Science.gov

Sample records for active transcriptional complex

  1. Transcription through the HIV-1 nucleosomes: Effects of the PBAF complex in Tat activated transcription

    PubMed Central

    Easley, Rebecca; Carpio, Lawrence; Dannenberg, Luke; Choi, Soyun; Alani, Dowser; Van Duyne, Rachel; Guendel, Irene; Klase, Zachary; Agbottah, Emmanuel; Kehn-Hall, Kylene; Kashanchi, Fatah

    2010-01-01

    The SWI/SNF complex remodels nucleosomes, allowing RNA Polymerase II access to the HIV-1 proviral DNA. It has not been determined which SWI/SNF complex (BAF or PBAF) remodels nucleosomes at the transcription start site. These complexes differ in only three subunits and determining which subunit(s) is required could explain the regulation of Tat activated transcription. We show that PBAF is required for chromatin remodeling at the nuc-1 start site and transcriptional elongation. We find that Baf200 is required to ensure activation at the LTR level and for viral production. Interestingly, the BAF complex was observed on the LTR whereas PBAF was present on both LTR and Env regions. We found that Tat activated transcription facilitates removal of histones H2A and H2B at the LTR, and that the FACT complex may be responsible for their removal. Finally, the BAF complex may play an important role in regulating splicing of the HIV-1 genome. PMID:20599239

  2. Histone Acetyltransferase Complexes Can Mediate Transcriptional Activation by the Major Glucocorticoid Receptor Activation Domain

    PubMed Central

    Wallberg, Annika E.; Neely, Kristen E.; Gustafsson, Jan-Åke; Workman, Jerry L.; Wright, Anthony P. H.; Grant, Patrick A.

    1999-01-01

    Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, τ1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-τ1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in τ1 that reduce τ1 transactivation activity in vivo lead to a reduced binding of τ1 to the SAGA complex and conversely, mutations increasing the transactivation activity of τ1 lead to an increased binding of τ1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with τ1. GAL4-τ1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity τ1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity τ1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-τ1 activation domain mediates transcriptional stimulation from chromatin templates. PMID:10454542

  3. Adenovirus E1A protein activates transcription of the E1A gene subsequent to transcription complex formation.

    PubMed Central

    Schaack, J; Logan, J; Vakalopoulou, E; Shenk, T

    1991-01-01

    The mechanism of transcriptional activation of the adenovirus E1A and E3 genes by E1A protein during infection was examined by using transcription-competition assays. Infection of HeLa cells with one virus led to inhibition of mRNA accumulation from a superinfecting virus. Synthesis of the E1A 289R protein by the first virus to infect reduced inhibition of transcription of the superinfecting virus, indicating that the E1A 289R protein was limiting for E1A-activated transcription. Infection with an E1A- virus, followed 6 h later by superinfection with a wild-type virus, led to preferential transcriptional activation of the E1A gene of the first virus, suggesting that a host transcription component(s) stably associated with the E1A promoter in the absence of E1A protein and that this complex was the substrate for transcriptional activation by E1A protein. The limiting host transcription component(s) bound to the E1A promoter to form a complex with a half-life greater than 24 h in the absence of E1A 289R protein, as demonstrated in a challenge assay with a large excess of superinfecting virus. In the presence of the E1A 289R protein, the E1A gene of the superinfecting virus was gradually activated with a reduction in E1A mRNA accumulation from the first virus. The kinetics of the activation suggest that this was due to an indirect effect rather than to destabilization of stable transcription complexes by the 289R protein. Images PMID:1825853

  4. Activation Domain-Specific and General Transcription Stimulation by Native Histone Acetyltransferase Complexes

    PubMed Central

    Ikeda, Keiko; Steger, David J.; Eberharter, Anton; Workman, Jerry L.

    1999-01-01

    Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions. PMID:9858608

  5. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes.

    PubMed Central

    Rudd, M D; Izban, M G; Luse, D S

    1994-01-01

    RNA polymerase II may become arrested during transcript elongation, in which case the ternary complex remains intact but further RNA synthesis is blocked. To relieve arrest, the nascent transcript must be cleaved from the 3' end. RNAs of 7-17 nt are liberated and transcription continues from the newly exposed 3' end. Factor SII increases elongation efficiency by strongly stimulating the transcript cleavage reaction. We show here that arrest relief can also occur by the addition of pyrophosphate. This generates the same set of cleavage products as factor SII, but the fragments produced with pyrophosphate have 5'-triphosphate termini. Thus, the active site of RNA polymerase II, in the presence of pyrophosphate, appears to be capable of cleaving phosphodiester linkages as far as 17 nt upstream of the original site of polymerization, leaving the ternary complex intact and transcriptionally active. Images PMID:8058756

  6. Transcription and activation under environmental stress of the complex telomeric repeats of Chironomus thummi.

    PubMed

    Martínez-Guitarte, J L; Díez, J L; Morcillo, G

    2008-01-01

    In contrast to their traditional role, telomeres seem to behave as transcriptionally active regions. RNAs complementary to the short DNA repeats characteristic of telomerase-maintained telomeres have recently been identified in various mammalian cell lines, representing a new and unexpected element in telomere architecture. Here, we report the existence of transcripts complementary to telomeric sequences characteristic of Chironomus thummi telomeres. As in other Diptera, the non-canonical telomeres of chironomids lack the simple telomerase repeats and have instead more complex repetitive sequences. Northern blots of total RNA hybridized with telomere probes and RT-PCR with telomere-specific tailed primers confirm the existence of small non-coding RNAs of around 200 bp, the size of the DNA repeated telomeric unit. Telomere transcripts are heterogeneous in length, and they appear as a ladder pattern that probably corresponds to multimers of the repeat. Moreover, telomeres are activated under conditions of environmental stress, such as heat shock, appearing highly decondensed and densely labelled with acetylated H4 histone, as well as with RNA polymerase II antibodies, both marks of transcriptional activity. Changes in the expression levels of telomeric RNA were detected after heat shock. These findings provide evidence that transcriptional activity of the repetitive telomere sequences is an evolutionarily conserved feature, not limited to telomerase telomeres. The functional significance of this non-coding RNA as a new additional element in the context of telomere biology remains to be explained.

  7. NACK is an integral component of the Notch transcriptional activation complex and is critical for development and tumorigenesis.

    PubMed

    Weaver, Kelly L; Alves-Guerra, Marie-Clotilde; Jin, Ke; Wang, Zhiqiang; Han, Xiaoqing; Ranganathan, Prathibha; Zhu, Xiaoxia; DaSilva, Thiago; Liu, Wei; Ratti, Francesca; Demarest, Renee M; Tzimas, Cristos; Rice, Meghan; Vasquez-Del Carpio, Rodrigo; Dahmane, Nadia; Robbins, David J; Capobianco, Anthony J

    2014-09-01

    The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are coexpressed during mouse development and that homozygous loss of NACK is embryonic lethal. Finally, we show that NACK is also a Notch target gene, establishing a feed-forward loop. Thus, our data indicate that NACK is a key component of the Notch transcriptional complex and is an essential regulator of Notch-mediated tumorigenesis and development.

  8. Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation

    PubMed Central

    Weake, Vikki M.; Dyer, Jamie O.; Seidel, Christopher; Box, Andrew; Swanson, Selene K.; Peak, Allison; Florens, Laurence; Washburn, Michael P.; Abmayr, Susan M.; Workman, Jerry L.

    2011-01-01

    The Spt–Ada–Gcn5–acetyltransferase (SAGA) complex was discovered from Saccharomyces cerevisiae and has been well characterized as an important transcriptional coactivator that interacts both with sequence-specific transcription factors and the TATA-binding protein TBP. SAGA contains a histone acetyltransferase and a ubiquitin protease. In metazoans, SAGA is essential for development, yet little is known about the function of SAGA in differentiating tissue. We analyzed the composition, interacting proteins, and genomic distribution of SAGA in muscle and neuronal tissue of late stage Drosophila melanogaster embryos. The subunit composition of SAGA was the same in each tissue; however, SAGA was associated with considerably more transcription factors in muscle compared with neurons. Consistent with this finding, SAGA was found to occupy more genes specifically in muscle than in neurons. Strikingly, SAGA occupancy was not limited to enhancers and promoters but primarily colocalized with RNA polymerase II within transcribed sequences. SAGA binding peaks at the site of RNA polymerase pausing at the 5′ end of transcribed sequences. In addition, many tissue-specific SAGA-bound genes required its ubiquitin protease activity for full expression. These data indicate that in metazoans SAGA plays a prominent post-transcription initiation role in tissue-specific gene expression. PMID:21764853

  9. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity.

    PubMed

    Turkson, James; Zhang, Shumin; Palmer, Jay; Kay, Heidi; Stanko, Joseph; Mora, Linda B; Sebti, Said; Yu, Hua; Jove, Richard

    2004-12-01

    DNA-alkylating agents that are platinum complexes induce apoptotic responses and have wide application in cancer therapy. The potential for platinum compounds to modulate signal transduction events that contribute to their therapeutic outcome has not been extensively examined. Among the signal transducer and activator of transcription (STAT) proteins, Stat3 activity is frequently up-regulated in many human tumors. Various lines of evidence have established a causal role for aberrant Stat3 activity in malignant transformation and provided validation for its targeting in the development of small-molecule inhibitors as novel cancer therapeutics. We report here that platinum-containing compounds disrupt Stat3 signaling and suppress its biological functions. The novel platinum (IV) compounds, CPA-1, CPA-7, and platinum (IV) tetrachloride block Stat3 activity in vitro at low micromolar concentrations. In malignant cells that harbor constitutively activated Stat3, CPA-1, CPA-7, and platinum (IV) tetrachloride inhibit cell growth and induce apoptosis in a manner that reflects the attenuation of persistent Stat3 activity. By contrast, cells that do not contain persistent Stat3 activity are marginally affected or are not affected by these compounds. Moreover, CPA-7 induces the regression of mouse CT26 colon tumor, which correlates with the abrogation of persistent Stat3 activity in tumors. Thus, the modulation of oncogenic signal transduction pathways, such as Stat3, may be one of the key molecular mechanisms for the antitumor effects of platinum (IV)-containing complexes.

  10. Three-dimensional EM Structure of an Intact Activator-dependent Transcription Initiation Complex

    SciTech Connect

    Hudson, B.; Quispe, J; Lara-González, S; Kim, Y; Berman, H; Arnold, E; Ebright, R; Lawson, C

    2009-01-01

    We present the experimentally determined 3D structure of an intact activator-dependent transcription initiation complex comprising the Escherichia coli catabolite activator protein (CAP), RNA polymerase holoenzyme (RNAP), and a DNA fragment containing positions -78 to +20 of a Class I CAP-dependent promoter with a CAP site at position -61.5 and a premelted transcription bubble. A 20-{angstrom} electron microscopy reconstruction was obtained by iterative projection-based matching of single particles visualized in carbon-sandwich negative stain and was fitted using atomic coordinate sets for CAP, RNAP, and DNA. The structure defines the organization of a Class I CAP-RNAP-promoter complex and supports previously proposed interactions of CAP with RNAP {alpha} subunit C-terminal domain ({alpha}CTD), interactions of {alpha}CTD with {sigma}70 region 4, interactions of CAP and RNAP with promoter DNA, and phased-DNA-bend-dependent partial wrapping of DNA around the complex. The structure also reveals the positions and shapes of species-specific domains within the RNAP {beta}{prime}, {beta}, and {sigma}70 subunits.

  11. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes.

    PubMed

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-09-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12-ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex.

  12. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase

    PubMed Central

    James, Tamara D.; Cardozo, Timothy; Abell, Lauren E.; Hsieh, Meng-Lun; Jenkins, Lisa M. Miller; Jha, Saheli S.; Hinton, Deborah M.

    2016-01-01

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation. PMID:27458207

  13. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase.

    PubMed

    James, Tamara D; Cardozo, Timothy; Abell, Lauren E; Hsieh, Meng-Lun; Jenkins, Lisa M Miller; Jha, Saheli S; Hinton, Deborah M

    2016-09-19

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ(70) subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ(70) Region 4, the N-terminal domain of MotA [MotA(NTD)], and the C-terminal domain of MotA [MotA(CTD)]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation.

  14. Quantification of the HIV transcriptional activator complex in live cells by image-based protein-protein interaction analysis.

    PubMed

    Asamitsu, Kaori; Omagari, Katsumi; Okuda, Tomoya; Hibi, Yurina; Okamoto, Takashi

    2016-07-01

    The virus-encoded Tat protein is essential for HIV transcription in infected cells. The interaction of Tat with the cellular transcription elongation factor P-TEFb (positive transcriptional elongation factor b) containing cyclin T1 (CycT1) and cyclin-dependent kinase 9 (CDK9) is critical for its activity. In this study, we use the Fluoppi (fluorescent-based technology detecting protein-protein interaction) system, which enables the quantification of interactions between biomolecules, such as proteins, in live cells. Quantitative measurement of the molecular interactions among Tat, CycT1 and CDK9 has showed that any third molecule enhances the binding between the other two molecules. These findings suggest that each component of the Tat:P-TEFb complex stabilizes the overall complex, thereby supporting the efficient transcriptional elongation during viral RNA synthesis. These interactions may serve as appropriate targets for novel anti-HIV therapy.

  15. Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription.

    PubMed

    Sewer, Marion B; Nguyen, Viet Q; Huang, Ching-Jung; Tucker, Philip W; Kagawa, Norio; Waterman, Michael R

    2002-04-01

    The first 57 bp upstream of the transcription initiation site of the human CYP17 (hCYP17) gene are essential for both basal and cAMP-dependent transcription. EMSA carried out by incubating H295R adrenocortical cell nuclear extracts with radiolabeled -57/-38 probe from the hCYP17 promoter showed the formation of three DNA-protein complexes. The fastest complex contained steroidogenic factor (SF-1) and p54(nrb)/NonO, the intermediate complex contained p54(nrb)/NonO and polypyrimidine tract-binding protein-associated splicing factor (PSF), and the slowest complex contained an SF-1/PSF/p54(nrb)/NonO complex. (Bu)(2)cAMP treatment resulted in a cAMP-inducible increase in the binding intensity of only the upper complex and also activated hCYP17 gene transcription. SF-1 coimmunoprecipitated with p54(nrb)/NonO, indicating direct interaction between these proteins. Functional assays revealed that PSF represses basal transcription. Further, the repression of hCYP17 promoter-reporter construct luciferase activity resulted from PSF interacting with the corepressor mSin3A. Trichostatin A attenuated the inhibition of basal transcription, suggesting that a histone deacetylase interacts with the SF-1/PSF/p54(nrb)/NonO/mSin3A complex. Our studies lend support to the idea that the balance between transcriptional activation and repression is essential in the control of adrenocortical steroid hormone biosynthesis.

  16. Functional diversification of FD transcription factors in rice, components of florigen activation complexes.

    PubMed

    Tsuji, Hiroyuki; Nakamura, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2013-03-01

    Florigen, a protein encoded by the FLOWERING LOCUS T (FT) in Arabidopsis and Heading date 3a (Hd3a) in rice, is the universal flowering hormone in plants. Florigen is transported from leaves to the shoot apical meristem and initiates floral evocation. In shoot apical cells, conserved cytoplasmic 14-3-3 proteins act as florigen receptors. A hexameric florigen activation complex (FAC) composed of Hd3a, 14-3-3 proteins, and OsFD1, a transcription factor, activates OsMADS15, a rice homolog of Arabidopsis APETALA1, leading to flowering. Because FD is a key component of the FAC, we characterized the FD gene family and their functions. Phylogenetic analysis of FD genes indicated that this family is divided into two groups: (i) canonical FD genes that are conserved among eudicots and non-Poaceae monocots; and (ii) Poaceae-specific FD genes that are organized into three subgroups: Poaceae FD1, FD2 and FD3. The Poaceae FD1 group shares a small sequence motif, T(A/V)LSLNS, with FDs of eudicots and non-Poaceae monocots. Overexpression of OsFD2, a member of the Poaceae FD2 group, produced smaller leaves with shorter plastochrons, suggesting that OsFD2 controls leaf development. In vivo subcellular localization of Hd3a, 14-3-3 and OsFD2 suggested that in contrast to OsFD1, OsFD2 is restricted to the cytoplasm through its interaction with the cytoplasmic 14-3-3 proteins, and interaction of Hd3a with 14-3-3 facilitates nuclear translocation of the FAC containing OsFD2. These results suggest that FD function has diverged between OsFD1 and OsFD2, but formation of a FAC is essential for their function.

  17. Functional Diversification of FD Transcription Factors in Rice, Components of Florigen Activation Complexes

    PubMed Central

    Tsuji, Hiroyuki; Nakamura, Hiroyuki; Taoka, Ken-ichiro; Shimamoto, Ko

    2013-01-01

    Florigen, a protein encoded by the FLOWERING LOCUS T (FT) in Arabidopsis and Heading date 3a (Hd3a) in rice, is the universal flowering hormone in plants. Florigen is transported from leaves to the shoot apical meristem and initiates floral evocation. In shoot apical cells, conserved cytoplasmic 14-3-3 proteins act as florigen receptors. A hexameric florigen activation complex (FAC) composed of Hd3a, 14-3-3 proteins, and OsFD1, a transcription factor, activates OsMADS15, a rice homolog of Arabidopsis APETALA1, leading to flowering. Because FD is a key component of the FAC, we characterized the FD gene family and their functions. Phylogenetic analysis of FD genes indicated that this family is divided into two groups: (i) canonical FD genes that are conserved among eudicots and non-Poaceae monocots; and (ii) Poaceae-specific FD genes that are organized into three subgroups: Poaceae FD1, FD2 and FD3. The Poaceae FD1 group shares a small sequence motif, T(A/V)LSLNS, with FDs of eudicots and non-Poaceae monocots. Overexpression of OsFD2, a member of the Poaceae FD2 group, produced smaller leaves with shorter plastochrons, suggesting that OsFD2 controls leaf development. In vivo subcellular localization of Hd3a, 14-3-3 and OsFD2 suggested that in contrast to OsFD1, OsFD2 is restricted to the cytoplasm through its interaction with the cytoplasmic 14-3-3 proteins, and interaction of Hd3a with 14-3-3 facilitates nuclear translocation of the FAC containing OsFD2. These results suggest that FD function has diverged between OsFD1 and OsFD2, but formation of a FAC is essential for their function. PMID:23324168

  18. The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript

    PubMed Central

    Malone, Colin D.; Mestdagh, Claire; Akhtar, Junaid; Kreim, Nastasja; Deinhard, Pia; Sachidanandam, Ravi; Treisman, Jessica

    2014-01-01

    The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing. PMID:25104425

  19. Bordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes.

    PubMed

    Boulanger, Alice; Moon, Kyung; Decker, Kimberly B; Chen, Qing; Knipling, Leslie; Stibitz, Scott; Hinton, Deborah M

    2015-02-10

    Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetella pertussis RR, BvgA, in its nonphosphorylated or phosphorylated (BvgA∼P) state at P(fim3), the promoter for the virulence gene fim3 (fimbrial subunit), using gel retardation, potassium permanganate and DNase I footprinting, cleavage reactions with protein conjugated with iron bromoacetamidobenzyl-EDTA, and in vitro transcription. Previous work has shown that the level of nonphosphorylated BvgA remains high in vivo under conditions in which BvgA is phosphorylated. Our results here indicate that surprisingly both BvgA and BvgA∼P form open and initiating complexes with RNA polymerase at P(fim3). However, phosphorylation of BvgA is needed to generate the correct conformation that can transition to competent elongation. Footprints obtained with the complexes made with nonphosphorylated BvgA are atypical; while the initiating complex with BvgA synthesizes short RNA, it does not generate full-length transcripts. Extended incubation of the BvgA/RNA polymerase initiated complex in the presence of heparin generates a stable, but defective species that depends on the initial transcribed sequence of fim3. We suggest that the presence of nonphosphorylated BvgA down-regulates P(fim3) activity when phosphorylated BvgA is present and may allow the bacterium to quickly adapt to the loss of inducing conditions by rapidly eliminating P(fim3) activation once the signal for BvgA phosphorylation is removed.

  20. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart.

    PubMed

    Preston, Claudia C; Oberlin, Andrew S; Holmuhamedov, Ekhson L; Gupta, Anu; Sagar, Sandeep; Syed, Rashad H Khazi; Siddiqui, Sabeeh A; Raghavakaimal, Sreekumar; Terzic, Andre; Jahangir, Arshad

    2008-06-01

    Aging is associated with progressive decline in energetic reserves compromising cardiac performance and tolerance to injury. Although deviations in mitochondrial functions have been documented in senescent heart, the molecular bases for the decline in energy metabolism are only partially understood. Here, high-throughput transcription profiles of genes coding for mitochondrial proteins in ventricles from adult (6-months) and aged (24-months) rats were compared using microarrays. Out of 614 genes encoding for mitochondrial proteins, 94 were differentially expressed with 95% downregulated in the aged. The majority of changes affected genes coding for proteins involved in oxidative phosphorylation (39), substrate metabolism (14) and tricarboxylic acid cycle (6). Compared to adult, gene expression changes in aged hearts translated into a reduced mitochondrial functional capacity, with decreased NADH-dehydrogenase and F(0)F(1) ATPase complex activities and capacity for oxygen-utilization and ATP synthesis. Expression of genes coding for transcription co-activator factors involved in the regulation of mitochondrial metabolism and biogenesis were downregulated in aged ventricles without reduction in mitochondrial density. Thus, aging induces a selective decline in activities of oxidative phosphorylation complexes I and V within a broader transcriptional downregulation of mitochondrial genes, providing a substrate for reduced energetic efficiency associated with senescence.

  1. Aging-Induced Alterations in Gene Transcripts and Functional Activity of Mitochondrial Oxidative Phosphorylation Complexes in the Heart

    PubMed Central

    Preston, Claudia C.; Oberlin, Andrew S.; Holmuhamedov, Ekhson L.; Gupta, Anu; Sagar, Sandeep; Khazi Syed, Rashad H.; Siddiqui, Sabeeh; Raghavakaimal, Sreekumar; Terzic, Andre; Jahangir, Arshad

    2008-01-01

    Aging is associated with progressive decline in energetic reserves compromising cardiac performance and tolerance to injury. Although deviations in mitochondrial functions have been documented in senescent heart, the molecular bases for the decline in energy metabolism are only partially understood. Here, high-throughput transcription profiles of genes coding for mitochondrial proteins in ventricles from adult (6-months) and aged (24-months) rats were compared using microarrays. Out of 614 genes encoding for mitochondrial proteins, 94 were differentially expressed with 95% downregulated in the aged. The majority of changes affected genes coding for proteins involved in oxidative phosphorylation (39), substrate metabolism (14) and tricarboxylic acid cycle (6). Compared to adult, gene expression changes in aged hearts translated into a reduced mitochondrial functional capacity, with decreased NADH-dehydrogenase and F0F1-ATPase complex activities and capacity for oxygen-utilization and ATP synthesis. Expression of genes coding for transcription co-activator factors involved in the regulation of mitochondrial metabolism and biogenesis were downregulated in aged ventricles without reduction in mitochondrial density. Thus, aging induces a selective decline in activities of oxidative phosphorylation complexes I and V within a broader transcriptional downregulation of mitochondrial genes, providing a substrate for reduced energetic efficiency associated with senescence. PMID:18400259

  2. Non-genic transcription at the Drosophila bithorax complex functional activity of the dark matter of the genome.

    PubMed

    Ho, Margaret C W; Schiller, Benjamin J; Goetz, Sara E; Drewell, Robert A

    2009-01-01

    Drosophila melanogaster is a powerful model system for the study of gene regulation due to its short generation time, high fertility and the availability of various genetic tools to manipulate the genome. Investigation into the regulation of homeotic genes and their role in embryonic patterning during development was pioneered in Drosophila. Recently, the molecular mechanisms responsible for regulating gene expression in the bithorax complex have been the focus of active study. Many of these studies have pointed to the importance of cis-regulatory modules, genetic sequences that direct the temporal and spatial patterns of gene expression over large genomic distances. Additional components of the regulatory code have emerged beyond the primary DNA sequence. In particular, non-genic transcription is an important mechanism for controlling gene expression either through direct transcriptional mechanisms that mediate dynamic epigenetic control of the chromatin environment or through functional activity of the RNA products.

  3. TGF-β induces p53/Smads complex formation in the PAI-1 promoter to activate transcription

    PubMed Central

    Kawarada, Yuki; Inoue, Yasumichi; Kawasaki, Fumihiro; Fukuura, Keishi; Sato, Koichi; Tanaka, Takahito; Itoh, Yuka; Hayashi, Hidetoshi

    2016-01-01

    Transforming growth factor β (TGF-β) signaling facilitates tumor development during the advanced stages of tumorigenesis, but induces cell-cycle arrest for tumor suppression during the early stages. However, the mechanism of functional switching of TGF-β is still unknown, and it is unclear whether inhibition of TGF-β signaling results amelioration or exacerbation of cancers. Here we show that the tumor suppressor p53 cooperates with Smad proteins, which are TGF-β signal transducers, to selectively activate plasminogen activator inhibitor type-1 (PAI-1) transcription. p53 forms a complex with Smad2/3 in the PAI-1 promoter to recruit histone acetyltransferase CREB-binding protein (CBP) and enhance histone H3 acetylation, resulting in transcriptional activation of the PAI-1 gene. Importantly, p53 is required for TGF-β-induced cytostasis and PAI-1 is involved in the cytostatic activity of TGF-β in several cell lines. Our results suggest that p53 enhances TGF-β-induced cytostatic effects by activating PAI-1 transcription, and the functional switching of TGF-β is partially caused by p53 mutation or p53 inactivation during cancer progression. It is expected that these findings will contribute to optimization of TGF-β-targeting therapies for cancer. PMID:27759037

  4. Insulin-activated Elk-1 recruits the TIP60/NuA4 complex to increase prolactin gene transcription.

    PubMed

    Mahajan, Muktar A; Stanley, Frederick M

    2014-01-25

    Insulin increases prolactin gene expression in GH4 cells through phosphorylation of Elk-1 (Jacob and Stanley, 2001). We preformed a reverse two-hybrid screen using Elk-1-B42 as bait to identify proteins from GH4 cells that might serve as co-activators or co-repressors for insulin-increased prolactin gene expression. A number of the components of the TIP60/NuA4 complex interacted with Elk-1 suggesting that Elk-1 might activate transcription by recruiting the TIP60 chromatin-remodeling complex to the prolactin promoter. Inhibition of insulin-increased prolactin-luciferase expression by wild type and mutant adenovirus E1A protein provided physiological context for these yeast studies. Inhibition of histone deacetylases dramatically increased both basal and insulin-increased prolactin gene transcription. Co-immune precipitation experiments demonstrated Elk-1 and TIP60 associate in vitro. Transient or stable expression of TIP60 activated insulin-increased prolactin gene expression while a mutated TIP60 blocked insulin-increased prolactin gene expression. Analysis of the prolactin mRNA by quantitative RT-PCR showed that insulin-increased prolactin mRNA accumulation and that this was inhibited in GH4 cells that stably expressed mutant TIP60. Finally, ChIP experiments demonstrate the insulin-dependent occupancy of the prolactin promoter by Elk-1 and TIP60. Our studies suggest that insulin activates prolactin gene transcription by activating Elk-1 that recruits the NuA4 complex to the promoter.

  5. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    PubMed Central

    Liu, Baohui; Lin, Xi; Yang, Xiangsheng; Dong, Huimin; Yue, Xiaojing; Andrade, Kelsey C; Guo, Zhentao; Yang, Jian; Wu, Liquan; Zhu, Xiaonan; Zhang, Shenqi; Tian, Daofeng; Wang, Junmin; Cai, Qiang; Chen, Qizuan; Mao, Shanping; Chen, Qianxue; Chang, Jiang

    2015-01-01

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis. PMID:26108681

  6. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    SciTech Connect

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  7. Structures of BmrR-drug complexes reveal a rigid multidrug binding pocket and transcription activation through tyrosine expulsion.

    PubMed

    Newberry, Kate J; Huffman, Joy L; Miller, Marshall C; Vazquez-Laslop, Nora; Neyfakh, Alex A; Brennan, Richard G

    2008-09-26

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  8. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity.

    PubMed

    Holden, Jennifer M; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T; Aitchison, John D; Rout, Michael P; Field, Mark C

    2014-05-01

    The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle-dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.

  9. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription.

    PubMed

    Martell, Danya J; Joshi, Chandra P; Gaballa, Ahmed; Santiago, Ace George; Chen, Tai-Yen; Jung, Won; Helmann, John D; Chen, Peng

    2015-11-03

    Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ(70)-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator-DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)--a Cu(+)-responsive MerR-family metalloregulator--modulates RNAP interactions with CueR's cognate suboptimal promoter PcopA, and how RNAP affects CueR-PcopA interactions. We find that RNAP can form two noninterconverting complexes at PcopA in the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a "biased sampling" instead of "dynamic equilibrium shifting" mechanism in regulating transcription initiation; it modulates RNAP's binding-unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopA into its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription.

  10. The Mediator complex and transcription regulation.

    PubMed

    Poss, Zachary C; Ebmeier, Christopher C; Taatjes, Dylan J

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.

  11. Linking Smads and transcriptional activation.

    PubMed

    Inman, Gareth J

    2005-02-15

    TGF-beta1 (transforming growth factor-beta1) is the prototypical member of a large family of pleiotropic cytokines that regulate diverse biological processes during development and adult tissue homoeostasis. TGF-beta signals via membrane bound serine/threonine kinase receptors which transmit their signals via the intracellular signalling molecules Smad2, Smad3 and Smad4. These Smads contain conserved MH1 and MH2 domains separated by a flexible linker domain. Smad2 and Smad3 act as kinase substrates for the receptors, and, following phosphorylation, they form complexes with Smad4 and translocate to the nucleus. These Smad complexes regulate gene expression and ultimately determine the biological response to TGF-beta. In this issue of the Biochemical Journal, Wang et al. have shown that, like Smad4, the linker domain of Smad3 contains a Smad transcriptional activation domain. This is capable of recruiting the p300 transcriptional co-activator and is required for Smad3-dependent transcriptional activation. This study raises interesting questions about the nature and regulation of Smad-regulated gene activation and elevates the status of the linker domain to rival that of the much-lauded MH1 and MH2 domains.

  12. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription.

    PubMed

    Fufa, Temesgen D; Byun, Jung S; Wakano, Clay; Fernandez, Alfonso G; Pise-Masison, Cynthia A; Gardner, Kevin

    2015-09-11

    The eleven-nineteen lysine-rich leukemia protein (ELL) is a key regulator of RNA polymerase II mediated transcription. ELL facilitates RNA polymerase II transcription pause site entry and release by dynamically interacting with p300 and the positive transcription elongation factor b (P-TEFb). In this study, we investigated the role of ELL during the HTLV-1 Tax oncogene induced transactivation. We show that ectopic expression of Tax enhances ELL incorporation into p300 and P-TEFb containing transcriptional complexes and the subsequent recruitment of these complexes to target genes in vivo. Depletion of ELL abrogates Tax induced transactivation of the immediate early genes Fos, Egr2 and NF-kB, suggesting that ELL is an essential cellular cofactor of the Tax oncogene. Thus, our study identifies a novel mechanism of ELL-dependent transactivation of immediate early genes by Tax and provides the rational for further defining the genome-wide targets of Tax and ELL.

  13. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane*

    PubMed Central

    De Gois, Stéphanie; Slama, Patrick; Pietrancosta, Nicolas; Erdozain, Amaia M.; Louis, Franck; Bouvrais-Veret, Caroline; Daviet, Laurent; Giros, Bruno

    2015-01-01

    Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking. PMID:26048990

  14. Ski Regulates Muscle Terminal Differentiation by Transcriptional Activation of Myog in a Complex with Six1 and Eya3*S⃞

    PubMed Central

    Zhang, Hong; Stavnezer, Ed

    2009-01-01

    Overexpression of the Ski pro-oncogene has been shown to induce myogenesis in non-muscle cells, to promote muscle hypertrophy in postnatal mice, and to activate transcription of muscle-specific genes. However, the precise role of Ski in muscle cell differentiation and its underlying molecular mechanism are not fully understood. To elucidate the involvement of Ski in muscle terminal differentiation, two retroviral systems were used to achieve conditional overexpression or knockdown of Ski in satellite cell-derived C2C12 myoblasts. We found that enforced expression of Ski promoted differentiation, whereas loss of Ski severely impaired it. Compromised terminal differentiation in the absence of Ski was likely because of the failure to induce myogenin (Myog) and p21 despite normal expression of MyoD. Chromatin immunoprecipitation and transcriptional reporter experiments showed that Ski occupied the endogenous Myog regulatory region and activated transcription from the Myog regulatory region upon differentiation. Transactivation of Myog was largely dependent on a MEF3 site bound by Six1, not on the binding site of MyoD or MEF2. Activation of the MEF3 site required direct interaction of Ski with Six1 and Eya3 mediated by the evolutionarily conserved Dachshund homology domain of Ski. Our results indicate that Ski is necessary for muscle terminal differentiation and that it exerts this role, at least in part, through its association with Six1 and Eya3 to regulate the Myog transcription. PMID:19008232

  15. Topography of the euryarchaeal transcription initiation complex.

    PubMed

    Bartlett, Michael S; Thomm, Michael; Geiduschek, E Peter

    2004-02-13

    Transcription in the Archaea is carried out by RNA polymerases and transcription factors that are highly homologous to their eukaryotic counterparts, but little is known about the structural organization of the archaeal transcription complex. To address this, transcription initiation complexes have been formed with Pyrococcus furiosus transcription factors (TBP and TFB1), RNA polymerase, and a linear DNA fragment containing a strong promoter. The arrangement of proteins from base pair -35 to +20 (relative to the transcriptional start site) has been analyzed by photochemical protein-DNA cross-linking. TBP cross-links to the TATA box and TFB1 cross-links both upstream and downstream of the TATA box, as expected, but the sites of most prominent TFB1 cross-linking are located well downstream of the TATA box, reaching as far as the start site of transcription, suggesting a role for TFB1 in initiation of transcription that extends beyond polymerase recruitment. These cross-links indicate the transcription factor orientation in the initiation complex. The pattern of cross-linking of four RNA polymerase subunits (B, A', A", and H) to the promoter suggests a path for promoter DNA relative to the RNA polymerase surface in this archaeal transcription initiation complex. In addition, an unidentified protein approximately the size of TBP cross-links to the non-transcribed DNA strand near the upstream edge of the transcription bubble. Cross-linking is specific to the polymerase-containing initiation complex and requires the gdh promoter TATA box. The location of this protein suggests that it, like TFB1, could also have a role in transcription initiation following RNA polymerase recruitment.

  16. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex.

    PubMed

    Sharma, Sonia; Findlay, Gregory M; Bandukwala, Hozefa S; Oberdoerffer, Shalini; Baust, Beate; Li, Zhigang; Schmidt, Valentina; Hogan, Patrick G; Sacks, David B; Rao, Anjana

    2011-07-12

    Nuclear factor of activated T cells (NFAT) proteins are Ca(2+)-regulated transcription factors that control gene expression in many cell types. NFAT proteins are heavily phosphorylated and reside in the cytoplasm of resting cells; when cells are stimulated by a rise in intracellular Ca(2+), NFAT proteins are dephosphorylated by the Ca(2+)/calmodulin-dependent phosphatase calcineurin and translocate to the nucleus to activate target gene expression. Here we show that phosphorylated NFAT1 is present in a large cytoplasmic RNA-protein scaffold complex that contains a long intergenic noncoding RNA (lincRNA), NRON [noncoding (RNA) repressor of NFAT]; a scaffold protein, IQ motif containing GTPase activating protein (IQGAP); and three NFAT kinases, casein kinase 1, glycogen synthase kinase 3, and dual specificity tyrosine phosphorylation regulated kinase. Combined knockdown of NRON and IQGAP1 increased NFAT dephosphorylation and nuclear import exclusively after stimulation, without affecting the rate of NFAT rephosphorylation and nuclear export; and both NRON-depleted T cells and T cells from IQGAP1-deficient mice showed increased production of NFAT-dependent cytokines. Our results provide evidence that a complex of lincRNA and protein forms a scaffold for a latent transcription factor and its regulatory kinases, and support an emerging consensus that lincRNAs that bind transcriptional regulators have a similar scaffold function.

  17. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex

    PubMed Central

    Sharma, Sonia; Findlay, Gregory M.; Bandukwala, Hozefa S.; Oberdoerffer, Shalini; Baust, Beate; Li, Zhigang; Schmidt, Valentina; Hogan, Patrick G.; Sacks, David B.; Rao, Anjana

    2011-01-01

    Nuclear factor of activated T cells (NFAT) proteins are Ca2+-regulated transcription factors that control gene expression in many cell types. NFAT proteins are heavily phosphorylated and reside in the cytoplasm of resting cells; when cells are stimulated by a rise in intracellular Ca2+, NFAT proteins are dephosphorylated by the Ca2+/calmodulin-dependent phosphatase calcineurin and translocate to the nucleus to activate target gene expression. Here we show that phosphorylated NFAT1 is present in a large cytoplasmic RNA-protein scaffold complex that contains a long intergenic noncoding RNA (lincRNA), NRON [noncoding (RNA) repressor of NFAT]; a scaffold protein, IQ motif containing GTPase activating protein (IQGAP); and three NFAT kinases, casein kinase 1, glycogen synthase kinase 3, and dual specificity tyrosine phosphorylation regulated kinase. Combined knockdown of NRON and IQGAP1 increased NFAT dephosphorylation and nuclear import exclusively after stimulation, without affecting the rate of NFAT rephosphorylation and nuclear export; and both NRON-depleted T cells and T cells from IQGAP1-deficient mice showed increased production of NFAT-dependent cytokines. Our results provide evidence that a complex of lincRNA and protein forms a scaffold for a latent transcription factor and its regulatory kinases, and support an emerging consensus that lincRNAs that bind transcriptional regulators have a similar scaffold function. PMID:21709260

  18. Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes[OPEN

    PubMed Central

    Hartwig, Benjamin; James, Geo Velikkakam

    2016-01-01

    In multicellular organisms, Polycomb Repressive Complex 1 (PRC1) and PRC2 repress target genes through histone modification and chromatin compaction. Arabidopsis thaliana mutants strongly compromised in the pathway cannot develop differentiated organs. LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is so far the only known plant PRC1 component that directly binds to H3K27me3, the histone modification set by PRC2, and also associates genome-wide with trimethylation of lysine 27 of histone H3 (H3K27me3). Surprisingly, lhp1 mutants show relatively mild phenotypic alterations. To explain this paradox, we screened for genetic enhancers of lhp1 mutants to identify novel components repressing target genes together with, or in parallel to, LHP1. Two enhancing mutations were mapped to TELOMERE REPEAT BINDING PROTEIN1 (TRB1) and its paralog TRB3. We show that TRB1 binds to thousands of genomic sites containing telobox or related cis-elements with a significant increase of sites and strength of binding in the lhp1 background. Furthermore, in combination with lhp1, but not alone, trb1 mutants show increased transcription of LHP1 targets, such as floral meristem identity genes, which are more likely to be bound by TRB1 in the lhp1 background. By contrast, expression of a subset of LHP1-independent TRB1 target genes, many involved in primary metabolism, is decreased in the absence of TRB1 alone. Thus, TRB1 is a bivalent transcriptional modulator that maintains downregulation of Polycomb Group (PcG) target genes in lhp1 mutants, while it sustains high expression of targets that are regulated independently of PcG. PMID:26721861

  19. Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway.

    PubMed

    Hsu, Shih-Che; Huang, Shih-Ming; Chen, Ann; Sun, Chiao-Yin; Lin, Shih-Hua; Chen, Jin-Shuen; Liu, Shu-Ting; Hsu, Yu-Juei

    2014-08-01

    The Klotho gene functions as an aging suppressor gene. Evidence from animal models suggests that induction of Klotho expression may be a potential treatment for age-associated diseases. However, the molecular mechanism involved in regulating renal Klotho gene expression remains unclear. In this study, we determined that resveratrol, a natural polyphenol, induced renal Klotho expression both in vivo and in vitro. In the mouse kidney, resveratrol administration markedly increased both Klotho mRNA and protein expression. In resveratrol-treated NRK-52E cells, increased Klotho expression was accompanied by the upregulation and nuclear translocation of activating transcription factor 3 (ATF3) and c-Jun. ATF3 or c-Jun overexpression enhanced the transcriptional activation of Klotho. Conversely, resveratrol-induced Klotho expression was attenuated in the presence of dominant-negative ATF3 or c-Jun. Coimmunoprecipitation and a chromatin immunoprecipitation assay revealed that ATF3 physically interacted with c-Jun and that the ATF3/c-Jun complex directly bound to the Klotho promoter through ATF3- and AP-1-binding elements. c-Jun cotransfection augmented the effects of ATF3 on Klotho transcription in vitro. Although Sirtuin 1 mRNA expression was induced by resveratrol and involved in regulating Klotho mRNA expression, it was not the primary cause for the aforementioned ATF3/c-Jun pathway. In summary, resveratrol enhances the renal expression of the anti-aging Klotho gene, and the transcriptional factors ATF3 and c-Jun functionally interact and coordinately regulate the resveratrol-mediated transcriptional activation of Klotho.

  20. Direct inhibition of the NOTCH transcription factor complex.

    PubMed

    Moellering, Raymond E; Cornejo, Melanie; Davis, Tina N; Del Bianco, Cristina; Aster, Jon C; Blacklow, Stephen C; Kung, Andrew L; Gilliland, D Gary; Verdine, Gregory L; Bradner, James E

    2009-11-12

    Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized alpha-helical peptides that target a critical protein-protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.

  1. Direct inhibition of the NOTCH transcription factor complex

    PubMed Central

    Moellering, Raymond E.; Cornejo, Melanie; Davis, Tina N.; Del Bianco, Cristina; Aster, Jon C.; Blacklow, Stephen C.; Kung, Andrew L.; Gilliland, D. Gary; Verdine, Gregory L.; Bradner, James E.

    2010-01-01

    Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized α-helical peptides that target a critical protein–protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL. PMID:19907488

  2. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    PubMed

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  3. A G-quadruplex-binding macrodomain within the "SARS-unique domain" is essential for the activity of the SARS-coronavirus replication-transcription complex.

    PubMed

    Kusov, Yuri; Tan, Jinzhi; Alvarez, Enrique; Enjuanes, Luis; Hilgenfeld, Rolf

    2015-10-01

    The multi-domain non-structural protein 3 of SARS-coronavirus is a component of the viral replication/transcription complex (RTC). Among other domains, it contains three sequentially arranged macrodomains: the X domain and subdomains SUD-N as well as SUD-M within the "SARS-unique domain". The X domain was proposed to be an ADP-ribose-1"-phosphatase or a poly(ADP-ribose)-binding protein, whereas SUD-NM binds oligo(G)-nucleotides capable of forming G-quadruplexes. Here, we describe the application of a reverse genetic approach to assess the importance of these macrodomains for the activity of the SARS-CoV RTC. To this end, Renilla luciferase-encoding SARS-CoV replicons with selectively deleted macrodomains were constructed and their ability to modulate the RTC activity was examined. While the SUD-N and the X domains were found to be dispensable, the SUD-M domain was crucial for viral genome replication/transcription. Moreover, alanine replacement of charged amino-acid residues of the SUD-M domain, which are likely involved in G-quadruplex-binding, caused abrogation of RTC activity.

  4. Sry is a transcriptional activator.

    PubMed

    Dubin, R A; Ostrer, H

    1994-09-01

    The SRY gene functions as a genetic switch in gonadal ridge initiating testis determination. The mouse Sry and human SRY open reading frames (ORFs) share a conserved DNA-binding domain (the HMG-box) yet exhibit no additional homology outside this region. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and mouse SRY ORFs contain a nuclear localization signal. The mouse Sry HMG-box domain selectively binds the sequence NACAAT in vitro when challenged with a random pool of oligonucleotides and binds AACAAT with the highest affinity. When put under the control of a heterologous promotor, the mouse Sry gene activated transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was likewise observed for a GAL4-responsive reporter gene, when the mouse Sry gene was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a glutamine/histidine-rich domain. In addition, LexA-mouse Sry fusion genes activated a LexA-responsive reporter gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and the mouse SRY ORFs encode nuclear, DNA-binding proteins and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  5. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    PubMed Central

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  6. Hepatitis B Virus X-Associated Protein 2 Is a Subunit of the Unliganded Aryl Hydrocarbon Receptor Core Complex and Exhibits Transcriptional Enhancer Activity

    PubMed Central

    Meyer, Brian K.; Pray-Grant, Marilyn G.; Vanden Heuvel, John P.; Perdew, Gary H.

    1998-01-01

    Prior to ligand activation, the unactivated aryl hydrocarbon receptor (AhR) exists in a heterotetrameric 9S core complex consisting of the AhR ligand-binding subunit, a dimer of hsp90, and an unknown subunit. Here we report the purification of an ∼38-kDa protein (p38) from COS-1 cell cytosol that is a member of this complex by coprecipitation with a FLAG-tagged AhR. Internal amino acid sequence information was obtained, and p38 was identified as the hepatitis B virus X-associated protein 2 (XAP2). The simian ortholog of XAP2 was cloned from a COS-1 cDNA library; it codes for a 330-amino-acid protein containing regions of homology to the immunophilins FKBP12 and FKBP52. A tetratricopeptide repeat (TPR) domain in the carboxy-terminal region of XAP2 was similar to the third and fourth TPR domains of human FKBP52 and the Saccharomyces cerevisiae transcriptional modulator SSN6, respectively. Polyclonal antibodies raised against XAP2 recognized p38 in the unliganded AhR complex in COS-1 and Hepa 1c1c7 cells. It was ubiquitously expressed in murine tissues at the protein and mRNA levels. It was not required for the assembly of an AhR-hsp90 complex in vitro. Additionally, XAP2 did not directly associate with hsp90 upon in vitro translation, but was present in a 9S form when cotranslated in vitro with murine AhR. XAP2 enhanced the ability of endogenous murine and human AhR complexes to activate a dioxin-responsive element–luciferase reporter twofold, following transient expression of XAP2 in Hepa 1c1c7 and HeLa cells. PMID:9447995

  7. Yorkie promotes transcription by recruiting a Histone methyltransferase complex

    PubMed Central

    Oh, Hyangyee; Slattery, Matthew; Ma, Lijia; White, Kevin P.; Mann, Richard S.

    2014-01-01

    SUMMARY Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation, and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex, through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie’s ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie’s mammalian homologue YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification. PMID:25017066

  8. B Cell-Activating Transcription Factor Plays a Critical Role in the Pathogenesis of Anti-Major Histocompatibility Complex-Induced Obliterative Airway Disease.

    PubMed

    Xu, Z; Ramachandran, S; Gunasekaran, M; Nayak, D; Benshoff, N; Hachem, R; Gelman, A; Mohanakumar, T

    2016-04-01

    Antibodies (Abs) against major histocompatibility complex (MHC) results in T helper-17 (Th17)-mediated immunity against lung self-antigens (SAgs), K-α1 tubulin and collagen V and obliterative airway disease (OAD). Because B cell-activating transcription factor (BATF) controls Th17 and autoimmunity, we proposed that BATF may play a critical role in OAD. Anti-H2K(b) was administered intrabronchially into Batf (-/-) and C57BL/6 mice. Histopathology of the lungs on days 30 and 45 after Ab administration to Batf (-/-) mice resulted in decreased cellular infiltration, epithelial metaplasia, fibrosis, and obstruction. There was lack of Abs to SAgs, reduction of Sag-specific interleukin (IL)-17 T cells, IL-6, IL-23, IL-17, IL-1β, fibroblast growth factor-6, and CXCL12 and decreased Janus kinase 2, signal transducer and activator of transcription 3 (STAT3), and retinoid-related orphan receptor γT. Further, micro-RNA (miR)-301a, a regulator of Th17, was reduced in Batf (-/-) mice in contrast to upregulation of miR-301a and downregulation of protein inhibitor of activated STAT3 (PIAS3) in anti-MHC-induced OAD animals. We also demonstrate an increase in miR-301a in the bronchoalveolar lavage cells from lung transplant recipients with Abs to human leukocyte antigen. This was accompanied by reduction in PIAS3 mRNA. Therefore, we conclude that BATF plays a critical role in the immune responses to SAgs and pathogenesis of anti-MHC-induced rejection. Targeting BATF should be considered for preventing chronic rejection after human lung transplantation.

  9. Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds

    PubMed Central

    Zalatan, Jesse G.; Lee, Michael E.; Almeida, Ricardo; Gilbert, Luke A.; Whitehead, Evan H.; La Russa, Marie; Tsai, Jordan C.; Weissman, Jonathan S.; Dueber, John E.; Qi, Lei S.; Lim, Wendell A.

    2014-01-01

    Summary Eukaryotic cells execute complex transcriptional programs in which specific loci throughout the genome are regulated in distinct ways by targeted regulatory assemblies. We have applied this principle to generate synthetic CRISPR-based transcriptional programs in yeast and human cells. By extending guide RNAs to include effector protein recruitment sites, we construct modular scaffold RNAs that encode both target locus and regulatory action. Sets of scaffold RNAs can be used to generate synthetic multi-gene transcriptional programs in which some genes are activated and others are repressed. We apply this approach to flexibly redirect flux through a complex branched metabolic pathway in yeast. Moreover, these programs can be executed by inducing expression of the dCas9 protein, which acts as a single master regulatory control point. CRISPR-associated RNA scaffolds provide a powerful way to construct synthetic gene expression programs for a wide range of applications including rewiring cell fates or engineering metabolic pathways. PMID:25533786

  10. Heterodimeric Drosophila gap gene protein complexes acting as transcriptional repressors.

    PubMed Central

    Sauer, F; Jäckle, H

    1995-01-01

    The Drosophila gap gene Krüppel (Kr) encodes a transcriptional regulator. It acts both as an integral part of the Drosophila segmentation gene in the early blastoderm and in a variety of tissues and organs at later stages of embryogenesis. In transfected tissue culture cells, the Kr protein (Kr) was shown to both activate and repress gene expression in a concentration-dependent manner when acting from a single binding site close to the promoter. Here we show that KR can associate with the transcription factors encoded by the gap genes knirps (kni) and hunchback (hb) which affect KR-dependent gene expression in Drosophila tissue culture cells. The association of DNA-bound hb protein or free kni protein with distinct but different regions of KR results in the formation of DNA-bound transcriptional repressor complexes. Our results suggest that individual transcription factors can associate to form protein complexes which act as direct repressors of transcription. The interactions shown here add an unexpected level of complexity to the control of gene expression. Images PMID:7588607

  11. HIV-1 trans activator of transcription protein elicits mitochondrial hyperpolarization and respiratory deficit, with dysregulation of complex IV and nicotinamide adenine dinucleotide homeostasis in cortical neurons.

    PubMed

    Norman, John P; Perry, Seth W; Kasischke, Karl A; Volsky, David J; Gelbard, Harris A

    2007-01-15

    HIV-1 causes a common, progressive neurological disorder known as HIV-associated dementia (HAD). The prevalence of this disorder has increased despite the use of highly active antiretroviral therapy, and its underlying pathogenesis remains poorly understood. However, evidence suggests that some aspects of HAD may be reversible. To model the reversible aspects of HAD, we have used the HIV-1 neurotoxin trans activator of transcription protein (Tat) to investigate nonlethal changes in cultured neurons. Exposure of rodent cortical neurons to sublethal concentrations of Tat elicits mitochondrial hyperpolarization. In this study, we used the cationic lipophilic dye rhodamine 123 to confirm this observation, and then performed follow-up studies to examine the mechanism involved. In intact neurons, we found Tat elicited a rapid drop in internal mitochondrial pH, and addition of Tat to purified mitochondrial extracts inhibited complex IV of the electron transport chain. To correlate enzyme activity in mitochondrial extracts with results in intact cells, we measured neuronal respiration following Tat exposure. Cortical neurons demonstrated decreased respiration upon Tat treatment, consistent with inhibition of complex IV. We examined mitochondrial Ca(2+) homeostasis using a mitochondrial targeted enhanced yellow fluorescent protein-calmodulin construct. We detected a decrease in mitochondrial calcium concentration following exposure to Tat. Finally, we measured the energy intermediate NAD(P)H after Tat treatment, and found a 20% decrease in the autofluorescence. Based on these findings, we suggest that decreased NADPH and calcium concentration contribute to subsequent respiratory decline after exposure to Tat, with detrimental effects on neuronal signaling.

  12. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana.

    PubMed

    Xiong, Shuang-Xi; Lu, Jie-Yang; Lou, Yue; Teng, Xiao-Dong; Gu, Jing-Nan; Zhang, Cheng; Shi, Qiang-Sheng; Yang, Zhong-Nan; Zhu, Jun

    2016-12-01

    The sexine layer of pollen grain is mainly composed of sporopollenins. The sporophytic secretory tapetum is required for the biosynthesis of sporopollenin. Although several enzymes involved in sporopollenin biosynthesis have been reported, the regulatory mechanism of these enzymes in tapetal layer remains elusive. ABORTED MICROSPORES (AMS) and MALE STERILE 188/MYB103/MYB80 (MS188/MYB103/MYB80) are two tapetal cell-specific transcription factors required for pollen wall formation. AMS functions upstream of MS188. Here we report that AMS and MS188 target the CYP703A2 gene, which is involved in sporopollenin biosynthesis. We found that AMS and MS188 were localized in tapetum while CYP703A2 was localized in both tapetum and locule. Chromatin immunoprecipitation (ChIP) showed that MS188 directly bound to the promoter of CYP703A2 and luciferase-inducible assay showed that MS188 activated the expression of CYP703A2. Yeast two-hybrid and electrophoretic mobility shift assays (EMSAs) further demonstrated that MS188 complexed with AMS. The expression of CYP703A2 could be partially restored by the elevated levels of MS188 in the ams mutant. Therefore, our data reveal that MS188 coordinates with AMS to activate CYP703A2 in sporopollenin biosynthesis of plant tapetum.

  13. Transient receptor potential melastatin-3 (TRPM3)-induced activation of AP-1 requires Ca2+ ions and the transcription factors c-Jun, ATF2, and ternary complex factor.

    PubMed

    Lesch, Andrea; Hui, Xin; Lipp, Peter; Thiel, Gerald

    2015-04-01

    The steroid pregnenolone sulfate activates the transcription factor activator protein-1 (AP-1) via stimulation of transient receptor potential melastatin-3 (TRPM3) channels. Here, we show that the signaling pathway requires an influx of Ca(2+) ions into the cells and a rise in the intracellular Ca(2+) levels. The upregulation of AP-1 was attenuated in cells that overexpressed mitogen activated protein kinase phosphatase-1, indicating that Ca(2+) ions prolong the signaling cascade via activation of mitogen activated protein kinases. On the transcriptional level, expression of a dominant-negative mutant of the basic region leucine zipper protein c-Jun, a major constituent of the AP-1 transcription factor complex, or expression of a c-Jun-specific short hairpin RNA attenuated pregnenolone sulfate-induced AP-1 activation. In addition, stimulation of TRPM3 channels increased the transcriptional activation potential of the basic region leucine zipper protein ATF2. Inhibition of ATF2 target gene expression via expression of a dominant-negative mutant of ATF2 or expression of an ATF2-specific short hairpin RNA interfered with TRPM3-mediated stimulation of AP-1. Moreover, we show that a dominant-negative mutant of the ternary complex factor (TCF) Elk-1 attenuated the upregulation of AP-1 following stimulation of TRPM3 channels. Thus, c-Jun, ATF2, and TCFs are required to connect the intracellular signaling cascade elicited by activation of TRPM3 channels with enhanced transcription of AP-1-regulated genes. We conclude that pregnenolone sulfate-induced TRPM3 channel activation changes the gene expression pattern of the cells by activating transcription of c-Jun-, ATF2-, and TCF-controlled genes.

  14. Plant Mediator complex and its critical functions in transcription regulation.

    PubMed

    Yang, Yan; Li, Ling; Qu, Li-Jia

    2016-02-01

    The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted.

  15. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  16. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response.

    PubMed Central

    Fawcett, T W; Martindale, J L; Guyton, K Z; Hai, T; Holbrook, N J

    1999-01-01

    Gadd153, also known as chop, encodes a member of the CCAAT/enhancer-binding protein (C/EBP) transcription factor family and is transcriptionally activated by cellular stress signals. We recently demonstrated that arsenite treatment of rat pheochromocytoma PC12 cells results in the biphasic induction of Gadd153 mRNA expression, controlled in part through binding of C/EBPbeta and two uncharacterized protein complexes to the C/EBP-ATF (activating transcription factor) composite site in the Gadd153 promoter. In this report, we identified components of these additional complexes as two ATF/CREB (cAMP-responsive-element-binding protein) transcription factors having differential binding activities dependent upon the time of arsenite exposure. During arsenite treatment of PC12 cells, we observed enhanced binding of ATF4 to the C/EBP-ATF site at 2 h as Gadd153 mRNA levels increased, and enhanced binding of ATF3 complexes at 6 h as Gadd153 expression declined. We further demonstrated that ATF4 activates, while ATF3 represses, Gadd153 promoter activity through the C/EBP-ATF site. ATF3 also repressed ATF4-mediated transactivation and arsenite-induced activation of the Gadd153 promoter. Our results suggest that numerous members of the ATF/CREB family are involved in the cellular stress response, and that regulation of stress-induced biphasic Gadd153 expression in PC12 cells involves the ordered, sequential binding of multiple transcription factor complexes to the C/EBP-ATF composite site. PMID:10085237

  17. The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts

    PubMed Central

    Shimada, Yukiko; Mohn, Fabio; Bühler, Marc

    2016-01-01

    Small RNAs regulate chromatin modification and transcriptional gene silencing across the eukaryotic kingdom. Although these processes have been well studied, fundamental mechanistic aspects remain obscure. Specifically, it is unclear exactly how small RNA-loaded Argonaute protein complexes target chromatin to mediate silencing. Here, using fission yeast, we demonstrate that transcription of the target locus is essential for RNA-directed formation of heterochromatin. However, high transcriptional activity is inhibitory; thus, a transcriptional window exists that is optimal for silencing. We further found that pre-mRNA splicing is compatible with RNA-directed heterochromatin formation. However, the kinetics of pre-mRNA processing is critical. Introns close to the 5′ end of a transcript that are rapidly spliced result in a bistable response whereby the target either remains euchromatic or becomes fully silenced. Together, our results discount siRNA–DNA base pairing in RNA-mediated heterochromatin formation, and the mechanistic insights further reveal guiding paradigms for the design of small RNA-directed chromatin silencing studies in multicellular organisms. PMID:27941123

  18. Serum Inter-α-inhibitor activates the Yes tyrosine kinase and YAP/TEAD transcriptional complex in mouse embryonic stem cells.

    PubMed

    Pijuan-Galitó, Sara; Tamm, Christoffer; Annerén, Cecilia

    2014-11-28

    We have previously demonstrated that the Src family kinase Yes, the Yes-associated protein (YAP) and TEA domain TEAD2 transcription factor pathway are activated by leukemia inhibitory factor (LIF) and contribute to mouse embryonic stem (mES) cell maintenance of pluripotency and self-renewal. In addition, we have shown that fetal bovine serum (FBS) induces Yes auto-phosphorylation and activation. In the present study we confirm that serum also activates TEAD-dependent transcription in a time- and dose-dependent manner and we identify Inter-α-inhibitor (IαI) as a component in serum capable of activating the Yes/YAP/TEAD pathway by inducing Yes auto-phosphorylation, YAP nuclear localization and TEAD-dependent transcription. The cleaved heavy chain 2 (HC2) sub-component of IαI, is demonstrated to be responsible for this effect. Moreover, IαI is also shown to efficiently increase expression of TEAD-downstream target genes including well-known stem cell factors Nanog and Oct 3/4. IαI is not produced by the ES cells per se but is added to the cells via the cell culture medium containing serum or serum-derived components such as bovine serum albumin (BSA). In conclusion, we describe a novel function of IαI in activating key pluripotency pathways associated with ES cell maintenance and self-renewal.

  19. A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus.

    PubMed Central

    Dorsch-Häsler, K; Keil, G M; Weber, F; Jasin, M; Schaffner, W; Koszinowski, U H

    1985-01-01

    Using the simian virus 40 "enhancer trap" approach, we have identified a transcription enhancer located just upstream of the major immediate early gene of murine cytomegalovirus. This enhancer has several striking properties. (i) Together with the enhancer of human cytomegalovirus, it is the strongest transcription enhancer found to date. (ii) It is an extremely long enhancer, spanning greater than 700 base pairs. (iii) It consists of a rather complex pattern of sequence repeats, the longest of which is 181 base pairs. Also, several types of short sequence motifs are scattered throughout the enhancer in monomeric, heterodimeric, or homodimeric (palindromic) form. These motifs have been identified to be components of other enhancers and promoters, and they are presumably binding sites for specific nuclear factors. Our analysis suggests that enhancers are composed of a modular arrangement of short conserved sequence motifs and that enhancer strength is correlated with the redundancy of these motifs. Images PMID:3001696

  20. A sustained deficiency of mitochondrial respiratory complex III induces an apoptotic cell death through the p53-mediated inhibition of pro-survival activities of the activating transcription factor 4.

    PubMed

    Evstafieva, A G; Garaeva, A A; Khutornenko, A A; Klepikova, A V; Logacheva, M D; Penin, A A; Novakovsky, G E; Kovaleva, I E; Chumakov, P M

    2014-11-06

    Generation of energy in mitochondria is subjected to physiological regulation at many levels, and its malfunction may result in mitochondrial diseases. Mitochondrial dysfunction is associated with different environmental influences or certain genetic conditions, and can be artificially induced by inhibitors acting at different steps of the mitochondrial electron transport chain (ETC). We found that a short-term (5 h) inhibition of ETC complex III with myxothiazol results in the phosphorylation of translation initiation factor eIF2α and upregulation of mRNA for the activating transcription factor 4 (ATF4) and several ATF4-regulated genes. The changes are characteristic for the adaptive integrated stress response (ISR), which is known to be triggered by unfolded proteins, nutrient and metabolic deficiency, and mitochondrial dysfunctions. However, after a prolonged incubation with myxothiazol (13-17 h), levels of ATF4 mRNA and ATF4-regulated transcripts were found substantially suppressed. The suppression was dependent on the p53 response, which is triggered by the impairment of the complex III-dependent de novo biosynthesis of pyrimidines by mitochondrial dihydroorotate dehydrogenase. The initial adaptive induction of ATF4/ISR acted to promote viability of cells by attenuating apoptosis. In contrast, the induction of p53 upon a sustained inhibition of ETC complex III produced a pro-apoptotic effect, which was additionally stimulated by the p53-mediated abrogation of the pro-survival activities of the ISR. Interestingly, a sustained inhibition of ETC complex I by piericidine did not induce the p53 response and stably maintained the pro-survival activation of ATF4/ISR. We conclude that a downregulation of mitochondrial ETC generally induces adaptive pro-survival responses, which are specifically abrogated by the suicidal p53 response triggered by the genetic risks of the pyrimidine nucleotide deficiency.

  1. Recruitment of Transcription Complexes to Enhancers and the Role of Enhancer Transcription

    PubMed Central

    Stees, Jared S.; Varn, Fred; Huang, Suming; Strouboulis, John; Bungert, Jörg

    2012-01-01

    Enhancer elements regulate the tissue- and developmental-stage-specific expression of genes. Recent estimates suggest that there are more than 50,000 enhancers in mammalian cells. At least a subset of enhancers has been shown to recruit RNA polymerase II transcription complexes and to generate enhancer transcripts. Here, we provide an overview of enhancer function and discuss how transcription of enhancers or enhancer-generated transcripts could contribute to the regulation of gene expression during development and differentiation. PMID:23919179

  2. ZBRK1, a novel tumor suppressor, activates VHL gene transcription through formation of a complex with VHL and p300 in renal cancer.

    PubMed

    Chen, Ke; Yu, Gan; Gumireddy, Kiranmai; Li, Anping; Yao, Weimin; Gao, Lu; Chen, Shuliang; Hao, Jun; Wang, Ji; Huang, Qihong; Xu, Hua; Ye, Zhangqun

    2015-03-30

    Inactivation or mutation of the VHL gene causes various tumors, including clear cell renal cell carcinoma (ccRCC). In the present study, we identified ZBRK1 as a novel VHL interacting protein by yeast two-hybrid screening, and found a single ZBRK1-binding site located in the VHL promoter region. Ectopic expression of ZBRK1 increases transcriptional activity of the VHL, whereas the depletion of endogenous ZBRK1 by shRNA leads to reduction of VHL expression. We also demonstrate that the inhibition of VEGF transcription by ZBRK1 overexpression is dependent on VHL/HIF pathway. Moreover, VHL is confirmed to serve as a bridge component for the association of ZBRK1 and p300, which leads to an increase in ZBRK1 transcriptional activity in the VHL promoter. We further provide striking evidences that ZBRK1 acts as a tumor suppressor in renal carcinoma by a variety of in vitro and in vivo assays, and ZBRK1 may represent a molecular marker to distinguish patients with ccRCC at high risk from those with a better survival prognosis. Taken together, these findings suggest that ZBRK1 suppresses renal cancer progression perhaps by regulating VHL expression.

  3. ZBRK1, a novel tumor suppressor, activates VHL gene transcription through formation of a complex with VHL and p300 in renal cancer

    PubMed Central

    Gumireddy, Kiranmai; Li, Anping; Yao, Weimin; Gao, Lu; Chen, Shuliang; Hao, Jun; Wang, Ji; Huang, Qihong; Xu, Hua; Ye, Zhangqun

    2015-01-01

    Inactivation or mutation of the VHL gene causes various tumors, including clear cell renal cell carcinoma (ccRCC). In the present study, we identified ZBRK1 as a novel VHL interacting protein by yeast two-hybrid screening, and found a single ZBRK1-binding site located in the VHL promoter region. Ectopic expression of ZBRK1 increases transcriptional activity of the VHL, whereas the depletion of endogenous ZBRK1 by shRNA leads to reduction of VHL expression. We also demonstrate that the inhibition of VEGF transcription by ZBRK1 overexpression is dependent on VHL/HIF pathway. Moreover, VHL is confirmed to serve as a bridge component for the association of ZBRK1 and p300, which leads to an increase in ZBRK1 transcriptional activity in the VHL promoter. We further provide striking evidences that ZBRK1 acts as a tumor suppressor in renal carcinoma by a variety of in vitro and in vivo assays, and ZBRK1 may represent a molecular marker to distinguish patients with ccRCC at high risk from those with a better survival prognosis. Taken together, these findings suggest that ZBRK1 suppresses renal cancer progression perhaps by regulating VHL expression. PMID:25749518

  4. The complex choreography of transcription-coupled repair.

    PubMed

    Spivak, Graciela; Ganesan, Ann K

    2014-07-01

    A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.

  5. Tumor Necrosis Factor Receptor Associated Factors (TRAFs) 2 and 3 Form a Transcriptional Complex with Phosho-RNA Polymerase II and p65 in CD40 Ligand Activated Neuro2a Cells.

    PubMed

    El Hokayem, Jimmy; Brittain, George C; Nawaz, Zafar; Bethea, John R

    2017-03-01

    The tumor necrosis factor receptor-associated factors (TRAFs) have been classically described as adaptor proteins that function as solely cytosolic signaling intermediates for the TNF receptor superfamily, Toll-like receptors (TLRs), NOD, like receptors (NLRs), cytokine receptors, and others. In this study, we show for the first time that TRAFs are present within the cytoplasm and nucleus of Neuro2a cells and primary cortical neurons, and that TRAF2 and TRAF3 translocate into the nucleus within minutes of CD40L stimulation. Analysis of the transcriptional regulatory potential of TRAFs by luciferase assay revealed that each of the TRAFs differentially functions as a transcriptional activator or repressor in a cell-specific manner. Interestingly, ChIP-qPCR data demonstrate that TRAFs 2/3, p65, and pRNAPol II form part of a transcriptional complex on the Icam-1 gene promoter upon CD40L stimulation. We further determined that TRAF2 recruitment to the nucleus is critical for the ubiquitination of H2b, a transcription permissive epigenetic modification. Our findings demonstrate for the first time that TRAFs 2/3 participate in the formation of a CD40L-induced transcriptional complex in neuronal cells.

  6. Activation of 12/23-RSS-dependent RAG cleavage by hSWI/SNF complex in the absence of transcription.

    PubMed

    Du, Hansen; Ishii, Haruhiko; Pazin, Michael J; Sen, Ranjan

    2008-09-05

    Maintenance of genomic integrity during antigen receptor gene rearrangements requires (1) regulated access of the V(D)J recombinase to specific loci and (2) generation of double-strand DNA breaks only after recognition of a pair of matched recombination signal sequences (RSSs). Here we recapitulate both key aspects of regulated recombinase accessibility in a cell-free system using plasmid substrates assembled into chromatin. We show that recruitment of the SWI/SNF chromatin-remodeling complex to both RSSs increases coupled cleavage by RAG1 and RAG2 proteins. SWI/SNF functions by altering local chromatin structure in the absence of RNA polymerase II-dependent transcription or histone modifications. These observations demonstrate a direct role for cis-sequence-regulated local chromatin remodeling in RAG1/2-dependent initiation of V(D)J recombination.

  7. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.; Bogdanove, Adam J.

    2016-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  8. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  9. Repression of transcription at the human T-cell receptor Vbeta2.2 segment is mediated by a MAX/MAD/mSin3 complex acting as a scaffold for HDAC activity.

    PubMed

    Font, Marie-Pierre; Cubizolles, Myriam; Dombret, Hervé; Cazes, Lucien; Brenac, Virginie; Sigaux, François; Buckle, Malcolm

    2004-12-17

    The identification of protein components in complex networks of co-regulators responsible for the modulation of proliferation versus differentiation modes of cell growth is a major problem. We use a combination of surface enhanced laser desorption/ionization mass spectrometry, surface plasmon resonance coupled to electrospray mass spectrometry, and immunoelectromobility shift assays to identify members of the MAX/MAD family binding to a specific DNA silencer fragment involved in the regulation of transcription for the human T-cell receptor Vbeta2.2 segment. We also identify the cofactors mSin3 and N-CoR known to interact with histone deacetylases. Inhibition of deacetylase activity in Jurkat cells prevented transcription inhibitor complex formation at the Vbeta2.2 segment, suggesting that this is either directly or indirectly dependent on the presence of HDACs.

  10. Isolation and mass spectrometry of transcription factor complexes.

    PubMed

    Sebastiaan Winkler, G; Lacomis, Lynne; Philip, John; Erdjument-Bromage, Hediye; Svejstrup, Jesper Q; Tempst, Paul

    2002-03-01

    Protocols are described that enable the isolation of novel proteins associated with a known protein and the subsequent identification of these proteins by mass spectrometry. We review the basics of nanosample handling and of two complementary approaches to mass analysis, and provide protocols for the entire process. The protein isolation procedure is rapid and based on two high-affinity chromatography steps. The method does not require previous knowledge of complex composition or activity and permits subsequent biochemical characterization of the isolated factor. As an example, we provide the procedures used to isolate and analyze yeast Elongator, a histone acetyltransferase complex important for transcript elongation, which led to the identification of three novel subunits.

  11. Regulation of maternal transcript destabilization during egg activation in Drosophila.

    PubMed Central

    Tadros, Wael; Houston, Simon A; Bashirullah, Arash; Cooperstock, Ramona L; Semotok, Jennifer L; Reed, Bruce H; Lipshitz, Howard D

    2003-01-01

    In animals, the transfer of developmental control from maternal RNAs and proteins to zygotically derived products occurs at the midblastula transition. This is accompanied by the destabilization of a subset of maternal transcripts. In Drosophila, maternal transcript destabilization occurs in the absence of fertilization and requires specific cis-acting instability elements. We show here that egg activation is necessary and sufficient to trigger transcript destabilization. We have identified 13 maternal-effect lethal loci that, when mutated, result in failure of maternal transcript degradation. All mutants identified are defective in one or more additional processes associated with egg activation. These include vitelline membrane reorganization, cortical microtubule depolymerization, translation of maternal mRNA, completion of meiosis, and chromosome condensation (the S-to-M transition) after meiosis. The least pleiotropic class of transcript destabilization mutants consists of three genes: pan gu, plutonium, and giant nuclei. These three genes regulate the S-to-M transition at the end of meiosis and are thought to be required for the maintenance of cyclin-dependent kinase (CDK) activity during this cell cycle transition. Consistent with a possible functional connection between this S-to-M transition and transcript destabilization, we show that in vitro-activated eggs, which exhibit aberrant postmeiotic chromosome condensation, fail to initiate transcript degradation. Several genetic tests exclude the possibility that reduction of CDK/cyclin complex activity per se is responsible for the failure to trigger transcript destabilization in these mutants. We propose that the trigger for transcript destabilization occurs coincidently with the S-to-M transition at the end of meiosis and that pan gu, plutonium, and giant nuclei regulate maternal transcript destabilization independent of their role in cell cycle regulation. PMID:12871909

  12. Chromatin insulation by a transcriptional activator

    PubMed Central

    Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.

    2003-01-01

    In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916

  13. Transcriptional responses to complex mixtures - A review

    EPA Science Inventory

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after expos...

  14. Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators

    PubMed Central

    Hahn, Steven; Young, Elton T.

    2011-01-01

    Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms. PMID:22084422

  15. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex.

    PubMed

    Lewis, Peter W; Beall, Eileen L; Fleischer, Tracey C; Georlette, Daphne; Link, Andrew J; Botchan, Michael R

    2004-12-01

    The Drosophila Myb complex has roles in both activating and repressing developmentally regulated DNA replication. To further understand biochemically the functions of the Myb complex, we fractionated Drosophila embryo extracts relying upon affinity chromatography. We found that E2F2, DP, RBF1, RBF2, and the Drosophila homolog of LIN-52, a class B synthetic multivulva (synMuv) protein, copurify with the Myb complex components to form the Myb-MuvB complex. In addition, we found that the transcriptional repressor protein, lethal (3) malignant brain tumor protein, L(3)MBT, and the histone deacetylase, Rpd3, associated with the Myb-MuvB complex. Members of the Myb-MuvB complex were localized to promoters and were shown to corepress transcription of developmentally regulated genes. These and other data now link together the Myb and E2F2 complexes in higher-order assembly to specific chromosomal sites for the regulation of transcription.

  16. Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex

    PubMed Central

    Lewis, Peter W.; Beall, Eileen L.; Fleischer, Tracey C.; Georlette, Daphne; Link, Andrew J.; Botchan, Michael R.

    2004-01-01

    The Drosophila Myb complex has roles in both activating and repressing developmentally regulated DNA replication. To further understand biochemically the functions of the Myb complex, we fractionated Drosophila embryo extracts relying upon affinity chromatography. We found that E2F2, DP, RBF1, RBF2, and the Drosophila homolog of LIN-52, a class B synthetic multivulva (synMuv) protein, copurify with the Myb complex components to form the Myb-MuvB complex. In addition, we found that the transcriptional repressor protein, lethal (3) malignant brain tumor protein, L(3)MBT, and the histone deacetylase, Rpd3, associated with the Myb-MuvB complex. Members of the Myb-MuvB complex were localized to promoters and were shown to corepress transcription of developmentally regulated genes. These and other data now link together the Myb and E2F2 complexes in higher-order assembly to specific chromosomal sites for the regulation of transcription. PMID:15545624

  17. Transcriptional regulation by post-transcriptional modification--role of phosphorylation in Sp1 transcriptional activity.

    PubMed

    Chu, Shijian

    2012-10-15

    Sp1 is a ubiquitously expressed transcription factor involved in the regulation of a large number of genes including housekeeping genes as well as actively regulated genes. Although Sp1 was discovered nearly three decades ago, its functional diversity is still not completely understood. One of the ways that make Sp1 versatile in transcriptional regulation is its post-transcriptional modification, which alters Sp1 structure in different cells and at different times. Compared to other types of modifications of the Sp1 protein, phosphorylation has been studied far more extensively. This review focuses on the inducers, pathways, enzymes, and biological effects of Sp1 phosphorylation. Recent data are beginning to reveal the biological significance and universal presence of Sp1 phosphorylation-related cell/molecular responses. Studies in this field provide a quick glance at how a simple chemical modification of a transcription factor could produce significant functional diversity of the protein.

  18. Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I.

    PubMed

    Stroud, David A; Formosa, Luke E; Wijeyeratne, Xiaonan W; Nguyen, Thanh N; Ryan, Michael T

    2013-01-18

    Transcription activator-like effector nucleases (TALENs) represent a promising approach for targeted knock-out of genes in cultured human cells. We used TALEN-technology to knock out the nuclear gene encoding NDUFA9, a subunit of mitochondrial respiratory chain complex I in HEK293T cells. Screening for the knock-out revealed a mixture of NDUFA9 cell clones that harbored partial deletions of the mitochondrial N-terminal targeting signal but were still capable of import. A cell line lacking functional copies of both NDUFA9 alleles resulted in a loss of NDUFA9 protein expression, impaired assembly of complex I, and cells incapable of growth in galactose medium. Cells lacking NDUFA9 contained a complex I subcomplex consisting of membrane arm subunits but not marker subunits of the matrix arm. Re-expression of NDUFA9 restored the defects in complex I assembly. We conclude that NDUFA9 is involved in stabilizing the junction between membrane and matrix arms of complex I, a late assembly step critical for complex I biogenesis and activity.

  19. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    PubMed

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  20. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.

    PubMed

    Lu, Zefu; Yu, Hong; Xiong, Guosheng; Wang, Jing; Jiao, Yongqing; Liu, Guifu; Jing, Yanhui; Meng, Xiangbing; Hu, Xingming; Qian, Qian; Fu, Xiangdong; Wang, Yonghong; Li, Jiayang

    2013-10-01

    Ideal plant architecture1 (IPA1) is critical in regulating rice (Oryza sativa) plant architecture and substantially enhances grain yield. To elucidate its molecular basis, we first confirmed IPA1 as a functional transcription activator and then identified 1067 and 2185 genes associated with IPA1 binding sites in shoot apices and young panicles, respectively, through chromatin immunoprecipitation sequencing assays. The Squamosa promoter binding protein-box direct binding core motif GTAC was highly enriched in IPA1 binding peaks; interestingly, a previously uncharacterized indirect binding motif TGGGCC/T was found to be significantly enriched through the interaction of IPA1 with proliferating cell nuclear antigen promoter binding factor1 or promoter binding factor2. Genome-wide expression profiling by RNA sequencing revealed IPA1 roles in diverse pathways. Moreover, our results demonstrated that IPA1 could directly bind to the promoter of rice teosinte branched1, a negative regulator of tiller bud outgrowth, to suppress rice tillering, and directly and positively regulate dense and erect panicle1, an important gene regulating panicle architecture, to influence plant height and panicle length. The elucidation of target genes of IPA1 genome-wide will contribute to understanding the molecular mechanisms underlying plant architecture and to facilitating the breeding of elite varieties with ideal plant architecture.

  1. Theory on the dynamic memory in the transcription-factor-mediated transcription activation

    NASA Astrophysics Data System (ADS)

    Murugan, R.

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τL≫max(τR,τE), (b) τLT≫τT, and (c) τI⩾(τEL+τTR) where τL is the average time required for the looping-mediated spatial interactions of enhancer—transcription-factor complex with the corresponding promoter—RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τR,τE) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τLT is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τT is the time required to generate a complete transcript, τI is the transcription initiation time, τEL is the elongation time, and τTR is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  2. Theory on the dynamic memory in the transcription-factor-mediated transcription activation.

    PubMed

    Murugan, R

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τ(L)≫max(τ(R),τ(E)), (b) τ(LT)≫τ(T), and (c) τ(I)≥(τ(EL)+τ(TR)) where τ(L) is the average time required for the looping-mediated spatial interactions of enhancer-transcription-factor complex with the corresponding promoter--RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τ(R),τ(E)) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τ(LT) is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τ(T) is the time required to generate a complete transcript, τ(I) is the transcription initiation time, τ(EL) is the elongation time, and τ(TR) is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  3. Rad51 activates polyomavirus JC early transcription.

    PubMed

    White, Martyn K; Kaminski, Rafal; Khalili, Kamel; Wollebo, Hassen S

    2014-01-01

    The human neurotropic polyomavirus JC (JCV) causes the fatal CNS demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV infection is very common and after primary infection, the virus is able to persist in an asymptomatic state. Rarely, and usually only under conditions of immune impairment, JCV re-emerges to actively replicate in the astrocytes and oligodendrocytes of the brain causing PML. The regulatory events involved in the reactivation of active viral replication in PML are not well understood but previous studies have implicated the transcription factor NF-κB acting at a well-characterized site in the JCV noncoding control region (NCCR). NF-κB in turn is regulated in a number of ways including activation by cytokines such as TNF-α, interactions with other transcription factors and epigenetic events involving protein acetylation--all of which can regulate the transcriptional activity of JCV. Active JCV infection is marked by the occurrence of rapid and extensive DNA damage in the host cell and the induction of the expression of cellular proteins involved in DNA repair including Rad51, a major component of the homologous recombination-directed double-strand break DNA repair machinery. Here we show that increased Rad51 expression activates the JCV early promoter. This activation is co-operative with the stimulation caused by NF-κB p65, abrogated by mutation of the NF-κB binding site or siRNA to NFκB p65 and enhanced by the histone deacetylase inhibitor sodium butyrate. These data indicate that the induction of Rad51 resulting from infection with JCV acts through NF-κB via its binding site to stimulate JCV early transcription. We suggest that this provides a novel positive feedback mechanism to enhance viral gene expression during the early stage of JCV infection.

  4. The SCL gene is formed from a transcriptionally complex locus.

    PubMed Central

    Aplan, P D; Begley, C G; Bertness, V; Nussmeier, M; Ezquerra, A; Coligan, J; Kirsch, I R

    1990-01-01

    We describe the structural organization of the human SCL gene, a helix-loop-helix family member which we believe plays a fundamental role in hematopoietic differentiation. The SCL locus is composed of eight exons distributed over 16 kb. SCL shows a pattern of expression quite restricted to early hematopoietic tissues, although in malignant states expression of the gene may be somewhat extended into later developmental stages. A detailed analysis of the transcript(s) arising from the SCL locus revealed that (i) the 5' noncoding portion of the SCL transcript, which resides within a CpG island, has a complex pattern of alternative exon utilization as well as two distinct transcription initiation sites; (ii) the 5' portions of the SCL transcript contain features that suggest a possible regulatory role for these segments; (iii) the pattern of utilization of the 5' exons is cell lineage dependent; and (iv) all of the currently studied chromosomal aberrations that affect the SCL locus either structurally or functionally eliminate the normal 5' transcription initiation sites. These data suggest that the SCL gene, and specifically its 5' region, may be a target for regulatory interactions during early hematopoietic development. Images PMID:2247063

  5. Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC

    PubMed Central

    Yang, Hongchun; Howard, Martin; Dean, Caroline

    2016-01-01

    Establishment and maintenance of gene expression states is central to development and differentiation. Transcriptional and epigenetic mechanisms interconnect in poorly understood ways to determine these states. We explore these mechanisms through dissection of the regulation of Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC can be present in a transcriptionally active state marked by H3K36me3 or a silent state marked by H3K27me3. Here, we investigate the trans factors modifying these opposing histone states and find a physical coupling in vivo between the H3K36 methyltransferase, SDG8, and the H3K27me3 demethylase, ELF6. Previous modeling has predicted this coupling would exist as it facilitates bistability of opposing histone states. We also find association of SDG8 with the transcription machinery, namely RNA polymerase II and the PAF1 complex. Delivery of the active histone modifications is therefore likely to be through transcription at the locus. SDG8 and ELF6 were found to influence the localization of each other on FLC chromatin, showing the functional importance of the interaction. In addition, both influenced accumulation of the associated H3K27me3 and H3K36me3 histone modifications at FLC. We propose the physical coupling of activation and derepression activities coordinates transcriptional activity and prevents ectopic silencing. PMID:27482092

  6. Transcription Activator Interactions with Multiple SWI/SNF Subunits

    PubMed Central

    Neely, Kristen E.; Hassan, Ahmed H.; Brown, Christine E.; Howe, LeAnn; Workman, Jerry L.

    2002-01-01

    We have previously shown that the yeast SWI/SNF complex stimulates in vitro transcription from chromatin templates in an ATP-dependent manner. SWI/SNF function in this regard requires the presence of an activator with which it can interact directly, linking activator recruitment of SWI/SNF to transcriptional stimulation. In this study, we determine the SWI/SNF subunits that mediate its interaction with activators. Using a photo-cross-linking label transfer strategy, we show that the Snf5, Swi1, and Swi2/Snf2 subunits are contacted by the yeast acidic activators, Gcn4 and Hap4, in the context of the intact native SWI/SNF complex. In addition, we show that the same three subunits can interact individually with acidic activation domains, indicating that each subunit contributes to binding activators. Furthermore, mutations that reduce the activation potential of these activators also diminish its interaction with each of these SWI/SNF subunits. Thus, three distinct subunits of the SWI/SNF complex contribute to its interactions with activation domains. PMID:11865042

  7. Complexity of the transcriptional network controlling secondary wall biosynthesis.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2014-12-01

    Secondary walls in the form of wood and fibers are the most abundant biomass produced by vascular plants, and are important raw materials for many industrial uses. Understanding how secondary walls are constructed is of significance in basic plant biology and also has far-reaching implications in genetic engineering of plant biomass better suited for various end uses, such as biofuel production. Secondary walls are composed of three major biopolymers, i.e., cellulose, hemicelluloses and lignin, the biosynthesis of which requires the coordinated transcriptional regulation of all their biosynthesis genes. Genomic and molecular studies have identified a number of transcription factors, whose expression is associated with secondary wall biosynthesis. We comprehensively review how these secondary wall-associated transcription factors function together to turn on the secondary wall biosynthetic program, which leads to secondary wall deposition in vascular plants. The transcriptional network regulating secondary wall biosynthesis employs a multi-leveled feed-forward loop regulatory structure, in which the top-level secondary wall NAC (NAM, ATAF1/2 and CUC2) master switches activate the second-level MYB master switches and they together induce the expression of downstream transcription factors and secondary wall biosynthesis genes. Secondary wall NAC master switches and secondary wall MYB master switches bind to and activate the SNBE (secondary wall NAC binding element) and SMRE (secondary wall MYB-responsive element) sites, respectively, in their target gene promoters. Further investigation of what and how developmental signals trigger the transcriptional network to regulate secondary wall biosynthesis and how different secondary wall-associated transcription factors function cooperatively in activating secondary wall biosynthetic pathways will lead to a better understanding of the molecular mechanisms underlying the transcriptional control of secondary wall biosynthesis.

  8. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus.

    PubMed

    Wang, Yafei; Peng, Wei; Zhou, Xu; Huang, Fei; Shao, Lingyun; Luo, Meizhong

    2014-09-01

    Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS).

  9. A proximal activator of transcription in epithelial-mesenchymal transition

    PubMed Central

    Venkov, Christo D.; Link, Andrew J.; Jennings, Jennifer L.; Plieth, David; Inoue, Tsutomu; Nagai, Kojiro; Xu, Carol; Dimitrova, Yoana N.; Rauscher, Frank J.; Neilson, Eric G.

    2007-01-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism for phenotypic conversion in normal development and disease states such as tissue fibrosis and metastasis. While this conversion of epithelia is under tight transcriptional control, few of the key transcriptional proteins are known. Fibroblasts produced by EMT express a gene encoding fibroblast-specific protein 1 (FSP1), which is regulated by a proximal cis-acting promoter element called fibroblast transcription site–1 (FTS-1). In mass spectrometry, chromatin immunoprecipitation, and siRNA studies, we used FTS-1 as a unique probe for mediators of EMT and identified a complex of 2 proteins, CArG box–binding factor–A (CBF-A) and KRAB-associated protein 1 (KAP-1), that bind this site. Epithelial cells engineered to conditionally express recombinant CBF-A (rCBF-A) activate the transcription of FSP1 and undergo EMT. The FTS-1 response element also exists in the promoters modulating a broader EMT transcriptome, including Twist, and Snail, as well as E-cadherin, β-catenin, ZO 1, vimentin, α1(I) collagen, and α–smooth muscle actin, and the induction of rCBF-A appropriately alters their expression as well. We believe formation of the CBF-A/KAP-1/FTS-1 complex is sufficient for the induction of FSP1 and a novel proximal activator of EMT. PMID:17273560

  10. A proximal activator of transcription in epithelial-mesenchymal transition.

    PubMed

    Venkov, Christo D; Link, Andrew J; Jennings, Jennifer L; Plieth, David; Inoue, Tsutomu; Nagai, Kojiro; Xu, Carol; Dimitrova, Yoana N; Rauscher, Frank J; Neilson, Eric G

    2007-02-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism for phenotypic conversion in normal development and disease states such as tissue fibrosis and metastasis. While this conversion of epithelia is under tight transcriptional control, few of the key transcriptional proteins are known. Fibroblasts produced by EMT express a gene encoding fibroblast-specific protein 1 (FSP1), which is regulated by a proximal cis-acting promoter element called fibroblast transcription site-1 (FTS-1). In mass spectrometry, chromatin immunoprecipitation, and siRNA studies, we used FTS-1 as a unique probe for mediators of EMT and identified a complex of 2 proteins, CArG box-binding factor-A (CBF-A) and KRAB-associated protein 1 (KAP-1), that bind this site. Epithelial cells engineered to conditionally express recombinant CBF-A (rCBF-A) activate the transcription of FSP1 and undergo EMT. The FTS-1 response element also exists in the promoters modulating a broader EMT transcriptome, including Twist, and Snail, as well as E-cadherin, beta-catenin, ZO 1, vimentin, alpha1(I) collagen, and alpha-smooth muscle actin, and the induction of rCBF-A appropriately alters their expression as well. We believe formation of the CBF-A/KAP-1/FTS-1 complex is sufficient for the induction of FSP1 and a novel proximal activator of EMT.

  11. Akirin Links Twist-Regulated Transcription with the Brahma Chromatin Remodeling Complex during Embryogenesis

    PubMed Central

    Nowak, Scott J.; Aihara, Hitoshi; Gonzalez, Katie; Nibu, Yutaka; Baylies, Mary K.

    2012-01-01

    The activities of developmentally critical transcription factors are regulated via interactions with cofactors. Such interactions influence transcription factor activity either directly through protein–protein interactions or indirectly by altering the local chromatin environment. Using a yeast double-interaction screen, we identified a highly conserved nuclear protein, Akirin, as a novel cofactor of the key Drosophila melanogaster mesoderm and muscle transcription factor Twist. We find that Akirin interacts genetically and physically with Twist to facilitate expression of some, but not all, Twist-regulated genes during embryonic myogenesis. akirin mutant embryos have muscle defects consistent with altered regulation of a subset of Twist-regulated genes. To regulate transcription, Akirin colocalizes and genetically interacts with subunits of the Brahma SWI/SNF-class chromatin remodeling complex. Our results suggest that, mechanistically, Akirin mediates a novel connection between Twist and a chromatin remodeling complex to facilitate changes in the chromatin environment, leading to the optimal expression of some Twist-regulated genes during Drosophila myogenesis. We propose that this Akirin-mediated link between transcription factors and the Brahma complex represents a novel paradigm for providing tissue and target specificity for transcription factor interactions with the chromatin remodeling machinery. PMID:22396663

  12. Combined in vitro transcription and reverse transcription to amplify and label complex synthetic oligonucleotide probe libraries.

    PubMed

    Murgha, Yusuf; Beliveau, Brian; Semrau, Kassandra; Schwartz, Donald; Wu, Chao-Ting; Gulari, Erdogan; Rouillard, Jean-Marie

    2015-06-01

    Oligonucleotide microarrays allow the production of complex custom oligonucleotide libraries for nucleic acid detection-based applications such as fluorescence in situ hybridization (FISH). We have developed a PCR-free method to make single-stranded DNA (ssDNA) fluorescent probes through an intermediate RNA library. A double-stranded oligonucleotide library is amplified by transcription to create an RNA library. Next, dye- or hapten-conjugate primers are used to reverse transcribe the RNA to produce a dye-labeled cDNA library. Finally the RNA is hydrolyzed under alkaline conditions to obtain the single-stranded fluorescent probes library. Starting from unique oligonucleotide library constructs, we present two methods to produce single-stranded probe libraries. The two methods differ in the type of reverse transcription (RT) primer, the incorporation of fluorescent dye, and the purification of fluorescent probes. The first method employs dye-labeled reverse transcription primers to produce multiple differentially single-labeled probe subsets from one microarray library. The fluorescent probes are purified from excess primers by oligonucleotide-bead capture. The second method uses an RNA:DNA chimeric primer and amino-modified nucleotides to produce amino-allyl probes. The excess primers and RNA are hydrolyzed under alkaline conditions, followed by probe purification and labeling with amino-reactive dyes. The fluorescent probes created by the combination of transcription and reverse transcription can be used for FISH and to detect any RNA and DNA targets via hybridization.

  13. Combinatorial Complexity in a Transcriptionally Centered Signaling Hub in Arabidopsis

    PubMed Central

    Pfeiffer, Anne; Shi, Hui; Tepperman, James M.; Zhang, Yu; Quail, Peter H.

    2014-01-01

    A subfamily of four Phytochrome (phy)-Interacting bHLH transcription Factors (PIFs) collectively promote skotomorphogenic development in dark-grown seedlings. This activity is reversed upon exposure to light, by photoactivated phy molecules that induce degradation of the PIFs, thereby triggering the transcriptional changes that drive a transition to photomorphogenesis. The PIFs function both redundantly and partially differentially at the morphogenic level in this process. To identify the direct targets of PIF transcriptional regulation genome-wide, we analyzed the DNA-binding sites for all four PIFs by ChIP-seq analysis, and defined the genes transcriptionally regulated by each PIF, using RNA-seq analysis of pif mutants. Despite the absence of detectable differences in DNA-binding-motif recognition between the PIFs, the data show a spectrum of regulatory patterns, ranging from single PIF dominance to equal contributions by all four. Similarly, a broad array of promoter architectures was found, ranging from single PIF-binding sites, containing single sequence motifs, through multiple PIF-binding sites, each containing one or more motifs, with each site occupied preferentially by one to multiple PIFs. Quantitative analysis of the promoter occupancy and expression level induced by each PIF revealed an intriguing pattern. Although there is no robust correlation broadly across the target-gene population, examination of individual genes that are shared targets of multiple PIFs shows a gradation in correlation from strongly positive, through uncorrelated, to negative. This finding suggests a dual-layered mechanism of transcriptional regulation, comprising both a continuum of binding-site occupancy by each PIF and a superimposed layer of local regulation that acts differentially on each PIF, to modulate its intrinsic transcriptional activation capacity at each site, in a quantitative pattern that varies between the individual PIFs from gene to gene. These findings provide

  14. The Paf1 Complex: Platform or Player in RNA Polymerase II Transcription?

    PubMed Central

    Jaehning, Judith A.

    2010-01-01

    The Paf1 complex (Paf1C), composed of the proteins Paf1, Ctr9, Cdc73, Rtf1, and Leo1, accompanies RNA polymerase II (pol II) from the promoter to the 3' end formation site of mRNA and snoRNA encoding genes; it is also found associated with RNA polymerase I (pol I) on rDNA. The Paf1C is found in simple and complex eukaryotes; in human cells hSki8 is also part of the complex. The Paf1C has been linked to a large and growing list of transcription related processes including: communication with transcriptional activators; recruitment and activation of histone modification factors; facilitation of elongation on chromatin templates; and the recruitment of 3' end processing factors necessary for accurate termination of transcription. Absence of, or mutations in, Paf1C factors result in alterations in gene expression that can result in misregulation of developmental programs and loss of control of cell division leading to cancer in humans. This review considers recent information that may help to resolve whether the Paf1C is primarily a “platform” on pol II that coordinates the association of many critical transcription factors, or if the complex itself plays a more direct role in one or more steps in transcription. PMID:20060942

  15. Multiplex Eukaryotic Transcription (In)activation: Timing, Bursting and Cycling of a Ratchet Clock Mechanism.

    PubMed

    Rybakova, Katja N; Bruggeman, Frank J; Tomaszewska, Aleksandra; Moné, Martijn J; Carlberg, Carsten; Westerhoff, Hans V

    2015-04-01

    Activation of eukaryotic transcription is an intricate process that relies on a multitude of regulatory proteins forming complexes on chromatin. Chromatin modifications appear to play a guiding role in protein-complex assembly on chromatin. Together, these processes give rise to stochastic, often bursting, transcriptional activity. Here we present a model of eukaryotic transcription that aims to integrate those mechanisms. We use stochastic and ordinary-differential-equation modeling frameworks to examine various possible mechanisms of gene regulation by multiple transcription factors. We find that the assembly of large transcription factor complexes on chromatin via equilibrium-binding mechanisms is highly inefficient and insensitive to concentration changes of single regulatory proteins. An alternative model that lacks these limitations is a cyclic ratchet mechanism. In this mechanism, small protein complexes assemble sequentially on the promoter. Chromatin modifications mark the completion of a protein complex assembly, and sensitize the local chromatin for the assembly of the next protein complex. In this manner, a strict order of protein complex assemblies is attained. Even though the individual assembly steps are highly stochastic in duration, a sequence of them gives rise to a remarkable precision of the transcription cycle duration. This mechanism explains how transcription activation cycles, lasting for tens of minutes, derive from regulatory proteins residing on chromatin for only tens of seconds. Transcriptional bursts are an inherent feature of such transcription activation cycles. Bursting transcription can cause individual cells to remain in synchrony transiently, offering an explanation of transcriptional cycling as observed in cell populations, both on promoter chromatin status and mRNA levels.

  16. Human DJ-1-specific Transcriptional Activation of Tyrosine Hydroxylase Gene*

    PubMed Central

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

    2010-01-01

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-l-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice. PMID:20938049

  17. Human DJ-1-specific transcriptional activation of tyrosine hydroxylase gene.

    PubMed

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2010-12-17

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-L-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice.

  18. The TRTGn motif stabilizes the transcription initiation open complex.

    PubMed

    Voskuil, Martin I; Chambliss, Glenn H

    2002-09-20

    The effect on transcription initiation by the extended -10 motif (5'-TRTG(n)-3'), positioned upstream of the -10 region, was investigated using a series of base substitution mutations in the alpha-amylase promoter (amyP). The extended -10 motif, previously referred to as the -16 region, is found frequently in Gram-positive bacterial promoters and several extended -10 promoters from Escherichia coli. The inhibitory effects of the non-productive promoter site (amyP2), which overlaps the upstream region of amyP, were eliminated by mutagenesis of the -35 region and the TRTG motif of amyP2. Removal by mutagenesis of the competitive effects of amyP2 resulted in a reduced dependence of amyP on the TRTG motif. In the absence of the second promoter, mutations in the TRTG motif of amyP destabilized the open complex and prevented the maintenance of open complexes at low temperatures. The open complex half-life was up to 26-fold shorter in the mutant TRTG motif promoters than in the wild-type promoter. We demonstrate that the amyP TRTG motif dramatically stabilizes the open complex intermediate during transcription initiation. Even though the open complex is less stable in the mutant promoters, the region of melted DNA is the same in the wild-type and mutant promoters. However, upon addition of the first three nucleotides, which trap RNAP (RNA polymerase) in a stable initiating complex, the melted DNA region contracts at the 5'-end in a TRTG motif promoter mutant but not at the wild-type promoter, indicating that the motif contributes to maintaining DNA-strand separation.

  19. Signal-Induced Transcriptional Activation by Dif Requires the dTRAP80 Mediator Module

    PubMed Central

    Park, Jin Mo; Kim, Jung Mo; Kim, Lark Kyun; Kim, Se Nyun; Kim-Ha, Jeongsil; Hoe Kim, Jung; Kim, Young-Joon

    2003-01-01

    The Mediator complex is the major multiprotein transcriptional coactivator complex in Drosophila melanogaster. Mediator components interact with diverse sets of transcriptional activator proteins to elicit the sophisticated regulation of gene expression. The distinct phenotypes associated with certain mutations in some of the Mediator genes and the specific in vitro interactions of Mediator gene products with transcriptional activator proteins suggest the presence of activator-specific binding subunits within the Mediator complex. However, the physiological relevance of these selective in vitro interactions has not been addressed. Therefore, we analyzed dTRAP80, one of the putative activator-binding subunits of the Mediator, for specificity of binding to a number of natural transcriptional activators from Drosophila. Among the group of activator proteins that requires the Mediator complex for transcriptional activation, only a subset of these proteins interacted with dTRAP80 in vitro and only these dTRAP80-interacting activators were defective for activation under dTRAP80-deficient in vivo conditions. In particular, activation of Drosophila antimicrobial peptide drosomycin gene expression by the NF-κB-like transcription factor Dif during induction of the Toll signaling pathway was dependent on the dTRAP80 module. These results, and the indirect support from the dTRAP80 artificial recruitment assay, indicate that dTRAP80 serves as a genuine activator-binding target responsible for a distinct group of activators. PMID:12556495

  20. Bacillus subtilis δ Factor Functions as a Transcriptional Regulator by Facilitating the Open Complex Formation.

    PubMed

    Prajapati, Ranjit Kumar; Sengupta, Shreya; Rudra, Paulami; Mukhopadhyay, Jayanta

    2016-01-15

    Most bacterial RNA polymerases (RNAP) contain five conserved subunits, viz. 2α, β, β', and ω. However, in many Gram-positive bacteria, especially in fermicutes, RNAP is associated with an additional factor, called δ. For over three decades since its identification, it had been thought that δ functioned as a subunit of RNAP to enhance the level of transcripts by recycling RNAP. In support of the previous observations, we also find that δ is involved in recycling of RNAP by releasing the RNA from the ternary complex. We further show that δ binds to RNA and is able to recycle RNAP when the length of the nascent RNA reaches a critical length. However, in this work we decipher a new function of δ. Performing biochemical and mutational analysis, we show that Bacillus subtilis δ binds to DNA immediately upstream of the promoter element at A-rich sequences on the abrB and rrnB1 promoters and facilitates open complex formation. As a result, δ facilitates RNAP to initiate transcription in the second scale, compared with minute scale in the absence of δ. Using transcription assay, we show that δ-mediated recycling of RNAP cannot be the sole reason for the enhancement of transcript yield. Our observation that δ does not bind to RNAP holo enzyme but is required to bind to DNA upstream of the -35 promoter element for transcription activation suggests that δ functions as a transcriptional regulator.

  1. Chimeric transcripts resulting from complex duplications in chromosome Xq28.

    PubMed

    Zuccherato, Luciana W; Alleva, Benjamin; Whiters, Marjorie A; Carvalho, Claudia M B; Lupski, James R

    2016-02-01

    Gene fusions have been observed in somatic alterations in cancer and in schizophrenia. However, the underlying mechanism(s) for their formation are poorly understood. We experimentally demonstrated the expression of splicing variants of in silico predicted chimeric genes F8/CSAG1 and BCAP31/TEX28 in two individuals with de novo complex genomic rearrangements of Xq28; F8/CSAG1 includes exonization of an ERVL-MaLR intronic repetitive element. We provide evidence that replicative repair may contribute to exon shuffling processes and diversify the repertoire of expressed transcripts.

  2. Conversion of the LIN-1 ETS protein of Caenorhabditis elegans from a SUMOylated transcriptional repressor to a phosphorylated transcriptional activator.

    PubMed

    Leight, Elizabeth R; Murphy, John T; Fantz, Douglas A; Pepin, Danielle; Schneider, Daniel L; Ratliff, Thomas M; Mohammad, Duaa H; Herman, Michael A; Kornfeld, Kerry

    2015-03-01

    The LIN-1 ETS transcription factor plays a pivotal role in controlling cell fate decisions during development of the Caenorhabditis elegans vulva. Prior to activation of the RTK/Ras/ERK-signaling pathway, LIN-1 functions as a SUMOylated transcriptional repressor that inhibits vulval cell fate. Here we demonstrate using the yeast two-hybrid system that SUMOylation of LIN-1 mediates interactions with a protein predicted to be involved in transcriptional repression: the RAD-26 Mi-2β/CHD4 component of the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies indicated that rad-26 functions to inhibit vulval cell fates in worms. Using the yeast two-hybrid system, we showed that the EGL-27/MTA1 component of the NuRD complex binds the carboxy-terminus of LIN-1 independently of LIN-1 SUMOylation. EGL-27 also binds UBC-9, an enzyme involved in SUMOylation, and MEP-1, a zinc-finger protein previously shown to bind LIN-1. Genetic studies indicate that egl-27 inhibits vulval cell fates in worms. These results suggest that LIN-1 recruits multiple proteins that repress transcription via both the SUMOylated amino-terminus and the unSUMOylated carboxy-terminus. Assays in cultured cells showed that the carboxy-terminus of LIN-1 was converted to a potent transcriptional activator in response to active ERK. We propose a model in which LIN-1 recruits multiple transcriptional repressors to inhibit the 1° vulval cell fate, and phosphorylation by ERK converts LIN-1 to a transcriptional activator that promotes the 1° vulval cell fate.

  3. Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2.

    PubMed

    Ku, Wei-Chi; Chiu, Sung-Kay; Chen, Yi-Ju; Huang, Hsin-Hung; Wu, Wen-Guey; Chen, Yu-Ju

    2009-09-01

    Transcription factor activating enhancer-binding protein 4 (AP-4) is a basic helix-loop-helix protein that binds to E-box elements. AP-4 has received increasing attention for its regulatory role in cell growth and development, including transcriptional repression of the human homolog of murine double minute 2 (HDM2), an important oncoprotein controlling cell growth and survival, by an unknown mechanism. Here we demonstrate that AP-4 binds to an E-box located in the HDM2-P2 promoter and represses HDM2 transcription in a p53-independent manner. Incremental truncations of AP-4 revealed that the C-terminal Gln/Pro-rich domain was essential for transcriptional repression of HDM2. To further delineate the molecular mechanism(s) of AP-4 transcriptional control and its potential implications, we used DNA-affinity purification followed by complementary quantitative proteomics, cICAT and iTRAQ labeling methods, to identify a previously unknown E-box-bound AP-4 protein complex containing 75 putative components. The two labeling methods complementarily quantified differentially AP-4-enriched proteins, including the most significant recruitment of DNA damage response proteins, followed by transcription factors, transcriptional repressors/corepressors, and histone-modifying proteins. Specific interaction of AP-4 with CCCTC binding factor, stimulatory protein 1, and histone deacetylase 1 (an AP-4 corepressor) was validated using AP-4 truncation mutants. Importantly, inclusion of trichostatin A did not alleviate AP-4-mediated repression of HDM2 transcription, suggesting a previously unidentified histone deacetylase-independent repression mechanism. In contrast, the complementary quantitative proteomics study suggested that transcription repression occurs via coordination of AP-4 with other transcription factors, histone methyltransferases, and/or a nucleosome remodeling SWI.SNF complex. In addition to previously known functions of AP-4, our data suggest that AP-4 participates in a

  4. In vitro squelching of activated transcription by serum response factor: evidence for a common coactivator used by multiple transcriptional activators.

    PubMed Central

    Prywes, R; Zhu, H

    1992-01-01

    Low amounts of serum response factor (SRF) activate transcription in vitro from a fos promoter construct containing an SRF binding site. Using this human HeLa cell-derived in vitro transcription system, we have found that high amounts of SRF inhibited, or 'squelched', transcription from this construct. Transcription from several other promoters activated by different gene-specific factors, including CREB and the acidic activator VP16, was also inhibited by high amounts of SRF. Basal transcription, from TATA-only promoters, however, was not inhibited. These results suggest that SRF binds to a common factor(s) (termed coactivator) required for activated transcription by a diverse group of transcriptional activators. Inhibition of transcription by SRF could be blocked by a double stranded oligonucleotide containing an SRF binding site. Mutations in SRF which abolished its DNA binding activity also reduced its ability to inhibit transcription. In addition, a C-terminal truncation of SRF which reduced its ability to activate transcription also reduced SRF's ability to inhibit transcription. These results suggest that activation and inhibition of transcription may be mediated by SRF binding to the same factor and that SRF can only bind to this factor when SRF is bound to plasmid DNA. Images PMID:1531519

  5. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    SciTech Connect

    Wang Bei; Suzuki, Hiroyuki Kato, Mitsuyasu

    2008-11-14

    TGF-{beta} activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-{beta} enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-{beta} type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.

  6. The Oct-1 POU-specific domain can stimulate small nuclear RNA gene transcription by stabilizing the basal transcription complex SNAPc.

    PubMed Central

    Mittal, V; Cleary, M A; Herr, W; Hernandez, N

    1996-01-01

    The RNA polymerase II and III human small nuclear RNA promoters have a common basal element, the proximal sequence element, which binds the TATA box-binding protein-containing complex SNAPc. They also contain an enhancer characterized by a highly conserved octamer sequence, which constitutes a binding site for the broadly expressed POU domain transcription factor Oct-1. The POU domain is a bipartite DNA-binding domain consisting of a POU-homeo (POUH) domain and a POU-specific (POUs) domain joined by a flexible linker. Here, we show that the Oct-1 POU domain but not the related Pit-1 POU domain can facilitate the binding of SNAPc to the proximal sequence element, and activate transcription. The effect is probably mediated by protein-protein contacts, and 1 of 30 amino acid differences between the Oct-1 and Pit-1 POUs domains is the key determinant for the differential interaction with SNAPc and the ability to activate transcription. These results show that a function that is the hallmark of activation domains, namely, recruitment of a basal transcription complex resulting in activation of transcription, can be performed by a DNA-binding domain. In this case, subtle changes between activator DNA-binding domains, as subtle as a single amino acid difference, can profoundly affect interaction with the basal transcription machinery. PMID:8628262

  7. Transcription activation by GC-boxes: evaluation of kinetic and equilibrium contributions.

    PubMed Central

    Yean, D; Gralla, J

    1996-01-01

    Basal and GC-box activated transcription were compared by various assays in order to learn the basis for an 8-fold difference observed under standard conditions. The time required for forming pre-initiation complexes and initiating and elongating RNA synthesis, and the extent of transcription reinitiation were found to be quite similar for basal and activated transcription, with complex formation being the slow step in both cases. The extent of activation was found to vary widely with the amount of template DNA used. Activated pre-initiation complexes were found to have a higher stability than basal complexes. The data are interpreted to indicate that GC-box elements do not stimulate the rate constants for critical steps in this system but rather increase the equilibrium constant for pre-initiation complex formation, probably by 10-30-fold. PMID:8759003

  8. Tat acetylation modulates assembly of a viral-host RNA–protein transcription complex

    PubMed Central

    D'Orso, Iván; Frankel, Alan D.

    2009-01-01

    HIV-1 Tat enhances viral transcription elongation by forming a ribonucleoprotein complex with transactivating responsive (TAR) RNA and P-TEFb, an elongation factor composed of cyclin T1 (CycT1) and Cdk9 that phosphorylates the C-terminal domain of RNA polymerase II. Previous studies have shown that Lys-28 in the activation domain (AD) of Tat is essential for HIV-1 transcription and replication and is acetylated by p300/CBP-associated factor (PCAF), but the mechanistic basis of the Lys-28 requirement is unknown. Here, we show that Lys-28 acetylation modulates the affinity and stability of HIV-1 Tat–CycT1–TAR complexes by enhancing an interaction with the CycT1 Tat–TAR recognition motif. High-affinity assembly correlates strongly with stimulation of transcription elongation in vitro and Tat activation in vivo. In marked contrast, bovine lentiviral Tat proteins have evolved a high-affinity TAR interaction that does not require PCAF-mediated acetylation of the Tat AD or CycT1 for RNA binding, whereas HIV-2 Tat has evolved an intermediate mechanism that uses a duplicated TAR element and CycT1 to enhance RNA affinity and consequently transcription activation. The coevolution of Tat acetylation, CycT1 dependence, and TAR binding affinity is seen in viral replication assays using Tat proteins that rely on CycT1 for TAR binding but are acetylation deficient, where compensatory mutations rapidly accrue in TAR to generate high-affinity, CycT1-independent complexes reminiscent of the bovine viruses. Thus, lysine acetylation can be used to modulate and evolve the strength of a viral-host RNA–protein complex, thereby tuning the levels of transcription elongation. PMID:19223581

  9. Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes

    SciTech Connect

    Arnett, Kelly L.; Hass, Matthew; McArthur, Debbie G.; Ilagan, Ma Xenia G.; Aster, Jon C.; Kopan, Raphael; Blacklow, Stephen C.

    2010-11-12

    Ligand-induced proteolysis of Notch produces an intracellular effector domain that transduces essential signals by regulating the transcription of target genes. This function relies on the formation of transcriptional activation complexes that include intracellular Notch, a Mastermind co-activator and the transcription factor CSL bound to cognate DNA. These complexes form higher-order assemblies on paired, head-to-head CSL recognition sites. Here we report the X-ray structure of a dimeric human Notch1 transcription complex loaded on the paired site from the human HES1 promoter. The small interface between the Notch ankyrin domains could accommodate DNA bending and untwisting to allow a range of spacer lengths between the two sites. Cooperative dimerization occurred on the human and mouse Hes5 promoters at a sequence that diverged from the CSL-binding consensus at one of the sites. These studies reveal how promoter organizational features control cooperativity and, thus, the responsiveness of different promoters to Notch signaling.

  10. Crx activates opsin transcription by recruiting HAT-containing co-activators and promoting histone acetylation

    PubMed Central

    Peng, Guang-Hua; Chen, Shiming

    2008-01-01

    The homeodomain transcription factor Crx is required for expression of many photoreceptor genes in the mammalian retina. The mechanism by which Crx activates transcription remains to be determined. Using protein–protein interaction assays, Crx was found to interact with three co-activator proteins (complexes): STAGA, Cbp and p300, all of which possess histone acetyl-transferase (HAT) activity. To determine the role of Crx–HAT interactions in target gene chromatin modification and transcriptional activation, quantitative RT–PCR and chromatin immunoprecipitation were performed on Crx target genes, rod and cone opsins, in developing mouse retina. Although cone opsins are transcribed earlier than rhodopsin during development, the transcription of each gene is preceded by the same sequence of events in their promoter and enhancer regions: (i) binding of Crx, followed by (ii) binding of HATs, (iii) the acetylation of histone H3, then (iv) binding of other photoreceptor transcription factors (Nrl and Nr2e3) and RNA polymerase II. In Crx knockout mice (Crx−/−), the association of HATs and AcH3 with target promoter/enhancer regions was significantly decreased, which correlates with aberrant opsin transcription and photoreceptor dysfunction in these mice. Similar changes to the opsin chromatin were seen in Y79 retinoblastoma cells, where opsin genes are barely transcribed. These defects in Y79 cells can be reversed by expressing a recombinant Crx or applying histone deacetylase inhibitors. Altogether, these results suggest that one mechanism for Crx-mediated transcriptional activation is to recruit HATs to photoreceptor gene chromatin for histone acetylation, thereby inducing and maintaining appropriate chromatin configurations for transcription. PMID:17656371

  11. The Complex Role of the ZNF224 Transcription Factor in Cancer.

    PubMed

    Cesaro, E; Sodaro, G; Montano, G; Grosso, M; Lupo, A; Costanzo, P

    2017-01-01

    ZNF224 is a member of the Kruppel-associated box zinc finger proteins (KRAB-ZFPs) family. It was originally identified as a transcriptional repressor involved in gene-specific silencing through the recruitment of the corepressor KAP1, chromatin-modifying activities, and the arginine methyltransferase PRMT5 on the promoter of its target genes. Recent findings indicate that ZNF224 can behave both as a tumor suppressor or an oncogene in different human cancers. The transcriptional regulatory properties of ZNF224 in these systems appear to be complex and influenced by specific sets of interactors. ZNF224 can also act as a transcription cofactor for other DNA-binding proteins. A role for ZNF224 in transcriptional activation has also emerged. Here, we review the state of the literature supporting both roles of ZNF224 in cancer. We also examine the functional activity of ZNF224 as a transcription factor and the influence of protein partners on its dual behavior. Increasing information on the mechanism through which ZNF224 can operate could lead to the identification of agents capable of modulating ZNF224 function, thus potentially paving the way to new therapeutic strategies for treatment of cancer.

  12. Structure of an RNA Polymerase II-TFIIB Complex and the Transcription Initiation Mechanism

    SciTech Connect

    Liu, Xin; Bushnell, David A; Wang, Dong; Calero, Guillermo; Kornberg, Roger D

    2010-01-14

    Previous x-ray crystal structures have given insight into the mechanism of transcription and the role of general transcription factors in the initiation of the process. A structure of an RNA polymerase II-general transcription factor TFIIB complex at 4.5 angstrom resolution revealed the amino-terminal region of TFIIB, including a loop termed the 'B finger,' reaching into the active center of the polymerase where it may interact with both DNA and RNA, but this structure showed little of the carboxyl-terminal region. A new crystal structure of the same complex at 3.8 angstrom resolution obtained under different solution conditions is complementary with the previous one, revealing the carboxyl-terminal region of TFIIB, located above the polymerase active center cleft, but showing none of the B finger. In the new structure, the linker between the amino- and carboxyl-terminal regions can also be seen, snaking down from above the cleft toward the active center. The two structures, taken together with others previously obtained, dispel long-standing mysteries of the transcription initiation process.

  13. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    SciTech Connect

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-05-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. /sup 32/P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA.

  14. A transcription factor network controls cell migration and fate decisions in the developing zebrafish pineal complex

    PubMed Central

    Clanton, Joshua A.; Dean, Benjamin J.; Gamse, Joshua T.

    2016-01-01

    The zebrafish pineal complex consists of four cell types (rod and cone photoreceptors, projection neurons and parapineal neurons) that are derived from a single pineal complex anlage. After specification, parapineal neurons migrate unilaterally away from the rest of the pineal complex whereas rods, cones and projection neurons are non-migratory. The transcription factor Tbx2b is important for both the correct number and migration of parapineal neurons. We find that two additional transcription factors, Flh and Nr2e3, negatively regulate parapineal formation. Flh induces non-migratory neuron fates and limits the extent of parapineal specification, in part by activation of Nr2e3 expression. Tbx2b is positively regulated by Flh, but opposes Flh action during specification of parapineal neurons. Loss of parapineal neuron specification in Tbx2b-deficient embryos can be partially rescued by loss of Nr2e3 or Flh function; however, parapineal migration absolutely requires Tbx2b activity. We conclude that cell specification and migration in the pineal complex are regulated by a network of at least three transcription factors. PMID:27317804

  15. Transcription activation by the adenovirus E1a protein

    NASA Astrophysics Data System (ADS)

    Lillie, James W.; Green, Michael R.

    1989-03-01

    The adenovirus Ela protein stimulates transcription of a wide variety of viral and cellular genes. It is shown here that Ela has the two functions characteristic of a typical cellular activator: one direct Ela to the promoter, perhaps by interacting with a DMA-bound protein, and the other, an activating region, enables the bound activator to stimulate transcription.

  16. Physical association with WWOX suppresses c-Jun transcriptional activity.

    PubMed

    Gaudio, Eugenio; Palamarchuk, Alexey; Palumbo, Tiziana; Trapasso, Francesco; Pekarsky, Yuri; Croce, Carlo M; Aqeilan, Rami I

    2006-12-15

    WWOX is a tumor suppressor that functions as a modular protein partner of transcription factors. WWOX contains two WW domains that mediate protein-protein interactions. In this report, we show that WWOX, via its first WW domain, specifically associates with the proline-rich motif of c-Jun proto-oncogene. Our data show that phosphorylation of c-Jun caused by overexpression of mitogen-activated protein kinase kinase kinase 1 (Mekk1), an upstream activator of c-Jun, enhances the interaction of c-Jun with WWOX. Furthermore, exposure of HaCaT keratinocytes to UVC radiation resulted in the association of endogenous WWOX and c-Jun. The WWOX-c-Jun complexes mainly occur in the cytoplasm. Expression of WWOX attenuates the ability of MEKK1 to increase the activity of a c-Jun-driven activating protein-1 (AP-1)-luciferase reporter plasmid. In contrast, a point mutation in the first WW domain of WWOX has no effect on transactivation of AP-1 when coexpressed with c-Jun protein. Our findings reveal a novel functional cross-talk between c-Jun transcription factor and WWOX tumor suppressor protein.

  17. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation

    PubMed Central

    Corey, Laura L.; Weirich, Christine S.; Benjamin, Ivor J.; Kingston, Robert E.

    2003-01-01

    To understand the role of chromatin-remodeling activities in transcription, it is necessary to understand how they interact with transcriptional activators in vivo to regulate the different steps of transcription. Human heat shock factor 1 (HSF1) stimulates both transcriptional initiation and elongation. We replaced mouse HSF1 in fibroblasts with wild-type and mutant human HSF1 constructs and characterized regulation of an endogenous mouse hsp70 gene. A mutation that diminished transcriptional initiation led to twofold reductions in hsp70 mRNA induction and recruitment of a SWI/SNF remodeling complex. In contrast, a mutation that diminished transcriptional elongation abolished induction of full-length mRNA, SWI/SNF recruitment, and chromatin remodeling, but minimally impaired initiation from the hsp70 promoter. Another remodeling factor, SNF2h, is constitutively present at the promoter irrespective of the genotype of HSF1. These data suggest that localized recruitment of SWI/SNF drives a specialized remodeling reaction necessary for the production of full-length hsp70 mRNA. PMID:12782657

  18. Activation of p53 Transcriptional Activity by SMRT: a Histone Deacetylase 3-Independent Function of a Transcriptional Corepressor

    PubMed Central

    Adikesavan, Anbu Karani; Karmakar, Sudipan; Pardo, Patricia; Wang, Liguo; Liu, Shuang; Li, Wei

    2014-01-01

    The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression. PMID:24449765

  19. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  20. The transcriptional activity of human Chromosome 22

    PubMed Central

    Rinn, John L.; Euskirchen, Ghia; Bertone, Paul; Martone, Rebecca; Luscombe, Nicholas M.; Hartman, Stephen; Harrison, Paul M.; Nelson, F. Kenneth; Miller, Perry; Gerstein, Mark; Weissman, Sherman; Snyder, Michael

    2003-01-01

    A DNA microarray representing nearly all of the unique sequences of human Chromosome 22 was constructed and used to measure global-transcriptional activity in placental poly(A)+ RNA. We found that many of the known, related and predicted genes are expressed. More importantly, our study reveals twice as many transcribed bases as have been reported previously. Many of the newly discovered expressed fragments were verified by RNA blot analysis and a novel technique called differential hybridization mapping (DHM). Interestingly, a significant fraction of these novel fragments are expressed antisense to previously annotated introns. The coding potential of these novel expressed regions is supported by their sequence conservation in the mouse genome. This study has greatly increased our understanding of the biological information encoded on a human chromosome. To facilitate the dissemination of these results to the scientific community, we have developed a comprehensive Web resource to present the findings of this study and other features of human Chromosome 22 at http://array.mbb.yale.edu/chr22. PMID:12600945

  1. Novel roles of the multi-functional CCR4-NOT complex in post-transcriptional regulation

    PubMed Central

    Inada, Toshifumi; Makino, Shiho

    2014-01-01

    The CCR4-NOT complex is a highly conserved specific gene silencer that also serves more general post-transcriptional functions. Specific regulatory proteins including the miRNA-induced silencing complex and its associated proteins, bind to 3’-UTR elements of mRNA and recruit the CCR4-NOT complex thereby promoting poly(A) shortening and repressing translation and/or mRNA degradation. Recent studies have shown that the CCR4-NOT complex that is tethered to mRNA by such regulator(s) represses translation and facilitates mRNA decay independent of a poly(A) tail and its shortening. In addition to deadenylase activity, the CCR4-NOT complex also has an E3 ubiquitin ligase activity and is involved in a novel protein quality control system, i.e., co-translational proteasomal-degradation of aberrant proteins. In this review, we describe recent progress in elucidation of novel roles of the multi-functional complex CCR4-NOT in post-transcriptional regulation. PMID:24904636

  2. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis

    SciTech Connect

    Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan; Jiang, Yanwen; Kost, Nils; Soong, T. David; Chen, Wei-Yi; Tang, Zhanyun; Nakadai, Tomoyoshi; Elemento, Olivier; Fischle, Wolfgang; Melnick, Ari; Patel, Dinshaw J.; Nimer, Stephen D.; Roeder, Robert G.

    2013-06-30

    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.

  3. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton

    PubMed Central

    2012-01-01

    Background Somatic embryogenesis (SE), by which somatic cells of higher plants can dedifferentiate and reorganize into new plants, is a notable illustration of cell totipotency. However, the precise molecular mechanisms regulating SE remain unclear. To characterize the molecular events of this unique process, transcriptome analysis, in combination with biochemical and histological approaches, were conducted in cotton, a typical plant species in SE. Genome-wide profiling of gene expression allowed the identification of novel molecular markers characteristic of this developmental process. Results RNA-Seq was used to identify 5,076 differentially expressed genes during cotton SE. Expression profile and functional assignments of these genes indicated significant transcriptional complexity during this process, associated with morphological, histological changes and endogenous indole-3-acetic acid (IAA) alteration. Bioinformatics analysis showed that the genes were enriched for basic processes such as metabolic pathways and biosynthesis of secondary metabolites. Unigenes were abundant for the functions of protein binding and hydrolase activity. Transcription factor–encoding genes were found to be differentially regulated during SE. The complex pathways of auxin abundance, transport and response with differentially regulated genes revealed that the auxin-related transcripts belonged to IAA biosynthesis, indole-3-butyric acid (IBA) metabolism, IAA conjugate metabolism, auxin transport, auxin-responsive protein/indoleacetic acid-induced protein (Aux/IAA), auxin response factor (ARF), small auxin-up RNA (SAUR), Aux/IAA degradation, and other auxin-related proteins, which allow an intricate system of auxin utilization to achieve multiple purposes in SE. Quantitative real-time PCR (qRT-PCR) was performed on selected genes with different expression patterns and functional assignments were made to demonstrate the utility of RNA-Seq for gene expression profiles during cotton SE

  4. Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription.

    PubMed

    Calkins, Marcus J; Jakel, Rebekah J; Johnson, Delinda A; Chan, Kaimin; Kan, Yuet Wai; Johnson, Jeffrey A

    2005-01-04

    Complex II inhibitors 3-nitropropionic acid (3NP) and malonate cause striatal damage reminiscent of Huntington's disease and have been shown to involve oxidative stress in their pathogenesis. Because nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent transcriptional activation by means of the antioxidant response element is known to coordinate the up-regulation of cytoprotective genes involved in combating oxidative stress, we investigated the significance of Nrf2 in complex II-induced toxicity. We found that Nrf2-deficient cells and Nrf2 knockout mice are significantly more vulnerable to malonate and 3NP and demonstrate increased antioxidant response element (ARE)-regulated transcription mediated by astrocytes. Furthermore, ARE preactivation by means of intrastriatal transplantation of Nrf2-overexpressing astrocytes before lesioning conferred dramatic protection against complex II inhibition. These observations implicate Nrf2 as an essential inducible factor in the protection against complex II inhibitor-mediated neurotoxicity. These data also introduce Nrf2-mediated ARE transcription as a potential target of preventative therapy in neurodegenerative disorders such as Huntington's disease.

  5. RNA polymerase active center: the molecular engine of transcription.

    PubMed

    Nudler, Evgeny

    2009-01-01

    RNA polymerase (RNAP) is a complex molecular machine that governs gene expression and its regulation in all cellular organisms. To accomplish its function of accurately producing a full-length RNA copy of a gene, RNAP performs a plethora of chemical reactions and undergoes multiple conformational changes in response to cellular conditions. At the heart of this machine is the active center, the engine, which is composed of distinct fixed and moving parts that serve as the ultimate acceptor of regulatory signals and as the target of inhibitory drugs. Recent advances in the structural and biochemical characterization of RNAP explain the active center at the atomic level and enable new approaches to understanding the entire transcription mechanism, its exceptional fidelity and control.

  6. An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch

    PubMed Central

    Su, Leila; Radek, James T.; Labeots, Laura A.; Hallenga, Klaas; Hermanto, Patrick; Chen, Huifen; Nakagawa, Satoe; Zhao, Ming; Kates, Steve; Weiss, Michael A.

    1997-01-01

    Antitermination protein N regulates the transcriptional program of phage λ through recognition of RNA enhancer elements. Binding of an arginine-rich peptide to one face of an RNA hairpin organizes the other, which in turn binds to the host antitermination complex. The induced RNA structure mimics a GNRA hairpin, an organizational element of rRNA and ribozymes. The two faces of the RNA, bridged by a sheared GA base pair, exhibit a specific pattern of base stacking and base flipping. This pattern is extended by stacking of an aromatic amino acid side chain with an unpaired adenine at the N-binding surface. Such extended stacking is coupled to induction of a specific internal RNA architecture and is blocked by RNA mutations associated in vivo with loss of transcriptional antitermination activity. Mimicry of a motif of RNA assembly by an RNA–protein complex permits its engagement within the antitermination machinery. PMID:9303537

  7. Synaptonemal Complex Protein 3 Transcript Analysis in Breast Cancer

    PubMed Central

    MOBASHERI, Maryam Beigom; SHIRKOOHI, Reza; MODARRESSI, Mohammad Hossein

    2016-01-01

    Background: Breast cancer is the most frequent cancer in women. Cancer/Testis antigens are immunogenic proteins ectopically expressed in human neoplasms. Synaptonemal complex protein 3 (SYCP3) belongs to cancer/testis genes family involved in meiotic events and spermatogenesis. The aim of this study was to express analysis of SYCP3 in breast cancer and validate it as a breast cancer biomarker. Methods: Expression of SYCP3 transcripts in 47 breast tumors, 6 breast cancer cell lines (MCF7, SKBR3, T47D, BT474, MDA-MB-231 and MDA-MB 468), 5 normal breast and 2 testis tissues was studied by Real Time RT-PCR reaction. The reference genes phosphoglucomutase 1 and hypoxanthine guanine phosphoribosyl transferase were used as reactions normalizers. The software tool REST 2009 was applied for statistical analysis of the data. The research was conducted from Apr 2014 to August 2015 in Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Results: All of the studied breast cancer cell lines showed very high levels of SYCP3 overexpression in comparison to normal breast (P=0.001) and even to normal testis (P=0.001), except for MCF7 cell line. Breast tumors showed moderately increasing in transcript changes in comparison to normal breast. Conclusion: SYCP3 is a known testis-specific gene, but interestingly five out of six studied breast cancer of cell lines showed higher expression levels of SYCP3 in comparison to normal testis and normal breast tissues. SYCP3 has critical role in cell division with known interaction with the tumor suppressor genes, BRCA1 and BRCA2, which are critical genes in breast cancer. PMID:28053928

  8. Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    PubMed Central

    Qiao, Huan; May, James M.

    2012-01-01

    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences. PMID:22532872

  9. Rethinking Transcriptional Activation in the Arabidopsis Circadian Clock

    PubMed Central

    Fogelmark, Karl; Troein, Carl

    2014-01-01

    Circadian clocks are biological timekeepers that allow living cells to time their activity in anticipation of predictable daily changes in light and other environmental factors. The complexity of the circadian clock in higher plants makes it difficult to understand the role of individual genes or molecular interactions, and mathematical modelling has been useful in guiding clock research in model organisms such as Arabidopsis thaliana. We present a model of the circadian clock in Arabidopsis, based on a large corpus of published time course data. It appears from experimental evidence in the literature that most interactions in the clock are repressive. Hence, we remove all transcriptional activation found in previous models of this system, and instead extend the system by including two new components, the morning-expressed activator RVE8 and the nightly repressor/activator NOX. Our modelling results demonstrate that the clock does not need a large number of activators in order to reproduce the observed gene expression patterns. For example, the sequential expression of the PRR genes does not require the genes to be connected as a series of activators. In the presented model, transcriptional activation is exclusively the task of RVE8. Predictions of how strongly RVE8 affects its targets are found to agree with earlier interpretations of the experimental data, but generally we find that the many negative feedbacks in the system should discourage intuitive interpretations of mutant phenotypes. The dynamics of the clock are difficult to predict without mathematical modelling, and the clock is better viewed as a tangled web than as a series of loops. PMID:25033214

  10. The SIX1-EYA transcriptional complex as a therapeutic target in cancer

    PubMed Central

    Blevins, Melanie A; Towers, Christina Garlington; Patrick, Aaron N.

    2015-01-01

    Introduction The SIX homeodomain proteins and the EYA family of co-activators form a bipartite transcription factor complex that promotes the proliferation and survival of progenitor cells during organogenesis and is down-regulated in most adult tissues. Abnormal over-expression of SIX1 and EYA in adult tissue is associated with the initiation and progression of diverse tumor types. Importantly, SIX1 and EYA are often co-overexpressed in tumors, and the SIX1-EYA2 interaction has been shown to be critical for metastasis in a breast cancer model. The EYA proteins also contain protein tyrosine phosphatase activity, which plays an important role in breast cancer growth and metastasis as well as directing cells to the repair pathway upon DNA damage. Areas covered This review provides a summary of the SIX1/EYA complex as it relates to development and disease and the current efforts to therapeutically target this complex. Expert opinion Recently, there have been an increasing number of studies suggesting that targeting the SIX1/EYA transcriptional complex will potently inhibit tumor progression. Although current attempts to develop inhibitors targeting this complex are still in the early stages, continued efforts towards developing better compounds may ultimately result in effective anti-cancer therapies. PMID:25555392

  11. Transcription activation parameters at ara pBAD.

    PubMed

    Zhang, X; Reeder, T; Schleif, R

    1996-04-26

    We studied the formation of open complexes of RNA polymerase and promoter DNA as activated by the AraC protein at the Escherichia coli araBAD promoter pBAD and by the cyclic AMP receptor protein at the galKTE promoter P1. The DNA migration retardation assay was demonstrated to be suitable for the detection and quantitation of open complexes by the correspondence in the properties of open complexes in solution and retarded complexes observed in gels. These included, on the ara promoter, heparin resistance, lifetime, DNAseI footprinting, exonuclease III footprinting, permanganate footprinting and disappearance upon transcription, and on the gal promoter, the correspondence between the kinetic parameters Kd and k2 obtained with established techniques and those obtained with the migration retardation assay. On the pBAD promoter we obtained kinetic parameters of Kd = 0.3 nM and K2 = 1 minute(-1). The unusually tight binding of polymerase in the presence of AraC suggests that AraC binds polymerase tightly.

  12. Fluorescence probes for studying the mechanisms of transcription activation

    NASA Astrophysics Data System (ADS)

    Heyduk, Tomasz; Callaci, Sandhya

    1994-08-01

    Regulation of transcription involves a complex interplay between protein-ligand, protein-DNA, and protein-protein interactions. Fluorescence probes seem to be very well suited to study such complex systems since the selectivity and sensitivity of fluorescence makes possible to select only a part of the system for observation leaving the rest of it transparent to the technique. We have used fluorescence spectroscopy to study the activation of E.coli RNA polymerase by cAMP receptor protein (CRP). The cAMP interactions with CRP, domain flexibility in CRP molecule, the structure of CRP-DNA complex, and interaction of CRP with RNA-polymerase have been studied. Here we report the preparation and properties of 5-OH-Trp derivative of the sigma subunit of E.coli RNA polymerase. This subunit is responsible for specific promoter recognition. The obtained results show that the biological activities of the derivative are identical as observed for the native protein. Comparison of fluorescence properties of the 5-OH-Trp sigma derivative free and bound to the core RNA polymerase suggests a conformational change in the sigma protein induced by this interaction. These data show that replacement of Trp residues with 5-OH-Trp can be a very useful approach to prepare specific fluorescence derivatives of multimeric proteins.

  13. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors.

    PubMed

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-19

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  14. Transcription closed and open complex dynamics studies reveal balance between genetic determinants and co-factors

    NASA Astrophysics Data System (ADS)

    Sala, Adrien; Shoaib, Muhammad; Anufrieva, Olga; Mutharasu, Gnanavel; Jahan Hoque, Rawnak; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram

    2015-05-01

    In E. coli, promoter closed and open complexes are key steps in transcription initiation, where magnesium-dependent RNA polymerase catalyzes RNA synthesis. However, the exact mechanism of initiation remains to be fully elucidated. Here, using single mRNA detection and dual reporter studies, we show that increased intracellular magnesium concentration affects Plac initiation complex formation resulting in a highly dynamic process over the cell growth phases. Mg2+ regulates transcription transition, which modulates bimodality of mRNA distribution in the exponential phase. We reveal that Mg2+ regulates the size and frequency of the mRNA burst by changing the open complex duration. Moreover, increasing magnesium concentration leads to higher intrinsic and extrinsic noise in the exponential phase. RNAP-Mg2+ interaction simulation reveals critical movements creating a shorter contact distance between aspartic acid residues and Nucleotide Triphosphate residues and increasing electrostatic charges in the active site. Our findings provide unique biophysical insights into the balanced mechanism of genetic determinants and magnesium ion in transcription initiation regulation during cell growth.

  15. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives

    PubMed Central

    Charlier, Jean-Benoit; Polese, Catherine; Nouet, Cécile; Carnol, Monique; Bosman, Bernard; Krämer, Ute; Motte, Patrick; Hanikenne, Marc

    2015-01-01

    In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of β-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation. PMID:25900619

  16. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  17. Stress-Induced Activation of Heterochromatic Transcription

    PubMed Central

    Tittel-Elmer, Mireille; Bucher, Etienne; Broger, Larissa; Mathieu, Olivier; Paszkowski, Jerzy; Vaillant, Isabelle

    2010-01-01

    Constitutive heterochromatin comprising the centromeric and telomeric parts of chromosomes includes DNA marked by high levels of methylation associated with histones modified by repressive marks. These epigenetic modifications silence transcription and ensure stable inheritance of this inert state. Although environmental cues can alter epigenetic marks and lead to modulation of the transcription of genes located in euchromatic parts of the chromosomes, there is no evidence that external stimuli can globally destabilize silencing of constitutive heterochromatin. We have found that heterochromatin-associated silencing in Arabidopsis plants subjected to a particular temperature regime is released in a genome-wide manner. This occurs without alteration of repressive epigenetic modifications and does not involve common epigenetic mechanisms. Such induced release of silencing is mostly transient, and rapid restoration of the silent state occurs without the involvement of factors known to be required for silencing initiation. Thus, our results reveal new regulatory aspects of transcriptional repression in constitutive heterochromatin and open up possibilities to identify the molecular mechanisms involved. PMID:21060865

  18. Biogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation

    PubMed Central

    1986-01-01

    The integral membrane proteins of photosystem II (PS II) reaction center complexes are encoded by chloroplast genomes. These proteins are absent from thylakoids of PS II mutants of algae and vascular plants as a result of either chloroplast or nuclear gene mutations. To resolve the molecular basis for the concurrent absence of the PS II polypeptides, protein synthesis rates and mRNA levels were measured in mutants of Chlamydomonas reinhardtii that lack PS II. The analyses show that one nuclear gene product regulates the levels of transcripts from the chloroplast gene encoding the 51-kD chlorophyll a-binding polypeptide (polypeptide 5) but is not involved in the synthesis of other chloroplast mRNAs. Another nuclear product is specifically required for translation of mRNA encoding the 32-34-kD polypeptide, D1. The absence of either D1 or polypeptide 5 does not eliminate the synthesis and thylakoid insertion of two other integral membrane proteins of PS II, the chlorophyll a-binding polypeptide of 46 kD (polypeptide 6) and the 30-kD "D1-like" protein, D2. However, these two unassembled subunits cannot be properly processed and/or are degraded in the mutants even though they reside in the membrane. In addition, pulse labeling of the nuclear mutants and a chloroplast mutant that does not synthesize D1 mRNA indicates that synthesis of polypeptide 5 and D1 is coordinated at the translational level. A model is presented to explain how absence of one of the two proteins could lead to translational arrest of the other. PMID:3533953

  19. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex

    PubMed Central

    Tan-Wong, Sue Mei; Wijayatilake, Hashanthi D.; Proudfoot, Nick J.

    2009-01-01

    Inducible genes in yeast retain a “memory” of recent transcriptional activity during periods of short-term repression, allowing them to be reactivated faster when reinduced. This confers a rapid and versatile gene expression response to the environment. We demonstrate that this memory mechanism is associated with gene loop interactions between the promoter and 3′ end of the responsive genes HXK1 and GAL1∷FMP27. The maintenance of these memory gene loops (MGLs) during intervening periods of transcriptional repression is required for faster RNA polymerase II (Pol II) recruitment to the genes upon reinduction, thereby facilitating faster mRNA accumulation. Notably, a sua7-1 mutant or the endogenous INO1 gene that lacks this MGL does not display such faster reinduction. Furthermore, these MGLs interact with the nuclear pore complex through association with myosin-like protein 1 (Mlp1). An mlp1Δ strain does not maintain MGLs, and concomitantly loses transcriptional memory. We predict that gene loop conformations enhance gene expression by facilitating rapid transcriptional response to changing environmental conditions. PMID:19933151

  20. Increases in Retrograde Injury Signaling Complex-Related Transcripts in Central Axons following Injury

    PubMed Central

    Pathak, Gunja K.; Ornstein, Hannah; Aranda-Espinoza, Helim; Karlsson, Amy J.

    2016-01-01

    Axons in the peripheral nervous system respond to injury by activating retrograde injury signaling (RIS) pathways, which promote local axonal protein synthesis (LPS) and neuronal regeneration. RIS is also initiated following injury of neurons in the central nervous system (CNS). However, regulation of the localization of axonal mRNA required for LPS is not well understood. We used a hippocampal explant system to probe the regulation of axonal levels of RIS-associated transcripts following axonal injury. Axonal levels of importin β1 and RanBP1 were elevated biphasically at 1 and 24 hrs after axotomy. Transcript levels for β-actin, a prototypic axonally synthesized protein, were similarly elevated. Our data suggest differential regulation of axonal transcripts. At 1 hr after injury, deployment of actinomycin revealed that RanBP1, but not importin β1, requires de novo mRNA synthesis. At 24 hrs after injury, use of importazole revealed that the second wave of increased axonal mRNA levels required importin β-mediated nuclear import. We also observed increased importin β1 axonal protein levels at 1 and 6 hrs after injury. RanBP1 levels and vimentin levels fluctuated but were unchanged at 3 and 6 hrs after injury. This study revealed temporally complex regulation of axonal transcript levels, and it has implications for understanding neuronal response to injury in the CNS. PMID:27847648

  1. Widespread Collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling Complexes in Transcriptional Repression

    PubMed Central

    Fazzio, Thomas G.; Kooperberg, Charles; Goldmark, Jesse P.; Neal, Cassandra; Basom, Ryan; Delrow, Jeffrey; Tsukiyama, Toshio

    2001-01-01

    The yeast Isw2 chromatin remodeling complex functions in parallel with the Sin3-Rpd3 histone deacetylase complex to repress early meiotic genes upon recruitment by Ume6p. For many of these genes, the effect of an isw2 mutation is partially masked by a functional Sin3-Rpd3 complex. To identify the full range of genes repressed or activated by these factors and uncover hidden targets of Isw2-dependent regulation, we performed full genome expression analyses using cDNA microarrays. We find that the Isw2 complex functions mainly in repression of transcription in a parallel pathway with the Sin3-Rpd3 complex. In addition to Ume6 target genes, we find that many Ume6-independent genes are derepressed in mutants lacking functional Isw2 and Sin3-Rpd3 complexes. Conversely, we find that ume6 mutants, but not isw2 sin3 or isw2 rpd3 double mutants, have reduced fidelity of mitotic chromosome segregation, suggesting that one or more functions of Ume6p are independent of Sin3-Rpd3 and Isw2 complexes. Chromatin structure analyses of two nonmeiotic genes reveals increased DNase I sensitivity within their regulatory regions in an isw2 mutant, as seen previously for one meiotic locus. These data suggest that the Isw2 complex functions at Ume6-dependent and -independent loci to create DNase I-inaccessible chromatin structure by regulating the positioning or placement of nucleosomes. PMID:11533234

  2. A signal transducer and activator of transcription 3·Nuclear Factor κB (Stat3·NFκB) complex is necessary for the expression of fascin in metastatic breast cancer cells in response to interleukin (IL)-6 and tumor necrosis factor (TNF)-α.

    PubMed

    Snyder, Marylynn; Huang, Jianyun; Huang, Xin-Yun; Zhang, J Jillian

    2014-10-24

    IL-6 mediated activation of Stat3 is a major signaling pathway in the process of breast cancer metastasis. One important mechanism by which the IL-6/Stat3 pathway promotes metastasis is through transcriptional regulation of the actin-bundling protein fascin. In this study, we further analyzed the transcriptional regulation of the fascin gene promoter. We show that in addition to IL-6, TNF-α increases Stat3 and NFκB binding to the fascin promoter to induce its expression. We also show that NFκB is required for Stat3 recruitment to the fascin promoter in response to IL-6. Furthermore, Stat3 and NFκB form a protein complex in response to cytokine stimulation. Finally, we demonstrate that an overlapping STAT/NFκB site in a highly conserved 160-bp region of the fascin promoter is sufficient and necessary to induce transcription in response to IL-6 and TNF-α.

  3. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex

    PubMed Central

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-01-01

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel ‘recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4–Met28–Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity. PMID:22146299

  4. p300 is involved in formation of the TBP-TFIIA-containing basal transcription complex, TAC.

    PubMed

    Mitsiou, Dimitra J; Stunnenberg, Hendrik G

    2003-09-01

    We have recently identified a novel basal transcription complex, TAC, that is present and active in embryonal carcinoma (EC) cells but not in other adult cells such as COS7. In the search for factors involved in TAC formation, we found that expression of the adenoviral 12S E1A oncoprotein abolishes TAC formation in EC cells. This effect of E1A depends on its N-terminal domain that is essential for cell differentiation and that targets the transcriptional coactivators p300 and PCAF. Expression of p300 lacking its major E1A interaction domain, CH3, restores TAC formation in the presence of E1A, in a bromodomain- and HAT domain-dependent manner. Consistently, the unprocessed TFIIAalphabeta precursor that is selectively assembled into TAC is acetylated preferentially compared with the processed subunits present in 'free' TFIIA. Intriguingly, expression of p300 in COS7 cells that do not contain detectable levels of TAC instigates formation of TAC from endogenous components. Our data suggest that p300 plays a role in formation of the TBP-TFIIA-containing basal transcription complex, TAC.

  5. SUMOylation of ROR{alpha} potentiates transcriptional activation function

    SciTech Connect

    Hwang, Eun Ju; Lee, Ji Min; Jeong, Jiyeong; Park, Joo Hyeon; Yang, Young; Lim, Jong-Seok; Kim, Jung Hwa; Baek, Sung Hee; Kim, Keun Il

    2009-01-16

    SUMOylation regulates a variety of cellular processes, including control of transcriptional activities of nuclear receptors. Here, we present SUMOylation of orphan nuclear receptor, ROR{alpha} by both SUMO-1 and SUMO-2. SUMOylation of ROR{alpha} occurred on the 240th lysine residue at the hinge region of human protein. PIAS family members, PIASx{alpha}, PIAS3, and PIASy, increased SUMOylation of ROR{alpha}, whereas SENP2 specifically removed SUMO from ROR{alpha}. SUMOylation-defective mutant form of ROR{alpha} exhibited decreased transcriptional activity on ROR{alpha}-responsive promoters indicating that SUMOylation may positively regulate transcriptional function of ROR{alpha}.

  6. SALSA, a variant of yeast SAGA, contains truncated Spt7, which correlates with activated transcription.

    PubMed

    Sterner, David E; Belotserkovskaya, Rimma; Berger, Shelley L

    2002-09-03

    Spt-Ada-Gcn5 acetyltransferase (SAGA) is a previously described histone acetyltransferase/transcriptional coactivator complex in yeast. At promoters of certain genes (HIS3 and TRP3), SAGA has an inhibitory function involving a nonproductive TATA-binding protein interaction mediated by the Spt3 and Spt8 subunits. Related to this, Spt8-less SAGA is a major form of the complex under activating conditions for these genes. In the present study, we purify this activation-specific complex, called SALSA (SAGA altered, Spt8 absent). Besides lacking Spt8, SALSA contains Spt7 subunit that is truncated. Examining the role of this subunit, we find that C-terminally truncated SPT7 resulted in derepressed HIS3 transcription. Furthermore, when grown in rich media (repressing conditions), wild-type cells yielded predominantly SAGA, but Spt7 C-terminal truncations resulted primarily in a form of complex similar to SALSA. Thus, SALSA-like structure and activating function can be partially recapitulated in yeast by truncating the C terminus of Spt7. Overall, these results lead to a model that for a subset of promoters SAGA is inhibitory through Spt3, Spt8, and an Spt8-interacting subdomain of Spt7, whereas SALSA is a form of complex for positive transcriptional regulation. These data clarify a mechanism by which a transcriptional regulatory complex can switch between positive and negative modulation.

  7. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity.

    PubMed

    Hamard, Pierre-Jacques; Boyer-Guittaut, Michaël; Camuzeaux, Barbara; Dujardin, Denis; Hauss, Charlotte; Oelgeschläger, Thomas; Vigneron, Marc; Kedinger, Claude; Chatton, Bruno

    2007-01-01

    Over the past few years, small ubiquitin-like modifier (SUMO) modification has emerged as an important regulator of diverse pathways and activities including protein localization and transcriptional regulation. We identified a consensus sumoylation motif (IKEE), located within the N-terminal activation domain of the ATF7 transcription factor and thus investigated the role of this modification. ATF7 is a ubiquitously expressed transcription factor, homologous to ATF2, that binds to CRE elements within specific promoters. This protein is able to heterodimerize with Jun or Fos proteins and its transcriptional activity is mediated by interaction with TAF12, a subunit of the general transcription factor TFIID. In the present article, we demonstrate that ATF7 is sumoylated in vitro (using RanBP2 as a E3-specific ligase) and in vivo. Moreover, we show that ATF7 sumoylation affects its intranuclear localization by delaying its entry into the nucleus. Furthermore, SUMO conjugation inhibits ATF7 transactivation activity by (i) impairing its association with TAF12 and (ii) blocking its binding-to-specific sequences within target promoters.

  8. Transcriptionally active genome regions are preferred targets for retrovirus integration.

    PubMed Central

    Scherdin, U; Rhodes, K; Breindl, M

    1990-01-01

    We have analyzed the transcriptional activity of cellular target sequences for Moloney murine leukemia virus integration in mouse fibroblasts. At least five of the nine random, unselected integration target sequences studied showed direct evidence for transcriptional activity by hybridization to nuclear run-on transcripts prepared from uninfected cells. At least four of the sequences contained multiple recognition sites for several restriction enzymes that cut preferentially in CpG-rich islands, indicating integration into 5' or 3' ends or flanking regions of genes. Assuming that only a minor fraction (less than 20%) of the genome is transcribed in mammalian cells, we calculated the probability that this association of retroviral integration sites with transcribed sequences is due to chance to be very low (1.6 x 10(-2]. Thus, our results strongly suggest that transcriptionally active genome regions are preferred targets for retrovirus integration. Images PMID:2296087

  9. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation.

    PubMed

    Cicchillitti, Lucia; Manni, Isabella; Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Dell'Anna, Maria Lucia; Dell'Omo, Giulia; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Rizzo, Maria Giulia; Gurtner, Aymone; Piaggio, Giulia

    2017-01-10

    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y-dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.

  10. Promoter-proximal polyadenylation sites reduce transcription activity

    PubMed Central

    Andersen, Pia K.; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels. PMID:23028143

  11. CBFA2T3-ZNF651, like CBFA2T3-ZNF652, functions as a transcriptional corepressor complex.

    PubMed

    Kumar, Raman; Cheney, Kelly M; Neilsen, Paul M; Schulz, Renèe B; Callen, David F

    2010-03-05

    A significant proportion of the human genome codes for transcription factors. Balanced activity of transcriptional activators and repressors is essential for normal development and differentiation. Previously we reported that a classical C2H2 zinc finger DNA binding protein ZNF652 functionally interacts with CBFA2T3 to repress transcription of genes containing ZNF652 consensus DNA binding sequence within the promoters of these target genes. Here we show that ZNF651 is a ZNF652 paralogue that shares a common DNA binding sequence with ZNF652 and represses target gene expression through the formation of a CBFA2T3-ZNF651 corepressor complex. It is suggested that CBFA2T3-ZNF651 and CBFA2T3-ZNF652 repressor complexes perform functionally similar roles in a tissue-specific manner.

  12. Drosophila factor 2, an RNA polymerase II transcript release factor, has DNA-dependent ATPase activity.

    PubMed

    Xie, Z; Price, D

    1997-12-12

    Drosophila factor 2 has been identified as a component of negative transcription elongation factor (N-TEF) that causes the release of RNA polymerase II transcripts in an ATP-dependent manner (Xie, Z. and Price D. H. (1996) J. Biol. Chem. 271, 11043-11046). We show here that the transcript release activity of factor 2 requires ATP or dATP and that adenosine 5'-O-(thiotriphosphate) (ATPgammaS), adenosine 5'-(beta,gamma-imino)triphosphate (AMP-PNP), or other NTPs do not support the activity. Factor 2 demonstrated a strong DNA-dependent ATPase activity that correlated with its transcript release activity. At 20 microg/ml DNA, the ATPase activity of factor 2 had an apparent Km(ATP) of 28 microM and an estimated Kcat of 140 min-1. Factor 2 caused the release of nascent transcripts associated with elongation complexes generated by RNA polymerase II on a dC-tailed template. Therefore, no other protein cofactors are required for the transcript release activity of factor 2. Using the dC-tailed template assay, it was found that renaturation of the template was required for factor 2 function.

  13. Transcriptional Activation Domains of Human Heat Shock Factor 1 Recruit Human SWI/SNF

    PubMed Central

    Sullivan, E. Kelly; Weirich, Christine S.; Guyon, Jeffrey R.; Sif, Saïd; Kingston, Robert E.

    2001-01-01

    Chromatin remodeling complexes such as SWI/SNF use the energy of ATP hydrolysis to remodel nucleosomal DNA and increase transcription of nucleosomal templates. Human heat shock factor one (hHSF1) is a tightly regulated activator that stimulates transcriptional initiation and elongation using different portions of its activation domains. Here we demonstrate that hHSF1 associates with BRG1, the ATPase subunit of human SWI/SNF (hSWI/SNF) at endogenous protein concentrations. We also show that hHSF1 activation domains recruit hSWI/SNF to a chromatin template in a purified system. Mutation of hHSF1 residues responsible for activation of transcriptional elongation has the most severe effect on recruitment of SWI/SNF and association of hHSF1 with BRG1, suggesting that recruitment of chromatin remodeling activity might play a role in stimulation of elongation. PMID:11486022

  14. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions.

    PubMed

    Sordet, Olivier; Nakamura, Asako J; Redon, Christophe E; Pommier, Yves

    2010-01-15

    A taxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA double-strand break (DSB) response. We recently showed that transcription-blocking topoisomerase I cleavage complexes (TOP1cc) produce DSBs related to R-loop formation and activate ATM in post-mitotic neurons and lymphocytes. Here we discuss how TOP1cc can produce transcription arrest with R-loop formation and generate DSBs that activate ATM, as well as data suggesting that those transcription-dependent DSBs tend to form at the IgH locus and at specific genomic sites. We also address the potential roles of ATM in response to transcription-blocking TOP1cc.

  15. Partially phosphorylated Pho4 activates transcription of a subset of phosphate-responsive genes.

    PubMed

    Springer, Michael; Wykoff, Dennis D; Miller, Nicole; O'Shea, Erin K

    2003-11-01

    A cell's ability to generate different responses to different levels of stimulus is an important component of an adaptive environmental response. Transcriptional responses are frequently controlled by transcription factors regulated by phosphorylation. We demonstrate that differential phosphorylation of the budding yeast transcription factor Pho4 contributes to differential gene expression. When yeast cells are grown in high-phosphate growth medium, Pho4 is phosphorylated on four critical residues by the cyclin-CDK complex Pho80-Pho85 and is inactivated. When yeast cells are starved for phosphate, Pho4 is dephosphorylated and fully active. In intermediate-phosphate conditions, a form of Pho4 preferentially phosphorylated on one of the four sites accumulates and activates transcription of a subset of phosphate-responsive genes. This Pho4 phosphoform binds differentially to phosphate-responsive promoters and helps to trigger differential gene expression. Our results demonstrate that three transcriptional outputs can be generated by a pathway whose regulation is controlled by one kinase, Pho80-Pho85, and one transcription factor, Pho4. Differential phosphorylation of Pho4 by Pho80-Pho85 produces phosphorylated forms of Pho4 that differ in their ability to activate transcription, contributing to multiple outputs.

  16. Partially Phosphorylated Pho4 Activates Transcription of a Subset of Phosphate-Responsive Genes

    PubMed Central

    Miller, Nicole

    2003-01-01

    A cell's ability to generate different responses to different levels of stimulus is an important component of an adaptive environmental response. Transcriptional responses are frequently controlled by transcription factors regulated by phosphorylation. We demonstrate that differential phosphorylation of the budding yeast transcription factor Pho4 contributes to differential gene expression. When yeast cells are grown in high-phosphate growth medium, Pho4 is phosphorylated on four critical residues by the cyclin–CDK complex Pho80–Pho85 and is inactivated. When yeast cells are starved for phosphate, Pho4 is dephosphorylated and fully active. In intermediate-phosphate conditions, a form of Pho4 preferentially phosphorylated on one of the four sites accumulates and activates transcription of a subset of phosphate-responsive genes. This Pho4 phosphoform binds differentially to phosphate-responsive promoters and helps to trigger differential gene expression. Our results demonstrate that three transcriptional outputs can be generated by a pathway whose regulation is controlled by one kinase, Pho80–Pho85, and one transcription factor, Pho4. Differential phosphorylation of Pho4 by Pho80–Pho85 produces phosphorylated forms of Pho4 that differ in their ability to activate transcription, contributing to multiple outputs. PMID:14624238

  17. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    SciTech Connect

    Adegbola, Onikepe; Pasternack, Gary R. . E-mail: gpastern@jhmi.edu

    2005-08-26

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing.

  18. Genome-wide Screening of Regulators of Catalase Expression: ROLE OF A TRANSCRIPTION COMPLEX AND HISTONE AND tRNA MODIFICATION COMPLEXES ON ADAPTATION TO STRESS.

    PubMed

    García, Patricia; Encinar Del Dedo, Javier; Ayté, José; Hidalgo, Elena

    2016-01-08

    In response to environmental cues, the mitogen-activated protein kinase Sty1-driven signaling cascade activates hundreds of genes to induce a robust anti-stress cellular response in fission yeast. Thus, upon stress imposition Sty1 transiently accumulates in the nucleus where it up-regulates transcription through the Atf1 transcription factor. Several regulators of transcription and translation have been identified as important to mount an integral response to oxidative stress, such as the Spt-Ada-Gcn5-acetyl transferase or Elongator complexes, respectively. With the aim of identifying new regulators of this massive gene expression program, we have used a GFP-based protein reporter and screened a fission yeast deletion collection using flow cytometry. We find that the levels of catalase fused to GFP, both before and after a threat of peroxides, are altered in hundreds of strains lacking components of chromatin modifiers, transcription complexes, and modulators of translation. Thus, the transcription elongation complex Paf1, the histone methylase Set1-COMPASS, and the translation-related Trm112 dimers are all involved in full expression of Ctt1-GFP and in wild-type tolerance to peroxides.

  19. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems.

  20. SUMO modification regulates the transcriptional activity of FLASH

    SciTech Connect

    Alm-Kristiansen, Anne Hege; Norman, Ingrid Louise; Matre, Vilborg; Gabrielsen, Odd Stokke

    2009-09-25

    FLASH is a huge multifunctional nuclear protein that has been linked to apoptotic signalling, transcriptional control and Cajal body function. To gain further insight into the functions of the FLASH protein, we performed a yeast two-hybrid screening with FLASH as bait and identified the SUMO-conjugating enzyme Ubc9 as an interaction partner. The main interaction surface for Ubc9 was found in the C-terminal part of FLASH, which is also a target for sumoylation. We identified K1813 as the major sumoylation site in FLASH, being enhanced by the SUMO E3 ligases Pc2 and PIASy. Disruption of this SUMO-conjugation site did not change the speckled subnuclear localization of FLASH, but it caused a reduction in FLASH activity as measured in a Gal4-tethering assay. Interestingly, the SUMO-specific protease SENP1 activated FLASH in the same assay. Overall, our results point to a complex involvement of sumoylation in modulating the function of FLASH.

  1. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks.

    PubMed

    Sordet, Olivier; Redon, Christophe E; Guirouilh-Barbat, Josée; Smith, Susan; Solier, Stéphanie; Douarre, Céline; Conti, Chiara; Nakamura, Asako J; Das, Benu B; Nicolas, Estelle; Kohn, Kurt W; Bonner, William M; Pommier, Yves

    2009-08-01

    Ataxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA damage response (DDR). As neurons have high rates of transcription that require topoisomerase I (TOP1), we investigated whether TOP1 cleavage complexes (TOP1cc)-which are potent transcription-blocking lesions-also produce transcription-dependent DNA double-strand breaks (DSBs) with ATM activation. We show the induction of DSBs and DDR activation in post-mitotic primary neurons and lymphocytes treated with camptothecin, with the induction of nuclear DDR foci containing activated ATM, gamma-H2AX (phosphorylated histone H2AX), activated CHK2 (checkpoint kinase 2), MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1). The DSB-ATM-DDR pathway was suppressed by inhibiting transcription and gamma-H2AX signals were reduced by RNase H1 transfection, which removes transcription-mediated R-loops. Thus, we propose that Top1cc produce transcription arrests with R-loop formation and generate DSBs that activate ATM in post-mitotic cells.

  2. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  3. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand.

    PubMed Central

    Schmitt, J; Stunnenberg, H G

    1993-01-01

    We show that recombinant rat glucocorticoid receptor (vvGR) expressed using vaccinia virus is indistinguishable from authentic GR with respect to DNA and hormone binding. In the absence of hormone, vvGR is mainly found in the cytoplasm in a complex with heat shock protein 90. Upon incubation with ligand, vvGR is released from this complex and translocated to the nucleus. Thus, the ligand binding domain displays the known biochemical properties. However, in vitro, transcription from a synthetic promoter and from the mouse mammary tumor virus (MMTV) promoter is enhanced by recombinant GR in a ligand independent manner. Both transactivation domains contribute to the transcriptional activity, additively on a synthetic promoter and cooperatively on the MMTV promoter. We thus provide the first evidence that in vitro the hormone binding domain has a transcriptional activity even in the absence of ligand. Images PMID:8392705

  4. HTLV-1 Tax activates HIV-1 transcription in latency models.

    PubMed

    Geddes, Victor Emmanuel Viana; José, Diego Pandeló; Leal, Fabio E; Nixon, Douglas F; Tanuri, Amilcar; Aguiar, Renato Santana

    2017-04-01

    HIV-1 latency is a major obstacle to HIV-1 eradication. Coinfection with HTLV-1 has been associated with faster progression to AIDS. HTLV-1 encodes the transactivator Tax which can activate both HTLV-1 and HIV-1 transcription. Here, we demonstrate that Tax activates HIV transcription in latent CD4(+) T cells. Tax promotes the activation of P-TEFb, releasing CDK9 and Cyclin T1 from inactive forms, promoting transcription elongation and reactivation of latent HIV-1. Tax mutants lacking interaction with the HIV-1-LTR promoter were not able to activate P-TEFb, with no subsequent activation of latent HIV. In HIV-infected primary resting CD4(+) T cells, Tax-1 reactivated HIV-1 transcription up to five fold, confirming these findings in an ex vivo latency model. Finally, our results confirms that HTLV-1/Tax hijacks cellular partners, promoting HIV-1 transcription, and this interaction should be further investigated in HIV-1 latency studies in patients with HIV/HTLV-1 co-infection.

  5. Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters.

    PubMed

    Rivas-Marín, Elena; Floriano, Belén; Santero, Eduardo

    2016-04-18

    Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators.

  6. Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase

    PubMed Central

    Canugovi, Chandrika; Samaranayake, Mala; Bhagwat, Ashok S.

    2009-01-01

    Transcription of the rearranged immunoglobulin gene and expression of the enzyme activation-induced deaminase (AID) are essential for somatic hypermutations of this gene during antibody maturation. While AID acts as a single-strand DNA-cytosine deaminase creating U · G mispairs that lead to mutations, the role played by transcription in this process is less clear. We have used in vitro transcription of the kan gene by the T7 RNA polymerase (RNAP) in the presence of AID and a genetic reversion assay for kanamycin-resistance to investigate the causes of multiple clustered mutations (MCMs) during somatic hypermutations. We find that, depending on transcription conditions, AID can cause single-base substitutions or MCMs. When wild-type RNAP is used for transcription at physiologically relevant concentrations of ribonucleoside triphosphates (NTPs), few MCMs are found. In contrast, slowing the rate of elongation by reducing the NTP concentration or using a mutant RNAP increases several-fold the percent of revertants containing MCMs. Arresting the elongation complexes by a quick removal of NTPs leads to formation of RNA-DNA hybrids (R-loops). Treatment of these structures with AID results in a high percentage of KanR revertants with MCMs. Furthermore, selecting for transcription elongation complexes stalled near the codon that suffers mutations during acquisition of kanamycin-resistance results in an overwhelming majority of revertants with MCMs. These results show that if RNAP II pauses or stalls during transcription of immunoglobulin gene, AID is likely to promote MCMs. As changes in physiological conditions such as occurrence of certain DNA primary or secondary structures or DNA adducts are known to cause transcriptional pausing and stalling in mammalian cells, this process may cause MCMs during somatic hypermutation.—Canugovi, C., Samaranayake, M., Bhagwat, A. S. Transcriptional pausing and stalling causes multiple clustered mutations by human activation

  7. Complex regulation of transcription from the hepatitis B virus major surface antigen promoter in human hepatoma cell lines.

    PubMed Central

    Raney, A K; Milich, D R; McLachlan, A

    1991-01-01

    A detailed mutational analysis of the regulatory DNA sequence elements that control expression of the hepatitis B virus major surface antigen gene was performed in the human hepatoma cell lines HepG2.1 and Huh7, using transient transfection assays. Seven regions (A to G) of the major surface antigen promoter located within 200 nucleotides of the RNA initiation site have been identified which influence the level of transcription from this promoter. The three distal regions (A to C), located between -188 and -68, appear to possess a level of redundancy in their ability to influence the transcriptional activity from the major surface antigen promoter. The simultaneous deletion of regions A, B, and C resulted in an approximately fourfold reduction in transcription from the major surface antigen promoter. Region D, located between -67 and -49, is an essential element of the major surface antigen promoter. The three proximal regions (E to G) are located within 45 nucleotides of the major transcription initiation site. Region E prevents the negative influence of region F and can compensate for the effect of mutation of region G on transcription from the major surface antigen promoter. Region G can compensate for the effect of the loss of a functional region E sequence on the transcriptional activity of the major surface antigen promoter only in the absence of a functional region F sequence. These results imply that the level of expression of the major surface antigen gene is controlled by the complex interplay between a minimum of six transcription factors which activate and one transcription factor which represses transcription from this gene. PMID:1651407

  8. Protein kinase C-theta isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes.

    PubMed Central

    Baier-Bitterlich, G; Uberall, F; Bauer, B; Fresser, F; Wachter, H; Grunicke, H; Utermann, G; Altman, A; Baier, G

    1996-01-01

    T-lymphocyte stimulation requires activation of several protein kinases, including the major phorbol ester receptor protein kinase C (PKC), ultimately leading to induction of lymphokines, such as interleukin-2 (IL-2). The revelant PKC isoforms which are involved in the activation cascades of nuclear transcription factors involved in IL-2 production have not yet been clearly defined. We have examined the potential role of two representative PKC isoforms in the induction of the IL-2 gene, i.e., PKC-alpha and PKC-theta, the latter being expressed predominantly in hematopoietic cell lines, particularly T cells. Similar to that of PKC-alpha, PKC-theta overexpression in murine EL4 thymoma cells caused a significant increase in phorbol 12-myristate 13-acetate (PMA)-induced transcriptional activation of full-length IL-2-chloramphenicol acetyltransferase (CAT) and NF-AT-CAT but not of NF-IL2A-CAT or NF-kappaB promoter-CAT reporter gene constructs. Importantly, the critical AP-1 enhancer element was differentially modulated by these two distinct PKC isoenzymes, since only PKC-theta but not PKC-alpha overexpression resulted in an approximately 2.8-fold increase in AP-1-collagenase promoter CAT expression in comparison with the vector control. Deletion of the AP-1 enhancer site in the collagenase promoter rendered it unresponsive to PKC-theta. Expression of a constitutively active mutant PKC-theta A148E (but not PKC-alpha A25E) was sufficient to induce activation of AP-1 transcription factor complex in the absence of PMA stimulation. Conversely, a catalytically inactive PKC-theta K409R (but not PKC-alpha K368R) mutant abrogated endogenous PMA-mediated activation of AP-1 transcriptional complex. Dominant negative mutant Ha-RasS17N completely inhibited the PKC-O A148E-induced signal, PKC-O. Expression of a constitutively active mutant PKC-O A148E (but not PKC-alpha A25E) was sufficient to induce activation of AP-1 transcription factor complex in the absence of PMA stimulation

  9. HMG Proteins and DNA Flexibility in Transcription Activation

    PubMed Central

    Ross, Eric D.; Hardwidge, Philip R.; Maher, L. James

    2001-01-01

    The relative stiffness of naked DNA is evident from measured values of longitudinal persistence length (∼150 bp) and torsional persistence length (∼180 bp). These parameters predict that certain arrangements of eukaryotic transcription activator proteins in gene promoters should be much more effective than others in fostering protein-protein interactions with the basal RNA polymerase II transcription apparatus. Thus, if such interactions require some kind of DNA looping, DNA loop energies should depend sensitively on helical phasing of protein binding sites, loop size, and intrinsic DNA curvature within the loop. Using families of artificial transcription templates where these parameters were varied, we were surprised to find that the degree of transcription activation by arrays of Gal4-VP1 transcription activators in HeLa cell nuclear extract was sensitive only to the linear distance separating a basal promoter from an array of bound activators on DNA templates. We now examine the hypothesis that this unexpected result is due to factors in the extract that act to enhance apparent DNA flexibility. We demonstrate that HeLa cell nuclear extract is rich in a heat-resistant activity that dramatically enhances apparent DNA longitudinal and torsional flexibility. Recombinant mammalian high-mobility group 2 (HMG-2) protein can substitute for this activity. We propose that the abundance of HMG proteins in eukaryotic nuclei provides an environment in which DNA is made sufficiently flexible to remove many constraints on protein binding site arrangements that would otherwise limit efficient transcription activation to certain promoter geometries. PMID:11533247

  10. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    PubMed

    Bialek, Julia K; Dunay, Gábor A; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  11. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems

    PubMed Central

    Bialek, Julia K.; Dunay, Gábor A.; Voges, Maike; Schäfer, Carola; Spohn, Michael; Stucka, Rolf; Hauber, Joachim; Lange, Ulrike C.

    2016-01-01

    CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs), act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5’ long terminal repeat (LTR), for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination. PMID:27341108

  12. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    PubMed Central

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes. PMID:23530060

  13. Identification of active transcriptional regulatory elements with GRO-seq

    PubMed Central

    Danko, Charles G.; Hyland, Stephanie L.; Core, Leighton J.; Martins, Andre L.; Waters, Colin T; Lee, Hyung Won; Cheung, Vivian G.; Kraus, W. Lee; Lis, John T.; Siepel, Adam

    2015-01-01

    Transcriptional regulatory elements (TREs), including enhancers and promoters, determine the transcription levels of associated genes. We have recently shown that global run-on and sequencing (GRO-seq) with enrichment for 5'-capped RNAs reveals active TREs with high accuracy. Here, we demonstrate that active TREs can be identified by applying sensitive machine-learning methods to standard GRO-seq data. This approach allows TREs to be assayed together with gene expression levels and other transcriptional features in a single experiment. Our prediction method, called discriminative Regulatory Element detection from GRO-seq (dREG), summarizes GRO-seq read counts at multiple scales and uses support vector regression to identify active TREs. The predicted TREs are more strongly enriched for several marks of transcriptional activation, including eQTL, GWAS-associated SNPs, H3K27ac, and transcription factor binding than those identified by alternative functional assays. Using dREG, we survey TREs in eight human cell types and provide new insights into global patterns of TRE function. PMID:25799441

  14. Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription

    PubMed Central

    Tapias, Angels; Fernández, Silvia; Alonso, Juan C.; Barbé, Jordi

    2002-01-01

    Transcription of the Rhodobacter sphaeroides recA promoter (PrecA) is induced upon DNA damage in a lexA-dependent manner. In vivo experiments demonstrate that LexA protein represses and might also activate transcription of PrecA. Purified R.sphaeroides LexA protein specifically binds the SOS boxes located within the PrecA region. In vitro transcription analysis, using Escherichia coli RNA polymerase (RNAP), indicated that the presence of LexA may stimulate and repress transcription of PrecA. EMSA and DNase I footprinting experiments show that LexA and RNAP can bind simultaneously to PrecA. At low LexA concentrations it enhances RNAP binding to PrecA, stimulates open complex formation and strand separation beyond the transcription start site. At high LexA concentrations, however, RNAP-promoted strand separation is not observed beyond the +5 region. LexA might repress transcription by interfering with the clearance process instead of blocking the access of RNAP to the promoter region. Based on these findings we propose that the R.sphaeroides LexA protein performs fine tuning of the SOS response, which might provide a physiological advantage by enhancing transcription of SOS genes and delaying full activation of the response. PMID:11917014

  15. The murine Sry gene encodes a nuclear transcriptional activator

    SciTech Connect

    Dubin, R.A.; Ostrer, H.

    1994-09-01

    The Sry gene functions as a genetic switch in gonadal ridge initiating testis determination. The murine Sry and human SRY open reading frames (ORF) share a conserved 79 amino acid motif, the HMG-box, that binds DNA. Outside this region the two genes share no additional homology. These studies were undertaken to determine whether the Sry/SRY genes encode nuclear transcriptional regulators. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and murine SRY ORFs contain a nuclear localization signal. The murine Sry HMG-box selectively binds the sequence NACAAT in vitro when presented with a random pool of oligonucleotides and binds AACAAT with the highest affinity. The murine Sry ORF, when expressed in HeLa cells, activates transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was observed for a GAL4-responsive gene when the murine Sry ORF was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a C-terminal glutamine/histidine-rich domain. In addition, LexA-Sry fusion genes activated a LexA-responsive gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and mouse SRY ORFs encode nuclear, DNA-binding proteins, and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  16. Transcriptional activity of transposable elements in coelacanth.

    PubMed

    Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas

    2014-09-01

    The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity.

  17. Effect Of Simulated Microgravity On Activated T Cell Gene Transcription

    NASA Technical Reports Server (NTRS)

    Morrow, Maureen A.

    2003-01-01

    Studies of T lymphocytes under the shear stress environment of clinorotation have demonstrated an inhibition of activation in response to TCR mediated signaling. These results mimic those observed during space flight. This work investigates the molecular signaling events of T lymphocyte activation with clinorotation. Purified human T lymphocytes and the T cell clone Jurkat exhibit an uncoupling of signaling as mediated through the TCR. Activation of the transcription factor AP-1 is inhibited while activation of NFAT occurs. NFAT dephosphorylation and activation is dependent on sustained Ca(++) influx. Alternatively, AP-1, which consists of two transcription factors, jun and fos, is activated by PKC and Ras mediated pathways. TCR signaling is known to be dependent on cytoskeletal rearrangements, in particular, raft aggregation is critical. Raft aggregation, as mediated through GM, crosslinking, overcomes the inhibition of T lymphocyte activation with clinorotation, indicating that the block is occurring upstream of raft aggregation. Clinorotation is shown to have an effect similar to a weak TCR signal.

  18. Human Mitochondrial Transcription Initiation Complexes Have Similar Topology on the Light and Heavy Strand Promoters.

    PubMed

    Morozov, Yaroslav I; Temiakov, Dmitry

    2016-06-24

    Transcription is a highly regulated process in all domains of life. In human mitochondria, transcription of the circular genome involves only two promoters, called light strand promoter (LSP) and heavy strand promoter (HSP), located in the opposite DNA strands. Initiation of transcription occurs upon sequential assembly of an initiation complex that includes mitochondrial RNA polymerase (mtRNAP) and the initiation factors mitochondrial transcription factor A (TFAM) and TFB2M. It has been recently suggested that the transcription initiation factor TFAM binds to HSP and LSP in opposite directions, implying that the mechanisms of transcription initiation are drastically dissimilar at these promoters. In contrast, we found that binding of TFAM to HSP and the subsequent recruitment of mtRNAP results in a pre-initiation complex that is remarkably similar in topology and properties to that formed at the LSP promoter. Our data suggest that assembly of the pre-initiation complexes on LSP and HSP brings these transcription units in close proximity, providing an opportunity for regulatory proteins to simultaneously control transcription initiation in both mtDNA strands.

  19. PKG-1α mediates GATA4 transcriptional activity.

    PubMed

    Ma, Yanlin; Wang, Jun; Yu, Yanhong; Schwartz, Robert J

    2016-06-01

    GATA4, a zinc-finger transcription factor, is central for cardiac development and diseases. Here we show that GATA4 transcriptional activity is mediated by cell signaling via cGMP dependent PKG-1α activity. Protein kinase G (PKG), a serine/tyrosine specific kinase is the major effector of cGMP signaling. We observed enhanced transcriptional activity elicited by co-expressed GATA4 and PKG-1α. Phosphorylation of GATA4 by PKG-1α was detected on serine 261 (S261), while the C-terminal activation domain of GATA4 associated with PKG-1α. GATA4's DNA binding activity was enhanced by PKG-1α via by both phosphorylation and physical association. More importantly, a number of human disease-linked GATA4 mutants exhibited impaired S261 phosphorylation, pointing to defective S261 phosphorylation in the elaboration of human heart diseases. We showed S261 phosphorylation was favored by PKG-1α but not by PKA, and several other kinase signaling pathways such as MAPK and PKC. Our observations demonstrate that cGMP-PKG signaling mediates transcriptional activity of GATA4 and links defective GATA4 and PKG-1α mutations to the development of human heart disease.

  20. Non-Canonical EZH2 Transcriptionally Activates RelB in Triple Negative Breast Cancer

    PubMed Central

    Lawrence, Cortney L.; Baldwin, Albert S.

    2016-01-01

    Enhancer of zeste homology 2 (EZH2) is the methyltransferase component of the polycomb repressive complex (PRC2) which represses gene transcription via histone H3 trimethylation at lysine 23 (H3K27me3). EZH2 activity has been linked with oncogenesis where it is thought to block expression of certain tumor suppressors. Relative to a role in cancer, EZH2 functions to promote self-renewal and has been shown to be important for the tumor-initiating cell (TIC) phenotype in breast cancer. Recently a non-canonical role for EZH2 has been identified where it promotes transcriptional activation of certain genes. Here we show that EZH2, through a methyltransferase-independent mechanism, promotes the transcriptional activation of the non-canonical NF-κB subunit RelB to drive self-renewal and the TIC phenotype of triple-negative breast cancer cells. PMID:27764181

  1. Aerobic glycolysis tunes YAP/TAZ transcriptional activity

    PubMed Central

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-01-01

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ. PMID:25796446

  2. Aerobic glycolysis tunes YAP/TAZ transcriptional activity.

    PubMed

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-05-12

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ.

  3. RNA-directed DNA methylation induces transcriptional activation in plants

    PubMed Central

    Shibuya, Kenichi; Fukushima, Setsuko; Takatsuji, Hiroshi

    2009-01-01

    A class-C floral homeotic gene of Petunia, pMADS3, is specifically expressed in the stamen and carpels of developing flowers. We had previously reported the ect-pMADS3 phenomenon in which introduction of a part of the pMADS3 genomic sequence, including intron 2, induces ectopic expression of endogenous pMADS3. Unlike transcriptional or posttranscriptional gene silencing triggered by the introduction of homologous sequences, this observation is unique in that the gene expression is up-regulated. In this study, we demonstrated that the ect-pMADS3 phenomenon is due to transcriptional activation based on RNA-directed DNA methylation (RdDM) occurring in a particular CG in a putative cis-element in pMADS3 intron 2. The CG methylation was maintained over generations, along with pMADS3 ectopic expression, even in the absence of RNA triggers. These results demonstrate a previously undescribed transcriptional regulatory mechanism that could lead to the generation of a transcriptionally active epiallele, thereby contributing to plant evolution. Our results also reveal a putative negative cis-element for organ-specific transcriptional regulation of class-C floral homeotic genes, which could be difficult to identify by other approaches. PMID:19164525

  4. The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation.

    PubMed Central

    Meyers, S; Lenny, N; Hiebert, S W

    1995-01-01

    The AML-1/CBF beta transcription factor complex is targeted by both the t(8;21) and the inv(16) chromosomal alterations, which are frequently observed in acute myelogenous leukemia. AML-1 is a site-specific DNA-binding protein that recognizes the enhancer core motif TGTGGT. The t(8;21) translocation fuses the first 177 amino acids of AML-1 to MTG8 (also known as ETO), generating a chimeric protein that retains the DNA-binding domain of AML-1. Analysis of endogenous AML-1 DNA-binding complexes suggested the presence of at least two AML-1 isoforms. Accordingly, we screened a human B-cell cDNA library and isolated a larger, potentially alternatively spliced, form of AML1, termed AML1B. AML-1B is a protein of 53 kDa that binds to a consensus AML-1-binding site and complexes with CBF beta. Subcellular fractionation experiments demonstrated that both AML-1 and AML-1/ETO are efficiently extracted from the nucleus under ionic conditions but that AML-1B is localized to a salt-resistant nuclear compartment. Analysis of the transcriptional activities of AML-1, AML-1B, and AML-1/ETO demonstrated that only AML-1B activates transcription from the T-cell receptor beta enhancer. Mixing experiments indicated that AML-1/ETO can efficiently block AML-1B-dependent transcriptional activation, suggesting that the t(8;21) translocation creates a dominant interfering protein. PMID:7891692

  5. Identification of bacteriophage N4 virion RNA polymerase-nucleic acid interactions in transcription complexes.

    PubMed

    Davydova, Elena K; Kaganman, Irene; Kazmierczak, Krystyna M; Rothman-Denes, Lucia B

    2009-01-23

    Bacteriophage N4 mini-virion RNA polymerase (mini-vRNAP), the 1106-amino acid transcriptionally active domain of vRNAP, recognizes single-stranded DNA template-containing promoters composed of conserved sequences and a 3-base loop-5-base pair stem hairpin structure. The major promoter recognition determinants are a purine located at the center of the hairpin loop (-11G) and a base at the hairpin stem (-8G). Mini-vRNAP is an evolutionarily highly diverged member of the T7 family of RNAPs. A two-plasmid system was developed to measure the in vivo activity of mutant mini-vRNAP enzymes. Five mini-vRNAP derivatives, each containing a pair of cysteine residues separated by approximately 100 amino acids and single cysteine-containing enzymes, were generated. These reagents were used to determine the smallest catalytically active polypeptide and to map promoter, substrate, and RNA-DNA hybrid contact sites to single amino acid residues in the enzyme by using end-labeled 5-iododeoxyuridine- and azidophenacyl-substituted oligonucleotides, cross-linkable derivatives of the initiating nucleotide, and RNA products with 5-iodouridine incorporated at specific positions. Localization of functionally important amino acid residues in the recently determined crystal structures of apomini-vRNAP and the mini-vRNAP-promoter complex and comparison with the crystal structures of the T7 RNAP initiation and elongation complexes allowed us to predict major rearrangements in mini-vRNAP in the transition from transcription initiation to elongation similar to those observed in T7 RNAP, a task otherwise precluded by the lack of sequence homology between N4 mini-vRNAP and T7 RNAP.

  6. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  7. PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription

    PubMed Central

    Faust, Tyler B.; Li, Yang; Jang, Gwendolyn M.; Johnson, Jeffrey R.; Yang, Shumin; Weiss, Amit; Krogan, Nevan J.; Frankel, Alan D.

    2017-01-01

    Transcription complexes that assemble at the HIV-1 promoter efficiently initiate transcription but generate paused RNA polymerase II downstream from the start site. The virally encoded Tat protein hijacks positive transcription elongation factor b (P-TEFb) to phosphorylate and activate this paused polymerase. In addition, Tat undergoes a series of reversible post-translational modifications that regulate distinct steps of the transcription cycle. To identify additional functionally important Tat cofactors, we performed RNAi knockdowns of sixteen previously identified Tat interactors and found that a novel E3 ligase, PJA2, ubiquitinates Tat in a non-degradative manner and specifically regulates the step of HIV transcription elongation. Interestingly, several different lysine residues in Tat can function as ubiquitin acceptor sites, and variable combinations of these lysines support both full transcriptional activity and viral replication. Further, the polyubiquitin chain conjugated to Tat by PJA2 can itself be assembled through variable ubiquitin lysine linkages. Importantly, proper ubiquitin chain assembly by PJA2 requires that Tat first binds its P-TEFb cofactor. These results highlight that both the Tat substrate and ubiquitin modification have plastic site usage, and this plasticity is likely another way in which the virus exploits the host molecular machinery to expand its limited genetic repertoire. PMID:28345603

  8. Transcriptional and posttranscriptional regulation of class I major histocompatibility complex genes following transformation with human adenoviruses.

    PubMed Central

    Shemesh, J; Rotem-Yehudar, R; Ehrlich, R

    1991-01-01

    Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404

  9. [Transcription activator-like effectors(TALEs)based genome engineering].

    PubMed

    Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang

    2013-10-01

    Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.

  10. Activation of polyomavirus DNA replication by yeast GAL4 is dependent on its transcriptional activation domains.

    PubMed Central

    Bennett-Cook, E R; Hassell, J A

    1991-01-01

    The polyomavirus replication origin contains transcriptional regulatory sequences. To determine how these elements function in DNA replication, and to learn whether a common mechanism underlies the activation of transcription and DNA replication, we tested whether a well-characterized transcriptional activator, yeast GAL4, was capable of stimulating DNA replication and transcription in the same mammalian cell line. We observed that GAL4 activated polyomavirus DNA replication in mouse cells when its binding site was juxtaposed to the late border of the polyomavirus origin core. Synergistic activation of DNA replication was achieved by multimerization of the GAL4 binding site. Analysis of GAL4 mutant proteins, GAL4 hybrid proteins and mutants of the latter revealed that the activation domains of these transcriptional activators were required to stimulate DNA replication. In agreement with previously published data, the activation domains of GAL4 were also required to enhance transcription in the same mouse cell line. These observations implicate transcriptional activators in Py DNA replication and suggest that similar mechanisms govern the activation of transcription and DNA replication. Images PMID:1849079

  11. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators.

    PubMed

    Raza, Sobia; Barnett, Mark W; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A; Freeman, Tom C

    2014-08-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables--LPS dose, LPS versus IFN-β and -γ, and genetic background--on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli.

  12. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators

    PubMed Central

    Raza, Sobia; Barnett, Mark W.; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A.; Freeman, Tom C.

    2014-01-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables—LPS dose, LPS versus IFN-β and -γ, and genetic background—on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli. PMID:24721704

  13. Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge.

    PubMed

    Ouyang, Fan; Zhai, Hongyan; Ji, Min; Zhang, Hongyang; Dong, Zhao

    2016-01-15

    Cu inhibition of gene transcription in ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were rarely studied simultaneously in activated sludge. In this study, the transcription of amoA (for AOB) and nxrB (for NOB), nitrification efficiencies, AOB and NOB respiratory rates, and Cu distribution were simultaneously investigated. Modeling the relationships among the aforementioned parameters revealed that in complex activated sludge systems, nitrification efficiency was an insensitive parameter for showing Cu inhibition. Respiration activities and gene transcription were sensitive to Cu and positively correlated with each other. The transcription of amoA and nxrB genes indicated that the Cu had different inhibitory effects on AOB and NOB. AOB were more susceptible to Cu toxicity than NOB. Moreover, the degree of Cu inhibition on ammonia oxidation was greater than on nitrite oxidation. The analysis and related modeling results indicate that the inhibitory actions of Cu on nitrifying bacteria could mainly be attributed to intracellular Cu. The findings from this study provide insight into the mechanism of Cu inhibition on nitrification in complex activated sludge systems.

  14. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast.

    PubMed

    Morris, May C; Kaiser, Peter; Rudyak, Stanislav; Baskerville, Chris; Watson, Mark H; Reed, Steven I

    2003-06-26

    Cks proteins are small evolutionarily conserved proteins that interact genetically and physically with cyclin-dependent kinases. However, in spite of a large body of genetic, biochemical and structural research, no compelling unifying model of their functions has emerged. Here we show, by investigating the essential role of Cks1 in Saccharomyces cerevisiae, that the protein is primarily involved in promoting mitosis by modulating the transcriptional activation of the APC/C protein-ubiquitin ligase activator Cdc20. Cks1 is required for both the periodic dissociation of Cdc28 kinase from the CDC20 promoter and the periodic association of the proteasome with the promoter. We propose that the essential role of Cks1 is to recruit the proteasome to, and/or dissociate the Cdc28 kinase from, the CDC20 promoter, thus facilitating transcription by remodelling transcriptional complexes or chromatin associated with the CDC20 gene.

  15. Adenovirus E1A specifically blocks SWI/SNF-dependent transcriptional activation.

    PubMed Central

    Miller, M E; Cairns, B R; Levinson, R S; Yamamoto, K R; Engel, D A; Smith, M M

    1996-01-01

    Expression of the adenovirus E1A243 oncoprotein in Saccharomyces cerevisiae produces a slow-growth phenotype with accumulation of cells in the G1 phase of the cell cycle. This effect is due to the N-terminal and CR1 domains of E1A243, which in rodent cells are involved in triggering cellular transformation and also in binding to the cellular transcriptional coactivator p300. A genetic screen was undertaken to identify genes required for the function of E1A243 in S. cerevisiae. This screen identified SNF12, a gene encoding the 73-kDa subunit of the SWI/SNF transcriptional regulatory complex. Mutation of genes encoding known members of the SWI/SNF complex also led to loss of E1A function, suggesting that the SWI/SNF complex is a target of E1A243. Moreover, expression of E1A in wild-type cells specifically blocked transcriptional activation of the INO1 and SUC2 genes, whose activation pathways are distinct but have a common requirement for the SWI/SNF complex. These data demonstrate a specific functional interaction between E1A and the SWI/SNF complex and suggest that a similar interaction takes place in rodent and human cells. PMID:8816487

  16. TATA-box DNA binding activity and subunit composition for RNA polymerase III transcription factor IIIB from Xenopus laevis.

    PubMed Central

    McBryant, S J; Meier, E; Leresche, A; Sharp, S J; Wolf, V J; Gottesfeld, J M

    1996-01-01

    The RNA polymerase III transcription initiation factor TFIIIB contains the TATA-box-binding protein (TBP) and polymerase III-specific TBP-associated factors (TAFs). Previous studies have shown that DNA oligonucleotides containing the consensus TATA-box sequence inhibit polymerase III transcription, implying that the DNA binding domain of TBP is exposed in TFIIIB. We have investigated the TATA-box DNA binding activity of Xenopus TFIIIB, using transcription inhibition assays and a gel mobility shift assay. Gel shift competition assays with mutant and nonspecific DNAs demonstrate the specificity of the TFIIIB-TATA box DNA complex. The apparent dissociation constant for this protein-DNA interaction is approximately 0.4 nM, similar to the affinity of yeast TBP for the same sequence. TFIIIB transcriptional activity and TATA-box binding activity cofractionate during a series of four ion-exchange chromatographic steps, and reconstituted transcription reactions demonstrate that the TATA-box DNA-protein complex contains TFIIIB TAF activity. Polypeptides with apparent molecular masses of 75 and 92 kDa are associated with TBP in this complex. These polypeptides were renatured after elution from sodium dodecyl sulfate-gels and tested individually and in combination for TFIIIB TAF activity. Recombinant TBP along with protein fractions containing the 75- and 92-kDa polypeptides were sufficient to reconstitute TFIIIB transcriptional activity and DNA binding activity, suggesting that Xenopus TFIIIB is composed of TBP along with these polypeptides. PMID:8756620

  17. In vitro activation of the transcription of araBAD operon by araC activator.

    PubMed

    Lee, N; Wilcox, G; Gielow, W; Arnold, J; Cleary, P; Englesberg, E

    1974-03-01

    The transcription of araBAD operon requires araC activator and cyclic AMP. D-Fucose inhibits ara mRNA synthesis. Our results indicate that the positive control by araC activator is exerted at the level of transcription.

  18. Tiam1/Rac1 complex controls Il17a transcription and autoimmunity

    PubMed Central

    Kurdi, Ahmed T.; Bassil, Ribal; Olah, Marta; Wu, Chuan; Xiao, Sheng; Taga, Mariko; Frangieh, Michael; Buttrick, Thomas; Orent, William; Bradshaw, Elizabeth M.; Khoury, Samia J.; Elyaman, Wassim

    2016-01-01

    RORγt is a master transcription factor of Th17 cells and considered as a promising drug target for the treatment of autoimmune diseases. Here, we show the guanine nucleotide exchange factor, Tiam1, and its cognate Rho-family G protein, Rac1, regulate interleukin (IL)17A transcription and autoimmunity. Whereas Tiam1 genetic deficiency weakens IL-17A expression partially and inhibits the development of experimental autoimmune encephalomyelitis (EAE), deletion of Rac1 in T cells exhibits more robust effects on Th17 cells and EAE. We demonstrate Tiam1 and Rac1 form a complex with RORγt in the nuclear compartment of Th17 cells, and together bind and activate the Il17 promoter. The clinical relevance of these findings is emphasized by pharmacological targeting of Rac1 that suppresses both murine and human Th17 cells as well as EAE. Thus, our findings highlight a regulatory pathway of Tiam1/Rac1 in Th17 cells and suggest that it may be a therapeutic target in multiple sclerosis. PMID:27725632

  19. Complex Patterns of Association between Pleiotropy and Transcription Factor Evolution

    PubMed Central

    Chesmore, Kevin N.; Bartlett, Jacquelaine; Cheng, Chao; Williams, Scott M.

    2016-01-01

    Pleiotropy has been claimed to constrain gene evolution but specific mechanisms and extent of these constraints have been difficult to demonstrate. The expansion of molecular data makes it possible to investigate these pleiotropic effects. Few classes of genes have been characterized as intensely as human transcription factors (TFs). We therefore analyzed the evolutionary rates of full TF proteins, along with their DNA binding domains and protein-protein interacting domains (PID) in light of the degree of pleiotropy, measured by the number of TF–TF interactions, or the number of DNA-binding targets. Data were extracted from the ENCODE Chip-Seq dataset, the String v 9.2 database, and the NHGRI GWAS catalog. Evolutionary rates of proteins and domains were calculated using the PAML CodeML package. Our analysis shows that the numbers of TF-TF interactions and DNA binding targets associated with constrained gene evolution; however, the constraint caused by the number of DNA binding targets was restricted to the DNA binding domains, whereas the number of TF-TF interactions constrained the full protein and did so more strongly. Additionally, we found a positive correlation between the number of protein–PIDs and the evolutionary rates of the protein–PIDs. These findings show that not only does pleiotropy associate with constrained protein evolution but the constraint differs by domain function. Finally, we show that GWAS associated TF genes are more highly pleiotropic. The GWAS data illustrates that mutations in highly pleiotropic genes are more likely to be associated with disease phenotypes. PMID:27635052

  20. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    PubMed Central

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation. PMID:23050242

  1. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5.

    PubMed

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  2. Conformational changes accompany activation of reovirus RNA-dependent RNA transcription

    PubMed Central

    Mendez, Israel I.; Weiner, Scott G.; She, Yi-Min; Yeager, Mark; Coombs, Kevin M.

    2009-01-01

    Many critical biologic processes involve dynamic interactions between proteins and nucleic acids. Such dynamic processes are often difficult to delineate by conventional static methods. For example, while a variety of nucleic acid polymerase structures have been determined at atomic resolution, the details of how some multi-protein transcriptase complexes actively produce mRNA, as well as conformational changes associated with activation of such complexes, remain poorly understood. The mammalian reovirus innermost capsid (core) manifests all enzymatic activities necessary to produce mRNA from each of the 10 encased double-stranded RNA genes. We used rapid freezing and electron cryo-microscopy to trap and visualize transcriptionally active reovirus core particles and compared them to inactive core images. Rod-like density centered within actively transcribing core spike channels was attributed to exiting nascent mRNA. Comparative radial density plots of active and inactive core particles identified several structural changes in both internal and external regions of the icosahedral core capsid. Inactive and transcriptionally active cores were partially digested with trypsin and identities of initial tryptic peptides determined by mass spectrometry. Differentially-digested peptides, which also suggest transcription-associated conformational changes, were placed within the known 3-dimensional structures of major core proteins. PMID:18321727

  3. SUMO Modification Enhances p66-Mediated Transcriptional Repression of the Mi-2/NuRD Complex

    PubMed Central

    Gong, Zihua; Brackertz, Marc; Renkawitz, Rainer

    2006-01-01

    Human p66α and p66β are two potent transcriptional repressors that interact with the methyl-CpG-binding domain proteins MBD2 and MBD3. An analysis of the molecular mechanisms mediating repression resulted in the identification of two major repression domains in p66α and one in p66β. Both p66α and p66β are SUMO-modified in vivo: p66α at two sites (Lys-30 and Lys-487) and p66β at one site (Lys-33). Expression of SUMO1 enhanced the transcriptional repression activity of Gal-p66α and Gal-p66β. Mutation of the SUMO modification sites or using a SUMO1 mutant or a dominant negative Ubc9 ligase resulted in a significant decrease of the transcriptional repression of p66α and p66β. The Mi-2/NuRD components MBD3, RbAp46, RbAp48, and HDAC1 were found to bind to both p66α and p66β in vivo. Most of the interactions were not affected by the SUMO site mutations in p66α or p66β, with two exceptions. HDAC1 binding to p66α was lost in the case of a p66αK30R mutant, and RbAp46 binding was reduced in the case of a p66βK33R mutant. These results suggest that interactions within the Mi-2/NuRD complex as well as optimal repression are mediated by SUMOylation. PMID:16738318

  4. A transcription activator-like effector toolbox for genome engineering.

    PubMed

    Sanjana, Neville E; Cong, Le; Zhou, Yang; Cunniff, Margaret M; Feng, Guoping; Zhang, Feng

    2012-01-05

    Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas sp. The DNA-binding domain of each TALE consists of tandem 34-amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within 1 week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using quantitative reverse-transcription PCR and Surveyor nuclease, respectively. The TALE toolbox described here will enable a broad range of biological applications.

  5. Visualization of positive transcription elongation factor b (P-TEFb) activation in living cells.

    PubMed

    Fujinaga, Koh; Luo, Zeping; Schaufele, Fred; Peterlin, B Matija

    2015-01-16

    Regulation of transcription elongation by positive transcription elongation factor b (P-TEFb) plays a central role in determining the state of cell activation, proliferation, and differentiation. In cells, P-TEFb exists in active and inactive forms. Its release from the inactive 7SK small nuclear ribonucleoprotein complex is a critical step for P-TEFb to activate transcription elongation. However, no good method exists to analyze this P-TEFb equilibrium in living cells. Only inaccurate and labor-intensive cell-free biochemical assays are currently available. In this study, we present the first experimental system to monitor P-TEFb activation in living cells. We created a bimolecular fluorescence complementation assay to detect interactions between P-TEFb and its substrate, the C-terminal domain of RNA polymerase II. When cells were treated with suberoylanilide hydroxamic acid, which releases P-TEFb from the 7SK small nuclear ribonucleoprotein, they turned green. Other known P-TEFb-releasing agents, including histone deacetylase inhibitors, bromodomain and extraterminal bromodomain inhibitors, and protein kinase C agonists, also scored positive in this assay. Finally, we identified 5'-azacytidine as a new P-TEFb-releasing agent. This release of P-TEFb correlated directly with activation of human HIV and HEXIM1 transcription. Thus, our visualization of P-TEFb activation by fluorescent complementation assay could be used to find new P-TEFb-releasing agents, compare different classes of agents, and assess their efficacy singly and/or in combination.

  6. Establishment of a Functional Human Immunodeficiency Virus Type 1 (HIV-1) Reverse Transcription Complex Involves the Cytoskeleton

    PubMed Central

    Bukrinskaya, Alissa; Brichacek, Beda; Mann, Angela; Stevenson, Mario

    1998-01-01

    After interaction of human immunodeficiency virus type 1 (HIV-1) virions with cell surface receptors, a series of poorly characterized events results in establishment of a viral reverse transcription complex in the host cell cytoplasm. This process is coordinated in such a way that reverse transcription is initiated shortly after formation of the viral reverse transcription complex. However, the mechanism through which virus entry and initiation of reverse transcription are coordinated and how these events are compartmentalized in the infected cell are not known. In this study, we demonstrate that viral reverse transcription complexes associate rapidly with the host cell cytoskeleton during HIV-1 infection and that reverse transcription occurs almost entirely in the cytoskeletal compartment. Interruption of actin polymerization before virus infection reduced association of viral reverse transcription complexes with the cytoskeleton. In addition, efficient reverse transcription was dependent on intact actin microfilaments. The localization of reverse transcription to actin microfilaments was mediated by the interaction of a reverse transcription complex component (gag MA) with actin but not vimentin (intermediate filaments) or tubulin (microtubules). In addition, fusion, but not endocytosis-mediated HIV-1 infectivity, was impaired when actin depolymerizing agents were added to target cells before infection but not when added after infection. These results point to a previously unsuspected role for the host cell cytoskeleton in HIV-1 entry and suggest that components of the cytoskeleton promote establishment of the reverse transcription complex in the host cell and also the process of reverse transcription within this complex. PMID:9841925

  7. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2

    PubMed Central

    Pasini, Diego; Hansen, Klaus H.; Christensen, Jesper; Agger, Karl; Cloos, Paul A.C.; Helin, Kristian

    2008-01-01

    Polycomb group (PcG) proteins regulate important cellular processes such as embryogenesis, cell proliferation, and stem cell self-renewal through the transcriptional repression of genes determining cell fate decisions. The Polycomb-Repressive Complex 2 (PRC2) is highly conserved during evolution, and its intrinsic histone H3 Lys 27 (K27) trimethylation (me3) activity is essential for PcG-mediated transcriptional repression. Here, we show a functional interplay between the PRC2 complex and the H3K4me3 demethylase Rbp2 (Jarid1a) in mouse embryonic stem (ES) cells. By genome-wide location analysis we found that Rbp2 is associated with a large number of PcG target genes in mouse ES cells. We show that the PRC2 complex recruits Rbp2 to its target genes, and that this interaction is required for PRC2-mediated repressive activity during ES cell differentiation. Taken together, these results demonstrate an elegant mechanism for repression of developmental genes by the coordinated regulation of epigenetic marks involved in repression and activation of transcription. PMID:18483221

  8. DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4–Not complex

    PubMed Central

    Mulder, Klaas W.; Winkler, G. Sebastiaan; Timmers, H. Th. Marc

    2005-01-01

    Genetic experiments have indicated a role for the Ccr4–Not complex in the response to hydroxyurea (HU) induced replication stress and ionizing radiation in yeast. This response includes transcriptional induction of the four genes constituting the ribonucleotide reductase (RNR) enzymatic complex, RNR1-4 and degradation of its inhibitor, Sml1p. The Ccr4–Not complex has originally been described as a negative regulator of RNA polymerase II (pol II) transcription, but it has also been implicated in mRNA turnover and protein ubiquitination. We investigated the mechanism of the HU sensitivity conferred by mutation of CCR4-NOT genes. We found that the ubiquitin protein ligase activity of Not4p does not play a role in HU induced Sml1p degradation. We show, however, that the HU sensitivity of ccr4-not mutant strains correlated very well with a defect in accumulation of RNR2, RNR3 and RNR4 mRNA after HU or methyl-methane sulfonate (MMS) treatment. Chromatin immunoprecipitation (ChIP) experiments show that TBP, pol II and Set1p recruitment to the activated RNR3 locus is defective in cells lacking NOT4. Moreover, RNR3-promoter activity is not induced by HU in these cells. Our experiments show that induction of RNR gene transcription is defective in ccr4-not mutant strains, providing an explanation for their sensitivity to HU. PMID:16275785

  9. HMGA proteins as modulators of chromatin structure during transcriptional activation

    PubMed Central

    Ozturk, Nihan; Singh, Indrabahadur; Mehta, Aditi; Braun, Thomas; Barreto, Guillermo

    2013-01-01

    High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer. PMID:25364713

  10. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool

    PubMed Central

    Lee, ChangHwan; Sorensen, Erika B; Lynch, Tina R; Kimble, Judith

    2016-01-01

    C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling. DOI: http://dx.doi.org/10.7554/eLife.18370.001 PMID:27705743

  11. Further developmental roles of the Vestigial/Scalloped transcription complex during wing development in Drosophila melanogaster.

    PubMed

    Srivastava, Ajay; Bell, John B

    2003-05-01

    The Drosophila homologue of the human TEF-1 gene, scalloped (sd), is required for wing development. The SD protein forms part of a transcriptional activation complex with the protein encoded by vestigial (vg) that, in turn, activates target genes important for wing formation. One sd function involves a regulatory feedback loop with vg and wingless (wg) that is essential in this process. The dorsal-ventral (D/V) margin-specific expression of wg is lost in sd mutant wing discs while the hinge-specific expression appears normal. In the context of wing development, a VG::sdTEA domain fusion produces a protein that mimics the wild-type SD/VG complex and restores the D/V boundary-specific expression of wg in a sd mutant background. Further, targeted expression of wg at the D/V boundary in the wing disc was able to partially rescue the sd mutant phenotype. This infers that sd could function in either the maintenance or induction of wg at the D/V border. Another functional role for sd is the establishment of sensory organ precursors (SOP) of the peripheral nervous system at the wing margin. Thus, the relationship between sd and senseless (sens) in the development of these cells is also examined, and it appears that sd must be functional for proper sens expression, and ultimately, for sensory organ precursor development.

  12. pilS loci in Neisseria gonorrhoeae are transcriptionally active

    PubMed Central

    Wachter, Jenny; Masters, Thao L.; Wachter, Shaun; Mason, Joanna

    2015-01-01

    Piliation is an important virulence determinant for Neisseria gonorrhoeae. PilE polypeptide is the major protein subunit in the pilus organelle and engages in extensive antigenic variation due to recombination between pilE and a pilS locus. pilS were so-named as they are believed to be transcriptionally silent, in contrast to the pilE locus. In this study, we demonstrate the presence of a small, pil-specific RNA species. Through using a series of pilE deletion mutants, we show by Northern blotting and quantitative reverse transcriptase PCR analysis (qRT-PCR), that these smaller RNA species are not derived from the primary pilE transcript following some processing events, but rather, arose through transcription of the pilS loci. Small transcriptome analysis, in conjunction with analysis of pilS recombinants, identified both sense and anti-sense RNAs originating from most, but not all, of the pilS gene copies. Focusing on the MS11 pilS6 locus, we identified by site-directed mutagenesis a sense promoter located immediately upstream of pilS6 copy 2, as well as an anti-sense promoter immediately downstream of pilS6 copy 1. Whole transcriptome analysis also revealed the presence of pil-specific sRNA in both gonococci and meningococci. Overall, this study reveals an added layer of complexity to the pilE/pilS recombination scheme by demonstrating pil-specific transcription within genes that were previously thought to be transcriptionally silent. PMID:25701734

  13. Transcriptional activation of the herpes simplex virus type 1 UL38 promoter conferred by the cis-acting downstream activation sequence is mediated by a cellular transcription factor.

    PubMed

    Guzowski, J F; Singh, J; Wagner, E K

    1994-12-01

    The herpes simplex virus (HSV) type 1 strict late (gamma) UL38 promoter contains three cis-acting transcriptional elements: a TATA box, a specific initiator element, and the downstream activation sequence (DAS). DAS is located between positions +20 and +33 within the 5' untranslated leader region and strongly influences transcript levels during productive infection. In this communication, we further characterize DAS and investigate its mechanism of action. DAS function has a strict spacing requirement, and DAS contains an essential 6-bp core element. A similarly positioned element from the gamma gC gene (UL44) has partial DAS function within the UL38 promoter context, and the promoter controlling expression of the gamma US11 transcript contains an identically located element with functional and sequence similarity to UL38 DAS. These data suggest that downstream elements are a common feature of many HSV gamma promoters. Results with recombinant viruses containing modifications of the TATA box or initiator element of the UL38 promoter suggest that DAS functions to increase transcription initiation and not the efficiency of transcription elongation. In vitro transcription assays using uninfected HeLa nuclear extracts show that, as in productive infection with recombinant viruses, the deletion of DAS from the UL38 promoter dramatically decreases RNA expression. Finally, electrophoretic mobility shift assays and UV cross-linking experiments show that DAS DNA forms a specific, stable complex with a cellular protein (the DAS-binding factor) of approximately 35 kDa. These data strongly suggest that the interaction of cellular DAS-binding factor with DAS is required for efficient expression of UL38 and other HSV late genes.

  14. Osterix represses adipogenesis by negatively regulating PPARγ transcriptional activity.

    PubMed

    Han, Younho; Kim, Chae Yul; Cheong, Heesun; Lee, Kwang Youl

    2016-10-18

    Osterix is a novel bone-related transcription factor involved in osteoblast differentiation, and bone maturation. Because a reciprocal relationship exists between adipocyte and osteoblast differentiation of bone marrow derived mesenchymal stem cells, we hypothesized that Osterix might have a role in adipogenesis. Ablation of Osterix enhanced adipogenesis in 3T3-L1 cells, whereas overexpression suppressed this process and inhibited the expression of adipogenic markers including CCAAT/enhancer-binding protein alpha (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ). Further studies indicated that Osterix significantly decreased PPARγ-induced transcriptional activity. Using co-immunoprecipitation and GST-pull down analysis, we found that Osterix directly interacts with PPARγ. The ligand-binding domain (LBD) of PPARγ was responsible for this interaction, which was followed by repression of PPARγ-induced transcriptional activity, even in the presence of rosiglitazone. Taken together, we identified the Osterix has an important regulatory role on PPARγ activity, which contributed to the mechanism of adipogenesis.

  15. RSUME Enhances Glucocorticoid Receptor SUMOylation and Transcriptional Activity

    PubMed Central

    Druker, Jimena; Liberman, Ana C.; Antunica-Noguerol, María; Gerez, Juan; Paez-Pereda, Marcelo; Rein, Theo; Iñiguez-Lluhí, Jorge A.; Holsboer, Florian

    2013-01-01

    Glucocorticoid receptor (GR) activity is modulated by posttranslational modifications, including phosphorylation, ubiquitination, and SUMOylation. The GR has three SUMOylation sites: lysine 297 (K297) and K313 in the N-terminal domain (NTD) and K721 within the ligand-binding domain. SUMOylation of the NTD sites mediates the negative effect of the synergy control motifs of GR on promoters with closely spaced GR binding sites. There is scarce evidence on the role of SUMO conjugation to K721 and its impact on GR transcriptional activity. We have previously shown that RSUME (RWD-containing SUMOylation enhancer) increases protein SUMOylation. We now demonstrate that RSUME interacts with the GR and increases its SUMOylation. RSUME regulates GR transcriptional activity and the expression of its endogenous target genes, FKBP51 and S100P. RSUME uncovers a positive role for the third SUMOylation site, K721, on GR-mediated transcription, demonstrating that GR SUMOylation acts positively in the presence of a SUMOylation enhancer. Both mutation of K721 and small interfering RNA-mediated RSUME knockdown diminish GRIP1 coactivator activity. RSUME, whose expression is induced under stress conditions, is a key factor in heat shock-induced GR SUMOylation. These results show that inhibitory and stimulatory SUMO sites are present in the GR and at higher SUMOylation levels the stimulatory one becomes dominant. PMID:23508108

  16. HCF-1 self-association via an interdigitated Fn3 structure facilitates transcriptional regulatory complex formation.

    PubMed

    Park, Jihye; Lammers, Fabienne; Herr, Winship; Song, Ji-Joon

    2012-10-23

    Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.

  17. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  18. Molecular basis for designing selective modulators of retinoic acid receptor transcriptional activities.

    PubMed

    Lefebvre, P

    2001-08-01

    Retinoic acid receptors are ligand-regulated transcription factors belonging to the nuclear receptor superfamily, which comprises 49 members in the human genome. all-trans retinoic acid and 9-cis retinoic acid receptors (RARs and RXRs) are each encoded by three distinct genes and several isoforms arise from alternative splicing and the use of different promoters. While RXRs are promiscuous dimerization partners of several other nuclear receptors, RARs are active, in-vivo, when associated to RXRs. Retinoids are therefore regulators of multiple physiological processes, from embryogenesis to metabolism. Different combinations of RXR:RAR heterodimers occur as a function of their tissue-specific expression and their activity is mostly conditioned by the activation status of RAR. These heterodimers are defined as non permissive heterodimers, in opposition to permissive dimers whose transcriptional activity may be modulated through RXR and its dimerization partner. The transcriptional activity of these dimers also relies on their ability to recruit nuclear coactivators and corepressors, which function as multi proteic complexes harboring several enzymatic activities (acetylases, kinases). The structure of the ligand bound to the RAR moiety of the dimer, as well as the nature of the DNA sequence to which dimers are bound, dictate the relative affinity of dimers for coactivators and thus its overall transcriptional activity. RARs are also able to repress the activity of unrelated transcription factors such as AP1 and NF-kappa-B, and therefore have potent anti proliferative and anti inflammatory properties. This review summarizes our current view of molecular mechanisms governing these various activities and emphasizes the need for a detailed understanding of how retinoids may dictate transactivating and transrepressive properties of RARs and RXRs, which may be considered as highly valuable therapeutic targets in many diseases such as cancer, skin hyperproliferation and

  19. A complex task? Direct modulation of transcription factors with small molecules

    PubMed Central

    Koehler, Angela N.

    2010-01-01

    Transcription factors with aberrant activity in disease are promising yet untested targets for therapeutic development, particularly in oncology. Directly inhibiting or activating the function of a transcription factor requires specific disruption or recruitment of protein-protein or protein-DNA interactions. The discovery or design of small molecules that specifically modulate these interactions has thus far proven to be a significant challenge and the protein class is often perceived to be ‘undruggable.’ This review will summarize recent progress in the development of small-molecule probes of transcription factors and provide evidence to challenge the notion that this important protein class is chemically intractable. PMID:20395165

  20. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5

    PubMed Central

    Nezich, Catherine L.; Wang, Chunxin; Fogel, Adam I.

    2015-01-01

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats–generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy. PMID:26240184

  1. Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase.

    PubMed

    Smith, Abigail J; Szczelkun, Mark D; Savery, Nigel J

    2007-01-01

    Motor proteins that couple ATP hydrolysis to movement along nucleic acids play a variety of essential roles in DNA metabolism. Often these enzymes function as components of macromolecular complexes, and DNA translocation by the motor protein drives movement of other components of the complex. In order to understand how the activity of motor proteins is regulated within multi-protein complexes we have studied the bacterial transcription-repair coupling factor, Mfd, which is a helicase superfamily 2 member that binds to RNA polymerase (RNAP) and removes stalled transcription complexes from DNA. Using an oligonucleotide displacement assay that monitors protein movement on double-stranded DNA we show that Mfd has little motor activity in isolation, but exhibits efficient oligonucleotide displacement activity when bound to a stalled transcription complex. Deletion of the C-terminal domain of Mfd increases the ATPase activity of the protein and allows efficient oligo-displacement in the absence of RNAP. Our results suggest that an autoinhibitory domain ensures the motor activity of Mfd is only functional within the correct macromolecular context: recruitment of Mfd to a stalled transcription complex relieves the autoinhibition and unmasks the motor activity.

  2. Elucidation of Small RNAs that Activate Transcription in Bacteria

    DTIC Science & Technology

    2012-03-01

    Synthesis of the target and bait vectors .......................................................................... 16 3.2 Expression of pTRG-var and pBT...coat protein and the MS2 RNA hairpin. The bait plasmid (pBT) was modified by inserting the coding sequence for a MS2 coat protein dimer (Genescript...Figure 1. Screening for RNA transcriptional activation 6 Distribution A: Approved for public release; distribution unlimited. A) The bait plasmid

  3. Complex transcriptional regulation of citrate metabolism in Clostridium perfringens.

    PubMed

    Yuan, Yonghui; Ohtani, Kaori; Yoshizawa, Satoko; Shimizu, Tohru

    2012-02-01

    A Gram-positive, spore-forming bacterium, Clostridium perfringens, possesses genes for citrate metabolism, which might play an important role in the utilization of citrate as a sole carbon source. In this study, we identified a chromosomal citCDEFX-mae-citS operon in C. perfringens strain 13, which is transcribed on three mRNAs of different sizes. Expression of the cit operon was significantly induced when 5 mM extracellular citrate was added to the growth medium. Most interestingly, three regulatory systems were found to be involved in the regulation of the expression of cit genes: 1) the two upstream divergent genes citG and citI; 2) two different two-component regulatory systems, CitA/CitB (TCS6 consisted of CPE0531/CPE0532) and TCS5 (CPE0518/CPE0519); and 3) the global two-component VirR/VirS-VR-RNA regulatory system known to regulate various genes for toxins and degradative enzymes. Our results suggest that in C. perfringens the citrate metabolism might be strictly controlled by a complex regulatory system.

  4. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    PubMed

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  5. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin.

    PubMed

    Chandel, N S; Trzyna, W C; McClintock, D S; Schumacker, P T

    2000-07-15

    The transcription factor NF-kappa B stimulates the transcription of proinflammatory cytokines including TNF-alpha. LPS (endotoxin) and hypoxia both induce NF-kappa B activation and TNF-alpha gene transcription. Furthermore, hypoxia augments LPS induction of TNF-alpha mRNA. Previous reports have indicated that antioxidants abolish NF-kappa B activation in response to LPS or hypoxia, which suggests that reactive oxygen species (ROS) are involved in NF-kappa B activation. This study tested whether mitochondrial ROS are required for both NF-kappaB activation and the increase in TNF-alpha mRNA levels during hypoxia and LPS. Our results indicate that hypoxia (1.5% O2) stimulates NF-kappa B and TNF-alpha gene transcription and increases ROS generation as measured by the oxidant sensitive dye 2',7'-dichlorofluorescein diacetate in murine macrophage J774.1 cells. The antioxidants N-acetylcysteine and pyrrolidinedithiocarbamic acid abolished the hypoxic activation of NF-kappa B, TNF-alpha gene transcription, and increases in ROS levels. Rotenone, an inhibitor of mitochondrial complex I, abolished the increase in ROS signal, the activation of NF-kappa B, and TNF-alpha gene transcription during hypoxia. LPS stimulated NF-kappa B and TNF-alpha gene transcription but not ROS generation in J774.1 cells. Rotenone, pyrrolidinedithiocarbamic acid, and N-acetylcysteine had no effect on the LPS stimulation of NF-kappa B and TNF-alpha gene transcription, indicating that LPS activates NF-kappa B and TNF-alpha gene transcription through a ROS-independent mechanism. These results indicate that mitochondrial ROS are required for the hypoxic activation of NF-kappa B and TNF-alpha gene transcription, but not for the LPS activation of NF-kappa B.

  6. The Elongation Complex Components BRD4 and MLLT3/AF9 Are Transcriptional Coactivators of Nuclear Retinoid Receptors

    PubMed Central

    Flajollet, Sébastien; Rachez, Christophe; Ploton, Maheul; Schulz, Céline; Gallais, Rozenn; Métivier, Raphaël; Pawlak, Michal; Leray, Aymeric; Issulahi, Al Amine; Héliot, Laurent; Staels, Bart; Salbert, Gilles; Lefebvre, Philippe

    2013-01-01

    Nuclear all-trans retinoic acid receptors (RARs) initiate early transcriptional events which engage pluripotent cells to differentiate into specific lineages. RAR-controlled transactivation depends mostly on agonist-induced structural transitions in RAR C-terminus (AF-2), thus bridging coactivators or corepressors to chromatin, hence controlling preinitiation complex assembly. However, the contribution of other domains of RAR to its overall transcriptional activity remains poorly defined. A proteomic characterization of nuclear proteins interacting with RAR regions distinct from the AF-2 revealed unsuspected functional properties of the RAR N-terminus. Indeed, mass spectrometry fingerprinting identified the Bromodomain-containing protein 4 (BRD4) and ALL1-fused gene from chromosome 9 (AF9/MLLT3), known to associate with and regulates the activity of Positive Transcription Elongation Factor b (P-TEFb), as novel RAR coactivators. In addition to promoter sequences, RAR binds to genomic, transcribed regions of retinoid-regulated genes, in association with RNA polymerase II and as a function of P-TEFb activity. Knockdown of either AF9 or BRD4 expression affected differentially the neural differentiation of stem cell-like P19 cells. Clusters of retinoid-regulated genes were selectively dependent on BRD4 and/or AF9 expression, which correlated with RAR association to transcribed regions. Thus RAR establishes physical and functional links with components of the elongation complex, enabling the rapid retinoid-induced induction of genes required for neuronal differentiation. Our data thereby extends the previously known RAR interactome from classical transcriptional modulators to components of the elongation machinery, and unravel a functional role of RAR in transcriptional elongation. PMID:23762261

  7. A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in mdm2 SNP309 homozygous cells.

    PubMed

    Arva, Nicoleta C; Gopen, Tamara R; Talbott, Kathryn E; Campbell, Latoya E; Chicas, Agustin; White, David E; Bond, Gareth L; Levine, Arnold J; Bargonetti, Jill

    2005-07-22

    In cancer cells, the function of the tumor suppressor protein p53 is usually blocked. Impairment of the p53 pathway results in tumor cells with endogenous overexpression of Mdm2 via a naturally occurring single nucleotide polymorphism (SNP) in the mdm2 gene at position 309. Here we report that in mdm2 SNP309 cells, inactivation of p53 results in a chromatin-associated Mdm2-p53 complex without clearance of p53 by protein degradation. Nuclear accumulation of p53 protein in mdm2 SNP309 cells results after 6 h of camptothecin, etoposide, or mitomycin C treatment, with the p53 protein phosphorylated at Ser15. Chromatin immunoprecipitation demonstrated p53 and Mdm2 bound to p53 responsive elements. Interestingly, although the p53 protein was able to bind to DNA, quantitative PCR showed compromised transcription of endogenous target genes. Additionally, exogenously introduced p53 was incapable of activating transcription from p53 responsive elements in SNP309 cells, confirming the trans-acting nature of the inhibitor. Inhibition of Mdm2 by siRNA resulted in transcriptional activation of these p53 targets. Our data suggest that overproduction of Mdm2, resulting from a naturally occurring SNP, inhibits chromatin-bound p53 from activating the transcription of its target genes.

  8. Polymorphism of alternative splicing of major histocompatibility complex transcripts in wild tiger salamanders.

    PubMed

    Bulut, Zafer; McCormick, Cory R; Bos, David H; DeWoody, J Andrew

    2008-07-01

    Alternative splicing (AS) of mRNA transcripts is increasingly recognized as a source of transcriptome diversity. To date, most AS studies have focused either on comparisons across taxa or on intragenomic comparisons across gene families. We generated a novel data set that represents one of the first population genetic comparisons of AS across individuals. In ambystomatid salamanders, AS of the major histocompatibility complex (MHC) class IIbeta gene (Amti-DAB) produces two transcripts, one full-length and one truncated. The full-length transcript is functional, but the truncated transcript is missing the critical beta1 domain that forms half of the peptide binding region in the intact MHC class II molecule. We captured wild salamander larvae (Ambystoma tigrinum tigrinum) and genotyped them at Amti-DAB via DNA sequencing. From these same larvae, we extracted RNA from gill and spleen and evaluated the relative expression level of Amti-DAB in each tissue. Across individuals, 21% of the transcripts were truncated (alternatively spliced), and the absolute level of alternative transcript expression was higher in gill. The high level of nucleotide variation among seven Amti-DAB alleles provides the ability to detect substitutions (or linked DNA polymorphisms) that might have influenced AS. The data reveal no correlation between AS and haplotype, allele, or zygosity. However, indirect evidence (comparative expression patterns across 3 million years of evolution) suggests that the truncated Amti-DAB transcript may be functional and maintained by natural selection.

  9. Modulation of CP2 family transcriptional activity by CRTR-1 and sumoylation.

    PubMed

    To, Sarah; Rodda, Stephen J; Rathjen, Peter D; Keough, Rebecca A

    2010-07-22

    CRTR-1 is a member of the CP2 family of transcription factors. Unlike other members of the family which are widely expressed, CRTR-1 expression shows specific spatio-temporal regulation. Gene targeting demonstrates that CRTR-1 plays a central role in the maturation and function of the salivary glands and the kidney. CRTR-1 has also recently been identified as a component of the complex transcriptional network that maintains pluripotency in embryonic stem (ES) cells. CRTR-1 was previously shown to be a repressor of transcription. We examine the activity of CRTR-1 in ES and other cells and show that CRTR-1 is generally an activator of transcription and that it modulates the activity of other family members, CP2, NF2d9 and altNF2d9, in a cell specific manner. We also demonstrate that CRTR-1 activity is regulated by sumoylation at a single major site, residue K30. These findings imply that functional redundancy with other family members may mask important roles for CRTR-1 in other tissues, including the blastocyst stage embryo and embryonic stem cells.

  10. Different STAT transcription complexes drive early and delayed responses to type I Interferons

    PubMed Central

    Plumlee, Courtney R.; Perry, Stuart; Gu, Ai Di; Lee, Carolyn; Shresta, Sujan; Decker, Thomas; Schindler, Christian

    2015-01-01

    Interferons, which transduce pivotal signals through signal transducer and activator of transcription (Stat)1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Whereas the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-α/β unexpectedly suppresses L. pneumophila growth in both Stat1 and Stat2 deficient macrophages. New studies demonstrating that the robust response to IFN-α/β is lost in Stat1-Stat2 double knockout macrophages, suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response towards L. pneumophila. Since the ability of IFN-α/β to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-α/β in the absence of Stat1. These studies reveal that IFN-α/β is able to drive the formation of a Stat2 and IRF9 complex that drives the expression of a subset of IFN stimulated genes (ISGs), but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1 dependent responses. PMID:26019270

  11. Dynamic Effects of Topoisomerase I Inhibition on R-Loops and Short Transcripts at Active Promoters.

    PubMed

    Marinello, Jessica; Bertoncini, Stefania; Aloisi, Iris; Cristini, Agnese; Malagoli Tagliazucchi, Guidantonio; Forcato, Mattia; Sordet, Olivier; Capranico, Giovanni

    2016-01-01

    Topoisomerase I-DNA-cleavage complexes (Top1cc) stabilized by camptothecin (CPT) have specific effects at transcriptional levels. We recently reported that Top1cc increase antisense transcript (aRNAs) levels at divergent CpG-island promoters and, transiently, DNA/RNA hybrids (R-loop) in nuclear and mitochondrial genomes of colon cancer HCT116 cells. However, the relationship between R-loops and aRNAs was not established. Here, we show that aRNAs can form R-loops in N-TERA-2 cells under physiological conditions, and that promoter-associated R-loops are somewhat increased and extended in length immediately upon cell exposure to CPT. In contrast, persistent Top1ccs reduce the majority of R-loops suggesting that CPT-accumulated aRNAs are not commonly involved in R-loops. The enhancement of aRNAs by Top1ccs is present both in human colon cancer HCT116 cells and WI38 fibroblasts suggesting a common response of cancer and normal cells. Although Top1ccs lead to DSB and DDR kinases activation, we do not detect a dependence of aRNA accumulation on ATM or DNA-PK activation. However, we showed that the cell response to persistent Top1ccs can involve an impairment of aRNA turnover rather than a higher synthesis rate. Finally, a genome-wide analysis shows that persistent Top1ccs also determine an accumulation of sense transcripts at 5'-end gene regions suggesting an increased occurrence of truncated transcripts. Taken together, the results indicate that Top1 may regulate transcription initiation by modulating RNA polymerase-generated negative supercoils, which can in turn favor R-loop formation at promoters, and that transcript accumulation at TSS is a response to persistent transcriptional stress by Top1 poisoning.

  12. Identification of Post-Transcriptional Modulators of Breast Cancer Transcription Factor Activity Using MINDy

    PubMed Central

    Campbell, Thomas M.; Castro, Mauro A. A.; Ponder, Bruce A. J.

    2016-01-01

    We have recently identified transcription factors (TFs) that are key drivers of breast cancer risk. To better understand the pathways or sub-networks in which these TFs mediate their function we sought to identify upstream modulators of their activity. We applied the MINDy (Modulator Inference by Network Dynamics) algorithm to four TFs (ESR1, FOXA1, GATA3 and SPDEF) that are key drivers of estrogen receptor-positive (ER+) breast cancer risk, as well as cancer progression. Our computational analysis identified over 500 potential modulators. We assayed 189 of these and identified 55 genes with functional characteristics that were consistent with a role as TF modulators. In the future, the identified modulators may be tested as potential therapeutic targets, able to alter the activity of TFs that are critical in the development of breast cancer. PMID:27997592

  13. The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation.

    PubMed Central

    Jayaraman, P S; Hirst, K; Goding, C R

    1994-01-01

    While there are many examples of protein-protein interactions modulating the DNA-binding activity of transcription factors, little is known of the molecular mechanisms underlying the regulation of the transcription activation function. Using a two-hybrid system we show here that transcription repression of the basic domain/helix-loop-helix factor PHO4 is mediated by complex formation with the PHO80 repressor. In contrast to other systems, such as inhibition of GAL4 by GAL80 or of p53 by MDM2, where repression is mediated by direct interaction at regions overlapping the transcription activation domain, interaction with PHO80 involves two regions of PHO4 distinct from those involved in transcription activation or DNA-binding and dimerization. The possibility that repression of PHO4 by PHO80 may represent a general mechanism of transcription control, including regulation of the cell-type-specific transcription activation domain of c-Jun, is discussed. Images PMID:8187772

  14. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation.

    PubMed

    Thormann, Kai; Feustel, Lothar; Lorenz, Karin; Nakotte, Stephan; Dürre, Peter

    2002-04-01

    The sol operon of Clostridium acetobutylicum is the essential transcription unit for formation of the solvents butanol and acetone. The recent proposal that transcriptional regulation of this operon is controlled by the repressor Orf5/SolR (R. V. Nair, E. M. Green, D. E. Watson, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 181:319-330, 1999) was found to be incorrect. Instead, regulation depends on activation, most probably by the multivalent transcription factor Spo0A. The operon is transcribed from a single promoter. A second signal identified in primer extension studies results from mRNA processing and can be observed only in the natural host, not in a heterologous host. The first structural gene in the operon (adhE, encoding a bifunctional butyraldehyde/butanol dehydrogenase) is translated into two different proteins, the mature AdhE enzyme and the separate butanol dehydrogenase domain. The promoter of the sol operon is preceded by three imperfect repeats and a putative Spo0A-binding motif, which partially overlaps with repeat 3 (R3). Reporter gene analysis performed with the lacZ gene of Thermoanaerobacterium thermosulfurigenes and targeted mutations of the regulatory region revealed that the putative Spo0A-binding motif, R3, and R1 are essential for control. The data obtained also indicate that an additional activator protein is involved.

  15. Transcriptional activation of virulence genes of Rhizobium etli.

    PubMed

    Wang, Luyao; Lacroix, Benoît; Guo, Jianhua; Citovsky, Vitaly

    2017-01-09

    Recently, Rhizobium etli has emerged, in addition to Agrobacterium spp., as a prokaryotic species that encodes a functional machinery for DNA transfer to plant cells. To understand this R. etli-mediated genetic transformation, it would be useful to define how its vir genes respond to the host plants. Here, we explored the transcriptional activation of the vir genes contained on the R. etli p42a plasmid. Using a reporter construct harboring lacZ under the control of the R. etli virE promoter, we showed that the signal phenolic molecule acetosyringone (AS) induced R. etli vir gene expression both in R. etli and in A. tumefaciens background. Furthermore, in both bacterial backgrounds, the p42a plasmid also promoted plant genetic transformation with a reporter T-DNA. Importantly, the R. etli vir genes were transcriptionally activated by AS in a bacterial species-specific fashion in regard to the VirA/VirG signal sensor system, and this activation was induced by signals from the natural host species of this bacterium, but not from non-host plants. Early kinetics of transcriptional activation of the major vir genes of R. etli also revealed several features distinct from those known for A. tumefaciens: the expression of the virG gene reached saturation relatively quickly, and virB2, which in R. etli is located outside of the virB operon, was expressed only at low levels and did not respond to AS. These differences in vir gene transcription may contribute to the lower efficiency of T-DNA transfer of R. etli p42a versus pTiC58 of A. tumefaciens IMPORTANCE: The region encoding homologs of Agrobacterium tumefaciens virulence genes in the Rhizobium etli CE3 p42a plasmid was the first endogenous virulence system encoded by a non-Agrobacterium species demonstrated to be functional in DNA transfer and stable integration into plant cell genome. In this study, we explore the transcriptional regulation and induction of virulence genes in R. etli and show similarities and differences

  16. Site-directed photo-cross-linking of rRNA transcription initiation complexes.

    PubMed Central

    Gong, X; Radebaugh, C A; Geiss, G K; Simon, M N; Paule, M R

    1995-01-01

    Site-specific photo-cross-linking of the rRNA committed transcription complex was carried out by using 5-[N-(p-azidobenzoyl)-3-aminoallyl]-dUMP-derivatized promoter DNA. Putative TAFIs of 145, 99, 96, and 91 kDa, as well as TATA-binding protein (TBP), were found to specifically photo-cross-link to different positions along the promoter. These had been identified as potential subunits of the fundamental transcription initiation factor TIF-IB (also known as SL1, factor D, and TFID) from Acanthamoeba castellanii by purification to apparent homogeneity. No other polypeptides attributable to the rRNA architectural transcription factor UBF were identified, suggesting that this protein is not part of the committed complex. Scanning transmission electron microscopy of the complexes was used to estimate the mass of the complex and the contour length of the DNA in the complex. This showed that a single molecule of TIF-IB is in each committed complex and that the DNA is not looped around the protein, as would be expected if UBF were in the complex. A circular permutation analysis of DNA bending resulting from TIF-IB binding revealed a 45 +/- 3.1 degrees (n = 14) bend centered 23 bp upstream of the transcription initiation site. This degree of bending and the position of the bend relative to the site of TBP photo-cross-linking are consistent with earlier data showing that the TBP TATA box-binding domain is not utilized in the assembly of the rRNA committed complex (C. A. Radebaugh, J. L. Mathews, G. K. Geiss, F. Liu, J. Wong, E. Bateman, S. Camier, A. Sentenac, and M. R. Paule, Mol. Cell. Biol. 14:597-605, 1994). PMID:7651413

  17. Site-directed photo-cross-linking of rRNA transcription initiation complexes.

    PubMed

    Gong, X; Radebaugh, C A; Geiss, G K; Simon, M N; Paule, M R

    1995-09-01

    Site-specific photo-cross-linking of the rRNA committed transcription complex was carried out by using 5-[N-(p-azidobenzoyl)-3-aminoallyl]-dUMP-derivatized promoter DNA. Putative TAFIs of 145, 99, 96, and 91 kDa, as well as TATA-binding protein (TBP), were found to specifically photo-cross-link to different positions along the promoter. These had been identified as potential subunits of the fundamental transcription initiation factor TIF-IB (also known as SL1, factor D, and TFID) from Acanthamoeba castellanii by purification to apparent homogeneity. No other polypeptides attributable to the rRNA architectural transcription factor UBF were identified, suggesting that this protein is not part of the committed complex. Scanning transmission electron microscopy of the complexes was used to estimate the mass of the complex and the contour length of the DNA in the complex. This showed that a single molecule of TIF-IB is in each committed complex and that the DNA is not looped around the protein, as would be expected if UBF were in the complex. A circular permutation analysis of DNA bending resulting from TIF-IB binding revealed a 45 +/- 3.1 degrees (n = 14) bend centered 23 bp upstream of the transcription initiation site. This degree of bending and the position of the bend relative to the site of TBP photo-cross-linking are consistent with earlier data showing that the TBP TATA box-binding domain is not utilized in the assembly of the rRNA committed complex (C. A. Radebaugh, J. L. Mathews, G. K. Geiss, F. Liu, J. Wong, E. Bateman, S. Camier, A. Sentenac, and M. R. Paule, Mol. Cell. Biol. 14:597-605, 1994).

  18. The interaction surface of a bacterial transcription elongation factor required for complex formation with an antiterminator during transcription antitermination.

    PubMed

    Mishra, Saurabh; Mohan, Shalini; Godavarthi, Sapna; Sen, Ranjan

    2013-09-27

    The bacterial transcription elongation factor, NusA, functions as an antiterminator when it is bound to the lambdoid phage derived antiterminator protein, N. The mode of N-NusA interaction is unknown, knowledge of which is essential to understand the antitermination process. It was reported earlier that in the absence of the transcription elongation complex (EC), N interacts with the C-terminal AR1 domain of NusA. However, the functional significance of this interaction is obscure. Here we identified mutations in NusA N terminus (NTD) specifically defective for N-mediated antitermination. These are located at a convex surface of the NusA-NTD, situated opposite its concave RNA polymerase (RNAP) binding surface. These NusA mutants disrupt the N-nut site interactions on the nascent RNA emerging out of a stalled EC. In the N/NusA-modified EC, a Cys-53 (S53C) from the convex surface of the NusA-NTD forms a specific disulfide (S-S) bridge with a Cys-39 (S39C) of the NusA binding region of the N protein. We conclude that when bound to the EC, the N interaction surface of NusA shifts from the AR1 domain to its NTD domain. This occurred due to a massive away-movement of the adjacent AR2 domain of NusA upon binding to the EC. We propose that the close proximity of this altered N-interaction site of NusA to its RNAP binding surface, enables N to influence the NusA-RNAP interaction during transcription antitermination that in turn facilitates the conversion of NusA into an antiterminator.

  19. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methylcholanthrene.

    PubMed

    Shipley, Jonathan M; Waxman, David J

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC(50)) was >100-fold higher for an ER reporter (27-57 muM) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17beta-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ERalpha-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  20. Discovery Proteomics Identifies a Molecular Link between the Coatomer Protein Complex I and Androgen Receptor-dependent Transcription*

    PubMed Central

    Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Lee, Jinhee; Wright, Michael E.

    2016-01-01

    Aberrant androgen receptor (AR)-dependent transcription is a hallmark of human prostate cancers. At the molecular level, ligand-mediated AR activation is coordinated through spatial and temporal protein-protein interactions involving AR-interacting proteins, which we designate the “AR-interactome.” Despite many years of research, the ligand-sensitive protein complexes involved in ligand-mediated AR activation in prostate tumor cells have not been clearly defined. Here, we describe the development, characterization, and utilization of a novel human LNCaP prostate tumor cell line, N-AR, which stably expresses wild-type AR tagged at its N terminus with the streptavidin-binding peptide epitope (streptavidin-binding peptide-tagged wild-type androgen receptor; SBP-AR). A bioanalytical workflow involving streptavidin chromatography and label-free quantitative mass spectrometry was used to identify SBP-AR and associated ligand-sensitive cytosolic proteins/protein complexes linked to AR activation in prostate tumor cells. Functional studies verified that ligand-sensitive proteins identified in the proteomic screen encoded modulators of AR-mediated transcription, suggesting that these novel proteins were putative SBP-AR-interacting proteins in N-AR cells. This was supported by biochemical associations between recombinant SBP-AR and the ligand-sensitive coatomer protein complex I (COPI) retrograde trafficking complex in vitro. Extensive biochemical and molecular experiments showed that the COPI retrograde complex regulates ligand-mediated AR transcriptional activation, which correlated with the mobilization of the Golgi-localized ARA160 coactivator to the nuclear compartment of prostate tumor cells. Collectively, this study provides a bioanalytical strategy to validate the AR-interactome and define novel AR-interacting proteins involved in ligand-mediated AR activation in prostate tumor cells. Moreover, we describe a cellular system to study how compartment-specific AR

  1. Brd4 Activates Early Viral Transcription upon Human Papillomavirus 18 Infection of Primary Keratinocytes

    PubMed Central

    McKinney, Caleb C.; Kim, Min Jung; Chen, Dan

    2016-01-01

    ABSTRACT  Human papillomaviruses (HPVs) replicate in the cutaneous and mucosal epithelia, and the infectious cycle is synchronous with the differentiation program of the host keratinocytes. The virus initially infects dividing cells in the lower layers of the epithelium, where it establishes a persistent infection. The viral genome is maintained as a low-copy-number, extrachromosomal element in these proliferating cells but switches to the late stage of the life cycle in differentiated cells. The cellular chromatin adaptor protein Brd4 is involved in several stages and processes of the viral life cycle. In concert with the viral transcriptional regulator E2, Brd4 can repress transcription from the early viral promoter. Brd4 and E2 form a complex with the viral genome that associates with host chromosomes to partition the viral genome in dividing cells; Brd4 also localizes to active sites of productive HPV DNA replication. However, because of the difficulties in producing HPV viral particles, the role of Brd4 in modulating viral transcription and replication at the initial stage of infection is unclear. In this study, we have used an HPV18 quasivirus-based genome delivery system to assess the role of Brd4 in the initial infectivity of primary human keratinocytes. We show that, upon infection of primary human keratinocytes with HPV18 quasivirus, Brd4 activates viral transcription and replication. Furthermore, this activation is independent of the functional interaction between Brd4 and the HPV18 E2 protein. PMID:27879331

  2. Prenylation inhibitors stimulate both estrogen receptor α transcriptional activity through AF-1 and AF-2 and estrogen receptor β transcriptional activity

    PubMed Central

    Cestac, Philippe; Sarrabayrouse, Guillaume; Médale-Giamarchi, Claire; Rochaix, Philippe; Balaguer, Patrick; Favre, Gilles; Faye, Jean-Charles; Doisneau-Sixou, Sophie

    2005-01-01

    Introduction We showed in a previous study that prenylated proteins play a role in estradiol stimulation of proliferation. However, these proteins antagonize the ability of estrogen receptor (ER) α to stimulate estrogen response element (ERE)-dependent transcriptional activity, potentially through the formation of a co-regulator complex. The present study investigates, in further detail, how prenylated proteins modulate the transcriptional activities mediated by ERα and by ERβ. Methods The ERE-β-globin-Luc-SV-Neo plasmid was either stably transfected into MCF-7 cells or HeLa cells (MELN cells and HELN cells, respectively) or transiently transfected into MCF-7 cells using polyethylenimine. Cells deprived of estradiol were analyzed for ERE-dependent luciferase activity 16 hours after estradiol stimulation and treatment with FTI-277 (a farnesyltransferase inhibitor) or with GGTI-298 (a geranylgeranyltransferase I inhibitor). In HELN cells, the effect of prenyltransferase inhibitors on luciferase activity was compared after transient transfection of plasmids coding either the full-length ERα, the full-length ERβ, the AF-1-deleted ERα or the AF-2-deleted ERα. The presence of ERα was then detected by immunocytochemistry in either the nuclei or the cytoplasms of MCF-7 cells. Finally, Clostridium botulinum C3 exoenzyme treatment was used to determine the involvement of Rho proteins in ERE-dependent luciferase activity. Results FTI-277 and GGTI-298 only stimulate ERE-dependent luciferase activity in stably transfected MCF-7 cells. They stimulate both ERα-mediated and ERβ-mediated ERE-dependent luciferase activity in HELN cells, in the presence of and in the absence of estradiol. The roles of both AF-1 and AF-2 are significant in this effect. Nuclear ERα is decreased in the presence of prenyltransferase inhibitors in MCF-7 cells, again in the presence of and in the absence of estradiol. By contrast, cytoplasmic ERα is mainly decreased after treatment with FTI

  3. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD.

  4. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  5. Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish

    PubMed Central

    Halpern, Marnie E.

    2011-01-01

    Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds. PMID:21540282

  6. Context-dependent regulation of the β-catenin transcriptional complex supports diverse functions of Wnt/β-catenin signaling.

    PubMed

    Masuda, Takamasa; Ishitani, Tohru

    2017-01-01

    Wnt/β-catenin signaling is activated repeatedly during an animal's lifespan, and it controls gene expression through its essential nuclear effector, β-catenin, to regulate embryogenesis, organogenesis, and adult homeostasis. Although the β-catenin transcriptional complex has the ability to induce the expression of many genes to exert its diverse roles, it chooses and transactivates a specific gene set from among its numerous target genes depending on the context. For example, the β-catenin transcriptional complex stimulates the expression of cell cycle-related genes and consequent cell proliferation in neural progenitor cells, while it promotes the expression of neural differentiation-related genes in differentiating neurons. Recent studies using animal and cell culture models have gradually improved our understanding of the molecular basis underlying such context-dependent actions of the β-catenin transcriptional complex. Here, we describe eight mechanisms that support β-catenin-mediated context-dependent gene regulation, and their spatio-temporal regulation during vertebrate development. In addition, we discuss their contribution to the diverse functions of Wnt/β-catenin signaling.

  7. Polycomb Repressive Complex 2-Dependent and -Independent Functions of Jarid2 in Transcriptional Regulation in Drosophila

    PubMed Central

    Herz, Hans-Martin; Mohan, Man; Garrett, Alexander S.; Miller, Caitlynn; Casto, David; Zhang, Ying; Seidel, Christopher; Haug, Jeffrey S.; Florens, Laurence; Washburn, Michael P.; Yamaguchi, Masamitsu; Shiekhattar, Ramin

    2012-01-01

    Jarid2 was recently identified as an important component of the mammalian Polycomb repressive complex 2 (PRC2), where it has a major effect on PRC2 recruitment in mouse embryonic stem cells. Although Jarid2 is conserved in Drosophila, it has not previously been implicated in Polycomb (Pc) regulation. Therefore, we purified Drosophila Jarid2 and its associated proteins and found that Jarid2 associates with all of the known canonical PRC2 components, demonstrating a conserved physical interaction with PRC2 in flies and mammals. Furthermore, in vivo studies with Jarid2 mutants in flies demonstrate that among several histone modifications tested, only methylation of histone 3 at K27 (H3K27), the mark implemented by PRC2, was affected. Genome-wide profiling of Jarid2, Su(z)12 (Suppressor of zeste 12), and H3K27me3 occupancy by chromatin immunoprecipitation with sequencing (ChIP-seq) indicates that Jarid2 and Su(z)12 have very similar distribution patterns on chromatin. However, Jarid2 and Su(z)12 occupancy levels at some genes are significantly different, with Jarid2 being present at relatively low levels at many Pc response elements (PREs) of certain Homeobox (Hox) genes, providing a rationale for why Jarid2 was never identified in Pc screens. Gene expression analyses show that Jarid2 and E(z) (Enhancer of zeste, a canonical PRC2 component) are not only required for transcriptional repression but might also function in active transcription. Identification of Jarid2 as a conserved PRC2 interactor in flies provides an opportunity to begin to probe some of its novel functions in Drosophila development. PMID:22354997

  8. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins

    PubMed Central

    Athmer, Jeremiah; Fehr, Anthony R.; Grunewald, Matthew; Smith, Everett Clinton; Denison, Mark R.

    2017-01-01

    ABSTRACT Coronavirus (CoV) replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER) membranes in replication/transcription complexes (RTC). Many of the CoV nonstructural proteins (nsps) are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV). In MHV, nsp15 contains the genomic RNA packaging signal (P/S), a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA) tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M) protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses. PMID:28143984

  9. Protein engineering of the transcriptional activator FhlA To enhance hydrogen production in Escherichia coli.

    PubMed

    Sanchez-Torres, Viviana; Maeda, Toshinari; Wood, Thomas K

    2009-09-01

    Escherichia coli produces H(2) from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H(+), 2e(-), and CO(2) from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H(2) from 2H(+) and 2e(-). FHL protein production is activated by the sigma(54) transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H(2) production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of P(fdhF) and P(hyc) is less sensitive to formate regulation, and with FhlA363 (E363G), P(hyc) transcription increases but P(hyp) transcription decreases and hydrogen production is less affected by the repressor HycA.

  10. Clinical application of transcriptional activators of bile salt transporters☆

    PubMed Central

    Baghdasaryan, Anna; Chiba, Peter; Trauner, Michael

    2014-01-01

    Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na+-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis. PMID:24333169

  11. The transcriptionally active regions in the genome of Bacillus subtilis

    PubMed Central

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome-wide expression during mid-exponential growth on rich (LB) and minimal (M9) medium. The identified TARs account for 77.3% of the genes as they are currently annotated and additionally we find 84 putative non-coding RNAs (ncRNAs) and 127 antisense transcripts. One ncRNA, ncr22, is predicted to act as a translational control on cstA and an antisense transcript was observed opposite the housekeeping sigma factor sigA. Through this work we have discovered a long conserved 3′ untranslated region (UTR) in a group of membrane-associated genes that is predicted to fold into a large and highly stable secondary structure. One of the genes having this tail is efeN, which encodes a target of the twin-arginine translocase (Tat) protein translocation system. PMID:19682248

  12. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA.

    PubMed

    Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A

    2017-01-09

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the -10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD.

  13. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA

    PubMed Central

    Hubin, Elizabeth A; Fay, Allison; Xu, Catherine; Bean, James M; Saecker, Ruth M; Glickman, Michael S; Darst, Seth A; Campbell, Elizabeth A

    2017-01-01

    RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI: http://dx.doi.org/10.7554/eLife.22520.001 PMID:28067618

  14. Alleviation of Human Papillomavirus E2-Mediated Transcriptional Repression via Formation of a TATA Binding Protein (or TFIID)-TFIIB-RNA Polymerase II-TFIIF Preinitiation Complex

    PubMed Central

    Hou, Samuel Y.; Wu, Shwu-Yuan; Zhou, Tianyuan; Thomas, Mary C.; Chiang, Cheng-Ming

    2000-01-01

    Transcription in human papillomaviruses (HPVs) is mainly regulated by cellular transcription factors and virus-encoded E2 proteins that act as sequence-specific DNA-binding proteins. Although the functions of E2 as a transcriptional activator and a repressor have been well documented, the role of cellular factors involved in E2-mediated regulation of the HPV promoters and the mechanism by which E2 modulates viral gene expression remain unclear. Using reconstituted cell-free transcription systems, we found that cellular enhancer-binding factors and general cofactors, such as TAFIIs, TFIIA, Mediator, and PC4, are not required for E2-mediated repression. Unlike other transcriptional repressors that function through recruitment of histone deacetylase or corepressor complexes, HPV E2 is able to directly target components of the general transcription machinery to exert its repressor activity on the natural HPV E6 promoter. Interestingly, preincubation of TATA binding protein (TBP) or TFIID with HPV template is not sufficient to overcome E2-mediated repression, which can be alleviated only via formation of a minimal TBP (or TFIID)-TFIIB-RNA polymerase II-TFIIF preinitiation complex. Our data therefore indicate that E2 does not simply work by displacing TBP or TFIID from binding to the adjacent TATA box. Instead, E2 appears to function as an active repressor that directly inhibits HPV transcription at steps after TATA recognition by TBP or TFIID. PMID:10594014

  15. Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target.

    PubMed

    Inui, Ken; Zhao, Zongpei; Yuan, Juan; Jayaprakash, Sakthidasan; Le, Le T M; Drakulic, Srdja; Sander, Bjoern; Golas, Monika M

    2017-02-20

    In human cells, thousands of predominantly neuronal genes are regulated by the repressor element 1 (RE1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF). REST/NRSF represses transcription of these genes in stem cells and non-neuronal cells by tethering corepressor complexes. Aberrant REST/NRSF expression and intracellular localization are associated with cancer and neurodegeneration in humans. To date, detailed molecular analyses of REST/NRSF and its C-terminal repressor complex have been hampered largely by the lack of sufficient amounts of purified REST/NRSF and its complexes. Therefore, the aim of this study was to express and purify human REST/NRSF and its C-terminal interactors in a baculovirus multiprotein expression system as individual proteins and coexpressed complexes. All proteins were enriched in the nucleus, and REST/NRSF was isolated as a slower migrating form, characteristic of nuclear REST/NRSF in mammalian cells. Both REST/NRSF alone and its C-terminal repressor complex were functionally active in histone deacetylation and histone demethylation and bound to RE1/neuron-restrictive silencer element (NRSE) sites. Additionally, the mechanisms of inhibition of the small-molecule drugs 4SC-202 and SP2509 were analyzed. These drugs interfered with the viability of medulloblastoma cells, where REST/NRSF has been implicated in cancer pathogenesis. Thus, a resource for molecular REST/NRSF studies and drug development has been established.

  16. P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig

    PubMed Central

    Oqani, Reza K.; Lin, Tao; Lee, Jae Eun; Choi, Ki Myung; Shin, Hyun Young; Jin, Dong Il

    2016-01-01

    Positive transcription elongation factor b (P-TEFb) is a RNA polymerase II carboxyl-terminal domain (Pol II CTD) kinase that phosphorylates Ser2 of the CTD and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in mammalian early developmental events. In this study, using immunocytochemical analyses, we found that the P-TEFb components, CDK9, Cyclin T1 and Cyclin T2 were localized to nuclear speckles, as well as in nucleolar-like bodies in pig germinal vesicle oocytes. Using nascent RNA labeling and small molecule inhibitors, we showed that inhibition of CDK9 activity abolished the transcription of GV oocytes globally. Moreover, using fluorescence in situ hybridization, in absence of CDK9 kinase activity the production of ribosomal RNAs was impaired. We also presented the evidences indicating that P-TEFb kinase activity is essential for resumption of oocyte meiosis and embryo development. Treatment with CDK9 inhibitors resulted in germinal vesicle arrest in maturing oocytes in vitro. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when in vitro produced zygotes were treated with CDK9 inhibitors, their development beyond the 4-cell stage was impaired. In these embryos, inhibition of CDK9 abrogated global transcriptional activity and rRNA production. Collectively, our data suggested that P-TEFb kinase activity is crucial for oocyte maturation, embryo development and regulation of RNA transcription in pig. PMID:27011207

  17. Transcription activation by the siderophore sensor Btr is mediated by ligand-dependent stimulation of promoter clearance

    PubMed Central

    Gaballa, Ahmed; MacLellan, Shawn; Helmann, John D.

    2012-01-01

    Bacterial transcription factors often function as DNA-binding proteins that selectively activate or repress promoters, although the biochemical mechanisms vary. In most well-understood examples, activators function by either increasing the affinity of RNA polymerase (RNAP) for the target promoter, or by increasing the isomerization of the initial closed complex to the open complex. We report that Bacillus subtilis Btr, a member of the AraC family of activators, functions principally as a ligand-dependent activator of promoter clearance. In the presence of its co-activator, the siderophore bacillibactin (BB), the Btr:BB complex enhances productive transcription, while having only modest effects on either RNAP promoter association or the production of abortive transcripts. Btr binds to two direct repeat sequences adjacent to the −35 region; recognition of the downstream motif is most important for establishing a productive interaction between the Btr:BB complex and RNAP. The resulting Btr:BB dependent increase in transcription enables the production of the ferric-BB importer to be activated by the presence of its cognate substrate. PMID:22210890

  18. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis.

    PubMed

    Fedorova, Ksenia; Kayumov, Airat; Woyda, Kathrin; Ilinskaja, Olga; Forchhammer, Karl

    2013-05-02

    The Bacillus subtilis glutamine synthetase (GS) plays a dual role in cell metabolism by functioning as catalyst and regulator. GS catalyses the ATP-dependent synthesis of glutamine from glutamate and ammonium. Under nitrogen-rich conditions, GS becomes feedback-inhibited by high intracellular glutamine levels and then binds transcription factors GlnR and TnrA, which control the genes of nitrogen assimilation. While GS-bound TnrA is no longer able to interact with DNA, GlnR-DNA binding is shown to be stimulated by GS complex formation. In this paper we show a new physiological feature of the interaction between glutamine synthetase and TnrA. The transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in vivo and in vitro, while the GlnR protein does not affect the activity of the enzyme.

  19. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  20. Recognition of enhancer element-specific histone methylation by TIP60 in transcriptional activation

    PubMed Central

    Jeong, Kwang Won; Kim, Kyunghwan; Situ, Alan Jialun; Ulmer, Tobias S.; An, Woojin; Stallcup, Michael R.

    2011-01-01

    Many coregulator proteins are recruited by DNA-bound transcription factors to remodel chromatin and activate transcription. However, mechanisms for coordinating actions of multiple coregulator proteins are poorly understood. We demonstrate that multiple protein-protein interactions by protein acetyltransferase TIP60 are required for estrogen-induced transcription of a subset of estrogen receptor (ER) α target genes in human cells. Estrogen-induced recruitment of TIP60 requires direct binding of TIP60 to ERα and the action of chromatin remodeling ATPase BRG1, leading to increased recruitment of histone methyltransferase MLL1 and increased monomethylation of histone H3 at Lys4. TIP60 recruitment also requires preferential binding of the TIP60 chromodomain to histone H3 containing monomethylated Lys4, which marks active and poised enhancer elements. After recruitment, TIP60 increases acetylation of histone H2A at Lys5. Thus, complex cooperation of TIP60 with ERα and other chromatin remodeling enzymes is required for estrogen-induced transcription. PMID:22081016

  1. IQGAP1 Binds to Yes-associated Protein (YAP) and Modulates Its Transcriptional Activity.

    PubMed

    Sayedyahossein, Samar; Li, Zhigang; Hedman, Andrew C; Morgan, Chase J; Sacks, David B

    2016-09-09

    During development, the Hippo signaling pathway regulates key physiological processes, such as control of organ size, regeneration, and stem cell biology. Yes-associated protein (YAP) is a major transcriptional co-activator of the Hippo pathway. The scaffold protein IQGAP1 interacts with more than 100 binding partners to integrate diverse signaling pathways. In this study, we report that IQGAP1 binds to YAP and modulates its activity. IQGAP1 and YAP co-immunoprecipitated from cells. In vitro analysis with pure proteins demonstrated a direct interaction between IQGAP1 and YAP. Analysis with multiple fragments of each protein showed that the interaction occurs via the IQ domain of IQGAP1 and the TEAD-binding domain of YAP. The interaction between IQGAP1 and YAP has functional effects. Knock-out of endogenous IQGAP1 significantly increased the formation of nuclear YAP-TEAD complexes. Transcription assays were performed with IQGAP1-null mouse embryonic fibroblasts and HEK293 cells with IQGAP1 knockdown by CRISPR/Cas9. Quantification demonstrated that YAP-TEAD-mediated transcription in cells lacking IQGAP1 was significantly greater than in control cells. These data reveal that IQGAP1 binds to YAP and modulates its co-transcriptional function, suggesting that IQGAP1 participates in Hippo signaling.

  2. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2

    PubMed Central

    Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José Manuel; Nombela, César; Arroyo, Javier

    2016-01-01

    The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway. PMID:27112564

  3. Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4.

    PubMed

    Zhang, Fan; Gaur, Naseem A; Hasek, Jiri; Kim, Soon-ja; Qiu, Hongfang; Swanson, Mark J; Hinnebusch, Alan G

    2008-11-01

    The late endosome (MVB) plays a key role in coordinating vesicular transport of proteins between the Golgi complex, vacuole/lysosome, and plasma membrane. We found that deleting multiple genes involved in vesicle fusion at the MVB (class C/D vps mutations) impairs transcriptional activation by Gcn4, a global regulator of amino acid biosynthetic genes, by decreasing the ability of chromatin-bound Gcn4 to stimulate preinitiation complex assembly at the promoter. The functions of hybrid activators with Gal4 or VP16 activation domains are diminished in class D mutants as well, suggesting a broader defect in activation. Class E vps mutations, which impair protein sorting at the MVB, also decrease activation by Gcn4, provided they elicit rapid proteolysis of MVB cargo proteins in the aberrant late endosome. By contrast, specifically impairing endocytic trafficking from the plasma membrane, or vesicular transport to the vacuole, has a smaller effect on Gcn4 function. Thus, it appears that decreasing cargo proteins in the MVB through impaired delivery or enhanced degradation, and not merely the failure to transport cargo properly to the vacuole or downregulate plasma membrane proteins by endocytosis, is required to attenuate substantially transcriptional activation by Gcn4.

  4. Hsp70-Hsp40 Chaperone Complex Functions in Controlling Polarized Growth by Repressing Hsf1-Driven Heat Stress-Associated Transcription

    PubMed Central

    Liu, Jianhua; Oliferenko, Snezhana

    2013-01-01

    How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments. PMID:24146635

  5. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity.

    PubMed

    Chen, Lu; Bush, Stephen J; Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Urrutia, Araxi O

    2014-06-01

    What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species--an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced N(e) in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome's functional information capacity.

  6. Yeast Recombination Enhancer Is Stimulated by Transcription Activation

    PubMed Central

    Ercan, Sevinc; Reese, Joseph C.; Workman, Jerry L.; Simpson, Robert T.

    2005-01-01

    Saccharomyces cerevisiae mating type switching is a gene conversion event that exhibits donor preference. MATa cells choose HMLα for recombination, and MATα cells choose HMRa. Donor preference is controlled by the recombination enhancer (RE), located between HMLα and MATa on the left arm of chromosome III. A number of a-cell specific noncoding RNAs are transcribed from the RE locus. Mcm1 and Fkh1 regulate RE activity in a cells. Here we show that Mcm1 binding is required for both the transcription of the noncoding RNAs and Fkh1 binding. This requirement can be bypassed by inserting another promoter into the RE. Moreover, the insertion of this promoter increases donor preference and opens the chromatin structure around the conserved domains of RE. Additionally, we determined that the level of Fkh1 binding positively correlates with the level of donor preference. We conclude that the role of Mcm1 in RE is to open chromatin around the conserved domains and activate transcription; this facilitates Fkh1 binding and the level of this binding determines the level of donor preference. PMID:16135790

  7. Transcriptional regulation of ATG9 by the Pho23-Rpd3 complex modulates the frequency of autophagosome formation.

    PubMed

    Jin, Meiyan; Klionsky, Daniel J

    2014-09-01

    Studies of the physiological and pathological roles of autophagy have revealed that too little or too much autophagy can be detrimental, and therefore autophagy activity needs to be tightly regulated. Altered transcription of autophagy-related (ATG) genes has been reported in many diseases, and ATG genes can be the most direct targets for the treatment of autophagy-associated diseases. Thus, it is important to understand how the amounts of different Atg proteins affect autophagy, and how the expression of their corresponding genes is regulated. Using budding yeast as the model, we showed that Pho23, a component of the Rpd3 large (Rpd3L) complex, represses the transcription of several ATG genes including ATG9, the expression of which regulates the frequency of autophagosome formation. More autophagosomes are formed in PHO23 null cells or in those overexpressing Atg9; conversely, there are fewer autophagosomes seen in cells with reduced Atg9 expression.

  8. Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression

    PubMed Central

    Höög, Greta; Zarrizi, Reihaneh; von Stedingk, Kristoffer; Jonsson, Kristina; Alvarado-Kristensson, Maria

    2011-01-01

    We show that the centrosome- and microtubule-regulating protein γ-tubulin interacts with E2 promoter binding factors (E2Fs) to modulate E2F transcriptional activity and thereby control cell cycle progression. γ-Tubulin contains a C-terminal signal that results in its translocation to the nucleus during late G1 to early S phase. γ-Tubulin mutants showed that the C terminus interacts with the transcription factor E2F1 and that the E2F1–γ-tubulin complex is formed during the G1/S transition, when E2F1 is transcriptionally active. Furthermore, E2F transcriptional activity is altered by reduced expression of γ-tubulin or by complex formation between γ-tubulin and E2F1, E2F2, or E2F3, but not E2F6. In addition, the γ-tubulin C terminus encodes a DNA-binding domain that interacts with E2F-regulated promoters, resulting in γ-tubulin-mediated transient activation of E2Fs. Thus, we report a novel mechanism regulating the activity of E2Fs, which can help explain how these proteins affect cell cycle progression in mammalian cells.—Höög, G., Zarrizi, R., von Stedingk, K., Jonsson, K., Alvarado-Kristensson, M. Nuclear localization of γ-tubulin affects E2F transcriptional activity and S-phase progression. PMID:21788450

  9. Alternative poly(A) site selection in complex transcription units: means to an end?

    PubMed Central

    Edwalds-Gilbert, G; Veraldi, K L; Milcarek, C

    1997-01-01

    Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors. PMID:9185563

  10. Complex Coordination of Cell Plasticity by a PGC-1α-controlled Transcriptional Network in Skeletal Muscle.

    PubMed

    Kupr, Barbara; Handschin, Christoph

    2015-01-01

    Skeletal muscle cells exhibit an enormous plastic capacity in order to adapt to external stimuli. Even though our overall understanding of the molecular mechanisms that underlie phenotypic changes in skeletal muscle cells remains poor, several factors involved in the regulation and coordination of relevant transcriptional programs have been identified in recent years. For example, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a central regulatory nexus in the adaptation of muscle to endurance training. Intriguingly, PGC-1α integrates numerous signaling pathways and translates their activity into various transcriptional programs. This selectivity is in part controlled by differential expression of PGC-1α variants and post-translational modifications of the PGC-1α protein. PGC-1α-controlled activation of transcriptional networks subsequently enables a spatio-temporal specification and hence allows a complex coordination of changes in metabolic and contractile properties, protein synthesis and degradation rates and other features of trained muscle. In this review, we discuss recent advances in our understanding of PGC-1α-regulated skeletal muscle cell plasticity in health and disease.

  11. Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression

    PubMed Central

    Chin, Hang Gyeong; Ponnaluri, V.K. Chaithanya; Zhang, Guoqiang; Estève, Pierre-Olivier; Schaus, Scott E.; Hansen, Ulla; Pradhan, Sriharsa

    2016-01-01

    The transcription factor LSF is highly expressed in hepatocellular carcinoma (HCC) and promotes oncogenesis. Factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity and exerts anti-proliferative activity. Here, we show that LSF binds directly to the maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1) and its accessory protein UHRF1 both in vivo and in vitro. Binding of LSF to DNMT1 stimulated DNMT1 activity and FQI1 negated the methyltransferase activation. Addition of FQI1 to the cell culture disrupted LSF bound DNMT1 and UHRF1 complexes, resulting in global aberrant CpG methylation. Differentially methylated regions (DMR) containing at least 3 CpGs, were significantly altered by FQI1 compared to control cells. The DMRs were mostly concentrated in CpG islands, proximal to transcription start sites, and in introns and known genes. These DMRs represented both hypo and hypermethylation, correlating with altered gene expression. FQI1 treatment elicits a cascade of effects promoting altered cell cycle progression. These findings demonstrate a novel mechanism of FQI1 mediated alteration of the epigenome by DNMT1-LSF complex disruption, leading to aberrant DNA methylation and gene expression. PMID:27845898

  12. DNA-recognition by a σ54 transcriptional activator from Aquifex aeolicus

    PubMed Central

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G.; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E.

    2014-01-01

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ54 activators. Two NtrC4 binding sites were identified upstream (−145 and −85 base pairs) from the start of the lpxC gene, which is responsible for the first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the −145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. The greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis. PMID:25158097

  13. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2

    SciTech Connect

    Lee, Sang-Wang . E-mail: umsj@sejong.ac.kr

    2006-01-27

    To understand the molecular mechanism underlying HIPK2 regulation of the transcriptional activation by p53, we sought to identify the protein that interacts with HIPK2. From our yeast two-hybrid screen, we found that four and a half LIM domains 2 (FHL2) could bind to the C-terminal half of HIPK2. Further assays in yeast mapped the minimal interaction domain to amino acids 812-907 in HIPK2. The interaction was confirmed using a GST pull-down assay in vitro, and an immunoprecipitation (IP) assay and fluorescence microscopy in vivo. FHL2 alone spread throughout both the cytoplasm and nucleus but was redistributed to dot-like structures in the nucleus when HIPK2 was coexpressed in HEK293 cells. When tethered to the Gal4-responsive promoter through the Gal4 DBD fusion, FHL2 showed autonomous transcriptional activity that was enhanced by wild-type HIPK2, but not by the kinase-defective mutant. In addition, FHL2 increased the p53-dependent transcriptional activation and had an additive effect on the activation when coexpressed with HIPK2, which was again not observed with the kinase-defective mutant of HIPK2. Finally, we found a ternary complex of p53, HIPK2, and FHL2 using IP, and their recruitment to the p53-responsive p21Waf1 promoter in chromatin IP assays. Overall, our findings indicate that FHL2 can also regulate p53 via a direct association with HIPK2.

  14. DNA Recognition by a σ54 Transcriptional Activator from Aquifex aeolicus

    SciTech Connect

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G.; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E.

    2014-08-23

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ54 activators. Two NtrC4 binding sites were identified upstream (-145 and -85 base pairs) from the start of the lpxC gene, which is responsible for the first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. Ultimately, the greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis.

  15. DNA Recognition by a σ54 Transcriptional Activator from Aquifex aeolicus

    DOE PAGES

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; ...

    2014-08-23

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ54 activators. Two NtrC4 binding sites were identified upstream (-145 and -85 base pairs) from the start of the lpxC gene, which is responsible for themore » first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. Ultimately, the greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis.« less

  16. Post-transcriptional regulator Hfq binds catalase HPII: crystal structure of the complex.

    PubMed

    Yonekura, Koji; Watanabe, Masahiro; Kageyama, Yuko; Hirata, Kunio; Yamamoto, Masaki; Maki-Yonekura, Saori

    2013-01-01

    We report a crystal structure of Hfq and catalase HPII from Escherichia coli. The post-transcriptional regulator Hfq plays a key role in the survival of bacteria under stress. A small non-coding RNA (sRNA) DsrA is required for translation of the stationary phase sigma factor RpoS, which is the central regulator of the general stress response. Hfq facilitates efficient translation of rpoS mRNA, which encodes RpoS. Hfq helps in the function of other specific proteins involved in RNA processing, indicating its versatility in the cell. However, structural information regarding its interactions with partners is missing. Here we obtained crystals of Hfq and HPII complexes from cell lysates following attempts to overexpress a foreign membrane protein. HPII is one of two catalases in E. coli and its mRNA is transcribed by an RNA polymerase holoenzyme containing RpoS, which in turn is under positive control of small non-coding RNAs and of the RNA chaperone Hfq. This sigma factor is known to have a pronounced effect on the expression of HPII. The crystal structure reveals that a Hfq hexamer binds each subunit of a HPII tetramer. Each subunit of the Hfq hexamer exhibits a unique binding mode with HPII. The hexamer of Hfq interacts via its distal surface. The proximal and distal surfaces are known to specifically bind different sRNAs, and binding of HPII could affect Hfq function. Hfq-HPII complexation has no effect on catalase HPII activity.

  17. A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae.

    PubMed

    Soussi-Boudekou, S; André, B

    1999-02-01

    In Saccharomyces cerevisiae, the transcription factors Gln3p and Nil1p of the GATA family play a determinant role in expression of genes that are subject to nitrogen catabolite repression. Here we report the isolation of a new yeast mutant, gan1-1, exhibiting dramatically decreased NAD-linked glutamate dehydrogenase (NAD-GDH) and glutamine synthetase (GS) activities. The GAN1 gene was cloned and found to encode a 488-amino-acid polypeptide bearing no typical DNA binding domain. Gan1p is required for full expression of GLN1, GDH2 and also other nitrogen utilization genes, including GAP1, PUT4, MEP2 and GDH1. The extent to which Gan1p is required, however, varies according to the gene and to the nitrogen source available. We show that Gan1p is in fact involved in Gln3p- and Nil1p-dependent transcription. In the case of Gln3p-dependent transcription, the degree to which Gan1p is required appears to be gene specific. The contribution of Gan1p to gene expression is also influenced by the nitrogen status of the cell. We found that GAN1 is identical to ADA1, which encodes a component of the ADA/GCN5 co-activator complex. Ada1/Gan1p thus represents the first reported case of an accessory protein (a co-activator) linking the GATA-binding proteins Gln3p and Nil1p, mediating nitrogen-regulated transcription, to the basal transcription machinery.

  18. An active nuclear retention signal in the glucocorticoid receptor functions as a strong inducer of transcriptional activation.

    PubMed

    Carrigan, Amanda; Walther, Rhian F; Salem, Houssein Abdou; Wu, Dongmei; Atlas, Ella; Lefebvre, Yvonne A; Haché, Robert J G

    2007-04-13

    The glucocorticoid receptor (GR) cycles between a naive chaperone-complexed form in the cytoplasm and a transcriptionally active steroid-bound nuclear form. Nuclear import of GR occurs rapidly and is mediated through the importin alpha/beta karyopherin import pathway. By contrast, nuclear export of GR occurs only slowly under most conditions, despite a dependence on active signaling. In this study we have defined a nuclear retention signal (NRS) in the hinge region of GR that actively opposes the nuclear export of GR as well as the nuclear export mediated through an ectopic CRM1-dependent nuclear export signal (NES). The GR NRS overlaps closely with the basic NL1 nuclear localization signal (NLS) but can be distinguished from NL1 by targeted mutagenesis. Substitution of the classical NLS from SV40 T antigen for the GR NL1 results in a receptor in which nuclear export is accelerated. Remarkably, although the SV40-modified GR remains predominantly nuclear in the presence of steroid and is recruited to transcriptional regulatory regions indistinguishably from wild-type GR, the substitution dramatically weakens the ability of GR to activate transcription of a mouse mammary tumor virus reporter gene. These results suggest that active nuclear retention of GR plays an integral role in glucocorticoid signaling.

  19. WDR5 Supports an N-Myc Transcriptional Complex That Drives a Protumorigenic Gene Expression Signature in Neuroblastoma.

    PubMed

    Sun, Yuting; Bell, Jessica L; Carter, Daniel; Gherardi, Samuele; Poulos, Rebecca C; Milazzo, Giorgio; Wong, Jason W H; Al-Awar, Rima; Tee, Andrew E; Liu, Pei Y; Liu, Bing; Atmadibrata, Bernard; Wong, Matthew; Trahair, Toby; Zhao, Quan; Shohet, Jason M; Haupt, Ygal; Schulte, Johannes H; Brown, Peter J; Arrowsmith, Cheryl H; Vedadi, Masoud; MacKenzie, Karen L; Hüttelmaier, Stefan; Perini, Giovanni; Marshall, Glenn M; Braithwaite, Antony; Liu, Tao

    2015-12-01

    MYCN gene amplification in neuroblastoma drives a gene expression program that correlates strongly with aggressive disease. Mechanistically, trimethylation of histone H3 lysine 4 (H3K4) at target gene promoters is a strict prerequisite for this transcriptional program to be enacted. WDR5 is a histone H3K4 presenter that has been found to have an essential role in H3K4 trimethylation. For this reason, in this study, we investigated the relationship between WDR5-mediated H3K4 trimethylation and N-Myc transcriptional programs in neuroblastoma cells. N-Myc upregulated WDR5 expression in neuroblastoma cells. Gene expression analysis revealed that WDR5 target genes included those with MYC-binding elements at promoters such as MDM2. We showed that WDR5 could form a protein complex at the MDM2 promoter with N-Myc, but not p53, leading to histone H3K4 trimethylation and activation of MDM2 transcription. RNAi-mediated attenuation of WDR5 upregulated expression of wild-type but not mutant p53, an effect associated with growth inhibition and apoptosis. Similarly, a small-molecule antagonist of WDR5 reduced N-Myc/WDR5 complex formation, N-Myc target gene expression, and cell growth in neuroblastoma cells. In MYCN-transgenic mice, WDR5 was overexpressed in precancerous ganglion and neuroblastoma cells compared with normal ganglion cells. Clinically, elevated levels of WDR5 in neuroblastoma specimens were an independent predictor of poor overall survival. Overall, our results identify WDR5 as a key cofactor for N-Myc-regulated transcriptional activation and tumorigenesis and as a novel therapeutic target for MYCN-amplified neuroblastomas.

  20. The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network.

    PubMed

    Ninkovic, Jovica; Steiner-Mezzadri, Andrea; Jawerka, Melanie; Akinci, Umut; Masserdotti, Giacomo; Petricca, Stefania; Fischer, Judith; von Holst, Alexander; Beckers, Johanes; Lie, Chichung D; Petrik, David; Miller, Erik; Tang, Jiong; Wu, Jiang; Lefebvre, Veronique; Demmers, Jeroen; Eisch, Amelia; Metzger, Daniel; Crabtree, Gerald; Irmler, Martin; Poot, Raymond; Götz, Magdalena

    2013-10-03

    Numerous transcriptional regulators of neurogenesis have been identified in the developing and adult brain, but how neurogenic fate is programmed at the epigenetic level remains poorly defined. Here, we report that the transcription factor Pax6 directly interacts with the Brg1-containing BAF complex in adult neural progenitors. Deletion of either Brg1 or Pax6 in the subependymal zone (SEZ) causes the progeny of adult neural stem cells to convert to the ependymal lineage within the SEZ while migrating neuroblasts convert to different glial lineages en route to or in the olfactory bulb (OB). Genome-wide analyses reveal that the majority of genes downregulated in the Brg1 null SEZ and OB contain Pax6 binding sites and are also downregulated in Pax6 null SEZ and OB. Downstream of the Pax6-BAF complex, we find that Sox11, Nfib, and Pou3f4 form a transcriptional cross-regulatory network that drives neurogenesis and can convert postnatal glia into neurons. Taken together, elements of our work identify a tripartite effector network activated by Pax6-BAF that programs neuronal fate.

  1. ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex.

    PubMed

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Nakai, Akira

    2015-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation.

  2. Activator protein 1 promotes the transcriptional activation of IRAK-M.

    PubMed

    Jin, Peipei; Bo, Lulong; Liu, Yongjian; Lu, Wenbin; Lin, Shengwei; Bian, Jinjun; Deng, Xiaoming

    2016-10-01

    Interleukin-1 receptor-associated kinase M (IRAK-M) is a well-known negative regulator for Toll-like receptor signaling, which can regulate immune homeostasis and tolerance in a number of pathological settings. However, the mechanism for IRAK-M regulation at transcriptional level remains largely unknown. In this study, a 1.4kb upstream sequence starting from the major IRAK-M transcriptional start site was cloned into luciferase reporter vector pGL3-basic to construct the full-length IRAK-M promoter. Luciferase reporter plasmids harboring the full-length and the deletion mutants of IRAK-M were transfected into 293T and A549 cells, and their relative luciferase activity was measured. The results demonstrated that activator protein 1(AP-1) cis-element plays a crucial role in IRAK-M constitutive gene transcription. Silencing of c-Fos and/or c-Jun expression suppressed the IRAK-M promoter activity as well as its mRNA and protein expressions. As a specific inhibitor for AP-1 activation, SP600125 also significantly suppressed the basal transcriptional activity of IRAK-M, the binding activity of c-Fos/c-Jun with IRAK-M promoter, and IRAK-M protein expression. Taken together, the result of this study highlights the importance of AP-1 in IRAK-M transcription, which offers more information on the role of IRAK-M in infectious and non-infectious diseases.

  3. Simple enzymatic assays for the in vitro motor activity of transcription termination factor Rho from Escherichia coli.

    PubMed

    Boudvillain, Marc; Walmacq, Céline; Schwartz, Annie; Jacquinot, Frédérique

    2010-01-01

    The transcription termination factor Rho from Escherichia coli is a ring-shaped homo-hexameric protein that preferentially interacts with naked cytosine-rich Rut (Rho utilization) regions of nascent RNA transcripts. Once bound to the RNA chain, Rho uses ATP as an energy source to produce mechanical work and disruptive forces that ultimately lead to the dissociation of the ternary transcription complex. Although transcription termination assays have been useful to study Rho activity in various experimental contexts, they do not report directly on Rho mechanisms and kinetics. Here, we describe complementary ATP-dependent RNA-DNA helicase and streptavidin displacement assays that can be used to monitor in vitro Rho's motor activity in a more direct and quantitative manner.

  4. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    SciTech Connect

    Shlomai, Amir; Shaul, Yosef

    2009-04-17

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1{alpha} coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1{alpha} coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4{alpha} and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1{alpha} coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1{alpha}, implying that FOXO1 is a target for PGC-1{alpha} coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  5. Transcriptional activation of mouse mast cell Protease-7 by activin and transforming growth factor-beta is inhibited by microphthalmia-associated transcription factor.

    PubMed

    Funaba, Masayuki; Ikeda, Teruo; Murakami, Masaru; Ogawa, Kenji; Tsuchida, Kunihiro; Sugino, Hiromu; Abe, Matanobu

    2003-12-26

    Previous studies have revealed that activin A and transforming growth factor-beta1 (TGF-beta1) induced migration and morphological changes toward differentiation in bone marrow-derived cultured mast cell progenitors (BMCMCs). Here we show up-regulation of mouse mast cell protease-7 (mMCP-7), which is expressed in differentiated mast cells, by activin A and TGF-beta1 in BMCMCs, and the molecular mechanism of the gene induction of mmcp-7. Smad3, a signal mediator of the activin/TGF-beta pathway, transcriptionally activated mmcp-7. Microphthalmia-associated transcription factor (MITF), a tissue-specific transcription factor predominantly expressed in mast cells, melanocytes, and heart and skeletal muscle, inhibited Smad3-mediated mmcp-7 transcription. MITF associated with Smad3, and the C terminus of MITF and the MH1 and linker region of Smad3 were required for this association. Complex formation between Smad3 and MITF was neither necessary nor sufficient for the inhibition of Smad3 signaling by MITF. MITF inhibited the transcriptional activation induced by the MH2 domain of Smad3. In addition, MITF-truncated N-terminal amino acids could associate with Smad3 but did not inhibit Smad3-mediated transcription. The level of Smad3 was decreased by co-expression of MITF but not of dominant-negative MITF, which resulted from proteasomal protein degradation. The changes in the level of Smad3 protein were paralleled by those in Smad3-mediated signaling activity. These findings suggest that MITF negatively regulates Smad-dependent activin/TGF-beta signaling in a tissue-specific manner.

  6. Combinatorial Complexity in a Transcriptionally-centered Signaling Hub in Arabidopsis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A subfamily of four Phytochrome (phy)-Interacting bHLH transcription Factors (PIFs) collectively promote skotomorphogenic development in dark-grown seedlings. This activity is reversed upon exposure to light, by photoactivated phy molecules that induce degradation of the PIFs, thereby triggering the...

  7. Transcription activator structure reveals redox control of a replication initiation reaction†

    PubMed Central

    Sanders, Cyril M.; Sizov, Dmytro; Seavers, Philippa R.; Ortiz-Lombardía, Miguel; Antson, Alfred A.

    2007-01-01

    Redox changes are one of the factors that influence cell-cycle progression and that control the processes of cellular proliferation, differentiation, senescence and apoptosis. Proteins regulated through redox-sensitive cysteines have been characterized but specific ‘sulphydryl switches’ in replication proteins remain to be identified. In bovine papillomavirus type-1, DNA replication begins when the viral transcription factor E2 recruits the viral initiator protein E1 to the origin of DNA replication (ori). Here we show that a novel dimerization interface in the E2 transcription activation domain is stabilized by a disulphide bond. Oxidative cross-linking via Cys57 sequesters the interaction surface between E1 and E2, preventing pre-initiation and replication initiation complex formation. Our data demonstrate that as well as a mechanism for regulating DNA binding, redox reactions can control replication by modulating the tertiary structure of critical protein factors using a specific redox sensor. PMID:17478495

  8. Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells.

    PubMed

    Carmi-Levy, Irit; Yannay-Cohen, Nurit; Kay, Gillian; Razin, Ehud; Nechushtan, Hovav

    2008-09-01

    We previously discovered that microphthalmia transcription factor (MITF) and upstream stimulatory factor 2 (USF2) each forms a complex with its inhibitor histidine triad nucleotide-binding 1 (Hint-1) and with lysyl-tRNA synthetase (LysRS). Moreover, we showed that the dinucleotide diadenosine tetraphosphate (Ap(4)A), previously shown to be synthesized by LysRS, binds to Hint-1, and as a result the transcription factors are released from their suppression. Thus, transcriptional activity is regulated by Ap(4)A, suggesting that Ap(4)A is a second messenger in this context. For Ap(4)A to be unambiguously established as a second messenger, several criteria have to be fulfilled, including the presence of a metabolizing enzyme. Since several enzymes are able to hydrolyze Ap(4)A, we provided here evidence that the "Nudix" type 2 gene product, Ap(4)A hydrolase, is responsible for Ap(4)A degradation following the immunological activation of mast cells. The knockdown of Ap(4)A hydrolase modulated Ap(4)A accumulation, resulting in changes in the expression of MITF and USF2 target genes. Moreover, our observations demonstrated that the involvement of Ap(4)A hydrolase in gene regulation is not a phenomenon exclusive to mast cells but can also be found in cardiac cells activated with the beta-agonist isoproterenol. Thus, we have provided concrete evidence establishing Ap(4)A as a second messenger in the regulation of gene expression.

  9. BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis

    PubMed Central

    Richart, Laia; Carrillo-de Santa Pau, Enrique; Río-Machín, Ana; de Andrés, Mónica P.; Cigudosa, Juan C.; Lobo, Víctor J. Sánchez-Arévalo; Real, Francisco X.

    2016-01-01

    c-MYC oncogene is deregulated in most human tumours. Histone marks associated with transcriptionally active genes define high-affinity c-MYC targets. The mechanisms involved in their recognition by c-MYC are unknown. Here we report that c-MYC interacts with BPTF, a core subunit of the NURF chromatin-remodelling complex. BPTF is required for the activation of the full c-MYC transcriptional programme in fibroblasts. BPTF knockdown leads to decreased c-MYC recruitment to DNA and changes in chromatin accessibility. In Bptf-null MEFs, BPTF is necessary for c-MYC-driven proliferation, G1–S progression and replication stress, but not for c-MYC-driven apoptosis. Bioinformatics analyses unveil that BPTF levels correlate positively with c-MYC-driven transcriptional signatures. In vivo, Bptf inactivation in pre-neoplastic pancreatic acinar cells significantly delays tumour development and extends survival. Our findings uncover BPTF as a crucial c-MYC co-factor required for its biological activity and suggest that the BPTF-c-MYC axis is a potential therapeutic target in cancer. PMID:26729287

  10. The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress

    SciTech Connect

    Murphy, Brian J. . E-mail: brian.murphy@sri.com; Sato, Barbara G.; Dalton, Timothy P.; Laderoute, Keith R.

    2005-11-25

    Hypoxia-inducible factor-1 (HIF-1), the major transcriptional regulator of the mammalian cellular response to low oxygen (hypoxia), is embedded within a complex network of signaling pathways. We have been investigating the importance of another stress-responsive transcription factor, MTF-1, for the adaptation of cells to hypoxia. This article reports that MTF-1 plays a central role in hypoxic cells by contributing to HIF-1 activity. Loss of MTF-1 in transformed Mtf1 null mouse embryonic fibroblasts (MEFs) results in an attenuation of nuclear HIF-1{alpha} protein accumulation, HIF-1 transcriptional activity, and expression of an established HIF-1 target gene, glucose transporter-1 (Glut1). Mtf1 null (Mtf1 KO) MEFs also have constitutively higher levels of both glutathione (GSH) and the rate-limiting enzyme involved in GSH synthesis-glutamate cysteine ligase catalytic subunit-than wild type cells. The altered cellular redox state arising from increased GSH may perturb oxygen-sensing mechanisms in hypoxic Mtf1 KO cells and decrease the accumulation of HIF-1{alpha} protein. Together, these novel findings define a role for MTF-1 in the regulation of HIF-1 activity.

  11. Feedback regulation of PRL secretion is mediated by the transcription factor, signal transducer, and activator of transcription 5b.

    PubMed

    Grattan, D R; Xu, J; McLachlan, M J; Kokay, I C; Bunn, S J; Hovey, R C; Davey, H W

    2001-09-01

    PRL secretion from the anterior pituitary gland is inhibited by dopamine produced in the tuberoinfundibular dopamine neurons of the hypothalamus. The activity of tuberoinfundibular dopamine neurons is stimulated by PRL; thus, PRL regulates its own secretion by a negative feedback mechanism. PRL receptors are expressed on tuberoinfundibular dopamine neurons, but the intracellular signaling pathway is not known. We have observed that mice with a disrupted signal transducer and activator of transcription 5b gene have grossly elevated serum PRL concentrations. Despite this hyperprolactinemia, mRNA levels and immunoreactivity of tyrosine hydroxylase, the key enzyme in dopamine synthesis, were significantly lower in the tuberoinfundibular dopamine neurons of these signal transducer and activator of transcription 5b-deficient mice. Concentrations of the dopamine metabolite dihydroxyphenylacetic acid in the median eminence were also significantly lower in signal transducer and activator of transcription 5b-deficient mice than in wild-type mice. No changes were observed in nonhypothalamic dopaminergic neuronal populations, indicating that the effects were selective to tuberoinfundibular dopamine neurons. These data indicate that in the absence of signal transducer and activator of transcription 5b, PRL signal transduction in tuberoinfundibular dopamine neurons is impaired, and they demonstrate that this transcription factor plays an obligatory and nonredundant role in mediating the negative feedback action of PRL on tuberoinfundibular dopamine neurons.

  12. Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae.

    PubMed

    Ostapenko, Denis; Solomon, Mark J

    2011-07-01

    The anaphase-promoting complex/cyclosome (APC/C) is an essential ubiquitin ligase that targets cell cycle proteins for proteasome-mediated degradation in mitosis and G1. The APC regulates a number of cell cycle processes, including spindle assembly, mitotic exit, and cytokinesis, but the full range of its functions is still unknown. To better understand cellular pathways controlled by the APC, we performed a proteomic screen to identify additional APC substrates. We analyzed cell cycle-regulated proteins whose expression peaked during the period when other APC substrates were expressed. Subsequent analysis identified several proteins, including the transcriptional repressors Nrm1 and Yhp1, as authentic APC substrates. We found that APC(Cdh1) targeted Nrm1 and Yhp1 for degradation in early G1 through Destruction-box motifs and that the degradation of these repressors coincided with transcriptional activation of MBF and Mcm1 target genes, respectively. In addition, Nrm1 was stabilized by phosphorylation, most likely by the budding yeast cyclin-dependent protein kinase, Cdc28. We found that expression of stabilized forms of Nrm1 and Yhp1 resulted in reduced cell fitness, due at least in part to incomplete activation of G1-specific genes. Therefore, in addition to its known functions, APC-mediated targeting of Nrm1 and Yhp1 coordinates transcription of multiple genes in G1 with other cell cycle events.

  13. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    PubMed

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  14. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    PubMed

    Zhang, Juan; Tang, Hongju; Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  15. The C-terminal domain-phosphorylated IIO form of RNA polymerase II is associated with the transcription repressor NC2 (Dr1/DRAP1) and is required for transcription activation in human nuclear extracts.

    PubMed

    Castaño, E; Gross, P; Wang, Z; Roeder, R G; Oelgeschläger, T

    2000-06-20

    Activation of class II gene transcription may involve alleviation of transcription repression as well as stimulation of the assembly and function of the general RNA polymerase (RNAP) II transcription machinery. Here, we investigated whether activator-reversible transcription repression by NC2 (Dr1/DRAP1) contributes to maximum induction levels in unfractionated HeLa nuclear extracts. Surprisingly, we found that depletion of NC2 does not significantly affect basal transcription, but dramatically reduces activated transcription. Immunoblot analyses revealed that the loss of activator function coincides with selective removal of the C-terminal domain (CTD)-hyperphosphorylated RNAP IIO along with NC2. Coimmunoprecipitation experiments with purified factors confirmed that NC2 interacts with RNAP IIO, but not with the unphosphorylated or hypophosphorylated RNAP IIA or CTD-less RNAP IIB forms. Finally, we demonstrate that, in contrast to previously published observations in cell-free systems reconstituted with purified factors, only the CTD-phosphorylated form of RNAP II can mediate activator function in the context of unfractionated HeLa nuclear extracts. These findings reveal an unexpected link between NC2 and transcription activation and suggest that regulation of RNAP II transcription through reversible CTD phosphorylation might be more complex than previously proposed.

  16. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    PubMed

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  17. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis.

    PubMed

    D'Heygère, François; Schwartz, Annie; Coste, Franck; Castaing, Bertrand; Boudvillain, Marc

    2015-07-13

    The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.

  18. Quantitative levels of Deficiens and Globosa during late petal development show a complex transcriptional network topology of B function.

    PubMed

    Manchado-Rojo, María; Delgado-Benarroch, Luciana; Roca, María J; Weiss, Julia; Egea-Cortines, Marcos

    2012-10-01

    The transcriptional network topology of B function in Antirrhinum, required for petal and stamen development, is thought to rely on initial activation of transcription of DEFICIENS (DEF) and GLOBOSA (GLO), followed by a positive autoregulatory loop maintaining gene expression levels. Here, we show that the mutant compacta (co), whose vegetative growth and petal size are affected, plays a role in B function. Late events in petal morphogenesis such as development of conical cell area and scent emissions were reduced in co and def (nicotianoides) (def (nic) ), and absent in co def (nic) double mutants, suggesting a role for CO in petal identity. Expression of DEF was down-regulated in co but surprisingly GLO was not affected. We investigated the levels of DEF and GLO at late stages of petal development in the co, def (nic) and glo-1 mutants, and established a reliable transformation protocol that yielded RNAi-DEF lines. We show that the threshold levels of DEF or GLO required to obtain petal tissue are approximately 11% of wild-type. The relationship between DEF and GLO transcripts is not equal or constant and changes during development. Furthermore, down-regulation of DEF or GLO does not cause parallel down-regulation of the partner. Our results demonstrate that, at late stages of petal development, the B function transcriptional network topology is not based on positive autoregulation, and has additional components of transcriptional maintenance. Our results suggest changes in network topology that may allow changes in protein complexes that would explain the fact that not all petal traits appear early in development.

  19. Cyclin C regulates adipogenesis by stimulating transcriptional activity of CCAAT/enhancer binding protein alpha.

    PubMed

    Song, Ziyi; Xiaoli, Alus M; Zhang, Quanwei; Zhang, Yi; Yang, Ellen S T; Wang, Sven; Chang, Rui; Zhang, Zhengdong D; Yang, Gongshe; Strich, Randy; Pessin, Jeffrey E; Yang, Fajun

    2017-03-28

    Brown adipose tissue (BAT) is important for maintaining energy homeostasis and adaptive thermogenesis in rodents and humans. As disorders arising from dysregulated energy metabolism, such as obesity and metabolic diseases, have increased, so has interest in the molecular mechanisms in adipocyte biology. Using a functional screen, we identified cyclin C (CycC), a conserved subunit of the Mediator complex, as a novel regulator for brown adipocyte formation. siRNA-mediated CycC knockdown (KD) in brown preadipocytes impaired the early transcriptional program of differentiation, and genetic knockout (KO) of CycC completely blocked the differentiation process. RNA-seq analyses of CycC-KD revealed a critical role of CycC in activating genes co-regulated by peroxisome proliferator activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα). Overexpression of PPARγ2 or addition of the PPARγ ligand rosiglitazone rescued the defects in CycC-KO brown preadipocytes, and efficiently activated the PPARγ-responsive promoters in both wild-type (WT) and CycC-KO cells, suggesting that CycC is not essential for PPARγ transcriptional activity. In contrast, CycC-KO significantly reduced C/EBPα-dependent gene expression. Unlike for PPARγ, overexpression of C/EBPα could not induce C/EBPα target gene expression in CycC-KO cells or rescue the CycC-KO defects in brown adipogenesis, suggesting that CycC is essential for C/EBPα-mediated gene activation. CycC physically interacted with C/EBPα and this interaction was required for C/EBPα transactivation domain activity. Consistent with the role of C/EBPα in white adipogenesis, CycC-KD also inhibited differentiation of 3T3-L1 cells into white adipocytes. Together, these data indicate that CycC activates adipogenesis by stimulating the transcriptional activity of C/EBPα.

  20. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2014-09-15

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability.

  1. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex

    PubMed Central

    Zhang, Qinghong; Wang, Su-Yan; Fleuriel, Capucine; Leprince, Dominique; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.

    2007-01-01

    The Sir2 histone deacetylases are important for gene regulation, metabolism, and longevity. A unique feature of these enzymes is their utilization of NAD+ as a cosubstrate, which has led to the suggestion that Sir2 activity reflects the cellular energy state. We show that SIRT1, a mammalian Sir2 homologue, is also controlled at the transcriptional level through a mechanism that is specific for this isoform. Treatment with the glycolytic blocker 2-deoxyglucose (2-DG) decreases association of the redox sensor CtBP with HIC1, an inhibitor of SIRT1 transcription. We propose that the reduction in transcriptional repression mediated by HIC1, due to the decrease of CtBP binding, increases SIRT1 expression. This mechanism allows the specific regulation of SIRT1 in response to nutrient deprivation. PMID:17213307

  2. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  3. A cytoplasmic negative regulator isoform of ATF7 impairs ATF7 and ATF2 phosphorylation and transcriptional activity.

    PubMed

    Diring, Jessica; Camuzeaux, Barbara; Donzeau, Mariel; Vigneron, Marc; Rosa-Calatrava, Manuel; Kedinger, Claude; Chatton, Bruno

    2011-01-01

    Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors.

  4. A Cytoplasmic Negative Regulator Isoform of ATF7 Impairs ATF7 and ATF2 Phosphorylation and Transcriptional Activity

    PubMed Central

    Diring, Jessica; Camuzeaux, Barbara; Donzeau, Mariel; Vigneron, Marc; Rosa-Calatrava, Manuel; Kedinger, Claude; Chatton, Bruno

    2011-01-01

    Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors. PMID:21858082

  5. Transcription of a subset of human class II major histocompatibility complex genes is regulated by a nucleoprotein complex that contains c-fos or an antigenically related protein.

    PubMed Central

    Ono, S J; Bazil, V; Levi, B Z; Ozato, K; Strominger, J L

    1991-01-01

    Transcriptional regulation of the human major histocompatibility complex class II genes requires at least two upstream elements, the X and Y boxes, located in the -50- to -150-base-pair region of all class II promoters. The DRA and DPB promoters contain phorbol ester-responsive elements overlapping the 3' side of their X boxes. Mutation of this sequence down-regulates the efficiency of the DRA promoter, suggesting that a positive regulator(s) binds to this site. In this report, anti-sense c-fos RNA and an anti-c-fos antibody were used to show that the product of the protooncogene c-fos or an antigenically related protein is a component of a complex that binds to the X box and is required for maximal transcription from the DRA and DPB promoters. As c-fos (or its related proteins) cannot bind alone to DNA, these results suggest that it may dimerize with other members of the JUN/AP-1 family, such as hXBP1, to participate in the activation of a subset of class II major histocompatibility complex genes. Images PMID:1709740

  6. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  7. SERBP1 is a component of the Liver Receptor Homolog-1 transcriptional complex

    PubMed Central

    Mari, Yelenis; West, Graham M.; Scharager-Tapia, Catherina; Pascal, Bruce D.; Garcia-Ordonez, Ruben; Griffin, Patrick R.

    2016-01-01

    Liver receptor homolog-1 (LRH1) is an orphan nuclear receptor that has been shown to play a role in the transcriptional regulation of pathways involved in cancer. Elucidating the components of the LRH1 transcriptional complex to better understand endogenous regulation of the receptor as well as its role in cancer remains a high priority. A sub-cellular enrichment strategy coupled with proteomic approaches was employed to identify putative LRH1 coregulators. Nuclear fractionation protocol was essential for detection of LRH1 peptides by mass spectrometry (MS), with most peptides being observed in the insoluble fraction (receptor bound to DNA). SERBP1 and ILF3 were identified as LRH1 interacting partners by both western blot and MS/MS analysis. Receptor knockdown by siRNA showed an increased in SERBP1 expression while ILF3 expression was unchanged. In contrast, receptor overexpression decreased only SERBP1 mRNA levels. Consistent with these data, in a promoter:reporter assay, binding of LRH1 to the promoter region of SERBP1 resulted in a decrease in the expression level of the reporter gene, and subsequently, inhibiting transcription. Given the receptor’s role in cancer progression, the study here elucidates additional transcriptional machinery involved in LRH1 signaling and potentially provides new targets for therapeutics development. PMID:26398198

  8. SERBP1 Is a Component of the Liver Receptor Homologue-1 Transcriptional Complex.

    PubMed

    Mari, Yelenis; West, Graham M; Scharager-Tapia, Catherina; Pascal, Bruce D; Garcia-Ordonez, Ruben D; Griffin, Patrick R

    2015-11-06

    Liver receptor homologue-1 (LRH1) is an orphan nuclear receptor that has been shown to play a role in the transcriptional regulation of pathways involved in cancer. Elucidating the components of the LRH1 transcriptional complex to better understand endogenous regulation of the receptor as well as its role in cancer remains a high priority. A sub-cellular enrichment strategy coupled with proteomic approaches was employed to identify putative LRH1 co-regulators. Nuclear fractionation protocol was essential for detection of LRH1 peptides by mass spectrometry (MS), with most peptides being observed in the insoluble fraction (receptor bound to DNA). SERBP1 and ILF3 were identified as LRH1 interacting partners by both Western blot and MS/MS analysis. Receptor knockdown by siRNA showed an increase in SERBP1 expression, while ILF3 expression was unchanged. In contrast, receptor overexpression decreased only SERBP1 mRNA levels. Consistent with these data, in a promoter:reporter assay, binding of LRH1 to the promoter region of SERBP1 resulted in a decrease in the expression level of the reporter gene, subsequently inhibiting transcription. Given the receptor's role in cancer progression, the study here elucidates additional transcriptional machinery involved in LRH1 signaling and potentially provides new targets for therapeutics development.

  9. Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell-Type Proliferation and Differentiation[OPEN

    PubMed Central

    Pu, Li; Turco, Gina; Morao, Ana Karina; Kim, Dahae

    2016-01-01

    Spatiotemporal regulation of transcription is fine-tuned at multiple levels, including chromatin compaction. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of Histone 3 at lysine 27 (H3K27me3), which is the hallmark of a repressive chromatin state. Multiple PRC2 complexes have been reported in Arabidopsis thaliana to control the expression of genes involved in developmental transitions and maintenance of organ identity. Here, we show that PRC2 member genes display complex spatiotemporal gene expression patterns and function in root meristem and vascular cell proliferation and specification. Furthermore, PRC2 gene expression patterns correspond with vascular and nonvascular tissue-specific H3K27me3-marked genes. This tissue-specific repression via H3K27me3 regulates the balance between cell proliferation and differentiation. Using enhanced yeast one-hybrid analysis, upstream regulators of the PRC2 member genes are identified, and genetic analysis demonstrates that transcriptional regulation of some PRC2 genes plays an important role in determining PRC2 spatiotemporal activity within a developing organ. PMID:27650334

  10. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition

    PubMed Central

    Vincent, Theresa; Neve, Etienne P. A.; Johnson, Jill R.; Kukalev, Alexander; Rojo, Federico; Albanell, Joan; Pietras, Kristian; Virtanen, Ismo; Philipson, Lennart; Leopold, Philip L.; Crystal, Ronald G.; de Herreros, Antonio Garcia; Moustakas, Aristidis; Pettersson, Ralf F.; Fuxe, Jonas

    2013-01-01

    Epithelial-mesenchymal transitions (EMT) are essential for organogenesis and triggered in carcinoma progression into an invasive state1. Transforming growth factor-β (TGF-β) cooperates with signalling pathways, such as Ras and Wnt, to induce EMT2-5, but the molecular mechanisms are not clear. Here, we report that SMAD3 and SMAD4 interact and form a complex with SNAIL1, a transcriptional repressor and promoter of EMT6, 7. The SNAIL1-SMAD3/4 complex was targeted to the gene promoters of CAR, a tight junction protein, and E-cadherin during TGF-β-driven EMT in breast epithelial cells. SNAIL1 and SMAD3/4 acted as co-repressors of CAR, occludin, claudin-3 and E-cadherin promoters in transfected cells. Conversely, co-silencing of SNAIL1 and SMAD4 by siRNA inhibited the repression of CAR and occludin during EMT. Moreover, loss of CAR and E-cadherin correlated with nuclear co-expression of SNAIL1 and SMAD3/4 in a mouse model of breast carcinoma and at the invasive fronts of human breast cancer. We propose that activation of a SNAIL1-SMAD3/4 transcriptional complex represents a novel mechanism of gene repression during EMT. PMID:19597490

  11. Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus.

    PubMed

    Speil, Jasmin; Baumgart, Eugen; Siebrasse, Jan-Peter; Veith, Roman; Vinkemeier, Uwe; Kubitscheck, Ulrich

    2011-12-07

    The activation of STAT transcription factors is a critical determinant of their subcellular distribution and their ability to regulate gene expression. Yet, it is not known how activation affects the behavior of individual STAT molecules in the cytoplasm and nucleus. To investigate this issue, we injected fluorescently labeled STAT1 in living HeLa cells and traced them by single-molecule microscopy. We determined that STAT1 moved stochastically in the cytoplasm and nucleus with very short residence times (<0.03 s) before activation. Upon activation, STAT1 mobility in the cytoplasm decreased ∼2.5-fold, indicating reduced movement of STAT1/importinα/β complexes to the nucleus. In the nucleus, activated STAT1 displayed a distinct saltatory mobility, with residence times of up to 5 s and intermittent diffusive motion. In this manner, activated STAT1 factors can occupy their putative chromatin target sites within ∼2 s. These results provide a better understanding of the timescales on which cellular signaling and regulated gene transcription operate at the single-molecule level.

  12. [SWI/SNF Protein Complexes Participate in the Initiation and Elongation Stages of Drosophila hsp70 Gene Transcription].

    PubMed

    Mazina, M Yu; Nikolenko, Yu V; Krasnov, A N; Vorobyeva, N E

    2016-02-01

    The participation of the SWI/SNF chromatin remodeling complex in the stimulation of the RNA polymerase II binding to gene promotors was demonstrated in all model eukaryotic organisms. It was shown eight years ago that the SWI/SNF complex influence on transcription is not limited to its role in initiation but also includes participation in elongation and alternative splicing. In the current work, we describe the subunit composition of the SWI/SNF complexes participating in initiation, preparing for the elongation and elongation of hsp70 gene transcription in Drosophila melanogaster. The data reveal the high mobility of the SWI/SNF complex composition during the hsp 70 gene transcription process. We suggest a model describing the process of sequential SWI/SNF complex formation during heat-shock induced transcription of the hsp 70 gene.

  13. SON and its alternatively spliced isoforms control MLL complex-mediated H3K4me3 and transcription of leukemia-associated genes

    PubMed Central

    Kim, Jung-Hyun; Baddoo, Melody C.; Park, Eun Young; Stone, Joshua K.; Park, Hyeonsoo; Butler, Thomas W.; Huang, Gang; Yan, Xiaomei; Pauli-Behn, Florencia; Myers, Richard M.; Tan, Ming; Flemington, Erik K.; Lim, Ssang-Taek; Erin Ahn, Eun-Young

    2016-01-01

    SUMMARY Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy, but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia. PMID:26990989

  14. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness.

    PubMed

    Sánchez-Tilló, Ester; Liu, Yongqing; de Barrios, Oriol; Siles, Laura; Fanlo, Lucia; Cuatrecasas, Miriam; Darling, Douglas S; Dean, Douglas C; Castells, Antoni; Postigo, Antonio

    2012-10-01

    Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.

  15. Electrostatic study of Alanine mutational effects on transcription: application to GATA-3:DNA interaction complex.

    PubMed

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges

    2015-01-01

    Protein-DNA interaction is of fundamental importance in molecular biology, playing roles in functions as diverse as DNA transcription, DNA structure formation, and DNA repair. Protein-DNA association is also important in medicine; understanding Protein-DNA binding kinetics can assist in identifying disease root causes which can contribute to drug development. In this perspective, this work focuses on the transcription process by the GATA Transcription Factor (TF). GATA TF binds to DNA promoter region represented by `G,A,T,A' nucleotides sequence, and initiates transcription of target genes. When proper regulation fails due to some mutations on the GATA TF protein sequence or on the DNA promoter sequence (weak promoter), deregulation of the target genes might lead to various disorders. In this study, we aim to understand the electrostatic mechanism behind GATA TF and DNA promoter interactions, in order to predict Protein-DNA binding in the presence of mutations, while elaborating on non-covalent binding kinetics. To generate a family of mutants for the GATA:DNA complex, we replaced every charged amino acid, one at a time, with a neutral amino acid like Alanine (Ala). We then applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations, for each mutation. These calculations delineate the contribution to binding from each Ala-replaced amino acid in the GATA:DNA interaction. After analyzing the obtained data in view of a two-step model, we are able to identify potential key amino acids in binding. Finally, we applied the model to GATA-3:DNA (crystal structure with PDB-ID: 3DFV) binding complex and validated it against experimental results from the literature.

  16. The Transition of Poised RNA Polymerase II to an Actively Elongating State Is a "Complex" Affair.

    PubMed

    Yearling, Marie N; Radebaugh, Catherine A; Stargell, Laurie A

    2011-01-01

    The initial discovery of the occupancy of RNA polymerase II at certain genes prior to their transcriptional activation occurred a quarter century ago in Drosophila. The preloading of these poised complexes in this inactive state is now apparent in many different organisms across the evolutionary spectrum and occurs at a broad and diverse set of genes. In this paper, we discuss the genetic and biochemical efforts in S. cerevisiae to describe the conversion of these poised transcription complexes to the active state for productive elongation. The accumulated evidence demonstrates that a multitude of coactivators and chromatin remodeling complexes are essential for this transition.

  17. Molecular Dynamics of "Fuzzy" Transcriptional Activator-Coactivator Interactions

    PubMed Central

    Scholes, Natalie S.; Weinzierl, Robert O. J.

    2016-01-01

    Transcriptional activation domains (ADs) are generally thought to be intrinsically unstructured, but capable of adopting limited secondary structure upon interaction with a coactivator surface. The indeterminate nature of this interface made it hitherto difficult to study structure/function relationships of such contacts. Here we used atomistic accelerated molecular dynamics (aMD) simulations to study the conformational changes of the GCN4 AD and variants thereof, either free in solution, or bound to the GAL11 coactivator surface. We show that the AD-coactivator interactions are highly dynamic while obeying distinct rules. The data provide insights into the constant and variable aspects of orientation of ADs relative to the coactivator, changes in secondary structure and energetic contributions stabilizing the various conformers at different time points. We also demonstrate that a prediction of α-helical propensity correlates directly with the experimentally measured transactivation potential of a large set of mutagenized ADs. The link between α-helical propensity and the stimulatory activity of ADs has fundamental practical and theoretical implications concerning the recruitment of ADs to coactivators. PMID:27175900

  18. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability.

    PubMed

    Mayer, Christine; Zhao, Jian; Yuan, Xuejun; Grummt, Ingrid

    2004-02-15

    In cycling cells, transcription of ribosomal RNA genes by RNA polymerase I (Pol I) is tightly coordinated with cell growth. Here, we show that the mammalian target of rapamycin (mTOR) regulates Pol I transcription by modulating the activity of TIF-IA, a regulatory factor that senses nutrient and growth-factor availability. Inhibition of mTOR signaling by rapamycin inactivates TIF-IA and impairs transcription-initiation complex formation. Moreover, rapamycin treatment leads to translocation of TIF-IA into the cytoplasm. Rapamycin-mediated inactivation of TIF-IA is caused by hypophosphorylation of Se 44 (S44) and hyperphosphorylation of Se 199 (S199). Phosphorylation at these sites affects TIF-IA activity in opposite ways, for example, phosphorylation of S44 activates and S199 inactivates TIF-IA. The results identify a new target formTOR-signaling pathways and elucidate the molecular mechanism underlying mTOR-dependent regulation of RNA synthesis.

  19. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methycholanthrene

    SciTech Connect

    Shipley, Jonathan M.; Waxman, David J. . E-mail: djw@bu.edu

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC{sub 5}) was >100-fold higher for an ER reporter (27-57 {mu}M) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17{beta}-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ER{alpha}-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  20. Human transcriptional coactivator PC4 stimulates DNA end joining and activates DSB repair activity.

    PubMed

    Batta, Kiran; Yokokawa, Masatoshi; Takeyasu, Kunio; Kundu, Tapas K

    2009-01-23

    Human transcriptional coactivator PC4 is a highly abundant nuclear protein that is involved in diverse cellular processes ranging from transcription to chromatin organization. Earlier, we have shown that PC4, a positive activator of p53, overexpresses upon genotoxic insult in a p53-dependent manner. In the present study, we show that PC4 stimulates ligase-mediated DNA end joining irrespective of the source of DNA ligase. Pull-down assays reveal that PC4 helps in the association of DNA ends through its C-terminal domain. In vitro nonhomologous end-joining assays with cell-free extracts show that PC4 enhances the joining of noncomplementary DNA ends. Interestingly, we found that PC4 activates double-strand break (DSB) repair activity through stimulation of DSB rejoining in vivo. Together, these findings demonstrate PC4 as an activator of nonhomologous end joining and DSB repair activity.

  1. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  2. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity

    PubMed Central

    Ahmed, Afsar U.; Williams, Bryan R. G.; Hannigan, Gregory E.

    2015-01-01

    Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of inflammatory stimuli, an extensive exploitation of selective transcriptional activations of pro-inflammatory genes is performed by the host to ensure a defined inflammatory response. Inflammatory signal transductions are initiated by the recognition of inflammatory stimuli by transmembrane receptors, followed by the transmission of the signals to the nucleus for differential gene activations. The differential transcriptional activation of pro-inflammatory genes is precisely controlled by the selective binding of transcription factors to the promoters of these genes. Among a number of transcription factors identified to date, NF-κB still remains the most prominent and studied factor for its diverse range of selective transcriptional activities. Differential transcriptional activities of NF-κB are dictated by post-translational modifications, specificities in dimer formation, and variability in activation kinetics. Apart from the differential functions of transcription factors, the transcriptional activation of selective pro-inflammatory genes is also governed by chromatin structures, epigenetic markers, and other regulators as the field is continuously expanding. PMID:26569329

  3. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes

    PubMed Central

    Li, Xu; Wang, Wenqi; Wang, Jiadong; Malovannaya, Anna; Xi, Yuanxin; Li, Wei; Guerra, Rudy; Hawke, David H; Qin, Jun; Chen, Junjie

    2015-01-01

    The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein–protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using tandem affinity purification followed by mass spectrometry (TAP/MS), we performed 214 purifications and identified 2,156 high-confident protein–protein interactions. We found that most TFs form very distinct protein complexes on and off chromatin. Using this data set, we categorized the transcription-related or unrelated regulators for general or specific TFs. Our study offers a valuable resource of protein–protein interaction networks for a large number of TFs and underscores the general principle that TFs form distinct location-specific protein complexes that are associated with the different regulation and diverse functions of these TFs. PMID:25609649

  4. Kinetics of self-assembly via facilitated diffusion: Formation of the transcription complex

    NASA Astrophysics Data System (ADS)

    Kalay, Ziya

    2015-10-01

    We present an analytically solvable model for self-assembly of a molecular complex on a filament. The process is driven by a seed molecule that undergoes facilitated diffusion, which is a search strategy that combines diffusion in three dimensions and one dimension. Our study is motivated by single-molecule-level observations revealing the dynamics of transcription factors that bind to the deoxyribonucleic acid at early stages of transcription. We calculate the probability that a complex made up of a given number of molecules is completely formed, as well as the distribution of completion times, upon the binding of a seed molecule at a target site on the filament (without explicitly modeling the three-dimensional diffusion that precedes binding). We compare two different mechanisms of assembly where molecules bind in sequential and random order. Our results indicate that while the probability of completion is greater for random binding, the completion time scales exponentially with the size of the complex; in contrast, it scales as a power law or slower for sequential binding, asymptotically. Furthermore, we provide model predictions for the dissociation and residence times of the seed molecule, which are observables accessible in single-molecule tracking experiments.

  5. Activator control of nucleosome occupancy in activation and repression of transcription.

    PubMed

    Bryant, Gene O; Prabhu, Vidya; Floer, Monique; Wang, Xin; Spagna, Dan; Schreiber, David; Ptashne, Mark

    2008-12-23

    The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome "remodeler" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI

  6. A PTIP–PA1 subcomplex promotes transcription for IgH class switching independently from the associated MLL3/MLL4 methyltransferase complex

    PubMed Central

    Starnes, Linda M.; Su, Dan; Pikkupeura, Laura M.; Weinert, Brian T.; Santos, Margarida A.; Mund, Andreas; Soria, Rebeca; Cho, Young-Wook; Pozdnyakova, Irina; Kubec Højfeldt, Martina; Vala, Andrea; Yang, Wenjing; López-Méndez, Blanca; Lee, Ji-Eun; Peng, Weiqun; Yuan, Joan; Ge, Kai; Montoya, Guillermo; Nussenzweig, André; Choudhary, Chunaram; Daniel, Jeremy A.

    2016-01-01

    Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear. Here we dissected the minimal structural requirements of PTIP and its different protein complexes using quantitative proteomics in primary lymphocytes. We found that PTIP functions in transcription and CSR separately from its association with the MLL3/MLL4 complex and from its localization to sites of DNA damage. We identified a tandem BRCT domain of PTIP that is sufficient for CSR and identified PA1 as its main functional protein partner. Collectively, we provide genetic and biochemical evidence that a PTIP–PA1 subcomplex functions independently from the MLL3/MLL4 complex to mediate transcription during CSR. These results further our understanding of how multifunctional chromatin-modifying complexes are organized by subcomplexes that harbor unique and distinct activities. PMID:26744420

  7. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    SciTech Connect

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator

  8. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit

    PubMed Central

    Ho, Emily V.; Klenotich, Stephanie J.; McMurray, Matthew S.; Dulawa, Stephanie C

    2016-01-01

    Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology. PMID:27861553

  9. p53 Modulates Notch Signaling in MCF-7 Breast Cancer Cells by Associating with the Notch Transcriptional Complex via MAML1†

    PubMed Central

    Yun, Jieun; Espinoza, Ingrid; Pannuti, Antonio; Romero, Damian; Martinez, Luis; Caskey, Mary; Stanculescu, Adina; Bocchetta, Maurizio; Rizzo, Paola; Band, Vimla; Band, Hamid; Kim, Hwan Mook; Park, Song-Kyu; Kang, Keon Wook; Avantaggiati, Maria Laura; Gomez, Christian R.; Golde, Todd; Osborne, Barbara; Miele, Lucio

    2015-01-01

    p53 and Notch-1 play important roles in breast cancer biology. Notch-1 inhibits p53 activity in cervical and breast cancer cells. Conversely, p53 inhibits Notch activity in T-cells but stimulates it in human keratinocytes. Notch co-activator MAML1 binds p53 and functions as a p53 co-activator. We studied the regulation of Notch signaling by p53 in MCF-7 cells and normal human mammary epithelial cells (HMEC). Results show that overexpression of p53 or activation of endogenous p53 with Nutlin-3 inhibits Notch-dependent transcriptional activity and Notch target expression in a dose-dependent manner. This effect could be partially rescued by transfection of MAML1 but not p300. Standard and quantitative co-immunoprecipitation experiments readily detected a complex containing p53 and Notch-1 in MCF-7 cells. Formation of this complex was inhibited by dominant negative MAML1 (DN-MAML1) and stimulated by wild-type MAML1. Standard and quantitative far-Western experiments showed a complex including p53, Notch-1 and MAML1. Chromatin immunoprecipitation (ChIP) experiments showed that p53 can associate with Notch-dependent HEY1 promoter and this association is inhibited by DN-MAML1 and stimulated by wild-type MAML1. Our data support a model in which p53 associates with the Notch transcriptional complex (NTC) in a MAML1-dependent fashion, most likely through a p53-MAML1 interaction. In our cellular models, the effect of this association is to inhibit Notch-dependent transcription. Our data suggest that p53-null breast cancers may lack this Notch-modulatory mechanism, and that therapeutic strategies that activate wild-type p53 can indirectly cause inhibition of Notch transcriptional activity. PMID:26033683

  10. p53 Modulates Notch Signaling in MCF-7 Breast Cancer Cells by Associating With the Notch Transcriptional Complex Via MAML1.

    PubMed

    Yun, Jieun; Espinoza, Ingrid; Pannuti, Antonio; Romero, Damian; Martinez, Luis; Caskey, Mary; Stanculescu, Adina; Bocchetta, Maurizio; Rizzo, Paola; Band, Vimla; Band, Hamid; Kim, Hwan Mook; Park, Song-Kyu; Kang, Keon Wook; Avantaggiati, Maria Laura; Gomez, Christian R; Golde, Todd; Osborne, Barbara; Miele, Lucio

    2015-12-01

    p53 and Notch-1 play important roles in breast cancer biology. Notch-1 inhibits p53 activity in cervical and breast cancer cells. Conversely, p53 inhibits Notch activity in T-cells but stimulates it in human keratinocytes. Notch co-activator MAML1 binds p53 and functions as a p53 co-activator. We studied the regulation of Notch signaling by p53 in MCF-7 cells and normal human mammary epithelial cells (HMEC). Results show that overexpression of p53 or activation of endogenous p53 with Nutlin-3 inhibits Notch-dependent transcriptional activity and Notch target expression in a dose-dependent manner. This effect could be partially rescued by transfection of MAML1 but not p300. Standard and quantitative co-immunoprecipitation experiments readily detected a complex containing p53 and Notch-1 in MCF-7 cells. Formation of this complex was inhibited by dominant negative MAML1 (DN-MAML1) and stimulated by wild-type MAML1. Standard and quantitative far-Western experiments showed a complex including p53, Notch-1, and MAML1. Chromatin immunoprecipitation (ChIP) experiments showed that p53 can associate with Notch-dependent HEY1 promoter and this association is inhibited by DN-MAML1 and stimulated by wild-type MAML1. Our data support a model in which p53 associates with the Notch transcriptional complex (NTC) in a MAML1-dependent fashion, most likely through a p53-MAML1 interaction. In our cellular models, the effect of this association is to inhibit Notch-dependent transcription. Our data suggest that p53-null breast cancers may lack this Notch-modulatory mechanism, and that therapeutic strategies that activate wild-type p53 can indirectly cause inhibition of Notch transcriptional activity.

  11. Dioxin-dependent activation of murine Cyp1a-1 gene transcription requires protein kinase C-dependent phosphorylation.

    PubMed Central

    Carrier, F; Owens, R A; Nebert, D W; Puga, A

    1992-01-01

    Transcriptional activation of the murine Cyp1a-1 (cytochrome P(1)450) gene by inducers such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (dioxin) requires the aromatic hydrocarbon (Ah) receptor and the interaction of an inducer-receptor complex with one or more of the Ah-responsive elements (AhREs) located about 1 kb upstream from the transcriptional initiation site. We find that treatment of mouse hepatoma Hepa-1 cells with 2-aminopurine, an inhibitor of protein kinase activity, inhibits CYP1A1 mRNA induction by TCDD as well as the concomitant increase in CYP1A1 enzyme activity. Formation of DNA-protein complexes between the Ah receptor and its AhRE target is also inhibited by 2-aminopurine, as determined by gel mobility shift assays. Phosphorylation is required for the formation of Ah receptor-specific complexes, since in vitro dephosphorylation of nuclear extracts from TCDD-treated Hepa-1 cells abolishes the capacity of the Ah receptor to form specific complexes with its cognate AhRE sequences. To determine whether any one of several known protein kinases was involved in the transcriptional regulation of the Cyp1a-1 gene, we treated Hepa-1 cells with nine other protein kinase inhibitors prior to induction with TCDD; nuclear extracts from these cells were analyzed for their capacity to form specific DNA-protein complexes. Only extracts from cells treated with staurosporine, a protein kinase C inhibitor, were unable to form these complexes. In addition, staurosporine completely inhibited CYP1A1 mRNA induction by TCDD. Depletion of protein kinase C by prolonged treatment with phorbol ester led to the complete suppression of CYP1A1 mRNA induction by TCDD. We conclude that (i) phosphorylation is necessary for the formation of a transcriptional complex and for transcriptional activation of the Cyp1a-1 gene; (ii) the phosphorylation site(s) exists on at least one of the proteins constituting the transcriptional complex, possibly the Ah receptor itself; and (iii) the

  12. The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription

    PubMed Central

    Bonnet, Jacques; Wang, Chen-Yi; Baptista, Tiago; Vincent, Stéphane D.; Hsiao, Wei-Chun; Stierle, Matthieu; Kao, Cheng-Fu; Tora, László

    2014-01-01

    The SAGA (Spt–Ada–Gcn5 acetyltransferase) coactivator complex contains distinct chromatin-modifying activities and is recruited by DNA-bound activators to regulate the expression of a subset of genes. Surprisingly, recent studies revealed little overlap between genome-wide SAGA-binding profiles and changes in gene expression upon depletion of subunits of the complex. As indicators of SAGA recruitment on chromatin, we monitored in yeast and human cells the genome-wide distribution of histone H3K9 acetylation and H2B ubiquitination, which are respectively deposited or removed by SAGA. Changes in these modifications after inactivation of the corresponding enzyme revealed that SAGA acetylates the promoters and deubiquitinates the transcribed region of all expressed genes. In agreement with this broad distribution, we show that SAGA plays a critical role for RNA polymerase II recruitment at all expressed genes. In addition, through quantification of newly synthesized RNA, we demonstrated that SAGA inactivation induced a strong decrease of mRNA synthesis at all tested genes. Analysis of the SAGA deubiquitination activity further revealed that SAGA acts on the whole transcribed genome in a very fast manner, indicating a highly dynamic association of the complex with chromatin. Thus, our study uncovers a new function for SAGA as a bone fide cofactor for all RNA polymerase II transcription. PMID:25228644

  13. The SUMO E3 Ligase-Like Proteins PIAL1 and PIAL2 Interact with MOM1 and Form a Novel Complex Required for Transcriptional Silencing.

    PubMed

    Han, Yong-Feng; Zhao, Qiu-Yuan; Dang, Liang-Liang; Luo, Yu-Xi; Chen, Shan-Shan; Shao, Chang-Rong; Huang, Huan-Wei; Li, Yong-Qiang; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2016-05-01

    The mechanism by which MORPHEUS' MOLECULE1 (MOM1) contributes to transcriptional gene silencing has remained elusive since the gene was first identified and characterized. Here, we report that two Arabidopsis thaliana PIAS (PROTEIN INHIBITOR OF ACTIVATED STAT)-type SUMO E3 ligase-like proteins, PIAL1 and PIAL2, function redundantly to mediate transcriptional silencing at MOM1 target loci. PIAL1 and PIAL2 physically interact with each other and with MOM1 to form a high molecular mass complex. In the absence of either PIAL2 or MOM1, the formation of the high molecular mass complex is disrupted. We identified a previously uncharacterized IND (interacting domain) in PIAL1 and PIAL2 and demonstrated that IND directly interacts with MOM1. The CMM2 (conserved MOM1 motif 2) domain of MOM1 was previously shown to be required for the dimerization of MOM1. We demonstrated that the CMM2 domain is also required for the interaction of MOM1 with PIAL1 and PIAL2. We found that although PIAL2 has SUMO E3 ligase activity, the activity is dispensable for PIAL2's function in transcriptional silencing. This study suggests that PIAL1 and PIAl2 act as components of the MOM1-containing complex to mediate transcriptional silencing at heterochromatin regions.

  14. Hap2-3-5-Gln3 determine transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions in the yeast Saccharomyces cerevisiae.

    PubMed

    Hernández, Hugo; Aranda, Cristina; López, Geovani; Riego, Lina; González, Alicia

    2011-03-01

    The transcriptional activation response relies on a repertoire of transcriptional activators, which decipher regulatory information through their specific binding to cognate sequences, and their capacity to selectively recruit the components that constitute a given transcriptional complex. We have addressed the possibility of achieving novel transcriptional responses by the construction of a new transcriptional regulator--the Hap2-3-5-Gln3 hybrid modulator--harbouring the HAP complex polypeptides that constitute the DNA-binding domain (Hap2-3-5) and the Gln3 activation domain, which usually act in an uncombined fashion. The results presented in this paper show that transcriptional activation of GDH1 and ASN1 under repressive nitrogen conditions is achieved through the action of the novel Hap2-3-5-Gln3 transcriptional regulator. We propose that the combination of the Hap DNA-binding and Gln3 activation domains results in a hybrid modulator that elicits a novel transcriptional response not evoked when these modulators act independently.

  15. Spatiotemporal control of interferon-induced JAK/STAT signalling and gene transcription by the retromer complex

    PubMed Central

    Chmiest, Daniela; Sharma, Nanaocha; Zanin, Natacha; Viaris de Lesegno, Christine; Shafaq-Zadah, Massiullah; Sibut, Vonick; Dingli, Florent; Hupé, Philippe; Wilmes, Stephan; Piehler, Jacob; Loew, Damarys; Johannes, Ludger; Schreiber, Gideon; Lamaze, Christophe

    2016-01-01

    Type-I interferons (IFNs) play a key role in the immune defences against viral and bacterial infections, and in cancer immunosurveillance. We have established that clathrin-dependent endocytosis of the type-I interferon (IFN-α/β) receptor (IFNAR) is required for JAK/STAT signalling. Here we show that the internalized IFNAR1 and IFNAR2 subunits of the IFNAR complex are differentially sorted by the retromer at the early endosome. Binding of the retromer VPS35 subunit to IFNAR2 results in IFNAR2 recycling to the plasma membrane, whereas IFNAR1 is sorted to the lysosome for degradation. Depletion of VPS35 leads to abnormally prolonged residency and association of the IFNAR subunits at the early endosome, resulting in increased activation of STAT1- and IFN-dependent gene transcription. These experimental data establish the retromer complex as a key spatiotemporal regulator of IFNAR endosomal sorting and a new factor in type-I IFN-induced JAK/STAT signalling and gene transcription. PMID:27917878

  16. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans

    PubMed Central

    Miller, Jacqueline G.; Liu, Yan; Williams, Christopher W.; Smith, Harold E.; O’Connell, Kevin F.

    2016-01-01

    Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly. PMID:26772748

  17. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans.

    PubMed

    Miller, Jacqueline G; Liu, Yan; Williams, Christopher W; Smith, Harold E; O'Connell, Kevin F

    2016-01-15

    Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.

  18. The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels

    PubMed Central

    Hernández-Prieto, Miguel A.; Lin, Yuankui; Chen, Min

    2016-01-01

    Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. PMID:27974439

  19. SM-TF: A structural database of small molecule-transcription factor complexes.

    PubMed

    Xu, Xianjin; Ma, Zhiwei; Sun, Hongmin; Zou, Xiaoqin

    2016-06-30

    Transcription factors (TFs) are the proteins involved in the transcription process, ensuring the correct expression of specific genes. Numerous diseases arise from the dysfunction of specific TFs. In fact, over 30 TFs have been identified as therapeutic targets of about 9% of the approved drugs. In this study, we created a structural database of small molecule-transcription factor (SM-TF) complexes, available online at http://zoulab.dalton.missouri.edu/SM-TF. The 3D structures of the co-bound small molecule and the corresponding binding sites on TFs are provided in the database, serving as a valuable resource to assist structure-based drug design related to TFs. Currently, the SM-TF database contains 934 entries covering 176 TFs from a variety of species. The database is further classified into several subsets by species and organisms. The entries in the SM-TF database are linked to the UniProt database and other sequence-based TF databases. Furthermore, the druggable TFs from human and the corresponding approved drugs are linked to the DrugBank. © 2016 Wiley Periodicals, Inc.

  20. SRY: A transcriptional activator of mammalian testis determination.

    PubMed

    Sekido, Ryohei

    2010-03-01

    Sry (sex-determining region Y) is the sex-determining gene on the mammalian Y chromosome, which encodes a transcription factor containing a DNA-binding domain characteristic of some high mobility group proteins (HMG box). It is the founder member of the Sox (Sry-related HMG box) gene family and is therefore classified in the Sox A group. In mice, the transient expression of Sry between 10.5 and 12.5 dpc triggers the differentiation of Sertoli cells from the supporting cell precursor lineage, which would otherwise give rise to granulosa cells in ovaries. However, little was known about the target genes of SRY and molecular mechanisms how SRY leads to testis development. Recent work has provided evidence that SRY binds directly to a testis-specific enhancer of Sox9 (TES) and activates Sox9 expression in co-operation with steroidogenic factor 1 (SF1). Furthermore, this SRY action is limited to a certain time period during embryogenesis.

  1. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    PubMed Central

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  2. The effect of phenobarbital on the transcriptional activity of liver.

    PubMed Central

    Hardwick, J P; Schwalm, F; Richardson, A

    1983-01-01

    The effect of phenobarbital on the transcriptional activity of liver was studied by measuring the synthesis of RNA by suspensions of hepatocytes isolated from rats treated with phenobarbital for various time periods. The absolute rates of RNA synthesis by isolated hepatocytes were determined by measuring the incorporation of [3H]orotic acid into RNA as UMP and the specific radioactivity of the UTP pool. The specific radioactivity of the UTP extracted from hepatocytes isolated from phenobarbital-treated rats was consistently lower than that of the UTP pool of hepatocytes from untreated rats. Phenobarbital treatment increased the rate of RNA synthesis 10-fold over that observed for hepatocytes from untreated rats. The maximum rate of RNA synthesis was observed 16-18 h after phenobarbital administration. Phenobarbital treatment also affected the nuclear-cytoplasmic transport of RNA by isolated hepatocytes. Immediately after phenobarbital treatment, the transport of RNA decreased; however, 24 h after phenobarbital administration, the transport of RNA was increased 4-fold. An increase in the synthesis of RNA in vivo by liver was found 18 h after phenobarbital treatment, and the incubation of suspensions of hepatocytes with various concentrations of phenobarbital increased RNA synthesis significantly. PMID:6190479

  3. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock

    PubMed Central

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1. PMID:28099440

  4. Age-associated changes in basal c-fos transcription factor binding activity in rat hearts.

    PubMed

    Tsou, H; Azhar, G; Lu, X G; Kovacs, S; Peacocke, M; Wei, J Y

    1996-12-15

    The early response proto-oncogene c-fos is expressed at very low levels in the mammalian heart at baseline. To further investigate the mechanism of altered c-fos expression with age, we studied in the basal state the binding of five transcription proteins to their cognate sites in the c-fos promoter/enhancer region, in adult and old F344 rats. Our results show a reduced binding of E2F and AP1 proteins to the c-fos promoter in aging hearts. The major calcium/cyclic AMP response element (CRE) and SP1 binding was unchanged. The only increase seen with age was in the serum response element (SRE) binding proteins. SRE is the point of convergence of different signal transduction pathways (via MAP kinases and the Rho family of GTPases) at the c-fos promoter. Increased SRE binding may reflect a compensation for a decreased binding of other transcription proteins to the c-fos promoter, alteration in the phosphorylation status of SRF, or a change in the ternary complex factors Elk 1 or SAP 1. Other possibilities include defects in the signal transduction pathways with aging, which combine to produce an overall negative balance in the function of the c-fos promoter despite the increased SRE binding activity. Both in vitro and in vivo experiments have shown decreased c-fos expression with age. This may be due partly to alterations in the basal levels of transcription factor binding.

  5. Direct transcriptional activation of BT genes by NLP transcription factors is a key component of the nitrate response in Arabidopsis.

    PubMed

    Sato, Takeo; Maekawa, Shugo; Konishi, Mineko; Yoshioka, Nozomi; Sasaki, Yuki; Maeda, Haruna; Ishida, Tetsuya; Kato, Yuki; Yamaguchi, Junji; Yanagisawa, Shuichi

    2017-01-29

    Nitrate modulates growth and development, functioning as a nutrient signal in plants. Although many changes in physiological processes in response to nitrate have been well characterized as nitrate responses, the molecular mechanisms underlying the nitrate response are not yet fully understood. Here, we show that NLP transcription factors, which are key regulators of the nitrate response, directly activate the nitrate-inducible expression of BT1 and BT2 encoding putative scaffold proteins with a plant-specific domain structure in Arabidopsis. Interestingly, the 35S promoter-driven expression of BT2 partially rescued growth inhibition caused by reductions in NLP activity in Arabidopsis. Furthermore, simultaneous disruption of BT1 and BT2 affected nitrate-dependent lateral root development. These results suggest that direct activation of BT1 and BT2 by NLP transcriptional activators is a key component of the molecular mechanism underlying the nitrate response in Arabidopsis.

  6. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative.

    PubMed Central

    Adams, C C; Workman, J L

    1995-01-01

    To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo. PMID:7862134

  7. Structural Model of RNA Polymerase II Elongation Complex with Complete Transcription Bubble Reveals NTP Entry Routes.

    PubMed

    Zhang, Lu; Silva, Daniel-Adriano; Pardo-Avila, Fátima; Wang, Dong; Huang, Xuhui

    2015-07-01

    The RNA polymerase II (Pol II) is a eukaryotic enzyme that catalyzes the synthesis of the messenger RNA using a DNA template. Despite numerous biochemical and biophysical studies, it remains elusive whether the "secondary channel" is the only route for NTP to reach the active site of the enzyme or if the "main channel" could be an alternative. On this regard, crystallographic structures of Pol II have been extremely useful to understand the structural basis of transcription, however, the conformation of the unpaired non-template DNA part of the full transcription bubble (TB) is still unknown. Since diffusion routes of the nucleoside triphosphate (NTP) substrate through the main channel might overlap with the TB region, gaining structural information of the full TB is critical for a complete understanding of Pol II transcription process. In this study, we have built a structural model of Pol II with a complete transcription bubble based on multiple sources of existing structural data and used Molecular Dynamics (MD) simulations together with structural analysis to shed light on NTP entry pathways. Interestingly, we found that although both channels have enough space to allow NTP loading, the percentage of MD conformations containing enough space for NTP loading through the secondary channel is twice higher than that of the main channel. Further energetic study based on MD simulations with NTP loaded in the channels has revealed that the diffusion of the NTP through the main channel is greatly disfavored by electrostatic repulsion between the NTP and the highly negatively charged backbones of nucleotides in the non-template DNA strand. Taken together, our results suggest that the secondary channel is the major route for NTP entry during Pol II transcription.

  8. The Transcription Activity of Gis1 Is Negatively Modulated by Proteasome-mediated Limited Proteolysis*

    PubMed Central

    Zhang, Nianshu; Oliver, Stephen G.

    2010-01-01

    The transcriptional response to environmental changes has to be prompt but appropriate. Previously, it has been shown that the Gis1 transcription factor is responsible for regulating the expression of postdiauxic shift genes in response to nutrient starvation, and this transcription regulation is dependent upon the Rim15 kinase. Here we demonstrate that the activity of Gis1 is negatively modulated by proteasome-mediated limited proteolysis. Limited degradation of Gis1 by the proteasome leads to the production of smaller variants, which have weaker transcription activities than the full-length protein. The coiled-coil domain, absent from the smaller variants, is part of the second transcription activation domain in Gis1 and is essential for both the limited proteolysis of Gis1 and its full activity. Endogenous Gis1 and its variants, regardless of their transcription capabilities, activate transcription in a Rim15-dependent manner. However, when the full-length Gis1 accumulates in cells due to overexpression or inhibition of the proteasome function, transcription activation by Gis1 is no longer solely controlled by Rim15. Together, these data strongly indicate that the function of the limited degradation is to ensure that Gis1-dependent transcription is strictly regulated by the Rim15 kinase. Furthermore, we have revealed that the kinase activity of Rim15 is essential for this regulation. PMID:20022953

  9. RNase H Activity: Structure, Specificity, and Function in Reverse Transcription

    PubMed Central

    Schultz, Sharon J.; Champoux, James J.

    2008-01-01

    This review compares the well-studied RNase H activities of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) reverse transcriptases. The RNase H domains of HIV-1 and MoMLV are structurally very similar, with functions assigned to conserved subregions like the RNase H primer grip and the connection subdomain, as well as to distinct features like the C-helix and loop in MoMLV RNase H. Like cellular RNases H, catalysis by the retroviral enzymes appears to involve a two-metal ion mechanism. Unlike cellular RNases H, the retroviral RNases H display three different modes of cleavage: internal, DNA 3′ end-directed, and RNA 5′ end-directed. All three modes of cleavage appear to have roles in reverse transcription. Nucleotide sequence is an important determinant of cleavage specificity with both enzymes exhibiting a preference for specific nucleotides at discrete positions flanking an internal cleavage site as well as during tRNA primer removal and plus-strand primer generation. RNA 5′ end-directed and DNA 3′ end-directed cleavages show similar sequence preferences at the positions closest to a cleavage site. A model for how RNase H selects cleavage sites is presented that incorporates both sequence preferences and the concept of a defined window for allowable cleavage from a recessed end. Finally, the RNase H activity of HIV-1 is considered as a target for anti-virals as well as a participant in drug resistance. PMID:18261820

  10. Aurora kinase B activity is modulated by thyroid hormone during transcriptional activation of pituitary genes.

    PubMed

    Tardáguila, Manuel; González-Gugel, Elena; Sánchez-Pacheco, Aurora

    2011-03-01

    Covalent histone modifications clearly play an essential role in ligand-dependent transcriptional regulation by nuclear receptors. One of the predominant mechanisms used by nuclear receptors to activate or repress target-gene transcription is the recruitment of coregulatory factors capable of covalently modify the amino terminal ends of histones. Here we show that the thyroid hormone (T3) produces a rapid increase in histone H3Ser10 phosphorylation (H3Ser10ph) concomitant to the rapid displacement of the heterochromatin protein 1β (HP1β) to the nuclear periphery. Moreover, we found that T3-mediated pituitary gene transcription is associated with an increase in H3Ser10ph. Interestingly, the Aurora kinase B inhibitor ZM443979 abolishes the effect of T3 on H3Ser10ph, blocks HP1β delocalization, and significantly reduces ligand-dependent transactivation. Similar effects were shown when Aurora kinase B expression was abrogated in small interfering RNA assays. In an effort to understand the underlying mechanism by which T3 increases H3Ser10ph, we demonstrate that liganded thyroid hormone receptor directly interacts with Aurora kinase B, increasing its kinase activity. Moreover, using chromatin immunoprecipitation assays, we have shown that Aurora kinase B participates of a mechanism that displaces HP1β from promoter region, thus preparing the chromatin for the transcriptional activation of T3 regulated genes. Our findings reveal a novel role for Aurora kinase B during transcriptional initiation in GO/G1, apart from its well-known mitotic activity.

  11. Distinct contributions of MSL complex subunits to the transcriptional enhancement responsible for dosage compensation in Drosophila.

    PubMed

    Dunlap, David; Yokoyama, Ruth; Ling, Huiping; Sun, He-Ying; McGill, Kerry; Cugusi, Simona; Lucchesi, John C

    2012-12-01

    The regulatory mechanism of dosage compensation is the paramount example of epigenetic regulation at the chromosomal level. In Drosophila, this mechanism, designed to compensate for the difference in the dosage of X-linked genes between the sexes, depends on the MSL complex that enhances the transcription of the single dose of these genes in males. We have investigated the function of various subunits of the complex in mediating dosage compensation. Our results confirm that the highly enriched specific acetylation of histone H4 at lysine 16 of compensated genes by the histone acetyl transferase subunit MOF induces a more disorganized state of their chromatin. We have determined that the association of the MSL complex reduces the level of negative supercoiling of the deoxyribonucleic acid of compensated genes, and we have defined the role that the other subunits of the complex play in this topological modification. Lastly, we have analyzed the potential contribution of ISWI-containing remodeling complexes to the architecture of compensated chromatin, and we suggest a role for this remodeling factor in dosage compensation.

  12. The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity

    PubMed Central

    Alam, Samer G.; Zhang, Qiao; Prasad, Nripesh; Li, Yuan; Chamala, Srikar; Kuchibhotla, Ram; KC, Birendra; Aggarwal, Varun; Shrestha, Shristi; Jones, Angela L.; Levy, Shawn E.; Roux, Kyle J.; Nickerson, Jeffrey A.; Lele, Tanmay P.

    2016-01-01

    Mechanical integration of the nucleus with the extracellular matrix (ECM) is established by linkage between the cytoskeleton and the nucleus. This integration is hypothesized to mediate sensing of ECM rigidity, but parsing the function of nucleus-cytoskeleton linkage from other mechanisms has remained a central challenge. Here we took advantage of the fact that the LINC (linker of nucleoskeleton and cytoskeleton) complex is a known molecular linker of the nucleus to the cytoskeleton, and asked how it regulates the sensitivity of genome-wide transcription to substratum rigidity. We show that gene mechanosensitivity is preserved after LINC disruption, but reversed in direction. Combined with myosin inhibition studies, we identify genes that depend on nuclear tension for their regulation. We also show that LINC disruption does not attenuate nuclear shape sensitivity to substrate rigidity. Our results show for the first time that the LINC complex facilitates mechano-regulation of expression across the genome. PMID:27905489

  13. ISL1-based LIM complexes control Slit2 transcription in developing cranial motor neurons

    PubMed Central

    Kim, Kyung-Tai; Kim, Namhee; Kim, Hwan-Ki; Lee, Hojae; Gruner, Hannah N.; Gergics, Peter; Park, Chungoo; Mastick, Grant S.; Park, Hae-Chul; Song, Mi-Ryoung

    2016-01-01

    LIM-homeodomain (HD) transcription factors form a multimeric complex and assign neuronal subtype identities, as demonstrated by the hexameric ISL1-LHX3 complex which gives rise to somatic motor (SM) neurons. However, the roles of combinatorial LIM code in motor neuron diversification and their subsequent differentiation is much less well understood. In the present study, we demonstrate that the ISL1 controls postmitotic cranial branchiomotor (BM) neurons including the positioning of the cell bodies and peripheral axon pathfinding. Unlike SM neurons, which transform into interneurons, BM neurons are normal in number and in marker expression in Isl1 mutant mice. Nevertheless, the movement of trigeminal and facial BM somata is stalled, and their peripheral axons are fewer or misrouted, with ectopic branches. Among genes whose expression level changes in previous ChIP-seq and microarray analyses in Isl1-deficient cell lines, we found that Slit2 transcript was almost absent from BM neurons of Isl1 mutants. Both ISL1-LHX3 and ISL1-LHX4 bound to the Slit2 enhancer and drove endogenous Slit2 expression in SM and BM neurons. Our findings suggest that combinations of ISL1 and LHX factors establish cell-type specificity and functional diversity in terms of motor neuron identities and/or axon development. PMID:27819291

  14. RNA polymerase and transcription elongation factor Spt4/5 complex structure

    PubMed Central

    Klein, Brianna J.; Bose, Daniel; Baker, Kevin J.; Yusoff, Zahirah M.; Zhang, Xiaodong; Murakami, Katsuhiko S.

    2011-01-01

    Spt4/5 in archaea and eukaryote and its bacterial homolog NusG is the only elongation factor conserved in all three domains of life and plays many key roles in cotranscriptional regulation and in recruiting other factors to the elongating RNA polymerase. Here, we present the crystal structure of Spt4/5 as well as the structure of RNA polymerase-Spt4/5 complex using cryoelectron microscopy reconstruction and single particle analysis. The Spt4/5 binds in the middle of RNA polymerase claw and encloses the DNA, reminiscent of the DNA polymerase clamp and ring helicases. The transcription elongation complex model reveals that the Spt4/5 is an upstream DNA holder and contacts the nontemplate DNA in the transcription bubble. These structures reveal that the cellular RNA polymerases also use a strategy of encircling DNA to enhance its processivity as commonly observed for many nucleic acid processing enzymes including DNA polymerases and helicases. PMID:21187417

  15. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.

    PubMed

    Meyer, Sarai; Chappell, James; Sankar, Sitara; Chew, Rebecca; Lucks, Julius B

    2016-01-01

    Regulatory RNAs have become integral components of the synthetic biology and bioengineering toolbox for controlling gene expression. We recently expanded this toolbox by creating small transcription activating RNAs (STARs) that act by disrupting the formation of a target transcriptional terminator hairpin placed upstream of a gene. While STARs are a promising addition to the repertoire of RNA regulators, much work remains to be done to optimize the fold activation of these systems. Here we apply rational RNA engineering strategies to improve the fold activation of two STAR regulators. We demonstrate that a combination of promoter strength tuning and multiple RNA engineering strategies can improve fold activation from 5.4-fold to 13.4-fold for a STAR regulator derived from the pbuE riboswitch terminator. We then validate the generality of our approach and show that these same strategies improve fold activation from 2.1-fold to 14.6-fold for an unrelated STAR regulator, opening the door to creating a range of additional STARs to use in a broad array of biotechnologies. We also establish that the optimizations preserve the orthogonality of these STARs between themselves and a set of RNA transcriptional repressors, enabling these optimized STARs to be used in sophisticated circuits.

  16. Activation of tissue plasminogen activator gene transcription by Neovastat, a multifunctional antiangiogenic agent.

    PubMed

    Gingras, Denis; Nyalendo, Carine; Di Tomasso, Geneviève; Annabi, Borhane; Béliveau, Richard

    2004-07-16

    We recently reported that Neovastat, an antiangiogenic drug that is currently undergoing Phase III clinical trials for the treatment of non-small cell lung cancer, may inhibit angiogenesis through an increase in tPA activity. Here, we show that Neovastat also stimulates tPA gene transcription in endothelial cells, in a TNFalpha-like manner. RT-PCR analysis and gene reporter assays using the human tPA promoter indicated that upregulation of the tPA gene transcription by both Neovastat and TNFalpha was correlated with the phosphorylation of JNK1/2 and of IkappaB and that SP600125 and BAY11-7082, inhibitors of JNK and IkappaK, respectively, inhibit the increase of tPA gene transcription induced by Neovastat and TNFalpha. These results suggest that Neovastat induces tPA gene transcription through activation of the JNK and NFkappaB signaling pathways, leading to an increase of tPA secretion by endothelial cells. This may lead to the localized destruction of the fibrin provisional matrix that is necessary for neovessel formation and thus contribute to the reported antiangiogenic properties of this compound.

  17. Jun Dimerization Protein 2 Activates Mc2r Transcriptional Activity: Role of Phosphorylation and SUMOylation

    PubMed Central

    Wang, Chiung-Min; Wang, Raymond X.; Liu, Runhua; Yang, Wei-Hsiung

    2017-01-01

    Jun dimerization protein 2 (JDP2), a basic leucine zipper transcription factor, is involved in numerous biological and cellular processes such as cancer development and regulation, cell-cycle regulation, skeletal muscle and osteoclast differentiation, progesterone receptor signaling, and antibacterial immunity. Though JDP2 is widely expressed in mammalian tissues, its function in gonads and adrenals (such as regulation of steroidogenesis and adrenal development) is largely unknown. Herein, we find that JDP2 mRNA and proteins are expressed in mouse adrenal gland tissues. Moreover, overexpression of JDP2 in Y1 mouse adrenocortical cancer cells increases the level of melanocortin 2 receptor (MC2R) protein. Notably, Mc2r promoter activity is activated by JDP2 in a dose-dependent manner. Next, by mapping the Mc2r promoter, we show that cAMP response elements (between −1320 and −720-bp) are mainly required for Mc2r activation by JDP2 and demonstrate that −830-bp is the major JDP2 binding site by real-time chromatin immunoprecipitation (ChIP) analysis. Mutations of cAMP response elements on Mc2r promoter disrupts JDP2 effect. Furthermore, we demonstrate that removal of phosphorylation of JDP2 results in attenuated transcriptional activity of Mc2r. Finally, we show that JDP2 is a candidate for SUMOylation and SUMOylation affects JDP2-mediated Mc2r transcriptional activity. Taken together, JDP2 acts as a novel transcriptional activator of the mouse Mc2r gene, suggesting that JDP2 may have physiological functions as a novel player in MC2R-mediated steroidogenesis as well as cell signaling in adrenal glands. PMID:28146118

  18. A modified reverse one-hybrid screen identifies transcriptional activation in Phyochrome-Interacting Factor 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional activation domains (TAD) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput...

  19. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex.

    PubMed

    Li, Shutian

    2014-01-01

    Flavonoids are plant secondary polyphenolic metabolites and fulfil many vital biological functions, offering a valuable metabolic and genetic model for studying transcriptional control of gene expression. Arabidopsis thaliana mainly accumulates 3 types of flavonoids, including flavonols, anthocyanins, and proanthocyanidins (PAs). Flavonoid biosynthesis involves a multitude of well-characterized enzymatic and regulatory proteins. Three R2R3-MYB proteins (MYB11, MYB12, and MYB111) control flavonol biosynthesis via activating the early biosynthetic steps, whereas the production of anthocyanins and PAs requires the MYB-bHLH-WD40 (MBW) complex to activate the late biosynthetic genes. Additional regulators of flavonoid biosynthesis have recently come to light, which interact with R2R3-MYBs or bHLHs to organize or disrupt the formation of the MBW complex, leading to enhanced or compromised flavonoid production. This mini-review gives an overview of how these novel players modulate flavonoid metabolism and thus plant developmental processes and further proposes a fine-tuning mechanism to complete the complex regulatory network controlling flavonoid biosynthesis.

  20. Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo.

    PubMed Central

    Sainz, M B; Goff, S A; Chandler, V L

    1997-01-01

    C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains. PMID:8972191

  1. Human ZCCHC12 activates AP-1 and CREB signaling as a transcriptional co-activator.

    PubMed

    Li, Hong; Liu, Qian; Hu, Xiang; Feng, Du; Xiang, Shuanglin; He, Zhicheng; Hu, Xingwang; Zhou, Jianlin; Ding, Xiaofeng; Zhou, Chang; Zhang, Jian

    2009-07-01

    Mouse zinc finger CCHC domain containing 12 gene (ZCCHC12) has been identified as a transcriptional co-activator of bone morphogenetic protein (BMP) signaling, and human ZCCHC12 was reported to be related to non-syndromic X-linked mental retardation (NS-XLMR). However, the details of how human ZCCHC12 involve in the NS-XLMR still remain unclear. In this study, we identified a novel nuclear localization signal (NLS) in the middle of human ZCCHC12 protein which is responsible for the nuclear localization. Multiple-tissue northern blot analysis indicated that ZCCHC12 is highly expressed in human brain. Furthermore, in situ hybridization showed that ZCCHC12 is specifically expressed in neuroepithelium of forebrain, midbrain, and diencephalon regions of mouse E10.5 embryos. Luciferase reporter assays demonstrated that ZCCHC12 enhanced the transcriptional activities of activator protein 1 (AP-1) and cAMP response element binding protein (CREB) as a coactivator. In conclusion, we identified a new NLS in ZCCHC12 and figured out that ZCCHC12 functions as a transcriptional co-activator of AP-1 and CREB.

  2. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain.

    PubMed Central

    Kirkpatrick, D T; Fan, Q; Petes, T D

    1999-01-01

    The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, alpha (transcription factor dependent) and beta (transcription factor independent). PMID:10224246

  3. Thyroid hormone stimulates the renal Na/H exchanger NHE3 by transcriptional activation

    PubMed Central

    CANO, ADRIANA; BAUM, MICHEL; MOE, ORSON W.

    2014-01-01

    Thyroid hormone stimulates renal proximal tubule NaCl and NaHCO3 absorption in part by activating the apical membrane Na/H exchanger NHE3. We used a renal epithelial cell line, the opossum kidney (OK) cell, to define the mechanism by which 3,5,3′-triiodothyronine (T3) increases NHE3 activity. T3 stimulated NHE3 activity, an effect that was blocked by inhibition of cellular transcription or translation. The increase in activity was associated with increases in steady-state cell surface and total cellular NHE3 protein and NHE3 transcript abundance. T3 stimulated transcription of the NHE3 gene and had no effect on NHE3 transcript stability. The transcriptional activity of the 5′-flanking region of the rat NHE3 gene was stimulated by T3 when expressed in OK cells. When heterologously expressed rat NHE3 transcript levels were clamped constant with a constitutive promoter in OK cells, T3 has no effect on rat NHE3 protein abundance, suggesting the absence of regulation of NHE3 protein stability or translation. These studies demonstrate that T3 stimulates NHE3 activity by activating NHE3 gene transcription and increasing NHE3 transcript and protein abundance. PMID:9886925

  4. Rapid neurogenesis through transcriptional activation in human stem cells

    PubMed Central

    Busskamp, Volker; Lewis, Nathan E; Guye, Patrick; Ng, Alex HM; Shipman, Seth L; Byrne, Susan M; Sanjana, Neville E; Murn, Jernej; Li, Yinqing; Li, Shangzhong; Stadler, Michael; Weiss, Ron; Church, George M

    2014-01-01

    Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types. PMID:25403753

  5. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  6. The transcription factor RFX5 is a transcriptional activator of the TPP1 gene in hepatocellular carcinoma.

    PubMed

    Zhao, Yangjing; Xie, Xingwang; Liao, Weijia; Zhang, Henghui; Cao, Hui; Fei, Ran; Wang, Xueyan; Wei, Lai; Shao, Qixiang; Chen, Hongsong

    2017-01-01

    Regulatory factor X-5 (RFX5) was previously characterized as an essential and highly specific regulator of major histocompatibility class II (MHCII) gene expression in the immune system. We found that RFX5 is significantly upregulated in hepatocellular carcinoma (HCC) tumors and cell lines compared with non-tumor tissues in mRNA expression levels, but it fails to induce the expression of MHCII. However, RFX5 can strongly bind to the tripeptidyl peptidase 1 (TPP1) promoter region and then increase its transcriptional activity. We also found that manipulation the expression of RFX5 can significantly affect the expression of TPP1 in HepG2, which suggested that RFX5 can transcriptionally activate TPP1 in HCC. Moreover, TPP1 is overexpressed in HCC tissues and significantly correlated with poor prognosis of HCC patients, suggesting that it may have potential biological implications in HCC.

  7. The Kruppel-like zinc finger protein ZNF224 recruits the arginine methyltransferase PRMT5 on the transcriptional repressor complex of the aldolase A gene.

    PubMed

    Cesaro, Elena; De Cegli, Rossella; Medugno, Lina; Florio, Francesca; Grosso, Michela; Lupo, Angelo; Izzo, Paola; Costanzo, Paola

    2009-11-20

    Gene transcription in eukaryotes is modulated by the coordinated recruitment of specific transcription factors and chromatin-modulating proteins. Indeed, gene activation and/or repression is/are regulated by histone methylation status at specific arginine or lysine residues. In this work, by co-immunoprecipitation experiments, we demonstrate that PRMT5, a type II protein arginine methyltransferase that monomethylates and symmetrically dimethylates arginine residues, is physically associated with the Kruppel-like associated box-zinc finger protein ZNF224, the aldolase A gene repressor. Moreover, chromatin immunoprecipitation assays show that PRMT5 is recruited to the L-type aldolase A promoter and that methylation of the nucleosomes that surround the L-type promoter region occurs in vivo on the arginine 3 of histone H4. Consistent with its association to the ZNF224 repressor complex, the decrease of PRMT5 expression produced by RNA interference positively affects L-type aldolase A promoter transcription. Finally, the alternating occupancy of the L-type aldolase A promoter by the ZNF224-PRMT5 repression complex in proliferating and growth-arrested cells suggests that these regulatory proteins play a significant role during the cell cycle modulation of human aldolase A gene expression. Our data represent the first experimental evidence that protein arginine methylation plays a role in ZNF224-mediated transcriptional repression and provide novel insight into the chromatin modifications required for repression of gene transcription by Kruppel-like associated box-zinc finger proteins.

  8. Active transcription and essential role of RNA polymerase II at the centromere during mitosis

    PubMed Central

    Chan, F. Lyn; Marshall, Owen J.; Saffery, Richard; Won Kim, Bo; Earle, Elizabeth; Choo, K. H. Andy; Wong, Lee H.

    2012-01-01

    Transcription of the centromeric regions has been reported to occur in G1 and S phase in different species. Here, we investigate whether transcription also occurs and plays a functional role at the mammalian centromere during mitosis. We show the presence of actively transcribing RNA polymerase II (RNAPII) and its associated transcription factors, coupled with the production of centromere satellite transcripts at the mitotic kinetochore. Specific inhibition of RNAPII activity during mitosis leads to a decrease in centromeric α-satellite transcription and a concomitant increase in anaphase-lagging cells, with the lagging chromosomes showing reduced centromere protein C binding. These findings demonstrate an essential role of RNAPII in the transcription of α-satellite DNA, binding of centromere protein C, and the proper functioning of the mitotic kinetochore. PMID:22308327

  9. Statistical reconstruction of transcription factor activity using Michaelis-Menten kinetics.

    PubMed

    Khanin, R; Vinciotti, V; Mersinias, V; Smith, C P; Wit, E

    2007-09-01

    The basic building block of a gene regulatory network consists of a gene encoding a transcription factor (TF) and the gene(s) it regulates. Considerable efforts have been directed recently at devising experiments and algorithms to determine TFs and their corresponding target genes using gene expression and other types of data. The underlying problem is that the expression of a gene coding for the TF provides only limited information about the activity of the TF, which can also be controlled posttranscriptionally. In the absence of a reliable technology to routinely measure the activity of regulators, it is of great importance to understand whether this activity can be inferred from gene expression data. We here develop a statistical framework to reconstruct the activity of a TF from gene expression data of the target genes in its regulatory module. The novelty of our approach is that we embed the deterministic Michaelis-Menten model of gene regulation in this statistical framework. The kinetic parameters of the gene regulation model are inferred together with the profile of the TF regulator. We also obtain a goodness-of-fit test to verify the fit of the model. The model is applied to a time series involving the Streptomyces coelicolor bacterium. We focus on the transcriptional activator cdaR, which is partly responsible for the production of a particular type of antibiotic. The aim is to reconstruct the activity profile of this regulator. Our approach can be extended to include more complex regulatory relationships, such as multiple regulatory factors, competition, and cooperativity.

  10. Transcriptional activity of the murine retinol-binding protein gene is regulated by a multiprotein complex containing HMGA1, p54 nrb/NonO, protein-associated splicing factor (PSF) and steroidogenic factor 1 (SF1)/liver receptor homologue 1 (LRH-1).

    PubMed

    Bianconcini, Adriana; Lupo, Angelo; Capone, Silvana; Quadro, Loredana; Monti, Maria; Zurlo, Diana; Fucci, Alessandra; Sabatino, Lina; Brunetti, Antonio; Chiefari, Eusebio; Gottesman, Max E; Blaner, William S; Colantuoni, Vittorio

    2009-11-01

    Retinol-binding protein (RBP4) transports retinol in the circulation from hepatic stores to peripheral tissues. Since little is known regarding the regulation of this gene, we analysed the cis-regulatory sequences of the mouse RBP4 gene. Our data show that transcription of the gene is regulated through a bipartite promoter: a proximal region necessary for basal expression and a distal segment responsible for cAMP-induction. This latter region contains several binding sites for the structural HMGA1 proteins, which are important to promoter regulation. We further demonstrate that HMGA1s play a key role in basal and cAMP-induction of Rbp4 transcription and the RBP4 and HMGA1 genes are coordinately regulated in vitro and in vivo. HMGA1 acts to recruit transcription factors to the RBP4 promoter and we specifically identified p54(nrb)/NonO and protein-associated splicing factor (PSF) as components that interact with this complex. Steroidogenic factor 1 (SF1) or the related liver receptor homologue 1 (LRH-1) are also associated with this complex upon cAMP-induction. Depletion of SF1/LRH-1 by RNA interference resulted in a dramatic loss of cAMP-induction. Collectively, our results demonstrate that basal and cAMP-induced Rbp4 transcription is regulated by a multiprotein complex that is similar to ones that modulate expression of genes of steroid hormone biosynthesis. Since genes related to glucose metabolism are regulated in a similar fashion, this suggests that Rbp4 expression may be regulated as part of a network of pathways relevant to the onset of type 2 diabetes.

  11. Inhibition of the association of RNA polymerase II with the preinitiation complex by a viral transcriptional repressor.

    PubMed

    Lee, G; Wu, J; Luu, P; Ghazal, P; Flores, O

    1996-03-19

    Transcriptional repression is an important component of regulatory networks that govern gene expression. In this report, we have characterized the mechanisms by which the immediate early protein 2 (IE2 or IE86), a master transcriptional regulator of human cytomegalovirus, down-regulates its own expression. In vitro transcription and DNA binding experiments demonstrate that IE2 blocks specifically the association of RNA polymerase II with the preinitiation complex. Although, to our knowledge, this is the first report to describe a eukaryotic transcriptional repressor that selectively impedes RNA polymerase II recruitment, we present data that suggest that this type of repression might be widely used in the control of transcription by RNA polymerase II.

  12. Accumulation of plant antenna complexes is regulated by post-transcriptional mechanisms in tobacco.

    PubMed Central

    Flachmann, R; Kühlbrandt, W

    1995-01-01

    Transgenic tobacco plants expressing antisense RNA directed against the multigene family of the light-harvesting complex of photosystem II (LHCII) were raised and analyzed biochemically and physiologically. A partial 5' terminal sequence with 509 nucleotides complementary to cab (chlorophyll a/b binding protein) genes reduced the amount of transcript to almost undectectable levels. We demonstrated for endogenous genes that a 5' terminal sequence with only 52 to 105 nucleotides complementary to the transit sequence of cab can be equally efficient in gene repression. Chlorophyll content and chlorophyll a-to-chlorophyll b ratios of thylakoid membranes isolated from transgenic plants were unchanged in comparison with the wild type. Photosynthetic oxygen evolution and in vivo-measured chlorophyll fluorescence of the transformants showed that LHCII accumulates to normal levels. The reduced level of cab mRNA did not correlate with the amount of LHCII in thylakoids. This indicates that transcriptional regulation is not the rate-limiting step in the biogenesis of the LHCII apoprotein. The antenna size of photosystem II is therefore modulated by yet undiscovered posttranscriptional mechanisms. PMID:7756826

  13. Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription.

    PubMed

    Liu, Pingyang; Xiang, Yanhui; Fujinaga, Koh; Bartholomeeusen, Koen; Nilson, Kyle A; Price, David H; Peterlin, B Matija

    2014-04-04

    By phosphorylating negative elongation factors and the C-terminal domain of RNA polymerase II (RNAPII), positive transcription elongation factor b (P-TEFb), which is composed of CycT1 or CycT2 and CDK9, activates eukaryotic transcription elongation. In growing cells, it is found in active and inactive forms. In the former, free P-TEFb is a potent transcriptional coactivator. In the latter, it is inhibited by HEXIM1 or HEXIM2 in the 7SK small nuclear ribonucleoprotein (snRNP), which contains, additionally, 7SK snRNA, methyl phosphate-capping enzyme (MePCE), and La-related protein 7 (LARP7). This P-TEFb equilibrium determines the state of growth and proliferation of the cell. In this study, the release of P-TEFb from the 7SK snRNP led to increased synthesis of HEXIM1 but not HEXIM2 in HeLa cells, and this occurred only from an unannotated, proximal promoter. ChIP with sequencing revealed P-TEFb-sensitive poised RNA polymerase II at this proximal but not the previously annotated distal HEXIM1 promoter. Its immediate upstream sequences were fused to luciferase reporters and were found to be responsive to many P-TEFb-releasing compounds. The superelongation complex subunits AF4/FMR2 family member 4 (AFF4) and elongation factor RNA polymerase II 2 (ELL2) were recruited to this proximal promoter after P-TEFb release and were required for its transcriptional effects. Thus, P-TEFb regulates its own equilibrium in cells, most likely to maintain optimal cellular homeostasis.

  14. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells

    SciTech Connect

    Vachtenheim, Jiri; Ondrusova, Lubica; Borovansky, Jan

    2010-02-12

    The microphthalmia-associated transcription factor (MITF) is required for melanocyte development, maintenance of the melanocyte-specific transcription, and survival of melanoma cells. MITF positively regulates expression of more than 25 genes in pigment cells. Recently, it has been demonstrated that expression of several MITF downstream targets requires the SWI/SNF chromatin remodeling complex, which contains one of the two catalytic subunits, Brm or Brg1. Here we show that the expression of MITF itself critically requires active SWI/SNF. In several Brm/Brg1-expressing melanoma cell lines, knockdown of Brg1 severely compromised MITF expression with a concomitant dowregulation of MITF targets and decreased cell proliferation. Although Brm was able to substitute for Brg1 in maintaining MITF expression and melanoma cell proliferation, sequential knockdown of both Brm and Brg1 in 501mel cells abolished proliferation. In Brg1-null SK-MEL-5 melanoma cells, depletion of Brm alone was sufficient to abrogate MITF expression and cell proliferation. Chromatin immunoprecipitation confirmed the binding of Brg1 or Brm to the promoter of MITF. Together these results demonstrate the essential role of SWI/SNF for expression of MITF and suggest that SWI/SNF may be a promissing target in melanoma therapy.

  15. Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex

    PubMed Central

    Egan, Emily D.; Braun, Craig R.; Gygi, Steven P.; Moazed, Danesh

    2014-01-01

    RNA is a central component of gene-silencing pathways that regulate diverse cellular processes. In the fission yeast Schizosaccharomyces pombe, an RNA-based mechanism represses meiotic gene expression during vegetative growth. This pathway depends on the zinc finger protein Red1, which is required to degrade meiotic mRNAs as well as to target histone H3 lysine 9 (H3K9) methylation, a repressive chromatin mark, to a subset of meiotic genes. However, the mechanism of Red1 function is unknown. Here we use affinity purification and mass spectrometry to identify a Red1-containing nuclear RNA silencing (NURS) complex. In addition to Red1, this complex includes the Mtl1, Red5, Ars2, Rmn1, and Iss10 proteins and associates with several other complexes that are involved in either signaling or mediating RNA silencing. By analyzing the effects of gene knockouts and inducible knockdown alleles, we show that NURS subunits regulate RNA degradation and H3K9 methylation at meiotic genes. We also identify roles for individual NURS subunits in interactions with Mmi1, an RNA-binding protein that marks meiotic RNAs for destruction, and the nuclear exosome RNA degradation complex. Finally, we show that the levels of H3K9 methylation at meiotic genes are not sufficient to restrict RNA polymerase II access or repress gene expression during vegetative growth. Our results demonstrate that Red1 partners with other proteins to silence meiotic gene expression at the post-transcriptional level. Conservation of a NURS-like complex in human cells suggests that this pathway plays an ancient and fundamental role in RNA silencing. PMID:24713849

  16. Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers.

    PubMed

    Pearson, Joseph C; McKay, Daniel J; Lieb, Jason D; Crews, Stephen T

    2016-10-15

    One of the key issues in studying transcriptional regulation during development is how to employ genome-wide assays that reveals sites of open chromatin and transcription factor binding to efficiently identify biologically relevant genes and enhancers. Analysis of Drosophila CNS midline cell development provides a useful system for studying transcriptional regulation at the genomic level due to a large, well-characterized set of midline-expressed genes and in vivo validated enhancers. In this study, FAIRE-seq on FACS-purified midline cells was performed and the midline FAIRE data were compared with whole-embryo FAIRE data. We find that regions of the genome with a strong midline FAIRE peak and weak whole-embryo FAIRE peak overlap with known midline enhancers and provide a useful predictive tool for enhancer identification. In a complementary analysis, we compared a large dataset of fragments that drive midline expression in vivo with the FAIRE data. Midline enhancer fragments with a midline FAIRE peak tend to be near midline-expressed genes, whereas midline enhancers without a midline FAIRE peak were often distant from midline-expressed genes and unlikely to drive midline transcription in vivo.

  17. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  18. A novel dinuclear iridium(III) complex as a G-quadruplex-selective probe for the luminescent switch-on detection of transcription factor HIF-1α

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Wang, Modi; Mao, Zhifeng; Kang, Tian-Shu; Chen, Xiu-Ping; Lu, Jin-Jian; Leung, Chung-Hang; Ma, Dik-Lung

    2016-03-01

    A novel dinuclear Ir(III) complex 5 was discovered to be specific to G-quadruplex DNA, and was utilized in a label-free G-quadruplex-based detection platform for transcription factor activity. The principle of this assay was demonstrated by using HIF-1α as a model protein. Moreover, this HIF-1α detection assay exhibited potential use for biological sample analysis.

  19. A novel dinuclear iridium(III) complex as a G-quadruplex-selective probe for the luminescent switch-on detection of transcription factor HIF-1α

    PubMed Central

    Lu, Lihua; Wang, Modi; Mao, Zhifeng; Kang, Tian-Shu; Chen, Xiu-Ping; Lu, Jin-Jian; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    A novel dinuclear Ir(III) complex 5 was discovered to be specific to G-quadruplex DNA, and was utilized in a label-free G-quadruplex-based detection platform for transcription factor activity. The principle of this assay was demonstrated by using HIF-1α as a model protein. Moreover, this HIF-1α detection assay exhibited potential use for biological sample analysis. PMID:26932240

  20. Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants.

    PubMed

    Song, Ze-Ting; Sun, Le; Lu, Sun-Jie; Tian, Yongke; Ding, Yong; Liu, Jian-Xiang

    2015-03-03

    Accumulation of unfolded or misfolded proteins causes endoplasmic reticulum (ER) stress, which activates a set of ER membrane-associated transcription factors for protein homeostasis regulation. Previous genome-wide chromatin immunoprecipitation analysis shows a strong correlation between histone H3K4 trimethylation (H3K4me3) and active gene expression. However, how the histone modification complex is specifically and timely recruited to the active promoters remains unknown. Using ER stress responsive gene expression as a model system, we demonstrate that sequence-specific transcription factors interact with COMPASS-like components and affect H3K4me3 formation at specific target sites in Arabidopsis. Gene profiling analysis reveals that membrane-associated basic leucine zipper (bZIP) transcription factors bZIP28 and bZIP60 regulate most of the ER stress responsive genes. Loss-of-functions of bZIP28 and bZIP60 impair the occupancy of H3K4me3 on promoter regions of ER stress responsive genes. Further, in vitro pull-down assays and in vivo bimolecular fluorescence complementation (BiFC) experiments show that bZIP28 and bZIP60 interact with Ash2 and WDR5a, both of which are core COMPASS-like components. Knockdown expression of either Ash2 or WDR5a decreased the expression of several ER stress responsive genes. The COMPASS-like complex is known to interact with histone methyltransferase to facilitate preinitiation complex (PIC) assembly and generate H3K4me3 during transcription elongation. Thus, our data shows that the ER stress stimulus causes the formation of PIC and deposition of H3K4me3 mark at specific promoters through the interaction between transcription factor and COMPASS-like components.

  1. The exon junction complex as a node of post-transcriptional networks.

    PubMed

    Le Hir, Hervé; Saulière, Jérôme; Wang, Zhen

    2016-01-01

    The exon junction complex (EJC) is deposited onto mRNAs following splicing and adopts a unique structure, which can both stably bind to mRNAs and function as an anchor for diverse processing factors. Recent findings revealed that in addition to its established roles in nonsense-mediated mRNA decay, the EJC is involved in mRNA splicing, transport and translation. While structural studies have shed light on EJC assembly, transcriptome-wide analyses revealed differential EJC loading at spliced junctions. Thus, the EJC functions as a node of post-transcriptional gene expression networks, the importance of which is being revealed by the discovery of increasing numbers of EJC-related disorders.

  2. Complex genomic interactions in the dynamic regulation of transcription by the glucocorticoid receptor.

    PubMed

    Miranda, Tina B; Morris, Stephanie A; Hager, Gordon L

    2013-11-05

    The glucocorticoid receptor regulates transcriptional output through complex interactions with the genome. These events require continuous remodeling of chromatin, interactions of the glucocorticoid receptor with chaperones and other accessory factors, and recycling of the receptor by the proteasome. Therefore, the cohort of factors expressed in a particular cell type can determine the physiological outcome upon treatment with glucocorticoid hormones. In addition, circadian and ultradian cycling of hormones can also affect GR response. Here we will discuss revision of the classical static model of GR binding to response elements to incorporate recent findings from single cell and genome-wide analyses of GR regulation. We will highlight how these studies have changed our views on the dynamics of GR recruitment and its modulation of gene expression.

  3. Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses.

    PubMed

    Urrutia, Alejandra; Duffy, Darragh; Rouilly, Vincent; Posseme, Céline; Djebali, Raouf; Illanes, Gabriel; Libri, Valentina; Albaud, Benoit; Gentien, David; Piasecka, Barbara; Hasan, Milena; Fontes, Magnus; Quintana-Murci, Lluis; Albert, Matthew L

    2016-09-06

    Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes.

  4. Using protein-binding microarrays to study transcription factor specificity: homologs, isoforms and complexes

    PubMed Central

    Andrilenas, Kellen K.; Penvose, Ashley

    2015-01-01

    Protein–DNA binding is central to specificity in gene regulation, and methods for characterizing transcription factor (TF)–DNA binding remain crucial to studies of regulatory specificity. High-throughput (HT) technologies have revolutionized our ability to characterize protein–DNA binding by significantly increasing the number of binding measurements that can be performed. Protein-binding microarrays (PBMs) are a robust and powerful HT platform for studying DNA-binding specificity of TFs. Analysis of PBM-determined DNA-binding profiles has provided new insight into the scope and mechanisms of TF binding diversity. In this review, we focus specifically on the PBM technique and discuss its application to the study of TF specificity, in particular, the binding diversity of TF homologs and multi-protein complexes. PMID:25431149

  5. Mediator facilitates transcriptional activation and dynamic long-range contacts at the IgH locus during class switch recombination.

    PubMed

    Thomas-Claudepierre, Anne-Sophie; Robert, Isabelle; Rocha, Pedro P; Raviram, Ramya; Schiavo, Ebe; Heyer, Vincent; Bonneau, Richard; Luo, Vincent M; Reddy, Janardan K; Borggrefe, Tilman; Skok, Jane A; Reina-San-Martin, Bernardo

    2016-03-07

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by the transcription-coupled recruitment of activation-induced cytidine deaminase (AID) to Ig switch regions (S regions). During CSR, the IgH locus undergoes dynamic three-dimensional structural changes in which promoters, enhancers, and S regions are brought to close proximity. Nevertheless, little is known about the underlying mechanisms. In this study, we show that Med1 and Med12, two subunits of the mediator complex implicated in transcription initiation and long-range enhancer/promoter loop formation, are dynamically recruited to the IgH locus enhancers and the acceptor regions during CSR and that their knockdown in CH12 cells results in impaired CSR. Furthermore, we show that conditional inactivation of Med1 in B cells results in defective CSR and reduced acceptor S region transcription. Finally, we show that in B cells undergoing CSR, the dynamic long-range contacts between the IgH enhancers and the acceptor regions correlate with Med1 and Med12 binding and that they happen at a reduced frequency in Med1-deficient B cells. Our results implicate the mediator complex in the mechanism of CSR and are consistent with a model in which mediator facilitates the long-range contacts between S regions and the IgH locus enhancers during CSR and their transcriptional activation.

  6. Fli-1 controls transcription from the MCP-1 gene promoter, which may provide a novel mechanism for chemokine and cytokine activation.

    PubMed

    Lennard Richard, Mara L; Nowling, Tamara K; Brandon, Danielle; Watson, Dennis K; Zhang, Xian K

    2015-02-01

    Regulation of proinflammatory cytokines and chemokines is a primary role of the innate immune response. MCP-1 is a chemokine that recruits immune cells to sites of inflammation. Expression of MCP-1 is reduced in primary kidney endothelial cells from mice with a heterozygous knockout of the Fli-1 transcription factor. Fli-1 is a member of the Ets family of transcription factors, which are evolutionarily conserved across several organisms including Drosophilla, Xenopus, mouse and human. Ets family members bind DNA through a consensus sequence GGAA/T, or Ets binding site (EBS). Fli-1 binds to EBSs within the endogenous MCP-1 promoter by ChIP assay. In this study, transient transfection assays indicate that the Fli-1 gene actively promotes transcription from the MCP-1 gene promoter in a dose-dependent manner. Mutation of the DNA binding domain of Fli-1 demonstrated that Fli-1 activates transcription of MCP-1 both directly, by binding to the promoter, and indirectly, likely through interactions with other transcription factors. Another Ets transcription factor, Ets-1, was also tested, but failed to promote transcription. While Ets-1 failed to drive transcription independently, a weak synergistic activation of the MCP-1 promoter was observed between Ets-1 and Fli-1. In addition, Fli-1 and the NFκB family member p65 were found to interact synergistically to activate transcription from the MCP-1 promoter, while Sp1 and p50 inhibit this interaction. Deletion studies identified that EBSs in the distal and proximal MCP-1 promoter are critical for Fli-1 activation from the MCP-1 promoter. Together, these results demonstrate that Fli-1 is a novel regulator of the proinflammatory chemokine MCP-1, that interacts with other transcription factors to form a complex transcriptional mechanism for the activation of MCP-1 and mediation of the inflammatory response.

  7. Miz-1 and Max compete to engage c-Myc: implication for the mechanism of inhibition of c-Myc transcriptional activity by Miz-1.

    PubMed

    Bédard, Mikaël; Maltais, Loïka; Montagne, Martin; Lavigne, Pierre

    2017-02-01

    c-Myc is a basic helix-loop-helix leucine zipper (b-HLH-LZ) transcription factor deregulated in the majority of human cancers. As a heterodimer with Max, another b-HLH-LZ transcription factor, deregulated and persistent c-Myc accumulates at transcriptionally active promoters and enhancers and amplifies transcription. This leads to the so-called transcriptional addiction of tumor cells. Recent studies have showed that c-Myc transcriptional activities can be reversed by its association with Miz-1, a POZ transcription factor containing 13 classical zinc fingers. Although evidences have led to suggest that c-Myc interacts with both Miz-1 and Max to form a ternary repressive complex, earlier evidences also suggest that Miz-1 and Max may compete to engage c-Myc. In such a scenario, the Miz-1/c-Myc complex would be the entity responsible for the inhibition of c-Myc transcriptional amplification. Considering the implications of the Miz-1/c-Myc interaction, it is highly important to solve this duality. While two potential c-Myc interacting domains (hereafter termed MID) have been identified in Miz-1 by yeast two-hybrid, with the b-HLH-LZ as a bait, the biophysical characterization of these interactions has not been reported so far. Here, we report that the MID located between the 12th and 13th zinc finger of Miz-1 and the b-HLH-LZ of Max compete to form a complex with the b-HLH-LZ of c-Myc. Our results support the notion that the repressive action of Miz-1 on c-Myc does not rely on the formation of a ternary complex. The implications of these observations for the mechanism of inhibition of c-Myc transcriptional activity by Miz-1 are discussed. Proteins 2017; 85:199-206. © 2016 Wiley Periodicals, Inc.

  8. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    PubMed

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms.

  9. NprR, a moonlighting quorum sensor shifting from a phosphatase activity to a transcriptional activator

    PubMed Central

    Perchat, Stéphane; Talagas, Antoine; Zouhir, Samira; Poncet, Sandrine; Bouillaut, Laurent; Nessler, Sylvie; Lereclus, Didier

    2016-01-01

    Regulation of biological functions requires factors (proteins, peptides or chemicals) able to sense and translate environmental conditions or any circumstances in order to modulate the transcription of a gene, the stability of a transcript or the activity of a protein. Quorum sensing is a regulation mechanism connecting cell density to the physiological state of a single cell. In bacteria, quorum sensing coordinates virulence, cell fate and commitment to sporulation and other adaptation properties. The critical role of such regulatory systems was demonstrated in pathogenicity and adaptation of bacteria from the Bacillus cereus group (i.e. B. cereus and Bacillus thuringiensis). Furthermore, using insects as a model of infection, it was shown that sequential activation of several quorum sensing systems allowed bacteria to switch from a virulence state to a necrotrophic lifestyle, allowing their survival in the host cadaver, and ultimately to the commitment into sporulation. The chronological development of these physiological states is directed by quorum sensors forming the RNPP family. Among them, NprR combines two distinct functions connecting sporulation to necrotrophism in B. thuringiensis. In the absence of its cognate signaling peptide (NprX), NprR negatively controls sporulation by acting as a phosphatase. In the presence of NprX, it acts as a transcription factor regulating a set of genes involved in the survival of the bacteria in the insect cadaver. PMID:28357327

  10. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila.

    PubMed

    Beumer, Kelly J; Trautman, Jonathan K; Christian, Michelle; Dahlem, Timothy J; Lake, Cathleen M; Hawley, R Scott; Grunwald, David J; Voytas, Daniel F; Carroll, Dana

    2013-10-03

    Zinc-finger nucleases have proven to be successful as reagents for targeted genome manipulation in Drosophila melanogaster and many other organisms. Their utility has been limited, however, by the significant failure rate of new designs, reflecting the complexity of DNA recognition by zinc fingers. Transcription activator-like effector (TALE) DNA-binding domains depend on a simple, one-module-to-one-base-pair recognition code, and they have been very productively incorporated into nucleases (TALENs) for genome engineering. In this report we describe the design of TALENs for a number of different genes in Drosophila, and we explore several parameters of TALEN design. The rate of success with TALENs was substantially greater than for zinc-finger nucleases , and the frequency of mutagenesis was comparable. Knockout mutations were isolated in several genes in which such alleles were not previously available. TALENs are an effective tool for targeted genome manipulation in Drosophila.

  11. Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex.

    PubMed

    Cao, Qing-Fu; Yamamoto, Junichi; Isobe, Tomoyasu; Tateno, Shumpei; Murase, Yuki; Chen, Yexi; Handa, Hiroshi; Yamaguchi, Yuki

    2015-10-01

    Restores TBP function 1 (Rtf1) is generally considered to be a subunit of the Paf1 complex (PAF1C), a multifunctional protein complex involved in histone modification and transcriptional or posttranscriptional regulation. Rtf1, however, is not stably associated with the PAF1C in most species except Saccharomyces cerevisiae, and its biochemical functions are not well understood. Here, we show that human Rtf1 is a transcription elongation factor that may function independently of the PAF1C. Rtf1 requires "Rtf1 coactivator" activity, which is most likely unrelated to the PAF1C or DSIF, for transcriptional activation in vitro. A mutational study revealed that the Plus3 domain of human Rtf1 is critical for its coactivator-dependent function. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation studies in HeLa cells showed that Rtf1 and the PAF1C play distinct roles in regulating the expression of a subset of genes. Moreover, contrary to the finding in S. cerevisiae, the PAF1C was apparently recruited to the genes examined in an Rtf1-independent manner. The present study establishes a role for human Rtf1 as a transcription elongation factor and highlights the similarities and differences between the S. cerevisiae and human Rtf1 proteins.

  12. Molecular Genetic Analysis of Activation-tagged Transcription Factors Thought to be Involved in Photomorphogenesis

    SciTech Connect

    Neff, Michael

    2011-06-23

    Plants utilize light as a source of information via families of photoreceptors such as the red/far-red absorbing phytochromes (PHY) and the blue/UVA absorbing cryptochromes (CRY). The main goal of the Neff lab is to use molecular-genetic mutant screens to elucidate signaling components downstream of these photoreceptors. Activation-tagging mutagenesis led to the identification of two putative transcription factors that may be involved in both photomorphogenesis and hormone signaling pathways. sob1-D (suppressor of phyB-dominant) mutant phenotypes are caused by the over-expression of a Dof transcription factor previously named OBP3. Our previous studies indicate that OBP3 is a negative regulator of light-mediated cotyledon expansion and may be involved in modulating responsiveness to the growth-regulating hormone auxin. The sob2-D mutant uncovers a role for LEP, a putative AP2/EREBP-like transcription factor, in seed germination, hypocotyl elongation and responsiveness to the hormone abscisic acid. Based on photobiological and genetic analysis of OBP3-knockdown and LEP-null mutations, we hypothesize that these transcription factors are involved in both light-mediated seedling development and hormone signaling. To examine the role that these genes play in photomorphogenesis we will: 1) Further explore the genetic role of OBP3 in cotyledon/leaf expansion and other photomorphogenic processes as well as examine potential physical interactions between OBP3 and CRY1 or other signaling components that genetically interact with this transcription factor 2) Test the hypothesis that OBP3 is genetically involved in auxin signaling and root development as well as examine the affects of this hormone and light on OBP3 protein accumulation. 3) Test the hypothesis that LEP is involved in seed germination, seedling photomorphogenesis and hormone signaling. Together these experiments will lead to a greater understanding of the complexity of interactions between photoreceptors and DNA

  13. Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells

    PubMed Central

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais ML; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  14. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    PubMed

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-02-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.

  15. Linking Complexity with Cultural Historical Activity Theory

    ERIC Educational Resources Information Center

    McMurtry, Angus

    2006-01-01

    This paper explores the similarities and differences between complexity science's and cultural-historical activity theory's understandings of human learning. Notable similarities include their emphasis on the importance of social systems or collectives in understanding human knowledge and practices, as well as their characterization of systems'…

  16. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    SciTech Connect

    Hu, Xu-Dong; Meng, Qing-Hui; Xu, Jia-Ying; Jiao, Yang; Ge, Chun-Min; Jacob, Asha; Wang, Ping; Rosen, Eliot M; Fan, Saijun

    2011-01-28

    Research highlights: {yields} BTG2 associates with AR, androgen causes an increase of the interaction. {yields} BTG2 as a co-repressor inhibits the AR-mediated transcription activity. {yields} BTG2 inhibits the transcription activity and expression of PSA. {yields} An intact {sup 92}LxxLL{sup 96} motif is essential and necessary for these activities of BTG2, while the {sup 20}LxxLL{sup 24} motif is not required. {yields} Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs ({sup 20}LxxLL{sup 24} and {sup 92}LxxLL{sup 96}), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5{alpha}-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant {sup 20}LxxLL{sup 24} motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant {sup 92}LxxLL{sup 96} motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact {sup 92}LxxLL{sup 96} motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  17. APG: an Active Protein-Gene network model to quantify regulatory signals in complex biological systems.

    PubMed

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.

  18. Pleiotropy constrains the evolution of protein but not regulatory sequences in a transcription regulatory network influencing complex social behaviors

    PubMed Central

    Molodtsova, Daria; Harpur, Brock A.; Kent, Clement F.; Seevananthan, Kajendra; Zayed, Amro

    2014-01-01

    It is increasingly apparent that genes and networks that influence complex behavior are evolutionary conserved, which is paradoxical considering that behavior is labile over evolutionary timescales. How does adaptive change in behavior arise if behavior is controlled by conserved, pleiotropic, and likely evolutionary constrained genes? Pleiotropy and connectedness are known to constrain the general rate of protein evolution, prompting some to suggest that the evolution of complex traits, including behavior, is fuelled by regulatory sequence evolution. However, we seldom have data on the strength of selection on mutations in coding and regulatory sequences, and this hinders our ability to study how pleiotropy influences coding and regulatory sequence evolution. Here we use population genomics to estimate the strength of selection on coding and regulatory mutations for a transcriptional regulatory network that influences complex behavior of honey bees. We found that replacement mutations in highly connected transcription factors and target genes experience significantly stronger negative selection relative to weakly connected transcription factors and targets. Adaptively evolving proteins were significantly more likely to reside at the periphery of the regulatory network, while proteins with signs of negative selection were near the core of the network. Interestingly, connectedness and network structure had minimal influence on the strength of selection on putative regulatory sequences for both transcription factors and their targets. Our study indicates that adaptive evolution of complex behavior can arise because of positive selection on protein-coding mutations in peripheral genes, and on regulatory sequence mutations in both transcription factors and their targets throughout the network. PMID:25566318

  19. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    SciTech Connect

    Kasim, Vivi; Huang, Can; Zhang, Jing; Jia, Huizhen; Wang, Yunxia; Yang, Li; Miyagishi, Makoto; Wu, Shourong

    2014-07-04

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. We further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.

  20. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54.

    PubMed

    Bordes, Patricia; Wigneshweraraj, Siva R; Schumacher, Jörg; Zhang, Xiaodong; Chaney, Matthew; Buck, Martin

    2003-03-04

    Members of the protein family called ATPases associated with various cellular activities (AAA(+)) play a crucial role in transforming chemical energy into biological events. AAA(+) proteins are complex molecular machines and typically form ring-shaped oligomeric complexes that are crucial for ATPase activity and mechanism of action. The Escherichia coli transcription activator phage shock protein F (PspF) is an AAA(+) mechanochemical enzyme that functions to sense and relay the energy derived from nucleoside triphosphate hydrolysis to catalyze transcription by the sigma(54)-RNA polymerase. Closed promoter complexes formed by the sigma(54)-RNA polymerase are substrates for the action of PspF. By using a protein fragmentation approach, we identify here at least one sigma(54)-binding surface in the PspF AAA(+) domain. Results suggest that ATP hydrolysis by PspF is coupled to the exposure of at least one sigma(54)-binding surface. This nucleotide hydrolysis-dependent presentation of a substrate binding surface can explain why complexes that form between sigma(54) and PspF are transient and could be part of a mechanism used generally by other AAA(+) proteins to regulate activity.

  1. Transcriptional activation of Xenopus class III genes in chromatin isolated from sperm and somatic nuclei.

    PubMed Central

    Wolffe, A P

    1989-01-01

    Xenopus sperm chromatin lacks class III transcription complexes and somatic histone H1. Inactive class III genes in sperm chromatin are easily programmed with transcription complexes de novo and transcribed in Xenopus oocyte nuclear extract. In contrast, repressed class III genes in somatic chromatin are not transcribed in the oocyte nuclear extract. Class III genes that are initially inactive or repressed in both types of chromatin can be efficiently transcribed in a cell free preparation of Xenopus eggs. Chromatin mediated repression of class III genes in somatic nuclei is reversible in Xenopus egg extract, but not in the oocyte nuclear extract. Any inhibition of transcription attributed to chromatin assembly onto a gene, will therefore depend on the extract in which transcription is assayed. Images PMID:2915929

  2. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator.

    PubMed

    Zhao, Xiaoching; Shi, Hua; Sevilimedu, Aarti; Liachko, Nicole; Nelson, Hillary C M; Lis, John T

    2006-01-01

    Heat shock factor (HSF) is a conserved and highly potent transcription activator. It is involved in a wide variety of important biological processes including the stress response and specific steps in normal development. Reagents that interfere with HSF function would be useful for both basic studies and practical applications. We selected an RNA aptamer that binds to HSF with high specificity. Deletion analysis defined the minimal binding motif of this aptamer to be two stems and one stem-loop joined by a three-way junction. This RNA aptamer interferes with normal interaction of HSF with its DNA element, which is a key regulatory step for HSF function. The DNA-binding domain plus a flanking linker region on the HSF (DL) is essential for the RNA binding. Additionally, this aptamer inhibits HSF-induced transcription in vitro in the complex milieu of a whole cell extract. In contrast to the previously characterized NF-kappaB aptamer, the HSF aptamer does not simply mimic DNA binding, but rather binds to HSF in a manner distinct from DNA binding to HSF.

  3. SparseNCA: Sparse Network Component Analysis for Recovering Transcription Factor Activities with Incomplete Prior Information.

    PubMed

    Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin

    2015-10-27

    Network component analysis (NCA) is an important method for inferring transcriptional regulatory networks (TRNs) and recovering transcription factor activities (TFAs) using gene expression data, and the prior information about the connectivity matrix. The algorithms currently available crucially depend on the completeness of this prior information. However, inaccuracies in the measurement process may render incompleteness in the available knowledge about the connectivity matrix. Hence, computationally efficient algorithms are needed to overcome the possible incompleteness in the available data. We present a sparse network component analysis algorithm (sparseNCA), which incorporates the effect of incompleteness in the estimation of TRNs by imposing an additional sparsity constraint using the `1 norm, which results in a greater estimation accuracy. In order to improve the computational efficiency, an iterative re-weighted `2 method is proposed for the NCA problem which not only promotes sparsity but is hundreds of times faster than the `1 norm based solution. The performance of sparseNCA is rigorously compared to that of FastNCA and NINCA using synthetic data as well as real data. It is shown that sparseNCA outperforms the existing state-of-the-art algorithms both in terms of estimation accuracy and consistency with the added advantage of low computational complexity. The performance of sparseNCA compared to its predecessors is particularly pronounced in case of incomplete prior information about the sparsity of the network. Subnetwork analysis is performed on the E.coli data which reiterates the superior consistency of the proposed algorithm.

  4. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    SciTech Connect

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; Chen, Kuan-Bei; Stonestrom, Aaron; Long, Maria; Keller, Cheryl A.; Cheng, Yong; Jain, Deepti; Visel, Axel; Pennacchio, Len A.; Weiss, Mitchell J.; Blobel, Gerd A.; Hardison, Ross C.

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the results of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.

  5. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    DOE PAGES

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; ...

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less

  6. Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity.

    PubMed

    Zhao, Xiaoping; Xiaoli; Zong, Haihong; Abdulla, Arian; Yang, Ellen S T; Wang, Qun; Ji, Jun-Yuan; Pessin, Jeffrey E; Das, Bhaskar C; Yang, Fajun

    2014-07-01

    Dysregulation of lipid homeostasis is intimately associated with obesity, type 2 diabetes, and cardiovascular diseases. Sterol regulatory-element binding proteins (SREBPs) are the master regulators of lipid biosynthesis. Previous studies have shown that the conserved transcriptional cofactor Mediator complex is critically required for the SREBP transcriptional activity, and recruitment of the Mediator complex to the SREBP transactivation domains (TADs) is through the MED15-KIX domain. Recently, we have synthesized several boron-containing small molecules. Among these novel compounds, BF175 can specifically block the binding of MED15-KIX to SREBP1a-TAD in vitro, resulting in an inhibition of the SREBP transcriptional activity and a decrease of SREBP target gene expression in cultured hepatocytes. Furthermore, BF175 can improve lipid homeostasis in the mouse model of diet-induced obesity. Compared with the control, BF175 treatment decreased the expression of SREBP target genes in mouse livers and decreased hepatic and blood levels of lipids. These results suggest that blocking the interaction between SREBP-TADs and the Mediator complex by small molecules may represent a novel approach for treating diseases with aberrant lipid homeostasis.

  7. Assembly of RNA polymerase II preinitiation complexes before assembly of nucleosomes allows efficient initiation of transcription on nucleosomal templates

    SciTech Connect

    Knezetic, J.A.; Jacob, G.A.; Luse, D.S.

    1988-08-01

    The authors have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, they demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that the observations are not the result of slow displacemnt of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.

  8. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA.

    SciTech Connect

    Zhang, R.; Pappas, T.; Brace, J.; Miller, P.; Oulmassov, T.; Molyneaux, J.; Anderson, J.; Bashkin, J.; Winans, S.; Joachimiak, A.; Biosciences Division; Cornell Univ.; Monsanto Co.

    2002-06-27

    Many proteobacteria are able to monitor their population densities through the release of pheromones known as N-acylhomoserine lactones. At high population densities, these pheromones elicit diverse responses that include bioluminescence, biofilm formation, production of antimicrobials, DNA exchange, pathogenesis and symbiosis1. Many of these regulatory systems require a pheromone-dependent transcription factor similar to the LuxR protein of Vibrio fischeri. Here we present the structure of a LuxR-type protein. TraR of Agrobacterium tumefaciens was solved at 1.66 A as a complex with the pheromone N-3-oxooctanoyl-l-homoserine lactone (OOHL) and its TraR DNA-binding site. The amino-terminal domain of TraR is an {alpha}/{beta}/{alpha} sandwich that binds OOHL, whereas the carboxy-terminal domain contains a helix-turn-helix DNA-binding motif. The TraR dimer displays a two-fold symmetry axis in each domain; however, these two axes of symmetry are at an approximately 90 degree angle, resulting in a pronounced overall asymmetry of the complex. The pheromone lies fully embedded within the protein with virtually no solvent contact, and makes numerous hydrophobic contacts with the protein as well as four hydrogen bonds: three direct and one water-mediated.

  9. The Not5 subunit of the ccr4-not complex connects transcription and translation.

    PubMed

    Villanyi, Zoltan; Ribaud, Virginie; Kassem, Sari; Panasenko, Olesya O; Pahi, Zoltan; Gupta, Ishaan; Steinmetz, Lars; Boros, Imre; Collart, Martine A

    2014-10-01

    Recent studies have suggested that a sub-complex of RNA polymerase II composed of Rpb4 and Rpb7 couples the nuclear and cytoplasmic stages of gene expression by associating with newly made mRNAs in the nucleus, and contributing to their translation and degradation in the cytoplasm. Here we show by yeast two hybrid and co-immunoprecipitation experiments, followed by ribosome fractionation and fluorescent microscopy, that a subunit of the Ccr4-Not complex, Not5, is essential in the nucleus for the cytoplasmic functions of Rpb4. Not5 interacts with Rpb4; it is required for the presence of Rpb4 in polysomes, for interaction of Rpb4 with the translation initiation factor eIF3 and for association of Rpb4 with mRNAs. We find that Rpb7 presence in the cytoplasm and polysomes is much less significant than that of Rpb4, and that it does not depend upon Not5. Hence Not5-dependence unlinks the cytoplasmic functions of Rpb4 and Rpb7. We additionally determine with RNA immunoprecipitation and native gel analysis that Not5 is needed in the cytoplasm for the co-translational assembly of RNA polymerase II. This stems from the importance of Not5 for the association of the R2TP Hsp90 co-chaperone with polysomes translating RPB1 mRNA to protect newly synthesized Rpb1 from aggregation. Hence taken together our results show that Not5 interconnects translation and transcription.

  10. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity.

    PubMed

    Xiang, Kehui; Manley, James L; Tong, Liang

    2012-07-10

    The activity of RNA polymerase II (Pol II) is controlled in part by the phosphorylation state of the C-terminal domain (CTD) of its largest subunit. Recent reports have suggested that yeast regulator of transcription protein, Rtr1, and its human homologue RPAP2, possess Pol II CTD Ser5 phosphatase activity. Here we report the crystal structure of Kluyveromyces lactis Rtr1, which reveals a new type of zinc finger protein and does not have any close structural homologues. Importantly, the structure does not show evidence of an active site, and extensive experiments to demonstrate its CTD phosphatase activity have been unsuccessful, suggesting that Rtr1 has a non-catalytic role in CTD dephosphorylation.

  11. Inhibition of transcriptional activity of c-JUN by SIRT1

    SciTech Connect

    Gao Zhanguo; Ye Jianping

    2008-11-28

    c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibition of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1{sup -/-}), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN.

  12. Functional Interplay between CBP and PCAF in Acetylation and Regulation of Transcription Factor KLF13 Activity

    PubMed Central

    Song, Chao-Zhong; Keller, Kimberly; Chen, Yangchao; Stamatoyannopoulos, George

    2010-01-01

    The transcriptional co-activators CBP/p300 and PCAF participate in transcriptional activation by many factors. We have shown that both CBP/p300 and PCAF stimulate the transcriptional activation by KLF13, a member of the KLF/Sp1 family, either individually or cooperatively. Here we further investigated how CBP and PCAF acetylation regulate KLF13 activity, and how these two co-activators functionally interplay in the regulation of KLF13 activity. We found that CBP and PCAF acetylated KLF13 at specific lysine residues in the zinc finger domain of KLF13. The acetylation by CBP, however, resulted in disruption of KLF13 DNA binding. Although the acetyltransferase activity of CBP is not required for stimulating the DNA binding activity of all of the transcription factors that we have examined, the disruption of factor DNA binding by CBP acetylation is factor-specific. We further showed that PCAF and CBP act synergistically and antagonistically to regulate KLF13 DNA binding depending on the status of acetylation. PCAF blocked CBP acetylation and disruption of KLF13 DNA binding. Conversely, acetylation of KLF13 by CBP prevented PCAF stimulation of KLF13 DNA binding. PCAF blocked CBP disruption of KLF13 DNA binding by preventing CBP acetylation of KLF13. These results demonstrate that acetylation by CBP has distinct effects on transcription factor DNA binding, and that CBP and PCAF regulate each other functionally in their regulation of transcription factor DNA binding. PMID:12758070

  13. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation.

  14. Transcriptional Activation of Low-Density Lipoprotein Receptor Gene by DJ-1 and Effect of DJ-1 on Cholesterol Homeostasis

    PubMed Central

    Takahashi-Niki, Kazuko; Kato, Izumi; Niki, Takeshi; Goldberg, Matthew S.; Shen, Jie; Ishimoto, Kenji; Doi, Takefumi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2012-01-01

    DJ-1 is a novel oncogene and also causative gene for familial Parkinson’s disease park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. For transcriptional regulation, DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found the low-density lipoprotein receptor (LDLR) gene is a transcriptional target gene for DJ-1. Reduced expression of LDLR mRNA and protein was observed in DJ-1-knockdown cells and DJ-1-knockout mice and this occurred at the transcription level. Reporter gene assays using various deletion and point mutations of the LDLR promoter showed that DJ-1 stimulated promoter activity by binding to the sterol regulatory element (SRE) with sterol regulatory element binding protein (SREBP) and that stimulating activity of DJ-1 toward LDLR promoter activity was enhanced by oxidation of DJ-1. Chromatin immunoprecipitation, gel-mobility shift and co-immunoprecipitation assays showed that DJ-1 made a complex with SREBP on the SRE. Furthermore, it was found that serum LDL cholesterol level was increased in DJ-1-knockout male, but not female, mice and that the increased serum LDL cholesterol level in DJ-1-knockout male mice was cancelled by administration with estrogen, suggesting that estrogen compensates the increased level of serum LDL cholesterol in DJ-1-knockout female mice. This is the first report that DJ-1 participates in metabolism of fatty acid synthesis through transcriptional regulation of the LDLR gene. PMID:22666465

  15. Transcriptional activation of low-density lipoprotein receptor gene by DJ-1 and effect of DJ-1 on cholesterol homeostasis.

    PubMed

    Yamaguchi, Shiori; Yamane, Takuya; Takahashi-Niki, Kazuko; Kato, Izumi; Niki, Takeshi; Goldberg, Matthew S; Shen, Jie; Ishimoto, Kenji; Doi, Takefumi; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2012-01-01

    DJ-1 is a novel oncogene and also causative gene for familial Parkinson's disease park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. For transcriptional regulation, DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found the low-density lipoprotein receptor (LDLR) gene is a transcriptional target gene for DJ-1. Reduced expression of LDLR mRNA and protein was observed in DJ-1-knockdown cells and DJ-1-knockout mice and this occurred at the transcription level. Reporter gene assays using various deletion and point mutations of the LDLR promoter showed that DJ-1 stimulated promoter activity by binding to the sterol regulatory element (SRE) with sterol regulatory element binding protein (SREBP) and that stimulating activity of DJ-1 toward LDLR promoter activity was enhanced by oxidation of DJ-1. Chromatin immunoprecipitation, gel-mobility shift and co-immunoprecipitation assays showed that DJ-1 made a complex with SREBP on the SRE. Furthermore, it was found that serum LDL cholesterol level was increased in DJ-1-knockout male, but not female, mice and that the increased serum LDL cholesterol level in DJ-1-knockout male mice was cancelled by administration with estrogen, suggesting that estrogen compensates the increased level of serum LDL cholesterol in DJ-1-knockout female mice. This is the first report that DJ-1 participates in metabolism of fatty acid synthesis through transcriptional regulation of the LDLR gene.

  16. Set3 contributes to heterochromatin integrity by promoting transcription of subunits of Clr4-Rik1-Cul4 histone methyltransferase complex in fission yeast

    PubMed Central

    Yu, Yao; Zhou, Huan; Deng, Xiaolong; Wang, Wenchao; Lu, Hong

    2016-01-01

    Heterochromatin formation in fission yeast depends on RNAi machinery and histone-modifying enzymes. One of the key histone-modifying complexes is Clr4-Rik1-Cul4 methyltransferase complex (CLRC), which mediates histone H3K9 methylation, a hallmark for heterochromatin. CLRC is composed of the Clr4 histone methyltransferase, Rik1, Raf1, Raf2 and Pcu4. However, transcriptional regulation of the CLRC subunits is not well understood. In this study, we identified Set3, a core subunit of the Set3/Hos2 histone deacetylase complex (Set3C), as a contributor to the integrity and silencing of heterochromatin at centromeres, telomeres and silent mating-type locus. This novel role of Set3 relies on its PHD finger, but is independent of deacetylase activity or structural integrity of Set3C. Set3 is not located to the centromeric region. Instead, Set3 is targeted to the promoters of clr4+ and rik1+, probably through its PHD finger. Set3 promotes transcription of clr4+ and rik1+. Consistently, the protein levels of Clr4 and Rik1 were reduced in the set3Δ mutant. The heterochromatin silencing defect in the set3Δ mutant could be rescued by overexpressing of clr4+ or rik1+. Our study suggests transcriptional activation of essential heterochromatin factors underlies the tight regulation of heterochromatin integrity. PMID:27538348

  17. Muscle Transcriptional Profile Based on Muscle Fiber, Mitochondrial Respiratory Activity, and Metabolic Enzymes

    PubMed Central

    Liu, Xuan; Du, Yang; Trakooljul, Nares; Brand, Bodo; Muráni, Eduard; Krischek, Carsten; Wicke, Michael; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    Skeletal muscle is a highly metabolically active tissue that both stores and consumes energy. Important biological pathways that affect energy metabolism and metabolic fiber type in muscle cells may be identified through transcriptomic profiling of the muscle, especially ante mortem. Here, gene expression was investigated in malignant hyperthermia syndrome (MHS)-negative Duroc and Pietrian (PiNN) pigs significantly differing for the muscle fiber types slow-twitch-oxidative fiber (STO) and fast-twitch-oxidative fiber (FTO) as well as mitochondrial activity (succinate-dependent state 3 respiration rate). Longissimus muscle samples were obtained 24 h before slaughter and profiled using cDNA microarrays. Differential gene expression between Duroc and PiNN muscle samples were associated with protein ubiquitination, stem cell pluripotency, amyloid processing, and 3-phosphoinositide biosynthesis and degradation pathways. In addition, weighted gene co-expression network analysis within both breeds identified several co-expression modules that were associated with the proportion of different fiber types, mitochondrial respiratory activity, and ATP metabolism. In particular, Duroc results revealed strong correlations between mitochondrion-associated co-expression modules and STO (r = 0.78), fast-twitch glycolytic fiber (r = -0.98), complex I (r=0.72) and COX activity (r = 0.86). Other pathways in the protein-kinase-activity enriched module were positively correlated with STO (r=0.93), while negatively correlated with FTO (r = -0.72). In contrast to PiNN, co-expression modules enriched in macromolecule catabolic process, actin cytoskeleton, and transcription activator activity were associated with fiber types, mitochondrial respiratory activity, and metabolic enzyme activities. Our results highlight the importance of mitochondria for the oxidative capacity of porcine muscle and for breed-dependent molecular pathways in muscle cell fibers. PMID:26681915

  18. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  19. Dominance and interloci interactions in transcriptional activation cascades: models explaining compensatory mutations and inheritance patterns.

    PubMed

    Bost, Bruno; Veitia, Reiner A

    2014-01-01

    Mutations in human genes encoding transcription factors are often dominant because one active allele cannot ensure a normal phenotype (haploinsufficiency). In other instances, heterozygous mutations of two genes are required for a phenotype to appear (combined haploinsufficiency). Here, we explore with models (i) the basis of haploinsufficiency and combined haploinsufficiency owing to mutations in transcription activators, and (ii) how the effects of such mutations can be amplified or buffered by subsequent steps in a transcription cascade. We propose that the non-linear (sigmoidal) response of transcription to the concentration of activators can explain haploinsufficiency. We further show that the sigmoidal character of the output of a cascade increases with the number of steps involved, the settings of which will determine the buffering or enhancement of the effects of a decreased concentration of an upstream activator. This exploration provides insights into the bases of compensatory mutations and on interloci interactions underlying oligogenic inheritance patterns.

  20. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation.

    PubMed Central

    Kline, M P; Morimoto, R I

    1997-01-01

    Heat shock transcription factor 1 (HSF1) is constitutively expressed in mammalian cells and negatively regulated for DNA binding and transcriptional activity. Upon exposure to heat shock and other forms of chemical and physiological stress, these activities of HSF1 are rapidly induced. In this report, we demonstrate that constitutive phosphorylation of HSF1 at serine residues distal to the transcriptional activation domain functions to repress transactivation. Tryptic phosphopeptide analysis of a collection of chimeric GAL4-HSF1 deletion and point mutants identified a region of constitutive phosphorylation encompassing serine residues 303 and 307. The significance of phosphorylation at serines 303 and 307 in the regulation of HSF1 transcriptional activity was demonstrated by transient transfection and assay of a chloramphenicol acetyltransferase reporter construct. Whereas the transfected wild-type GAL4-HSF1 chimera is repressed for transcriptional activity and derepressed by heat shock, mutation of serines 303 and 307 to alanine results in derepression to a high level of constitutive activity. Similar results were obtained with mutation of these serine residues in the context of full-length HSF1. These data reveal that constitutive phosphorylation of serines 303 and 307 has an important role in the negative regulation of HSF1 transcriptional activity at control temperatures. PMID:9121459

  1. Tcra enhancer activation by inducible transcription factors downstream of pre-TCR signaling.

    PubMed

    del Blanco, Beatriz; García-Mariscal, Alberto; Wiest, David L; Hernández-Munain, Cristina

    2012-04-01

    The Tcra enhancer (Eα) is essential for pre-TCR-mediated activation of germline transcription and V(D)J recombination. Eα is considered an archetypical enhanceosome that acts through the functional synergy and cooperative binding of multiple transcription factors. Based on dimethylsulfate genomic footprinting experiments, there has been a long-standing paradox regarding Eα activation in the absence of differences in enhancer occupancy. Our data provide the molecular mechanism of Eα activation and an explanation of this paradox. We found that germline transcriptional activation of Tcra is dependent on constant phospholipase Cγ, as well as calcineurin- and MAPK/ERK-mediated signaling, indicating that inducible transcription factors are crucially involved. NFAT, AP-1, and early growth response factor 1, together with CREB-binding protein/p300 coactivators, bind to Eα as part of an active enhanceosome assembled during pre-TCR signaling. We favor a scenario in which the binding of lymphoid-restricted and constitutive transcription factors to Eα prior to its activation forms a regulatory scaffold to recruit factors induced by pre-TCR signaling. Thus, the combinatorial assembly of tissue- and signal-specific transcription factors dictates the Eα function. This mechanism for enhancer activation may represent a general paradigm in tissue-restricted and stimulus-responsive gene regulation.

  2. Three gene products of a begomovirus-betasatellite complex restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana.

    PubMed

    Saeed, Muhammad; Krczal, Gabi; Wassenegger, Michael

    2015-04-01

    Single-stranded DNA geminiviruses replicate via double-stranded DNA intermediates forming mini-chromosomes that are targets for transcriptional gene silencing (TGS) in plants. The ability of the cotton leaf curl Kokhran virus (CLCuKoV)-cotton leaf curl Multan betasatellite (CLCuMuB) proteins, replication-associated protein (Rep), transcriptional activator protein (TrAP), C4, V2 and βC1, to suppress TGS was investigated by using the Nicotiana benthamiana line 16-TGS (16-TGS) harbouring a transcriptionally silenced green fluorescent protein (GFP) transgene. Inoculation of 16-TGS plants with a recombinant potato virus X vector carrying Rep, TrAP or βC1 resulted in re-expression of GFP. Northern blot analysis confirmed that the observed GFP fluorescence was associated with GFP mRNA accumulation. These results indicated that Rep, TrAP and βC1 proteins of CLCuKoV-CLCuMuB can re-activate the expression of a transcriptionally silenced GFP transgene in N. benthamiana. Although Rep, TrAP, or βC1 proteins have, for other begomoviruses or begomoviruses-betasatellites, been previously shown to have TGS suppressor activity, this is the first report demonstrating that a single begomovirus-betasatellite complex encodes three suppressors of TGS.

  3. RAI1 transcription factor activity is impaired in mutants associated with Smith-Magenis Syndrome.

    PubMed

    Carmona-Mora, Paulina; Canales, Cesar P; Cao, Lei; Perez, Irene C; Srivastava, Anand K; Young, Juan I; Walz, Katherina

    2012-01-01

    Smith-Magenis Syndrome (SMS) is a complex genomic disorder mostly caused by the haploinsufficiency of the Retinoic Acid Induced 1 gene (RAI1), located in the chromosomal region 17p11.2. In a subset of SMS patients, heterozygous mutations in RAI1 are found. Here we investigate the molecular properties of these mutated forms and their relationship with the resulting phenotype. We compared the clinical phenotype of SMS patients carrying a mutation in RAI1 coding region either in the N-terminal or the C-terminal half of the protein and no significant differences were found. In order to study the molecular mechanism related to these two groups of RAI1 mutations first we analyzed those mutations that result in the truncated protein corresponding to the N-terminal half of RAI1 finding that they have cytoplasmic localization (in contrast to full length RAI1) and no ability to activate the transcription through an endogenous target: the BDNF enhancer. Similar results were found in lymphoblastoid cells derived from a SMS patient carrying RAI1 c.3103insC, where both mutant and wild type products of RAI1 were detected. The wild type form of RAI1 was found in the chromatin bound and nuclear matrix subcellular fractions while the mutant product was mainly cytoplasmic. In addition, missense mutations at the C-terminal half of RAI1 presented a correct nuclear localization but no activation of the endogenous target. Our results showed for the first time a correlation between RAI1 mutations and abnormal protein function plus they suggest that a reduction of total RAI1 transcription factor activity is at the heart of the SMS clinical presentation.

  4. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    PubMed Central

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  5. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation.

    PubMed

    Liu, Mingchun; Pirrello, Julien; Chervin, Christian; Roustan, Jean-Paul; Bouzayen, Mondher

    2015-12-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening.

  6. Polycomb group complexes are recruited to reactivated FMR1 alleles in Fragile X syndrome in response to FMR1 transcription.

    PubMed

    Kumari, Daman; Usdin, Karen

    2014-12-15

    The FMR1 gene is subject to repeat mediated-gene silencing when the CGG-repeat tract in the 5' UTR exceeds 200 repeat units. This results in Fragile X syndrome, the most common heritable cause of intellectual disability and a major cause of autism spectrum disorders. The mechanism of gene silencing is not fully understood, and efforts to reverse this gene silencing have had limited success. Here, we show that the level of trimethylation of histone H3 on lysine 27, a hallmark of the activity of EZH2, a component of repressive Polycomb Group (PcG) complexes like PRC2, is increased on reactivation of the silenced allele by either the DNA demethylating agent 5-azadeoxycytidine or the SIRT1 inhibitor splitomicin. The level of H3K27me3 increases and decreases in parallel with the FMR1 mRNA level. Furthermore, reducing the levels of the FMR1 mRNA reduces the accumulation of H3K27me3. This suggests a model for FMR1 gene silencing in which the FMR1 mRNA generated from the reactivated allele acts in cis to repress its own transcription via the recruitment of PcG complexes to the FMR1 locus.

  7. Interplay between SIRT1 and hepatitis B virus X protein in the activation of viral transcription.

    PubMed

    Deng, Jian-Jun; Kong, Ka-Yiu Edwin; Gao, Wei-Wei; Tang, Hei-Man Vincent; Chaudhary, Vidyanath; Cheng, Yun; Zhou, Jie; Chan, Chi-Ping; Wong, Danny Ka-Ho; Yuen, Man-Fung; Jin, Dong-Yan

    2017-04-01

    Hepatitis B virus (HBV) genome is organized into a minichromosome known as covalently closed circular DNA (cccDNA), which serves as the template for all viral transcripts. SIRT1 is an NAD(+)-dependent protein deacetylase which activates HBV transcription by promoting the activity of cellular transcription factors and coactivators. How SIRT1 and viral transactivator X protein (HBx) might affect each other remains to be clarified. In this study we show synergy and mutual dependence between SIRT1 and HBx in the activation of HBV transcription. All human sirtuins SIRT1 through SIRT7 activated HBV gene expression. The steady-state levels of SIRT1 protein were elevated in HBV-infected liver tissues and HBV-replicating hepatoma cells. SIRT1 interacted with HBx and potentiated HBx transcriptional activity on precore promoter and covalently closed circular DNA (cccDNA) likely through a deacetylase-independent mechanism, leading to more robust production of cccDNA, pregenomic RNA and surface antigen. SIRT1 and HBx proteins were more abundant when both were expressed. SIRT1 promoted the recruitment of HBx as well as cellular transcriptional factors and coactivators such as PGC-1α and FXRα to cccDNA. Depletion of SIRT1 suppressed HBx recruitment. On the other hand, SIRT1 recruitment to cccDNA was compromised when HBx was deficient. Whereas pharmaceutical agonists of SIRT1 such as resveratrol activated HBV transcription, small-molecule inhibitors of SIRT1 including sirtinol and Ex527 exhibited anti-HBV activity. Taken together, our findings revealed not only the interplay between SIRT1 and HBx in the activation of HBV transcription but also new strategies and compounds for developing antivirals against HBV.

  8. The elongation factor RfaH and the initiation factor σ bind to the same site on the transcription elongation complex

    PubMed Central

    Sevostyanova, Anastasiya; Svetlov, Vladimir; Vassylyev, Dmitry G.; Artsimovitch, Irina

    2008-01-01

    RNA polymerase is a target for numerous regulatory events in all living cells. Recent studies identified a few “hot spots” on the surface of bacterial RNA polymerase that mediate its interactions with diverse accessory proteins. Prominent among these hot spots, the β′ subunit clamp helices serve as a major binding site for the initiation factor σ and for the elongation factor RfaH. Furthermore, the two proteins interact with the nontemplate DNA strand in transcription complexes and thus may interfere with each other's activity. We show that RfaH does not inhibit transcription initiation but, once recruited to RNA polymerase, abolishes σ-dependent pausing. We argue that this apparent competition is due to a steric exclusion of σ by RfaH that is stably bound to the nontemplate DNA and clamp helices, both of which are necessary for the σ recruitment to the transcription complex. Our findings highlight the key regulatory role played by the clamp helices during both initiation and elongation stages of transcription. PMID:18195372

  9. Transcriptional activation of hedgehog pathway components in aggressive hemangioma.

    PubMed

    Wendling-Keim, Danielle S; Wanie, Lynn; Grantzow, Rainer; Kappler, Roland

    2017-03-31

    Infantile hemangioma is a vascular neoplasm and is one of the most common tumors diagnosed in young children. Although most hemangiomas are harmless and involute spontaneously, some show severe progression, leading to serious complications, such as high output cardiac failure, ulcerations, compression of the trachea or deprivation amblyopia, depending on their size and localization. However, the pathogenesis and cause of hemangioma are largely unknown to date. The goal of this study was to identify markers that could predict hemangiomas with aggressive growth and severe progression that would benefit from early intervention. By using a PCR-based screening approach, we first confirmed that previously known markers of hemangioma, namely FGF2 and GLUT1, are highly expressed in hemangioma. Nevertheless, these genes did not show any differential expression between severely progressing tumors and mild tumors. However, transcriptional upregulation of several Hedgehog signaling components, comprising the ligand Sonic Hedgehog (SHH),the transcription factor GLI2 and its target gene FOXA2 were detected in extremely aggressive hemangioma specimens during the proliferation phase. Notably, GLI2 was even overexpressed in involuting hemangiomas if they showed an aggressive growth pattern. In conclusion, our data suggest that overexpression of the Hedgehog components SHH, GLI2 and FOXA2 might be used as markers of an aggressive hemangioma that would benefit from too early intervention, while FGF2 and GLUT1 are more general markers of hemangiomas. This article is protected by copyright. All rights reserved.

  10. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units.

    PubMed

    Sasaki, Takayo; Ramanathan, Sunita; Okuno, Yukiko; Kumagai, Chiharu; Shaikh, Seemab S; Gilbert, David M

    2006-02-01

    Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP.

  11. The Chinese Hamster Dihydrofolate Reductase Replication Origin Decision Point Follows Activation of Transcription and Suppresses Initiation of Replication within Transcription Units

    PubMed Central

    Sasaki, Takayo; Ramanathan, Sunita; Okuno, Yukiko; Kumagai, Chiharu; Shaikh, Seemab S.; Gilbert, David M.

    2006-01-01

    Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP. PMID:16428457

  12. The protein level and transcription activity of activating transcription factor 1 is regulated by prolyl isomerase Pin1 in nasopharyngeal carcinoma progression.

    PubMed

    Huang, Guo-Liang; Liao, Dan; Chen, Hua; Lu, Yan; Chen, Liyong; Li, Huahui; Li, Binbin; Liu, Weilong; Ye, Caiguo; Li, Tong; Zhu, Zhu; Wang, Jian; Uchida, Takafumi; Zou, Ying; Dong, Zigang; He, Zhiwei

    2016-12-29

    The function of activating transcription factor 1 (ATF1) and the mechanism about why ATF1 was over-phosphorylated in nasopharyngeal carcinoma (NPC) progression is completely undiscovered. In this study, a series of experiments both in vitro and in vivo were used to characterize a promotive function of ATF1 in NPC tumorigenesis and identify prolyl isomerase Pin1 as a novel regulator of ATF1 at post-transcription. First, we found that overexpression of ATF1 promoted colony formation in NPC. However, the high protein level of ATF1 in NPC was not resulted from high mRNA level. Then, a direct interaction between Pin1 and ATF1 at Thr184 was demonstrated using mammalian two-hybrid assay and coimmunoprecipitation. Cycloheximide (CHX) treatment indicated Pin1 stabilized the expression of ATF1 at post-transcription level. We confirmed that Pin1 upregulated ATF1 transcriptional activity of Bcl-2 using luciferase reporter assay, quantitative RT-PCR and western blot. Furthermore, the newly identified phosphorylation of ATF1 at Thr184 was suggested to have an important role in ATF1 function of transcription and tumor promotion. Finally, high expression of Pin1 in NPC tissue was found to be positively correlated with ATF1. The ATF1 promoted NPC tumorigenesis was regulated by Pin1 both in vitro and in vivo. All these findings clearly state that Pin1 is a novel regulator of ATF1 at Thr184 and thereby enhances ATF1 transcription activity and tumorigenesis promotive function in NPC.

  13. The protein level and transcription activity of activating transcription factor 1 is regulated by prolyl isomerase Pin1 in nasopharyngeal carcinoma progression

    PubMed Central

    Huang, Guo-Liang; Liao, Dan; Chen, Hua; Lu, Yan; Chen, Liyong; Li, Huahui; Li, Binbin; Liu, Weilong; Ye, Caiguo; Li, Tong; Zhu, Zhu; Wang, Jian; Uchida, Takafumi; Zou, Ying; Dong, Zigang; He, Zhiwei

    2016-01-01

    The function of activating transcription factor 1 (ATF1) and the mechanism about why ATF1 was over-phosphorylated in nasopharyngeal carcinoma (NPC) progression is completely undiscovered. In this study, a series of experiments both in vitro and in vivo were used to characterize a promotive function of ATF1 in NPC tumorigenesis and identify prolyl isomerase Pin1 as a novel regulator of ATF1 at post-transcription. First, we found that overexpression of ATF1 promoted colony formation in NPC. However, the high protein level of ATF1 in NPC was not resulted from high mRNA level. Then, a direct interaction between Pin1 and ATF1 at Thr184 was demonstrated using mammalian two-hybrid assay and coimmunoprecipitation. Cycloheximide (CHX) treatment indicated Pin1 stabilized the expression of ATF1 at post-transcription level. We confirmed that Pin1 upregulated ATF1 transcriptional activity of Bcl-2 using luciferase reporter assay, quantitative RT-PCR and western blot. Furthermore, the newly identified phosphorylation of ATF1 at Thr184 was suggested to have an important role in ATF1 function of transcription and tumor promotion. Finally, high expression of Pin1 in NPC tissue was found to be positively correlated with ATF1. The ATF1 promoted NPC tumorigenesis was regulated by Pin1 both in vitro and in vivo. All these findings clearly state that Pin1 is a novel regulator of ATF1 at Thr184 and thereby enhances ATF1 transcription activity and tumorigenesis promotive function in NPC. PMID:28032861

  14. Transcriptional activation domains stimulate initiation and elongation at different times and via different residues.

    PubMed Central

    Brown, S A; Weirich, C S; Newton, E M; Kingston, R E

    1998-01-01

    Transcriptional activators can stimulate multiple steps in the transcription process. We have used GAL4 fusion proteins to characterize the ability of different transcriptional activation domains to stimulate transcriptional elongation on the hsp70 gene in vitro. Stimulation of elongation apparently occurs via a mechanistic pathway different from that of stimulation of initiation: the herpes simplex virus VP16, heat shock factor 1 (HSF1) and amphipathic helix (AH) activation domains all stimulate initiation, but only VP16 and HSF1 stimulate elongation; and mutations in hydrophobic residues of the HSF1 activation domains impair stimulation of elongation but not of initiation, while mutations in adjacent acidic residues impair stimulation of initiation more than of elongation. Experiments in which activators were exchanged between initiation and elongation demonstrate that the elongation function of HSF1 will stimulate RNA polymerase that has initiated and is transcriptionally engaged. Transcriptional activators thus appear to have at least two distinct functions that reside in the same domain, and that act at different times to stimulate initiation and elongation. PMID:9606196

  15. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices.

    PubMed

    Molteni, Raffaella; Rossetti, Andrea C; Savino, Elisa; Racagni, Giorgio; Calabrese, Francesca

    2016-01-01

    Although activity-dependent transcription represents a crucial mechanism for long-lasting experience-dependent changes in the hippocampus, limited data exist on its contribution to pathological conditions. We aim to investigate the influence of chronic stress on the activity-dependent transcription of brain-derived neurotrophic factor (BDNF). The ex vivo methodology of acute stimulation of hippocampal slices obtained from rats exposed to chronic mild stress (CMS) was used to evaluate whether the adverse experience may alter activity-dependent BDNF gene expression. CMS reduces BDNF expression and that acute depolarization significantly upregulates total BDNF mRNA levels only in control animals, showing that CMS exposure may alter BDNF transcription under basal conditions and during neuronal activation. Moreover, while the basal effect of CMS on total BDNF reflects parallel modulations of all the transcripts examined, isoform-specific changes were found after depolarization. This different effect was also observed in the activation of intracellular signaling pathways related to the neurotrophin. In conclusion, our study discloses a functional alteration of BDNF transcription as a consequence of stress. Being the activity-regulated transcription a critical process in synaptic and neuronal plasticity, the different regulation of individual BDNF promoters may contribute to long-lasting changes, which are fundamental for the vulnerability of the hippocampus to stress-related diseases.

  16. Signal Transducer and Activator of Transcription (STAT)-3 Activates Nuclear Factor (NF)-κB in Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Liu, Zhiming; Hazan-Halevy, Inbal; Harris, David M.; Li, Ping; Ferrajoli, Alessandra; Faderl, Stefan; Keating, Michael J.; Estrov, Zeev

    2014-01-01

    Nuclear factor (NF)-κB plays a major role in the pathogenesis of B-cell neoplasms. A broad array of mostly extracellular stimuli has been reported to activate NF-κB, to various degrees, in chronic lymphocytic leukemia (CLL) cells. Because CLL cells harbor high levels of unphosphorylated (U) signal transducer and activator of transcription (STAT)-3 protein and U-STAT3 was reported to activate NF-κB, we sought to determine whether U-STAT3 activates NF-κB in CLL. Using the electrophoretic mobility shift assay (EMSA) we studied peripheral blood low-density cells from 15 patients with CLL and found that CLL cell nuclear extracts from all the samples bound to an NF-κB DNA probe, suggesting that NF-κB is constitutively activated in CLL. Immunoprecipitation studies showed that STAT3 bound NF-κB p65, and confocal microscopy studies detected U-STAT3/NF-κB complexes in the nuclei of CLL cells, thereby confirming these findings. Furthermore, infection of CLL cells with retroviral STAT3-shRNA attenuated the binding of NF-κB to DNA, as assessed by EMSA, and downregulated mRNA levels of NF-κB-regulated genes, as assessed by quantitative polymerase chain reaction. Taken together, our data suggest that U-STAT3 binds to the NF-κB p50/p65 dimers and that the U-STAT3/NF-κB complexes bind to DNA and activate NF-κB-regulated genes in CLL cells. PMID:21364020

  17. The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription.

    PubMed

    Torreira, Eva; Louro, Jaime Alegrio; Pazos, Irene; González-Polo, Noelia; Gil-Carton, David; Duran, Ana Garcia; Tosi, Sébastien; Gallego, Oriol; Calvo, Olga; Fernández-Tornero, Carlos

    2017-03-06

    Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I-Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differen