains poorly understood. Here, we use long-range gene regulation by the bacteriophage λ CI protein as a powerful system to examine this process in vivo. A 2.3-kb DNA loop, formed by CI bridging its binding sites at OR and OL, is known already to enhance repression at the lysogenic promoter PRM, located at OR. Here, we show that CI looping also activates PRM by allowing the C-terminal domain of the α subunit of the RNA polymerase bound at PRM to contact a DNA site adjacent to the distal CI sites at OL. Our results establish OL as a multifaceted enhancer element, able to activate transcription from long distances independently of orientation and position. We develop a physicochemical model of our in vivo data and use it to show that the observed activation is consistent with a simple recruitment mechanism, where the α–C-terminal domain to DNA contact need only provide ∼2.7 kcal/mol of additional binding energy for RNA polymerase. Structural modeling of this complete enhancer–promoter complex reveals how the contact is achieved and regulated, and suggests that distal enhancer elements, once appropriately positioned at the promoter, can function in essentially the same way as proximal promoter elements. PMID:23382214

  11. Enhancer-like long-range transcriptional activation by λ CI-mediated DNA looping.

    PubMed

    Cui, Lun; Murchland, Iain; Shearwin, Keith E; Dodd, Ian B

    2013-02-19

    How distant enhancer elements regulate the assembly of a transcription complex at a promoter remains poorly understood. Here, we use long-range gene regulation by the bacteriophage λ CI protein as a powerful system to examine this process in vivo. A 2.3-kb DNA loop, formed by CI bridging its binding sites at OR and OL, is known already to enhance repression at the lysogenic promoter PRM, located at OR. Here, we show that CI looping also activates PRM by allowing the C-terminal domain of the α subunit of the RNA polymerase bound at PRM to contact a DNA site adjacent to the distal CI sites at OL. Our results establish OL as a multifaceted enhancer element, able to activate transcription from long distances independently of orientation and position. We develop a physicochemical model of our in vivo data and use it to show that the observed activation is consistent with a simple recruitment mechanism, where the α-C-terminal domain to DNA contact need only provide ∼2.7 kcal/mol of additional binding energy for RNA polymerase. Structural modeling of this complete enhancer-promoter complex reveals how the contact is achieved and regulated, and suggests that distal enhancer elements, once appropriately positioned at the promoter, can function in essentially the same way as proximal promoter elements. PMID:23382214

  12. FBXL5 modulates HIF-1α transcriptional activity by degradation of CITED2.

    PubMed

    Machado-Oliveira, Gisela; Guerreiro, Eduarda; Matias, Ana Catarina; Facucho-Oliveira, João; Pacheco-Leyva, Ivette; Bragança, José

    2015-06-15

    CITED2 is a ubiquitously expressed nuclear protein exhibiting a high affinity for the cysteine-histidine-rich domain 1 (CH1) of the transcriptional co-activators CBP/p300. CITED2 is particularly efficient in the inhibition of the hypoxia-inducible factor-1α (HIF-1α) dependent transcription by competing with it for the interaction with the CH1 domain. Here we report a direct and specific interaction between CITED2 and the F-box and leucine rich repeat protein 5 (FBXL5), a substrate adaptor protein which is part of E3 ubiquitin ligase complexes mediating protein degradation by the proteasome. We demonstrated that depletion of FBXL5 by RNA interference led to an increase of CITED2 protein levels. Conversely, overexpression of FBXL5 caused the decrease of CITED2 protein levels in a proteasome-dependent manner, and impaired the interaction between CITED2 and the CH1 domain of p300 in living cells. In undifferentiated mouse embryonic stem cells, the overexpression of FBXL5 also reduced Cited2 protein levels. Finally, we evidenced that FBXL5 overexpression and the consequent degradation of CITED2 enabled the transcriptional activity of the N-terminal transactivation domain of HIF-1α. Collectively, our results highlighted a novel molecular interaction between CITED2 and FBXL5, which might regulate the steady state CITED2 protein levels and contribute to the modulation of gene expression by HIF-1α. PMID:25956243

  13. [SWI/SNF Protein Complexes Participate in the Initiation and Elongation Stages of Drosophila hsp70 Gene Transcription].

    PubMed

    Mazina, M Yu; Nikolenko, Yu V; Krasnov, A N; Vorobyeva, N E

    2016-02-01

    The participation of the SWI/SNF chromatin remodeling complex in the stimulation of the RNA polymerase II binding to gene promotors was demonstrated in all model eukaryotic organisms. It was shown eight years ago that the SWI/SNF complex influence on transcription is not limited to its role in initiation but also includes participation in elongation and alternative splicing. In the current work, we describe the subunit composition of the SWI/SNF complexes participating in initiation, preparing for the elongation and elongation of hsp70 gene transcription in Drosophila melanogaster. The data reveal the high mobility of the SWI/SNF complex composition during the hsp 70 gene transcription process. We suggest a model describing the process of sequential SWI/SNF complex formation during heat-shock induced transcription of the hsp 70 gene. PMID:27215030

  14. Loss of BAF (mSWI/SNF) Complexes Causes Global Transcriptional and Chromatin State Changes in Forebrain Development.

    PubMed

    Narayanan, Ramanathan; Pirouz, Mehdi; Kerimoglu, Cemil; Pham, Linh; Wagener, Robin J; Kiszka, Kamila A; Rosenbusch, Joachim; Seong, Rho H; Kessel, Michael; Fischer, Andre; Stoykova, Anastassia; Staiger, Jochen F; Tuoc, Tran

    2015-12-01

    BAF (Brg/Brm-associated factors) complexes play important roles in development and are linked to chromatin plasticity at selected genomic loci. Nevertheless, a full understanding of their role in development and chromatin remodeling has been hindered by the absence of mutants completely lacking BAF complexes. Here, we report that the loss of BAF155/BAF170 in double-conditional knockout (dcKO) mice eliminates all known BAF subunits, resulting in an overall reduction in active chromatin marks (H3K9Ac), a global increase in repressive marks (H3K27me2/3), and downregulation of gene expression. We demonstrate that BAF complexes interact with H3K27 demethylases (JMJD3 and UTX) and potentiate their activity. Importantly, BAF complexes are indispensable for forebrain development, including proliferation, differentiation, and cell survival of neural progenitor cells. Our findings reveal a molecular mechanism mediated by BAF complexes that controls the global transcriptional program and chromatin state in development. PMID:26655900

  15. Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor.

    PubMed

    Gupta, Manju; DeKelver, Russell C; Palta, Asha; Clifford, Carla; Gopalan, Sunita; Miller, Jeffrey C; Novak, Stephen; Desloover, Daniel; Gachotte, Daniel; Connell, James; Flook, Josh; Patterson, Thomas; Robbins, Kelly; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Petolino, Joseph F

    2012-09-01

    Targeted gene regulation via designed transcription factors has great potential for precise phenotypic modification and acceleration of novel crop trait development. Canola seed oil composition is dictated largely by the expression of genes encoding enzymes in the fatty acid biosynthetic pathway. In the present study, zinc finger proteins (ZFPs) were designed to bind DNA sequences common to two canola β-ketoacyl-ACP Synthase II (KASII) genes downstream of their transcription start site. Transcriptional activators (ZFP-TFs) were constructed by fusing these ZFP DNA-binding domains to the VP16 transcriptional activation domain. Following transformation using Agrobacterium, transgenic events expressing ZFP-TFs were generated and shown to have elevated KASII transcript levels in the leaves of transgenic T(0) plants when compared to 'selectable marker only' controls as well as of T(1) progeny plants when compared to null segregants. In addition, leaves of ZFP-TF-expressing T(1) plants contained statistically significant decreases in palmitic acid (consistent with increased KASII activity) and increased total C18. Similarly, T(2) seed displayed statistically significant decreases in palmitic acid, increased total C18 and reduced total saturated fatty acid contents. These results demonstrate that designed ZFP-TFs can be used to regulate the expression of endogenous genes to elicit specific phenotypic modifications of agronomically relevant traits in a crop species. PMID:22520333

  16. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    PubMed

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  17. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells

    PubMed Central

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-01-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  18. SON and Its Alternatively Spliced Isoforms Control MLL Complex-Mediated H3K4me3 and Transcription of Leukemia-Associated Genes.

    PubMed

    Kim, Jung-Hyun; Baddoo, Melody C; Park, Eun Young; Stone, Joshua K; Park, Hyeonsoo; Butler, Thomas W; Huang, Gang; Yan, Xiaomei; Pauli-Behn, Florencia; Myers, Richard M; Tan, Ming; Flemington, Erik K; Lim, Ssang-Taek; Ahn, Eun-Young Erin

    2016-03-17

    Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia. PMID:26990989

  19. NF-{kappa}B p65 represses {beta}-catenin-activated transcription of cyclin D1

    SciTech Connect

    Hwang, Injoo; Choi, Yong Seok; Jeon, Mi-Ya; Jeong, Sunjoo

    2010-12-03

    Research highlights: {yields} Cyclin D1 transcription is directly activated by {beta}-catenin; however, {beta}-catenin-induced cyclin D1 transcription is reduced by NF-{kappa}B p65. {yields} Protein-protein interaction between NF-{kappa}B p65 and {beta}-catenin might be responsible for p65-mediated repression of cyclin D1. {yields} One of five putative binding sites, located further upstream of other sites, is the major {beta}-catenin binding site in the cyclin D1 promoter. {yields} NF-{kappa}B binding site in cyclin D1 is occupied not only by p65 but also by {beta}-catenin, which is dynamically regulated by the signal. -- Abstract: Signaling crosstalk between the {beta}-catenin and NF-{kappa}B pathways represents a functional network. To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. {beta}-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-{kappa}B p65 reduced {beta}-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of {beta}-catenin on one of the T-cell activating factor binding sites. More interestingly, {beta}-catenin binding was greatly reduced by NF-{kappa}B p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of {beta}-catenin and NF-{kappa}B on promoters might contribute to the regulated expression of their target genes.

  20. Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP.

    PubMed

    Darvekar, Sagar; Johnsen, Sylvia Sagen; Eriksen, Agnete Bratsberg; Johansen, Terje; Sjøttem, Eva

    2012-02-15

    Transcriptional regulation requires co-ordinated action of transcription factors, co-activator complexes and general transcription factors to access specific loci in the dense chromatin structure. In the present study we demonstrate that the transcriptional co-regulator SPBP [stromelysin-1 PDGF (platelet-derived growth factor)-responsive element binding protein] contains two independent chromatin-binding domains, the SPBP-(1551-1666) region and the C-terminal extended PHD [ePHD/ADD (extended plant homeodomain/ATRX-DNMT3-DNMT3L)] domain. The region 1551-1666 is a novel core nucleosome-interaction domain located adjacent to the AT-hook motif in the DNA-binding domain. This novel nucleosome-binding region is critically important for proper localization of SPBP in the cell nucleus. The ePHD/ADD domain associates with nucleosomes in a histone tail-dependent manner, and has significant impact on the dynamic interaction between SPBP and chromatin. Furthermore, SPBP and its homologue RAI1 (retinoic-acid-inducible protein 1), are strongly enriched on chromatin in interphase HeLa cells, and both proteins display low nuclear mobility. RAI1 contains a region with homology to the novel nucleosome-binding region SPBP-(1551-1666) and an ePHD/ADD domain with ability to bind nucleosomes. These results indicate that the transcriptional co-regulator SPBP and its homologue RAI1 implicated in Smith-Magenis syndrome and Potocki-Lupski syndrome both belong to the expanding family of chromatin-binding proteins containing several domains involved in specific chromatin interactions. PMID:22081970

  1. Dry and wet approaches for genome-wide functional annotation of conventional and unconventional transcriptional activators.

    PubMed

    Levati, Elisabetta; Sartini, Sara; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Transcription factors (TFs) are master gene products that regulate gene expression in response to a variety of stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD) modules. This allows to properly position their second domain, called "effector domain", to directly or indirectly recruit positively or negatively acting co-regulators including chromatin modifiers, thus modulating preinitiation complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs, especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue, with many potential regulatory implications, is that of so-called "moonlighting" transcription factors, i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs (especially transcriptional activators), we describe both established (and usually well affordable) as well as newly developed platforms for DNA-binding site identification. Selected combinations of these search tools, some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs and unconventional regulators encoded by the any sequenced genome. PMID:27453771

  2. E proteins are required to activate germline transcription of the TCR Vbeta8.2 gene.

    PubMed

    Jia, Jingquan; Dai, Meifang; Zhuang, Yuan

    2008-10-01

    Each TCR Vbeta gene is regulated by an individual Vbeta promoter, which becomes active prior to V(D) J recombination and drives germline transcription. It has been shown that Vbeta gene locus activation and recombination are dependent on the Vbeta promoter. However, transcription factors that regulate Vbeta germline transcription remain largely undefined. A major challenge in studying Vbeta gene germline transcription is the quantitative assessment of relatively low-level transcripts in T-cell progenitors. Here we used the established Vbeta8.2(CD2) knock-in mouse model to assess functions of E-protein transcription factors in Vbeta8.2 germline transcription. We show that E proteins are required for the activation but not the maintenance of the Vbeta8.2 germline transcription during thymocyte development. The activation of Vbeta8.2 germline transcription depends more on the E proteins encoded by the E2A gene than by the HEB gene. We further show that IL-7 receptor (IL-7R)-mediated signals are essential for Vbeta8.2 germline transcription. We provide evidence that IL-7R expression is only partially controlled by E2A, suggesting a role for E2A in driving Vbeta8.2 germline transcription independent of IL-7R activation. PMID:18958875

  3. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  4. MIDGET Unravels Functions of the Arabidopsis Topoisomerase VI Complex in DNA Endoreduplication, Chromatin Condensation, and Transcriptional Silencing[W

    PubMed Central

    Kirik, Viktor; Schrader, Andrea; Uhrig, Joachim F.; Hulskamp, Martin

    2007-01-01

    The plant homologs of the archaeal DNA topoisomerase VI complex are required for the progression of endoreduplication cycles. Here, we describe the identification of MIDGET (MID) as a novel component of topoisomerase VI. We show that mid mutants show the same phenotype as rhl1, rhl2, and top6B mutants and that MID protein physically interacts with RHL1. The phenotypic analysis revealed new phenotypes, indicating that topoisomerase VI is involved in chromatin organization and transcriptional silencing. In addition, genetic evidence is provided suggesting that the ATR-dependent DNA damage repair checkpoint is activated in mid mutants, and CYCB1;1 is ectopically activated. Finally, we demonstrate that overexpression of CYCB1;2 can rescue the endoreduplication defects in mid mutants, suggesting that in mid mutants, a specific checkpoint is activated preventing further progression of endoreduplication cycles. PMID:17951446

  5. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methycholanthrene

    SciTech Connect

    Shipley, Jonathan M.; Waxman, David J. . E-mail: djw@bu.edu

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC{sub 5}) was >100-fold higher for an ER reporter (27-57 {mu}M) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17{beta}-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ER{alpha}-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  6. Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex.

    PubMed

    O'Hara, B P; Norman, R A; Wan, P T; Roe, S M; Barrett, T E; Drew, R E; Pearl, L H

    1999-10-01

    Inducible expression of the aliphatic amidase operon in Pseudomonas aeruginosa is controlled by an antitermination mechanism which allows production of the full-length transcript only in the presence of small-molecule inducers, such as acetamide. Ligand-regulated antitermination is provided by AmiC, the ligand-sensitive negative regulator, and AmiR, the RNA-binding positive regulator. Under non-inducing or repressing growth conditions, AmiC and AmiR form a complex in which the activity of AmiR is silenced. The crystal structure of the AmiC-AmiR complex identifies AmiR as a new and highly unusual member of the response-regulator family of bacterial signal transduction proteins, regulated by sequestration rather than phosphorylation. Comparison with the structure of free AmiC reveals the subtle mechanism of ligand-induced release of AmiR. PMID:10508151

  7. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions.

    PubMed

    Scholes, Natalie S; Weinzierl, Robert O J

    2016-05-01

    Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators. PMID:27175900

  8. Role of hippocampal activity-induced transcription in memory consolidation.

    PubMed

    Eagle, Andrew L; Gajewski, Paula A; Robison, Alfred J

    2016-08-01

    Experience-dependent changes in the strength of connections between neurons in the hippocampus (HPC) are critical for normal learning and memory consolidation, and disruption of this process drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. Here, we describe the induction and function of many of the most well-studied HPC TFs, including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, and describe their role in the learning process. We also discuss the known target genes of many of these TFs and the purported mechanisms by which they regulate long-term changes in HPC synaptic strength. Moreover, we propose that future research in this field will depend upon unbiased identification of additional gene targets for these activity-dependent TFs and subsequent meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC during learning or disease. PMID:27180338

  9. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions

    PubMed Central

    Scholes, Natalie S.; Weinzierl, Robert O. J.

    2016-01-01

    Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators. PMID:27175900

  10. The little elongation complex functions at initiation and elongation phases of snRNA gene transcription.

    PubMed

    Hu, Deqing; Smith, Edwin R; Garruss, Alexander S; Mohaghegh, Nima; Varberg, Joseph M; Lin, Chengqi; Jackson, Jessica; Gao, Xin; Saraf, Anita; Florens, Laurence; Washburn, Michael P; Eissenberg, Joel C; Shilatifard, Ali

    2013-08-22

    The small nuclear RNA (snRNA) genes have been widely used as a model system for understanding transcriptional regulation due to the unique aspects of their promoter structure, selectivity for either RNA polymerase (Pol) II or III, and because of their unique mechanism of termination that is tightly linked with the promoter. Recently, we identified the little elongation complex (LEC) in Drosophila that is required for the expression of Pol II-transcribed snRNA genes. Here, using Drosophila and mammalian systems, we provide genetic and molecular evidence that LEC functions in at least two phases of snRNA transcription: an initiation step requiring the ICE1 subunit, and an elongation step requiring ELL. PMID:23932780

  11. The Little Elongation Complex functions at initiation and elongation phases of snRNA gene transcription

    PubMed Central

    Hu, Deqing; Smith, Edwin R.; Garruss, Alexander S.; Mohaghegh, Nima; Varberg, Joseph M.; Lin, Chengqi; Jackson, Jessica; Gao, Xin; Saraf, Anita; Florens, Laurence; Washburn, Michael P.; Eissenberg, Joel C.; Shilatifard, Ali

    2014-01-01

    SUMMARY The small nuclear RNA (snRNA) genes have been widely used as a model system for understanding transcriptional regulation due to the unique aspects of their promoter structure, selectivity for either RNA Polymerase (Pol) II or III, and because of their unique mechanism of termination that is tightly linked with the promoter. Recently, we identified the Little Elongation Complex (LEC) in Drosophila that is required for the expression of Pol II-transcribed snRNA genes. Here, using Drosophila and mammalian systems, we provide genetic and molecular evidence that LEC functions in at least two phases of snRNA transcription: an initiation step requiring the ICE1 subunit, and an elongation step requiring ELL. PMID:23932780

  12. Functional Interaction of SCAI with the SWI/SNF Complex for Transcription and Tumor Cell Invasion

    PubMed Central

    Kreßner, Camilla; Nollau, Peter; Grosse, Robert; Brandt, Dominique T.

    2013-01-01

    We have recently characterized SCAI (Suppressor of Cancer Cell Invasion), a transcriptional modulator regulating cancer cell motility through suppression of MAL/SRF dependent gene transcription. We show here that SCAI is expressed in a wide range of normal human tissues and its expression is diminished in a large array of primary human breast cancer samples indicating that SCAI expression might be linked to the etiology of human cancer. To establish a functional link between SCAI and tumorigenesis we performed affinity columns to identify SCAI-interacting proteins. Our data show that SCAI interacts with the tumor suppressing SWI/SNF chromatin remodeling complex to promote changes in gene expression and the invasive capacities of human tumor cells. Moreover our data implicate a functional hierarchy between SCAI and BRM, since SCAI function is abrogated in the absence of BRM expression. PMID:23936361

  13. KAP1 Recruitment of the 7SK snRNP Complex to Promoters Enables Transcription Elongation by RNA Polymerase II.

    PubMed

    McNamara, Ryan P; Reeder, Jonathan E; McMillan, Elizabeth A; Bacon, Curtis W; McCann, Jennifer L; D'Orso, Iván

    2016-01-01

    The transition from transcription initiation to elongation at promoters of primary response genes (PRGs) in metazoan cells is controlled by inducible transcription factors, which utilize P-TEFb to phosphorylate RNA polymerase II (Pol II) in response to stimuli. Prior to stimulation, a fraction of P-TEFb is recruited to promoter-proximal regions in a catalytically inactive state bound to the 7SK small nuclear ribonucleoprotein (snRNP) complex. However, it remains unclear how and why the 7SK snRNP is assembled at these sites. Here we report that the transcriptional regulator KAP1 continuously tethers the 7SK snRNP to PRG promoters to facilitate P-TEFb recruitment and productive elongation in response to stimulation. Remarkably, besides PRGs, genome-wide studies revealed that KAP1 and 7SK snRNP co-occupy most promoter-proximal regions containing paused Pol II. Collectively, we provide evidence of an unprecedented mechanism controlling 7SK snRNP delivery to promoter-proximal regions to facilitate "on-site" P-TEFb activation and Pol II elongation. PMID:26725010

  14. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity

    PubMed Central

    Ahmed, Afsar U.; Williams, Bryan R. G.; Hannigan, Gregory E.

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  15. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity.

    PubMed

    Ahmed, Afsar U; Williams, Bryan R G; Hannigan, Gregory E

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  16. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    PubMed Central

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186

  17. Up-Regulation of Human Inducible Nitric Oxide Synthase by p300 Transcriptional Complex.

    PubMed

    Guo, Zhong; Zheng, Liang; Liao, Xinghua; Geller, David

    2016-01-01

    p300, a ubiquitous transcription coactivator, plays an important role in gene activation. Our previous work demonstrated that human inducible nitric oxide synthase (hiNOS) expression can be highly induced with the cytokine mixture (CM) of TNF-α + IL-1β + IFN-γ. In this study, we investigated the functional role of p300 in the regulation of hiNOS gene expression. Our initial data showed that overexpression of p300 significantly increased the basal and cytokine-induced hiNOS promoter activities in A549 cells. Interestingly, p300 activated cytokine-induced hiNOS transcriptional activity was completely abrogated by deleting the upstream hiNOS enhancer at -5 kb to -6 kb in the promoter. Furthermore, p300 over-expression increased cytokine-induced transcriptional activity on a heterologous minimal TK promoter with the same hiNOS enhancer. Site-directed mutagenesis of the hiNOS AP-1 motifs revealed that an intact upstream (-5.3 kb) AP-1 binding site was critical for p300 mediated cytokine-induced hiNOS transcription. Furthermore, our ChIP analysis demonstrated that p300 was binding to Jun D and Fra-2 proteins at -5.3 kb AP-1 binding site in vivo. Lastly, our 3C assay was able to detect a long DNA loop between the hiNOS enhancer and core promoter site, and ChIP loop assay confirmed that p300 binds to AP-1 and RNA pol II proteins. Overall, our results suggest that coactivator p300 mediates cytokine-induced hiNOS transactivation by forming a distant DNA loop between its enhancer and core promoter region. PMID:26751080

  18. Promoter-Bound p300 Complexes Facilitate Post-Mitotic Transmission of Transcriptional Memory

    PubMed Central

    Wong, Madeline M.; Byun, Jung S.; Sacta, Maria; Jin, Qihuang; Baek, SongJoon; Gardner, Kevin

    2014-01-01

    A central hallmark of epigenetic inheritance is the parental transmission of changes in patterns of gene expression to progeny without modification of DNA sequence. Although, the trans-generational conveyance of this molecular memory has been traditionally linked to covalent modification of histone and/or DNA, recent studies suggest a role for proteins that persist or remain bound within chromatin to “bookmark” specific loci for enhanced or potentiated responses in daughter cells immediately following cell division. In this report we describe a role for p300 in enabling gene bookmarking by pre-initiation complexes (PICs) containing RNA polymerase II (pol II), Mediator and TBP. Once formed these complexes require p300 to facilitate reacquisition of protein complex assemblies, chromatin modifications and long range chromatin interactions that enable post-mitotic transmission of transcriptional memory of prior environmental stimuli. PMID:24945803

  19. Toxoplasma Effector Recruits the Mi-2/NuRD Complex to Repress STAT1 Transcription and Block IFN-γ-Dependent Gene Expression.

    PubMed

    Olias, Philipp; Etheridge, Ronald D; Zhang, Yong; Holtzman, Michael J; Sibley, L David

    2016-07-13

    Interferon gamma (IFN-γ) is an essential mediator of host defense against intracellular pathogens, including the protozoan parasite Toxoplasma gondii. However, prior T. gondii infection blocks IFN-γ-dependent gene transcription, despite the downstream transcriptional activator STAT1 being activated and bound to cognate nuclear promoters. We identify the parasite effector that blocks STAT1-dependent transcription and show it is associated with recruitment of the Mi-2 nucleosome remodeling and deacetylase (NuRD) complex, a chromatin-modifying repressor. This secreted effector, toxoplasma inhibitor of STAT1-dependent transcription (TgIST), translocates to the host cell nucleus, where it recruits Mi-2/NuRD to STAT1-dependent promoters, resulting in altered chromatin and blocked transcription. TgIST is conserved across strains, underlying their shared ability to block IFN-γ-dependent transcription. TgIST deletion results in increased parasite clearance in IFN-γ-activated cells and reduced mouse virulence, which is restored in IFN-γ-receptor-deficient mice. These findings demonstrate the importance of both IFN-γ responses and the ability of pathogens to counteract these defenses. PMID:27414498

  20. Reciprocal Activation of Transcription Factors Underlies the Dichotomy between Proliferation and Invasion of Glioma Cells

    PubMed Central

    Dhruv, Harshil D.; McDonough Winslow, Wendy S.; Armstrong, Brock; Tuncali, Serdar; Eschbacher, Jenny; Kislin, Kerri; Loftus, Joseph C.; Tran, Nhan L.; Berens, Michael E.

    2013-01-01

    Histology of malignant glioma depicts dense proliferative areas rich in angiogenesis as well as dissemination of neoplastic cells into adjacent brain tissue. Although the mechanisms that trigger transition from proliferative to invasive phenotypes are complex, the dichotomy of cell proliferation and migration, the “Go or Grow” hypothesis, argues for specific and coordinated regulation of these phenotypes. We investigated transcriptional elements that accompany the phenotypes of migration and proliferation, and consider the therapeutic significance of the “Go or Grow” hypothesis. Interrogation of matched core and rim regions from human glioblastoma biopsy specimens in situ (n = 44) revealed higher proliferation (Ki67 labeling index) in cells residing at the core compared to the rim. Profiling activated transcription factors in a panel of migration-activated versus migration-restricted GBM cells portrayed strong NF-κB activity in the migratory cell population. In contrast, increased c-Myc activity was found in migration-restricted proliferative cells. Validation of transcriptional activity by NF-κB- or c-Myc-driven GFP or RFP, respectively, showed an increased NF-κB activity in the active migrating cells, whereas the proliferative, migration restricted cells displayed increased c-Myc activity. Immunohistochemistry on clinical specimens validated a robust phosphorylated c-Myc staining in tumor cells at the core, whereas increased phosphorylated NF-κB staining was detected in the invasive tumor cells at the rim. Functional genomics revealed that depletion of c-Myc expression by siRNA oligonucleotides reduced cell proliferation in vitro, but surprisingly, cell migration was enhanced significantly. Conversely, inhibition of NF-κB by pharmacological inhibitors, SN50 or BAY-11, decreased both cell migration in vitro and invasion ex vivo. Notably, inhibition of NF-κB was found to have no effect on the proliferation rate of glioma cells. These findings

  1. Centrosome movements in vivo correlate with specific neurite formation downstream of LIM homeodomain transcription factor activity.

    PubMed

    Andersen, Erica F; Halloran, Mary C

    2012-10-01

    Neurons must develop complex structure to form proper connections in the nervous system. The initiation of axons in defined locations on the cell body and their extension to synaptic targets are critical steps in neuronal morphogenesis, yet the mechanisms controlling axon formation in vivo are poorly understood. The centrosome has been implicated in multiple aspects of neuronal morphogenesis; however, its function in axon development is under debate. Conflicting results from studies of centrosome function in axonogenesis suggest that its role is context dependent and underscore the importance of studying centrosome function as neurons develop in their natural environment. Using live imaging of zebrafish Rohon-Beard (RB) sensory neurons in vivo, we discovered a spatiotemporal relationship between centrosome position and the formation of RB peripheral, but not central, axons. We tested centrosome function by laser ablation and found that centrosome disruption inhibited peripheral axon outgrowth. In addition, we show that centrosome position and motility are regulated by LIM homeodomain transcription factor activity, which is specifically required for the development of RB peripheral axons. Furthermore, we show a correlation between centrosome mislocalization and ectopic axon formation in bashful (laminin alpha 1) mutants. Thus, both intrinsic transcription factor activity and extracellular cues can influence centrosome position and axon formation in vivo. This study presents the first positive association between the centrosome and axon formation in vivo and suggests that the centrosome is important for differential neurite formation in neurons with complex axonal morphologies. PMID:22899847

  2. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    SciTech Connect

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator

  3. Mutational Analysis of AREA, a Transcriptional Activator Mediating Nitrogen Metabolite Repression in Aspergillus nidulans and a Member of the “Streetwise” GATA Family of Transcription Factors

    PubMed Central

    Wilson, Richard A.; Arst, Herbert N.

    1998-01-01

    Summary: The transcriptional activator AREA is a member of the GATA family of transcription factors and mediates nitrogen metabolite repression in the fungus Aspergillus nidulans. The nutritional versatility of A. nidulans and its amenability to classical and reverse genetic manipulations make the AREA DNA binding domain (DBD) a useful model for analyzing GATA family DBDs, particularly as structures of two AREA-DNA complexes have been determined. The 109 extant mutant forms of the AREA DBD surveyed here constitute one of the highest totals of eukaryotic transcription factor DBD mutants, are discussed in light of the roles of individual residues, and are compared to corresponding mutant sequence changes in other fungal GATA factor DBDs. Other topics include delineation of the DBD using both homology and mutational truncation, use of frameshift reversion to detect regions of tolerance to mutational change, the finding that duplication of the DBD can apparently enhance AREA function, and use of the AREA system to analyze a vertebrate GATA factor DBD. Some major points to emerge from work on the AREA DBD are (i) tolerance to sequence change (with retention of function) is surprisingly great, (ii) mutational changes in a transcription factor can have widely differing, even opposing, effects on expression of different structural genes so that monitoring expression of one or even several structural genes can be insufficient and possibly misleading, and (iii) a mutational change altering local hydrophobic packing and DNA binding target specificity can markedly influence the behavior of mutational changes elsewhere in the DBD. PMID:9729601

  4. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase

    PubMed Central

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2016-01-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5′- and 3′-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2. PMID:24726898

  5. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase.

    PubMed

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2014-09-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2. PMID:24726898

  6. A PTIP-PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex.

    PubMed

    Starnes, Linda M; Su, Dan; Pikkupeura, Laura M; Weinert, Brian T; Santos, Margarida A; Mund, Andreas; Soria, Rebeca; Cho, Young-Wook; Pozdnyakova, Irina; Kubec Højfeldt, Martina; Vala, Andrea; Yang, Wenjing; López-Méndez, Blanca; Lee, Ji-Eun; Peng, Weiqun; Yuan, Joan; Ge, Kai; Montoya, Guillermo; Nussenzweig, André; Choudhary, Chunaram; Daniel, Jeremy A

    2016-01-15

    Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissected the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We found that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identified a tandem BRCT domain of PTIP that is sufficient for CSR and identified PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP-PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multifunctional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities. PMID:26744420

  7. A PTIP–PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex

    PubMed Central

    Starnes, Linda M.; Su, Dan; Pikkupeura, Laura M.; Weinert, Brian T.; Santos, Margarida A.; Mund, Andreas; Soria, Rebeca; Cho, Young-Wook; Pozdnyakova, Irina; Kubec Højfeldt, Martina; Vala, Andrea; Yang, Wenjing; López-Méndez, Blanca; Lee, Ji-Eun; Peng, Weiqun; Yuan, Joan; Ge, Kai; Montoya, Guillermo; Nussenzweig, André; Choudhary, Chunaram; Daniel, Jeremy A.

    2016-01-01

    Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissected the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We found that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identified a tandem BRCT domain of PTIP that is sufficient for CSR and identified PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP–PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multifunctional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities. PMID:26744420

  8. Antischistosomal Activity of Oxindolimine-Metal Complexes

    PubMed Central

    Dario, Bruno S.; Couto, Ricardo A. A.; Pinto, Pedro L. S.; da Costa Ferreira, Ana M.

    2015-01-01

    In recent years, a class of oxindole-copper and -zinc complex derivatives have been reported as compounds with efficient proapoptotic activity toward different tumor cells (e.g., neuroblastomas, melanomas, monocytes). Here we assessed the efficacy of synthesized oxindole-copper(II), -zinc(II), and -vanadyl (VO2+) complexes against adult Schistosoma mansoni worms. The copper(II) complexes (50% inhibitory concentrations of 30 to 45 μM) demonstrated greater antischistosomal properties than the analogous zinc and vanadyl complexes regarding lethality, reduction of motor activity, and oviposition. PMID:26239976

  9. Antischistosomal Activity of Oxindolimine-Metal Complexes.

    PubMed

    de Moraes, Josué; Dario, Bruno S; Couto, Ricardo A A; Pinto, Pedro L S; da Costa Ferreira, Ana M

    2015-10-01

    In recent years, a class of oxindole-copper and -zinc complex derivatives have been reported as compounds with efficient proapoptotic activity toward different tumor cells (e.g., neuroblastomas, melanomas, monocytes). Here we assessed the efficacy of synthesized oxindole-copper(II), -zinc(II), and -vanadyl (VO(2+)) complexes against adult Schistosoma mansoni worms. The copper(II) complexes (50% inhibitory concentrations of 30 to 45 μM) demonstrated greater antischistosomal properties than the analogous zinc and vanadyl complexes regarding lethality, reduction of motor activity, and oviposition. PMID:26239976

  10. A Novel Histone Deacetylase Complex in the Control of Transcription and Genome Stability

    PubMed Central

    Zilio, Nicola; Codlin, Sandra; Vashisht, Ajay A.; Bitton, Danny A.; Head, Steven R.; Wohlschlegel, James A.; Bähler, Jürg

    2014-01-01

    The acetylation state of histones, controlled by histone acetyltransferases (HATs) and deacetylases (HDACs), profoundly affects DNA transcription and repair by modulating chromatin accessibility to the cellular machinery. The Schizosaccharomyces pombe HDAC Clr6 (human HDAC1) binds to different sets of proteins that define functionally distinct complexes: I, I′, and II. Here, we determine the composition, architecture, and functions of a new Clr6 HDAC complex, I′′, delineated by the novel proteins Nts1, Mug165, and Png3. Deletion of nts1 causes increased sensitivity to genotoxins and deregulated expression of Tf2 elements, long noncoding RNA, and subtelomeric and stress-related genes. Similar, but more pervasive, phenotypes are observed upon Clr6 inactivation, supporting the designation of complex I′′ as a mediator of a key subset of Clr6 functions. We also reveal that with the exception of Tf2 elements, the genome-wide loading sites and loci regulated by Clr6 I″ do not correlate. Instead, Nts1 loads at genes that are expressed in midmeiosis, following oxidative stress, or are periodically expressed. Collective data suggest that Clr6 I′′ has (i) indirect effects on gene expression, conceivably by mediating higher-order chromatin organization of subtelomeres and Tf2 elements, and (ii) direct effects on the transcription of specific genes in response to certain cellular or environmental stimuli. PMID:25002536

  11. A Region of Bdp1 Necessary for Transcription Initiation That Is Located within the RNA Polymerase III Active Site Cleft.

    PubMed

    Hu, Hui-Lan; Wu, Chih-Chien; Lee, Jin-Cheng; Chen, Hung-Ta

    2015-08-01

    The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation. PMID:26055328

  12. A Region of Bdp1 Necessary for Transcription Initiation That Is Located within the RNA Polymerase III Active Site Cleft

    PubMed Central

    Hu, Hui-Lan; Wu, Chih-Chien; Lee, Jin-Cheng

    2015-01-01

    The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation. PMID:26055328

  13. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome

    PubMed Central

    Misulovin, Ziva; Schwartz, Yuri B.; Li, Xiao-Yong; Kahn, Tatyana G.; Gause, Maria; MacArthur, Stewart; Fay, Justin C.; Eisen, Michael B.; Pirrotta, Vincenzo; Biggin, Mark D.

    2008-01-01

    The cohesin complex is a chromosomal component required for sister chromatid cohesion that is conserved from yeast to man. The similarly conserved Nipped-B protein is needed for cohesin to bind to chromosomes. In higher organisms, Nipped-B and cohesin regulate gene expression and development by unknown mechanisms. Using chromatin immunoprecipitation, we find that Nipped-B and cohesin bind to the same sites throughout the entire non-repetitive Drosophila genome. They preferentially bind transcribed regions and overlap with RNA polymerase II. This contrasts sharply with yeast, where cohesin binds almost exclusively between genes. Differences in cohesin and Nipped-B binding between Drosophila cell lines often correlate with differences in gene expression. For example, cohesin and Nipped-B bind the Abd-B homeobox gene in cells in which it is transcribed, but not in cells in which it is silenced. They bind to the Abd-B transcription unit and downstream regulatory region and thus could regulate both transcriptional elongation and activation. We posit that transcription facilitates cohesin binding, perhaps by unfolding chromatin, and that Nipped-B then regulates gene expression by controlling cohesin dynamics. These mechanisms are likely involved in the etiology of Cornelia de Lange syndrome, in which mutation of one copy of the NIPBL gene encoding the human Nipped-B ortholog causes diverse structural and mental birth defects. PMID:17965872

  14. LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model.

    PubMed

    Xu, Fenghao; Addis, Jane B L; Cameron, Jessie M; Robinson, Brian H

    2012-01-01

    LRPPRC (leucine-rich pentatricopeptide repeat-containing) has been shown to be essential for the maturation of COX (cytochrome c oxidase), possibly by stabilizing RNA transcripts of COXI, COXII and COXIII genes encoded in mtDNA (mitochondrial DNA). We established a mouse 'gene-trap' model using ES cells (embryonic stem cells) in which the C-terminus of LRPPRC has been replaced with a β-geo construct. Mice homozygous for this modification were found to be subject to embryonic lethality, with death before 12.5 dpc (days post-coitum). Biochemical analysis of MEFs (mouse embryonic fibroblasts) isolated from homozygous mutants showed a major decrease in COX activity, with slight reductions in other respiratory chain complexes with mtDNA encoded components. Constructs of LRPPRC containing different numbers of PPRs (pentatricopeptide repeats) were expressed as recombinant proteins and tested for their ability to bind to the COXI mRNA transcript. Full binding required the first 19 PPR motifs. A specific segment of COXI mRNA was identified as the binding target for LRPPRC, encoded by mouse mtDNA nucleotides 5961-6020. These data strongly suggest that LRPPRC is involved in the maturation of COX, and is involved in stabilizing of mitochondrial mRNAs encoding COX transcripts. PMID:21880015

  15. Positive Control Mutations in the MyoD Basic Region Fail to Show Cooperative DNA Binding and Transcriptional Activation in vitro

    NASA Astrophysics Data System (ADS)

    Bengal, Eyal; Flores, Osvaldo; Rangarajan, Pundi N.; Chen, Amy; Weintraub, Harold; Verma, Inder M.

    1994-06-01

    An in vitro transcription system from HeLa cells has been established in which MyoD and E47 proteins activate transcription both as homodimers and heterodimers. However, heterodimers activate transcription more efficiently than homodimers, and function synergistically from multiple binding sites. Positive control mutants in the basic region of MyoD that have previously been shown to be defective in initiating the myogenic program, can bind DNA but have lost their ability to function as transcriptional activators in vitro. Additionally, positive control mutants, unlike wild-type MyoD, fail to bind cooperatively to DNA. We propose that binding of MyoD complexes to high affinity MyoD binding sites induces conformational changes that facilitate cooperative binding to multiple sites and promote transcriptional activation.

  16. N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas

    PubMed Central

    Chen, Kai; Deng, Xin; Yu, Miao; Han, Dali; Hao, Ziyang; Liu, Jianzhao; Lu, Xingyu; Dore, Louis C; Weng, Xiaocheng; Ji, Quanjiang; Mets, Laurens; He, Chuan

    2015-01-01

    SUMMARY N6-methyldeoxyadenosine (6mA or m6A) is a DNA modification preserved in prokaryotes to eukaryotes. It is widespread in bacteria, and functions in DNA mismatch repair, chromosome segregation, and virulence regulation. In contrast, the distribution and function of 6mA in eukaryotes have been unclear. Here we present a comprehensive analysis of the 6mA landscape in the genome of Chlamydomonas using new sequencing approaches. We identified the 6mA modification in 84% of genes in Chlamydomonas. We found that 6mA mainly locates at ApT dinucleotides around transcription start sites (TSS) with a bimodal distribution, and appears to mark active genes. A periodic pattern of 6mA deposition was also observed at base resolution, which is associated with nucleosome distribution near the TSS, suggesting a possible role in nucleosome positioning. The new genome-wide mapping of 6mA and its unique distribution in the Chlamydomonas genome suggest potential regulatory roles of 6mA in gene expression in eukaryotic organisms. PMID:25936837

  17. Transcription factor PIF4 controls the thermosensory activation of flowering.

    PubMed

    Kumar, S Vinod; Lucyshyn, Doris; Jaeger, Katja E; Alós, Enriqueta; Alvey, Elizabeth; Harberd, Nicholas P; Wigge, Philip A

    2012-04-12

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. PMID:22437497

  18. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative.

    PubMed Central

    Adams, C C; Workman, J L

    1995-01-01

    To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo. PMID:7862134

  19. In simple synthetic promoters YY1-induced DNA bending is important in transcription activation and repression.

    PubMed Central

    Kim, J; Shapiro, D J

    1996-01-01

    Depending on promoter context, YY1 can activate or repress transcription, or provide a site for transcription initiation. To investigate whether the ability of YY1 to induce DNA bending influenced its ability to activate and repress transcription, simple synthetic promoters were constructed in which the YY1 binding site was inserted between the TATA box and either the NF1 or AP1 recognition sequences. In transient transfections of COS cells, the NF1YY1TATA and NF1RYY1TATA promoters exhibited a dramatic 15-20-fold increase in correctly initiated transcription. These promoters exhibited even larger 60-80-fold increases in transcription in HeLa cells. Neither multiple copies of the YY1 binding site alone, nor placement of a YY1 site upstream of the NF1 site activated transcription. Deletion of 4 bp between the NF1 and YY1 sites, which changes the phase of the DNA bends, abolished the 16-fold activation of transcription by NF1YY1TATA. Insertion of the YY1 site between the AP1 site and the TATA box decreased transcription approximately 3-fold. Replacing the YY1 binding site with an intrinsic DNA bending sequence mimicked this transcription repression. Sequences of similar length which do not bend DNA fail to repress AP1-mediated transcription. Gel mobility shift assays were used to show that binding of YY1 to its recognition sequence did not repress binding of AP1 to its recognition sequences. Our data indicate that YY1-induced DNA bending may activate and repress transcription by changing the spatial relationships between transcription activators and components of the basal transcription apparatus. PMID:8932392

  20. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription

    PubMed Central

    Bonnet, Jacques; Wang, Chen-Yi; Baptista, Tiago; Vincent, Stéphane D.; Hsiao, Wei-Chun; Stierle, Matthieu; Kao, Cheng-Fu; Tora, László

    2014-01-01

    The SAGA (Spt–Ada–Gcn5 acetyltransferase) coactivator complex contains distinct chromatin-modifying activities and is recruited by DNA-bound activators to regulate the expression of a subset of genes. Surprisingly, recent studies revealed little overlap between genome-wide SAGA-binding profiles and changes in gene expression upon depletion of subunits of the complex. As indicators of SAGA recruitment on chromatin, we monitored in yeast and human cells the genome-wide distribution of histone H3K9 acetylation and H2B ubiquitination, which are respectively deposited or removed by SAGA. Changes in these modifications after inactivation of the corresponding enzyme revealed that SAGA acetylates the promoters and deubiquitinates the transcribed region of all expressed genes. In agreement with this broad distribution, we show that SAGA plays a critical role for RNA polymerase II recruitment at all expressed genes. In addition, through quantification of newly synthesized RNA, we demonstrated that SAGA inactivation induced a strong decrease of mRNA synthesis at all tested genes. Analysis of the SAGA deubiquitination activity further revealed that SAGA acts on the whole transcribed genome in a very fast manner, indicating a highly dynamic association of the complex with chromatin. Thus, our study uncovers a new function for SAGA as a bone fide cofactor for all RNA polymerase II transcription. PMID:25228644

  1. SM-TF: A structural database of small molecule-transcription factor complexes.

    PubMed

    Xu, Xianjin; Ma, Zhiwei; Sun, Hongmin; Zou, Xiaoqin

    2016-06-30

    Transcription factors (TFs) are the proteins involved in the transcription process, ensuring the correct expression of specific genes. Numerous diseases arise from the dysfunction of specific TFs. In fact, over 30 TFs have been identified as therapeutic targets of about 9% of the approved drugs. In this study, we created a structural database of small molecule-transcription factor (SM-TF) complexes, available online at http://zoulab.dalton.missouri.edu/SM-TF. The 3D structures of the co-bound small molecule and the corresponding binding sites on TFs are provided in the database, serving as a valuable resource to assist structure-based drug design related to TFs. Currently, the SM-TF database contains 934 entries covering 176 TFs from a variety of species. The database is further classified into several subsets by species and organisms. The entries in the SM-TF database are linked to the UniProt database and other sequence-based TF databases. Furthermore, the druggable TFs from human and the corresponding approved drugs are linked to the DrugBank. © 2016 Wiley Periodicals, Inc. PMID:27010673

  2. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes

    PubMed Central

    Zhang, Lu; Silva, Daniel-Adriano; Pardo-Avila, Fátima; Wang, Dong; Huang, Xuhui

    2015-01-01

    The RNA polymerase II (Pol II) is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the “secondary channel” is the only route for NTP to reach the active site of the enzyme or if the “main channel” could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB) is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP) substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD) simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription. PMID:26134169

  3. The Modifier of Transcription 1 (Mot1) ATPase and Spt16 Histone Chaperone Co-regulate Transcription through Preinitiation Complex Assembly and Nucleosome Organization.

    PubMed

    True, Jason D; Muldoon, Joseph J; Carver, Melissa N; Poorey, Kunal; Shetty, Savera J; Bekiranov, Stefan; Auble, David T

    2016-07-15

    Modifier of transcription 1 (Mot1) is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the facilitates chromatin transcription (FACT) histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. On a global scale, Spt16 was required for Mot1 promoter localization, and Mot1 also affected Spt16 localization to genes. Interestingly, we found that Mot1 has an unanticipated role in establishing or maintaining the occupancy and positioning of nucleosomes at the 5' ends of genes. Spt16 has a broad role in regulating chromatin organization in gene bodies, including those nucleosomes affected by Mot1. These results suggest that the large scale overlap in Mot1 and Spt16 function arises from a combination of both their unique and shared functions in transcription complex assembly and chromatin structure regulation. PMID:27226635

  4. SUMO-activating SAE1 transcription is positively regulated by Myc

    PubMed Central

    Amente, Stefano; Lavadera, Miriam Lubrano; Palo, Giacomo Di; Majello, Barbara

    2012-01-01

    Myc protein plays a fundamental role in regulation of cell cycle, proliferation, differentiation and apoptosis by modulating the expression of a large number of targets. Here we report the transactivation ability of the human Myc protein to activate the SUMO-activating enzyme SAE1 transcription. We found that Myc activates SAE1 transcription via direct binding to canonical E-Boxes sequences located close to the SAE1 transcription start site. A recent report has highlighted the crucial role of the SAE gene expression in Myc mediated oncogenesis. Our study adds new insight in this context since we show here that Myc directly activates SAE1 transcription, suggesting that Myc oncogenic activity which depends on SAE1 is ensured by Myc itself through direct binding and transcriptional activation of SAE1 expression. PMID:22679563

  5. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.

    PubMed

    Meyer, Sarai; Chappell, James; Sankar, Sitara; Chew, Rebecca; Lucks, Julius B

    2016-01-01

    Regulatory RNAs have become integral components of the synthetic biology and bioengineering toolbox for controlling gene expression. We recently expanded this toolbox by creating small transcription activating RNAs (STARs) that act by disrupting the formation of a target transcriptional terminator hairpin placed upstream of a gene. While STARs are a promising addition to the repertoire of RNA regulators, much work remains to be done to optimize the fold activation of these systems. Here we apply rational RNA engineering strategies to improve the fold activation of two STAR regulators. We demonstrate that a combination of promoter strength tuning and multiple RNA engineering strategies can improve fold activation from 5.4-fold to 13.4-fold for a STAR regulator derived from the pbuE riboswitch terminator. We then validate the generality of our approach and show that these same strategies improve fold activation from 2.1-fold to 14.6-fold for an unrelated STAR regulator, opening the door to creating a range of additional STARs to use in a broad array of biotechnologies. We also establish that the optimizations preserve the orthogonality of these STARs between themselves and a set of RNA transcriptional repressors, enabling these optimized STARs to be used in sophisticated circuits. PMID:26134708

  6. Hepatitis C virus nonstructural region 5A protein is a potent transcriptional activator.

    PubMed Central

    Kato, N; Lan, K H; Ono-Nita, S K; Shiratori, Y; Omata, M

    1997-01-01

    The hepatitis C virus (HCV) nonstructural region 5A (NS5A) protein, without its 146 amino-terminal amino acids and fused to the DNA-binding domain of GAL4, strongly activates transcription in yeast and human hepatoma cells. Transcriptional activation by the HCV NS5A protein may play a role in viral replication and hepatocarcinogenesis. PMID:9343247

  7. A modified reverse one-hybrid screen identifies transcriptional activation in Phyochrome-Interacting Factor 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional activation domains (TAD) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput...

  8. Molecular anatomy of the thalamic complex and the underlying transcription factors.

    PubMed

    Nagalski, Andrzej; Puelles, Luis; Dabrowski, Michal; Wegierski, Tomasz; Kuznicki, Jacek; Wisniewska, Marta B

    2016-06-01

    Thalamocortical loops have been implicated in the control of higher-order cognitive functions, but advances in our understanding of the molecular underpinnings of neocortical organization have not been accompanied by similar analyses in the thalamus. Using expression-based correlation maps and the manual mapping of mouse and human datasets available in the Allen Brain Atlas, we identified a few individual regions and several sets of molecularly related nuclei that partially overlap with the classic grouping that is based on topographical localization and thalamocortical connections. These new molecular divisions of the adult thalamic complex are defined by the combinatorial expression of Tcf7l2, Lef1, Gbx2, Prox1, Pou4f1, Esrrg, and Six3 transcription factor genes. Further in silico and experimental analyses provided the evidence that TCF7L2 might be a pan-thalamic specifier. These results provide substantial insights into the "molecular logic" that underlies organization of the thalamic complex. PMID:25963709

  9. Association of Transcription Factor IIA with TATA Binding Protein Is Required for Transcriptional Activation of a Subset of Promoters and Cell Cycle Progression in Saccharomyces cerevisiae

    PubMed Central

    Ozer, Josef; Lezina, Larissa E.; Ewing, Joshua; Audi, Salma; Lieberman, Paul M.

    1998-01-01

    The general transcription factor IIA (TFIIA) interacts with the TATA binding protein (TBP) and promoter DNA to mediate transcription activation in vitro. To determine if this interaction is generally required for activation of all class II genes in vivo, we have constructed substitution mutations in yeast TFIIA which compromise its ability to bind TBP. Substitution mutations in the small subunit of TFIIA (Toa2) at residue Y69 or W76 significantly impaired the ability of TFIIA to stimulate TBP-promoter binding in vitro. Gene replacement of wild-type TOA2 with a W76E or Y69A/W76A mutant was lethal in Saccharomyces cerevisiae, while the Y69F/W76F mutant exhibited extremely slow growth at 30°C. Both the Y69A and W76A mutants were conditionally lethal at higher temperatures. Light microscopy indicated that viable toa2 mutant strains accumulate as equal-size dumbbells and multibudded clumps. Transcription of the cell cycle-regulatory genes CLB1, CLB2, CLN1, and CTS1 was significantly reduced in the toa2 mutant strains, while the noncycling genes PMA1 and ENO2 were only modestly affected, suggesting that these toa2 mutant alleles disrupt cell cycle progression. The differential effect of these toa2 mutants on gene transcription was examined for a number of other genes. toa2 mutant strains supported high levels of CUP1, PHO5, TRP3, and GAL1 gene activation, but the constitutive expression of DED1 was significantly reduced. Activator-induced start site expression for HIS3, GAL80, URA1, and URA3 promoters was defective in toa2 mutant strains, suggesting that the TFIIA-TBP complex is important for promoters which require an activator-dependent start site selection from constitutive to regulated expression. We present evidence to indicate that transcription defects in toa2 mutants can be both activator and promoter dependent. These results suggest that the association of TFIIA with TBP regulates activator-induced start site selection and cell cycle progression in S

  10. Spectroscopic Elucidation of the Inhibitory Mechanism of Cys2His2 Zinc Finger Transcription Factors by CobaltIII Schiff Base Complexes

    PubMed Central

    Heffern, Marie C.; Kurutz, Josh

    2014-01-01

    Transcription factors are key regulators in both normal and pathological cell processes. Affecting the activity of these proteins is a promising strategy for understanding gene regulation and developing effective therapeutics. CoIII Schiff base complexes ([Co(acacen)(L)2]+ where L = labile axial ligands) have been shown to be potent inhibitors of a number of zinc metalloproteins including Cys2His2 zinc finger transcription factors. Inhibition by [Co(acacen)(L)2]+ of the target protein is believed to occur through a dissociative exchange of the labile axial ligands for histidine (His) residues essential for function. Here, we report a series of spectroscopic investigations with model peptides of zinc fingers that elucidate the interaction between [Co(acacen)(L)2]+ complexes and zinc finger transcription factors. Observed changes in NMR chemical shifts and 2D 1H-1H NOESY NMR spectra demonstrate the preference of [Co(acacen)(L)2]+ complexes to coordinate His residues over other amino acids. The conformation of [Co(acacen)(L)2]+ upon His-coordination was characterized by 1H NMR, near-UV circular dichroism, and electronic absorption. These studies reveal that the resulting His-coordinated [Co(acacen)(L)2]+ complex possesses an octahedral structure. The effects of [Co(acacen)(L)2]+ complexes on the zinc finger structure were assessed by the degree of hydrogen bonding (probed by 2D NMR) and secondary structure profiles measured by far-UV circular dichroism. These structural studies demonstrate the ability of [Co(acacen)(L)2]+ complexes to disrupt the ββα structure of zinc fingers, resulting in primarily random coil conformations. A mechanism is described wherein [Co(acacen)(L)2]+ complexes inhibit zinc finger transcription factor activity through selectively coordinating His residues in the zinc finger via dissociative ligand exchange and disrupting the ββα structural motif required for gene regulation. PMID:24203451

  11. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain.

    PubMed Central

    Kirkpatrick, D T; Fan, Q; Petes, T D

    1999-01-01

    The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, alpha (transcription factor dependent) and beta (transcription factor independent). PMID:10224246

  12. Urea-inducible Egr-1 transcription in renal inner medullary collecting duct (mIMCD3) cells is mediated by extracellular signal-regulated kinase activation.

    PubMed Central

    Cohen, D M

    1996-01-01

    Urea (200-400 milliosmolar) activates transcription, translation of, and trans-activation by the immediate-early gene transcription factor Egr-1 in a renal epithelial cell-specific fashion. The effect at the transcriptional level has been attributed to multiple serum response elements and their adjacent Ets motifs located within the Egr-1 promoter. Elk-1, a principal ternary complex factor and Ets domain-containing protein, is a substrate of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. In the renal medullary mIMCD3 cell line, urea (200-400 milliosmolar) activated both ERK1 and ERK2 as determined by in-gel kinase assay and immune-complex kinase assay of epitope-tagged] ERK1 and ERK2. Importantly, urea did not affect abundance of either ERK. Urea-inducible Egr-1 transcription was a consequence of ERK activation because the ERK-specific inhibitor, PD98059, abrogated transcription from the murine Egr-1 promoter in a luciferase reported gene assay. In addition, activators of protein kinase A, including forskolin and 8-Br-cAMP, which are known to inhibit ERK-mediated events, also inhibited urea-inducible Egr-1 transcription. Furthermore, urea-inducible activation of the physiological ERK substrate and transcription factor, Elk-1, was demonstrated through transient cotransfection of a chimeric Elk-1/GAL4 expression plasmid and a GAL4-driven luciferase reporter plasmid. Taken together, these data indicate that, in mIMCD3 cells, urea activates ERKs and the ERK substrate, Elk-1, and that ERK inhibition abrogates urea-inducible Egr-1 transcription. These data are consistent with a model of urea-inducible renal medullary gene expression wherein sequential activation of ERKs and Elk-1 results in increased transcription of Egr-1 through serum response element/Ets motifs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8855340

  13. Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae.

    PubMed Central

    Woontner, M; Wade, P A; Bonner, J; Jaehning, J A

    1991-01-01

    We report an improved in vitro transcription system for Saccharomyces cerevisiae. Small changes in assay and whole-cell extraction procedures increase selective initiation by RNA polymerase II up to 60-fold over previous conditions (M. Woontner and J. A. Jaehning, J. Biol. Chem. 265:8979-8982, 1990), to levels comparable to those obtained with nuclear extracts. We have found that the simultaneous use of distinguishable templates with and without an upstream activation sequence is critical to the measurement of apparent activation. Transcription from any template was very sensitive to the concentrations of template and nontemplate DNA, extract, and activator (GAL4/VP16). Alterations in reaction conditions led to proportionately greater changes from a template lacking an upstream activation sequence; thus, the apparent ratio of activation is largely dependent on the level of basal transcription. Using optimal conditions for activation, we have also demonstrated activation by a bona fide yeast activator, heat shock transcription factor. Images PMID:1875938

  14. Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae.

    PubMed

    Woontner, M; Wade, P A; Bonner, J; Jaehning, J A

    1991-09-01

    We report an improved in vitro transcription system for Saccharomyces cerevisiae. Small changes in assay and whole-cell extraction procedures increase selective initiation by RNA polymerase II up to 60-fold over previous conditions (M. Woontner and J. A. Jaehning, J. Biol. Chem. 265:8979-8982, 1990), to levels comparable to those obtained with nuclear extracts. We have found that the simultaneous use of distinguishable templates with and without an upstream activation sequence is critical to the measurement of apparent activation. Transcription from any template was very sensitive to the concentrations of template and nontemplate DNA, extract, and activator (GAL4/VP16). Alterations in reaction conditions led to proportionately greater changes from a template lacking an upstream activation sequence; thus, the apparent ratio of activation is largely dependent on the level of basal transcription. Using optimal conditions for activation, we have also demonstrated activation by a bona fide yeast activator, heat shock transcription factor. PMID:1875938

  15. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  16. MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta.

    PubMed

    Chang, Li-Kwan; Chuang, Jian-Ying; Nakao, Mitsuyoshi; Liu, Shih-Tung

    2010-08-01

    Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle. The two proteins often collaborate to activate the transcription of EBV lytic genes synergistically. This study demonstrates that Rta and Zta form a complex via an intermediary protein, MCAF1, on Zta response element (ZRE) in vitro. The interaction among these three proteins in P3HR1 cells is also verified via coimmunoprecipitation, CHIP analysis and confocal microscopy. The interaction between Rta and Zta in vitro depends on the region between amino acid 562 and 816 in MCAF1. In addition, overexpressing MCAF1 enhances and introducing MCAF1 siRNA into the cells markedly reduces the level of the synergistic activation in 293T cells. Moreover, the fact that the synergistic activation depends on ZRE but not on Rta response element (RRE) originates from the fact that Rta and Zta are capable of activating the BMRF1 promoter synergistically after an RRE but not ZREs in the promoter are mutated. The binding of Rta-MCAF1-Zta complex to ZRE but not RRE also explains why Rta and Zta do not use RRE to activate transcription synergistically. Importantly, this study elucidates the mechanism underlying synergistic activation, which is important to the lytic development of EBV. PMID:20385599

  17. Active transcription and essential role of RNA polymerase II at the centromere during mitosis

    PubMed Central

    Chan, F. Lyn; Marshall, Owen J.; Saffery, Richard; Won Kim, Bo; Earle, Elizabeth; Choo, K. H. Andy; Wong, Lee H.

    2012-01-01

    Transcription of the centromeric regions has been reported to occur in G1 and S phase in different species. Here, we investigate whether transcription also occurs and plays a functional role at the mammalian centromere during mitosis. We show the presence of actively transcribing RNA polymerase II (RNAPII) and its associated transcription factors, coupled with the production of centromere satellite transcripts at the mitotic kinetochore. Specific inhibition of RNAPII activity during mitosis leads to a decrease in centromeric α-satellite transcription and a concomitant increase in anaphase-lagging cells, with the lagging chromosomes showing reduced centromere protein C binding. These findings demonstrate an essential role of RNAPII in the transcription of α-satellite DNA, binding of centromere protein C, and the proper functioning of the mitotic kinetochore. PMID:22308327

  18. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    PubMed Central

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O’Brien, Edward J.; Szubin, Richard; Palsson, Bernhard O.

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements (ChIP-exo and RNA-seq). Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism, and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability. PMID:25222563

  19. EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors

    PubMed Central

    2012-01-01

    Background Tristetraprolin (TTP) is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by a spectrum of both pro- and anti-inflammatory cytokines, mitogens and drugs in a MAPK-dependent manner. So far the contribution of p38 MAPK to the regulation of TTP expression and function has been best described. Results Our results demonstrate the induction of the gene coding TTP (ZFP36) by EGF through the ERK1/2-dependent pathway and implicates the transcription factor ELK-1 in this process. We show that ELK-1 regulates ZFP36 expression by two mechanisms: by binding the ZFP36 promoter directly through ETS-binding site (+ 883 to +905 bp) and by inducing expression of EGR-1, which in turn increases ZFP36 expression through sequences located between -111 and -103 bp. Conclusions EGF activates TTP expression via ELK-1 and EGR-1 transcription factors. PMID:22433566

  20. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators.

    PubMed

    Rekdal, C; Sjøttem, E; Johansen, T

    2000-12-22

    SPBP (stromelysin-1 platelet-derived growth factor-responsive element binding protein) was originally cloned from a cDNA expression library by virtue of its ability to bind to a platelet-derived growth factor-responsive element in the human stromelysin-1 promoter. A 937-amino acid-long protein was deduced from a 3995-nucleotide murine cDNA sequence. By analyses of both human and murine cDNAs, we now show that SPBP is twice as large as originally found. The human SPBP gene contains six exons and is located on chromosome 22q13.1-13.3. Two isoforms differing in their C termini are expressed due to alternative splicing. PCR analyses of multitissue cDNA panels showed that SPBP is expressed in most tissues except for ovary and prostate. Functional mapping revealed that SPBP is a nuclear, multidomain protein containing an N-terminal region with transactivating ability, a novel type of DNA-binding domain containing an AT hook motif, and a bipartite nuclear localization signal as well as a C-terminal zinc finger domain. This type of zinc finger domain is also found in the trithorax family of chromatin-based transcriptional regulator proteins. Using cotransfection experiments, we find that SPBP enhances the transcriptional activity of various transcription factors such as c-Jun, Ets1, Sp1, and Pax6. Hence, SPBP seems to act as a transcriptional coactivator. PMID:10995766

  1. Transcriptional activation upon pheromone stimulation mediated by a small domain of Saccharomyces cerevisiae Ste12p.

    PubMed Central

    Pi, H; Chien, C T; Fields, S

    1997-01-01

    In the yeast Saccharomyces cerevisiae, Ste12p induces transcription of pheromone-responsive genes by binding to a DNA sequence designated the pheromone response element. We generated a series of hybrid proteins of Ste12p with the DNA-binding and activation domains of the transcriptional activator Gal4p to define a pheromone induction domain of Ste12p sufficient to mediate pheromone-induced transcription by these hybrid proteins. A minimal pheromone induction domain, delineated as residues 301 to 335 of Ste12p, is dependent on the pheromone mitogen-activated protein (MAP) kinase pathway for induction activity. Mutation of the three serine and threonine residues within the minimal pheromone induction domain did not affect transcriptional induction, indicating that the activity of this domain is not directly regulated by MAP kinase phosphorylation. By contrast, mutation of the two tyrosines or their preceding acidic residues led to a high level of transcriptional activity in the absence of pheromone and consequently to the loss of pheromone induction. This constitutively high activity was not affected by mutations in the MAP kinase cascade, suggesting that the function of the pheromone induction domain is normally repressed in the absence of pheromone. By two-hybrid analysis, this minimal domain interacts with two negative regulators, Dig1p and Dig2p (also designated Rst1p and Rst2p), and the interaction is abolished by mutation of the tyrosines. The pheromone induction domain itself has weak and inducible transcriptional activity, and its ability to potentiate transcription depends on the activity of an adjacent activation domain. These results suggest that the pheromone induction domain of Ste12p mediates transcriptional induction via a two-step process: the relief of repression and synergistic transcriptional activation with another activation domain. PMID:9343403

  2. Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Crowe, Mark L; Chalk, Alistair M; Waddell, Nic J; Kolle, Gabriel; Faulkner, Geoffrey J; Kodzius, Rimantas; Katayama, Shintaro; Wells, Christine; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Alternative transcripts of protein kinases and protein phosphatases are known to encode peptides with altered substrate affinities, subcellular localizations, and activities. We undertook a systematic study to catalog the variant transcripts of every protein kinase-like and phosphatase-like locus of mouse . Results By reviewing all available transcript evidence, we found that at least 75% of kinase and phosphatase loci in mouse generate alternative splice forms, and that 44% of these loci have well supported alternative 5' exons. In a further analysis of full-length cDNAs, we identified 69% of loci as generating more than one peptide isoform. The 1,469 peptide isoforms generated from these loci correspond to 1,080 unique Interpro domain combinations, many of which lack catalytic or interaction domains. We also report on the existence of likely dominant negative forms for many of the receptor kinases and phosphatases, including some 26 secreted decoys (seven known and 19 novel: Alk, Csf1r, Egfr, Epha1, 3, 5,7 and 10, Ephb1, Flt1, Flt3, Insr, Insrr, Kdr, Met, Ptk7, Ptprc, Ptprd, Ptprg, Ptprl, Ptprn, Ptprn2, Ptpro, Ptprr, Ptprs, and Ptprz1) and 13 transmembrane forms (four known and nine novel: Axl, Bmpr1a, Csf1r, Epha4, 5, 6 and 7, Ntrk2, Ntrk3, Pdgfra, Ptprk, Ptprm, Ptpru). Finally, by mining public gene expression data (MPSS and microarrays), we confirmed tissue-specific expression of ten of the novel isoforms. Conclusion These findings suggest that alternative transcripts of protein kinases and phosphatases are produced that encode different domain structures, and that these variants are likely to play important roles in phosphorylation-dependent signaling pathways. PMID:16507138

  3. Contrahelicase activity of the mitochondrial transcription termination factor mtDBP

    PubMed Central

    Polosa, Paola Loguercio; Deceglie, Stefania; Roberti, Marina; Gadaleta, Maria Nicola; Cantatore, Palmiro

    2005-01-01

    The sea urchin mitochondrial D-loop binding protein (mtDBP) is a transcription termination factor that is able to arrest bidirectionally mitochondrial RNA chain elongation. The observation that the mtDBP binding site in the main non-coding region is located in correspondence of the 3′ end of the triplex structure, where the synthesis of heavy strand mitochondrial (mt) DNA is either prematurely terminated or allowed to continue, raised the question whether mtDBP could also regulate mtDNA replication. By using a helicase assay in the presence of the replicative helicase of SV40, we show that mtDBP is able to inhibit the enzyme thus acting as a contrahelicase. The impairing activity of mtDBP is bidirectional as it is independent of the orientation of the protein binding site. The inhibition is increased by the presence of the guanosine-rich sequence that flanks mtDBP binding site. Finally, a mechanism of abrogation of mtDBP contrahelicase activity is suggested that is based on the dissociation of mtDBP from DNA caused by the passage of the RNA polymerase through the protein–DNA complex. All these findings favour the view that mtDBP, besides serving as transcription termination factor, could also act as a negative regulator of mtDNA synthesis at the level of D-loop expansion. PMID:16006625

  4. O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities.

    PubMed

    Ha, Changhoon; Lim, Kihong

    2015-11-13

    The addition of O-linked N-acetylglucosamine (O-GlcNAc) on serine or threonine modifies a myriad of proteins and regulates their function, stability and localization. O-GlcNAc modification is common among chromosome-associated proteins, such as transcription factors, suggesting its extensive involvement in gene expression regulation. In this study, we demonstrate the O-GlcNAc status of the Sp family members of transcription factors and the functional impact on their transcriptional activities. We highlight the presence of O-GlcNAc residues in Sp3 and Sp4, but not Sp2, as demonstrated by their enrichment in GlcNAc positive protein fractions and by detection of O-GlcNAc residues on Sp3 and Sp4 co-expressed in Escherichia coli together with O-GlcNAc transferase (OGT) using an O-GlcNAc-specific antibody. Deletion mutants of Sp3 and Sp4 indicate that the majority of O-GlcNAc sites reside in their N-terminal transactivation domain. Overall, using reporter gene assays and co-immunoprecipitations, we demonstrate a functional inhibitory role of O-GlcNAc modifications in Sp3 and Sp4 transcription factors. Thereby, our study strengthens the current notion that O-GlcNAc modification is an important regulator of protein interactome. PMID:26431879

  5. Antiretroviral activity of thiosemicarbazone metal complexes.

    PubMed

    Pelosi, Giorgio; Bisceglie, Franco; Bignami, Fabio; Ronzi, Paola; Schiavone, Pasqualina; Re, Maria Carla; Casoli, Claudio; Pilotti, Elisabetta

    2010-12-23

    Thiosemicarbazones display a wide antimicrobial activity by targeting bacteria, fungi, and viruses. Here, we report our studies on the antiviral activity of two thiosemicarbazone metal complexes, [bis(citronellalthiosemicarbazonato)nickel(II)] and [aqua(pyridoxalthiosemicarbazonato)copper(II)] chloride monohydrate, against the retroviruses HIV-1 and HTLV-1/-2. Both compounds exhibit antiviral properties against HIV but not against HTLVs . In particular, the copper complex shows the most potent anti-HIV activity by acting at the post-entry steps of the viral cycle. PMID:21121632

  6. A network of interdependent molecular interactions describes a higher order Nrd1-Nab3 complex involved in yeast transcription termination.

    PubMed

    Loya, Travis J; O'Rourke, Thomas W; Degtyareva, Natalya; Reines, Daniel

    2013-11-22

    Nab3 and Nrd1 are yeast heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins that heterodimerize and bind RNA. Genetic and biochemical evidence reveals that they are integral to the termination of transcription of short non-coding RNAs by RNA polymerase II. Here we define a Nab3 mutation (nab3Δ134) that removes an essential part of the protein's C terminus but nevertheless can rescue, in trans, the phenotype resulting from a mutation in the RNA recognition motif of Nab3. This low complexity region of Nab3 appears intrinsically unstructured and can form a hydrogel in vitro. These data support a model in which multiple Nrd1-Nab3 heterodimers polymerize onto substrate RNA to effect termination, allowing complementation of one mutant Nab3 molecule by another lacking a different function. The self-association property of Nab3 adds to the previously documented interactions between these hnRNP-like proteins, RNA polymerase II, and the nascent transcript, leading to a network of nucleoprotein interactions that define a higher order Nrd1-Nab3 complex. This was underscored from the synthetic phenotypes of yeast strains with pairwise combinations of Nrd1 and Nab3 mutations known to affect their distinct biochemical activities. The mutations included a Nab3 self-association defect, a Nab3-Nrd1 heterodimerization defect, a Nrd1-polymerase II binding defect, and an Nab3-RNA recognition motif mutation. Although no single mutation was lethal, cells with any two mutations were not viable for four such pairings, and a fifth displayed a synthetic growth defect. These data strengthen the idea that a multiplicity of interactions is needed to assemble a higher order Nrd1-Nab3 complex that coats specific nascent RNAs in preparation for termination. PMID:24100036

  7. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in Aspergillus niger

    PubMed Central

    Delmas, Stéphane; Ibbett, Roger; Kokolski, Matthew; Neiteler, Almar; van Munster, Jolanda M; Wilson, Raymond; Blythe, Martin J; Gaddipati, Sanyasi; Tucker, Gregory A; Archer, David B

    2015-01-01

    Background Saprobic fungi are the predominant industrial sources of Carbohydrate Active enZymes (CAZymes) used for the saccharification of lignocellulose during the production of second generation biofuels. The production of more effective enzyme cocktails is a key objective for efficient biofuel production. To achieve this objective, it is crucial to understand the response of fungi to lignocellulose substrates. Our previous study used RNA-seq to identify the genes induced in Aspergillus niger in response to wheat straw, a biofuel feedstock, and showed that the range of genes induced was greater than previously seen with simple inducers. Results In this work we used RNA-seq to identify the genes induced in A. niger in response to short rotation coppice willow and compared this with the response to wheat straw from our previous study, at the same time-point. The response to willow showed a large increase in expression of genes encoding CAZymes. Genes encoding the major activities required to saccharify lignocellulose were induced on willow such as endoglucanases, cellobiohydrolases and xylanases. The transcriptome response to willow had many similarities with the response to straw with some significant differences in the expression levels of individual genes which are discussed in relation to differences in substrate composition or other factors. Differences in transcript levels include higher levels on wheat straw from genes encoding enzymes classified as members of GH62 (an arabinofuranosidase) and CE1 (a feruloyl esterase) CAZy families whereas two genes encoding endoglucanases classified as members of the GH5 family had higher transcript levels when exposed to willow. There were changes in the cocktail of enzymes secreted by A. niger when cultured with willow or straw. Assays for particular enzymes as well as saccharification assays were used to compare the enzyme activities of the cocktails. Wheat straw induced an enzyme cocktail that saccharified wheat straw

  8. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor

    SciTech Connect

    Kroes, R.A. Northwestern Univ., Evanston, IL ); Abravaya, K.; Morimoto, R.I. ); Seidenfeld, J. )

    1991-06-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or {beta}-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes.

  9. Mad4 is regulated by a transcriptional repressor complex that contains Miz-1 and c-Myc.

    PubMed Central

    Kime, Louise; Wright, Stephanie C

    2003-01-01

    Myc and Mad family proteins are central regulators of cellular proliferation and differentiation. We show that various Mad family genes have distinct patterns of expression during the chemically induced differentiation of mouse erythroleukaemia (MEL) cells, suggesting that they each serve a different function. Mad4 RNA is highly induced and persists in terminally differentiated cells, in agreement with observations in other systems. Using reporter gene assays in stably transfected MEL cells, we show that induction of Mad4 is mediated by a 49 nt core promoter region. We demonstrate that the initiator element is required for Mad4 activation, and show that induction is associated with the loss from the initiator of a complex that contains Miz-1 and c-Myc. Miz-1 activates the Mad4 promoter in transient transfection assays, and this effect is antagonized by c-Myc. We therefore identify Mad4 as a novel target of transcriptional repression by c-Myc. These data suggest that the expression of Mad4 in proliferating undifferentiated cells is suppressed by the binding of a c-Myc-Miz-1 repressor complex at the initiator, and that the activation of Mad4 during differentiation results, at least in part, from a decrease in c-Myc-mediated repression. PMID:12418961

  10. Transcriptional trans activators of human and simian foamy viruses contain a small, highly conserved activation domain.

    PubMed Central

    Garrett, E D; He, F; Bogerd, H P; Cullen, B R

    1993-01-01

    The Bel-1 protein of human foamy virus is a potent transcriptional trans activator of its homologous long terminal repeat promoter element. Here, we demonstrate that Bel-1 can also efficiently activate gene expression when targeted to a heterologous promoter by fusion to the DNA-binding motif of the yeast GAL4 protein. Analysis of a series of deletion mutants of Bel-1 generated in this hybrid protein context suggests the presence of a single transcription activation domain that is fully contained within a discrete, approximately 30-amino-acid segment located proximal to the Bel-1 carboxy terminus. Although this short motif can be shown to function effectively in eukaryotic cells of mammalian, avian, and fungal origin, it does not bear any evident sequence homology to the known classes of eukaryotic activation domain. However, this Bel-1 activation domain was found to be fully conserved, in terms of both biological activity and location, in the distantly related Taf trans activator of simian foamy virus type 1. Images PMID:8411385

  11. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator.

    PubMed

    Eisenbeis, C F; Singh, H; Storb, U

    1995-06-01

    The immunoglobulin light-chain gene enhancers E kappa 3', E lambda 2-4, and E lambda 3-1 contain a conserved cell type-specific composite element essential for their activities. This element binds a B cell-specific heterodimeric protein complex that consists of the Ets family member PU.1 and a second factor (NF-EM5), whose participation in the formation of the complex is dependent on the presence of DNA-bound PU.1. In this report we describe the cloning and characterization of Pip (PU.1 interaction partner), a lymphoid-specific protein that is most likely NF-EM5. As expected, the Pip protein binds the composite element only in the presence of PU.1; furthermore, the formation of this ternary complex is critically dependent on phosphorylation of PU.1 at serine-148. The Pip gene is expressed specifically in lymphoid tissues in both B- and T-cell lines. When coexpressed in NIH-3T3 cells, Pip and PU.1 function as mutually dependent transcription activators of the composite element. The amino-terminal DNA-binding domain of Pip exhibits a high degree of homology to the DNA-binding domains of members of the interferon regulatory factor (IRF) family, which includes IRF-1, IRF-2, ICSBP, and ISGF3 gamma. PMID:7797077

  12. Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity

    PubMed Central

    Ozaki, Toshinori; Sugimoto, Hirokazu; Nakamura, Mizuyo; Hiraoka, Kiriko; Yoda, Hiroyuki; Sang, Meixiang; Fujiwara, Kyoko; Nagase, Hiroki

    2015-01-01

    Although runt-related transcription factor 2 (RUNX2) is known to be an essential key transcription factor for osteoblast differentiation and bone formation, RUNX2 also plays a pivotal role in the regulation of p53-dependent DNA damage response. In the present study, we report that, in addition to p53, RUNX2 downregulates pro-apoptotic TAp73 during DNA damage-dependent cell death. Upon adriamycin (ADR) exposure, human osteosarcoma-derived U2OS cells underwent cell death in association with an upregulation of TAp73 and various p53/TAp73-target gene products together with RUNX2. Small interfering RNA-mediated silencing of p73 resulted in a marked reduction in ADR-induced p53/TAp73-target gene expression, suggesting that TAp73 is responsible for the ADR-dependent DNA damage response. Immunoprecipitation and transient transfection experiments demonstrated that RUNX2 forms a complex with TAp73 and impairs its transcriptional activity. Notably, knockdown of RUNX2 stimulated ADR-induced cell death accompanied by a massive induction of TAp73 expression, indicating that RUNX2 downregulates TAp73 expression. Consistent with this notion, the overexpression of RUNX2 suppressed ADR-dependent cell death, which was associated with a remarkable downregulation of TAp73 and p53/TAp73-target gene expression. Collectively, our present findings strongly suggest that RUNX2 attenuates the transcriptional activity and ADR-mediated induction of TAp73, and may provide novel insights into understanding the molecular basis behind the development and/or maintenance of chemoresistance. Thus, we propose that the silencing of RUNX2 might be an attractive strategy for improving the chemosensitivity of malignant cancers. Structured digital abstract p73andRUNX2colocalizefluorescence microscopy(View interaction) RUNX2physically interactswithp73byanti bait coip(1,2) PMID:25331851

  13. Protein intrinsic disorder in Arabidopsis NAC transcription factors: transcriptional activation by ANAC013 and ANAC046 and their interactions with RCD1.

    PubMed

    O'Shea, Charlotte; Kryger, Mikael; Stender, Emil G P; Kragelund, Birthe B; Willemoës, Martin; Skriver, Karen

    2015-01-15

    Protein ID (intrinsic disorder) plays a significant, yet relatively unexplored role in transcription factors (TFs). In the present paper, analysis of the transcription regulatory domains (TRDs) of six phylogenetically representative, plant-specific NAC [no apical meristem, ATAF (Arabidopsis transcription activation factor), cup-shaped cotyledon] TFs shows that the domains are present in similar average pre-molten or molten globule-like states, but have different patterns of order/disorder and MoRFs (molecular recognition features). ANAC046 (Arabidopsis NAC 046) was selected for further studies because of its simple MoRF pattern and its ability to interact with RCD1 (radical-induced cell death 1). Experiments in yeast and thermodynamic characterization suggest that its single MoRF region is sufficient for both transcriptional activation and interaction with RCD1. The remainder of the large regulatory domain is unlikely to contribute to the interaction, since the domain and truncations thereof have similar affinities for RCD1, which are also similar for ANAC013-RCD1 interactions. However, different enthalpic and entropic contributions to binding were revealed for ANAC046 and ANAC013, suggestive of differences in binding mechanisms. Although substitution of both hydrophobic and acidic residues of the ANAC046 MoRF region abolished binding, substitution of other residues, even with α-helix-breaking proline, was less disruptive. Together, the biophysical analyses suggest that RCD1-ANAC046 complex formation does not involve folding-upon-binding, but rather fuzziness or an unknown structure in ANAC046. We suggest that the ANAC046 regulatory domain functions as an entropic chain with a terminal hot spot interacting with RCD1. RCD1, a cellular hub, may be able to interact with many different TFs by exploiting their ID-based flexibility, as demonstrated for its interactions with ANAC046 and ANAC013. PMID:25348421

  14. Release of Positive Transcription Elongation Factor b (P-TEFb) from 7SK Small Nuclear Ribonucleoprotein (snRNP) Activates Hexamethylene Bisacetamide-inducible Protein (HEXIM1) Transcription*

    PubMed Central

    Liu, Pingyang; Xiang, Yanhui; Fujinaga, Koh; Bartholomeeusen, Koen; Nilson, Kyle A.; Price, David H.; Peterlin, B. Matija

    2014-01-01

    By phosphorylating negative elongation factors and the C-terminal domain of RNA polymerase II (RNAPII), positive transcription elongation factor b (P-TEFb), which is composed of CycT1 or CycT2 and CDK9, activates eukaryotic transcription elongation. In growing cells, it is found in active and inactive forms. In the former, free P-TEFb is a potent transcriptional coactivator. In the latter, it is inhibited by HEXIM1 or HEXIM2 in the 7SK small nuclear ribonucleoprotein (snRNP), which contains, additionally, 7SK snRNA, methyl phosphate-capping enzyme (MePCE), and La-related protein 7 (LARP7). This P-TEFb equilibrium determines the state of growth and proliferation of the cell. In this study, the release of P-TEFb from the 7SK snRNP led to increased synthesis of HEXIM1 but not HEXIM2 in HeLa cells, and this occurred only from an unannotated, proximal promoter. ChIP with sequencing revealed P-TEFb-sensitive poised RNA polymerase II at this proximal but not the previously annotated distal HEXIM1 promoter. Its immediate upstream sequences were fused to luciferase reporters and were found to be responsive to many P-TEFb-releasing compounds. The superelongation complex subunits AF4/FMR2 family member 4 (AFF4) and elongation factor RNA polymerase II 2 (ELL2) were recruited to this proximal promoter after P-TEFb release and were required for its transcriptional effects. Thus, P-TEFb regulates its own equilibrium in cells, most likely to maintain optimal cellular homeostasis. PMID:24515107

  15. Varying modulation of HIV-1 LTR activity by Baf complexes.

    PubMed

    Van Duyne, Rachel; Guendel, Irene; Narayanan, Aarthi; Gregg, Edward; Shafagati, Nazly; Tyagi, Mudit; Easley, Rebecca; Klase, Zachary; Nekhai, Sergei; Kehn-Hall, Kylene; Kashanchi, Fatah

    2011-08-19

    The human immunodeficiency virus type 1 (HIV-1) long terminal repeat is present on both ends of the integrated viral genome and contains regulatory elements needed for transcriptional initiation and elongation. Post-integration, a highly ordered chromatin structure consisting of at least five nucleosomes, is found at the 5' long terminal repeat, the location and modification state of which control the state of active viral replication as well as silencing of the latent HIV-1 provirus. In this context, the chromatin remodeling field rapidly emerges as having a critical role in the control of viral gene expression. In the current study, we focused on unique Baf subunits that are common to the most highly recognized of chromatin remodeling proteins, the SWI/SNF (switching-defective-sucrose non-fermenting) complexes. We find that at least two Baf proteins, Baf53 and Baf170, are highly regulated in HIV-1-infected cells. Previously, studies have shown that the depletion of Baf53 in uninfected cells leads to the expansion of chromosomal territories and the decompaction of the chromatin. Baf53, in the presence of HIV-1 infection, co-elutes off of a chromatographic column as a different-sized complex when compared to uninfected cells and appears to be predominantly phosphorylated. The innate function of Baf53-containing complexes appears to be transcriptionally suppressive, in that knocking down Baf53 increases viral gene expression from cells both transiently and chronically infected with HIV-1. Additionally, cdk9/cyclin T in the presence of Tat is able to phosphorylate Baf53 in vitro, implying that this posttranslationally modified form relieves the suppressive effect and allows for viral transcription to proceed. PMID:21699904

  16. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination.

    PubMed

    Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M; Reddy, Janardan K; Borggrefe, Tilman; Skok, Jane A; Reina-San-Martin, Bernardo

    2016-03-01

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation. PMID:26903242

  17. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  18. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB.

    PubMed Central

    Yu, Zhiyuan; Zhang, Wenzheng; Kone, Bruce C

    2002-01-01

    Prolific generation of NO by inducible nitric oxide synthase (iNOS) can cause unintended injury to host cells during glomerulonephritis and other inflammatory diseases. While much is known about the mechanisms of iNOS induction, few transcriptional repressors have been found. We explored the role of signal transducers and activators of transcription 3 (STAT3) proteins in interleukin (IL)-1beta- and lipopolysaccharide (LPS)+interferon (IFN)-gamma-mediated iNOS induction in murine mesangial cells. Both stimuli induced rapid phosphorylation of STAT3 and sequence-specific STAT3 DNA-binding activity. Supershift assays with a STAT3 element probe demonstrated that nuclear factor kappaB (NF-kappaB) p65 and p50 complexed with STAT3 in the DNA-protein complex. The direct interaction of STAT3 and NF-kappaB p65 was verified in vivo by co-immunoprecipitation and in vitro by pull-down assays with glutathione S-transferase-NF-kappaB p65 fusion protein and in vitro -translated STAT3alpha. Overexpression of STAT3 dramatically inhibited IL-1beta- or LPS+IFN-gamma-mediated induction of iNOS promoter-luciferase constructs that contained the wild-type iNOS promoter or ones harbouring mutated STAT-binding elements. In tests of indirect inhibitory effects of STAT3, overexpression of STAT3 dramatically inhibited the activity of an NF-kappaB-dependent promoter devoid of STAT-binding elements without affecting NF-kappaB DNA-binding activity. Thus STAT3, via direct interactions with NF-kappaB p65, serves as a dominant-negative inhibitor of NF-kappaB activity to suppress indirectly cytokine induction of the iNOS promoter in mesangial cells. These results provide a new model for the termination of NO production by activated iNOS following exposure to pro-inflammatory stimuli. PMID:12057007

  19. A novel dinuclear iridium(III) complex as a G-quadruplex-selective probe for the luminescent switch-on detection of transcription factor HIF-1α

    PubMed Central

    Lu, Lihua; Wang, Modi; Mao, Zhifeng; Kang, Tian-Shu; Chen, Xiu-Ping; Lu, Jin-Jian; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A novel dinuclear Ir(III) complex 5 was discovered to be specific to G-quadruplex DNA, and was utilized in a label-free G-quadruplex-based detection platform for transcription factor activity. The principle of this assay was demonstrated by using HIF-1α as a model protein. Moreover, this HIF-1α detection assay exhibited potential use for biological sample analysis. PMID:26932240

  20. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    SciTech Connect

    Vachtenheim, Jiri; Ondrusova, Lubica; Borovansky, Jan

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brm was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.

  1. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    PubMed

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms. PMID:22287521

  2. Differential hypersaline stress response in Zygosaccharomyces rouxii complex yeasts: a physiological and transcriptional study.

    PubMed

    Solieri, Lisa; Vezzani, Veronica; Cassanelli, Stefano; Dakal, Tikam Chand; Pazzini, Jacopo; Giudici, Paolo

    2016-09-01

    The Zygosaccharomyces rouxii complex comprises three distinct lineages of halotolerant yeasts relevant in food processing and spoilage, such as Z. sapae, Z. rouxii and a mosaic group of allodiploid strains. They manifest plastic genome architecture (variation in karyotype, ploidy level and Na(+)/H(+) antiporter-encoding gene copy number), and exhibit diverse tolerances to salt concentrations. Here, we investigated accumulation of compatible osmolytes and transcriptional regulation of Na(+)/H(+) antiporter-encoding ZrSOD genes during salt exposure in strains representative for the lineages, namely Z. sapae ABT301(T) (low salt tolerant), Z. rouxii CBS 732(T) (middle salt tolerant) and allodiploid strain ATCC 42981 (high salt tolerant). Growth curve modelling in 2 M NaCl-containing media supplemented with or without yeast extract as nitrogen source indicates that moderate salt tolerance of CBS 732(T) mainly depends on nitrogen availability rather than intrinsic inhibitory effects of salt. All the strains produce glycerol and not mannitol under salt stress and use two different glycerol balance strategies. ATCC 42981 produces comparatively more glycerol than Z. sapae and Z. rouxii under standard growth conditions and better retains it intracellularly under salt injuries. Conversely, Z. sapae and Z. rouxii enhance glycerol production under salt stress and intracellularly retain glycerol less efficiently than ATCC 42981. Expression analysis shows that, in diploid Z. sapae and allodiploid ATCC 42981, transcription of gene variants ZrSOD2-22/ZrSOD2 and ZrSOD22 is constitutive and salt unresponsive. PMID:27493145

  3. Ubiquitination of the Transcription Factor IRF-3 Activates RIPA, the Apoptotic Pathway that Protects Mice from Viral Pathogenesis.

    PubMed

    Chattopadhyay, Saurabh; Kuzmanovic, Teodora; Zhang, Ying; Wetzel, Jaime L; Sen, Ganes C

    2016-05-17

    The transcription factor IRF-3 mediates cellular antiviral response by inducing the expression of interferon and other antiviral proteins. In RNA-virus infected cells, IRF-3's transcriptional activation is triggered primarily by RIG-I-like receptors (RLR), which can also activate the RLR-induced IRF-3-mediated pathway of apoptosis (RIPA). Here, we have reported that the pathway of IRF-3 activation in RIPA was independent of and distinct from the known pathway of transcriptional activation of IRF-3. It required linear polyubiquitination of two specific lysine residues of IRF-3 by LUBAC, the linear polyubiquitinating enzyme complex, which bound IRF-3 in signal-dependent fashion. To evaluate the role of RIPA in viral pathogenesis, we engineered a genetically targeted mouse, which expressed a mutant IRF-3 that was RIPA-competent but transcriptionally inert; this single-action IRF-3 could protect mice from lethal viral infection. Our observations indicated that IRF-3-mediated apoptosis of virus-infected cells could be an effective antiviral mechanism, without expression of the interferon-stimulated genes. PMID:27178468

  4. The pneumococcal MgaSpn virulence transcriptional regulator generates multimeric complexes on linear double-stranded DNA.

    PubMed

    Solano-Collado, Virtu; Lurz, Rudi; Espinosa, Manuel; Bravo, Alicia

    2013-08-01

    The MgaSpn transcriptional regulator contributes to the virulence of Streptococcus pneumoniae. It is thought to be a member of the Mga/AtxA family of global regulators. MgaSpn was shown to activate in vivo the P1623B promoter, which is divergent from the promoter (Pmga) of its own gene. This activation required a 70-bp region (PB activation region) located between both promoters. In this work, we purified an untagged form of the MgaSpn protein, which formed dimers in solution. By gel retardation and footprinting assays, we analysed the binding of MgaSpn to linear double-stranded DNAs. MgaSpn interacted with the PB activation region when it was placed at internal position on the DNA. However, when it was positioned at one DNA end, MgaSpn recognized preferentially the Pmga promoter placed at internal position. In both cases, and on binding to the primary site, MgaSpn spread along the adjacent DNA regions generating multimeric protein-DNA complexes. When both MgaSpn-binding sites were located at internal positions on longer DNAs, electron microscopy experiments demonstrated that the PB activation region was the preferred target. DNA molecules totally or partially covered by MgaSpn were also visualized. Our results suggest that MgaSpn might recognize particular DNA conformations to achieve DNA-binding specificity. PMID:23723245

  5. Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts

    PubMed Central

    Pandian, Ganesh N.; Taniguchi, Junichi; Junetha, Syed; Sato, Shinsuke; Han, Le; Saha, Abhijit; AnandhaKumar, Chandran; Bando, Toshikazu; Nagase, Hiroki; Vaijayanthi, Thangavel; Taylor, Rhys D.; Sugiyama, Hiroshi

    2014-01-01

    The influential role of the epigenome in orchestrating genome-wide transcriptional activation instigates the demand for the artificial genetic switches with distinct DNA sequence recognition. Recently, we developed a novel class of epigenetically active small molecules called SAHA-PIPs by conjugating selective DNA binding pyrrole-imidazole polyamides (PIPs) with the histone deacetylase inhibitor SAHA. Screening studies revealed that certain SAHA-PIPs trigger targeted transcriptional activation of pluripotency and germ cell genes in mouse and human fibroblasts, respectively. Through microarray studies and functional analysis, here we demonstrate for the first time the remarkable ability of thirty-two different SAHA-PIPs to trigger the transcriptional activation of exclusive clusters of genes and noncoding RNAs. QRT-PCR validated the microarray data, and some SAHA-PIPs activated therapeutically significant genes like KSR2. Based on the aforementioned results, we propose the potential use of SAHA-PIPs as reagents capable of targeted transcriptional activation. PMID:24457603

  6. Differential transcriptional responses underlie dietary induction of intestinal carbohydrase activities in house sparrow nestlings.

    PubMed

    Gatica-Sosa, C; Brzęk, P; Chediack, J G; Cid, F D; Karasov, W H; Caviedes-Vidal, E

    2016-04-01

    Many species show diet-induced flexibility of activity of intestinal enzymes; however, molecular and genetic mechanisms responsible for such modulation are less known, particularly in altricial birds. The goal of our study was to test whether a diet-induced increase in activity of intestinal maltase and sucrase in house sparrow nestlings is matched with an increase in maltase-glucoamylase (MG) and sucrase-isomaltase (SI) complex mRNAs respectively. Both enzyme activities were significantly higher in mid-intestine of nestlings fed a medium-starch (MS) diet compared to those fed a starch-free (SF) diet. In contrast to the similar pattern of dietary induction for both enzyme activities, diet MS elevated significantly only the level of MG mRNA, but not SI mRNA. The coordinated increase in activity of maltase and in MG mRNA is consistent with the hypothesis that dietary induction of this enzyme is under transcriptional control. In contrast, the lack of such coordination for changes in activity of sucrase and SI mRNA suggests that upregulation of this enzyme may be achieved by post-translational factor(s). We conclude that genetic mechanisms responsible for diet-induced flexibility of digestive enzymes in birds may differ from that observed in mammals. PMID:26122561

  7. Suppression of tumor growth by designed dimeric epidithiodiketopiperazine targeting hypoxia-inducible transcription factor complex.

    PubMed

    Dubey, Ramin; Levin, Michael D; Szabo, Lajos Z; Laszlo, Csaba F; Kushal, Swati; Singh, Jason B; Oh, Philip; Schnitzer, Jan E; Olenyuk, Bogdan Z

    2013-03-20

    Hypoxia is a hallmark of solid tumors, is associated with local invasion, metastatic spread, resistance to chemo- and radiotherapy, and is an independent, negative prognostic factor for a diverse range of malignant neoplasms. The cellular response to hypoxia is primarily mediated by a family of transcription factors, among which hypoxia-inducible factor 1 (HIF1) plays a major role. Under normoxia, the oxygen-sensitive α subunit of HIF1 is rapidly and constitutively degraded but is stabilized and accumulates under hypoxia. Upon nuclear translocation, HIF1 controls the expression of over 100 genes involved in angiogenesis, altered energy metabolism, antiapoptotic, and pro-proliferative mechanisms that promote tumor growth. A designed transcriptional antagonist, dimeric epidithiodiketopiperazine (ETP 2), selectively disrupts the interaction of HIF1α with p300/CBP coactivators and downregulates the expression of hypoxia-inducible genes. ETP 2 was synthesized via a novel homo-oxidative coupling of the aliphatic primary carbons of the dithioacetal precursor. It effectively inhibits HIF1-induced activation of VEGFA, LOX, Glut1, and c-Met genes in a panel of cell lines representing breast and lung cancers. We observed an outstanding antitumor efficacy of both (±)-ETP 2 and meso-ETP 2 in a fully established breast carcinoma model by intravital microscopy. Treatment with either form of ETP 2 (1 mg/kg) resulted in a rapid regression of tumor growth that lasted for up to 14 days. These results suggest that inhibition of HIF1 transcriptional activity by designed dimeric ETPs could offer an innovative approach to cancer therapy with the potential to overcome hypoxia-induced tumor growth and resistance. PMID:23448368

  8. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors

    PubMed Central

    Morbitzer, Robert; Römer, Patrick; Boch, Jens; Lahaye, Thomas

    2010-01-01

    Proteins that can be tailored to bind desired DNA sequences are key tools for molecular biology. Previous studies suggested that DNA-binding specificity of transcription activator-like effectors (TALEs) from the bacterial genus Xanthomonas is defined by repeat-variable diresidues (RVDs) of tandem-arranged 34/35-amino acid repeat units. We have studied chimeras of two TALEs differing in RVDs and non-RVDs and found that, in contrast to the critical contributions by RVDs, non-RVDs had no major effect on the DNA-binding specificity of the chimeras. This finding suggests that one needs only to modify the RVDs to generate designer TALEs (dTALEs) to activate transcription of user-defined target genes. We used the scaffold of the TALE AvrBs3 and changed its RVDs to match either the tomato Bs4, the Arabidopsis EGL3, or the Arabidopsis KNAT1 promoter. All three dTALEs transcriptionally activated the desired promoters in a sequence-specific manner as mutations within the targeted DNA sequences abolished promoter activation. This study is unique in showing that chromosomal loci can be targeted specifically by dTALEs. We also engineered two AvrBs3 derivatives with four additional repeat units activating specifically either the pepper Bs3 or UPA20 promoter. Because AvrBs3 activates both promoters, our data show that addition of repeat units facilitates TALE-specificity fine-tuning. Finally, we demonstrate that the RVD NK mediates specific interaction with G nucleotides that thus far could not be targeted specifically by any known RVD type. In summary, our data demonstrate that the TALE scaffold can be tailored to target user-defined DNA sequences in whole genomes. PMID:21106758

  9. Using protein-binding microarrays to study transcription factor specificity: homologs, isoforms and complexes

    PubMed Central

    Andrilenas, Kellen K.; Penvose, Ashley

    2015-01-01

    Protein–DNA binding is central to specificity in gene regulation, and methods for characterizing transcription factor (TF)–DNA binding remain crucial to studies of regulatory specificity. High-throughput (HT) technologies have revolutionized our ability to characterize protein–DNA binding by significantly increasing the number of binding measurements that can be performed. Protein-binding microarrays (PBMs) are a robust and powerful HT platform for studying DNA-binding specificity of TFs. Analysis of PBM-determined DNA-binding profiles has provided new insight into the scope and mechanisms of TF binding diversity. In this review, we focus specifically on the PBM technique and discuss its application to the study of TF specificity, in particular, the binding diversity of TF homologs and multi-protein complexes. PMID:25431149

  10. The exon junction complex as a node of post-transcriptional networks.

    PubMed

    Le Hir, Hervé; Saulière, Jérôme; Wang, Zhen

    2016-01-01

    The exon junction complex (EJC) is deposited onto mRNAs following splicing and adopts a unique structure, which can both stably bind to mRNAs and function as an anchor for diverse processing factors. Recent findings revealed that in addition to its established roles in nonsense-mediated mRNA decay, the EJC is involved in mRNA splicing, transport and translation. While structural studies have shed light on EJC assembly, transcriptome-wide analyses revealed differential EJC loading at spliced junctions. Thus, the EJC functions as a node of post-transcriptional gene expression networks, the importance of which is being revealed by the discovery of increasing numbers of EJC-related disorders. PMID:26670016

  11. Ccr4-not complex mRNA deadenylase activity contributes to DNA damage responses in Saccharomyces cerevisiae.

    PubMed

    Traven, Ana; Hammet, Andrew; Tenis, Nora; Denis, Clyde L; Heierhorst, Jörg

    2005-01-01

    DNA damage checkpoints regulate gene expression at the transcriptional and post-transcriptional level. Some components of the yeast Ccr4-Not complex, which regulates transcription as well as transcript turnover, have previously been linked to DNA damage responses, but it is unclear if this involves transcriptional or post-transcriptional functions. Here we show that CCR4 and CAF1, which together encode the major cytoplasmic mRNA deadenylase complex, have complex genetic interactions with the checkpoint genes DUN1, MRC1, RAD9, and RAD17 in response to DNA-damaging agents hydroxyurea (HU) and methylmethane sulfonate (MMS). The exonuclease-inactivating ccr4-1 point mutation mimics ccr4Delta phenotypes, including synthetic HU hypersensitivity with dun1Delta, demonstrating that Ccr4-Not mRNA deadenylase activity is required for DNA damage responses. However, ccr4Delta and caf1Delta DNA damage phenotypes and genetic interactions with checkpoint genes are not identical, and deletions of some Not components that are believed to predominantly function at the transcriptional level rather than mRNA turnover, e.g., not5Delta, also lead to increased DNA damage sensitivity and synthetic HU hypersensitivity with dun1Delta. Taken together, our data thus suggest that both transcriptional and post-transcriptional functions of the Ccr4-Not complex contribute to the DNA damage response affecting gene expression in a complex manner. PMID:15466434

  12. Ccr4-Not Complex mRNA Deadenylase Activity Contributes to DNA Damage Responses in Saccharomyces cerevisiae

    PubMed Central

    Traven, Ana; Hammet, Andrew; Tenis, Nora; Denis, Clyde L.; Heierhorst, Jörg

    2005-01-01

    DNA damage checkpoints regulate gene expression at the transcriptional and post-transcriptional level. Some components of the yeast Ccr4-Not complex, which regulates transcription as well as transcript turnover, have previously been linked to DNA damage responses, but it is unclear if this involves transcriptional or post-transcriptional functions. Here we show that CCR4 and CAF1, which together encode the major cytoplasmic mRNA deadenylase complex, have complex genetic interactions with the checkpoint genes DUN1, MRC1, RAD9, and RAD17 in response to DNA-damaging agents hydroxyurea (HU) and methylmethane sulfonate (MMS). The exonuclease-inactivating ccr4-1 point mutation mimics ccr4Δ phenotypes, including synthetic HU hypersensitivity with dun1Δ, demonstrating that Ccr4-Not mRNA deadenylase activity is required for DNA damage responses. However, ccr4Δ and caf1Δ DNA damage phenotypes and genetic interactions with checkpoint genes are not identical, and deletions of some Not components that are believed to predominantly function at the transcriptional level rather than mRNA turnover, e.g., not5Δ, also lead to increased DNA damage sensitivity and synthetic HU hypersensitivity with dun1Δ. Taken together, our data thus suggest that both transcriptional and post-transcriptional functions of the Ccr4-Not complex contribute to the DNA damage response affecting gene expression in a complex manner. PMID:15466434

  13. Molecular Genetic Analysis of Activation-tagged Transcription Factors Thought to be Involved in Photomorphogenesis

    SciTech Connect

    Neff, Michael

    2011-06-23

    Plants utilize light as a source of information via families of photoreceptors such as the red/far-red absorbing phytochromes (PHY) and the blue/UVA absorbing cryptochromes (CRY). The main goal of the Neff lab is to use molecular-genetic mutant screens to elucidate signaling components downstream of these photoreceptors. Activation-tagging mutagenesis led to the identification of two putative transcription factors that may be involved in both photomorphogenesis and hormone signaling pathways. sob1-D (suppressor of phyB-dominant) mutant phenotypes are caused by the over-expression of a Dof transcription factor previously named OBP3. Our previous studies indicate that OBP3 is a negative regulator of light-mediated cotyledon expansion and may be involved in modulating responsiveness to the growth-regulating hormone auxin. The sob2-D mutant uncovers a role for LEP, a putative AP2/EREBP-like transcription factor, in seed germination, hypocotyl elongation and responsiveness to the hormone abscisic acid. Based on photobiological and genetic analysis of OBP3-knockdown and LEP-null mutations, we hypothesize that these transcription factors are involved in both light-mediated seedling development and hormone signaling. To examine the role that these genes play in photomorphogenesis we will: 1) Further explore the genetic role of OBP3 in cotyledon/leaf expansion and other photomorphogenic processes as well as examine potential physical interactions between OBP3 and CRY1 or other signaling components that genetically interact with this transcription factor 2) Test the hypothesis that OBP3 is genetically involved in auxin signaling and root development as well as examine the affects of this hormone and light on OBP3 protein accumulation. 3) Test the hypothesis that LEP is involved in seed germination, seedling photomorphogenesis and hormone signaling. Together these experiments will lead to a greater understanding of the complexity of interactions between photoreceptors and DNA

  14. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    PubMed

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum. PMID:26253310

  15. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    PubMed

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  16. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    SciTech Connect

    Kasim, Vivi; Huang, Can; Zhang, Jing; Jia, Huizhen; Wang, Yunxia; Yang, Li; Miyagishi, Makoto; Wu, Shourong

    2014-07-04

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. We further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.

  17. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    SciTech Connect

    Hu, Xu-Dong; Meng, Qing-Hui; Xu, Jia-Ying; Jiao, Yang; Ge, Chun-Min; Jacob, Asha; Wang, Ping; Rosen, Eliot M; Fan, Saijun

    2011-01-28

    Research highlights: {yields} BTG2 associates with AR, androgen causes an increase of the interaction. {yields} BTG2 as a co-repressor inhibits the AR-mediated transcription activity. {yields} BTG2 inhibits the transcription activity and expression of PSA. {yields} An intact {sup 92}LxxLL{sup 96} motif is essential and necessary for these activities of BTG2, while the {sup 20}LxxLL{sup 24} motif is not required. {yields} Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ({sup 20}LxxLL{sup 24} and {sup 92}LxxLL{sup 96}), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5{alpha}-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant {sup 20}LxxLL{sup 24} motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant {sup 92}LxxLL{sup 96} motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact {sup 92}LxxLL{sup 96} motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  18. An Asp7Gly substitution in PPARG is associated with decreased transcriptional activation activity.

    PubMed

    Hua, Liushuai; Wang, Jing; Li, Mingxun; Sun, Xiaomei; Zhang, Liangzhi; Lei, Chuzhao; Lan, Xianyong; Fang, Xingtang; Zhao, Xin; Chen, Hong

    2014-01-01

    As the master regulator of adipogenesis, peroxisome proliferator-activated receptor gamma (PPARG) is required for the accumulation of adipose tissue and hence contributes to obesity. A previous study showed that the substitution of +20A>G in PPARG changed the 7(th) amino acid from Asp to Gly, creating a mutant referred to as PPARG Asp7Gly. In this study, association analysis indicated that PPARG Asp7Gly was associated with lower body height, body weight and heart girth in cattle (P<0.05). Overexpression of PPARG in NIH3T3-L1 cells showed that the Asp7Gly substitution may cause a decrease in its adipogenic ability and the mRNA levels of CIDEC (cell death-inducing DFFA-like effector c) and aP2, which are all transcriptionally activated by PPARG during adipocyte differentiation. A dual-luciferase reporter assay was used to analyze the promoter activity of CIDEC. The results confirmed that the mutant PPARG exhibited weaker transcriptional activation activity than the wild type (P<0.05). These findings likely explain the associations between the Asp7Gly substitution and the body measurements. Additionally, the Asp7Gly mutation may be used in molecular marker assisted selection (MAS) of cattle breeding in the future. PMID:24466299

  19. Cell type specific transcriptional activities among different papillomavirus long control regions and their regulation by E2

    PubMed Central

    Ottinger, Matthias; Smith, Jennifer A.; Schweiger, Michal-Ruth; Robbins, Dana; Powell, Maria L.C.; You, Jianxin; Howley, Peter M.

    2009-01-01

    This study systematically examined the viral long control region (LCR) activities and their responses to E2 for human papillomavirus (HPV) types 11. 16 and 18 as well as bovine papillomavirus 1 (BPV1) in a number of different cell types, including human cervical cancer cell lines, human oral keratinocytes, BJ fibroblasts, as well as CV1 cells. The study revealed cell- and virus-type specific differences among the individual LCRs and their regulation by E2. In addition, the integration of the LCR into the host genome was identified as a critical determinant for LCR activity and its response to E2. Collectively, these data indicate a more complex level of transcriptional regulation of the LCR by cellular and viral factors than previously appreciated, including a comparatively low LCR activity and poor E2 responsive for HPV16 in most human cells. This study should provide a valuable framework for future transcriptional studies in the papillomavirus field. PMID:19836046

  20. RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex.

    PubMed

    Estrella, Michael A; Kuo, Fang-Ting; Bailey, Scott

    2016-02-15

    The CRISPR (clustered regularly interspaced short palindromic repeat) system is an RNA-guided immune system that protects prokaryotes from invading genetic elements. This system represents an inheritable and adaptable immune system that is mediated by multisubunit effector complexes. In the Type III-B system, the Cmr effector complex has been found to cleave ssRNA in vitro. However, in vivo, it has been implicated in transcription-dependent DNA targeting. We show here that the Cmr complex from Thermotoga maritima can cleave an ssRNA target that is complementary to the CRISPR RNA. We also show that binding of a complementary ssRNA target activates an ssDNA-specific nuclease activity in the histidine-aspartate (HD) domain of the Cmr2 subunit of the complex. These data suggest a mechanism for transcription-coupled DNA targeting by the Cmr complex and provide a unifying mechanism for all Type III systems. PMID:26848046

  1. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    SciTech Connect

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; Chen, Kuan-Bei; Stonestrom, Aaron; Long, Maria; Keller, Cheryl A.; Cheng, Yong; Jain, Deepti; Visel, Axel; Pennacchio, Len A.; Weiss, Mitchell J.; Blobel, Gerd A.; Hardison, Ross C.

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the results of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.

  2. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    DOE PAGESBeta

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; Chen, Kuan-Bei; Stonestrom, Aaron; Long, Maria; Keller, Cheryl A.; Cheng, Yong; Jain, Deepti; Visel, Axel; et al

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less

  3. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator

    PubMed Central

    Zhao, Xiaoching; Shi, Hua; Sevilimedu, Aarti; Liachko, Nicole; Nelson, Hillary C. M.; Lis, John T.

    2006-01-01

    Heat shock factor (HSF) is a conserved and highly potent transcription activator. It is involved in a wide variety of important biological processes including the stress response and specific steps in normal development. Reagents that interfere with HSF function would be useful for both basic studies and practical applications. We selected an RNA aptamer that binds to HSF with high specificity. Deletion analysis defined the minimal binding motif of this aptamer to be two stems and one stem–loop joined by a three-way junction. This RNA aptamer interferes with normal interaction of HSF with its DNA element, which is a key regulatory step for HSF function. The DNA-binding domain plus a flanking linker region on the HSF (DL) is essential for the RNA binding. Additionally, this aptamer inhibits HSF-induced transcription in vitro in the complex milieu of a whole cell extract. In contrast to the previously characterized NF-κB aptamer, the HSF aptamer does not simply mimic DNA binding, but rather binds to HSF in a manner distinct from DNA binding to HSF. PMID:16893958

  4. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: Activation by manganese

    SciTech Connect

    Brown, J.A.; Alic, M. Gold, M.H. )

    1991-07-01

    The expression of manganese peroxidase in nitrogen-limited cultures of Phanerochaete chrysosporium is dependent on Mn, and initial work suggested that Mn regulates transcription of the mnp gene. In this study, using Northern (RNA) blot analysis of kinetic, dose-response, and inhibitor experiments, the authors demonstrate unequivocally that Mn regulates mnp gene transcription. The amount of mnp mRNA in cells of 4-day-old nitrogen-limited cultures is a direct function of the concentration of Mn in the culture medium up to a maximum of 180 {mu}M. Addition of Mn to nitrogen-limited Mn-deficient secondary metabolic (4-, 5-, and 6-day-old) cultures results in the appearance of mnp mRNA within 40 min. The appearance of this message is completely inhibited by the RNA synthesis inhibitor dactinomycin but not by the protein synthesis inhibitor cycloheximide. Furthermore, the amount of mnp mRNA produced is a direct function of the concentration of added Mn. In contrast, addition of Mn to low-nitrogen Mn-deficient 2- or 3-day-old cultures does not result in the appearance of mnp mRNA. Manganese peroxidase protein is detected by specific immunoprecipitation of the in vitro translation products of poly(A) RNA isolated from Mn-supplemented (but nor from Mn-deficient) cells. All of these results demonstrate that Mn, the substrate for the enzyme, regulates mnp gene transcription via a growth-stage-specific and concentration-dependent mechanism.

  5. Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity.

    PubMed

    Zhao, Xiaoping; Xiaoli; Zong, Haihong; Abdulla, Arian; Yang, Ellen S T; Wang, Qun; Ji, Jun-Yuan; Pessin, Jeffrey E; Das, Bhaskar C; Yang, Fajun

    2014-07-01

    Dysregulation of lipid homeostasis is intimately associated with obesity, type 2 diabetes, and cardiovascular diseases. Sterol regulatory-element binding proteins (SREBPs) are the master regulators of lipid biosynthesis. Previous studies have shown that the conserved transcriptional cofactor Mediator complex is critically required for the SREBP transcriptional activity, and recruitment of the Mediator complex to the SREBP transactivation domains (TADs) is through the MED15-KIX domain. Recently, we have synthesized several boron-containing small molecules. Among these novel compounds, BF175 can specifically block the binding of MED15-KIX to SREBP1a-TAD in vitro, resulting in an inhibition of the SREBP transcriptional activity and a decrease of SREBP target gene expression in cultured hepatocytes. Furthermore, BF175 can improve lipid homeostasis in the mouse model of diet-induced obesity. Compared with the control, BF175 treatment decreased the expression of SREBP target genes in mouse livers and decreased hepatic and blood levels of lipids. These results suggest that blocking the interaction between SREBP-TADs and the Mediator complex by small molecules may represent a novel approach for treating diseases with aberrant lipid homeostasis. PMID:24608444

  6. A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes.

    PubMed

    Sablowski, R W; Moyano, E; Culianez-Macia, F A; Schuch, W; Martin, C; Bevan, M

    1994-01-01

    Synthesis of flavonoid pigments in flowers requires the co-ordinated expression of genes encoding enzymes in th phenylpropanoid biosynthetic pathway. Some cis-elements involved in the transcriptional control of these genes have been defined. We report binding of petal-specific activities from tobacco and Antirrhinum majus (snapdragon) to an element conserved in promoters of phenylpropanoid biosynthetic genes and implicated in expression in flowers. These binding activities were inhibited by antibodies raised against Myb305, a flower-specific Myb protein previously cloned from Antirrhinum by sequence homology. Myb305 bound to the same element and formed a DNA-protein complex with the same mobility as the Antirrhinum petal protein in electrophoretic mobility shift experiments. Myb305 activated expression from its binding site in yeast and in tobacco protoplasts. In protoplasts, activation also required a G-box-like element, suggesting co-operation with other elements and factors. The results strongly suggest a role for Myb305-related proteins in the activation of phenylpropanoid biosynthetic genes in flowers. This is consistent with the genetically demonstrated role of plant Myb proteins in the regulation of genes involved in flavonoid synthesis. PMID:8306956

  7. The yeast Hot1 transcription factor is critic