Science.gov

Sample records for active transient storage

  1. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics.

    PubMed

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L

    2016-04-14

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g(-1) is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.

  2. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    NASA Astrophysics Data System (ADS)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  3. Transient Storage in Zero-Order Channels Draining Arctic Hillslopes

    NASA Astrophysics Data System (ADS)

    Cook, C. L.; Harms, T.; Wlostowski, A. N.; Gooseff, M. N.

    2015-12-01

    Water tracks are linear regions of preferential hydrologic flow on arctic hillslopes that discharge to lakes and higher-order streams. In comparison to headwater streams, which encompass flow velocities of 0.1 - 1.0 + m/s, water velocity in water tracks ranges 0.001 - 0.1 m/s, suggesting the potential for significant interaction of water and solutes with transient storage zones in hillslopes compared to streams. Transient storage, the temporary retention of water and solutes in slow-flowing water, contributes to increased water residence time and thus the exposure of water and associated solutes to biochemically reactive substrates. Seasonal patterns in thaw depth of hillslope soils and discharge from hillslopes in the Arctic suggest that the relative contribution of transient storage zones might show predictable seasonal- and event-scale patterns. We conducted slug injections of a conservative solute (NaCl) in two water tracks in the Kuparuk River watershed, Alaska, during two summers to characterize how transient storage varied with thaw depth and discharge. The resulting break-through curves were separated into three dominant processes using an analytical advection-dispersion model: 1) salt mass primarily moved by advection and dispersion, 2) salt mass experiencing transient storage, and 3) a mass loss term. Across all tracer experiments, the mean percentage of total injected tracer mass associated with transient storage was 54%. This is comparable to a peat-bottomed stream but greater than a cobble-lined channel in a nearby catchment. However, transient storage was variable among experiments (1.3 - 72%). Discharge was also variable across experiments, ranging 0.05 - 3.5 L/s, and there was a negative correlation between transient storage and discharge. Thus, we expect significant interaction of solutes with soils in water tracks during inter-storm periods, when the majority of water moving through water tracks enters transient storage zones. We did not see a

  4. Isolating parameter sensitivity in reach scale transient storage modeling

    NASA Astrophysics Data System (ADS)

    Schmadel, Noah M.; Neilson, Bethany T.; Heavilin, Justin E.; Wörman, Anders

    2016-03-01

    Parameter sensitivity analyses, although necessary to assess identifiability, may not lead to an increased understanding or accurate representation of transient storage processes when associated parameter sensitivities are muted. Reducing the number of uncertain calibration parameters through field-based measurements may allow for more realistic representations and improved predictive capabilities of reach scale stream solute transport. Using a two-zone transient storage model, we examined the spatial detail necessary to set parameters describing hydraulic characteristics and isolate the sensitivity of the parameters associated with transient storage processes. We represented uncertain parameter distributions as triangular fuzzy numbers and used closed form statistical moment solutions to express parameter sensitivity thus avoiding copious model simulations. These solutions also allowed for the direct incorporation of different levels of spatial information regarding hydraulic characteristics. To establish a baseline for comparison, we performed a sensitivity analysis considering all model parameters as uncertain. Next, we set hydraulic parameters as the reach averages, leaving the transient storage parameters as uncertain, and repeated the analysis. Lastly, we incorporated high resolution hydraulic information assessed from aerial imagery to examine whether more spatial detail was necessary to isolate the sensitivity of transient storage parameters. We found that a reach-average hydraulic representation, as opposed to using detailed spatial information, was sufficient to highlight transient storage parameter sensitivity and provide more information regarding the potential identifiability of these parameters.

  5. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the

  6. Transient Storage Parameterization of Wetland-dominated Stream Reaches

    NASA Astrophysics Data System (ADS)

    Wilderotter, S. M.; Lightbody, A.; Kalnejais, L. H.; Wollheim, W. M.

    2014-12-01

    Current understanding of the importance of transient storage in fluvial wetlands is limited. Wetlands that have higher connectivity to the main stream channel are important because they have the potential to retain more nitrogen within the river system than wetlands that receive little direct stream discharge. In this study, we investigated how stream water accesses adjacent fluvial wetlands in New England coastal watersheds to improve parameterization in network-scale models. Break through curves of Rhodamine WT were collected for eight wetlands in the Ipswich and Parker (MA) and Lamprey River (NH) watersheds, USA. The curves were inverse modeled using STAMMT-L to optimize the connectivity and size parameters for each reach. Two approaches were tested, a single dominant storage zone and a range of storage zones represented using a power-law distribution of storage zone connectivity. Multiple linear regression analyses were conducted to relate transient storage parameters to stream discharge, area, length-to-width ratio, and reach slope. Resulting regressions will enable more accurate parameterization of surface water transient storage in network-scale models.

  7. Buffering PV output during cloud transients with energy storage

    NASA Astrophysics Data System (ADS)

    Moumouni, Yacouba

    Consideration of the use of the major types of energy storage is attempted in this thesis in order to mitigate the effects of power output transients associated with grid-tied CPV systems due to fast-moving cloud coverage. The approach presented here is to buffer intermittency of CPV output power with an energy storage device (used batteries) purchased cheaply from EV owners or battery leasers. When the CPV is connected to the grid with the proper energy storage, the main goal is to smooth out the intermittent solar power and fluctuant load of the grid with a convenient control strategy. This thesis provides a detailed analysis with appropriate Matlab codes to put onto the grid during the day time a constant amount of power on one hand and on the other, shift the less valuable off-peak electricity to the on-peak time, i.e. between 1pm to 7pm, where the electricity price is much better. In this study, a range of base constant power levels were assumed including 15kW, 20kW, 21kW, 22kW, 23kW, 24kW and 25kW. The hypothesis based on an iterative solution was that the capacity of the battery was increased by steps of 5 while the base supply was decreased by the same step size until satisfactorily results were achieved. Hence, it turned out with the chosen battery capacity of 54kWh coupled to the data from the Amonix CPV 7700 unit for Las Vegas for a 3-month period, it was found that 20kW was the largest constant load the system can supply uninterruptedly to the utility company. Simulated results are presented to show the feasibility of the proposed scheme.

  8. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand

    USGS Publications Warehouse

    Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.

    2014-01-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

  9. An efficient numerical solution of the transient storage equations for solute transport in small streams

    USGS Publications Warehouse

    Runkel, Robert L.; Chapra, Steven C.

    1993-01-01

    Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.

  10. Attempting to link hydro-morphology, transient storage and metabolism in streams: Insights from reactive tracer experiments

    NASA Astrophysics Data System (ADS)

    Kurz, Marie J.; Schmidt, Christian; Blaen, Phillip; Knapp, Julia L. A.; Drummond, Jennifer D.; Martí, Eugenia; Zarnetske, Jay P.; Ward, Adam S.; Krause, Stefan

    2016-04-01

    In-stream transient storage zones, including the hyporheic zone and vegetation beds, can be hotspots of biogeochemical processing in streams, enhancing ecosystem functions such as metabolism and nutrient uptake. The spatio-temporal dynamics and reactivity of these storage zones are influenced by multiple factors, including channel geomorphology, substrate composition and hydrology, and by anthropogenic modifications to flow regimes and nutrient loads. Tracer injections are a commonly employed method to evaluate solute transport and transient storage in streams; however, reactive tracers are needed to differentiate between metabolically active and inactive transient storage zones. The reactive stream tracer resazurin (Raz), a weakly fluorescent dye which irreversibly transforms to resorufin (Rru) under mildly reducing conditions, provides a proxy for aerobic respiration and an estimate of the metabolic activity associated with transient storage zones. Across a range of lotic ecosystems, we try to assess the influence of stream channel hydro-morphology, morphologic heterogeneity, and substrate type on reach (103 m) and sub-reach (102 m) scale transient storage, respiration, and nutrient uptake. To do so, we coupled injections of Raz and conservative tracers (uranine and/or salt) at each study site. The study sites included: vegetated mesocosms controlled for water depth; vegetated and un-vegetated sediment-filled mesocosms fed by waste-water effluent; a contrasting sand- vs. gravel-bedded lowland stream (Q = 0.08 m3/s); and a series of upland streams with varying size (Q = 0.1 - 1.5 m3/s) and prevalence of morphologic features. Continuous time-series of tracer concentrations were recorded using in-situ fluorometers and EC loggers. At the stream sites, time-series were recorded at multiple downstream locations in order to resolve sub-reach dynamics. Analyses yielded highly variable transport metrics and Raz-Rru transformation between study sites and between sub

  11. Quantifying the residence time distribution of surface transient storage in streams: A computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Jackson, T. R.; Drost, K. J.; Haggerty, R.; Apte, S. V.

    2011-12-01

    Transient storage is the sum of surface transient storage (STS) and hyporheic transient storage (HTS) and separating the two storage components is challenging. A number of studies have attempted to determine the relationship between transient storage and stream channel properties; however, difficulties ensue when attempting to calculate STS. The present study attempts to develop a predictive relationship between a stream's STS residence time distribution (RTD) to physically-based and field-measureable properties of natural streams. Our approach is to use field measurements to constrain a computational fluid dynamics (CFD) model of STS and use both to develop and test a predictive model of STS RTD. Field sites were located on Oak and Soap creeks in the Willamette Valley near Corvallis, Oregon. Data collection included: (1) obtaining detailed stream and STS zone morphologies through dense survey measurements; (2) determining turbulence parameters and CFD model boundary inputs from stream and storage zone velocity measurements with a Marsh-McBirney and acoustic Doppler velocimeter; (3) quantifying the RTD and its mean using salt tracer injections and electrical conductivity probes; and (4) estimating mixing layer parameters using velocity measurements and a visual dye. Preliminary results from the CFD model and comparison to field data will be presented, and resulting insights into the RTD.

  12. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    USGS Publications Warehouse

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  13. Modeling a Transient Pressurization with Active Cooling Sizing Tool

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.

    2011-01-01

    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank

  14. Episodic memory in transient global amnesia: encoding, storage, or retrieval deficit?

    PubMed Central

    Eustache, F.; Desgranges, B.; Laville, P.; Guillery, B.; Lalevee, C.; Schaeffer, S.; de la Sayette, V.; Iglesias, S.; Baron, J.; Viader, F.

    1999-01-01

    OBJECTIVES—To assess episodic memory (especially anterograde amnesia) during the acute phase of transient global amnesia to differentiate an encoding, a storage, or a retrieval deficit.
METHODS—In three patients, whose amnestic episode fulfilled all current criteria for transient global amnesia, a neuropsychological protocol was administered which included a word learning task derived from the Grober and Buschke's procedure.
RESULTS—In one patient, the results suggested an encoding deficit, and in two others, a storage deficit.
CONCLUSIONS—The encoding/storage impairment concerning anterograde amnesia documented in our patients stands in clear contrast with the impairment in retrieval which must underly the retrograde amnesia that also characterises transient global amnesia. This dissociation in turn favours the idea of a functional independence among the cognitive mechanisms that subserve episodic memory.

 PMID:10071092

  15. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  16. Spent fuel behavior under abnormal thermal transients during dry storage

    SciTech Connect

    Stahl, D.; Landow, M.P.; Burian, R.J.; Pasupathi, V.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment was heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.

  17. Active Region Transient Brightenings : EIT Versus SXT

    NASA Astrophysics Data System (ADS)

    Berghmans, D.; McKenzie, D.; Clette, F.

    1999-10-01

    On May 13, 1998, the Extreme-Ultraviolet Imaging Telescope (EIT, on board SOHO) has produced a unique image sequence operating in 'shutterless mode' (SOHO JOP 80). In JOP 80, EIT is the leading instrument, followed by several space born instruments (SXT, TRACE, MDI, CDS, SUMER), as well as two observatories on the ground (in La Palma and Sac Peak). The target of the campaign was a relatively small but rapidly evolving active region (AR 8218). For the EIT contribution, a 15 s cadence was achieved in the Fe XII bandpass at 195 deg by leaving EIT's shutter open for 1 hour and operating the CCD in frame transfer mode. We have started the analysis of the huge data set, by making an inventory of the transients observed in the EIT image sequence. These transients range from a B3.5 flare producing a large plasma flow along pre-existing loops, to smaller EUV brightenings of active region loops. In addition, a new class of weaker footpoint brightenings was discovered that produce wave-like disturbances propagating along quasi-open field lines (see the presentation by Eva Robbrecht at this workshop). In this paper we take the opportunity provided by JOP 80, to investigate the correspondence of the transient brightenings observed by EIT in this active region, with the ARTB previously observed by SXT and studied by Shimizu (1992). Within the simultaneous high cadence SOHO JOP 80 image sequences, both EIT and SXT accummulated a few tens of brightening events. At the time of the writing of this abstract, we can say that most of the SXT events have indeed 1 or more EIT counterparts. Typically the SXT events are somewhat bigger than the EIT events where the latter are ussualy located toward the point of origin of the SXT events. Whereas a few brightenings exist in one dataset without any trace in the other dataset (in both directions), we have additionally for a few brightenings in the SXT data, a corresponding EIT darkening as if the plasma is suddenly heated and dissappears from

  18. Solar activity and explosive transient eruptions

    NASA Astrophysics Data System (ADS)

    Ambastha, Ashok

    2016-07-01

    We discuss active and explosive behavior of the Sun observable in a wide range of wavelengths (or energies) and spatio-temporal scales that are not possible for any other star. On the longer time scales, the most notable form of solar activity is the well known so called 11-year solar activity cycle. On the other hand, at shorter time scales of a few minutes to several hours, spectacular explosive transient events, such as, solar flares, prominence eruptions, and coronal mass ejections (CMEs) occur in the outer layers of solar atmosphere. These solar activity cycle and explosive phenomena influence and disturb the space between the Sun and planets. The state of the interplanetary medium, including planetary and terrestrial surroundings, or "the space weather", and its forecasting has important practical consequences. The reliable forecasting of space weather lies in continuously observing of the Sun. We present an account of the recent developments in our understanding of these phenomena using both space-borne and ground-based solar observations.

  19. Analysis of transient storage subject to unsteady flow: Diel flow variation in an Antarctic stream

    USGS Publications Warehouse

    Runkel, R.L.; McKnight, Diane M.; Andrews, E.D.

    1998-01-01

    Transport of dissolved material in streams and small rivers may be characterized using tracer-dilution methods and solute transport models. Recent studies have quantified stream/substream interactions using models of transient storage. These studies are based on tracer-dilution data obtained during periods of steady flow. We present a modeling framework for the analysis of transient storage in stream systems with unsteady flows. The framework couples a kinematic wave routing model with a solute transport model that includes transient storage. The routing model provides time-varying flows and cross-sectional areas that are used as input to the solute transport model. The modeling framework was used to quantify stream/substream interaction in Huey Creek, an Antarctic stream fed exclusively by glacial meltwater. Analysis of tracer-dilution data indicates that there was substantial interaction between the flowing surface water and the hyporheic (substream) zone. The ratio of storage zone area to stream cross-sectional area (A(s)/A) was >1 in all stream reaches, indicating that the substream area contributing to hyporheic exchange was large relative to stream cross-sectional area. The rate of exchange, as governed by the transient storage exchange coefficient (??), was rapid because of a high stream gradient and porous alluvial materials. Estimates of ?? generally exceed those determined for other small streams. The high degree of hyporheic exchange supports the hypothesis that weathering reactions within the hyporheos account for observed increases in solute concentration with stream length, as noted in other studies of Antarctic streams.

  20. Results from transient tests and spherical valve closure tests, Raccoon Mountain Pumped-Storage Plant

    SciTech Connect

    March, P.A.

    1984-09-01

    Tests were conducted at the Raccoon Mountain Pumped-Storage Plant to obtain data on hydraulic system characteristics during transient-state operation, to compare measured values for system pressures and surge levels with design values, to provide information for review of hydaulic transient computations, and to provide confirmation that the spherical valves are capable of shutting off plant flow under emergency conditions. The tests included single-unit load rejection, single-unit pump power loss, multi-unit emergency shutdown from generating, multi-unit emergency shutdown from pumping, and spherical valve closure.

  1. Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples

    DOE PAGES

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...

    2016-09-16

    Terrestrial ecosystems absorb roughly 30% of anthropogenic CO2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production, NPP)more » and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C

  2. Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples

    SciTech Connect

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; Xia, Jianyang; Liang, Junyi; Wang, Ying; Smith, Matthew J.; Jiang, Lifen; Ahlstrom, Anders; Chen, Benito; Hararuk, Oleksandra; Hastings, Alan; Hoffman, Forrest; Medlyn, Belinda; Niu, Shuli; Rasmussen, Martin; Todd-Brown, Katherine; Wang, Ying -Ping

    2016-09-16

    Terrestrial ecosystems absorb roughly 30% of anthropogenic CO2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times.

    Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of

  3. Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications

    NASA Astrophysics Data System (ADS)

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; Xia, Jianyang; Liang, Junyi; Jiang, Jiang; Wang, Ying; Smith, Matthew J.; Jiang, Lifen; Ahlström, Anders; Chen, Benito; Hararuk, Oleksandra; Hastings, Alan; Hoffman, Forrest; Medlyn, Belinda; Niu, Shuli; Rasmussen, Martin; Todd-Brown, Katherine; Wang, Ying-Ping

    2017-01-01

    Terrestrial ecosystems have absorbed roughly 30 % of anthropogenic CO2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land

  4. Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications

    DOE PAGES

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...

    2017-01-12

    Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., netmore » primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions

  5. Application of high-resolution, remotely sensed data for transient storage modeling parameter estimation

    NASA Astrophysics Data System (ADS)

    Bingham, Q. G.; Neilson, B. T.; Neale, C. M. U.; Cardenas, M. B.

    2012-08-01

    This paper presents a method that uses high-resolution multispectral and thermal infrared imagery from airborne remote sensing for estimating two model parameters within the two-zone in-stream temperature and solute (TZTS) model. Previous TZTS modeling efforts have provided accurate in-stream temperature predictions; however, model parameter ranges resulting from the multiobjective calibrations were quite large. In addition to the data types previously required to populate and calibrate the TZTS model, high-resolution, remotely sensed thermal infrared (TIR) and near-infrared, red, and green (multispectral) band imagery were collected to help estimate two previously calibrated parameters: (1) average total channel width (BTOT) and (2) the fraction of the channel comprising surface transient storage zones (β). Multispectral imagery in combination with the TIR imagery provided high-resolution estimates ofBTOT. In-stream temperature distributions provided by the TIR imagery enabled the calculation of temperature thresholds at which main channel temperatures could be delineated from surface transient storage, permitting the estimation ofβ. It was found that an increase in the resolution and frequency at which BTOT and β were physically estimated resulted in similar objective functions in the main channel and transient storage zones, but the uncertainty associated with the estimated parameters decreased.

  6. Transient performance evaluation of an integrated heat pipe-thermal storage system

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    Transient performance tests of an integrated heat pipe-thermal storage system have been conducted. This system was developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System receiver for future power systems. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage canisters within the vapor space and an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. The transient performance tests determined the operating characteristics and power input limits of the integrated heat pipe-thermal storage unit under conditions corresponding to re-acquisition of the sun during emergence from eclipse conditions and to the initial start-up of the solar dynamic power system. The tests demonstrated that the heat pipe-thermal storage element is not limited under conditions corresponding to emergence from eclipse during normal orbital operations and the heat pipe will successfully start-up from the frozen condition with full input power at the onset. Details of the test procedures and results of the tests are presented in this paper.

  7. Transient sodium current at subthreshold voltages: activation by EPSP waveforms.

    PubMed

    Carter, Brett C; Giessel, Andrew J; Sabatini, Bernardo L; Bean, Bruce P

    2012-09-20

    Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also "persistent" sodium current, a noninactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37°C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo.

  8. Transient sodium current at subthreshold voltages: activation by EPSP waveforms

    PubMed Central

    Carter, Brett C.; Giessel, Andrew J.; Sabatini, Bernardo L.; Bean, Bruce P.

    2012-01-01

    Summary Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also “persistent” sodium current, a non-inactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37 °C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo. PMID:22998875

  9. Modeling biotic uptake by periphyton and transient hyporrheic storage of nitrate in a natural stream

    USGS Publications Warehouse

    Kim, Brian K.A.; Jackman, Alan P.; Triska, Frank J.

    1992-01-01

    To a convection-dispersion hydrologic transport model we coupled a transient storage submodel (Bencala, 1984) and a biotic uptake submodel based on Michaelis-Menten kinetics (Kim et al., 1990). Our purpose was threefold: (1) to simulate nitrate retention in response to change in load in a third-order stream, (2) to differentiate biotic versus hydrologie factors in nitrate retention, and (3) to produce a research tool whose properties are consistent with laboratory and field observations. Hydrodynamic parameters were fitted from chloride concentration during a 20-day chloride-nitrate coinjection (Bencala, 1984), and biotic uptake kinetics were based on flume studies by Kim et al. (1990) and Triska et al. (1983). Nitrate concentration from the 20-day coinjection experiment served as a base for model validation. The complete transport retention model reasonably predicted the observed nitrate concentration. However, simulations which lacked either the transient storage submodel or the biotic uptake submodel poorly predicted the observed nitrate concentration. Model simulations indicated that transient storage in channel and hyporrheic interstices dominated nitrate retention within the first 24 hours, whereas biotic uptake dominated thereafter. A sawtooth function for Vmax ranging from 0.10 to 0.17 μg NO3-N s−1gAFDM−1 (grams ash free dry mass) slightly underpredicted nitrate retention in simulations of 2–7 days. This result was reasonable since uptake by other nitrate-demanding processes were not included. The model demonstrated how ecosystem retention is an interaction between physical and biotic processes and supports the validity of coupling separate hydrodynamic and reactive submodels to established solute transport models in biological studies of fluvial ecosystems.

  10. Analysis of Transient and Start-Up Behavior of Heat Pipes and an Energy Storage Module

    DTIC Science & Technology

    1990-06-01

    4-G - .. JT 77 roqpy AD- A225 659 WRDC-TR-90-2031 ANALYSIS OF TRANSIENT AND START-UP BEHAVIOR OF HEAT PIPES AND AN ENERGY STORAGE MODULE Amir Faghri...po)/PfUo2 (Section III) (p + pgy) H/p a (Section V) P reference pressure for the Clausius-Clapeyron equation, N/m 2 P Cr reference pressure for the...the 90 saturation temperature of the vapor from the pressure as given by Ts=1 1 (4.37) 1 u In P cr fg Pcr The axisymmetric condition along the

  11. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  12. Incompletely Mixed Surface Transient Storage Zones at River Restoration Structures: Modeling Implications

    NASA Astrophysics Data System (ADS)

    Endreny, T. A.; Robinson, J.

    2012-12-01

    River restoration structures, also known as river steering deflectors, are designed to reduce bank shear stress by generating wake zones between the bank and the constricted conveyance region. There is interest in characterizing the surface transient storage (STS) and associated biogeochemical processing in the STS zones around these structures to quantify the ecosystem benefits of river restoration. This research explored how the hydraulics around river restoration structures prohibits application of transient storage models designed for homogenous, completely mixed STS zones. We used slug and constant rate injections of a conservative tracer in a 3rd order river in Onondaga County, NY over the course of five experiments at varying flow regimes. Recovered breakthrough curves spanned a transect including the main channel and wake zone at a j-hook restoration structure. We noted divergent patterns of peak solute concentration and times within the wake zone regardless of transect location within the structure. Analysis reveals an inhomogeneous STS zone which is frequently still loading tracer after the main channel has peaked. The breakthrough curve loading patterns at the restoration structure violated the assumptions of simplified "random walk" 2 zone transient storage models which seek to identify representative STS zones and zone locations. Use of structure-scale Weiner filter based multi-rate mass transfer models to characterize STS zones residence times are similarly dependent on a representative zone location. Each 2 zone model assumes 1 zone is a completely mixed STS zone and the other a completely mixed main channel. Our research reveals limits to simple application of the recently developed 2 zone models, and raises important questions about the measurement scale necessary to identify critical STS properties at restoration sites. An explanation for the incompletely mixed STS zone may be the distinct hydraulics at restoration sites, including a constrained

  13. Transient behavior of heat pipe with thermal energy storage under pulse heat loads

    NASA Astrophysics Data System (ADS)

    Chang, Ming-, Jr.

    1991-02-01

    Future space missions will require thermal transport devices with the ability to handle transient pulse heat loads. A novel design of a high-temperature axially grooved heat pipe (HP) which incorporates thermal energy storage (TES) to migrate pulse heat loads was presented. A phase-change material (PCM) which is encapsulated in cylindrical containers was used for the thermal energy storage. The transient response of the HP/TES system under two different types of pulse heat loads was studied analytically. The first type is pulse heat loads applied at the heat pipe evaporator, the second type is reversed-pulse heat loads applied at the condenser. In this research, a new three-dimensional alternating-direction-implicit (ADI) method was developed to model the heat conduction through the heat pipe wall and wicks, including the liquid flow in grooves. A very important characteristic of this new ADI method is that it is consistent with physical considerations. Compared with the well-known Brian's and Douglas's ADI methods, this new ADI method had higher accuracy and requires less computer storage. In the numerical solution of heat transfer problems with phase change (Stefan-type problem), a modified Pham's method which includes features from enthalpy and heat capacity methods was used to simulate the melting and solidification processes of the PCG. The vapor flow was assumed quasi-steady and one-dimensional, and was coupled with the evaporation and condensation on the heat pipe inside wall surface and the surfaces of the PCM containers. The transient responses of three different HP/TES configurations were compared: (1) a heat pipe with a large empty cylinder installed in the vapor core, (2) a heat pipe with a large PCM cylinder, and (3) a heat pipe with six small PCM cylinders. From the numerical results, it was found that the PCM is very effective in mitigrating the adverse effect of pulse heat loads. The six small PCM cylinders are more efficient than the large PCM

  14. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  15. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  16. Transient stability of NbTi Rutherford cables for energy storage magnet applications

    NASA Astrophysics Data System (ADS)

    Bhunia, U.; Pradhan, J.; De, A.; Roy, A.; Khare, V. K.; Dey, M. K.; Thakur, S. K.; Saha, S.; Kanithi, H.

    2017-02-01

    Stability and quench behavior against transient perturbation expected during operation of a fast cycling energy storage magnet is an important issue for its design and safe operation. Understanding of thermal stability in terms of minimum quench energy (MQE) of a superconducting cable under specific operating scenario is of primary importance for its magnet application. Process of current redistribution from quench strand to adjacent strands depends on inductive coupling and has influence on quench development in the cable. The electrodynamic and thermal behavior of a ten-strand Rutherford-type cable for SMES program in the centre is studied numerically in the framework of discrete network modeling. Influence of several parameters such as uncertainties of inter-strand transverse and adjacent resistance, cooling conditions with liquid helium, etc. on MQE and quench behavior of Rutherford cable is discussed in this paper.

  17. Transient analysis of a thermal storage unit involving a phase change material

    NASA Technical Reports Server (NTRS)

    Griggs, E. I.; Pitts, D. R.; Humphries, W. R.

    1974-01-01

    The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.

  18. Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications

    NASA Astrophysics Data System (ADS)

    Landi, G.; Sorrentino, A.; Iannace, S.; Neitzert, H. C.

    2017-02-01

    A comparison between graphene flakes and graphene oxide as filler in gelatin based systems for low-cost transient biodegradable energy storage applications has been carried out. The two bio-composites have been prepared and characterized by rheological measurements, cyclic voltammetry measurements, chronopotentiometry measurements and impedance spectroscopy. Differences in dielectric and mechanical properties have been correlated to the different structural organizations determinate by the hydrophobic/hydrophilic character of the used filler. In particular, the addition of the graphene oxide to the gelatin causes an increase in the elastic modulus with a parallel increase in the mechanical stability with time as compared to the composites obtained by adding graphene. Conversely, the surface capacitance is slightly increased by the graphene oxide addition compared to the pure gelatin sample. On the other hand, the introduction of the graphene flakes into the gelatin leads to a marked increase of the dielectric properties of the resulting bio-composite.

  19. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the

  20. A PCM/forced convection conjugate transient analysis of energy storage systems with annular and countercurrent flows

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.; Juhasz, A.

    1991-01-01

    Latent heat energy storage systems with both annular and countercurrent flows are modeled numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. It is found that the energy storage system with the countercurrent flow is an efficient way to absorb heat energy in a short period for pulsed power load space applications.

  1. Transient Casimir Forces from Quenches in Thermal and Active Matter.

    PubMed

    Rohwer, Christian M; Kardar, Mehran; Krüger, Matthias

    2017-01-06

    We compute fluctuation-induced (Casimir) forces for classical systems after a temperature quench. Using a generic coarse-grained model for fluctuations of a conserved density, we find that transient forces arise even if the initial and final states are force free. In setups reminiscent of Casimir (planar walls) and van der Waals (small inclusions) interactions, we find comparable exact universal expressions for the force. Dynamical details only scale the time axis of transient force curves. We propose that such quenches can be achieved, for instance, in experiments on active matter, employing tunable activity or interaction protocols.

  2. Transient Casimir Forces from Quenches in Thermal and Active Matter

    NASA Astrophysics Data System (ADS)

    Rohwer, Christian M.; Kardar, Mehran; Krüger, Matthias

    2017-01-01

    We compute fluctuation-induced (Casimir) forces for classical systems after a temperature quench. Using a generic coarse-grained model for fluctuations of a conserved density, we find that transient forces arise even if the initial and final states are force free. In setups reminiscent of Casimir (planar walls) and van der Waals (small inclusions) interactions, we find comparable exact universal expressions for the force. Dynamical details only scale the time axis of transient force curves. We propose that such quenches can be achieved, for instance, in experiments on active matter, employing tunable activity or interaction protocols.

  3. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage

    NASA Astrophysics Data System (ADS)

    Runkel, Robert L.

    2015-08-01

    Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.

  4. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage

    USGS Publications Warehouse

    Runkel, Robert L.

    2015-01-01

    Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.

  5. 41 CFR 101-28.203-1 - Government storage activity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Government storage... DISTRIBUTION 28.2-Interagency Cross-Servicing in Storage Activities § 101-28.203-1 Government storage activity. A Government activity or facility utilized for the receipt, storage, and issue of...

  6. 41 CFR 101-28.203-1 - Government storage activity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Government storage... DISTRIBUTION 28.2-Interagency Cross-Servicing in Storage Activities § 101-28.203-1 Government storage activity. A Government activity or facility utilized for the receipt, storage, and issue of...

  7. 41 CFR 101-28.203-1 - Government storage activity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Government storage... DISTRIBUTION 28.2-Interagency Cross-Servicing in Storage Activities § 101-28.203-1 Government storage activity. A Government activity or facility utilized for the receipt, storage, and issue of...

  8. In trans promoter activation by enhancers in transient transfection.

    PubMed

    Smirnov, N A; Akopov, S B; Didych, D A; Nikolaev, L G

    2017-03-01

    Earlier, it was reported that the strong cytomegalovirus enhancer can activate the cytomegalovirus promoter in trans, i.e. as a separate plasmid co-transfected with a promoter-reporter gene construct. Here we demonstrate that the ability of enhancers to activate promoters in trans in transient transfection experiments is a property of not only viral regulatory elements but also of various genomic enhancers and promoters. Enhancer-promoter activation in trans is promoter- and cell type-specific, and accompanied by physical interaction between promoter and enhancer as revealed by chromosome conformation capture assays. Thus, promoter activation in transient co-transfection of promoters and enhancers shares a number of important traits with long-distance promoter activation by enhancers in living cells and may therefore serve as a model of this fundamental cellular process.

  9. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  10. Transient human auditory cortex activation during volitional attention shifting

    PubMed Central

    Uhlig, Christian Harm; Gutschalk, Alexander

    2017-01-01

    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues. PMID:28273110

  11. Stream Tracer Integrity: Comparative Analyses of Rhodamine-WT and Sodium Chloride through Transient Storage Modeling

    NASA Astrophysics Data System (ADS)

    Smull, E. M.; Wlostowski, A. N.; Gooseff, M. N.; Bowden, W. B.; Wollheim, W. M.

    2013-12-01

    Solute transport in natural channels describes the transport of water and dissolved matter through a river reach of interest. Conservative tracers allow us to label a parcel of stream water, such that we can track its movement downstream through space and time. A transient storage model (TSM) can be fit to the breakthrough curve (BTC) following a stream tracer experiment, as a way to quantify advection, dispersion, and transient storage processes. Arctic streams and rivers, in particular, are continuously underlain by permafrost, which provides for a simplified surface water-groundwater exchange. Sodium chloride (NaCl) and Rhodamine-WT (RWT) are widely used tracers, and differences between the two in conservative behavior and detection limits have been noted in small-scale field and laboratory studies. This study seeks to further this understanding by applying the OTIS model to NaCl and RWT BTC data from a field study on the Kuparuk River, Alaska, at varying flow rates. There are two main questions to be answered: 1) Do differences in NaCl and RWT manifest in OTIS parameter values? 2) Are the OTIS model results reliable for NaCl, RWT, or both? Fieldwork was performed in the summer of 2012 on the Kuparuk River, and modeling was performed using a modified OTIS framework, which provided for parameter optimization and further global sensitivity analyses. The results of this study will contribute to the greater body of literature surrounding Arctic stream hydrology, and it will assist in methodology for future tracer field studies. Additionally, the modeling work will provide an analysis for OTIS parameter identifiability, and assess stream tracer integrity (i.e. how well the BTC data represents the system) and its relation to TSM performance (i.e. how well the TSM can find a unique fit to the BTC data). The quantitative tools used can be applied to other solute transport studies, to better understand potential deviations in model outcome due to stream tracer choice and

  12. Uncertainty of permeability and specific storage due to experimental error during data acquisition for pulse-transient technique

    NASA Astrophysics Data System (ADS)

    Song, I.; Rathbun, A. P.; Saffer, D. M.

    2011-12-01

    Transient fluid flow through rock is governed by two hydraulic properties: permeability (k) and the specific storage (Ss), which are often determined by the pulse-transient technique when k is extremely low (e.g. k < 10-19 m2). The basic test system is composed of a pressure-confined rock sample connected to two closed reservoirs at its upstream and downstream ends. A pulse of pressure at the upstream boundary drives transient flow through the sample to the downstream end. The rock properties, k and Ss, can be determined by time-based recording of only one variable, the pressure change in each reservoir. Experimental error during data acquisition propagates through the data reduction process, leading to uncertainty in experimental results. In addition, unlike steady-state systems, the pressure-time curves are influenced by the compressive storage of the reservoirs and both the dimensions and properties of the sample. Thus, uncertainty in k and Ss may arise from errors in measurement of sample dimension, fluid pressure, or reservoir storages. In this study, the uncertainty in sample dimension is considered to be negligible, and reasonable error ranges in pressure and system storage measurements are considered. We first calculated pressure errors (P) induced by the difference between assumed, or experimentally measured values of k and Ss and their true values. Based on this result, the sensitivity coefficient (∂k/∂P and ∂Ss/∂P) is theoretically ~10 in percentage, i.e. 1% error of the pulse on average during a test cycle produces ~10% uncertainty in k and Ss. The sensitivity coefficient may become larger when the ratio of sample storage to upstream reservoir storage is extremely small. We also examined the sensitivity of experimental error in measuring the storage capacity of system reservoirs to uncertainty in resulting values of k and Ss. Because the reservoirs are typically small for tight rock samples and irregular in shape due to the combination of tubing

  13. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections

    USGS Publications Warehouse

    Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.

    2011-01-01

    Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.

  14. Activated Carbon Fibers For Gas Storage

    SciTech Connect

    Burchell, Timothy D; Contescu, Cristian I; Gallego, Nidia C

    2017-01-01

    The advantages of Activated Carbon Fibers (ACF) over Granular Activated Carbon (GAC) are reviewed and their relationship to ACF structure and texture are discussed. These advantages make ACF very attractive for gas storage applications. Both adsorbed natural gas (ANG) and hydrogen gas adsorption performance are discussed. The predicted and actual structure and performance of lignin-derived ACF is reviewed. The manufacture and performance of ACF derived monolith for potential automotive natural gas (NG) storage applications is reported Future trends for ACF for gas storage are considered to be positive. The recent improvements in NG extraction coupled with the widespread availability of NG wells means a relatively inexpensive and abundant NG supply in the foreseeable future. This has rekindled interest in NG powered vehicles. The advantages and benefit of ANG compared to compressed NG offer the promise of accelerated use of ANG as a commuter vehicle fuel. It is to be hoped the current cost hurdle of ACF can be overcome opening ANG applications that take advantage of the favorable properties of ACF versus GAC. Lastly, suggestions are made regarding the direction of future work.

  15. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  16. Efficient Management of Complex Striped Files in Active Storage

    SciTech Connect

    Piernas Canovas, Juan; Nieplocha, Jaroslaw

    2008-08-25

    Active Storage provides an opportunity for reducing the band- width requirements between the storage and compute elements of cur- rent supercomputing systems, and leveraging the processing power of the storage nodes used by some modern file systems. To achieve both objec- tives, Active Storage allows certain processing tasks to be performed directly on the storage nodes, near the data they manage. However, Active Storage must also support key requirements of scientific applications. In particular, Active Storage must be able to support striped files and files with complex formats (e.g., netCDF). In this paper, we describe how these important requirements can be addressed. The experimental results on a Lustre file system not only show that our proposal can re- duce the network traffic to near zero and scale the performance with the number of storage nodes, but also that it provides an efficient treatment of striped files and can manage files with complex data structures.

  17. Variations in surface water-ground water interactions along a headwater mountain stream : comparisons between transient storage and water balance analyses

    USGS Publications Warehouse

    Ward, Adam S.; Payn, Robert A.; Gooseff, Michael N.; McGlynn, Brian L.; Bencala, Kenneth E.; Kelleher, Christa A.; Wondzell, Steven M.; Wagener, Thorsten

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We conducted transient storage and mass recovery analyses of artificial tracer studies completed for 28 contiguous 100 m reaches along a stream valley, repeated under four base-flow conditions. We calculated net and gross gains and losses, temporal moments of tracer breakthrough curves, and best fit transient storage model parameters (with uncertainty estimates) for 106 individual tracer injections. Results supported predictions that gross loss of channel water would decrease with increased discharge. However, results showed no clear relationship between discharge and transient storage, and further analysis of solute tracer methods demonstrated that the lack of this relation may be explained by uncertainty and equifinality in the transient storage model framework. Furthermore, comparison of water balance and transient storage approaches reveals complications in clear interpretation of either method due to changes in advective transport time, which sets a the temporal boundary separating transient storage and channel water balance. We have little ability to parse this limitation of solute tracer methods from the physical processes we seek to study. We suggest the combined analysis of both transient storage and channel water balance more completely characterizes transport of solutes in stream networks than can be inferred from either method alone.

  18. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  19. Transient activation of midbrain dopamine neurons by reward risk.

    PubMed

    Fiorillo, C D

    2011-12-01

    Dopamine neurons of the ventral midbrain are activated transiently following stimuli that predict future reward. This response has been shown to signal the expected value of future reward, and there is strong evidence that it drives positive reinforcement of stimuli and actions associated with reward in accord with reinforcement learning models. Behavior is also influenced by reward uncertainty, or risk, but it is not known whether the transient response of dopamine neurons is sensitive to reward risk. To investigate this, monkeys were trained to associate distinct visual stimuli with certain or uncertain volumes of juice of nearly the same expected value. In a choice task, monkeys preferred the stimulus predicting an uncertain (risky) reward outcome. In a Pavlovian task, in which the neuronal responses to each stimulus could be measured in isolation, it was found that dopamine neurons were more strongly activated by the stimulus associated with reward risk. Given extensive evidence that dopamine drives reinforcement, these results strongly suggest that dopamine neurons can reinforce risk-seeking behavior (gambling), at least under certain conditions. Risk-seeking behavior has the virtue of promoting exploration and learning, and these results support the hypothesis that dopamine neurons represent the value of exploration.

  20. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-05

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action.

  1. Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments

    USGS Publications Warehouse

    Gooseff, M.N.; Bencala, K.E.; Scott, D.T.; Runkel, R.L.; McKnight, Diane M.

    2005-01-01

    The transient storage model (TSM) has been widely used in studies of stream solute transport and fate, with an increasing emphasis on reactive solute transport. In this study we perform sensitivity analyses of a conservative TSM and two different reactive solute transport models (RSTM), one that includes first-order decay in the stream and the storage zone, and a second that considers sorption of a reactive solute on streambed sediments. Two previously analyzed data sets are examined with a focus on the reliability of these RSTMs in characterizing stream and storage zone solute reactions. Sensitivities of simulations to parameters within and among reaches, parameter coefficients of variation, and correlation coefficients are computed and analyzed. Our results indicate that (1) simulated values have the greatest sensitivity to parameters within the same reach, (2) simulated values are also sensitive to parameters in reaches immediately upstream and downstream (inter-reach sensitivity), (3) simulated values have decreasing sensitivity to parameters in reaches farther downstream, and (4) in-stream reactive solute data provide adequate data to resolve effective storage zone reaction parameters, given the model formulations. Simulations of reactive solutes are shown to be equally sensitive to transport parameters and effective reaction parameters of the model, evidence of the control of physical transport on reactive solute dynamics. Similar to conservative transport analysis, reactive solute simulations appear to be most sensitive to data collected during the rising and falling limb of the concentration breakthrough curve. ?? 2005 Elsevier Ltd. All rights reserved.

  2. An Action Dependent Heuristic Dynamic Programming-controlled Superconducting Magnetic Energy Storage for Transient Stability Augmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xinpu; Yang, Jun; Zhang, Xiaodong; Yu, Xiaopeng

    To enhance the stability of power system, the active power and reactive power can be absorbed from or released to Superconducting magnetic energy storage (SMES) unit according to system power requirements. This paper proposes a control strategy based on action dependent heuristic dynamic programing (ADHDP) which can control SMES to improve the stability of electric power system with on-line learning ability. Based on back propagation (BP) neural network, ADHDP approximates the optimal control solution of nonlinear system through iteration step by step. This on-line learning ability improves its performance by learning from its own mistakes through reinforcement signal from external environment, so that it can adjust the neural network weights according to the back propagation error to achieve optimal control performance. To investigate the effectiveness of the proposed control strategy, simulation tests are carried out in Matlab/Simulink. And a conventional Proportional-Integral (PI) controlled method is used to compare the performance of ADHDP. Simulation results show that the proposed controller demonstrates superior damping performance on power system oscillation caused by three-phase fault and wind power fluctuation over the PI controller.

  3. Activation of transient receptor potential ankyrin 1 by eugenol.

    PubMed

    Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

    2014-03-07

    Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5μM. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol.

  4. Impact of variable bed morphology on transient storage, hyporhic exchange and nutrient uptake in a field-scale flume

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Clark, J. J.; Wilcock, P. R.; Finlay, J. C.; Doyle, M. W.

    2006-12-01

    As part of an ongoing, multidisciplinary experimental effort coordinated by the National Center for Earth-surface Dynamics we investigated reach-scale interactions between, bed morphology, transient storage, nutrient cycling in a field-scale flume supplied with water from the Mississippi River. A combination of conservative salt tracer and soluble reactive phosphorous and nitrate additions was used to study the effects on these parameters of two bed morphologies (plane bed and alternate bar) and two sediment mixtures (clean gravel and sandy gravel) to determine how differences in sediment size and between plane-bed and laterally variable morphologies influence spatial heterogeneity in transport and uptake of nutrients. The goal was to partitioning reach-scale transient storage values between surface storage and hyporheic flow, determine how these values and their relative importance changed as we varied bed texture (or permeability) and added or removed surface features, and to then measure uptake of biologically available nitrogen and phosphorus individually and together along these surface and subsurface flow paths. In a final phase of the experiment, lights were added to the flume to determine how benthic algal abundance may change bed permeability and solute exchange with the bed as well as nutrient uptake rates. Initial results show that while mean water residence time varied by a factor of 2 across treatments (14 - 30 min) phosphorus uptake rates varied widely (5.5-2500 μg * m-2 * min-1 and the addition of light had a stronger impact on uptake rates than changes in geomorphic form.

  5. Active cooling requirements for propellant storage

    NASA Technical Reports Server (NTRS)

    Klein, G. A.

    1984-01-01

    Recent NASA and DOD mission models have indicated future needs for orbital cryogenic storage and supply systems. Two thermal control systems which show the greatest promise for improving propellant storage life were evaluated. One system was an open cycle thermodynamic vent type with a refrigeration system for partial hydrogen reliquefaction located at the LH2 tank and a vapor cooled shield for integrated and non-integrated tank designs to reduce boiloff. The other was a closed system with direct refrigeration at the LH2 tank. A reversed Brayton cycle unit was baselined for the propellant processor. It is concluded that: (1) reliquefaction systems are not attractive for minimizing propellant boiloff; (2) open cycle systems may not be economically attractive for long term storage; (3) a number of refrigeration systems are available to assist in the long term storage of cryogenic propellants; and (4) shields can significantly improve the performance of mechanical coolers.

  6. Pumped storage system model and experimental investigations on S-induced issues during transients

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-06-01

    Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the

  7. Liver Fibrosis in Type I Gaucher Disease: Magnetic Resonance Imaging, Transient Elastography and Parameters of Iron Storage

    PubMed Central

    Akkerman, Erik M.; Nederveen, Aart J.; Sinkus, Ralph; Jansen, Peter L. M.; Stoker, Jaap; Hollak, Carla E. M.

    2013-01-01

    Long term liver-related complications of type-1 Gaucher disease (GD), a lysosomal storage disorder, include fibrosis and an increased incidence of hepatocellular carcinoma. Splenectomy has been implicated as a risk factor for the development of liver pathology in GD. High ferritin concentrations are a feature of GD and iron storage in Gaucher cells has been described, but iron storage in the liver in relation to liver fibrosis has not been studied. Alternatively, iron storage in GD may be the result of iron supplementation therapy or regular blood transfusions in patients with severe cytopenia. In this pilot study, comprising 14 type-1 GD patients (7 splenectomized, 7 non-splenectomized) and 7 healthy controls, we demonstrate that liver stiffness values, measured by Transient Elastography and MR-Elastography, are significantly higher in splenectomized GD patients when compared with non-splenectomized GD patients (p = 0.03 and p = 0.01, respectively). Liver iron concentration was elevated (>60±30 µmol/g) in 4 GD patients of whom 3 were splenectomized. No relationship was found between liver stiffness and liver iron concentration. HFE gene mutations were more frequent in splenectomized (6/7) than in non-splenectomized (2/7) participants (p = 0.10). Liver disease appeared more advanced in splenectomized than in non-splenectomized patients. We hypothesize a relationship with excessive hepatic iron accumulation in splenectomized patients. We recommend that all splenectomized patients, especially those with evidence of substantial liver fibrosis undergo regular screening for HCC, according to current guidelines. PMID:23554863

  8. Storage-stable foamable polyurethane is activated by heat

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Polyurethane foamable mixture remains inert in storage unit activated to produce a rapid foaming reaction. The storage-stable foamable composition is spread as a paste on the surface of an expandable structure and, when heated, yields a rigid open-cell polyurethane foam that is self-bondable to the substrate.

  9. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOEpatents

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  10. Measurement of Thermal Conductivity of Suspension for Ice Storage by Transient Hot Wire Method

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koji; Obara, Keisuke; Okada, Masashi; Kawagoe, Tetsuo; Kang, Chaedong

    We have been studying on a suspension as a new thermal storage material. The suspension is made from silicone oil-water mixture with some additive or water with that by cooling with stirring. When designing the ice storage system using this suspension, the thermal conductivity of the suspension is essential. The purpose of this study is to measure a thermal conductivity of the ice-oil or ice-water suspension with good fluidity. The thermal conductivity was measured by at ransient hot wire method. In this study, the relationship between thermal conductivity and IPF was clarified, and thermal conductivity was expressed as a function of IPF. Moreover, the uncertainty of measurement of the thermal conductivity was estimated.

  11. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

    PubMed

    Unda, Jesus E Zerpa; Roduner, Emil

    2012-03-21

    A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

  12. Hydrogen storage on activated carbon. Final report

    SciTech Connect

    Schwarz, J.A.

    1994-11-01

    The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

  13. 303-K Storage Facility report on FY98 closure activities

    SciTech Connect

    Adler, J.G.

    1998-07-17

    This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy.

  14. Grain-based activated carbons for natural gas storage.

    PubMed

    Zhang, Tengyan; Walawender, Walter P; Fan, L T

    2010-03-01

    Natural gas has emerged as a potential alternative to gasoline due to the increase in global energy demand and environmental concerns. An investigation was undertaken to explore the technical feasibility of implementing the adsorbed natural gas (ANG) storage in the fuel tanks of motor vehicles with activated carbons from biomass, e.g., sorghum and wheat. The grain-based activated carbons were prepared by chemical activation; the experimental parameters were varied to identify the optimum conditions. The porosity of the resultant activated carbons was evaluated through nitrogen adsorption; and the storage capacity, through methane adsorption. A comparative study was also carried out with commercial activated carbons from charcoal. The highest storage factor attained was 89 for compacted grain-based activated carbons from grain sorghum with a bulk density of 0.65 g/cm(3), and the highest storage factor attained is 106 for compacted commercial activated carbons (Calgon) with a bulk density of 0.70 g/cm(3). The storage factor was found to increase approximately linearly with increasing bulk density and to be independent of the extent of compaction. This implies that the grain-based activated carbons are the ideal candidates for the ANG storage.

  15. Calcium transients in asymmetrically activated skeletal muscle fibers.

    PubMed Central

    Trube, G; Lopez, J R; Taylor, S R

    1981-01-01

    Skeletal muscle fibers of the frog Rana temporaria were held just taut and stimulated transversely by unidirectional electrical fields. We observed the reversible effects of stimulus duration (0.1-100 ms) and strength on action potentials, intracellular Ca2+ transients (monitored by aequorin), and contractile force during fixed-end contractions. Long duration stimuli (e.g., 10 ms) induced a maintained depolarization on the cathodal side of a cell and a maintained hyperpolarization on its anodal side. The hyperpolarization of the side facing the anode prevented the action potential from reaching mechanical threshold during strong stimuli. Variation of the duration or strength of a stimulus changed the luminescent response from a fiber injected with aequorin. Thus, the intracellular Ca2+ released during excitation-contraction coupling could be changed by the stimulus parameters. Prolongation of a stimulus at field strengths above 1.1 x rheobase decreased the amplitude of aequorin signals and the force of contractions. The decreases in aequorin and force signals from a given fiber paralleled one another and depended on the stimulus strength, but not on the stimulus polarity. These changes were completely reversible for stimulus strengths up to at least 4.2 x rheobase. The graded decreases in membrane depolarization, aequorin signals, and contractile force were correlated with the previously described folding of myofibrils in fibers allowed to shorten in response to the application of a long duration stimulus. The changes in aequorin signals and force suggest an absence of myofilament activation by Ca2+ in the section of the fiber closest to the anode. The results imply that injected aequorin distributes circumferentially in frog muscle with a coefficient of at least 10(-7) cm2/s, which is not remarkably different from the previously measured coefficient of 5 x 10(-8) cm2/s for its diffusion lengthwise. PMID:6976801

  16. Effects of Activation Energy to Transient Response of Semiconductor Gas Sensor

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Ohtani, Tatsuki

    The smell classifiable gas sensor will be desired for many applications such as gas detection alarms, process controls for food production and so on. We have tried to realize the sensor using transient responses of semiconductor gas sensor consisting of tin dioxide and pointed out that the sensor gave us different transient responses for kinds of gas. Results of model calculation showed the activation energy of chemical reaction on the sensor surface strongly depended on the transient response. We tried to estimate the activation energies by molecular orbital calculation with SnO2 Cluster. The results show that there is a liner relationship between the gradient of the transient responses and activation energies for carboxylic and alcoholic gases. Transient response will be predicted from activation energy in the same kind of gas and the smell discrimination by single semiconductor gas sensor will be realized by this relationship.

  17. Energy Storage. Teachers Guide. Science Activities in Energy.

    ERIC Educational Resources Information Center

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  18. Effects of Solar Activities on the Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Williams, E.; Chou, J.; Lee, L.; Huang, S.; Chang, S.; Chen, A. B.; Kuo, C.; Su, H.; Hsu, R.; Frey, H. U.; Takahashi, Y.; Lee, L.

    2013-12-01

    The Imager of Sprite and Upper Atmosphere Lightning (ISUAL) onboard the Formosat-2 was launched in May 2004; since then, it has continuously observed transient luminous events (TLEs) within the +/-60 degree of latitude for nearly 10 years. Due to ISUAL's long-term observations, the possible correlation between the TLE and the solar activity can be explored. Among the ISUAL TLEs, elves, which occur at the mesospheric altitude ~90 km and are caused by the heating incurred by the lightning-launched electromagnetic pulse of the lower ionosphere boundary are the most numerous and are the most suitable for this type of study. In previous studies, the elve distribution has proved to be a good surrogate for the lightning with exceptional peak current globally. ISUAL records the occurrence time and the height and location of elves, and the spectral emission intensities at six different band pass including the FUV N2 Lyman-Birge-Hopfield (LBH) band, which is a dominant emission in elves. The LBH intensity not only reflects the peak current of parent lightning, but may also represent the solar-activity-driven-lighting's perturbation to the ionosphere. In this study, we first examine whether the 11-year solar cycle affects the elve activity and altitude by analyzing the elve occurrence rates and heights in different latitudinal regions. To avoid the climatological and instrumental biases in the elve observations, the effects arising from the ENSO and moonlight must be carefully eliminated. Besides, we will discuss the elve variation in shorter time scale due to strong and sudden change of solar activity. Since the ion density of the mesosphere at mid-latitude may be significantly altered during/after a strong corona mass ejection (CME).Furthermore, it has been proven that the changes in the solar X-ray flux dominate the variations in the conductivity profile within the upper characteristic ELF layer (the 90-100km portion of the E-region). we will compare the variation of

  19. Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Duff, J.H.

    2004-01-01

    In extreme environments, retention of nutrients within stream ecosystems contributes to the persistence of aquatic biota and continuity of ecosystem function. In the McMurdo Dry Valleys, Antarctica, many glacial meltwater streams flow for only 5-12 weeks a year and yet support extensive benthic microbial communities. We investigated NO3- uptake and denitrification in Green Creek by analyzing small-scale microbial mat dynamics in mesocosms and reach-scale nutrient cycling in two whole-stream NO 3- enrichment experiments. Nitrate uptake results indicated that microbial mats were nitrogen (N)-limited, with NO 3- uptake rates as high as 16 nmol N cm-2 h-1. Denitrification potentials associated with microbial mats were also as high as 16 nmol N cm-2 h-1. During two whole-stream NO3--enrichment experiments, a simultaneous pulse of NO2- was observed in the stream water. The one-dimensional solute transport model with inflow and storage was modified to simulate two storage zones: one to account for short time scale hydrologic exchange of stream water into and out of the benthic microbial mat, the other to account for longer time scale hydrologic exchange with the hyporheic zone. Simulations indicate that injected NO3- was removed both in the microbial mat and in the hyporheic zone and that as much as 20% of the NO3- that entered the microbial mat and hyporheic zone was transformed to NO2- by dissimilatory reduction. Because of the rapid hydrologic exchange in microbial mats, it is likely that denitrification is limited either by biotic assimilation, reductase limitation, or transport limitation (reduced NO2- is transported away from reducing microbes).

  20. Plant diversity increases soil microbial activity and soil carbon storage.

    PubMed

    Lange, Markus; Eisenhauer, Nico; Sierra, Carlos A; Bessler, Holger; Engels, Christoph; Griffiths, Robert I; Mellado-Vázquez, Perla G; Malik, Ashish A; Roy, Jacques; Scheu, Stefan; Steinbeiss, Sibylle; Thomson, Bruce C; Trumbore, Susan E; Gleixner, Gerd

    2015-04-07

    Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.

  1. Sample storage for soil enzyme activity and bacterial community profiles.

    PubMed

    Wallenius, K; Rita, H; Simpanen, S; Mikkonen, A; Niemi, R M

    2010-04-01

    Storage of samples is often an unavoidable step in environmental data collection, since available analytical capacity seldom permits immediate processing of large sample sets needed for representative data. In microbiological soil studies, sample pretreatments may have a strong influence on measurement results, and thus careful consideration is required in the selection of storage conditions. The aim of this study was to investigate the suitability of prolonged (up to 16 weeks) frozen or air-dried storage for divergent soil materials. The samples selected to this study were mineral soil (clay loam) from an agricultural field, humus from a pine forest and compost from a municipal sewage sludge composting field. The measured microbiological parameters included functional profiling with ten different hydrolysing enzyme activities determined by artificial fluorogenic substrates, and structural profiling with bacterial 16S rDNA community fingerprints by amplicon length heterogeneity analysis (LH-PCR). Storage of samples affected the observed fluorescence intensity of the enzyme assay's fluorophor standards dissolved in soil suspension. The impact was highly dependent on the soil matrix and storage method, making it important to use separate standardisation for each combination of matrix type, storage method and time. Freezing proved to be a better storage method than air-drying for all the matrices and enzyme activities studied. The effect of freezing on the enzyme activities was small (<20%) in clay loam and forest humus and moderate (generally 20-30%) in compost. The most dramatic decreases (>50%) in activity were observed in compost after air-drying. The bacterial LH-PCR community fingerprints were unaffected by frozen storage in all matrices. The effect of storage treatments was tested using a new statistical method based on showing similarity rather than difference of results.

  2. Relating phosphorus uptake to changes in transient storage and streambed sediment characteristics in headwater tributaries of Valley Creek, an urbanizing watershed

    NASA Astrophysics Data System (ADS)

    Ryan, Robert J.; Packman, Aaron I.; Kilham, Susan S.

    2007-04-01

    SummaryPhosphorus uptake dynamics were examined in two small streams in the Valley Creek watershed, located in an urbanizing area approximately 30 km west of Philadelphia, Pennsylvania, USA. The goal of this research was to examine how phosphorus uptake is influenced by temporal changes in bed sediment characteristics and transient storage in streams within an urbanizing watershed. We conducted tracer studies with a conservative solute, observed phosphorus uptake in situ and in laboratory experiments, and measured fine bed sediment grain size distributions and chemical compositions at both sites. At the Morehall Rd. site, the total laboratory and in situ uptake rates were related to the silt-clay ( d < 50 μm) content of the fine ( d < 2 mm) bed sediment and the sediment phosphorus concentration. The in situ uptake rate was also related to the sediment magnesium content and the transient storage exchange rate and area. At the Sheldrake Rd. site, the phosphorus uptake rates observed in situ and in the laboratory were not significantly related to any of the measured stream or sediment characteristics. However, the areal average uptake (uptake flux), was related to the transient storage exchange rate. In addition, the abiotic contribution to in situ uptake was evaluated by comparing the in situ and laboratory measured uptake rates. The total abiotic in situ uptake rate was found to be related to the bed sediment silt-clay content and the transient storage residence time, while the abiotic uptake flux was related to the transient storage residence time. Overall, these urbanizing streams were less efficient at removing phosphorus from the water column than forested streams in non-urban settings.

  3. Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems

    NASA Astrophysics Data System (ADS)

    Weber, Luke G.

    There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive

  4. Hydrogen Energy Storage (HES) Activities at NREL; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Eichman, J.

    2015-04-21

    This presentation provides an overview of hydrogen and energy storage, including hydrogen storage pathways and international power-to-gas activities, and summarizes the National Renewable Energy Laboratory's hydrogen energy storage activities and results.

  5. Ammonium sorption to channel and riparian sediments: A transient storage pool for dissolved inorganic nitrogen

    USGS Publications Warehouse

    Triska, Frank J.; Jackman, Alan P.; Duff, John H.; Avanzino, Ronald J.

    1994-01-01

    Sediment (0.5 mm–2.0 mm grain size) was incubated in nylon bags (200 μm mesh) below the water table in the channel and in two transects of shallow wells perpendicular to the banks (to 18 m) of a third-order stream during August, 1987. One transect of wells drained steep old-growth forest, and the other a steep 23 year-old clear-cut partially regenerated in alder. At approximately 6-week intervals between October, 1987, and June, 1988, bags were retrieved. Total exchangeable ammonium was determined on sediment, and dissolved oxygen, nitrate and ammonium were determined in stream and well water. Exchangeable ammonium ranged from 10 μeq/100 g of sediment in the stream where nitrification potential and subsurface exchange with stream water were high, to 115 μeq/100 g sediment 18 m inland where channel water-groundwater mixing and nitrification potential were both low. Sorbed ammonium was highest during summer/autumn base flow and lowest during winter storm flow. Both channel and well water contained measurable dissolved oxygen at all times. Ammonium concentration was typically < 10 μg-N/L in channel water, increased with distance inland, but did not exceed 365 μg-N/L at any site. Nitrate concentration was typically higher in well water than channel water. Nitrate levels increased dramatically in wells at the base of the clear-cut following the onset of autumn rains. The results indicate a potential for temporary storage of ammonium on riparian sediments which may influence biotic nitrogen cycling, and alter the timing and form of dissolved inorganic nitrogen transport from the watershed.

  6. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods

    USGS Publications Warehouse

    Cox, T.J.; Runkel, R.L.

    2008-01-01

    Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.

  7. Simultaneous transient operation of a high head hydro power plant and a storage pumping station in the same hydraulic scheme

    NASA Astrophysics Data System (ADS)

    Bucur, D. M.; Dunca, G.; Cervantes, M. J.; Cǎlinoiu, C.; Isbǎşoiu, E. C.

    2014-03-01

    This paper presents an on-site experimental analysis of a high head hydro power plant and a storage pumping station, in an interconnected complex hydraulic scheme during simultaneous transient operation. The investigated hydropower site has a unique structure as the pumping station discharges the water into the hydropower plant penstock. The operation regimes were chosen for critical scenarios such as sudden load rejections of the turbines as well as start-ups and stops with different combinations of the hydraulic turbines and pumps operation. Several parameters were simultaneously measured such as the pumped water discharge, the pressure at the inlet pump section, at the outlet of the pumps and at the vane house of the hydraulic power plant surge tank. The results showed the dependence of the turbines and the pumps operation. Simultaneous operation of the turbines and the pumps is possible in safe conditions, without endangering the machines or the structures. Furthermore, simultaneous operation of the pumping station together with the hydropower plant increases the overall hydraulic efficiency of the site since shortening the discharge circuit of the pumps.

  8. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  9. Depth-discrete specific storage in fractured sedimentary rock using steady-state and transient single-hole hydraulic tests

    NASA Astrophysics Data System (ADS)

    Quinn, Patryk M.; Cherry, John A.; Parker, Beth L.

    2016-11-01

    A method is presented for obtaining depth-discrete values of specific storage (Ss) from single-hole hydraulic tests in fractured rock boreholes using straddle packers (1.5-17 m test intervals). Low flow constant head (CH) step tests analyzed using the Thiem method provide transmissivity (T) values free from non-Darcian error. Short-term, constant-rate pumping tests (0.5-2 h) analyzed using the Cooper-Jacob approximation of the Theis method provide S from the hydraulic diffusivity using the Darcian T value from the CH step test. This synergistic use of two types of hydraulic tests avoids the common source of error when pumping tests (injection or withdrawal) are conducted at higher flow rates and thereby induce non-Darcian flow resulting in the underestimation of T. Other errors, such as well bore storage and leakage, can also substantially influence S by causing a shift in the time axis of the Cooper-Jacob semi-log plot. In this approach, the Darcian T values from the CH step tests are used in the analysis of the transient pumping test data for calculating S throughout the pumping test using the Cooper-Jacob approximation to minimize all of the aforementioned errors, resulting in more representative S values. The effect of these non-idealities on the measured drawdown is illustrated using the Theis equation with the Darcian T and S values to calculate drawdown for comparison to measured data. The Ss values for tests in sandstone obtained from this approach are more consistent with confined aquifer conditions than values derived from the traditional Cooper-Jacob method, and are within the range of field and lab values presented from a compilation of literature values for fractured sandstone. (10-7-10-5 m-1) This method for obtaining Ss values from short-interval, straddle packer tests improves the estimation of both K and Ss and provides opportunity to study their spatial distribution in fractured rock.

  10. Enzymatic activity of allergenic house dust and storage mite extracts.

    PubMed

    Morales, Maria; Iraola, Víctor; Leonor, Jose R; Carnés, Jerónimo

    2013-01-01

    Proteases are involved in the pathogenicity of allergy, increasing epithelial permeability and acting as adjuvants. Enzymatic activity is therefore important for the allergenicity of an extract and also affects its stability and safety. However, the enzymatic activity of extracts is not usually evaluated. The objective of this study was to evaluate the enzymatic activity of the most allergenic mite extracts and to investigate their allergenic properties. Extracts from nine allergenic mite species (Dermatophagoides pteronyssinus, Dermatophagoides farinae Hughes, Euroglyphus maynei, Lepidoglyphus destructor, Tyrophagus putrescentiae (Schrank), Glycyphagus domesticus (DeGeer), Acarus siro L., Chortoglyphus arcuatus, and Blomia tropicalis) were characterized. Protein and allergen profiles were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western-blot, respectively. Gelatinolytic activity was evaluated with a zymogram and the activity of other enzymes (cysteine, serine proteases, and esterases) was evaluated individually or with the API-ZYM system. The main differences in protease activity were found between house dust mites and storage mites. House dust mites presented higher cysteine protease activity while storage mites presented higher serine protease activity. These differences are in line with their trophic specialization. A wide range of different activities was found in all the extracts analyzed, reflecting the fact that the extracts preserve the activity of many enzymes, this being necessary for a correct diagnosis. However, enzymes may act as adjuvants and, therefore, could lead to undesirable effects in immunotherapies, making this activity not suitable for treatment products. Modified extracts with lower enzymatic activity could be more appropriate for immunotherapy.

  11. Effect of cypermethrin on memory, movement activity and coordination in mice after transient incomplete cerebral ischemia.

    PubMed

    Nieradko-Iwanicka, Barbara; Borzecki, Andrzej

    2008-01-01

    Cypermethrin is a synthetic pyrethroid widely used as an insecticide. The aim of the present study was to investigate the possible effect of 0.1 LD50 of cypermethrin on memory, movement activity and co-ordination in mice exposed to transient incomplete cerebral ischemia. Transient occlusion of both carotid arteries (BCCA) in adult female mice was performed under ketamine + xylazine anesthesia. Intraperitoneal LD50 for cypermethrin was calculated to be 169.9 mg/kg. Memory retention was evaluated in a step-through passive avoidance task (PA), working spatial memory in a Y-maze, spontaneous movement activity in an automated device fitted with two photocells and a counter in two subsequent 30-min periods, and movement co-ordination on a rod spinning at the rate of 10 rotations/min. Neither memory nor movement co-ordination were significantly affected by transient incomplete cerebral ischemia or cypermethrin. BCCA itself did not impair movement activity in the examined mice. Cypermethrin decreased exploratory motor activity in the mice, and the effect was exacerbated by BCCA. These results show that transient incomplete cerebral ischemia combined with exposure to subtoxic doses of cypermethrin do not impair memory, but do affect behavior, producing transient reduction of spontaneous horizontal movement in mice.

  12. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  13. Characterisation of transient storage biogeochemistry through groundwater models: the importance of considering microform hyporheic exchange in models at coarser scales

    NASA Astrophysics Data System (ADS)

    Käser, D.; Binley, A.; Heathwaite, L.

    2010-12-01

    Transient storage of stream water in the sediment, or hyporheic exchange flow (HEF), is a primary control on the ecological structure and functions of the hyporheic zone. Increasingly, river rehabilitation programmes require quantitative methods for evaluating its influence on the lotic system, particularly on its pollutant attenuation capacity. Previous studies have already shown the potential of groundwater numerical models to characterize HEF at the channel-unit or the reach scale, for example to compare different rehabilitation scenarios. Modellers and end-users, however, must consider these results with care. The predominant underlying concept implies that HEF is driven by geomorphological features such as pool-riffle or pool-step sequences, and meanders. Yet any degree of streambed roughness is also likely to induced small scale HEF through current-obstacle interaction. Both scales of exchange potentially play a crucial role in terms of biogeochemical transformations. Simulated conceptualisations show that ignoring current-obstacle interactions in groundwater models can lead to strong underestimations of short residence time flow paths or to a misrepresentation of biogeochemical 'hotspots'. For example, ‘Head to tail’ flow paths through riffles are sometimes thought to explain variations in stream water chemistry; however, because riffles are shallow zones of high stream water velocity, they have a potential for pumping exchange that would typically be characterized by a small depth, short residence times, and large fluxes. Little is known on the relative efficiency of these two scales of HEF systems. A sensitivity analysis shows how the interaction of pumping exchange and HEF caused by channel-unit structures may create various small-scale and complex patterns of downwelling and upwelling areas that may control in return the biogeochemical patchiness in the shallow subsurface. There is still much to learn about the interaction of HEF systems of different

  14. Hybrid energy storage systems utilizing redox active organic compounds

    SciTech Connect

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  15. Bioreactor Transient Exposure Activates Specific Neurotrophic Pathway in Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Zimmitti, V.; Benedetti, E.; Caracciolo, V.; Sebastiani, P.; Di Loreto, S.

    2010-02-01

    Altered gravity forces might influence neuroplasticity and can provoke changes in biochemical mechanisms. In this contest, neurotrophins have a pivotal role, particularly nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF). A suspension of dissociated cortical cells from rat embryos was exposed to 24 h of microgravity before plating in normal adherent culture system. Expression and transductional signalling pathways of NGF and BDNF were assessed at the end of maturational process (8-10 days in vitro). Rotating wall vessel bioreactor (RWV) pre-exposition did not induce changes in NGF expression and its high affinity receptor TrkA. On the contrary both BDNF expression and its high affinity receptor TrkB were strongly up-regulated, inducing Erk-5, but not Erk-1/2 activation and, in turn, MEF2C over-expression and activation. According to our previous and present results, we postulate that relatively short microgravitational stimuli, applied to neural cells during the developmental stage, exert a long time activation of specific neurotrophic pathways.

  16. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  17. Coupling catchment hydrology and transient storage to model the fate of solutes during low-flow conditions of an upland river

    NASA Astrophysics Data System (ADS)

    Trévisan, D.; Periáñez, R.

    2016-03-01

    The residence time of solutes in catchments is longer during low-flow conditions, due to the lengthening of transport routes and the decrease in transfer velocities. In rivers, transient storage depends largely on exchanges with channel storage and the hyporheic zone and reflects the capacity of the river to buffer pollutant loads before they enter the aquatic environment of final receptors. Our objective was to evaluate the fate of solutes along a typical confined river of upland catchments. First, we calculate lateral inflows using a variable-source hydrology approach. Then, water motion and quality in the river channel are predicted by combining hydrodynamics and exchanges with channel storage and the hyporheic zone. The model is mainly parametrized from literature data during baseflow conditions to mimic the fate of adsorptive and non-persistent pollutants. Residence time in surface water, channel storage and the hyporheic zone were found to be sensitive to lateral inflows from groundwater seepage. Channel storage is the main process controlling residence time in upstream conditions, where the riverbed is mainly composed of stones and bedrock. Downstream, along with the formation of sediment deposits and riffle-pool units, hyporheic exchanges also control the lag time in the transfer of solutes. By integrating physically-based processes, the number of parameters is small, but the model still requires a detailed description of stream geometry and morphology. It can be used to evaluate stream restoration or catchment-river management when detailed data of stream geometry and morphology are available.

  18. Transient response of an active nonlinear sandwich piezolaminated plate

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2017-04-01

    In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.

  19. Activation of Transient Receptor Potential Vanilloid 4 Increases NMDA-Activated Current in Hippocampal Pyramidal Neurons

    PubMed Central

    Li, Lin; Qu, Weijun; Zhou, Libin; Lu, Zihong; Jie, Pinghui; Chen, Lei; Chen, Ling

    2013-01-01

    The glutamate excitotoxicity, mediated through N-methyl-d-aspartate receptors (NMDARs), plays an important role in cerebral ischemia injury. Transient receptor potential vanilloid 4 (TRPV4) can be activated by multiple stimuli that may happen during stroke. The present study evaluated the effect of TRPV4 activation on NMDA-activated current (INMDA) and that of blocking TRPV4 on brain injury after focal cerebral ischemia in mice. We herein report that activation of TRPV4 by 4α-PDD and hypotonic stimulation increased INMDA in hippocampal CA1 pyramidal neurons, which was sensitive to TRPV4 antagonist HC-067047 and NMDAR antagonist AP-5, indicating that TRPV4 activation potentiates NMDAR response. In addition, the increase in INMDA by hypotonicity was sensitive to the antagonist of NMDAR NR2B subunit, but not of NR2A subunit. Furthermore, antagonists of calcium/calmodulin-dependent protein kinase II (CaMKII) significantly attenuated hypotonicity-induced increase in INMDA, while antagonists of protein kinase C or casein kinase II had no such effect, indicating that phosphorylation of NR2B subunit by CaMKII is responsible for TRPV4-potentiated NMDAR response. Finally, we found that intracerebroventricular injection of HC-067047 after 60 min middle cerebral artery occlusion reduced the cerebral infarction with at least a 12 h efficacious time-window. These findings indicate that activation of TRPV4 increases NMDAR function, which may facilitate glutamate excitotoxicity. Closing TRPV4 may exert potent neuroprotection against cerebral ischemia injury through many mechanisms at least including the prevention of NMDAR-mediated glutamate excitotoxicity. PMID:23459987

  20. Critical role of transient activity of MT1-MMP for ECM degradation in invadopodia.

    PubMed

    Watanabe, Ayako; Hoshino, Daisuke; Hosino, Daisuke; Koshikawa, Naohiko; Seiki, Motoharu; Suzuki, Takashi; Ichikawa, Kazuhisa

    2013-01-01

    Focal degradation of extracellular matrix (ECM) is the first step in the invasion of cancer cells. MT1-MMP is a potent membrane proteinase employed by aggressive cancer cells. In our previous study, we reported that MT1-MMP was preferentially located at membrane protrusions called invadopodia, where MT1-MMP underwent quick turnover. Our computer simulation and experiments showed that this quick turnover was essential for the degradation of ECM at invadopodia (Hoshino, D., et al., (2012) PLoS Comp. Biol., 8: e1002479). Here we report on characterization and analysis of the ECM-degrading activity of MT1-MMP, aiming at elucidating a possible reason for its repetitive insertion in the ECM degradation. First, in our computational model, we found a very narrow transient peak in the activity of MT1-MMP followed by steady state activity. This transient activity was due to the inhibition by TIMP-2, and the steady state activity of MT1-MMP decreased dramatically at higher TIMP-2 concentrations. Second, we evaluated the role of the narrow transient activity in the ECM degradation. When the transient activity was forcibly suppressed in computer simulations, the ECM degradation was heavily suppressed, indicating the essential role of this transient peak in the ECM degradation. Third, we compared continuous and pulsatile turnover of MT1-MMP in the ECM degradation at invadopodia. The pulsatile insertion showed basically consistent results with the continuous insertion in the ECM degradation, and the ECM degrading efficacy depended heavily on the transient activity of MT1-MMP in both models. Unexpectedly, however, low-frequency/high-concentration insertion of MT1-MMP was more effective in ECM degradation than high-frequency/low-concentration pulsatile insertion even if the time-averaged amount of inserted MT1-MMP was the same. The present analysis and characterization of ECM degradation by MT1-MMP together with our previous report indicate a dynamic nature of MT1-MMP at

  1. Investigation of Transient, Turbulent Natural Convection in Vertical Tubes for Thermal Energy Storage in Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Baghaei Lakeh, Reza; Lavine, Adrienne S.; Kavehpour, H. Pirouz; Wirz, Richard E.

    2013-11-01

    Heat transfer can be a limiting factor in the operation of thermal energy storage, including sensible heat and latent heat storage systems. Poor heat transfer between the energy storage medium and the container walls impairs the functionality of the thermal storage unit by requiring excessively long times to charge or discharge the system. In this study, the effect of turbulent, unsteady buoyancy-driven flow on heat transfer in vertical storage tubes containing supercritical CO2 as the storage medium is investigated computationally. The heat transfer from a constant-temperature wall to the storage fluid is studied during the charge cycle. The results of this study show that turbulent natural convection dominates the heat transfer mechanism and significantly reduces the required time for charging compared to pure conduction. Changing the L/D ratio of the storage tube has a major impact on the charge time. The charge time shows a decreasing trend with RaL. The non-dimensional model of the problem shows that Nusselt number and non-dimensional mean temperature of the storage fluid in different configurations of the tube is a function Buoyancy-Fourier number defined as of FoL * RaLm* L/D. This study was supported by award No. DE-AR0000140 granted by U.S. Department of Energy under Advanced Research Projects Agency - Energy (ARPA-E) and by award No. 5660021607 granted by Southern California Gas Company.

  2. Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons

    PubMed Central

    Estep, Chad M.; Galtieri, Daniel J.; Zampese, Enrico; Goldberg, Joshua A.; Brichta, Lars; Greengard, Paul; Surmeier, D. James

    2016-01-01

    Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) are richly innervated by GABAergic neurons. The postsynaptic effects of GABA on SNc DA neurons are mediated by a mixture of GABAA and GABAB receptors. Although activation of GABAA receptors inhibits spike generation, the consequences of GABAB receptor activation are less well characterized. To help fill this gap, perforated patch recordings were made from young adult mouse SNc DA neurons. Sustained stimulation of GABAB receptors hyperpolarized SNc DA neurons, as previously described. However, transient stimulation of GABAB receptors by optical uncaging of GABA did not; rather, it reduced the opening of small-conductance, calcium-activated K+ (SK) channels and increased the irregularity of spiking. This modulation was attributable to inhibition of adenylyl cyclase and protein kinase A. Thus, because suppression of SK channel activity increases the probability of burst spiking, transient co-activation of GABAA and GABAB receptors could promote a pause-burst pattern of spiking. PMID:28036359

  3. Relative Order of Auroral Transient Structure During Substorm Activation

    NASA Astrophysics Data System (ADS)

    Kozelov, B. V.; Rypdal, K.

    2007-12-01

    Variability of auroral structures is a manifestation of the magnetosphere-ionosphere plasma dynamics. During the last decade the complexity of magnetosphere-ionosphere plasma has been widely discussed in numerous papers. The most popular approaches are based on turbulence or/and self-organized criticality paradigms. However, there is no clear evidence that the dynamics during the discussed events is really organization, and not disorganization. The problem is that the magnetosphere-ionosphere system is an open non-equilibrium system, therefore classical thermodynamics is not directly applicable. Here we use an approach based on the S-theorem by Yu.L. Klimontovich. This approach allows us to compare the ordering which characterize the current (non- equilibrium) state of the system with experimental data. The considered characteristic is an analogy of entropy which has been extended to non- equilibrium states. Television observations of the auroral structure during substorm activation at the Barentsburg observatory (Svalbard) have been used as a data set. Dependence of the ordering on the spatial scale has been analyzed. We found that the ordering of the aurora increases during the substorm development. The same approach has been applied to data sets generated by cellular automata models. Evolution of the systems in time and dependence on external control parameters are compared and discussed. Acknowledgements. This work was supported by grant No 171076/V30 of the Norwegian Research Council and partly by the Division of Physical Sciences of Russian Academy of Science.

  4. Transient Auditory Storage of Acoustic Details Is Associated with Release of Speech from Informational Masking in Reverberant Conditions

    ERIC Educational Resources Information Center

    Huang, Ying; Huang, Qiang; Chen, Xun; Wu, Xihong; Li, Liang

    2009-01-01

    Perceptual integration of the sound directly emanating from the source with reflections needs both temporal storage and correlation computation of acoustic details. We examined whether the temporal storage is frequency dependent and associated with speech unmasking. In Experiment 1, a break in correlation (BIC) between interaurally correlated…

  5. Relationship between early autumn Arctic sea ice and East Asian wintertime transient eddy activity

    NASA Astrophysics Data System (ADS)

    Gu, Sen; Zhang, Yang; Wu, Qigang

    2015-04-01

    The Arctic sea ice is suggested with wide impacts on the winter climate over East Asia. In this study, the relationship between the early autumn Arctic sea ice and the wintertime transient eddy activity over East Asia is investigated. Our singular value decomposition (SVD) analysis between the Arctic sea ice concentration (SIC) and transient eddy kinetic energy (EKE) shows that with the decrease in SIC over the Siberia coast, Kara sea and Barents sea, the EKE around the Tibetan Plateau and the downstream regions increase significantly. This leading mode indicates that more than 60% variance of the wintertime East Asian transient eddy activity can be predicted from the SIC three month earlier. Possible dynamical processes responsible for the linkage between SIC and EKE are investigated. In the upstream of Tibetan Plateau, a branch of anomalous wave train is detected propagating southward from Ural Mountains to the North China and Tibet. In the downstream region of Tibetan Plateau, with the decrease in SIC, anomalous increase in synoptic eddy generation is found with the enhanced baroclinicity over the north slope of the Tibetan Plateau, which can result in the increase in EKE as well. Those two dynamical processes both act to enhance the transient eddy activity over East Asia.

  6. Active Co-Storage of Cryogenic Propellants for Lunar Explortation

    NASA Technical Reports Server (NTRS)

    Mustafi, S.; Canavan, E. R.; Boyle, R. F.; Panek, J. S.; Riall, S. M.; Miller, F. K.

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used dual cryogens with different temperatures to cool instruments. This technology utilizes a higher temperature cryogen to provide a stage that efficiently intercepts a large fraction of the heat that would otherwise be incident on the lower temperature cryogen. This interception reduces the boil-off of the lower temperature cryogen and increasing the overall life-time of the mission. The Active Co-Storage concept is implemented similarly; the 101 K liquid oxygen thermally shields the 24 K liquid hydrogen. A thermal radiation shield that is linked to the liquid oxygen tank shrouds the liquid hydrogen tank, thereby preventing the liquid hydrogen tank from being directly exposed to the 300 K external environment. Modern cryocooler technology can eliminate the liquid oxygen boil-off and also cool the thermal radiation shield thereby reducing the liquid hydrogen boil-off to a small fraction of the unshielded rate. The thermal radiation shield can be a simple conductive shroud or a more sophisticated but lighter Broad Area Cooling (BAC) shroud. The paper describes the design impact of an active co-storage system for the Altair Descent Vehicle. This paper also compares the spacecraft-level impacts of the conductive shroud and the BAC shroud active co-storage concepts with a passive storage option in the context of the different scales of spacecraft that will be used for the lunar exploration effort - the Altair Ascent and Descent Vehicles, the Orion, and the Ares V Earth

  7. CONNECTING FLARES AND TRANSIENT MASS-LOSS EVENTS IN MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Osten, Rachel A.; Wolk, Scott J.

    2015-08-10

    We explore the ramification of associating the energetics of extreme magnetic reconnection events with transient mass-loss in a stellar analogy with solar eruptive events. We establish energy partitions relative to the total bolometric radiated flare energy for different observed components of stellar flares and show that there is rough agreement for these values with solar flares. We apply an equipartition between the bolometric radiated flare energy and kinetic energy in an accompanying mass ejection, seen in solar eruptive events and expected from reconnection. This allows an integrated flare rate in a particular waveband to be used to estimate the amount of associated transient mass-loss. This approach is supported by a good correspondence between observational flare signatures on high flaring rate stars and the Sun, which suggests a common physical origin. If the frequent and extreme flares that young solar-like stars and low-mass stars experience are accompanied by transient mass-loss in the form of coronal mass ejections, then the cumulative effect of this mass-loss could be large. We find that for young solar-like stars and active M dwarfs, the total mass lost due to transient magnetic eruptions could have significant impacts on disk evolution, and thus planet formation, and also exoplanet habitability.

  8. Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex

    PubMed Central

    Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G.; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E.; Dichter, Marc A.; Lucas, Timothy H.; Viventi, Jonathan; Litt, Brian; Rogers, John A.

    2016-01-01

    Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include post-operative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, that record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required. PMID:27088236

  9. Redox Active Colloids as Discrete Energy Storage Carriers.

    PubMed

    Montoto, Elena C; Nagarjuna, Gavvalapalli; Hui, Jingshu; Burgess, Mark; Sekerak, Nina M; Hernández-Burgos, Kenneth; Wei, Teng-Sing; Kneer, Marissa; Grolman, Joshua; Cheng, Kevin J; Lewis, Jennifer A; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-10-12

    Versatile and readily available battery materials compatible with a range of electrode configurations and cell designs are desirable for renewable energy storage. Here we report a promising class of materials based on redox active colloids (RACs) that are inherently modular in their design and overcome challenges faced by small-molecule organic materials for battery applications, such as crossover and chemical/morphological stability. RACs are cross-linked polymer spheres, synthesized with uniform diameters between 80 and 800 nm, and exhibit reversible redox activity as single particles, as monolayer films, and in the form of flowable dispersions. Viologen-based RACs display reversible cycling, accessing up to 99% of their capacity and 99 ± 1% Coulombic efficiency over 50 cycles by bulk electrolysis owing to efficient, long-distance intraparticle charge transfer. Ferrocene-based RACs paired with viologen-based RACs cycled efficiently in a nonaqueous redox flow battery employing a simple size-selective separator, thus demonstrating a possible application that benefits from their colloidal dimensions. The unprecedented versatility in RAC synthetic and electrochemical design opens new avenues for energy storage.

  10. High temperature active heat exchanger research for latent heat storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1982-02-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide and nitrate families, based on high storage capacity, good corrosion characteristics and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCL o 24.5NaCL o 55.MgCl2% by wt.), with a nominal melting point of 385 C. Various active heat exchange concepts were given a technical and economic comparison to a passive tube shell design for a reference application (300 MW sub t for 6 hours). Test hardware was then built for the most promising concept: a direct contact heat exchanger in which molten salt droplets are injected into a cooler counter flowing stream of liquid metal carrier fluid (lead/Bismuth).

  11. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  12. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

    PubMed

    Kumar, Rakesh; Hazan, Adina; Geron, Matan; Steinberg, Rebbeca; Livni, Lital; Matzner, Henry; Priel, Avi

    2017-03-01

    Peripheral neuronal activation by inflammatory mediators is a multifaceted physiological response that involves a multitude of regulated cellular functions. One key pathway that has been shown to be involved in inflammatory pain is Gq/GPCR, whose activation by inflammatory mediators is followed by the regulated response of the cation channel transient receptor potential vanilloid 1 (TRPV1). However, the mechanism that underlies TRPV1 activation downstream of the Gq/GPCR pathway has yet to be fully defined. In this study, we employ pharmacological and molecular biology tools to dissect this activation mechanism via perforated-patch recordings and calcium imaging of both neurons and a heterologous system. We showed that TRPV1 activity downstream of Gq/GPCR activation only produced a subdued current, which was noticeably different from the robust current that is typical of TRPV1 activation by exogenous stimuli. Moreover, we specifically demonstrated that 2 pathways downstream of Gq/GPCR signaling, namely endovanilloid production by lipoxygenases and channel phosphorylation by PKC, converge on TRPV1 to evoke a tightly regulated response. Of importance, we show that only when both pathways are acting on TRPV1 is the inflammatory-mediated response achieved. We propose that the requirement of multiple signaling events allows subdued TRPV1 activation to evoke regulated neuronal response during inflammation.-Kumar R., Hazan, A., Geron, M., Steinberg, R., Livni, L., Matzner, H., Priel, A. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

  13. Swift/XRT detects renewed activity of the Galactic center transient CXOGC J174540.0-290005

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Reynolds, M. T.; Wijnands, R.; Miller, J. M.; Kennea, J. A.

    2017-03-01

    In our daily Swift/XRT monitoring observations of the Galactic center (Degenaar et al. 2015, JHEAp, 7, 137) we detect X-ray activity of a transient source located 20" to the north of Sgr A*, at a position consistent with that of the known X-ray transient CXOGC J174540.0-290005/Swift J174540.2-290005.

  14. Activation of caspase-3 in permanent and transient brain ischaemia in man.

    PubMed

    Love, S; Barber, R; Srinivasan, A; Wilcock, G K

    2000-08-03

    Animal studies have shown brain ischaemia to cause oxidative damage to DNA and activation of caspase-3, leading to apoptosis. These changes may be exacerbated by reperfusion. To assess caspase-3 activation after transient and permanent brain ischaemia in man, we examined brain tissue from patients who had experienced a cardiac arrest with resuscitation or an atherothrombotic brain infarct, and died 12 h to 9 days later. Sections were immunostained for activated caspase-3 or the 89 kDa caspase-3-mediated cleavage product of poly(ADP-ribose) polymerase. Brain ischaemia caused activation of caspase-3 in macrophages/microglia. Some neurons showed delayed activation of caspase-3 after cardiac arrest, but very few in atherothrombotic infarcts. In man, activation of caspase-3 plays little part in neuronal death in atherothrombotic infarcts but may contribute to delayed death of neurons after cardiac arrest.

  15. Thyroid function in fasting rats: variations in 131I uptake and transient decrease in peroxidase activity.

    PubMed

    Moura, E G; Ramos, C F; Nascimento, C C; Rosenthal, D; Breitenbach, M M

    1987-01-01

    Serum thyroxine and triiodothyronine, radioiodide thyroid uptake and thyroid peroxidase (TPO) activity were studied over a 2 to 5 day period in fasting rats treated (F+) or not (F-) with TSH. In F- rats, TPO activity was transiently decreased on the 3rd day, whereas in F+ it was always higher than in controls. On the 5th day, the 2 h thyroid uptake of 131I decreased in F-, while the 24 h uptake increased in both F- and F+. Serum T3 and T4 decreased in both fasting groups. Thus, not all effects of fasting on rat thyroid function are reverted by TSH administration, suggesting intrinsic impairment of glandular function.

  16. 78 FR 13657 - Southwest Gas Storage Company; Prior Notice of Activity Under Blanket Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    .... Southwest seeks authorization to construct, modify and abandon certain natural gas storage facilities at the... Energy Regulatory Commission Southwest Gas Storage Company; Prior Notice of Activity Under Blanket Certificate On February 8, 2013, Southwest Gas Storage Company (Southwest) filed a prior notice...

  17. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.

    PubMed

    Burgess, Mark; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-11-15

    It is an exciting time for exploring the synergism between the chemical and dimensional properties of redox nanomaterials for addressing the manifold performance demands faced by energy storage technologies. The call for widespread adoption of alternative energy sources requires the combination of emerging chemical concepts with redesigned battery formats. Our groups are interested in the development and implementation of a new strategy for nonaqueous flow batteries (NRFBs) for grid energy storage. Our motivation is to solve major challenges in NRFBs, such as the lack of membranes that simultaneously allow fast ion transport while minimizing redox active species crossover between anolyte (negative electrolyte) and catholyte (positive electrolyte) compartments. This pervasive crossover leads to deleterious capacity fade and materials underutilization. In this Account, we highlight redox active polymers (RAPs) and related polymer colloids as soluble nanoscopic energy storing units that enable the simple but powerful size-exclusion concept for NRFBs. Crossover of the redox component is suppressed by matching high molecular weight RAPs with simple and inexpensive nanoporous commercial separators. In contrast to the vast literature on the redox chemistry of electrode-confined polymer films, studies on the electrochemistry of solubilized RAPs are incipient. This is due in part to challenges in finding suitable solvents that enable systematic studies on high polymers. Here, viologen-, ferrocene- and nitrostyrene-based polymers in various formats exhibit properties that make amenable their electrochemical exploration as solution-phase redox couples. A main finding is that RAP solutions store energy efficiently and reversibly while offering chemical modularity and size versatility. Beyond the practicality toward their use in NRFBs, the fundamental electrochemistry exhibited by RAPs is fascinating, showing clear distinctions in behavior from that of small molecules. Whereas

  18. Direct activation of Transient Receptor Potential Vanilloid 1(TRPV1) by Diacylglycerol (DAG)

    PubMed Central

    Woo, Dong Ho; Jung, Sung Jun; Zhu, Mei Hong; Park, Chul-Kyu; Kim, Yong Ho; Oh, Seog Bae; Lee, C Justin

    2008-01-01

    The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1), is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC). However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG) directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG) neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5)P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C. PMID:18826653

  19. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation.

  20. Stochastic expression of a multiple antibiotic resistance activator confers transient resistance in single cells.

    PubMed

    El Meouche, Imane; Siu, Yik; Dunlop, Mary J

    2016-01-13

    Transient resistance can allow microorganisms to temporarily survive lethal concentrations of antibiotics. This can be accomplished through stochastic mechanisms, where individual cells within a population display diverse phenotypes to hedge against the appearance of an antibiotic. To date, research on transient stochastic resistance has focused primarily on mechanisms where a subpopulation of cells enters a dormant, drug-tolerant state. However, a fundamental question is whether stochastic gene expression can also generate variable resistance levels among growing cells in a population. We hypothesized that stochastic expression of antibiotic-inducible resistance mechanisms might play such a role. To investigate this, we focused on a prototypical example of such a system: the multiple antibiotic resistance activator MarA. Previous studies have shown that induction of MarA can lead to a multidrug resistant phenotype at the population level. We asked whether MarA expression also has a stochastic component, even when uninduced. Time lapse microscopy showed that isogenic cells express heterogeneous, dynamic levels of MarA, which were correlated with transient antibiotic survival. This finding has important clinical implications, as stochastic expression of resistance genes may be widespread, allowing populations to hedge against the sudden appearance of an antibiotic.

  1. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  2. Quinine suppresses extracellular potassium transients and ictal epileptiform activity without decreasing neuronal excitability in vitro.

    PubMed

    Bikson, M; Id Bihi, R; Vreugdenhil, M; Köhling, R; Fox, J E; Jefferys, J G R

    2002-01-01

    The effect of quinine on pyramidal cell intrinsic properties, extracellular potassium transients, and epileptiform activity was studied in vitro using the rat hippocampal slice preparation. Quinine enhanced excitatory post-synaptic potentials and decreased fast- and slow-inhibitory post-synaptic potentials. Quinine reduced the peak potassium rise following tetanic stimulation but did not affect the potassium clearance rate. Epileptiform activity induced by either low-Ca(2+) or high-K(+) artificial cerebrospinal fluid (ACSF) was suppressed by quinine. The frequency of spontaneous inter-ictal bursting induced by picrotoxin, high-K(+), or 4-aminopyridine was significantly increased. In normal ACSF, quinine did not affect CA1 pyramidal cell resting membrane potential, input resistance, threshold for action potentials triggered by intracellular or extracellular stimulation, or the orthodromic and antidromic evoked population spike amplitude. The main effects of quinine on intrinsic cell properties were to increase action potential duration and to reduce firing frequency during sustained membrane depolarizations, but not at normal resting membrane potentials. This attenuation was enhanced at increasingly depolarized membrane potentials. These results suggest that quinine suppresses extracellular potassium transients and ictal activity and modulates inter-ictal activity by limiting the firing rate of cells in a voltage-dependent manner. Because quinine does not affect 'normal' neuronal function, it may merit consideration as an anticonvulsant.

  3. Active landsliding and landscape denudation in response to transient tectonic uplift, Northern California.

    NASA Astrophysics Data System (ADS)

    Bennett, G. L.; Roering, J. J.; Miller, S. R.; Kirby, E.; Schmidt, D. A.

    2014-12-01

    The northern Californian Coast ranges present a unique area to study landscape response to transient tectonic uplift. Studies have shown that an increase in uplift may be balanced by the rate of landsliding in settings of steady uplift. However, the landsliding response to transient tectonic uplift remains to be elucidated. The Californian Coast ranges are shaped by the northward migration of the Mendocino Triple Junction (MTJ), which geodynamic modeling suggests produces a transient double-humped uplift field. A major research question is whether we can detect a signature of this transient tectonic uplift in landslide activity and document how the channel network communicates this signal to hillslopes. Using air photos and Worldview imagery, we manually mapped more than 2000 earthflows and debris slides in the Eel and surrounding catchments that span the ~400 km-long region. The velocities of active earthflows were estimated by visually tracking features between images spanning 1993 to 2013. We mapped channel steepness from 10m NED DEMs in Topotoolbox 2 and developed a new tool to automatically define knickpoints along the channel network. Earthflows occur almost exclusively in a band of Franciscan mélange oriented along the MTJ transect whilst debris slides are more evenly distributed by lithology. Both earthflows and debris slides are clustered in the Eel catchment around the proposed uplift peaks and are largely absent outside of these zones. Within these areas of high landslide densities, we observe peaks in active earthflows adjacent to peaks in dormant earthflows to the south, suggesting that the signature of earthflow activity remains for a period of time once the uplift peak has passed. Landslide density, mean landslide area, and earthflow velocity all increase rapidly above threshold values of channel steepness and local relief. In the Eel catchment, where the zone of rapid uplift is commencing, landslides, particularly earth flows, are concentrated

  4. Glibenclamide decreases ATP-induced intracellular calcium transient elevation via inhibiting reactive oxygen species and mitochondrial activity in macrophages.

    PubMed

    Li, Duo-ling; Ma, Zhi-yong; Fu, Zhi-jie; Ling, Ming-ying; Yan, Chuan-zhu; Zhang, Yun

    2014-01-01

    Increasing evidence has revealed that glibenclamide has a wide range of anti-inflammatory effects. However, it is unclear whether glibenclamide can affect the resting and adenosine triphosphate (ATP)-induced intracellular calcium ([Ca(2+)]i) handling in Raw 264.7 macrophages. In the present study, [Ca(2+)]i transient, reactive oxygen species (ROS) and mitochondrial activity were measured by the high-speed TILLvisION digital imaging system using the indicators of Fura 2-am, DCFDA and rhodamine-123, respectively. We found that glibenclamide, pinacidil and other unselective K(+) channel blockers had no effect on the resting [Ca(2+)]i of Raw 264.7 cells. Extracellular ATP (100 µM) induced [Ca(2+)]i transient elevation independent of extracellular Ca(2+). The transient elevation was inhibited by an ROS scavenger (tiron) and mitochondria inhibitor (rotenone). Glibenclamide and 5-hydroxydecanoate (5-HD) also decreased ATP-induced [Ca(2+)]i transient elevation, but pinacidil and other unselective K(+) channel blockers had no effect. Glibenclamide also decreased the peak of [Ca(2+)]i transient induced by extracellular thapsigargin (Tg, 1 µM). Furthermore, glibenclamide decreased intracellular ROS and mitochondrial activity. When pretreated with tiron and rotenone, glibenclamide could not decrease ATP, and Tg induced maximal [Ca(2+)]i transient further. We conclude that glibenclamide may inhibit ATP-induced [Ca(2+)]i transient elevation by blocking mitochondria KATP channels, resulting in decreased ROS generation and mitochondrial activity in Raw 264.7 macrophages.

  5. Transient neural activation in human amygdala involved in aversive conditioning of face and voice.

    PubMed

    Iidaka, Tetsuya; Saito, Daisuke N; Komeda, Hidetsugu; Mano, Yoko; Kanayama, Noriaki; Osumi, Takahiro; Ozaki, Norio; Sadato, Norihiro

    2010-09-01

    Elucidating the neural mechanisms involved in aversive conditioning helps find effective treatments for psychiatric disorders such as anxiety disorder and phobia. Previous studies using fMRI and human subjects have reported that the amygdala plays a role in this phenomenon. However, the noxious stimuli that were used as unconditioned stimuli in previous studies (e.g., electric shock) might have been ecologically invalid because we seldom encounter such stimuli in daily life. Therefore, we investigated whether a face stimulus could be conditioned by using a voice that had negative emotional valence and was collected from a real-life environment. A skin conductance response showed that healthy subjects were conditioned by using these stimuli. In an fMRI study, there was greater amygdala activation in response to the faces that had been paired with the voice than to those that had not. The right amygdala showed transient activity in the early stage of acquisition. A psychophysiological interaction analysis indicated that the subcortical pathway from the medial geniculate body to the amygdala played a role in conditioning. Modulation of the subcortical pathway by voice stimuli preceded the transient activity in the amygdala. The finding that an ecologically valid stimulus elicited the conditioning and amygdala response suggests that our brain is automatically processing unpleasant stimuli in daily life.

  6. Transient flows of the solar wind associated with small-scale solar activity in solar minimum

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Veselovsky, Igor; Kuzin, Sergey; Gburek, Szymon; Ulyanov, Artyom; Kirichenko, Alexey; Shugay, Yulia; Goryaev, Farid

    The data obtained by the modern high sensitive EUV-XUV telescopes and photometers such as CORONAS-Photon/TESIS and SPHINX, STEREO/EUVI, PROBA2/SWAP, SDO/AIA provide good possibilities for studying small-scale solar activity (SSA), which is supposed to play an important role in heating of the corona and producing transient flows of the solar wind. During the recent unusually weak solar minimum, a large number of SSA events, such as week solar flares, small CMEs and CME-like flows were observed and recorded in the databases of flares (STEREO, SWAP, SPHINX) and CMEs (LASCO, CACTUS). On the other hand, the solar wind data obtained in this period by ACE, Wind, STEREO contain signatures of transient ICME-like structures which have shorter duration (<10h), weaker magnetic field strength (<10 nT) and lower proton temperature than usual ICMEs. To verify the assumption that ICME-like transients may be associated with the SSA events we investigated the number of weak flares of C-class and lower detected by SPHINX in 2009 and STEREO/EUVI in 2010. The flares were classified on temperature and emission measure using the diagnostic means of SPHINX and Hinode/EIS and were confronted with the parameters of the solar wind (velocity, density, ion composition and temperature, magnetic field, pitch angle distribution of the suprathermal electrons). The outflows of plasma associated with the flares were identified by their coronal signatures - CMEs (only in few cases) and dimmings. It was found that the mean parameters of the solar wind projected to the source surface for the times of the studied flares were typical for the ICME-like transients. The results support the suggestion that weak flares can be indicators of sources of transient plasma flows contributing to the slow solar wind at solar minimum, although these flows may be too weak to be considered as separate CMEs and ICMEs. The research leading to these results has received funding from the European Union’s Seventh Programme

  7. Cognitive conflict in a syllable identification task causes transient activation of speech perception area.

    PubMed

    Sætrevik, Bjørn; Specht, Karsten

    2012-04-01

    It has previously been shown that task performance and frontal cortical activation increase after cognitive conflict. This has been argued to support a model of attention where the level of conflict automatically adjusts the amount of cognitive control applied. Conceivably, conflict could also modulate lower-level processing pathways, which would be evident as trial-to-trial changes in domain specific activation. The present fMRI experiment used a syllable identification task where conflict is manipulated by presenting recently ignored syllables. Results showed that on trials following a high conflict trial, activation increased primarily in the planum temporale region of the left temporal cortex, an area believed to be involved in syllable discrimination. The experiment thus showed a transient, domain specific attention effect that was modulated on a trial-to-trial basis. We argue that this indicates a self-regulating system where increased levels of conflict directs resources in order to improve performance.

  8. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  9. Active salt deformation and rapid, transient incision along the Colorado River near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Jochems, Andrew P.; Pederson, Joel L.

    2015-04-01

    In certain settings, erosion is driven by and balanced with tectonic uplift, but the evolution of many landscapes is dominated by other factors such as geologic substrate, drainage history, and transient incision. The Colorado Plateau is an example where these controls are debated and where salt deformation is hypothesized to be locally active and driven by differential unloading, although this is unconfirmed and unquantified in most places. We use luminescence-dated Colorado River terraces upstream of Moab, Utah, to quantify rates of salt-driven subsidence and uplift at the local scale. Active deformation in the study area is also supported by patterns of concavity along tributary drainages crossing salt structures. Subsidence in Professor Valley at a time-averaged rate of ~500 m/Myr (meters/million years) is superimposed upon rapid bedrock incision rates that increase from ~600 to ~900 m/Myr upstream through the study area. Such high rates are unexpected given the absence of sources of regional tectonic uplift here. Instead, the incision rate pattern across the greater area is consistent with a transient signal, perhaps still from ancient drainage integration through Grand Canyon far downstream, and then amplified by unloading at both the broad regional scale and at the local canyon scale.

  10. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    PubMed Central

    Pereira, Cátia S.; Ribeiro, Helena; Macedo, M. Fatima

    2017-01-01

    Lysosomal storage diseases (LSDs) are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT) cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d) molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed. PMID:28245613

  11. Mechanisms of transient receptor potential vanilloid 1 activation and sensitization by allyl isothiocyanate.

    PubMed

    Gees, Maarten; Alpizar, Yeranddy A; Boonen, Brett; Sanchez, Alicia; Everaerts, Wouter; Segal, Andrei; Xue, Fenqin; Janssens, Annelies; Owsianik, Grzegorz; Nilius, Bernd; Voets, Thomas; Talavera, Karel

    2013-09-01

    Allyl isothiocyanate (AITC; aka, mustard oil) is a powerful irritant produced by Brassica plants as a defensive trait against herbivores and confers pungency to mustard and wasabi. AITC is widely used experimentally as an inducer of acute pain and neurogenic inflammation, which are largely mediated by the activation of nociceptive cation channels transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 (TRPV1). Although it is generally accepted that electrophilic agents activate these channels through covalent modification of cytosolic cysteine residues, the mechanism underlying TRPV1 activation by AITC remains unknown. Here we show that, surprisingly, AITC-induced activation of TRPV1 does not require interaction with cysteine residues, but is largely dependent on S513, a residue that is involved in capsaicin binding. Furthermore, AITC acts in a membrane-delimited manner and induces a shift of the voltage dependence of activation toward negative voltages, which is reminiscent of capsaicin effects. These data indicate that AITC acts through reversible interactions with the capsaicin binding site. In addition, we show that TRPV1 is a locus for cross-sensitization between AITC and acidosis in nociceptive neurons. Furthermore, we show that residue F660, which is known to determine the stimulation by low pH in human TRPV1, is also essential for the cross-sensitization of the effects of AITC and low pH. Taken together, these findings demonstrate that not all reactive electrophiles stimulate TRPV1 via cysteine modification and help understanding the molecular bases underlying the surprisingly large role of this channel as mediator of the algesic properties of AITC.

  12. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  13. Activation of muscarinic receptors in porcine airway smooth muscle elicits a transient increase in phospholipase D activity.

    PubMed

    Mamoon, A M; Smith, J; Baker, R C; Farley, J M

    1999-01-01

    Phospholipase D (PLD) is a phosphodiesterase that catalyses hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. In the presence of ethanol, PLD also catalyses the formation of phosphatidylethanol, which is a unique characteristic of this enzyme. Muscarinic receptor-induced changes in the activity of PLD were investigated in porcine tracheal smooth muscle by measuring the formation of [3H]phosphatidic acid ([3H]PA) and [3H]phosphatidylethanol ([3H]PEth) after labeling the muscle strips with [3H]palmitic acid. The cholinergic receptor agonist acetylcholine (Ach) significantly but transiently increased formation of both [3H]PA and [3H]PEth in a concentration-dependent manner (>105-400% vs. controls in the presence of 10(-6) to 10(-4) M Ach) when pretreated with 100 mM ethanol. The Ach receptor-mediated increase in PLD activity was inhibited by atropine (10(-6) M), indicating that activation of PLD occurred via muscarinic receptors. Activation of protein kinase C (PKC) by phorbol-12-myristate-13-acetate (PMA) increased PLD activity that was effectively blocked by the PKC inhibitors calphostin C (10(-8) to 10(-6) M) and GFX (10(-8) to 10(-6) M). Ach-induced increases in PLD activity were also significantly, but incompletely, inhibited by both GFX and calphostin C. From the present data, we conclude that in tracheal smooth muscle, muscarinic acetylcholine receptor-induced PLD activation is transient in nature and coupled to these receptors via PKC. However, PKC activation is not solely responsible for Ach-induced activation of PLD in porcine tracheal smooth muscle.

  14. Solar Transients Disturbing the Mid Latitude Ionosphere during the High Solar Activity

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Shivangi; Khan, Parvaiz A.; Atulkar, Roshni; Malvi, Bhupendra; Mansoori, Azad Ahmad; Purohit, P. K.

    2016-10-01

    We investigate the effect of solar transients on the mid latitude ionosphere during the high solar activity period of solar cycle 23 i.e 2003 and 2004. A mid latitude station, Guangzhou (23.1N, 113.4E) was selected to carry out the investigation. The ionospheric behaviour at the selected station is characterized by considering the critical frequency of F2 layer (foF2) obtained by using the ground based Ionosonde observations. Then we selected two types of solar transients viz. solar flares and Coronal Mass Ejections (CMEs). To quantify the effect of solar flares we have considered the X-ray flux (1-8 Å) and EUV flux (26-34nm). Similarly to quantify the effect of CMEs, we have considered the geomagnetic storms, because during high solar activity the geomagnetic storms are caused by CMEs. From our analysis we conclude that during the geomagnetic storms the value of foF2 decreases as compared to quiet days thereby showing a negative effect. On the contrary we found that during solar flares there is sudden and intense increase in foF2. We also performed a correlation analysis to access the magnitude of association between changes in flux values and peak values of Dst during flares and storms with the corresponding changes and peak values of foF2. We found that a strong correlation exists between the enhancements/decrements in foF2 and enhancements in flux values and Dst. We conclude, while geomagnetic activity suppresses ionospheric activity the flares enhance the same.

  15. Low pressure storage of natural gas on activated carbon

    NASA Astrophysics Data System (ADS)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  16. Active control of the forced and transient response of a finite beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John T.

    1990-01-01

    Structural vibrations from a point force are modelled on a finite beam. This research explores the theoretical limit on controlling beam vibrations utilizing another point source as an active controller. Three different types of excitation are considered, harmonic, random, and transient. For harmonic excitation, control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam. Control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, integrating the expected value of the displacement squared over the required interval, is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. The form of the controller is specified as either one or two delayed pulses, thus constraining the controller to be casual. The best possible control is examined while varying the region of control and the controller location. It is found that control is always possible using either one or two control pulses.

  17. Flavaglines Stimulate Transient Receptor Potential Melastatin Type 6 (TRPM6) Channel Activity

    PubMed Central

    Verkaart, Sjoerd A. J.; Lameris, Anke L.; Basmadjian, Christine; Zhao, Qian; Désaubry, Laurent; Bindels, René J. M.; Hoenderop, Joost G. J.

    2015-01-01

    Magnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction. Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.1 mM by Mg2+ (re)absorption in kidney and intestine. The apical entry of Mg2+ in (re)absorbing epithelial cells is mediated by the transient receptor potential melastatin type 6 (TRPM6) ion channel. Here, flavaglines are described as a novel class of stimulatory compounds for TRPM6 activity. Flavaglines are a group of natural and synthetic compounds that target the ubiquitously expressed prohibitins and thereby affect cellular signaling. By whole-cell patch clamp analyses, it was demonstrated that nanomolar concentrations of flavaglines increases TRPM6 activity by ∼2 fold. The stimulatory effects were dependent on the presence of the alpha-kinase domain of TRPM6, but did not require its phosphotransferase activity. Interestingly, it was observed that two natural occurring TRPM6 mutants with impaired insulin-sensitivity, TRPM6-p.Val1393Ile and TRPM6-p.Lys1584Glu, are not sensitive to flavagline stimulation. In conclusion, we have identified flavaglines as potent activators of TRPM6 activity. Our results suggest that flavaglines stimulate TRPM6 via the insulin receptor signaling pathway. PMID:25774985

  18. Flavaglines Stimulate Transient Receptor Potential Melastatin Type 6 (TRPM6) Channel Activity.

    PubMed

    Blanchard, Maxime G; de Baaij, Jeroen H F; Verkaart, Sjoerd A J; Lameris, Anke L; Basmadjian, Christine; Zhao, Qian; Désaubry, Laurent; Bindels, René J M; Hoenderop, Joost G J

    2015-01-01

    Magnesium (Mg2+) is essential for enzymatic activity, brain function and muscle contraction. Blood Mg2+ concentrations are tightly regulated between 0.7 and 1.1 mM by Mg2+ (re)absorption in kidney and intestine. The apical entry of Mg2+ in (re)absorbing epithelial cells is mediated by the transient receptor potential melastatin type 6 (TRPM6) ion channel. Here, flavaglines are described as a novel class of stimulatory compounds for TRPM6 activity. Flavaglines are a group of natural and synthetic compounds that target the ubiquitously expressed prohibitins and thereby affect cellular signaling. By whole-cell patch clamp analyses, it was demonstrated that nanomolar concentrations of flavaglines increases TRPM6 activity by ∼2 fold. The stimulatory effects were dependent on the presence of the alpha-kinase domain of TRPM6, but did not require its phosphotransferase activity. Interestingly, it was observed that two natural occurring TRPM6 mutants with impaired insulin-sensitivity, TRPM6-p.Val1393Ile and TRPM6-p.Lys1584Glu, are not sensitive to flavagline stimulation. In conclusion, we have identified flavaglines as potent activators of TRPM6 activity. Our results suggest that flavaglines stimulate TRPM6 via the insulin receptor signaling pathway.

  19. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage.

  20. Influence of a voltage compensation type active superconducting fault current limiter on the transient stability of power system

    NASA Astrophysics Data System (ADS)

    Chen, L.; Tang, Y. J.; Shi, J.; Chen, N.; Song, M.; Cheng, S. J.; Hu, Y.; Chen, X. S.

    2009-10-01

    We have proposed a voltage compensation type active superconducting fault current limiter (SFCL). In this paper, the influence of the SFCL on the transient stability of power system is investigated. For the typical one-machine infinite-bus system, the power-angle characteristics of generator with SFCL are studied in different working conditions, and the transient physical process is analyzed. Using MATLAB SIMULINK, the power-angle swing curves are simulated under different current-limiting modes, fault types and fault clearance times. The results show that the proposed SFCL can effectively reduce the transient swing amplitude of rotor and extend the critical clearance time under mode 1, compared with mode 2 and mode 3 having few effects on enhancing the transient stability.

  1. Forward modeling transient brightenings and microflares around an active region observed with Hi-C

    SciTech Connect

    Kobelski, Adam R.; McKenzie, David E.

    2014-10-20

    Small-scale flare-like brightenings around active regions are among the smallest and most fundamental of energetic transient events in the corona, providing a testbed for models of heating and active region dynamics. In a previous study, we modeled a large collection of these microflares observed with Hinode/X-Ray Telescope (XRT) using EBTEL and found that they required multiple heating events, but could not distinguish between multiple heating events on a single strand, or multiple strands each experiencing a single heating event. We present here a similar study, but with extreme-ultraviolet data of Active Region 11520 from the High Resolution Coronal Imager (Hi-C) sounding rocket. Hi-C provides an order of magnitude improvement to the spatial resolution of XRT, and a cooler temperature sensitivity, which combine to provide significant improvements to our ability to detect and model microflare activity around active regions. We have found that at the spatial resolution of Hi-C (≈0.''3), the events occur much more frequently than expected (57 events detected, only 1 or 2 expected), and are most likely made from strands of the order of 100 km wide, each of which is impulsively heated with multiple heating events. These findings tend to support bursty reconnection as the cause of the energy release responsible for the brightenings.

  2. Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation

    SciTech Connect

    Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi

    2012-11-06

    Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

  3. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation

    PubMed Central

    Cho, Kyu Suk; Jeon, Se Jin; Kwon, Oh Wook; Jang, Dae Sik; Kim, Sun Yeou; Ryu, Jong Hoon; Choi, Ji Woong

    2017-01-01

    Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against

  4. Metabolic syndrome, platelet activation and the development of transient ischemic attack or thromboembolic stroke.

    PubMed

    van Rooy, Mia-Jeanne; Pretorius, Etheresia

    2015-03-01

    Stroke is the second most common cause of mortality in the world today, where transient ischemic attack (TIA) is a period of focal ischemia, the symptoms of which resemble a thromboembolic stroke. Contrary to stroke, TIA symptoms typically last less than one hour and necrosis is absent. Stroke is often preceded by TIA, making it an important predictor of future ischemic events. The causal role of atherosclerosis in the development of TIA is well established, however, research indicates that the atherosclerotic process begins years earlier with the development of metabolic syndrome, which affects approximately 45% of the adult population worldwide. Metabolic syndrome is present if three or more of the following is present: increased waist circumference, increased triglycerides, decreased HDL, increased fasting glucose and hypertension. This syndrome causes systemic inflammation that activates the coagulation system and may cause the formation of pathological thrombi. The role of platelets in stroke has been studied and platelet activation pathways identified. ADP and thromboxane A(2) are the most common activators of platelets in normal physiology. Several pharmacological treatments have been employed to prevent the activation of platelets, the most common of which include aspirin and P2Y(12)-inhibitors. Although treatment is administered strokes and subsequent TIAs are very common in individuals that suffered an initial event. This indicates that research needs to be done in order to elucidate new therapeutic targets, but also to better treat ischemic events to not only decrease the amount of recurring events but also decrease stroke mortality worldwide.

  5. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage.

    PubMed

    Yun, Y S; Kim, D-H; Hong, S J; Park, M H; Park, Y W; Kim, B H; Jin, H-J; Kang, K

    2015-10-07

    We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors.

  6. Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations

    PubMed Central

    Guenthner, Casey J.; Miyamichi, Kazunari; Yang, Helen H.; Heller, H. Craig; Luo, Liqun

    2013-01-01

    SUMMARY Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed a new approach, Targeted Recombination in Active Populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreERT2 is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreERT2 can undergo recombination only when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 h. We show that TRAP can selectively provide access to neurons activated by specific somatosensory, visual, and auditory stimuli, and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful new approach for understanding how the brain processes information and generates behavior. PMID:23764283

  7. Noninvasive diode laser activation of transient receptor potential proteins and nociceptors

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Cooper, Brian Y.; Nemenov, Michael I.

    2007-02-01

    We investigated diode laser (980 nm) evoked activation of transient receptor potential proteins (TRPV1 and TRPV2). C and A-delta (Aδ) nociceptor families are primarily responsible for pain mediation in the peripheral nervous system. TRPV1 proteins have been associated with heat evoked pain in C fibers while Aδ fibers have been associated with TRPV2. Diode laser stimulation allows a margin of safety between non-invasive activation and damage 19, 22, 34. Laser pulses (20-50 ms, 0.1-10 W, 980 nm) were used to stimulate: A) in vitro: excised patches from HEK293 cells expressing TRPV1; B) in vitro: rat DRG nociceptors expressing either TRPV1 or TRPV2; and C) in vivo: C-fibers of the rat saphenous nerve (SN) trunk. Cell currents were recorded using standard patch clamp methods. The SN was also stimulated electrically with bipolar electrodes. Stimulation (20-50 ms) of HEK and DRG cells expressing TRPV1 was highly reproducible. Activation and peak currents were achieved at estimated peak temperatures of 55°C and 70°C. Threshold activation was also observed in DRG neurons expressing TRPV2. The conduction velocity for laser-activated saphenous nerve afferents was in the C fiber range (0.5-1 m/s). Electrically stimulated nerve contained stimulation artifacts and complex neural components with conduction velocities ranging from 0.3-30 m/s. Diode laser activation of TRPV1 protein is a reproducible and effective means to probe TRP activity in both in vivo and in vitro preparations

  8. Active Control of the Forced and Transient Response of a Finite Beam. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Post, John Theodore

    1989-01-01

    When studying structural vibrations resulting from a concentrated source, many structures may be modelled as a finite beam excited by a point source. The theoretical limit on cancelling the resulting beam vibrations by utilizing another point source as an active controller is explored. Three different types of excitation are considered, harmonic, random, and transient. In each case, a cost function is defined and minimized for numerous parameter variations. For the case of harmonic excitation, the cost function is obtained by integrating the mean squared displacement over a region of the beam in which control is desired. A controller is then found to minimize this cost function in the control interval. The control interval and controller location are continuously varied for several frequencies of excitation. The results show that control over the entire beam length is possible only when the excitation frequency is near a resonant frequency of the beam, but control over a subregion may be obtained even between resonant frequencies at the cost of increasing the vibration outside of the control region. For random excitation, the cost function is realized by integrating the expected value of the displacement squared over the interval of the beam in which control is desired. This is shown to yield the identical cost function as obtained by integrating the cost function for harmonic excitation over all excitation frequencies. As a result, it is always possible to reduce the cost function for random excitation whether controlling the entire beam or just a subregion, without ever increasing the vibration outside the region in which control is desired. The last type of excitation considered is a single, transient pulse. A cost function representative of the beam vibration is obtained by integrating the transient displacement squared over a region of the beam and over all time. The form of the controller is chosen a priori as either one or two delayed pulses. Delays

  9. UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes.

    PubMed

    Bellono, Nicholas W; Kammel, Laura G; Zimmerman, Anita L; Oancea, Elena

    2013-02-05

    Human skin is constantly exposed to solar ultraviolet radiation (UVR), the most prevalent environmental carcinogen. Humans have the unique ability among mammals to respond to UVR by increasing their skin pigmentation, a protective process driven by melanin synthesis in epidermal melanocytes. The molecular mechanisms used by melanocytes to detect and respond to long-wavelength UVR (UVA) are not well understood. We recently identified a UVA phototransduction pathway in melanocytes that is mediated by G protein-coupled receptors and leads to rapid calcium mobilization. Here we report that in human epidermal melanocytes physiological doses of UVR activate a retinal-dependent current mediated by transient receptor potential A1 (TRPA1) ion channels. The TRPA1 photocurrent is UVA-specific and requires G protein and phospholipase C signaling, thus contributing to UVA-induced calcium responses to mediate downstream cellular effects and providing evidence for TRPA1 function in mammalian phototransduction. Remarkably, TRPA1 activation is required for the UVR-induced and retinal-dependent early increase in cellular melanin. Our results show that TRPA1 is essential for a unique extraocular phototransduction pathway in human melanocytes that is activated by physiological doses of UVR and results in early melanin synthesis.

  10. Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons

    PubMed Central

    Correia, Patrícia A; Lottem, Eran; Banerjee, Dhruba; Machado, Ana S; Carey, Megan R; Mainen, Zachary F

    2017-01-01

    Serotonin (5-HT) is associated with mood and motivation but the function of endogenous 5-HT remains controversial. Here, we studied the impact of phasic optogenetic activation of 5-HT neurons in mice over time scales from seconds to weeks. We found that activating dorsal raphe nucleus (DRN) 5-HT neurons induced a strong suppression of spontaneous locomotor behavior in the open field with rapid kinetics (onset ≤1 s). Inhibition of locomotion was independent of measures of anxiety or motor impairment and could be overcome by strong motivational drive. Repetitive place-contingent pairing of activation caused neither place preference nor aversion. However, repeated 15 min daily stimulation caused a persistent increase in spontaneous locomotion to emerge over three weeks. These results show that 5-HT transients have strong and opposing short and long-term effects on motor behavior that appear to arise from effects on the underlying factors that motivate actions. DOI: http://dx.doi.org/10.7554/eLife.20975.001 PMID:28193320

  11. Cerebral Activity Associated with Transient Sleep-Facilitated Reduction in Motor Memory Vulnerability to Interference

    PubMed Central

    Albouy, Geneviève; King, Bradley R.; Schmidt, Christina; Desseilles, Martin; Dang-Vu, Thien Thanh; Balteau, Evelyne; Phillips, Christophe; Degueldre, Christian; Orban, Pierre; Benali, Habib; Peigneux, Philippe; Luxen, André; Karni, Avi; Doyon, Julien; Maquet, Pierre; Korman, Maria

    2016-01-01

    Motor memory consolidation is characterized, in part, by a sleep-facilitated decrease in susceptibility to subsequent interfering experiences. Surprisingly, the cerebral substrates supporting this phenomenon have never been examined. We used fMRI to investigate the neural correlates of the influence of sleep on interference to motor memory consolidation. Healthy young adults were trained on a sequential motor task, and subsequently practiced a second competing sequence after an interval including diurnal sleep or wakefulness. Participants were then retested on the initial sequence 8 h and 24 h (including nocturnal sleep) after training. Results demonstrated that a post-training nap significantly protected memory against interference at 8 h and modulated the link between cerebral activity and behavior, such that a smaller post-interference decrease in cortico-striatal activity was associated with better performance. Interestingly, the protective effect of a nap was only transitory, as both groups performed similarly at 24 h. Activity in cortico-striatal areas that was disrupted during the day, presumably due to interference and accentuated in the absence of a nap, was restored overnight. Altogether, our findings offer the first evidence that cortico-striatal areas play a critical role in the transient sleep-facilitated reduction in motor memory vulnerability and in the overnight restoration of previously degraded memories. PMID:27725727

  12. Cerebral Activity Associated with Transient Sleep-Facilitated Reduction in Motor Memory Vulnerability to Interference.

    PubMed

    Albouy, Geneviève; King, Bradley R; Schmidt, Christina; Desseilles, Martin; Dang-Vu, Thien Thanh; Balteau, Evelyne; Phillips, Christophe; Degueldre, Christian; Orban, Pierre; Benali, Habib; Peigneux, Philippe; Luxen, André; Karni, Avi; Doyon, Julien; Maquet, Pierre; Korman, Maria

    2016-10-11

    Motor memory consolidation is characterized, in part, by a sleep-facilitated decrease in susceptibility to subsequent interfering experiences. Surprisingly, the cerebral substrates supporting this phenomenon have never been examined. We used fMRI to investigate the neural correlates of the influence of sleep on interference to motor memory consolidation. Healthy young adults were trained on a sequential motor task, and subsequently practiced a second competing sequence after an interval including diurnal sleep or wakefulness. Participants were then retested on the initial sequence 8 h and 24 h (including nocturnal sleep) after training. Results demonstrated that a post-training nap significantly protected memory against interference at 8 h and modulated the link between cerebral activity and behavior, such that a smaller post-interference decrease in cortico-striatal activity was associated with better performance. Interestingly, the protective effect of a nap was only transitory, as both groups performed similarly at 24 h. Activity in cortico-striatal areas that was disrupted during the day, presumably due to interference and accentuated in the absence of a nap, was restored overnight. Altogether, our findings offer the first evidence that cortico-striatal areas play a critical role in the transient sleep-facilitated reduction in motor memory vulnerability and in the overnight restoration of previously degraded memories.

  13. Activation of Transient Receptor Potential Ankyrin-1 by Insoluble Particulate Material and Association with Asthma.

    PubMed

    Deering-Rice, Cassandra E; Shapiro, Darien; Romero, Erin G; Stockmann, Chris; Bevans, Tatjana S; Phan, Quang M; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2015-12-01

    Inhaled irritants activate transient receptor potential ankyrin-1 (TRPA1), resulting in cough, bronchoconstriction, and inflammation/edema. TRPA1 is also implicated in the pathogenesis of asthma. Our hypothesis was that particulate materials activate TRPA1 via a mechanism distinct from chemical agonists and that, in a cohort of children with asthma living in a location prone to high levels of air pollution, expression of uniquely sensitive forms of TRPA1 may correlate with reduced asthma control. Variant forms of TRPA1 were constructed by mutating residues in known functional elements and corresponding to single-nucleotide polymorphisms in functional domains. TRPA1 activity was studied in transfected HEK-293 cells using allyl-isothiocynate, a model soluble electrophilic agonist; 3,5-ditert butylphenol, a soluble nonelectrophilic agonist and a component of diesel exhaust particles; and insoluble coal fly ash (CFA) particles. The N-terminal variants R3C and R58T exhibited greater, but not additive, activity with all three agonists. The ankyrin repeat domain-4 single nucleotide polymorphisms E179K and K186N exhibited decreased response to CFA. The predicted N-linked glycosylation site residues N747A and N753A exhibited decreased responses to CFA, which were not attributable to differences in cellular localization. The pore-loop residue R919Q was comparable to wild-type, whereas N954T was inactive to soluble agonists but not CFA. These data identify roles for ankyrin domain-4, cell surface N-linked glycans, and selected pore-loop domain residues in the activation of TRPA1 by insoluble particles. Furthermore, the R3C and R58T polymorphisms correlated with reduced asthma control for some children, which suggest that TRPA1 activity may modulate asthma, particularly among individuals living in locations prone to high levels of air pollution.

  14. Groundwater storage inferred from earthquake activities around East Asia and West Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Shih, David Ching-Fang

    2017-01-01

    Groundwater is a necessary and indispensable resource in the gradual depletion of the amount in the world. Groundwater storage is an important indicator to evaluate the capability of volume of water can be released from the aquifer. This research highlights a new assessment to infer the storage of aquifer using earthquakes activated around East Asia and the ring of fire at West Pacific Ocean. Ten significant seismic events are used to evaluate the groundwater storage at an observation station. By analyzing the spectra of groundwater level and seismogram, it is evident that the period varied in 7-25 s of Rayleigh waves significantly dominate propagation from the epicenter of earthquakes to the observation station. The storage coefficient is then shown in the order of 10-4-10-3. The major innovation of this study suggests that to concretely deduce the groundwater storage by earthquake activity has become feasible.

  15. Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell.

    PubMed

    Uría, Naroa; Muñoz Berbel, Xavier; Sánchez, Olga; Muñoz, Francesc Xavier; Mas, Jordi

    2011-12-01

    Current output of microbial fuel cells (MFCs) depends on a number of engineering variables mainly related to the design of the fuel cell reactor and the materials used. In most cases the engineering of MFCs relies on the premise that for a constant biomass, current output correlates well with the metabolic activity of the cells. In this study we analyze to what extent, MFC output is also affected by the mode of operation, emphasizing how discontinuous operation can affect temporal patterns of current output. The experimental work has been carried out with Shewanella oneidensis MR-1, grown in conventional two-chamber MFCs subject to periodic interruptions of the external circuit. Our results indicate that after closure of the external circuit, current intensity shows a peak that decays back to basal values. The result suggests that the MFC has the ability to store charge during open circuit situations. Further studies using chronoamperometric analyses were carried out using isolated biofilms of Shewanella oneidensis MR-1 developed in a MFC and placed in an electrochemistry chamber in the presence of an electron donor. The results of these studies indicate that the amount of excess current over the basal level released by the biofilm after periods of circuit disconnection is proportional to the duration of the disconnection period up to a maximum of approximately 60 min. The results indicate that biofilms of Shewanella oneidensis MR-1 have the ability to store charge when oxidizing organic substrates in the absence of an external acceptor.

  16. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations.

    PubMed

    Guenthner, Casey J; Miyamichi, Kazunari; Yang, Helen H; Heller, H Craig; Luo, Liqun

    2013-06-05

    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior.

  17. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    SciTech Connect

    Veenstra, Mike; Purewal, Justin; Xu, Chunchuan; Yang, Jun; Blaser, Rachel; Sudik, Andrea; Siegel, Don; Ming, Yang; Liu, Dong'an; Chi, Hang; Gaab, Manuela; Arnold, Lena; Muller, Ulrich

    2015-06-30

    revealed cost gaps and opportunities that identified a storage system that was lower cost than a 700 bar compressed system. Finally, we led the HSECoE efforts devoted to characterizing and enhancing metal organic framework (MOF) storage materials. This report serves as a final documentation of the Ford-UM-BASF project contributions to the HSECoE during the 6-year timeframe of the Center. The activities of the HSECoE have impacted the broader goals of the DOE-EERE and USDRIVE, leading to improved understanding in the engineering of materials-based hydrogen storage systems. This knowledge is a prerequisite to the development of a commercially-viable hydrogen storage system.

  18. Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation.

    PubMed

    Pan, Y-Z; Rutecki, P A

    2014-09-05

    Prolonged activation of group I metabotropic glutamate receptors (mGluRs) using the agonist (S)-3,5-dihydroxyphenylglycine (DHPG) produces long-lasting changes in the CA3 region of the hippocampal slice. Changes in CA3 pyramidal neuron excitability that follow DHPG exposure result in abnormal network activity manifest by epileptiform activity that consists of interictal and longer lasting ictal epileptiform discharges. In this study we evaluated changes in synaptic activity of CA3 neurons in rat hippocampal slices that occurred after exposure to DHPG. Whole-cell voltage-clamp recordings were made from visually identified CA3 neurons in control artificial cerebrospinal fluid at times greater than 1h after DHPG exposure. Compared to control slices, neurons from slices exposed to DHPG showed enhanced amplitude and frequency of spontaneously occurring excitatory postsynaptic currents (EPSCs) without a concurrent change in inhibitory postsynaptic current (IPSC) amplitude or frequency. Miniature EPSCs were not affected by DHPG exposure but mIPSCs occurred less frequently and were of reduced amplitude. IPSCs recorded in the presence of ionotropic glutamate receptor blockade occurred less frequently in neurons that had been exposed to DHPG. Monosynaptic-evoked IPSPs were also reduced in amplitude in neurons that had been exposed to DHPG. Taken together, these findings demonstrated an enhanced network excitability of the CA3 region and failure of compensatory synaptic inhibition. We propose that prolonged activation of group I mGluR that may occur under conditions of pathological glutamate release results in long-lasting changes in CA3 synaptic network activity and epileptiform activity driven by excessive synaptic excitation.

  19. Effect of cooking and cold storage on biologically active antibiotic residues in meat.

    PubMed Central

    O'Brien, J. J.; Campbell, N.; Conaghan, T.

    1981-01-01

    An investigation was undertaken to see if cooking or cold storage would destroy or decrease the level of biologically active antibiotic in tissues from animals given therapeutic doses of antibiotic on three occasions prior to slaughter. The effects of cooking and cold storage on the biological activity of the residues of ampicillin, chloramphenicol, oxytetracycline, streptomycin and sulphadimidine were varied; in some instances the effects were minimal, in others nil. PMID:7310129

  20. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  1. AE activity during transient beta drops in high poloidal beta discharges

    NASA Astrophysics Data System (ADS)

    Huang, J.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Qian, J. P.; Pan, C. K.; Li, G. Q.; Heidbrink, W. W.; Garofalo, A. M.; McClenaghan, J.

    2016-10-01

    Enhanced AE activity has been observed during transient beta drops in high poloidal beta DIII-D discharges with internal transport barriers (ITBs). These drops in beta are believed to be caused by n=1 external kink modes. In some discharges, beta recovers within 200 ms but, in others, beta stays suppressed. A typical discharge has βP 3, qmin 3, and q95 12. The drop in beta affects both fast ions and thermal particles, and a drop is also observed in the density and rotation. The enhanced AE activity follows the instability that causes the beta drop, is largest at the lowest beta, and subsides as beta recovers. MHD stability analysis is planned. A database study of the plasma conditions associated with the collapse will be also presented. Supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC05-06OR23100, and by the National Natural Science Foundation of China 11575249, and the National Magnetic Confinement Fusion Program of China No. 2015GB110005.

  2. Lipids as regulators of the activity of transient receptor potential type V1 (TRPV1) channels.

    PubMed

    De Petrocellis, Luciano; Di Marzo, Vincenzo

    2005-08-19

    After 7 years from its cloning, the transient receptor potential vanilloid type-1 (TRPV1) channel remains the sole membrane receptor mediating the pharmacological effects of the hot chilli pepper pungent component, capsaicin, and of the Euphorbia toxin, resiniferatoxin. Yet, this ion channel represents one of the most complex examples of how the activity of a protein can be regulated. Among the several chemicophysical stimuli that can modulate TRPV1 permeability to cations, endogenous lipids appear to play a major role, either as allosteric effectors or as direct agonists, or both. Furthermore, the capability of some mediators, such as the endocannabinoid anandamide, or the eicosanoid precursors 12- and 5-hydroperoxy-eicosatetraenoic acids, to activate TRPV1 receptors provides a striking example of the "site-dependent" and "metabolic" functional plasticity, respectively, typical of bioactive lipids. In this article, the multi-faceted and most recently discovered aspects of TRPV1 regulation are reviewed, with particular emphasis on the interaction between these membrane channels and some lipid molecules.

  3. Transient ALT activation protects human primary cells from chromosome instability induced by low chronic oxidative stress

    PubMed Central

    Coluzzi, Elisa; Buonsante, Rossella; Leone, Stefano; Asmar, Anthony J.; Miller, Kelley L.; Cimini, Daniela; Sgura, Antonella

    2017-01-01

    Cells are often subjected to the effect of reactive oxygen species (ROS) as a result of both intracellular metabolism and exposure to exogenous factors. ROS-dependent oxidative stress can induce 8-oxodG within the GGG triplet found in the G-rich human telomeric sequence (TTAGGG), making telomeres highly susceptible to ROS-induced oxidative damage. Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes and their dysfunction is believed to affect a wide range of cellular and/or organismal processes. Acute oxidative stress was shown to affect telomere integrity, but how prolonged low level oxidative stress, which may be more physiologically relevant, affects telomeres is still poorly investigated. Here, we explored this issue by chronically exposing human primary fibroblasts to a low dose of hydrogen peroxide. We observed fluctuating changes in telomere length and fluctuations in the rates of chromosome instability phenotypes, such that when telomeres shortened, chromosome instability increased and when telomeres lengthened, chromosome instability decreased. We found that telomere length fluctuation is associated with transient activation of an alternative lengthening of telomere (ALT) pathway, but found no evidence of cell death, impaired proliferation, or cell cycle arrest, suggesting that ALT activation may prevent oxidative damage from reaching levels that threaten cell survival. PMID:28240303

  4. Transient CD4/CD8 ratio inversion and aberrant immune activation during dengue virus infection.

    PubMed

    Liu, Ching-Chuan; Huang, Kao-Jean; Lin, Yee-Shin; Yeh, Trai-Ming; Liu, Hsiao-Sheng; Lei, Huan-Yao

    2002-10-01

    The immune status after dengue virus infection was studied in dengue patients from an outbreak of serotype 3 dengue virus infection in the southern part of Taiwan during November and December 1998. Consecutive blood samples from 29 dengue patients, of whom 21 had dengue fever and 8 had dengue hemorrhagic fever/dengue shock syndrome, were collected, and the immunophenotypes of the peripheral blood mononuclear cells were determined by flow cytometry. The early activation marker CD69 appeared on lymphocytes and monocytes at day 4 after the onset of fever, and declined afterward. However, a transient reverse in the CD4/CD8 ratio occurred at days 6-10 after the onset of fever. The CD4/CD8 ratio inversion was manifested in 10 of 29 dengue patients and was encountered more frequently in dengue hemorrhagic fever/dengue shock syndrome than in dengue fever patients. Analysis of the clinical blood cell count of these 10 cases showed that increase of immature neutrophils developed at fever days 5-6, CD4(dim) or CD8(dim) monocytosis at days 6-7, and atypical lymphocytosis at days 8-10 after the onset of fever. Serum IL-6 was found at either day 7 or day 9-11. The PHA-stimulated T-cell response was depressed as well. These changes in immune parameters indicate aberrant immune activation during dengue virus infection and might be involved in the pathogenesis of dengue virus infection.

  5. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury.

    PubMed

    Yin, Jun; Michalick, Laura; Tang, Christine; Tabuchi, Arata; Goldenberg, Neil; Dan, Qinghong; Awwad, Khader; Wang, Liming; Erfinanda, Lasti; Nouailles, Geraldine; Witzenrath, Martin; Vogelzang, Alexis; Lv, Lu; Lee, Warren L; Zhang, Haibo; Rotstein, Ori; Kapus, Andras; Szaszi, Katalin; Fleming, Ingrid; Liedtke, Wolfgang B; Kuppe, Hermann; Kuebler, Wolfgang M

    2016-03-01

    The cation channel transient receptor potential vanilloid (TRPV) 4 is expressed in endothelial and immune cells; however, its role in acute lung injury (ALI) is unclear. The functional relevance of TRPV4 was assessed in vivo, in isolated murine lungs, and in isolated neutrophils. Genetic deficiency of TRPV4 attenuated the functional, histological, and inflammatory hallmarks of acid-induced ALI. Similar protection was obtained with prophylactic administration of the TRPV4 inhibitor, GSK2193874; however, therapeutic administration of the TRPV4 inhibitor, HC-067047, after ALI induction had no beneficial effect. In isolated lungs, platelet-activating factor (PAF) increased vascular permeability in lungs perfused with trpv4(+/+) more than with trpv4(-/-) blood, independent of lung genotype, suggesting a contribution of TRPV4 on blood cells to lung vascular barrier failure. In neutrophils, TRPV4 inhibition or deficiency attenuated the PAF-induced increase in intracellular calcium. PAF induced formation of epoxyeicosatrienoic acids by neutrophils, which, in turn, stimulated TRPV4-dependent Ca(2+) signaling, whereas inhibition of epoxyeicosatrienoic acid formation inhibited the Ca(2+) response to PAF. TRPV4 deficiency prevented neutrophil responses to proinflammatory stimuli, including the formation of reactive oxygen species, neutrophil adhesion, and chemotaxis, putatively due to reduced activation of Rac. In chimeric mice, however, the majority of protective effects in acid-induced ALI were attributable to genetic deficiency of TRPV4 in parenchymal tissue, whereas TRPV4 deficiency in circulating blood cells primarily reduced lung myeloperoxidase activity. Our findings identify TRPV4 as novel regulator of neutrophil activation and suggest contributions of both parenchymal and neutrophilic TRPV4 in the pathophysiology of ALI.

  6. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes

    NASA Astrophysics Data System (ADS)

    Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, Ch.; Bruand, A.

    2017-01-01

    Water exchanges between a karstic conduit and the surrounding aquifer are driven by hydraulic head gradient at the interface between these two domains. The case-study presented in this paper investigates the impact of the geometry and interface conditions around a conduit on the spatial distribution of these exchanges. Isotopic (δ18O and δD), discharge and water head measurements were conducted at the resurgences of a karst system with a strong allogenic recharge component (Val d'Orléans, France), to estimate the amounts of water exchanged and the mixings between a saturated karstic conduit and the surrounding aquifer. The spatio-temporal variability of the observed exchanges was explored using a 2D coupled continuum-conduit flow model under saturated conditions (Feflow®). The inputs from the water heads and stable water isotopes in the groundwater flow model suggest that the amounts of water flowing from the aquifer are significant if the conduit flow discharges are less than the conduit flow capacity. This condition creates a spatial distribution of exchanges from upstream where the aquifer feeds the conduit (recharge area) to downstream where the conduit reaches its maximum discharge capacity and can feed the aquifer (discharge area). In the intermediate transport zone no exchange between the two domains takes place that brings a new criterion to delineate the vulnerable zones to surface water. On average, 4% of the water comes from the local recharge, 80% is recent river water and 16% is old river water. During the November 2008 flood, both isotopic signatures and model suggest that exchanges fluctuate around this steady state, limited when the river water level increases and intensified when the river water level decreases. The existence of old water from the river suggests a transient storage at the aquifer/conduit interface that can be considered as an underground hyporheic zone.

  7. Influence of CO{sub 2} activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes

    SciTech Connect

    Lee, Seul-Yi; Park, Soo-Jin

    2010-12-15

    In this work, platinum (Pt) metal loaded activated multi-walled carbon nanotubes (MWNTs) were prepared with different structural characteristics for hydrogen storage applications. The process was conducted by a gas phase CO{sub 2} activation method at 1200 {sup o}C as a function of the CO{sub 2} flow time. Pt-loaded activated MWNTs were also formulated to investigate the hydrogen storage characteristics. The microstructures of the Pt-loaded activated MWNTs were characterized by XRD and TEM measurements. The textural properties of the samples were analyzed using N{sub 2} adsorption isotherms at 77 K. The BET, D-R, and BJH equations were used to observe the specific surface areas and the micropore and mesopore structures. The hydrogen storage capacity of the Pt-loaded activated MWNTs was measured at 298 K at a pressure of 100 bar. The hydrogen storage capacity was increased with CO{sub 2} flow time. It was found that the micropore volume of the activated MWNTs plays a key role in the hydrogen storage capacity. -- Graphical abstract: The hydrogen storage capacities of the Pt-loaded activated MWNTs as a function of CO{sub 2} flow time are described. Display Omitted

  8. Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii.

    PubMed

    Michelet, Laure; Roach, Thomas; Fischer, Beat B; Bedhomme, Mariette; Lemaire, Stéphane D; Krieger-Liszkay, Anja

    2013-06-01

    In photosynthetic organisms, excess light is a stress that induces production of reactive oxygen species inside the chloroplasts. As a response, the capacity of antioxidative defence mechanisms increases. However, when cells of Chlamydomonas reinhardtii were shifted from dark to high light, a reversible partial inactivation of catalase activity was observed, which correlated with a transient increase in the level of H2 O2 in the 10 μm range. This concentration range seems to be necessary to activate H2 O2 -dependent signalling pathways stimulating the expression of H2 O2 responsive genes, such as the heat shock protein HSP22C. Catalase knock-down mutants had lost the transient accumulation of H2 O2 , suggesting that a decrease in catalase activity was the key element for establishing a transient H2 O2 burst. Catalase was inactivated by a one-electron event consistent with the reduction of a single cysteine. We propose that under high light intensity, the redox state of the photosynthetic electron transport chain is sensed and transmitted to the cytosol to regulate the catalase activity. This allows a transient accumulation of H2 O2 , inducing a signalling event that is transmitted to the nucleus to modulate the expression of chloroplast-directed protection enzymes.

  9. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.

    PubMed

    Hoffman, D A; Johnston, D

    1998-05-15

    We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal propagation, their modulation by protein kinases would be of significant interest. We investigated the effects of activators of cAMP-dependent protein kinase (PKA) and the Ca2+-dependent phospholipid-sensitive protein kinase (PKC) on K+ channels in cell-attached patches from the distal dendrites of hippocampal CA1 pyramidal neurons. Inclusion of the membrane-permeant PKA activators 8-bromo-cAMP (8-br-cAMP) or forskolin in the dendritic patch pipette resulted in a depolarizing shift in the activation curve for the transient channels of approximately 15 mV. Activation of PKC by either of two phorbol esters also resulted in a 15 mV depolarizing shift of the activation curve. Neither PKA nor PKC activation affected the sustained or slowly inactivating component of the total outward current. This downregulation of transient K+ channels in the distal dendrites may be responsible for some of the frequently reported increases in cell excitability found after PKA and PKC activation. In support of this hypothesis, we found that activation of either PKA or PKC significantly increased the amplitude of back-propagating action potentials in distal dendrites.

  10. Integrated model of G189A and Aspen-plus for the transient modeling of extravehicular activity atmospheric control systems

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Conger, Bruce C.

    1990-01-01

    A computerized modeling tool, under development for the transient modeling of an extravehicular activity atmospheric control subsystem is described. This subsystem includes the astronaut, temperature control, moisture control, CO2 removal, and oxygen make-up components. Trade studies evaluating competing components and subsystems to guide the selection and development of hardware for lunar and Martian missions will use this modeling tool. The integrated modeling tool uses the Advanced System for Process Engineering (ASPEN) to accomplish pseudosteady-state simulations, and the general environmental thermal control and life support program (G189A) to manage overall control of the run and transient input output, as well as transient modeling computations and database functions. Flow charts and flow diagrams are included.

  11. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE PAGES

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  12. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    SciTech Connect

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Yury G.

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  13. Changes in the enzymatic activity of soil samples upon their storage

    NASA Astrophysics Data System (ADS)

    Dadenko, E. V.; Kazeev, K. Sh.; Kolesnikov, S. I.; Val'Kov, V. F.

    2009-12-01

    The influence of the duration and conditions of storage of soil samples on the activity of soil enzymes (catalase, β-fructofuranosidase, and dehydrogenase) was studied for the main soils of southern Russia (different subtypes of chernozems, chestnut soils, brown forest soils, gray forest soils, solonetzes, and solonchaks). The following soil storage conditions were tested: (1) the air-dry state at room temperature, (2) the airdry state at a low positive (in a refrigerator, +4°C) temperature, (3) naturally moist samples at a low positive temperature, and (4) naturally moist samples at a negative (in a freezer, -5°C) temperature. It was found that the sample storing caused significant changes in the enzymatic activities, which depended on the soil type, the land use, the type of enzyme, and the duration and conditions of the sample storage. In the course of the storage, the changes in the enzymatic activity had a nonlinear character. The maximum changes were observed in the initial period (up to 12 weeks). Then, a very gradual decrease in the activity of the studied enzymes was observed. Upon the long-term (>12 weeks) storage under the different conditions, the difference in the activities of the soil enzymes became less pronounced. The storage of soil samples in the air-dried state at room temperature can be recommended for mass investigations.

  14. Number of transients/Q-bursts in ELF-band as possible criterion for global thunderstorm activity estimation.

    NASA Astrophysics Data System (ADS)

    Ondraskova, Adriena; Sevcik, Sebastian

    2015-04-01

    Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance (SOD). Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - December 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Limits (min-max) for the width of primary spike, time difference between primary and secondary spike and the amplitude of the spike were chosen as criteria for the identification of the burst. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients can be a suitable criterion for the quantification of global lightning activity.

  15. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity.

    PubMed

    Zhang, Li Li; Yan Liu, Dao; Ma, Li Qun; Luo, Zhi Dan; Cao, Ting Bing; Zhong, Jian; Yan, Zhen Cheng; Wang, Li Juan; Zhao, Zhi Gang; Zhu, Shan Jun; Schrader, Mark; Thilo, Florian; Zhu, Zhi Ming; Tepel, Martin

    2007-04-13

    We tested the hypothesis that activation of transient receptor potential vanilloid type-1 (TRPV1) by capsaicin prevents adipogenesis. TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans were detected by immunoblotting and quantitative real-time RT-PCR. The effect of TRPV1 on cytosolic calcium was determined fluorometrically in 3T3-L1-preadipocytes and in human visceral fat tissue. Adipogenesis in stimulated 3T3-L1-preadipocytes was determined by oil red O-staining of intracellular lipid droplets, triglyceride levels, expression of peroxisome proliferator-activated receptor-gamma, and expression of fatty acid synthase. Long-term feeding experiments were undertaken in wild-type mice and TRPV1 knockout mice. We detected TRPV1 channels in 3T3-L1-preadipocytes and visceral adipose tissue from mice and humans. In vitro, the TRPV1 agonist capsaicin dose-dependently induced calcium influx and prevented the adipogenesis in stimulated 3T3-L1-preadipocytes. RNA interference knockdown of TRPV1 in 3T3-L1-preadipocytes attenuated capsaicin-induced calcium influx, and adipogenesis in stimulated 3T3-L1-preadipocytes was no longer prevented. During regular adipogenesis TRPV1 channels were downregulated which was accompanied by a significant and time-dependent reduction of calcium influx. Compared with lean counterparts in visceral adipose tissue from obese db/db and ob/ob mice, and from obese human male subjects we observed a reduced TRVP1 expression. The reduced TRPV1 expression in visceral adipose tissue from obese humans was accompanied by reduced capsaicin-induced calcium influx. The oral administration of capsaicin for 120 days prevented obesity in male wild type mice but not in TRPV1 knockout mice assigned to high fat diet. We conclude that the activation of TRPV1 channels by capsaicin prevented adipogenesis and obesity.

  16. The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP+ -reductase.

    PubMed

    Peregrina, José Ramón; Lans, Isaías; Medina, Milagros

    2012-01-01

    Ferredoxin-NADP(+) reductase (FNR) catalyses the electron transfer from ferredoxin to NADP(+) via its flavin FAD cofactor. A molecular dynamics theoretical approach is applied here to visualise the transient catalytically competent interaction of Anabaena FNR with its coenzyme, NADP(+). The particular role of some of the residues identified as key in binding and accommodating the 2'P-AMP moiety of the coenzyme is confirmed in molecular terms. Simulations also indicate that the architecture of the active site precisely contributes to the orientation of the N5 of the FAD isoalloxazine ring and the C4 of the coenzyme nicotinamide ring in the conformation of the catalytically competent hydride transfer complex and, therefore, contributes to the efficiency of the process. In particular, the side chain of the C-terminal Y303 in Anabaena FNR appears key to providing the optimum geometry by reducing the stacking probability between the isoalloxazine and nicotinamide rings, thus providing the required co-linearity and distance among the N5 of the flavin cofactor, the C4 of the coenzyme nicotinamide and the hydride that has to be transferred between them. All these factors are highly related to the reaction efficiency, mechanism and reversibility of the process.

  17. Ambiguous hydraulic heads and 14C activities in transient regional flow.

    PubMed

    Schwartz, Franklin W; Sudicky, Edward A; McLaren, Robert G; Park, Young-Jin; Huber, Matthew; Apted, Mick

    2010-01-01

    A regional flow and transport model is used to explore the implications of significant variability in Pleistocene and Holocene climates on hydraulic heads and (14)C activity. Simulations involve a 39 km slice of the Death Valley Flow System through Yucca Mountain toward the Amargosa Desert. The long-time scale over which infiltration has changed (tens-of-thousands of years) is matched by the large physical extent of the flow system (many tens-of-kilometers). Estimated paleo-infiltration rates were estimated using a juniper pollen percentage that extends from the last interglacial (LIG) period (approximately 120 kyrbp) to present. Flow and (14)C transport simulations show that groundwater flow changes markedly as a function of paleoclimate. At the last glacial maximum (LGM, 21 kyrbp), the recharge to the flow system was about an order-of-magnitude higher than present, and water table was more than 100 m higher. With large basin time constants, flow is complicated because hydraulic heads at a given location reflect conditions of the past, but at another location the flow may reflect present conditions. This complexity is also manifested by processes that depend on flow, for example (14)C transport. Without a model that accounts for the historical transients in recharge for at least the last 20,000 years, there is no simple way to deconvolve the (14)C dates to explain patterns of flow.

  18. Modeling active region transient brightenings observed with X-ray telescope as multi-stranded loops

    SciTech Connect

    Kobelski, Adam R.; McKenzie, David E.; Donachie, Martin

    2014-05-10

    Strong evidence exists that coronal loops as observed in extreme ultraviolet and soft X-rays may not be monolithic isotropic structures, but can often be more accurately modeled as bundles of independent strands. Modeling the observed active region transient brightenings (ARTBs) within this framework allows for the exploration of the energetic ramifications and characteristics of these stratified structures. Here we present a simple method of detecting and modeling ARTBs observed with the Hinode X-Ray Telescope (XRT) as groups of zero-dimensional strands, which allows us to probe parameter space to better understand the spatial and temporal dependence of strand heating in impulsively heated loops. This partially automated method can be used to analyze a large number of observations to gain a statistical insight into the parameters of coronal structures, including the number of heating events required in a given model to fit the observations. In this article, we present the methodology and demonstrate its use in detecting and modeling ARTBs in a sample data set from Hinode/XRT. These initial results show that, in general, multiple heating events are necessary to reproduce observed ARTBs, but the spatial dependence of these heating events cannot yet be established.

  19. Motion sickness susceptibility in parabolic flight and velocity storage activity

    NASA Technical Reports Server (NTRS)

    Dizio, Paul; Lackner, James R.

    1991-01-01

    In parabolic flight experiments, postrotary nystagmus is as found to be differentially suppressed in free fall (G) and in a high gravitoinertial force (1.8 G) background relative to 1 G. In addition, the influence of postrotary head movements on nystagmus suppression was found to be contingent on G-dependency of the velocity storage and dumping mechanisms. Here, susceptibility to motion sickness during head movements in 0 G and 1.8 G was rank-correlated with the following: (1) the decay time constant of the slow phase velocity of postrotary nystagmus under 1 G, no head movement, baseline conditions, (2) the extent of time constant reduction elicited in 0 G and 1.8 G; (3) the extent of time constant reduction elicited by head tilts in 1 G; and (4) changes in the extent of time constants reduction in 0 G and 1.8 G over repeated tests. Susceptibility was significantly correlated with the extent to which a head movement reduced the time constant in 1 G, was weakly correlated with the baseline time constant, but was not correlated with the extent of reduction in 0 G or 1.8 G. This pattern suggests a link between mechanisms evoking symptoms of space motion sickness and the mechanisms of velocity storage and dumping. Experimental means of evaluating this link are described.

  20. Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures.

    PubMed

    Asha, A; Manjunatha, M; Rekha, R M; Surendranath, B; Heartwin, P; Rao, J; Magdaline, E; Sinha, Chitranayak

    2015-12-01

    Antioxidant activities of butylatedhydroxyanisole (BHA) and orange peel powder extract in ghee stored at different storage temperatures (T1:6 ± 2 °C; T2: 32 ± 2 °C; T3:60 ± 2 °C) were evaluated during storage period of 21 days. Peroxide value (PV), thiobarbituric acid (TBA), radical scavenging activity (RSA) and free fatty acids (FFA) of ghee samples were analyzed during the study. PV, TBA and FFA of ghee samples increased significantly while radical scavenging activity (RSA) of ghee samples decreased significantly at accelerated temperature (T3) as compared to the temperatures at T1 and T2. Effect of storage temperature on development of peroxides and TBA of ghee samples was significantly higher than the effect of treatment and storage period while treatment had more significant effect on the change in FFA and RSA as compared to storage temperature and storage period. Ghee incorporated with orange peel extract (OPE) showed stronger activity in quenching DPPH radicals and least development of PV, TBA and FFA than ghee incorporated with BHA and control. The study revealed that orange peel could be a good natural source of antioxidants which can be used in fat rich food products like ghee to retard oxidative deterioration.

  1. Transient activity in monkey area MT represents speed changes and is correlated with human behavioral performance.

    PubMed

    Traschütz, Andreas; Kreiter, Andreas K; Wegener, Detlef

    2015-02-01

    Neurons in the middle temporal area (MT) respond to motion onsets and speed changes with a transient-sustained firing pattern. The latency of the transient response has recently been shown to correlate with reaction time in a speed change detection task, but it is not known how the sign, the amplitude, and the latency of this response depend on the sign and the magnitude of a speed change, and whether these transients can be decoded to explain speed change detection behavior. To investigate this issue, we measured the neuronal representation of a wide range of positive and negative speed changes in area MT of fixating macaques and obtained three major findings. First, speed change transients not only reflect a neuron's absolute speed tuning but are shaped by an additional gain that scales the tuned response according to the magnitude of a relative speed change. Second, by means of a threshold model positive and negative population transients of a moderate number of MT neurons explain detection of both positive and negative speed changes, respectively, at a level comparable to human detection rates under identical visual stimulation. Third, like reaction times in a psychophysical model of velocity detection, speed change response latencies follow a power-law function of the absolute difference of a speed change. Both this neuronal representation and its close correlation with behavioral measures of speed change detection suggest that neuronal transients in area MT facilitate the detection of rapid changes in visual input.

  2. Achievement of Broad Acceleration Profile for Launching Active Transient Internal Probes

    NASA Astrophysics Data System (ADS)

    Kim, Hyundae; Jarboe, Thomas; Mattick, Arthur; Smith, Roger

    2003-10-01

    The Transient Internal Probe (TIP) is a diagnostic for the direct measurement of internal local magnetic or electric fields with high spatial and temporal resolution (1 cm, 1 MHz). A two-stage light-gas gun launches an optic probe at high velocity (1.5 km/s ˜ 1.8 km/s) so that the probe can transit the plasma before severe ablation occurs. The polarization change of a light, retroreflected after double-pass through the probe, provides one component of the field measurements along a chord of a plasma. A Faraday rotator glass or a Pockels cell has been used for the present passive optic probes. Active probes, currently in development, utilizing on-board sensor and electronics will allow measurements of multi-parameters including 3-D magnetic- and electric fields, plasma temperature, and density. The frequency-modulated sensor information will be transmitted to the remote detector using a LED or a laser diode. At issue is whether the on-board microelectronic components will survive the high acceleration during launch. A recent study emonstrated the survivability of a standard size electronic circuitry on ˜ 25 mm diameter circuit board, launched in a rail-gun at ˜ 1 × 10^6 m/s^2 (0.1 Mg¡¯s). [1] Considering the size of the TIP probes, ( ˜ 5 mm in diameter) it is believed the TIP active probes with surface-mount electronic components will survive much higher accelerations, up to 2 × 10^6 m/s^2 or more. Experimental and numerical studies of the TIP light gas gun have been performed to achieve a launch condition that lowers the peak acceleration and broadens the acceleration profile of the probe. [1] K. A. Schroder et al, IEEE Transactions on Magnetics, 35(1), Jan. 1999

  3. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage

    NASA Astrophysics Data System (ADS)

    Yun, Y. S.; Kim, D.-H.; Hong, S. J.; Park, M. H.; Park, Y. W.; Kim, B. H.; Jin, H.-J.; Kang, K.

    2015-09-01

    We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors.We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04231c

  4. Role of invertase activity in processing quality of potatoes: Effect of storage temperature and duration.

    PubMed

    Bandana; Sharma, Vineet; Singh, Brajesh; Raigond, Pinky; Kaushik, S K

    2016-03-01

    Invertase activity and processing attributes of three potato cultivars were studied to find the reason for deterioration of processing quality during their prolonged storage in commercial cold stores (4°C) as compared to elevated temperature storage (12 ± 0.5°C), with CIPC {Isopropyl-N-(3-Cholorophenyl) carbamate}. Lower storage temperature (4°C) tended to be more effective in increasing invertase activity of potato tubers than elevated temperature. Non-processing cultivar viz., Kufri Pukhraj resulted in accumulation of more invertase activity than relatively two processing cultivars. Kufri Chipsona-1 and Kufri Chipsona-3 at 12 ± 0.5°C possessed basal invertase activity ranging from 39.3 to 79.8 and 54.1 to 93.8 (pmoles hexose h⁻¹ g⁻¹ f.wt.) respectively, during two years. Total invertase activity at 4°C increased abruptly and remained high from 30 to 60 days of storage. The activity progressively reached 90.6 to 106.6 and 81.4 to 101.3 during both the years respectively, after 60 days of storage to that observed initially. Reducing sugar content increased from 23.3 to 105.7 and 389.0 to 1138.2 (mg 100g⁻¹ f.wt.) after 90 days of storage at 12 ± 0.5°C and 4°C, respectively. Studies concluded that basal and total invertase, were responsible for cold-induced sweetening and resulted in deterioration of processing quality of potatoes during storage at 4°C. Since this activity is low at 12 ± 0.5°C, the processing traits remained acceptable to industry and consumers.

  5. Loss of factor VIII activity during storage in PVC containers due to adsorption.

    PubMed

    McLeod, A G; Walker, I R; Zheng, S; Hayward, C P

    2000-03-01

    Recombinant factor VIII concentrates are stable when administered in a reconstituted form according to the manufacturer's specifications, and undiluted via infusion with syringe mini-pumps. However many Haemophilia centres administer recombinant factor VIII further diluted in intravenous fluids for greater ease of administration. To investigate the stability of recombinant factor VIII during administration as a diluted infusion, reconstituted factor VIII was stored in polyvinylchloride (PVC) mini-bags undiluted (146 IU mL-1) and at factor VIII concentrations of 10 IU mL-1 and 2 IU mL-1. After 48 h of storage at room temperature in PVC mini-bags, the recoveries of factor VIII activity were 41.9% of the initial activity for the undiluted (146 IU mL-1) product and 43.7% of the initial activity for factor VIII diluted to 10 IU mL-1. For factor VIII diluted to 2 IU mL-1, the amount of factor VIII activity remaining at 48 h was only 1.8% of the initial activity. In contrast, 100% of factor VIII activity was recovered after 48 h when undiluted reconstituted product (146 IU mL-1) was stored in a syringe. To investigate the mechanism of factor VIII activity loss during storage, factor VIII samples collected after 0, 3 and 48 h of storage were analysed by immunoblotting with factor VIII antibodies. No evidence of factor VIII proteolytic degradation during storage was found, however, large amounts of factor VIII antigen were recovered from the empty PVC mini-bags following elution with denaturing detergent. We conclude that clinically significant losses of factor VIII activity occur during storage in PVC mini-bags and that the loss of activity is most likely due to protein adsorption onto the plastic surface. This loss of factor VIII activity during storage in PVC containers may substantially affect the safety and potential cost savings of administering recombinant factor VIII by continuous infusion.

  6. The INFN-CNAF Tier-1 GEMSS Mass Storage System and database facility activity

    NASA Astrophysics Data System (ADS)

    Ricci, Pier Paolo; Cavalli, Alessandro; Dell'Agnello, Luca; Favaro, Matteo; Gregori, Daniele; Prosperini, Andrea; Pezzi, Michele; Sapunenko, Vladimir; Zizzi, Giovanni; Vagnoni, Vincenzo

    2015-05-01

    The consolidation of Mass Storage services at the INFN-CNAF Tier1 Storage department that has occurred during the last 5 years, resulted in a reliable, high performance and moderately easy-to-manage facility that provides data access, archive, backup and database services to several different use cases. At present, the GEMSS Mass Storage System, developed and installed at CNAF and based upon an integration between the IBM GPFS parallel filesystem and the Tivoli Storage Manager (TSM) tape management software, is one of the largest hierarchical storage sites in Europe. It provides storage resources for about 12% of LHC data, as well as for data of other non-LHC experiments. Files are accessed using standard SRM Grid services provided by the Storage Resource Manager (StoRM), also developed at CNAF. Data access is also provided by XRootD and HTTP/WebDaV endpoints. Besides these services, an Oracle database facility is in production characterized by an effective level of parallelism, redundancy and availability. This facility is running databases for storing and accessing relational data objects and for providing database services to the currently active use cases. It takes advantage of several Oracle technologies, like Real Application Cluster (RAC), Automatic Storage Manager (ASM) and Enterprise Manager centralized management tools, together with other technologies for performance optimization, ease of management and downtime reduction. The aim of the present paper is to illustrate the state-of-the-art of the INFN-CNAF Tier1 Storage department infrastructures and software services, and to give a brief outlook to forthcoming projects. A description of the administrative, monitoring and problem-tracking tools that play a primary role in managing the whole storage framework is also given.

  7. An Inhibition of p38 Mitogen Activated Protein Kinase Delays the Platelet Storage Lesion

    PubMed Central

    Skripchenko, Andrey; Awatefe, Helen; Thompson-Montgomery, Dedeene; Myrup, Andrew; Turgeon, Annette; Wagner, Stephen J.

    2013-01-01

    Background and Objectives Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK). Another MAPK, extracellular signal-related kinase (ERK), is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. Materials and Methods A single Trima apheresis platelet unit (n = 12) was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20–24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. Results Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. Conclusion Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage. PMID:23967093

  8. Optogenetic Mimicry of the Transient Activation of Dopamine Neurons by Natural Reward Is Sufficient for Operant Reinforcement

    PubMed Central

    Kim, Kyung Man; Baratta, Michael V.; Yang, Aimei; Lee, Doheon; Boyden, Edward S.; Fiorillo, Christopher D.

    2012-01-01

    Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a “reward prediction error” (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function. PMID:22506004

  9. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement.

    PubMed

    Kim, Kyung Man; Baratta, Michael V; Yang, Aimei; Lee, Doheon; Boyden, Edward S; Fiorillo, Christopher D

    2012-01-01

    Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a "reward prediction error" (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function.

  10. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-12-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  11. Comprehensive review of platelet storage methods for use in the treatment of active hemorrhage.

    PubMed

    Milford, Elissa M; Reade, Michael C

    2016-04-01

    This review considers the various methods currently in use, or under investigation, for the storage of platelets intended for use in the treatment of active hemorrhage. The current standard practice of storing platelets at room temperature (RT) (20°C-24°C) optimizes circulating time, but at the expense of hemostatic function and logistical considerations. A number of alternatives are under investigation. Novel storage media additives appear to attenuate the deleterious changes that affect RT stored platelets. Cold storage was originally abandoned due to the poor circulating time of platelets stored at 4°C, but such platelets may actually be more hemostatically effective, with a number of other advantages, compared to RT stored platelets. Periodically re-warming cold stored platelets (temperature cycling, TC) may combine the hemostatic efficacy of cold stored platelets with the longer circulating times of RT storage. Alternatives to liquid storage include cryopreservation (freezing) or lyophilization (freeze-drying). The former has had some limited clinical use and larger clinical trials are underway, while the latter is still in the preclinical stage with promising in vitro and in vivo results. The importance of platelet transfusion in the management of active hemorrhage is now well accepted, so it is timely that platelet storage methods are reviewed with consideration of not only their circulating time, but also their hemostatic efficacy.

  12. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage

    SciTech Connect

    Wang, Ruxi; Wang, Fei; Boroyevich, Dushan; Burgos, Rolando; Lai, Rixin; Ning, Puqi; Rajashekara, Kaushik

    2011-01-01

    It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemes is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.

  13. Assessment of xylanase activity in dry storage as a potential method of reducing feedstock cost.

    PubMed

    Smith, William A; Thompson, David N; Thompson, Vicki S; Radtke, Corey W; Carter, Brady

    2009-05-01

    Enzymatic preprocessing of lignocellulosic biomass in dry storage systems has the potential to improve feedstock characteristics and lower ethanol production costs. To assess the potential for endoxylanase activity at low water contents, endoxylanase activity was tested using a refined wheat arabinoxylan substrate and three commercial endoxylanases over the water activity range 0.21-1.0, corresponding to water contents of 5% to >60% (dry basis). Homogeneously mixed dry samples were prepared at a fixed enzyme to substrate ratio and incubated in chambers at a variety of fixed water activities. Replicates were sacrificed periodically, and endoxylanase activity was quantified as an increase in reducing sugar relative to desiccant-stored controls. Endoxylanase activity was observed at water activities over 0.91 in all enzyme preparations in less than 4 days and at a water activity of 0.59 in less than 1 week in two preparations. Endoxylanase activity after storage was confirmed for selected desiccant-stored controls by incubation at 100% relative humidity. Water content to water activity relationships were determined for three lignocellulosic substrates, and results indicate that two endoxylanase preparations retained limited activity as low as 7% to 13% water content (dry basis), which is well within the range of water contents representative of dry biomass storage. Future work will examine the effects of endoxylanase activity toward substrates such as corn stover, wheat straw, and switchgrass in low water content environments.

  14. Mammalian oocyte activation by the synergistic action of discrete sperm head components: induction of calcium transients and involvement of proteolysis.

    PubMed

    Perry, A C; Wakayama, T; Cooke, I M; Yanagimachi, R

    2000-01-15

    Sperm-borne oocyte-activating factor (SOAF) elicits activation sufficient for full development and originates from sperm head submembrane matrices. SOAF comprises discrete, heat-sensitive and -stable components (referred to here respectively as SOAF-I and -II) which are each necessary but not sufficient to activate oocytes. The heat-sensitive SOAF component, SOAF-I(m), becomes solubilized from the perinuclear matrix under reducing conditions (the SOAF transition) to generate SOAF-I(s). Although calcium transients likely play an important role in oocyte activation at fertilization, the question is open as to whether demembranated heads or SOAF-I(s) and/or SOAF-II can induce calcium transients. We now report that injection of demembranated sperm heads into mouse oocytes efficiently induced Ca(2+) oscillations. When injected independently, SOAF-I(s) and demembranated heads heated to 48 degrees C failed to generate Ca(2+) oscillations. However, co-injection of SOAF-I(s) and 48 degrees C-heated heads induced oscillations, mirroring their synergistic ability to activate oocytes. This suggests that SOAF-mediated activation proceeds via pathways resembling those at fertilization and provides the first direct evidence that multiple sperm components are required to induce Ca(2+) oscillations. We probed the SOAF-I(s) liberation at the center of this activation and show that in vitro it was sensitive to a profile of serine protease inhibitors. These findings support a model in which mammalian oocyte activation, including the induction of calcium transients, involves proteolytic processing of SOAF from sperm head submembrane compartments.

  15. Local active information storage as a tool to understand distributed neural information processing.

    PubMed

    Wibral, Michael; Lizier, Joseph T; Vögler, Sebastian; Priesemann, Viola; Galuske, Ralf

    2014-01-01

    Every act of information processing can in principle be decomposed into the component operations of information storage, transfer, and modification. Yet, while this is easily done for today's digital computers, the application of these concepts to neural information processing was hampered by the lack of proper mathematical definitions of these operations on information. Recently, definitions were given for the dynamics of these information processing operations on a local scale in space and time in a distributed system, and the specific concept of local active information storage was successfully applied to the analysis and optimization of artificial neural systems. However, no attempt to measure the space-time dynamics of local active information storage in neural data has been made to date. Here we measure local active information storage on a local scale in time and space in voltage sensitive dye imaging data from area 18 of the cat. We show that storage reflects neural properties such as stimulus preferences and surprise upon unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity to test theories of cortical function, such as predictive coding.

  16. Transient global T cell activation after vaccination of rhesus macaques with a DNA-poxvirus vaccine regimen for HIV.

    PubMed

    Soares, Andreia; Müller, Tracey L; Chege, Gerald K; Williamson, Anna-Lise; Burgers, Wendy A

    2015-07-09

    Persistent T cell activation following immunization with HIV vaccines may increase HIV acquisition risk. We investigated the magnitude and kinetics of T cell activation following vaccination of rhesus macaques with a candidate HIV vaccine consisting of a recombinant DNA and MVA vaccination regimen. We show that global CD4+ and CD8+ T cell activation, as measured by the expression of Ki67 and Bcl-2, peaked one week after boosting with MVA, but then waned rapidly to pre-vaccination levels. Furthermore, increased frequencies of CD4+ CCR5+ T cells, which represent potential HIV target cells, were short-lived and decreased to baseline levels within two months. Activated CD4+ T cells were predominantly of a central memory phenotype, and activated CD8+ T cells were distributed between central and effector memory phenotypes. Thus, only transient changes in T cell activation occurred following poxvirus vaccination, indicating a lack of persistent immune activation.

  17. Use of NAD(P)H and Flavoprotein Autofluorescence Transients to Probe Neuron and Astrocyte Responses to Synaptic Activation

    PubMed Central

    Shuttleworth, C. William

    2010-01-01

    Synaptic stimulation in brain slices is accompanied by changes in tissue autofluorescence, which are a consequence of changes in tissue metabolism. Autofluorescence excited by ultraviolet light has been most extensively studied, and is due to reduced pyridine nucleotides (NADH and NADPH, collectively termed NAD(P)H). Stimulation generates a characteristic compound NAD(P)H response, comprising an initial fluorescence decrease and then an overshooting increase that slowly recovers to baseline levels. Evoked NAD(P)H transients are relatively easy to record, do not require the addition of exogenous indicators and have good signal-noise ratios. These characteristics make NAD(P)H imaging methods very useful for tracking the spread of neuronal activity in complex brain tissues, however the cellular basis of synaptically-evoked autofluorescence transients has been the subject of recent debate. Of particular importance is the question of whether signals are due primarily to changes in neuronal mitochondrial function, and/or whether astrocyte metabolism triggered by glutamate uptake may be a significant contributor to the overshooting NAD(P)H fluorescence increases. This mini-review addresses the subcellular origins of NAD(P)H autofluorescence and the evidence for mitochondrial and glycolytic contributions to compound transients. It is concluded that there is no direct evidence for a contribution to NAD(P)H signals from glycolysis in astrocytes following synaptic glutamate uptake. In contrast, multiple lines of evidence, including from complimentary flavoprotein autofluorescence signals, imply that mitochondrial NADH dynamics in neurons dominate compound evoked NAD(P)H transients. These signals are thus appropriate for studies of mitochondrial function and dysfunction in brain slices, in addition to providing robust maps of postsynaptic neuronal activation following physiological activation. PMID:20036704

  18. Interferon γ Attenuates Insulin Signaling, Lipid Storage, and Differentiation in Human Adipocytes via Activation of the JAK/STAT Pathway*

    PubMed Central

    McGillicuddy, Fiona C.; Chiquoine, Elise H.; Hinkle, Christine C.; Kim, Roy J.; Shah, Rachana; Roche, Helen M.; Smyth, Emer M.; Reilly, Muredach P.

    2009-01-01

    Recent reports demonstrate T-cell infiltration of adipose tissue in early obesity. We hypothesized that interferon (IFN) γ, a major T-cell inflammatory cytokine, would attenuate human adipocyte functions and sought to establish signaling mechanisms. Differentiated human adipocytes were treated with IFNγ ± pharmacological inhibitors prior to insulin stimulation. [3H]Glucose uptake and AKT phosphorylation were assessed as markers of insulin sensitivity. IFNγ induced sustained loss of insulin-stimulated glucose uptake in human adipocytes, coincident with reduced Akt phosphorylation and down-regulation of the insulin receptor, insulin receptor substrate-1, and GLUT4. Loss of adipocyte triglyceride storage was observed with IFNγ co-incident with reduced expression of peroxisome proliferator-activated receptor γ, adiponectin, perilipin, fatty acid synthase, and lipoprotein lipase. Treatment with IFNγ also blocked differentiation of pre-adipocytes to the mature phenotype. IFNγ-induced robust STAT1 phosphorylation and SOCS1 mRNA expression, with modest, transient STAT3 phosphorylation and SOCS3 induction. Preincubation with a non-selective JAK inhibitor restored glucose uptake and Akt phosphorylation while completely reversing IFNγ suppression of adipogenic mRNAs and adipocyte differentiation. Specific inhibition of JAK2 or JAK3 failed to block IFNγ effects suggesting a predominant role for JAK1-STAT1. We demonstrate that IFNγ attenuates insulin sensitivity and suppresses differentiation in human adipocytes, an effect most likely mediated via sustained JAK-STAT1 pathway activation. PMID:19776010

  19. Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system

    SciTech Connect

    Remick, R.J.; Ang, P.G.P.

    1984-11-27

    An electrically rechargeable anionically active reduction-oxidation electric storage-supply system and process is disclosed using a sodium or potassium sulfidepolysulfide anolyte reaction and an iodide-polyiodide, chloride-chlorine or bromide-bromine species catholyte reaction. The catholyte and anolyte are separated by an ion selective membrane permeable to positive sodium and potassium ions and substantially impermeable to negative bromide, chloride, iodide, sulfide and polysulfide ions. A flowing electrolyte system is disclosed with external electrolyte storage vessels. The apparatus and process provide an electrically rechargeable anionically active reduction-oxidation system in which the electrolytes may be maintained at near neutral or slightly basic pH, with virtually no parasitic side reactions upon charging, such as hydrogen or oxygen evolution, and the disclosed storage and supply system provides higher energy densities than referenced prior art systems.

  20. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  1. Transient thermal state of an active Braille matrix with incorporated thermal actuators by means of finite element method.

    PubMed

    Aluţei, Alexandra-Maria; Szelitzky, Emoke; Mândru, Dan

    2013-01-01

    In this article the authors present the transient thermal analysis for a developed thermal linear actuator based on wax paraffin used to drive the cells of a Braille device. A numerical investigation of transient heat transfer phenomenon during paraffin melting and solidification in an encapsulated recipient has been carried out using the ANSYS v.12 software. The researchers offer data on the heat distribution in the proposed model of the actuator as well as on the material properties required for these applications and provide the opportunity to identify new problems specific to thermal actuation, such as the heater properties and the cooling process of the active material in the structure of the Braille cell.

  2. House dust mite potentiates capsaicin-evoked Ca2+ transients in mouse pulmonary sensory neurons via activation of protease-activated receptor-2.

    PubMed

    Gu, Qihai; Lee, Lu-Yuan

    2012-04-01

    House dust mite (HDM) is a major source of allergen in house dust and has been suggested to be involved in the pathogenesis of asthma. In this study, we aimed to investigate whether HDM can modulate the sensitivity of pulmonary sensory neurons and, if so, to elucidate the underlying mechanism. Fura-2-based ratiometric Ca(2+) imaging was carried out to determine the effect of HDM extract on the capsaicin-evoked Ca(2+) transient in mouse vagal pulmonary sensory neurons. Pretreatment with HDM (50 μg ml(-1), 5 min) significantly enhanced the Ca(2+) transient evoked by capsaicin in these neurons isolated from wild-type mice. This potentiating effect of HDM was not antagonized by E-64, a selective cysteine protease inhibitor, but was completely prevented by AEBSF, a specific serine protease inhibitor. In addition, the potentiating effect of HDM on capsaicin-evoked Ca(2+) transient was absent in the pulmonary sensory neurons isolated from protease-activated receptor-2 (PAR(2)) knockout mice. Furthermore, the sensitizing effect of HDM was completely abolished by U73122, a phosholipase C inhibitor, or chelerythrine, a protein kinase C inhibitor. In summary, our results demonstrate that HDM, mainly through its serine protease activity, potentiates capsaicin-evoked Ca(2+) transient in mouse pulmonary sensory neurons via the activation of PAR(2) and the phosholipase C-protein kinase C intracellular transduction cascade.

  3. Characterization of the surface changes during the activation of erbium/erbium oxide for hydrogen storage.

    SciTech Connect

    Zavadil, Kevin Robert; Snow, Clark Sheldon; Brumbach, Michael Todd

    2010-09-01

    Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

  4. Evaluation of invertase (B-fructo furanosidase) activity in irradiated Mazafaty dates during storage

    NASA Astrophysics Data System (ADS)

    Zare, Z.; Sohrabpour, M.; Fazeli, T. Z.; Kohan, K. G.

    2002-10-01

    Invertase activity of irradiated and non-irradiated Mazafaty dates during four months storage time has been studied. There are large differences in invertase activity in different dates cultivars. The soft and good quality dates usually have higher activity compared to dry or semi-dry varieties. Irradiated dates with doses 1-5 kGy, which could be used for decontamination and disinfestations of dates with a dose rate of 1.87 Gy/s were used. The samples were stored in two temperatures of 5°C and 25°C for four months. The activity of invertase enzyme was analysed at different time intervals. Inactivation study of invertase (B-fructo furanosidase) activity showed that the invertase is sensitive to temperature, storage time and also inactivation of enzyme occurred in dose range of 10-50 kGy.

  5. Activated carbon derived from waste coffee grounds for stable methane storage.

    PubMed

    Kemp, K Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M; Kim, Kwang S

    2015-09-25

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m(2) g(-1) and a micropore volume of 0.574 cm(3) g(-1) and exhibits a stable CH4 adsorption capacity of ∼4.2 mmol g(-1) at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  6. Inventions on baker's yeast storage and activation at the bakery plant.

    PubMed

    Gélinas, Pierre

    2010-01-01

    Baker's yeast is the gas-forming ingredient in bakery products. Methods have been invented to properly handle baker's yeast and optimize its activity at the bakery plant. Over the years, incentives for inventions on yeast storage and activation have greatly changed depending on trends in the baking industry. For example, retailer's devices for cutting bulk pressed yeast and techniques for activating dry yeast have now lost their importance. Review of patents for invention indicates that activation of baker's yeast activity has been a very important issue for bakers, for example, with baking ingredients called yeast foods. In the recent years and especially for highly automated bakeries, interest has moved to equipments and processes for optimized storage of liquid cream yeast to thoroughly control dough fermentation and bread quality.

  7. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  8. Effects of transient temperature conditions on the divergence of activated sludge bacterial community structure and function.

    PubMed

    Nadarajah, Nalina; Allen, D Grant; Fulthorpe, Roberta R

    2007-06-01

    The effect of temperature fluctuations on bacterial community structure and function in lab-scale sequencing batch reactors treating bleached kraft mill effluent was investigated. An increase in temperature from 30 to 45 degrees C caused shifts in both bacterial community structure and function. Triplicate reactors were highly similar for 40 days following startup. After the temperature shift, their community structure and function started to diverge from each other and from the control. A multi-response permutation procedure confirmed that the variability in community structure between transient and control reactors were greater than that among the triplicate transient reactors. The fact that these disturbances manifest themselves in different ways in apparently identical reactors suggests a high degree of variability between replicate systems.

  9. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity

    PubMed Central

    1994-01-01

    The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is

  10. Preparation of activated carbon from waste plastics polyethylene terephthalate as adsorbent in natural gas storage

    NASA Astrophysics Data System (ADS)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.

    2017-02-01

    The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.

  11. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  12. NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

  13. Combining phosphate and bacteria removal on chemically active filter membranes allows prolonged storage of drinking water.

    PubMed

    Rotzetter, A C C; Kellenberger, C R; Schumacher, C M; Mora, C; Grass, R N; Loepfe, M; Luechinger, N A; Stark, W J

    2013-11-13

    A chemically active filtration membrane with incorporated lanthanum oxide nanoparticles enables the removal of bacteria and phosphate at the same time and thus provides a simple device for preparation of drinking water and subsequent safe storage without using any kind of disinfectants.

  14. Heat changes during transient tension responses to small releases in active frog muscle.

    PubMed Central

    Gilbert, S H; Ford, L E

    1988-01-01

    Tension and heat production were measured in frog sartorius muscles in response to small shortening ramps (releases) at high and moderate speed. Transient tension responses to fast releases (0.1 to 0.4 mm in 1 or 4 ms) were similar to the tension transients length-clamped single fibers. Tension time courses during releases at 25 mm/s were like fiber responses calculated from the first two phases of the step responses (Ford et al., 1977). We conclude that similar crossbridge transitions produce tension transients observed in whole muscles and single fibers. Heat was absorbed during rapid tension recovery after fast releases and during the later part of releases at 25 mm/s. Variation of heat absorption with release size was compared with that of crossbridge movement predicted by the Huxley-Simmons hypothesis of force generation (Huxley and Simmons, 1971). Agreement between the two supports the conclusion that heat is absorbed by the crossbridge transitions responsible for rapid tension recovery after release. The results indicate that the entropy change of these transitions is positive. PMID:3265639

  15. A cell cycle-associated change in Ca2+ releasing activity leads to the generation of Ca2+ transients in mouse embryos during the first mitotic division

    PubMed Central

    1996-01-01

    We have used Ca2+-sensitive fluorescent dyes to monitor intracellular Ca2+ during mitosis in one-cell mouse embryos. We find that fertilized embryos generate Ca2+ transients at nuclear envelope breakdown (NEBD) and during mitosis. In addition, fertilized embryos arrested in metaphase using colcemid continue to generate Ca2+ transients. In contrast, parthenogenetic embryos produced by a 2-h exposure to strontium containing medium do not generate detectable Ca2+ transients at NEBD or in mitosis. However, when parthenogenetic embryos are cultured continuously in strontium containing medium Ca2+ transients are detected in mitosis but not in interphase. This suggests that mitotic Ca2+ transients are detected in the presence of an appropriate stimulus such as fertilization or strontium. The Ca2+ transient detected in fertilized embryos is not necessary for inducing NEBD since parthenogenetic embryos undergo nuclear envelope breakdown (NEBD). Also the first sign that NEBD is imminent occurs several minutes before the Ca2+ transient. The Ca2+ transient at NEBD appears to be associated with the nucleus since nuclear transfer experiments show that the presence of a karyoplast from a fertilized embryo is essential. Finally, we show that the intracellular Ca2+ chelator Bapta inhibits NEBD in fertilized and parthenogenetic embryos in a dose-dependent manner. These studies show that during mitosis there is an endogenous increase in Ca2+ releasing activity that leads to the generation of Ca2+ transients specifically during mitosis. The ability of Ca2+ buffers to inhibit NEBD regardless of the presence of global Ca2+ transients suggests that the underlying cell cycle-associated Ca2+ releasing activity may take the form of localized Ca2+ transients. PMID:8603922

  16. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  17. A High Power Density Single-Phase PWM Rectifier with Active Ripple Energy Storage

    SciTech Connect

    Ning, Puqi; Wang, Ruxi; Wang, Fei; Boroyevich, Dushan

    2010-01-01

    It is well known that there exist second-order harmonic current and corresponding ripple voltage on dc bus for single phase PWM rectifiers. The low frequency harmonic current is normally filtered using a bulk capacitor in the bus which results in low power density. This paper proposed an active ripple energy storage method that can effectively reduce the energy storage capacitance. The feed-forward control method and design considerations are provided. Simulation and 15 kW experimental results are provided for verification purposes.

  18. Effect of irradiation and storage on the antioxidative activity of cashew nuts

    NASA Astrophysics Data System (ADS)

    Sajilata, M. G.; Singhal, R. S.

    2006-02-01

    Food irradiation, a cold process employed for preservation of food has been studied extensively for its beneficial and undesirable effects on food constituents. Since nuts have been shown to contain several antioxidants, and ionizing irradiation is known to result in the formation of free radicals, investigation on the antioxidative potential of cashew nuts after irradiation and subsequent storage was undertaken by assessing their ability to inhibit lipid peroxidation using the 1,3-diethyl-2-thiobarbituric acid (DETBA) assay. Irradiation at 0.25-1.00 kGy and subsequent storage was found to considerably reduce antioxidative activity in the cashew nuts.

  19. Effect of source-separated urine storage on estrogenic activity detected using bioluminescent yeast Saccharomyces cerevisiae.

    PubMed

    Jaatinen, Sanna; Kivistö, Anniina; Palmroth, Marja R T; Karp, Matti

    2016-09-01

    The objective was to demonstrate that a microbial whole cell biosensor, bioluminescent yeast, Saccharomyces cerevisiae (BMAEREluc/ERα) can be applied to detect overall estrogenic activity from fresh and stored human urine. The use of source-separated urine in agriculture removes a human originated estrogen source from wastewater influents, subsequently enabling nutrient recycling. Estrogenic activity in urine should be diminished prior to urine usage in agriculture in order to prevent its migration to soil. A storage period of 6 months is required for hygienic reasons; therefore, estrogenic activity monitoring is of interest. The method measured cumulative female hormone-like activity. Calibration curves were prepared for estrone, 17β-estradiol, 17α- ethinylestradiol and estriol. Estrogen concentrations of 0.29-29,640 μg L(-1) were detectable while limit of detection corresponded to 0.28-35 μg L(-1) of estrogens. The yeast sensor responded well to fresh and stored urine and gave high signals corresponding to 0.38-3,804 μg L(-1) of estrogens in different urine samples. Estrogenic activity decreased during storage, but was still higher than in fresh urine implying insufficient storage length. The biosensor was suitable for monitoring hormonal activity in urine and can be used in screening anthropogenic estrogen-like compounds interacting with the receptor.

  20. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments.

    PubMed

    Kolobova, Ekaterina; Kotolevich, Yulia; Pakrieva, Ekaterina; Mamontov, Grigory; Farías, Mario H; Bogdanchikova, Nina; Cortés Corberán, Vicente; Pestryakov, Alexey

    2016-04-13

    The catalytic properties of modified Au/TiO₂ catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H₂ TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au⁺. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity.

  1. A polycystin-type transient receptor potential (Trp) channel that is activated by ATP

    PubMed Central

    Traynor, David

    2017-01-01

    ABSTRACT ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP. PMID:28011630

  2. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes

    PubMed Central

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-01-01

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes. DOI: http://dx.doi.org/10.7554/eLife.19267.001 PMID:27627745

  3. Transient changes of enzyme activities and expression of stress proteins in the small intestine of piglets after weaning.

    PubMed

    Tao, Xin; Xu, Ziwei; Men, Xiaoming

    2015-01-01

    To determine the transient effects of weaning on the small intestine, 16 piglets were slaughtered at days 0, 1, 4 and 7 after weaning. Jejunal samples were collected to examine different enzyme activities and mRNA expressions of two stress protein families, namely, heat-shock proteins (HSP) and trefoil factors (TFF). Results showed that the activities of ceruloplasmin, alkaline phosphatase and lactate dehydrogenase, were significantly changed at Day 1 and/or Day 4. The mRNA expressions of HSP10, HSP60 and HSP90 showed a pattern of increased expression with time after weaning. Expression significantly differed between Day 0 and Day 7 after weaning. The mRNA expression of HSP70 was significantly increased on Day 1 only. Similarly, the mRNA expressions of TFF1 and TFF2 were significantly increased on Day 7 compared with those on Day 0. Expression of TFF3 was not affected by time after weaning. In conclusion, the present study indicated that weaning induced transient injury to small intestinal morphology and function. Particularly it changed enzyme activities and gene expression of stress proteins in the small intestine of piglets. At first time, a change in the gene expression of HSP10 and a gene overexpression of TFF1 in the small intestine of piglets after weaning was found.

  4. The monitoring of transient regimes on machine tools based on speed, acceleration and active electric power absorbed by motors

    NASA Astrophysics Data System (ADS)

    Horodinca, M.

    2016-08-01

    This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.

  5. Modeling the effect of water activity and storage temperature on chemical stability of coffee brews.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2007-08-08

    This work was addressed to study the chemical stability of coffee brew derivatives as a function of water activity (aw) and storage temperature. To this purpose, coffee brew was freeze-dried, equilibrated at increasing aw values, and stored for up to 10 months at different temperatures from -30 to 60 degrees C. The chemical stability of the samples was assessed by measuring H3O+ formation during storage. Independently of storage temperature, the rate of H3O+ formation was considerably low only when aw was reduced below 0.5 (94% w/w). Beyond this critical boundary, the rate increased, reaching a maximum value at ca. 0.8 aw (78% w/w). Further hydration up to the aw of the freshly prepared beverage significantly increased chemical stability. It was suggested that mechanisms other than lactones' hydrolysis, probably related to nonenzymatic browning pathways, could contribute to the observed increase in acidity during coffee staling. The temperature dependence of H3O+ formation was well-described by the Arrhenius equation in the entire aw range considered. However, aw affected the apparent activation energy and frequency factor. These effects were described by simple equations that were used to set up a modified Arrhenius equation. This model was validated by comparing experimental values, not used to generate the model, with those estimated by the model itself. The model allowed efficient prediction of the chemical stability of coffee derivatives on the basis of only the aw value and storage temperature.

  6. Simultaneous storage and degradation of PHB and glycogen in activated sludge cultures.

    PubMed

    Carta, F; Beun, J J; Van Loosdrecht, M C; Heijnen, J J

    2001-08-01

    Bacteria in activated sludge are subjected to periods of substrate availability and absence of external substrates. The response of bacteria to such dynamic conditions was studied in a 2 L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). In previous studies, acetate or glucose was used as single substrate leading to the storage of polyhydroxybutyrate or glycogen, respectively. In this study, a mixture of acetate and glucose was used. It appeared that both substrates were consumed simultaneously. The relative contribution of growth and storage processes was in these experiments similar as in the systems fed with a single substrate only. The ratio of substrate uptake over substrate storage was 0.6 Cmol/Cmol for both substrates. The uptake rate of acetate was not influenced by the simultaneous uptake of glucose. The degradation kinetics and rates of the storage compounds were the same as for the systems in which only one compound was stored in the activated sludge. The global performance of the culture grown on mixed substrates could therefore be described as the sum of the conversions observed in cultures fed with the individual substrates.

  7. Transient Receptor Potential Vanilloid 4 Inhibits γ-Aminobutyric Acid-Activated Current in Hippocampal Pyramidal Neurons

    PubMed Central

    Hong, Zhiwen; Tian, Yujing; Qi, Mengwen; Li, Yingchun; Du, Yimei; Chen, Lei; Liu, Wentao; Chen, Ling

    2016-01-01

    The balance between excitatory and inhibitory neurotransmitter systems is crucial for the modulation of neuronal excitability in the central nervous system (CNS). The activation of transient receptor potential vanilloid 4 (TRPV4) is reported to enhance the response of hippocampal glutamate receptors, but whether the inhibitory neurotransmitter system can be regulated by TRPV4 remains unknown. γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the CNS. Here, we show that application of transient receptor potential vanilloid 4 (TRPV4) synthetic (GSK1016790A or 4α-PDD) or endogenous agonist (5,6-EET) inhibited GABA-activated current (IGABA) in hippocampal CA1 pyramidal neurons, which was blocked by specific antagonists of TRPV4 and of GABAA receptors. GSK1016790A increased the phosphorylated AMP-activated protein kinase (p-AMPK) and decreased the phosphorylated protein kinase B (p-Akt) protein levels, which was attenuated by removing extracellular calcium or by a calcium/calmodulin-dependent protein kinase kinase-β antagonist. GSK1016790A-induced decrease of p-Akt protein level was sensitive to an AMPK antagonist. GSK1016790A-inhibited IGABA was blocked by an AMPK antagonist or a phosphatidyl inositol 3 kinase (PI3K) agonist. GSK1016790A-induced inhibition of IGABA was also significantly attenuated by a protein kinase C (PKC) antagonist but was unaffected by protein kinase A or calcium/calmodulin-dependent protein kinase II antagonist. We conclude that activation of TRPV4 inhibits GABAA receptor, which may be mediated by activation of AMPK and subsequent down-regulation of PI3K/Akt signaling and activation of PKC signaling. Inhibition of GABAA receptors may account for the neuronal hyperexcitability caused by TRPV4 activation. PMID:27616980

  8. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect

    Gregor P. Henze; Moncef Krarti

    2003-12-17

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigates the merits of harnessing both storage media concurrently in the context of predictive optimal control. This topical report describes the demonstration of the model-based predictive optimal control for active and passive building thermal storage inventory in a test facility in real-time using time-of-use differentiated electricity prices without demand charges. The laboratory testing findings presented in this topical report cover the second of three project phases. The novel supervisory controller successfully executed a three-step procedure consisting of (1) short-term weather prediction, (2) optimization of control strategy over the next planning horizon using a calibrated building model, and (3) post-processing of the optimal strategy to yield a control command for the current time step that can be executed in the test facility. The primary and secondary building mechanical systems were effectively orchestrated by the model-based predictive optimal controller in real-time while observing comfort and operational constraints. The findings reveal that when the optimal controller is given imperfect weather fore-casts and when the building model used for planning control strategies does not match the actual building perfectly, measured utility costs savings relative to conventional building operation can be substantial. This requires that the facility under control lends itself to passive storage utilization and the building model

  9. Lack of transient receptor potential melastatin 8 activation by phthalate esters that enhance contact hypersensitivity in mice.

    PubMed

    Kurohane, Kohta; Sahara, Yurina; Kimura, Ayako; Narukawa, Masataka; Watanabe, Tatsuo; Daimon, Takashi; Imai, Yasuyuki

    2013-03-13

    We studied the involvement of sensory neurons in skin sensitization to allergens using a mouse model in which the T-helper type 2 response is essential. Skin sensitization to fluorescein isothiocyanate (FITC) has been shown to be enhanced by several phthalate esters, including dibutyl phthalate (DBP). For different types of phthalate esters, we found a correlation between the ability of transient receptor potential (TRP) A1 activation and that of enhancing skin sensitization. A TRPA1-specific antagonist, HC-030031, was shown to suppress skin sensitization in the presence of DBP. However, since phthalate esters also activate TRPV1, phthalate esters could activate other types of TRP channels non-selectively. Furthermore, sensitization to FITC is also enhanced by menthol, which activates TRPA1 and TRPM8. Here we established an in vitro system for measuring TRPM8 activation. The selectivity for TRPM8 was established by the fact that two TRPM8 agonists (menthol and icilin) induced calcium mobilization, whereas agonists of TRPA1 and TRPV1 did not. We demonstrated that phthalate esters do not activate TRPM8. TRPA1-antagonist HC-030031 did not inhibit TRPM8 activation induced by menthol or icilin. These results show that phthalate esters activate TRPA1 and TRPV1 with selectivity. TRPM8 activation is not likely to be involved in the sensitization to FITC.

  10. Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration.

    PubMed

    Ahlers, Katelin E; Karaçay, Bahri; Fuller, Leah; Bonthius, Daniel J; Dailey, Michael E

    2015-10-01

    Fetal alcohol exposure is the most common known cause of preventable mental retardation, yet we know little about how microglia respond to, or are affected by, alcohol in the developing brain in vivo. Using an acute (single day) model of moderate (3 g/kg) to severe (5 g/kg) alcohol exposure in postnatal day (P) 7 or P8 mice, we found that alcohol-induced neuroapoptosis in the neocortex is closely correlated in space and time with the appearance of activated microglia near dead cells. The timing and molecular pattern of microglial activation varied with the level of cell death. Although microglia rapidly mobilized to contact and engulf late-stage apoptotic neurons, apoptotic bodies temporarily accumulated in neocortex, suggesting that in severe cases of alcohol toxicity the neurodegeneration rate exceeds the clearance capacity of endogenous microglia. Nevertheless, most dead cells were cleared and microglia began to deactivate within 1-2 days of the initial insult. Coincident with microglial activation and deactivation, there was a transient increase in expression of pro-inflammatory factors, TNFα and IL-1β, after severe (5 g/kg) but not moderate (3 g/kg) EtOH levels. Alcohol-induced microglial activation and pro-inflammatory factor expression were largely abolished in BAX null mice lacking neuroapoptosis, indicating that microglial activation is primarily triggered by apoptosis rather than the alcohol. Therefore, acute alcohol exposure in the developing neocortex causes transient microglial activation and mobilization, promoting clearance of dead cells and tissue recovery. Moreover, cortical microglia show a remarkable capacity to rapidly deactivate following even severe neurodegenerative insults in the developing brain.

  11. Core–shell TiO₂ microsphere with enhanced photocatalytic activity and improved lithium storage

    SciTech Connect

    Guo, Hong; Tian, Dongxue; Liu, Lixiang; Wang, Yapeng; Guo, Yuan; Yang, Xiangjun

    2013-05-01

    Inorganic hollow core–shell spheres have attracted considerable interest due to their singular properties and wide range of potential applications. Herein a novel facile generic strategy of combining template assisted and solvothermal alcoholysis is employed to prepare core–void–shell anatase TiO₂ nanoparticle aggregates with an excellent photocatalytic activity, and enhanced lithium storage in large quantities. Amorphous carbon can be loaded on the TiO₂ nanoparticles uniformly under a suitably formulated ethanol/water system in the solvothermal alcoholysis process, and the subsequent calcination results of the formation of core–shell–shell anatase TiO₂ nanoparticle aggregates. The intrinsic core–void–shell nature as well as high porosity of the unique nanostructures contributes greatly to the superior photocatalytic activity and improved performance as anode materials for lithium ion batteries. - Graphical abstract: A novel strategy of combining template assisted and solvothermal alcoholysis is employed to prepare unique core–void–shell anatase TiO₂ nanoparticle aggregates with the superior photocatalytic activity and improved lithium storage. Highlights: • TiO₂ mesospheres are synthesized by solvothermal alcoholysis. • It is core–void–shell structure and the thickness of shell is estimated to 80 nm. • It exhibits a remarkable photocatalytic activity and improved lithium storage.

  12. Correlation between enzyme activity and substrate storage in a cell culture model system for Gaucher disease.

    PubMed

    Schueler, U H; Kolter, T; Kaneski, C R; Zirzow, G C; Sandhoff, K; Brady, R O

    2004-01-01

    Gaucher disease, the most common sphingolipidosis, is caused by a decreased activity of glucosylceramide beta-glucosidase, resulting in the accumulation of glucosylceramide in macrophage-derived cells known as Gaucher cells. Much of the storage material is thought to originate from the turnover of cell membranes, such as phagocytosed red and white blood cells. In this study, an in vitro model of Gaucher disease was developed by treating the murine macrophage cell line J774 with a specific inhibitor of glucosylceramide beta-glucosidase, conduritol B-epoxide, and feeding red blood cell ghosts, in order to mimic the disease state. It was found in this model system that glucosylceramide beta-glucosidase activity could be reduced to about 11-15% of the normal control level before increased storage of glucosylceramide occurred. This in vitro system allows insight into the correlation between enzyme activity and lipid storage as predicted by the theory of residual enzyme activity that was proposed by Conzelmann and Sandhoff.

  13. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: Data used in Geosphere Journal Article

    SciTech Connect

    Thomas A. Buscheck

    2015-06-01

    This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for geologic CO2 storage. This data submission includes all data used in the Geosphere Journal article by Buscheck et al (2016). All assumptions are discussed in that article.

  14. Security assessment of power systems including energy storage and with the integration of wind energy. Volume I. Digital transient simulation effort consulting Agreement No. 1. Final report

    SciTech Connect

    Anderson, P. M.

    1982-06-30

    The purpose of the effort reported has been to adapt the MOD-2 simulation models for implementation on a digital transient stability program. This has involved: selection of an appropriate host program, examination of the host program interface, analysis of the analog models for digital implementation, FORTRAN coding of the model equations, installation and debugging on the host program, and final model verification. Synchronous machine equations are analyzed, with particular emphasis on numerical solution. (LEW)

  15. Pulse Mitigation and Heat Transfer Enhancement Techniques. Volume 4. Transient Behavior of Heat Pipe With Thermal Energy Storage Under Pulse Heat Loads

    DTIC Science & Technology

    1992-08-01

    the remarkable properties of the heat pipe have become appreciated, and serious developmental work is still taking place. A heat pipe consists of a...transient liquid flow model requires knowledge of the saturation dependence of the capillary flow properties , which can only be determined by experiment...their discretization equations which are physically unrealistic. In light of the above observation, an improved ADI method is proposed. The

  16. The Impact of Handling and Storage of Human Fecal Material on Bacterial Activity.

    PubMed

    Karatza, Eleni; Vertzoni, Maria; Muenster, Uwe; Reppas, Christos

    2016-11-01

    Fecal material prepared from human stools is frequently used for the assessment of bacterial degradation of active pharmaceutical ingredients as relevant data are useful for evaluating the potential for colonic drug delivery. The impact of handling and storage of human fecal material on bacterial activity was assessed by evaluating the degradation characteristics of metronidazole and olsalazine. Multiple freeze (-70°C)-thaw cycles should be avoided. Incubation of frozen material for about 2 h in the anaerobic workstation ensures regeneration of the highest possible bacterial activity. Material could be stored at -70°C for at least 12 months.

  17. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of "stuttering conduction".

    PubMed

    Muschol, Martin; Kosterin, Paul; Ichikawa, Michinori; Salzberg, B M

    2003-12-10

    Using millisecond time-resolved optical recordings of transmembrane voltage and intraterminal calcium, we have determined how activity-dependent changes in the population action potential are related to a concurrent modulation of calcium transients in the neurohypophysis. We find that repetitive stimulation dramatically alters the amplitude of the population action potential and significantly increases its temporal dispersion. The population action potentials and the calcium transients exhibit well correlated frequency-dependent amplitude depression, with broadening of the action potential playing only a limited role. High-speed camera recordings indicate that the magnitude of the spike modulation is uniform throughout the neurohypophysis, thereby excluding propagation failure as the underlying mechanism. In contrast, temporal dispersion and latency of the population spike do increase with distance from the stimulation site. This increase is enhanced during repeated stimulation and by raising the stimulation frequency. Changes in Ca influx directly affect the decline in population spike amplitude, consistent with electrophysiological measurements of the local loss of excitability in nerve terminals and varicosities, mediated by a Ca-activated K conductance. Our observations suggest a model of "stuttering conduction": repeated action potential stimulation causes excitability failures limited to nerve terminals and varicosities, which account for the rapid decline in the population spike amplitude. These failures, however, do not block action potential propagation but generate the cumulative increases in spike latency.

  18. Decrease in platelet activating factor stimulated phosphoinositide turnover during storage of human platelets in plasma

    SciTech Connect

    Carter, M.G.; Shukla, S.D. )

    1987-05-01

    Human platelet concentrate from the American Red Cross Blood Center was stored at 24{degree}C in a shaker and aliquots were taken out at time intervals aseptically. Platelet activating factor (PAF) stimulated turnover of phosphoinositide (PPI) was monitored by assaying {sup 32}P incorporation into phosphoinositides using platelet rich plasma (PRP). Platelets in PRP were incubated with 1 {times} 10{sup {minus}7} M PAF at 37{degree}C with gentle shaking and after 5 min their lipids were extracted and analysed by TLC for {sup 32}P-phosphoinositides. The percent stimulation of {sup 32}P incorporation by PAF (over control) into PPI was approximately 250, 100, 60, 25 and 20 on days 1, 2, 3, 5 and 6, respectively. This indicated a dramatic decrease in PAF responsive turnover of platelet PPI during storage. These findings have important implications in relation to PAF receptor activity and viability of platelets at different periods of storage.

  19. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    DOEpatents

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  20. Ca2+ influx through L-type Ca2+ channels and transient receptor potential channels activate pathological hypertrophy signaling

    PubMed Central

    Gao, Hui; Wang, Fang; Wang, Wei; Makarewich, Catherine A.; Zhang, Hongyu; Kubo, Hajime; Berretta, Remus M.; Barr, Larry A.; Molkentin, Jeffrey D.; Houser, Steven R.

    2012-01-01

    Common cardiovascular diseases such as hypertension and myocardial infarction require that myocytes develop greater than normal force to maintain cardiac pump function. This requires increases in [Ca2+]. These diseases induce cardiac hypertrophy and increases in [Ca2+] are known to be an essential proximal signal for activation of hypertrophic genes. However, the source of “hypertrophic” [Ca2+] is not known and is the topic of this study. The role of Ca2+ influx through L-type Ca2+ channels (LTCC), T-type Ca2+ channels (TTCC) and transient receptor potential (TRP) channels on the activation of Calcineurin (Cn) – Nuclear Factor of Activated T cells (NFAT) signaling and myocyte hypertrophy was studied. Neonatal rat (NRVMs) and adult feline (AFVM) ventricular myocytes were infected with an adenovirus containing NFAT-GFP, to determine factors that could induce NFAT nuclear translocation. Four millimolar Ca2+ or pacing induced NFAT nuclear translocation. This effect was blocked by Cn inhibitors. In NRVMs Nifedipine (Nif, LTCC antagonist) blocked high Ca2+-induced NFAT nuclear translocation while SKF-96365 (TRP channel antagonist) and Nickel (Ni, TTCC antagonist) were less effective. The relative potency of these antagonists against Ca2+ induced NFAT nuclear translocation (Nif>SKF-96365>Ni) was similar to their effects on Ca2+ transients and the LTCC current. Infection of NRVM with viruses containing TRP channels also activated NFAT-GFP nuclear translocation and caused myocyte hypertrophy. TRP effects were reduced by SKF-96365, but were more effectively antagonized by Nif. These experiments suggest that Ca2+ influx through LTCCs is the primary source of Ca2+ to activate Cn-NFAT signaling in NRVMs and AFVMs. While TRP channels cause hypertrophy, they appear to do so through a mechanism involving Ca2+ entry via LTCCs. PMID:22921230

  1. Ano1, a Ca2+-activated Cl− channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal

    PubMed Central

    Singh, Raman Deep; Gibbons, Simon J; Saravanaperumal, Siva Arumugam; Du, Peng; Hennig, Grant W; Eisenman, Seth T; Mazzone, Amelia; Hayashi, Yujiro; Cao, Chike; Stoltz, Gary J; Ordog, Tamas; Rock, Jason R; Harfe, Brian D; Szurszewski, Joseph H; Farrugia, Gianrico

    2014-01-01

    Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical activity to drive contractility in the gastrointestinal tract via ion channels. Ano1 (Tmem16a), a Ca2+-activated Cl− channel, is an ion channel expressed in ICC. Genetic deletion of Ano1 in mice resulted in loss of slow waves in smooth muscle of small intestine. In this study, we show that Ano1 is required to maintain coordinated Ca2+ transients between myenteric ICC (ICC-MY) of small intestine. First, we found spontaneous Ca2+ transients in ICC-MY in both Ano1 WT and knockout (KO) mice. However, Ca2+ transients within the ICC-MY network in Ano1 KO mice were uncoordinated, while ICC-MY Ca2+ transients in Ano1 WT mice were rhythmic and coordinated. To confirm the role of Ano1 in the loss of Ca2+ transient coordination, we used pharmacological inhibitors of Ano1 activity and shRNA-mediated knock down of Ano1 expression in organotypic cultures of Ano1 WT small intestine. Coordinated Ca2+ transients became uncoordinated using both these approaches, supporting the conclusion that Ano1 is required to maintain coordination/rhythmicity of Ca2+ transients. We next determined the effect on smooth muscle contractility using spatiotemporal maps of contractile activity in Ano1 KO and WT tissues. Significantly decreased contractility that appeared to be non-rhythmic and uncoordinated was observed in Ano1 KO jejunum. In conclusion, Ano1 has a previously unidentified role in the regulation of coordinated gastrointestinal smooth muscle function through coordination of Ca2+ transients in ICC-MY. PMID:25063822

  2. Mitochondrial Respiration Chain Enzymatic Activities in the Human Brain: Methodological Implications for Tissue Sampling and Storage.

    PubMed

    Ronsoni, Marcelo Fernando; Remor, Aline Pertile; Lopes, Mark William; Hohl, Alexandre; Troncoso, Iris H Z; Leal, Rodrigo Bainy; Boos, Gustavo Luchi; Kondageski, Charles; Nunes, Jean Costa; Linhares, Marcelo Neves; Lin, Kátia; Latini, Alexandra Susana; Walz, Roger

    2016-04-01

    Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity to study human brain tissue surgically removed to treat drug resistant epilepsies. Epilepsy surgeries are done with hemodynamic and laboratory parameters to maintain physiology, but there are no studies analyzing the association among these parameters and MRCCE activities in the human brain tissue. We determined the intra-operative parameters independently associated with MRCCE activities in middle temporal neocortex (Cx), amygdala (AMY) and head of hippocampus (HIP) samples of patients (n = 23) who underwent temporal lobectomy using multiple linear regressions. MRCCE activities in Cx, AMY and HIP are differentially associated to trans-operative mean arterial blood pressure, O2 saturation, hemoglobin, and anesthesia duration to time of tissue sampling. The time-course between the last seizure occurrence and tissue sampling as well as the sample storage to biochemical assessments were also associated with enzyme activities. Linear regression models including these variables explain 13-17 % of MRCCE activities and show a moderate to strong effect (r = 0.37-0.82). Intraoperative hemodynamic and laboratory parameters as well as the time from last seizure to tissue sampling and storage time are associated with MRCCE activities in human samples from the Cx, AMYG and HIP. Careful control of these parameters is required to minimize confounding biases in studies using human brain samples collected from elective neurosurgery.

  3. H(2)S functions as a nociceptive messenger through transient receptor potential ankyrin 1 (TRPA1) activation.

    PubMed

    Ogawa, H; Takahashi, K; Miura, S; Imagawa, T; Saito, S; Tominaga, M; Ohta, T

    2012-08-30

    Hydrogen sulfide (H(2)S), an endogenous gasotransmitter, modulates various biological functions, including nociception. It is known that H(2)S causes neurogenic inflammation and elicits hyperalgesia. Here we show that H(2)S activates mouse transient receptor potential ankyrin 1 (TRPA1) channels and elicits acute pain, using TRPA1-gene deficient mice (TRPA1(-/-)) and heterologous expression system. In wild-type mouse sensory neurons, H(2)S increased the intracellular Ca(2+) concentration ([Ca(2+)](i)), which was inhibited by ruthenium red (a nonselective TRP channel blocker) and HC-030031 (a TRPA1 blocker). H(2)S-responsive neurons highly corresponded to TRPA1 agonist-sensitive ones. [Ca(2+)](i) responses to H(2)S were observed in neurons from transient receptor potential vanilloid 1 (TRPV1(-/-)) mice but not from TRPA1(-/-) mice. Heterologously expressed mouse TRPA1, but not mouse TRPV1, was activated by H(2)S. H(2)S-induced [Ca(2+)](i) responses were inhibited by dithiothreitol, a reducing agent. Analyses of the TRPA1 mutant channel revealed that two cysteine residues located in the N-terminal internal domain were responsible for the activation by H(2)S. Intraplantar injection of H(2)S into the mouse hind paw caused acute pain which was significantly less in TRPA1(-/-) mice. The [Ca(2+)](i) responses to H(2)S in sensory neurons and in heterologously expressed channels, and pain-related behavior induced by H(2)S were enhanced under acidic conditions. These results suggest that H(2)S functions as a nociceptive messenger through the activation of TRPA1 channels. TRPA1 may be a therapeutic target for H(2)S-related algesic action, especially under inflammatory conditions.

  4. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    PubMed

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.

  5. Optimization of active magnetic bearings for automotive flywheel energy storage systems based on soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Recheis, M.; Schweighofer, B.; Fulmek, P.; Wegleiter, H.

    2013-01-01

    For active magnetically suspended rotors in mobile flywheel energy storage systems the lowest possible weight, smallest size and a low price is required. Since the flywheel is operated in vacuum and very little heat can be dissipated from the rotor, the bearing's magnetic losses have to be as minimal as well. This paper compares the design and optimization of homopolar radial active magnetic bearings with 3 different types of laminated steel. The first type is a standard transformer steel, the second one is high flux cobalt steel and the third one is high flux cobalt steel with high tensile strength.

  6. RESEARCH PAPER: A logistic model for magnetic energy storage in solar active regions

    NASA Astrophysics Data System (ADS)

    Wang, Hua-Ning; Cui, Yan-Mei; He, Han

    2009-06-01

    Previous statistical analyses of a large number of SOHO/MDI full disk longitudinal magnetograms provided a result that demonstrated how responses of solar flares to photospheric magnetic properties can be fitted with sigmoid functions. A logistic model reveals that these fitted sigmoid functions might be related to the free energy storage process in solar active regions. Although this suggested model is rather simple, the free energy level of active regions can be estimated and the probability of a solar flare with importance over a threshold can be forecast within a given time window.

  7. Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage.

    PubMed

    Plaza, Lucía; Sánchez-Moreno, Concepción; de Pascual-Teresa, Sonia; de Ancos, Begoña; Cano, M Pilar

    2009-04-22

    Avocado ( Persea americana Mill.) is a good source of bioactive compounds such as monounsaturated fatty acids and sterols. The impact of minimal processing on its health-promoting attributes was investigated. Avocados cut into slices or halves were packaged in plastic bags under nitrogen, air, or vacuum and stored at 8 degrees C for 13 days. The stabilities of fatty acids and sterols as well as the effect on antioxidant activity were evaluated. The main fatty acid identified and quantified in avocado was oleic acid (about 57% of total content), whereas beta-sitosterol was found to be the major sterol (about 89% of total content). In general, after refrigerated storage, a significant decrease in fatty acid content was observed. Vacuum/halves and air/slices were the samples that maintained better this content. With regard to phytosterols, there were no significant changes during storage. Antioxidant activity showed a slight positive correlation against stearic acid content. At the end of refrigerated storage, a significant increase in antiradical efficiency (AE) was found for vacuum samples. AE values were quite similar among treatments. Hence, minimal processing can be a useful tool to preserve health-related properties of avocado fruit.

  8. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  9. Reversible Storage of Hydrogen and Natural Gas in Nanospace-Engineered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Beckner, Matt; Rash, Tyler; Yu, Ping; Suppes, Galen; Pfeifer, Peter

    2012-02-01

    An overview is given of the development of advanced nanoporous carbons as storage materials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles. High specific surface areas, porosities, and sub-nm/supra-nm pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. Tunable bimodal pore-size distributions of sub-nm and supra-nm pores are established by subcritical nitrogen adsorption. Optimal pore structures for gravimetric and volumetric gas storage, respectively, are presented. Methane and hydrogen adsorption isotherms up to 250 bar on monolithic and powdered activated carbons are reported and validated, using several gravimetric and volumetric instruments. Current best gravimetric and volumetric storage capacities are: 256 g CH4/kg carbon and 132 g CH4/liter carbon at 293 K and 35 bar; 26, 44, and 107 g H2/kg carbon at 303, 194, and 77 K respectively and 100 bar. Adsorbed film density, specific surface area, and binding energy are analyzed separately using the Clausius-Clapeyron equation, Langmuir model, and lattice gas models.

  10. Storage and retrieval of light pulses in a fast-light medium via active Raman gain

    NASA Astrophysics Data System (ADS)

    Xu, Datang; Bai, Zhengyang; Huang, Guoxiang

    2016-12-01

    We propose a scheme to realize the storage and retrieval of light pulses in a fast-light medium via a mechanism of active Raman gain (ARG). The system under consideration is a four-level atomic gas interacting with three (pump, signal, and control) laser fields. We show that a stable propagation of signal light pulses with superluminal velocity (i.e., fast-light pulses) is possible in such a system through the ARG contributed by the pump field and the quantum interference effect induced by the control field. We further show that a robust storage and retrieval of light pulses in such a fast-light medium can be implemented by switching on and off the pump and the control fields simultaneously. The results reported here may have potential applications for light information processing and transmission using fast-light media.

  11. A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage

    NASA Astrophysics Data System (ADS)

    Ebigbo, Anozie; Golfier, Fabrice; Quintard, Michel

    2013-11-01

    Underground hydrogen storage (UHS) as a means of energy storage is an efficient way of compensating for seasonal fluctuations in the availability of energy. One important factor which influences this technology is the activity of methanogenic microorganisms capable of utilising hydrogen and carbon dioxide for metabolism and leading to a change in the stored gas composition. A coupled, pore-scale model is presented which aids in the investigation of the mechanisms that govern the conversion of hydrogen to methane, i.e. advective hydrogen flow, its diffusion into microbial biofilms of multiple species, and its consumption within these biofilms. The model assumes that spherical grains are coated by a film of residual water and treats the biofilm development within each film in a quasi one-dimensional manner. A sample simulation using the presented model illustrates the biofilm growth process in these films as well as the competition between three different microbial species: methanogens, acetogens, and acetotrophs.

  12. Active heat exchange: System development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1981-03-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide, and nitrate families, based on high storage capacity, good corrosion characteristics, and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCl, 24.5NaCl, 55.0MgCl2 percent by wt.), with a nominal melting point of 385 C.

  13. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Freezing at -25?C had confounding effects on cholinesterase (ChE) activity in blood plasma from breeding female quail, but did not affect ChE activity in plasma from males. Plasma ChE activity of control females increased consistently during 28 days of storage while both carbamate- and cidrotophos-inhibited ChE decreased. Refrigeration of plasma at 4?C for 2 days had little effect of ChE activity. Plasma ChE activity was averaged about 34% higher in breeding males than in females. Extreme caution should be exercised in use of blood plasma for evaluation of anti ChE exposure in free-living birds.

  14. Neuro-fuzzy modeling to predict physicochemical and microbiological parameters of partially dried cherry tomato during storage: effects on water activity, temperature and storage time.

    PubMed

    Tao, Yang; Li, Yong; Zhou, Ruiyun; Chu, Dinh-Toi; Su, Lijuan; Han, Yongbin; Zhou, Jianzhong

    2016-10-01

    In the study, osmotically dehydrated cherry tomatoes were partially dried to water activity between 0.746 and 0.868, vacuum-packed and stored at 4-30 °C for 60 days. Adaptive neuro-fuzzy inference system (ANFIS) was utilized to predict the physicochemical and microbiological parameters of these partially dried cherry tomatoes during storage. Satisfactory accuracies were obtained when ANFIS was used to predict the lycopene and total phenolic contents, color and microbial contamination. The coefficients of determination for all the ANFIS models were higher than 0.86 and showed better performance for prediction compared with models developed by response surface methodology. Through ANFIS modeling, the effects of storage conditions on the properties of partially dried cherry tomatoes were visualized. Generally, contents of lycopene and total phenolics decreased with the increase in water activity, temperature and storage time, while aerobic plate count and number of yeasts and molds increased at high water activities and temperatures. Overall, ANFIS approach can be used as an effective tool to study the quality decrease and microbial pollution of partially dried cherry tomatoes during storage, as well as identify the suitable preservation conditions.

  15. Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators--identification of a novel pharmacophore.

    PubMed

    Leuner, K; Heiser, J H; Derksen, S; Mladenov, M I; Fehske, C J; Schubert, R; Gollasch, M; Schneider, G; Harteneck, C; Chatterjee, S S; Müller, W E

    2010-03-01

    The naturally occurring acylated phloroglucinol derivative hyperforin was recently identified as the first specific canonical transient receptor potential-6 (TRPC6) activator. Hyperforin is the major antidepressant component of St. John's wort, which mediates its antidepressant-like properties via TRPC6 channel activation. However, its pharmacophore moiety for activating TRPC6 channels is unknown. We hypothesized that the phloroglucinol moiety could be the essential pharmacophore of hyperforin and that its activity profile could be due to structural similarities with diacylglycerol (DAG), an endogenous nonselective activator of TRPC3, TRPC6, and TRPC7. Accordingly, a few 2-acyl and 2,4-diacylphloroglucinols were tested for their hyperforin-like activity profiles. We used a battery of experimental models to investigate all functional aspects of TRPC6 activation, including ion channel recordings, Ca(2+) imaging, neurite outgrowth, and inhibition of synaptosomal uptake. Phloroglucinol itself was inactive in all of our assays, which was also the case for 2-acylphloroglucinols. For TRPC6 activation, the presence of two symmetrically acyl-substitutions with appropriate alkyl chains in the phloroglucinol moiety seems to be an essential prerequisite. Potencies of these compounds in all assays were comparable with that of hyperforin for activating the TRPC6 channel. Finally, using structure-based modeling techniques, we suggest a binding mode for hyperforin to TRPC6. Based on this modeling approach, we propose that DAG is able to activate TRPC3, TRPC6, and TRPC7 because of higher flexibility within the chemical structure of DAG compared with the rather rigid structures of hyperforin and the 2,4-diacylphloroglucinol derivatives.

  16. The Search for Signatures of Transient Mass Loss in Active Stars

    NASA Astrophysics Data System (ADS)

    Crosley, M. K.; Osten, R. A.; Broderick, J. W.; Corbel, S.; Eislöffel, J.; Grießmeier, J.-M.; van Leeuwen, J.; Rowlinson, A.; Zarka, P.; Norman, C.

    2016-10-01

    The habitability of an exoplanet depends on many factors. One such factor is the impact of stellar eruptive events on nearby exoplanets. Currently this is poorly constrained due to heavy reliance on solar scaling relationships and a lack of experimental evidence. Potential impacts of coronal mass ejections (CMEs), which are the large eruption of magnetic field and plasma from a star, are space weather and atmospheric stripping. A method for observing CMEs as they travel though the stellar atmosphere is the type II radio burst, and the new Low Frequency Array (LOFAR) provides a means of detection. We report on 15 hr of observation of YZ Canis Minoris (YZ CMi), a nearby M dwarf flare star, taken in LOFAR’s beam-formed observation mode for the purposes of measuring transient frequency-dependent low-frequency radio emission. The observations utilized the Low Band Antenna (10-90 MHz) or High Band Antenna (110-190 MHz) for five three-hour observation periods. In this data set, there were no confirmed type II events in this frequency range. We explore the range of parameter space for type II bursts constrained by our observations. Assuming the rate of shocks is a lower limit to the rate at which CMEs occur, no detections in a total of 15 hr of observation places a limit of {ν }{type{II}}\\lt 0.0667 shocks/hr ≤ ν CME for YZ CMi due to the stochastic nature of the events and the limits of observational sensitivity. We propose a methodology to interpret jointly observed flares and CMEs which will provide greater constraints to CMEs and test the applicability of solar scaling relations.

  17. Viral infection transiently reverses activation receptor-mediated NK cell hyporesponsiveness in an MHC class I-independent mechanism.

    PubMed

    Mazumdar, Budhaditya; Bolanos, Fred D; Tripathy, Sandeep K

    2013-05-01

    Continuous engagement of the Ly49H activating receptor with its ligand (m157) in a transgenic mouse expressing m157 (m157-Tg) results in hyporesponsiveness of Ly49H(+) NK cells. The same interaction, during murine cytomegalovirus (MCMV) infection, leads to activation of Ly49H(+) NK cells. MCMV infection results in decreased MHC class I (MHC-I) expression on the infected cell as well as inflammatory responses, both of which do not take place in the uninfected m157-Tg mouse, potentially allowing for activation of NK cells in the context of MCMV infection. In this study, we demonstrated that viral infection transiently reverses activation receptor-mediated NK cell hyporesponsiveness in an MHC-I-independent mechanism. Furthermore, Ly49H(+) NK cells in an MHC-I-deficient environment remained hyporesponsive in the context of m157 expression, even when mature WT splenocytes were transferred into m157-Tg mice in an MHC-I-deficient environment. However, the administration of cytokines TNF-α, IL-12, and IFN-β resulted in a partial recovery from activation receptor-induced hyporesponsiveness. Thus, the release of the aforementioned cytokines during MCMV infection and not the downregulation of MHC-I expression appears to be responsible for partial resolution of Ly49H receptor-induced NK cell hyporesponsiveness.

  18. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    PubMed

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  19. 1-D transient numerical model of a regenerator in a novel sub Kelvin Active Magnetic Regenerative Refrigerator

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Miller, Franklin K.

    2016-03-01

    A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.

  20. NOX3 NADPH Oxidase Couples Transient Receptor Potential Vanilloid 1 to Signal Transducer and Activator of Transcription 1-Mediated Inflammation and Hearing Loss

    PubMed Central

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P.

    2011-01-01

    Abstract Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss. Antioxid. Redox Signal. 14, 999–1010. PMID:20712533

  1. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss.

    PubMed

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P; Ramkumar, Vickram

    2011-03-15

    Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss.

  2. Energy storage on ultrahigh surface area activated carbon fibers derived from PMIA.

    PubMed

    Castro-Muñiz, Alberto; Suárez-García, Fabián; Martínez-Alonso, Amelia; Tascón, Juan M D; Kyotani, Takashi

    2013-08-01

    High-performance carbon materials for energy storage applications have been obtained by using poly(m-phenylene isophthalamide), PMIA, as a precursor through the chemical activation of the carbonized aramid fiber by using KOH. The yield of the process of activation was remarkably high (25-40 wt%), resulting in activated carbon fibers (ACFs) with ultrahigh surface areas, over 3000 m(2) g(-1) , and pore volumes exceeding 1.50 cm(3) g(-1) , keeping intact the fibrous morphology. The porous structure and the surface chemical properties could easily be controlled through the conditions of activation. The PMIA-derived ACFs were tested in two types of energy storage applications. At -196 °C and 1 bar, H2 uptake values of approximately 3 t% were obtained, which, in combination with the textural properties, rendered it a good candidate for H2 adsorption at high pressure and temperature. The performance of the ACFs as electrodes for electrochemical supercapacitors was also investigated. Specific capacitance values between 297 and 531 g(-1) at 50 mA g(-1) were obtained in aqueous electrolyte (1 H2 SO4 ), showing different behaviors depending on the surface chemical properties.

  3. Spontaneous network activity transiently depresses synaptic transmission in the embryonic chick spinal cord.

    PubMed

    Fedirchuk, B; Wenner, P; Whelan, P J; Ho, S; Tabak, J; O'Donovan, M J

    1999-03-15

    We examined the effects of spontaneous or evoked episodes of rhythmic activity on synaptic transmission in several spinal pathways of embryonic day 9-12 chick embryos. We compared the amplitude of synaptic potentials evoked by stimulation of the ventrolateral funiculus (VLF), the dorsal or ventral roots, before and after episodes of activity. With the exception of the short-latency responses evoked by dorsal root stimulation, the potentials were briefly potentiated and then reduced for several minutes after an episode of rhythmic activity. Their amplitude progressively recovered in the interval between successive episodes. The lack of post-episode depression in the short-latency component of the dorsal root evoked responses is probably attributable to the absence of firing in cut muscle afferents during an episode of activity. The post-episode depression of VLF-evoked potentials was mimicked by prolonged stimulation of the VLF, subthreshold for an episode of activity. By contrast, antidromically induced motoneuron firing and the accompanying calcium entry did not depress VLF-evoked potentials recorded from the stimulated ventral root. In addition, post-episode depression of VLF-evoked synaptic currents was observed in voltage-clamped spinal neurons. Collectively, these findings suggest that somatic postsynaptic activity and calcium entry are not required for the depression. We propose instead that the mechanism may involve a form of long-lasting activity-induced synaptic depression, possibly a combination of transmitter depletion and ligand-induced changes in the postsynaptic current accompanying transmitter release. This activity-dependent depression appears to be an important mechanism underlying the occurrence of spontaneous activity in developing spinal networks.

  4. Amyloid-β Oligomers Transiently Inhibit AMP-activated kinase and Cause Metabolic Defects in Hippocampal Neurons.

    PubMed

    Seixas da Silva, Gisele S; Melo, Helen M; Lourenco, Mychael V; Lyra E Silva, Natalia de M; de Carvalho, Marcelo B; Alves-Leon, Soniza; de Souza, Jorge M; Klein, William L; da-Silva, Wagner S; Ferreira, Sergio T; De Felice, Fernanda G

    2017-03-16

    AMP-activated kinase (AMPK) is a key player in energy sensing and metabolic reprogramming under cellular energy restriction. Several studies have linked impaired AMPK function to peripheral metabolic diseases such as diabetes. However, the impact of neurological disorders, such as Alzheimer disease (AD), on AMPK function and downstream effects of altered AMPK activity on neuronal metabolism have been investigated only recently. Here, we report the impact of A β oligomers (AβOs), synaptotoxins that accumulate in AD brains, on neuronal AMPK activity. Short-term exposure of cultured rat hippocampal neurons or ex vivo human cortical slices to AβOs transiently decreased intracellular ATP levels and AMPK activity, as evaluated by its phosphorylation at threonine residue 172 (AMPKpThr172). The AβO-dependent reduction in AMPKpThr172 levels was mediated by glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype, and resulted in removal of glucose transporters (GLUTs) from the surfaces of dendritic processes in hippocampal neurons. Importantly, insulin prevented the AβO-induced inhibition of AMPK. Our results establish a novel toxic impact of A βOs on neuronal metabolism and suggest that AβO-induced, NMDA receptor-mediated AMPK inhibition may play a key role in early brain metabolic defects in AD.

  5. Luminous Extragalactic Transients

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Jonker, Peter; Athena Explosive Transients Working Group

    2015-09-01

    The ESA Athena X-ray observatory mission will combine exceptionally high throughout with high spectral-energy resolution and will revolutionise many aspects of high-energy astrophysics. Many of the most powerful transient sources, including gamma-ray bursts and tidal disruptions events, are bright X-ray sources. Athena will be designed to have a fast-response capability permitting efficient observations of many transients. We will summarise the proposed capability of the mission and illustrate science programs to study transients ranging from the most distant GRBs to nuclear activity in nearby galaxies.

  6. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    NASA Astrophysics Data System (ADS)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  7. Active Storage with Analytics Capabilities and I/O Runtime System for Petascale Systems

    SciTech Connect

    Choudhary, Alok

    2015-03-18

    Computational scientists must understand results from experimental, observational and computational simulation generated data to gain insights and perform knowledge discovery. As systems approach the petascale range, problems that were unimaginable a few years ago are within reach. With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis, statistical analysis and knowledge discovery. The goal of this work is to enable more effective analysis of scientific datasets through the integration of enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-level I/O library layers. We propose to provide software components to accelerate data analytics, mining, I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries, such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2) Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime system design; 3) Develop parallel data mining programs as part of runtime library for server-side file system in PVFS file system; and 4) Prototype an active storage cluster, which will utilize multicore CPUs, GPUs, and FPGAs to carry out the data mining workload.

  8. Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth.

    PubMed

    Karahan, Ozlem; van Loosdrecht, Mark C M; Orhon, Derin

    2006-05-05

    This paper presents a mechanistic model incorporating microbial growth on external substrate with simultaneous formation of storage biopolymers (activated sludge model for growth and storage-ASMGS) for the utilization of starch by activated sludge. Model description and calibration utilized experimental data of an SBR fed with particulate native potato starch (NPS) and soluble starch (SolS) selected as model substrates. The fate of starch was monitored in a cycle together with glycogen and oxygen uptake rate (OUR) profiles. In the experiments, glycogen formation was significantly lower than predicted by total conversion of starch to glycogen, justifying the need to account for primary growth on starch. The proposed model basically modified Activated Sludge Model No.3 (ASM3), to include adsorption of starch, its hydrolysis and simultaneous growth and glycogen formation using the hydrolysis products, which was mainly maltose. Model simulations indicated hydrolysis of the adsorbed starch as the rate limiting process. The proposed model calibrated well the fate of all major model components, namely, starch, glycogen, and OUR. Particulate NPS and SolS were hydrolyzed with similar rates; however, primary and secondary growth processes on SolS were more efficient, with higher yields, due to the more easily utilizable products of SolS, both in terms of extracellular hydrolysis and of stored poly-glucose. Modeling with ASM3, assuming starch as either readily or slowly biodegradable, did not provide an equally acceptable fit for the glycogen and OUR curves; supporting the need to consider primary growth together with storage as defined in the proposed model.

  9. Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels

    PubMed Central

    Qiu, Jian; Zhang, Chunguang; Borgquist, Amanda; Nestor, Casey C; Smith, Arik W.; Bosch, Martha A.; Ku, Stephen; Wagner, Edward J.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    SUMMARY Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin receptor and insulin receptor are coupled to activation of phosphatidylinositide3-kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that similar to leptin, purified insulin depolarized POMC, and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn2+, which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis. PMID:24703699

  10. White paper: cleanout of tank 241-AP-108 for storage of phase 1 pretreated low-activity waste

    SciTech Connect

    PLACE, D.E.

    1999-06-24

    This white paper evaluates the feasibility of cleaning tank 241-AP-108 for storage of pretreated low-activity waste. The maximum allowable heel inventories for {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, and TRu are established. Cesium-137 was found to be the limiting radionuclide for tank 241-AP-108 cleanout. Equipment requirements for cleanout are identified and risks associated with extended storage of pretreated low-activity waste are discussed. This evaluation assumes that tank 241-AP-108 will be used for storage of pretreated low-activity waste from tanks 241-AZ-101 and 241-AZ-102 in accordance with the 1996 Tank Waste Remediation System Privatization Contract with BNFL Inc. Alternatives are currently under development that would not require this storage function. This document is being issued to capture the work performed to date.

  11. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide

    SciTech Connect

    Allan, Phoebe K; Wheatley, Paul S; Aldous, David; Mohideen, M Infas; Tang, Chiu; Hriljac, Joseph A; Megson, Ian L; Chapman, Karena W; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E

    2012-04-02

    Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

  12. Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

    PubMed

    Wronski, Zbigniew S; Varin, Robert A; Czujko, Tom

    2009-07-01

    In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in

  13. [Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1].

    PubMed

    Tominaga, Makoto

    2010-03-01

    TRP channels are well recognized for their contributions to sensory transduction, responding to a wide variety of stimuli including temperature, nociceptive stimuli, touch, osmolarity and pheromones. In particular, the involvement of TRP channels in nociception has been extensively studied following the cloning of the capsaicin receptor, TRPV1. Painful diabetic peripheral neuropathy is described as a superficial burning pain, and it is one of the most commonly encountered neuropathic pain syndromes in clinical practice. We found that hypoxic and high glucose conditions commonly observed in diabetes potentiate TRPV1 activity without affecting TRPV1 expression both in native rat sensory neurons and HEK293 cells expressing rat TRPV1. The potentiation seems to be caused by phosphorylation of the serine residues of TRPV1 by PKC. These data indicate that PKC-dependent potentiation of TRPV1 activities under hypoxia and hyperglycemia might be involved in early diabetic neuropathy. Mechanisms for the detection of alkaline pH by sensory neurons are not well understood, although it is well accepted that acidic pH monitoring can be attributed to several ion channels, including TRPV1 and ASICs. We found that alkaline pH activates TRPA1 and that the TRPA1 activation is involved in nociception, using Ca(2+)-imaging and patch-clamp methods. In addition, intracellular alkalization activated TRPA1 at the whole-cell level, and single-channel openings were observed in the inside-out configuration. Furthermore, intraplantar injection of ammonium chloride into the mouse hind paw caused pain-related behaviors, which were not observed in TRPA1-deficient mice. These results suggest that alkaline pH causes pain sensation through activation of TRPA1.

  14. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    SciTech Connect

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A. )

    1989-09-15

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation.

  15. Transient receptor potential ankyrin 1 (TRPA1) channel activation by the thienopyridine-type drugs ticlopidine, clopidogrel, and prasugrel.

    PubMed

    Schulze, Anja; Hartung, Philipp; Schaefer, Michael; Hill, Kerstin

    2014-04-01

    Transient receptor potential A1 (TRPA1) is widely expressed throughout the human and animal organism, including the dorsal root ganglia as well as the bladder, stomach and small intestine. Here, we examined the effect of three platelet aggregation inhibitors on TRPA1: ticlopidine, clopidogrel and prasugrel. Utilising fluorometric Ca(2+) influx analysis and electrophysiological whole cell measurements in TRPA1-expressing HEK293 and in human enterochromaffin-like QGP-1 cells, we found that ticlopidine, clopidogrel and prasugrel are direct activators of TRPA1. Although this polymodal channel commonly contributes to the perception of pain, temperature and chemical irritants, recent studies provide evidence for its involvement in the release of serotonin (5-HT) from enterochromaffin cells. Therefore, we further investigated the ability of ticlopidine, clopidogrel and prasugrel to stimulate 5-HT release from QGP-1 cells. We could determine 5-HT in supernatants from cultured QGP-1 cells upon treatment with ticlopidine and clopidogrel but not with prasugrel. These findings indicate that a robust TRPA1 activation by ticlopidine and clopidogrel correlates with the stimulatory effect on the secretion of 5-HT. As recipients of ticlopidine and clopidogrel frequently complain about gastrointestinal adverse events such as nausea, vomiting and diarrhoea, an activation of TRPA1 may contribute to adverse effects of such drugs in the digestive system.

  16. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity

    PubMed Central

    Iordanov, Iordan; Mihályi, Csaba; Tóth, Balázs; Csanády, László

    2016-01-01

    Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. DOI: http://dx.doi.org/10.7554/eLife.17600.001 PMID:27383051

  17. Off Target, but Sequence-Specific, shRNA-Associated Trans-Activation of Promoter Reporters in Transient Transfection Assays

    PubMed Central

    Wan, Jun; Yerrabelli, Anitha; Berlinicke, Cindy; Kallman, Alyssa; Qian, Jiang; Zack, Donald J.

    2016-01-01

    Transient transfection promoter reporter assays are commonly used in the study of transcriptional regulation, and can be used to define and characterize both cis-acting regulatory sequences and trans-acting factors. In the process of using a variety of reporter assays designed to study regulation of the rhodopsin (rho) promoter, we discovered that rhodopsin promoter-driven reporter expression could be activated by certain species of shRNA in a gene-target-independent but shRNA sequence-specific manner, suggesting involvement of a specific shRNA associated pathway. Interestingly, the shRNA-mediated increase of rhodopsin promoter activity was synergistically enhanced by the rhodopsin transcriptional regulators CRX and NRL. Additionally, the effect was cell line-dependent, suggesting that this pathway requires the expression of cell-type specific factors. Since microRNA (miRNA) and interferon response-mediated processes have been implicated in RNAi off-target phenomena, we performed miRNA and gene expression profiling on cells transfected with shRNAs that do target a specific gene but have varied effects on rho reporter expression in order to identify transcripts whose expression levels are associated with shRNA induced rhodopsin promoter reporter activity. We identified a total of 50 miRNA species, and by microarray analysis, 320 protein-coding genes, some of which were predicted targets of the identified differentially expressed miRNAs, whose expression was altered in the presence of shRNAs that stimulated rhodopsin-promoter activity in a non-gene-targeting manner. Consistent with earlier studies on shRNA off-target effects, a number of interferon response genes were among those identified to be upregulated. Taken together, our results confirm the importance of considering off-target effects when interpreting data from RNAi experiments and extend prior results by focusing on the importance of including multiple and carefully designed controls in the design and

  18. Cognitive Conflict in a Syllable Identification Task Causes Transient Activation of Speech Perception Area

    ERIC Educational Resources Information Center

    Saetrevik, Bjorn; Specht, Karsten

    2012-01-01

    It has previously been shown that task performance and frontal cortical activation increase after cognitive conflict. This has been argued to support a model of attention where the level of conflict automatically adjusts the amount of cognitive control applied. Conceivably, conflict could also modulate lower-level processing pathways, which would…

  19. Effects of Drying Temperature on Antioxidant Activities of Tomato Powder and Storage Stability of Pork Patties

    PubMed Central

    2016-01-01

    This study was performed to evaluate the antioxidant activity of oven-dried tomato powder (OTP) as affected by drying temperature and the effect of OTP on the product quality of pork patties. Three OTP products were obtained by drying of fresh tomato at 60, 80 and 100℃ oven until constant weight was obtained. Total phenolic content of three kinds of OTPs ranged from 1.95 to 5.94 g/100 g. The highest amount of total phenolic compound was observed in OTP dried at 100℃. Antioxidant activity of three kinds of OTPs was measured by 1,1-diphenyl-2-pycrylhydrazyl (DPPH)-radical scavenging activity, iron chelating ability, reducing power and measurement of lipid peroxide in linoleic acid emulsion system. In all parameters, OTP at 100℃ showed the higher antioxidant activity than other temperatures (p<0.05). Based on the model study, the physicochemical properties, and antioxidant and antimicrobial activities of pork patties containing 1% OTP were measured. Redness of pork patties were increased with the addition of OTPs (p<0.05). Thiobarbituric acid reactive substances (TBARS) values of raw pork patties containing OTPs were lower than those of control (CTL) until 7 d of storage, regardless of drying temperatures (p<0.05). Peroxide values of pork patties made with OTP (1%) were lower than those of CTL until the end of storage time (p<0.05). However, no antimicrobial activities were observed among the treatments (p>0.05). Therefore, OTPs could be used as a natural antioxidant in meat products. PMID:27499664

  20. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    PubMed

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control.

  1. Effects of UVB radiation on Photosynthesis Activity of Wolffia arrhiza as Probed by Chlorophyll Fluorescence Transient

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Chen, Kun; Liu, Yongding

    UV radiation is one major environmental stress for growth of Wolffia arrhiza which is regarded as a good candidate producer for establishing CELSS during extraterrestrial colonization and spaceflight. In this study, we found that UVB radiation inhibited photosynthetic CO2 assimilation activity significantly, and the content of chlorophyll a, chlorophyll b and carotenoids decreased obviously when plants were exposed to UVB radiation for 6 h. High UVB radiation also declined the quantum yield of primary photochemistry (φPo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (ψo) in the cells of Wolffia arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction center per absorption (RC/ABS) had the same changes under UV-B radiation stress. These results indicated that the effects of UV- B radiation on photosynthesis of Wolffia arrhiza maybe functioned by inhibition the electron transport and inactivation of reaction centers, but the inhibition maybe happen in more than one site in photosynthetic apparatus which is different to that in salt adaptation.

  2. 1,25 (OH)2D3 enhances PTH-induced Ca2+ transients in preosteoblasts by activating L-type Ca2+ channels

    NASA Technical Reports Server (NTRS)

    Li, W.; Duncan, R. L.; Karin, N. J.; Farach-Carson, M. C.

    1997-01-01

    We previously demonstrated electrophysiologically that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] shifts the activation threshold of L-type Ca2+ channels in osteoblasts toward the resting potential and prolongs mean open time. Presently, we used single-cell Ca2+ imaging to study the combined effects of 1,25(OH)2D3 and parathyroid hormone (PTH) during generation of Ca2+ transients in fura 2-loaded MC3T3-E1 cells. Pretreatment with 1,25(OH)2D3 concentrations, which alone did not produce Ca2+ transients, consistently enhanced Ca2+ responses to PTH. Enhancement was dose dependent over the range of 1 to 10 nM and was blocked by pretreatment with 5 microM nitrendipine during pretreatment. A 1,25(OH)2D3 analog that activates L-type channels and shifts their activation threshold also enhanced PTH responses. In contrast, an analog devoid of membrane Ca2+ effects did not enhance PTH-induced Ca2+ transients. The PTH-induced Ca2+ transient involved activation of a dihydropyridine-insensitive cation channel that was inhibited by Gd3+. Together, these data suggest that 1,25(OH)2D3 increases osteoblast responsiveness to PTH through rapid modification of L-type Ca2+ channel gating properties, whose activation enhances Ca2+ entry through other channels such as the PTH-responsive, Gd(3+)-sensitive cation channel.

  3. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple

  4. Early increase in DcR2 expression and late activation of caspases in the platelet storage lesion.

    PubMed

    Plenchette, S; Moutet, M; Benguella, M; N'Gondara, J P; Guigner, F; Coffe, C; Corcos, L; Bettaieb, A; Solary, E

    2001-10-01

    Platelet transfusion is widely used to prevent bleeding in patients with severe thrombocytopenia. The maximal storage duration of platelet concentrates is usually 5 days, due to the platelet storage lesion that impairs their functions when stored for longer times. Some of the morphological and biochemical changes that characterize this storage lesion are reminiscent of cell death by apoptosis. The present study analyzed whether proteins involved in nucleated cell apoptosis could play a role in the platelet storage lesion. Storage of leukocyte-depleted platelets obtained by apheresis is associated with a late and limited activation of caspases, mainly caspase-3. This event correlates with an increased expression of the pro-apoptotic BH3-only protein Bim in the particulate fraction and a slight and late release of the pro-apoptotic mitochondrial protein Diablo/Smac in the cytosol. Platelets do not express the death receptors Fas, DR4 and DR5 on their plasma membrane, while the expression of the decoy receptor DcR2 increases progressively during platelet storage. Addition of low concentrations of the cryoprotector dimethylsulfoxide accelerates platelet caspase activation during storage, an effect that is partially prevented by the caspase inhibitor z-VAD-fmk. Altogether, DcR2 expression on the plasma membrane is an early event while caspase activation is a late event during platelet storage. These observations suggest that caspases are unlikely to account for the platelet storage lesion. As a consequence, addition of caspase inhibitors may not improve the quality of platelet concentrates stored in standard conditions.

  5. Transient Thermal State of an Active Braille Matrix with Incorporated Thermal Actuators by Means of Finite Element Method

    ERIC Educational Resources Information Center

    Alutei, Alexandra-Maria; Szelitzky, Emoke; Mandru, Dan

    2013-01-01

    In this article the authors present the transient thermal analysis for a developed thermal linear actuator based on wax paraffin used to drive the cells of a Braille device. A numerical investigation of transient heat transfer phenomenon during paraffin melting and solidification in an encapsulated recipient has been carried out using the ANSYS…

  6. Self-Assembled, Redox-Active Graphene Electrodes for High-Performance Energy Storage Devices.

    PubMed

    Liu, Tianyuan; Kavian, Reza; Kim, Inkyu; Lee, Seung Woo

    2014-12-18

    Graphene-based materials have been utilized as a promising approach in designing high-performance electrodes for energy storage devices. In line with this approach, functionalized graphene electrodes have been self-assembled from the dispersion of graphene oxide (GO) in water at a low temperature of 80 °C using tetrahydroxyl-1,4-benzoquinone (THQ) as both the reducing and redox-active functionalization agent. We correlated the electrochemical performance of the electrode with surface oxygen chemistry, confirming the role of THQ for the reduction and redox-active functionalization process. The assembled graphene electrodes have a 3D hierarchical porous structure, which can facilitate electronic and ionic transport to support fast charge storage reactions. Utilizing the surface redox reactions introduced by THQ, the functionalized graphene electrodes exhibit high gravimetric capacities of ∼165 mA h/g in Li cells and ∼120 mA h/g in Na cells with high redox potentials over ∼3 V versus Li or Na, proposing promising positive electrodes for both Li and Na ion batteries.

  7. A comparison study of different semi-active hybrid energy storage system topologies for electric vehicles

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Hofmann, Heath; Li, Jianqiu; Han, Xuebing; Zhang, Xiaowu; Ouyang, Minggao

    2015-01-01

    In this paper, four different semi-active hybrid energy storage systems (HESSs), which use both supercapacitors (SCs) and batteries, are compared based on an electric city bus running the China Bus Driving Cycle (CBDC). The SC sizes of the different HESS topologies are optimized by using the dynamic programming (DP) approach, based on a dynamic degradation model of the LiFePO4 battery. The operation costs of different HESSs, including the electricity and the battery degradation costs over a whole CBDC, are minimized in the optimization process. Based on the DP results, near-optimal control strategies of different HESSs for on-line uses are proposed. Finally, the four HESS topologies are comprehensively compared from different aspects, including operation cost, initial cost, and DC bus voltage variation. Simulation results show that all HESS topologies have their merits and drawbacks, and can be used in different applications with different requirements. In addition, about 50% of the operation cost of the energy storage system is reduced by the semi-active HESSs when compared to the battery-only topology. Thus the effectiveness of adopting the SC in the HESS is verified.

  8. Proceedings of the 6th Annual Meeting for Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and WasteTreatment, Storage and Disposal Activities

    SciTech Connect

    Jardine, L J

    2005-06-30

    one representative from DOE NNSA, and LLNL, and two from Duratek, The meeting was organized into three major sessions: (1) Waste Treatment, Storage and Disposal; (2) Plutonium Packaging, Storage and Transportation; (3) Spent Fuel Packaging, Storage and Transportation. Twenty presentations were made on the topic of Waste Treatment, Storage and Disposal (Session II), ten presentations on Plutonium Packaging, Storage and Transportation (Session III), and four presentations on Spent Fuel Packaging, Storage and Transportation (Session IV). In addition, DOE/NNSA, Minatom/Rosatom and TVEL summarized the bases for the conference at the beginning of the meeting (Session I). Nine months had passed since the last LLNL contracts review meeting. During that time period, LLNL and TVEL have been able to sign six contracts for a total of $1,700,000 in the areas of: (1) Waste treatment, storage and disposal; and (2) Plutonium packaging, storage and transportation. The scope of several other work projects are now in various stages of development in these areas. It is anticipated that more contracts will be signed before the next meeting of this type. These events have allowed us to start work in our technical activities under new direction from TVEL, which is now the single Russian organization to coordinate and conclude contracts with LLNL. The meeting presentations and discussions have defined where we are and where we are going in the near term in regard to our joint interests in excess weapons plutonium disposition. Each topical section of this Proceedings is introduced by a summary of the presentations in that section.

  9. Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel.

    PubMed

    Ciobanu, A C; Selescu, T; Gasler, I; Soltuzu, L; Babes, A

    2016-03-01

    Methylglyoxal (MG) is a reactive dicarbonyl compound involved in protein modifications linked to diabetes mellitus. The plasma level of MG is elevated in diabetic patients, particularly those with painful diabetic neuropathy. Diabetic neuropathy is often associated with spontaneous pain and altered thermal perception. This study assesses effects of MG on TRPM8, an ion channel involved in innocuous cold sensing and cold allodynia and also in cold-mediated analgesia. Acute treatment with MG inhibited the activation of recombinant rat and human transient receptor potential melastatin type 8 (TRPM8) by cold and chemical agonists. A similar effect was observed when native TRPM8 was investigated in cultured rat dorsal root ganglion (DRG) neurons. DRG neurons treated with MG for 16-24 hr displayed a significant reduction in the fraction of cold- and menthol-sensitive neurons, most likely expressing TRPM8. The fraction of allyl isothiocyanate-sensitive neurons was also reduced, and the coexpression among different neuronal populations was affected. The same prolonged exposure to MG significantly reduced the expression of TRPM8 at the mRNA level. Overall, our data provide evidence for decreased activity and expression level of TRPM8 in the presence of MG, which may be linked to some of the alterations in pain and temperature sensing reported by diabetic patients. © 2015 Wiley Periodicals, Inc.

  10. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension.

    PubMed

    Cheyette, Samuel J; Plaut, David C

    2016-11-18

    The study of the N400 event-related brain potential has provided fundamental insights into the nature of real-time comprehension processes, and its amplitude is modulated by a wide variety of stimulus and context factors. It is generally thought to reflect the difficulty of semantic access, but formulating a precise characterization of this process has proved difficult. Laszlo and colleagues (Laszlo & Plaut, 2012; Laszlo & Armstrong, 2014) used physiologically constrained neural networks to model the N400 as transient over-activation within semantic representations, arising as a consequence of the distribution of excitation and inhibition within and between cortical areas. The current work extends this approach to successfully model effects on both N400 amplitudes and behavior of word frequency, semantic richness, repetition, semantic and associative priming, and orthographic neighborhood size. The account is argued to be preferable to one based on "implicit semantic prediction error" (Rabovsky & McRae, 2014) for a number of reasons, the most fundamental of which is that the current model actually produces N400-like waveforms in its real-time activation dynamics.

  11. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  12. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    SciTech Connect

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an “endless” hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular

  13. Human Phospholipase D Activity Transiently Regulates Pyrimidine Biosynthesis in Malignant Gliomas

    PubMed Central

    Mathews, Thomas P.; Hill, Salisha; Rose, Kristie L.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2015-01-01

    Cancer cells reorganize their metabolic pathways to fuel demanding rates of proliferation. Oftentimes, these metabolic phenotypes lie downstream of prominent oncogenes. The lipid signaling molecule phosphatidic acid (PtdOH), which is produced by the hydrolytic enzyme phospholipase D (PLD), has been identified as a critical regulatory molecule for oncogenic signaling in many cancers. In an effort to identify novel regulatory mechanisms for PtdOH, we screened various cancer cell lines, assessing whether treatment of cancer models with PLD inhibitors altered production of intracellular metabolites. Preliminary findings lead us to focus on how deoxyribonucleoside triphosphates (dNTPs) are altered upon PLD inhibitor treatment in gliomas. Using a combination of proteomics and small molecule intracellular metabolomics, we show herein that PtdOH acutely regulates the production of these pyrimidine metabolites through activation of CAD via mTOR signaling pathways independently of Akt. These changes are responsible for decreases in dNTP production after PLD inhibitor treatment. Our data identify a novel regulatory role for PLD activity in specific cancer types. PMID:25646564

  14. Neuroprotective activity of lavender oil on transient focal cerebral ischemia in mice.

    PubMed

    Wang, Dong; Yuan, Xuan; Liu, Ting; Liu, Liangliang; Hu, Yanli; Wang, Zhenhua; Zheng, Qiusheng

    2012-08-15

    The air-dried aerial parts of Lavandula angustifolia Mill, a traditional Uygur herbal drug, is used as resuscitation-inducing therapy to treat neurodisfunctions, such as stroke. This study was designed to assess the neuroprotective effects of lavender oil against ischemia/reperfusion (IR) injury in mice. Focal cerebral ischemia was induced by the intraluminal occlusion method with a nylon string. The neurodysfuntion was evaluated by neurological deficit and the infarct area was showed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The histopathological changes were observed by hematoxylin and eosin staining. The levels of mitochondria-generated reactive oxygen species (ROS), malondialdehyde (MDA) and carbonyl, the ratio of reduced glutathione (GSH)/glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD), catalase (CAT) and glutathion peroxidase (GSH-Px) in brain tissue were measured to estimate the oxidative stress state. Neurological deficit, infarct size, histopathology changes and oxidative stress markers were evaluated after 22 h of reperfusion. In comparison with the model group, treatment with lavender oil significantly decreased neurological deficit scores, infarct size, the levels of MDA, carbonyl and ROS, and attenuated neuronal damage, upregulated SOD, CAT, GSH-Px activities and GSH/GSSG ratio. These results suggested that the neuroprotective effects of lavender oil against cerebral ischemia/reperfusion injury may be attributed to its antioxidant effects.

  15. Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows

    PubMed Central

    2012-01-01

    Background All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days postpartum (DPP) which was significantly decreased by 30 DPP. The current study generated a genome-wide transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional postpartum animals using quantitative real-time PCR (qRT-PCR). Results mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P < 0.1) included the T cell receptor signalling pathway, graft-versus-host disease and cytokine-cytokine receptor interaction pathways. However 30 DPP, where the majority of genes were differentially expressed, the enrichment (adjusted P < 0.1) of tissue repair and proliferative activity pathways was observed. Nineteen candidate genes selected from mRNA-Seq results, were independently assessed by qRT-PCR in additional postpartum cows (5 animals) at both time points. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated with tissue repair and the restoration of uterine homeostasis postpartum. Conclusions The results of this study reveal an early activation of the immune

  16. Briefly Bound to Activate: Transient Binding of a Second Catalytic Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis

    SciTech Connect

    Bao, Zhao Qin; Jacobsen, Douglas M.; Young, Matthew A.

    2014-10-02

    We have determined high-resolution crystal structures of a CDK2/Cyclin A transition state complex bound to ADP, substrate peptide, and MgF{sub 3}{sup -}. Compared to previous structures of active CDK2, the catalytic subunit of the kinase adopts a more closed conformation around the active site and now allows observation of a second Mg{sup 2+} ion in the active site. Coupled with a strong [Mg{sup 2+}] effect on in vitro kinase activity, the structures suggest that the transient binding of the second Mg{sup 2+} ion is necessary to achieve maximum rate enhancement of the chemical reaction, and Mg{sup 2+} concentration could represent an important regulator of CDK2 activity in vivo. Molecular dynamics simulations illustrate how the simultaneous binding of substrate peptide, ATP, and two Mg{sup 2+} ions is able to induce a more rigid and closed organization of the active site that functions to orient the phosphates, stabilize the buildup of negative charge, and shield the subsequently activated {gamma}-phosphate from solvent.

  17. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    PubMed

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  18. Design requirements document for Project W-465, immobilized low-activity waste interim storage

    SciTech Connect

    Burbank, D.A.

    1998-05-19

    The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project.

  19. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2.

    PubMed

    Willette, Robert N; Bao, Weike; Nerurkar, Sandhya; Yue, Tian-Li; Doe, Chris P; Stankus, Gerald; Turner, Gregory H; Ju, Haisong; Thomas, Heath; Fishman, Cindy E; Sulpizio, Anthony; Behm, David J; Hoffman, Sandra; Lin, Zuojun; Lozinskaya, Irina; Casillas, Linda N; Lin, Min; Trout, Robert E Lee; Votta, Bartholomew J; Thorneloe, Kevin; Lashinger, Erin S R; Figueroa, David J; Marquis, Robert; Xu, Xiaoping

    2008-08-01

    The transient receptor potential (TRP) vanilloid subtype 4 (V4) is a nonselective cation channel that exhibits polymodal activation and is expressed in the endothelium, where it contributes to intracellular Ca2+ homeostasis and regulation of cell volume. The purpose of the present study was to evaluate the systemic cardiovascular effects of GSK1016790A, a novel TRPV4 activator, and to examine its mechanism of action. In three species (mouse, rat, and dog), the i.v. administration of GSK1016790A induced a dose-dependent reduction in blood pressure, followed by profound circulatory collapse. In contrast, GSK1016790A had no acute cardiovascular effects in the TRPV4-/- null mouse. Hemodynamic analyses in the dog and rat demonstrate a profound reduction in cardiac output. However, GSK1016790A had no effect on rate or contractility in the isolated, buffer-perfused rat heart, and it produced potent endothelial-dependent relaxation of rodent-isolated vascular ring segments that were abolished by nitric-oxide synthase (NOS) inhibition (N-nitro-L-arginine methyl ester; L-NAME), ruthenium red, and endothelial NOS (eNOS) gene deletion. However, the in vivo circulatory collapse was not altered by NOS inhibition (L-NAME) or eNOS gene deletion but was associated with (concentration and time appropriate) profound vascular leakage and tissue hemorrhage in the lung, intestine, and kidney. TRPV4 immunoreactivity was localized in the endothelium and epithelium in the affected organs. GSK1016790A potently induced rapid electrophysiological and morphological changes (retraction/condensation) in cultured endothelial cells. In summary, inappropriate activation of TRPV4 produces acute circulatory collapse associated with endothelial activation/injury and failure of the pulmonary microvascular permeability barrier. It will be important to determine the role of TRPV4 in disorders associated with edema and microvascular congestion.

  20. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  1. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  2. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

  3. Changes in Biochemical Characteristics and Activities of Ripening Associated Enzymes in Mango Fruit during the Storage at Different Temperatures

    PubMed Central

    Kimura, Yoshinobu

    2014-01-01

    As a part of the study to explore the possible strategy for enhancing the shelf life of mango fruits, we investigated the changes in biochemical parameters and activities of ripening associated enzymes of Ashwina hybrid mangoes at 4-day regular intervals during storage at −10°C, 4°C, and 30 ± 1°C. Titratable acidity, vitamin C, starch content, and reducing sugar were higher at unripe state and gradually decreased with the increasing of storage time at all storage temperatures while phenol content, total soluble solid, total sugar, and nonreducing sugar contents gradually increased. The activities of amylase, α-mannosidase, α-glucosidase, and invertase increased sharply within first few days and decreased significantly in the later stage of ripening at 30 ± 1°C. Meanwhile polyphenol oxidase, β-galactosidase, and β-hexosaminidase predominantly increased significantly with the increasing days of storage till later stage of ripening. At −10°C and 4°C, the enzymes as well as carbohydrate contents of storage mango changed slightly up to 4 days and thereafter the enzyme became fully dormant. The results indicated that increase in storage temperature and time correlated with changes in biochemical parameters and activities of glycosidases suggested the suppression of β-galactosidase and β-hexosaminidase might enhance the shelf life of mango fruits. PMID:25136564

  4. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  5. cis and trans activation of globin gene transcription in transient assays.

    PubMed

    Treisman, R; Green, M R; Maniatis, T

    1983-12-01

    We examined the effects of the simian virus 40 enhancer sequence on transcription of cloned human alpha- and beta-globin genes shortly after their introduction into cultured mammalian cells. We find that (i) detectable transcription of the beta-globin gene but not the alpha-globin gene requires linkage to the enhancer; (ii) the enhancer increases the amount of beta-globin RNA at least 100-fold but results in only a 5- to 10-fold increase in the amount of alpha-globin RNA; (iii) plasmid replication does not increase the level of beta-globin RNA, regardless of linkage to the enhancer, but does result in an approximately equal to 50-fold increase in the level of alpha-globin RNA; (iv) the enhancer is not required for and does not increase transcription of either gene in 293 cells, an adenovirus 5-transformed human kidney cell line. We also show that an enhancer sequence is not required for activity of the normally enhancer-dependent simian virus 40 early promoter in 293 cells, indicating that these cells contain a trans-acting factor(s) that circumvents the requirement for the enhancer sequence.

  6. Kainic acid activates transient expression of tenascin-C in the adult rat hippocampus.

    PubMed

    Nakic, M; Mitrovic, N; Sperk, G; Schachner, M

    1996-05-15

    Kainic acid-induced limbic seizures enhance expression of tenascin-C (TN) in the hippocampus of adult rats. TN mRNA was detectable by in situ hybridization in many granule cells in the dentate gyrus 4.5 hr after kainic acid injection but not in saline-injected animals (controls) or in animals killed 2 or 24 hr after injection. Thirty days after kainic acid injection, TN mRNA was detectable only in pyramidal cells of CA3 and CA1. At the protein level, TN was detectable by immunocytochemistry in control animals in the strata oriens and lacunosum moleculare of CA1, in the molecular layer, and within a narrow area at the inner surface of the granule cell layer in the dentate gyrus. Twenty-four hours after kainic acid injection, TN immunoreactivity was enhanced in these areas and throughout the granule cell layer. Thirty days after kainic acid injection, TN immunoreactivity was downregulated in these areas, while it was prominent in the stratum oriens and in clusters of immunoreactivity in the stratum lucidum of CA3. Western blot analysis of the hippocampus showed a peak of TN expression 24 hr after kainic acid injection. These observations show that TN expression is upregulated in predominantly neuronal cells already by 4.5 hr after kainic acid injection, coincident with activation of granule cells and sprouting of axon terminals, whereas the remaining TN expression 30 days after injection relates to pyramidal cells in CA1 and CA3, coincident with an astroglial response, as marked by a strong expression of glial fibrillary acidic protein.

  7. Design, synthesis, insecticidal activity, and structure-activity relationship (SAR): studies of novel triazone derivatives containing a urea bridge group based on transient receptor potential (TRP) channels.

    PubMed

    Yang, Yan; Liu, Yuxiu; Song, Hongjian; Li, Yongqiang; Wang, Qingmin

    2016-11-01

    Numerous compounds containing urea bridge and biurea moieties are used in a variety of fields, especially as drugs and pesticides. To search for novel, environmentally benign and ecologically safe pesticides with unique modes of action, four series of novel triazone analogues containing urea, thiourea, biurea, and thiobiurea bridge, respectively, were designed and synthesized, according to various calcium ion channel inhibitors which act on transient receptor potential protein. Their structures were characterized by [Formula: see text] NMR, [Formula: see text] NMR, and HRMS. The insecticidal activities of the new compounds were obtained. The bioassay results indicated that compounds containing a thiourea bridge and a thiobiurea bridge exhibited excellent insecticidal activities against bean aphid. Specifically, compounds [Formula: see text], [Formula: see text], and [Formula: see text] exhibited 85, 90, and 95 % activities, respectively, at 10 mg/kg. Compounds [Formula: see text] (30 %), [Formula: see text] (35 %), [Formula: see text] (30 %), and [Formula: see text] (40 %) exhibited the approximate aphicidal activity of pymetrozine (30 %) at 5 mg/kg. In addition, some target compounds exhibited insecticidal activities against lepidopteran pests. From a molecular design standpoint, the information obtained in this study could help in the further design of new derivatives with improved insecticidal activities.

  8. Effects of Different Drying Methods and Storage Time on Free Radical Scavenging Activity and Total Phenolic Content of Cosmos Caudatus.

    PubMed

    Mediani, Ahmed; Abas, Faridah; Tan, Chin Ping; Khatib, Alfi

    2014-05-07

    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained.

  9. Effects of Different Drying Methods and Storage Time on Free Radical Scavenging Activity and Total Phenolic Content of Cosmos caudatus

    PubMed Central

    Mediani, Ahmed; Abas, Faridah; Tan, Chin Ping; Khatib, Alfi

    2014-01-01

    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained. PMID:26784876

  10. The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice.

    PubMed

    Meotti, Flavia Carla; Figueiredo, Cláudia Pinto; Manjavachi, Marianne; Calixto, João B

    2017-02-01

    The kinin receptor B1 and the transient receptor potential ankyrin 1 (TRPA1) work as initiators and gatekeepers of nociception and inflammation. This study reports that the nociceptive transmission induced by activation of B1 receptor is dependent on TRPA1 ion channel. The mechanical hyperalgesia was induced by intrathecal (i.t.) injection of B1 agonist des-Arginine(9)-bradykinin (DABK) or TRPA1 agonist cinnamaldehyde and was evaluated by the withdrawal response after von Frey Hair application in the hind paw. After behavioral experiments, lumbar spinal cord and dorsal root ganglia (DRG) were harvested to assess protein expression and mRNA by immunohistochemistry and real time-PCR, respectively. The pharmacological antagonism (HC030031) or the down-regulation of TRPA1 greatly inhibited the mechanical hyperalgesia induced by DABK. Intrathecal injection of DABK up regulated the ionized calcium binding adaptor molecule (Iba-1) in lumbar spinal cord (L5-L6); TRPA1 protein and mRNA in lumbar spinal cord; and B1 receptor mRNA in both lumbar spinal cord and DRG. The knockdown of TRPA1 prevented microglia activation induced by DABK. Furthermore, the mechanical hyperalgesia induced by either DABK or by cinnamaldehyde was significantly reduced by inhibition of cyclooxygenase (COX), protein kinase C (PKC) or phospholipase C (PLC). In summary, this study revealed that TRPA1 positively modulates the mechanical hyperalgesia induced by B1 receptor activation in the spinal cord and that the classical GPCR downstream molecules PLC, diacylglycerol (DAG), 3,4,5-inositide phosphate (IP3) and PKC are involved in the nociceptive transmission triggered by these two receptors.

  11. Solar optics-based active panel for solar energy storage and disinfection of greywater.

    PubMed

    Lee, W; Song, J; Son, J H; Gutierrez, M P; Kang, T; Kim, D; Lee, L P

    2016-09-01

    Smart city and innovative building strategies are becoming increasingly more necessary because advancing a sustainable building system is regarded as a promising solution to overcome the depleting water and energy. However, current sustainable building systems mainly focus on energy saving and miss a holistic integration of water regeneration and energy generation. Here, we present a theoretical study of a solar optics-based active panel (SOAP) that enables both solar energy storage and photothermal disinfection of greywater simultaneously. Solar collector efficiency of energy storage and disinfection rate of greywater have been investigated. Due to the light focusing by microlens, the solar collector efficiency is enhanced from 25% to 65%, compared to that without the microlens. The simulation of greywater sterilization shows that 100% disinfection can be accomplished by our SOAP for different types of bacteria including Escherichia coli. Numerical simulation reveals that our SOAP as a lab-on-a-wall system can resolve the water and energy problem in future sustainable building systems.

  12. Substrate storage concepts in modeling activated sludge systems for tannery wastewaters.

    PubMed

    Dizdaroglu-Risvanoglu, Gülseda; Karahan, Ozlem; Cokgor, Emine Ubay; Orhon, Derin; Van Loosdrecht, Mark C M

    2007-12-01

    In spite of a variety of model structures proposed for activated sludge systems, calibration of these models for industrial wastewaters still stands untouched. In the scope of this study, a conceptual framework for the application of ASM1, ASM3 and 3 models, involving simultaneous growth and storage under dynamic conditions is presented and these models have been used for simulating biodegradation/tannery wastewaters. A comparative representation of the modeling results obtained with 5 different models is provided. The comparison of the simulation results showed that the possibility of describing the real case increases as the model gets more detailed. Although structured models are supposed to provide a better description of the dynamic behavior observed for tannery effluents, the insufficiency experienced in the experimental determination of all the storage products when complex substrate compositions are concerned, hindered the accurate determination of model coefficients. Furthermore, modeling results for different F/M ratios clearly emphasized the challenge in the definition of readily biodegradable COD. Process stoichiometry and wastewater fractionation should be defined cautiously with additional data in order to provide substantial basis for the evaluation of the respirometric response in batch tests for model calibration.

  13. TiO 2 (B)/activated carbon non-aqueous hybrid system for energy storage

    NASA Astrophysics Data System (ADS)

    Brousse, Thierry; Marchand, René; Taberna, Pierre-Louis; Simon, Patrice

    TiO 2 (B) has been investigated as a possible candidate to replace Li 4Ti 5O 12 as a negative electrode for Li-ion battery. The starting compound was synthesized by a simple solid state reaction followed by hydrolysis. Long term stability of the TiO 2 (B) electrode can be obtained by limiting lithium intercalation between 0.25 and 0.35 Li + per unit formula. High cycling rates (up to 24 C) have been used without noticeable degradation of the electrode. A non-aqueous hybrid energy storage device using TiO 2 (B) as the negative electrode and activated carbon as the positive was assembled. The maximum hybrid cell voltage can be set between 2.75 V and 3.5 V. The cells exhibit energy densities between 45 W kg -1 and 80 W kg -1 with power densities in the range 240-420 W kg -1 which is compatible with a fast charging/discharging storage device, intermediate between electrochemical double layer capacitor and Li-ion batteries.

  14. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    NASA Astrophysics Data System (ADS)

    Tang, Jiqiang; Fang, Jiancheng; Ge, Shuzhi Sam

    2012-12-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  15. Influences of recent climate change and human activities on water storage variations in Central Asia

    NASA Astrophysics Data System (ADS)

    Deng, Haijun; Chen, Yaning

    2017-01-01

    Terrestrial water storage (TWS) change is an indicator of climate change. Therefore, it is helpful to understand how climate change impacts water systems. In this study, the influence of climate change on TWS in Central Asia over the past decade was analyzed using the Gravity Recovery and Climate Experiment satellites and Climatic Research Unit datasets. Results indicate that TWS experienced a decreasing trend in Central Asia from 2003 to 2013 at a rate of -4.44 ± 2.2 mm/a, and that the maximum positive anomaly for TWS (46 mm) occurred in July 2005, while the minimum negative anomaly (-32.5 mm) occurred in March 2008-August 2009. The decreasing trend of TWS in northern Central Asia (-3.86 ± 0.63 mm/a) is mainly attributed to soil moisture storage depletion, which is driven primarily by the increase in evapotranspiration. In the mountainous regions, climate change exerted an influence on TWS by affecting glaciers and snow cover change. However, human activities are now the dominant factor driving the decline of TWS in the Aral Sea region and the northern Tarim River Basin.

  16. Land-subsidence and ground-water storage monitoring in the Tucson Active Management Area, Arizona

    USGS Publications Warehouse

    Pool, Don R.; Winster, Daniel; Cole, K.C.

    2000-01-01

    The Tucson Active Management Area (TAMA) comprises two basins--Tucson Basin and Avra Valley. The TAMA has been directed by Arizona ground-water law to attain an annual balance between groundwater withdrawals and recharge by the year 2025. This balance is defined by the statute as "safe yield." Current ground-water withdrawals exceed recharge, resulting in conditions of ground-water overdraft, which causes removal of water from ground-water storage and subsidence of the land surface. Depletion of storage and associated land subsidence will not be halted until all discharge from the system, both natural and human induced, is balanced by recharge. The amount of the ground-water overdraft has been difficult to estimate until recently because it could not be directly measured. Overdraft has been estimated using indirect water-budget methods that rely on uncertain estimates of recharge. As a result, the status of the ground-water budget could not be known with great certainty. Gravity methods offer a means to directly measure ground-water overdraft through measurement of changes in the gravitational field of the Earth that are caused by changes in the amount of water stored in the subsurface. Changes in vertical position also affect the measured gravity value and thus subsidence also must be monitored. The combination of periodic observations of gravity and vertical positions provide direct measures of changes in stored ground water and land subsidence.

  17. Enhanced Electrochemical Lithium Storage Activity of LiCrO2 by Size Effect

    SciTech Connect

    Feng, G.; Li, L; Liu, J; Liu, N; Li, H; Yang, X; Huang, X; Chen, L; Nam, K; Yoon, W

    2009-01-01

    Cr8O21 was chemically lithiated using a lithium-biphenyl-dimethoxyethane solution. Lithiated Cr8O21 shows a structure in which as-formed LiCrO2 units are sandwiched between Cr2O3 superlattice layers. Chemically lithiated Cr8O21 shows a delithiation capacity of 200 mAh g-1. It means that LiCrO2 units in lithiated Cr8O21 are electrochemically active. This finding is opposite to previous reports that LiCrO2 materials have very poor Li-storage capacities. Our new result implies that LiCrO2 with extremely small domain size could show enhanced reactivity. This proposal is proved unambiguously by the fact that LiCrO2 powder materials with smaller grain size (<20 nm) show much higher capacities than LiCrO2 materials with larger grain size (>50 nm). In addition, it is found that the cation mixing is more significantly in LiCrO2 materials with smaller grain size, which seems a key factor for the storage and transport of lithium in layered Cr-based materials. The cation mixing may also explain the result that the lattice parameters of LiCrO2 do not change significantly upon lithium extraction and insertion, investigated by in situ and ex situ XRD techniques.

  18. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer

    Buscheck, Thomas A.

    2000-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  19. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  20. Methanoculleus spp. as a biomarker of methanogenic activity in swine manure storage tanks.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Morissette, Bruno; Topp, Edward; Kalmokoff, Martin; Brooks, Stephen P J; Matias, Fernando; Massé, Daniel I; Masse, Lucie; Talbot, Guylaine

    2012-05-01

    Greenhouse gas emissions represent a major problem associated with manure management in the livestock industry. A prerequisite to mitigate methane emissions occurring during manure storage is a clearer understanding of how the microbial consortia involved in methanogenesis function. Here, we have examined manure stored in outdoor tanks from two different farms, at different locations and depths. Physico-chemical and microbiological characterization of these samples indicated differences between each tank, as well as differences within each tank dependent on the depth of sampling. The dynamics of both the bacterial and archaeal communities within these samples were monitored over a 150-day period of anaerobic incubation to identify and track emerging microorganisms, which may be temporally important in the methanogenesis process. Analyses based on DNA fingerprinting of microbial communities identified trends common among all samples as well as trends specific to certain samples. All archaeal communities became enriched with Methanoculleus spp. over time, indicating that the hydrogenotrophic pathway of methanogenesis predominated. Although the emerging species differed in samples obtained from shallow depths compared to deep samples, the temporal enrichment of Methanoculleus suggests that this genus may represent a relevant indicator of methanogenic activity in swine manure storage tanks.

  1. Influence of Molting and Starvation on Digestive Enzyme Activities and Energy Storage in Gammarus fossarum

    PubMed Central

    Charron, Laetitia; Geffard, Olivier; Chaumot, Arnaud; Coulaud, Romain; Jaffal, Ali; Gaillet, Véronique; Dedourge-Geffard, Odile; Geffard, Alain

    2014-01-01

    Among the many biological responses studied in ecotoxicology, energy-based biomarkers such as digestive enzyme activities and energy reserves appear to be useful predictive tools for detecting physiological disturbances in organisms. However, the use of these biological responses as biomarkers could be limited by the effects of confounding factors (biotic and abiotic) and physiological processes, such as the reproductive cycle. Thus, the optimal use of these biomarkers will be facilitated by understanding the effects of these factors on the energy metabolism of the sentinel species being studied. We considered abiotic factors (temperature and conductivity) in a previous study, whereas the present study investigated the effects of gender, the female reproductive stage, and food availability on the digestive enzyme activities and energy storage of Gammarus fossarum. The results indicated that, during the female reproductive cycle, the activities of digestive enzymes (amylase, cellulase, and trypsin) decreased significantly, whereas the levels of reserves (proteins, lipids, and sugar) increased until the last premolt stage. Restricted food diets only led to decreased amylase activities in both sexes. Food starvation also induced a decrease in the energy outcomes in females, whereas there were no effects in males. In general, the biochemical (digestive enzyme activities) and physiological (energy reserves) responses were more stable in males than in females. These results support the use of males fed ad libitum to limit the effects of confounding factors when using these energy biomarkers in Gammarus fossarum during biomonitoring programs. PMID:24788197

  2. Impact of Nisin-Activated Packaging on Microbiota of Beef Burgers during Storage.

    PubMed

    Ferrocino, Ilario; Greppi, Anna; La Storia, Antonietta; Rantsiou, Kalliopi; Ercolini, Danilo; Cocolin, Luca

    2015-11-06

    Beef burgers were stored at 4°C in a vacuum in nisin-activated antimicrobial packaging. Microbial ecology analyses were performed on samples collected between days 0 and 21 of storage to discover the population diversity. Two batches were analyzed using RNA-based denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. The active packaging retarded the growth of the total viable bacteria and lactic acid bacteria. Culture-independent analysis by pyrosequencing of RNA extracted directly from meat showed that Photobacterium phosphoreum, Lactococcus piscium, Lactobacillus sakei, and Leuconostoc carnosum were the major operational taxonomic units (OTUs) shared between control and treated samples. Beta diversity analysis of the 16S rRNA sequence data and RNA-DGGE showed a clear separation between two batches based on the microbiota. Control samples from batch B showed a significant high abundance of some taxa sensitive to nisin, such as Kocuria rhizophila, Staphylococcus xylosus, Leuconostoc carnosum, and Carnobacterium divergens, compared to control samples from batch A. However, only from batch B was it possible to find a significant difference between controls and treated samples during storage due to the active packaging. Predicted metagenomes confirmed differences between the two batches and indicated that the use of nisin-based antimicrobial packaging can determine a reduction in the abundance of specific metabolic pathways related to spoilage. The present study aimed to assess the viable bacterial communities in beef burgers stored in nisin-based antimicrobial packaging, and it highlights the efficacy of this strategy to prolong beef burger shelf life.

  3. Impact of Nisin-Activated Packaging on Microbiota of Beef Burgers during Storage

    PubMed Central

    Ferrocino, Ilario; Greppi, Anna; La Storia, Antonietta; Rantsiou, Kalliopi; Ercolini, Danilo

    2015-01-01

    Beef burgers were stored at 4°C in a vacuum in nisin-activated antimicrobial packaging. Microbial ecology analyses were performed on samples collected between days 0 and 21 of storage to discover the population diversity. Two batches were analyzed using RNA-based denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. The active packaging retarded the growth of the total viable bacteria and lactic acid bacteria. Culture-independent analysis by pyrosequencing of RNA extracted directly from meat showed that Photobacterium phosphoreum, Lactococcus piscium, Lactobacillus sakei, and Leuconostoc carnosum were the major operational taxonomic units (OTUs) shared between control and treated samples. Beta diversity analysis of the 16S rRNA sequence data and RNA-DGGE showed a clear separation between two batches based on the microbiota. Control samples from batch B showed a significant high abundance of some taxa sensitive to nisin, such as Kocuria rhizophila, Staphylococcus xylosus, Leuconostoc carnosum, and Carnobacterium divergens, compared to control samples from batch A. However, only from batch B was it possible to find a significant difference between controls and treated samples during storage due to the active packaging. Predicted metagenomes confirmed differences between the two batches and indicated that the use of nisin-based antimicrobial packaging can determine a reduction in the abundance of specific metabolic pathways related to spoilage. The present study aimed to assess the viable bacterial communities in beef burgers stored in nisin-based antimicrobial packaging, and it highlights the efficacy of this strategy to prolong beef burger shelf life. PMID:26546424

  4. Transient receptor potential (TRP) A1 activated currents in TRPV1 and cholecystokinin-sensitive cranial visceral afferent neurons.

    PubMed

    Choi, Myung-Jin; Jin, Zhenhua; Park, Yong Seek; Rhee, Young Kyoung; Jin, Young-Ho

    2011-04-06

    Culinary use of the pungent spices has potential health benefits including a reduction in food intake. Pungent spices often contain ingredients that activate members of the transient receptor potential (TRP) family A1 and evoke pain from capsaicin-sensitive somatosensory neurons. TRPA1 channel have also been identified on cranial visceral afferent neurons but their distribution and functional contributions are poorly understood. Visceral vagal neurons transduce mechanical and chemical signals from peripheral organs to the nucleus tractus solitarii. Many capsaicin-sensitive vagal afferents participate in peripheral satiety signaling that includes cholecystokinin (CCK) sensitive neurons. To assess signaling, the TRPA1 selective agonist allyl isothiocyanate (AITC) was tested together with CCK and capsaicin (200nM), a TRPV1 specific agonist. In isolated nodose neurons, AITC (0.05-0.2mM) evoked concentration-dependent inward currents in 38% of the tested neurons. The TRPA1 specific antagonist HC-030031 (10μM) blocked AITC responses. TRPA1 responses were mixed across neurons that were capsaicin-sensitive and -insensitive. However CCK evoked inward currents only on capsaicin-sensitive neurons and 28% of the CCK-sensitive neurons expressed TRPA1. Our results indicate that TRPA1 is co-expressed with TRPV1 in CCK-sensitive nodose neurons. The findings indicate a potential mechanism by which spices can act within cranial visceral afferent pathways mediating satiety and contribute to the reduction of the food intake associated with spiced diets.

  5. Human skeletal dysplasia caused by a constitutive activated transient receptor potential vanilloid 4 (TRPV4) cation channel mutation.

    PubMed

    Kang, Sang Sun; Shin, Sung Hwa; Auh, Chung-Kyoon; Chun, Jaesun

    2012-12-31

    The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of Ca²⁺ signals and/or depolarization of the membrane potential. Regulation of TRPV4 abundance at the cell surface is critical for osmo- and mechanotransduction. Defects in TRPV4 are the cause of several human diseases, including brachyolmia type 3 (MIM:113500) (also known as brachyrachia or spondylometaphyseal dysplasia Kozlowski type [MIM:118452]), and metatropic dysplasia (MIM:156530) (also called metatropic dwarfism or parastremmatic dwarfism [MIM:168400]). These bone dysplasia mutants are characterized by severe dwarfism, kyphoscoliosis, distortion and bowing of the extremities, and contractures of the large joints. These diseases are characterized by a combination of decreased bone density, bowing of the long bones, platyspondyly, and striking irregularities of endochondral ossification with areas of calcific stippling and streaking in radiolucent epiphyses, metaphyses, and apophyses. In this review, we discuss the potential effect of the mutation on the regulation of TRPV4 functions, which are related to human diseases through deviated function. In particular, we emphasize how the constitutive active TRPV4 mutant affects endochondral ossification with a reduced number of hypertrophic chondrocytes and the presence of cartilage islands within the zone of primary mineralization. In addition, we summarize current knowledge about the role of TRPV4 in the pathogenesis of several diseases.

  6. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease

    PubMed Central

    2017-01-01

    Pathogens often inhabit the body asymptomatically, emerging to cause disease in response to unknown triggers. In the bladder, latent intracellular Escherichia coli reservoirs are regarded as likely origins of recurrent urinary tract infection (rUTI), a problem affecting millions of women worldwide. However, clinically plausible triggers that activate these reservoirs are unknown. Clinical studies suggest that the composition of a woman’s vaginal microbiota influences her susceptibility to rUTI, but the mechanisms behind these associations are unclear. Several lines of evidence suggest that the urinary tract is routinely exposed to vaginal bacteria, including Gardnerella vaginalis, a dominant member of the vaginal microbiota in some women. Using a mouse model, we show that bladder exposure to G. vaginalis triggers E. coli egress from latent bladder reservoirs and enhances the potential for life-threatening outcomes of the resulting E. coli rUTI. Transient G. vaginalis exposures were sufficient to cause bladder epithelial apoptosis and exfoliation and interleukin-1-receptor-mediated kidney injury, which persisted after G. vaginalis clearance from the urinary tract. These results support a broader view of UTI pathogenesis in which disease can be driven by short-lived but powerful urinary tract exposures to vaginal bacteria that are themselves not “uropathogenic” in the classic sense. This “covert pathogenesis” paradigm may apply to other latent infections, (e.g., tuberculosis), or for diseases currently defined as noninfectious because routine culture fails to detect microbes of recognized significance. PMID:28358889

  7. Rechargeable Batteries with High Energy Storage Activated by In-situ Induced Fluorination of Carbon Nanotube Cathode

    PubMed Central

    Cui, Xinwei; Chen, Jian; Wang, Tianfei; Chen, Weixing

    2014-01-01

    High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the reversible fluorination/defluorination reactions and lithium-ion storage/release at the CNTA paper cathodes, resulting in a dual-storage mechanism. The rechargeable battery with this dual-storage mechanism demonstrated a maximum discharging capacity of 2174 mAh gcarbon−1 and a specific energy of 4113 Wh kgcarbon−1 with good cycling performance. PMID:24931036

  8. Real-Time Control of Biological Motor Activity using Graphene-polymer Hybrid Bioenergy Storage Device

    NASA Astrophysics Data System (ADS)

    Lee, Dong; Byun, Kyung-Eun; Choi, Dong; Kim, Eunji; Kim, Daesan; Seo, David; Yang, Heejun; Seo, Sunae; Hong, Seunghun; Hybrid Nanodevice Lab Team; Samsung Research Park Team

    2013-03-01

    Biological motors have been drawing an attention as a key component for highly efficient nanomechanical systems. For such applications, many researchers have tried to control the activity of motor proteins through various methods such as microfluidics or UV-active compounds. However, these methods have some limitations such as the incapability of controlling local biomotor activity and a slow response rate. Herein, we developed a graphene-polymer hybrid nanostructure-based bioenergy storage device which enables the real-time control of biomotor activity. In this strategy, graphene layers functionalized with amine groups were utilized as a transparent electrode supporting the motility of biomotors. And conducting polymer patterns doped with adenosine triphosphate (ATP) were electrically deposited on the graphene and utilized for the fast release of ATP by electrical stimuli through the graphene. Such controlled release of ATP allowed us to control the motility of actin filaments propelled by myosin biomotors in real time. This strategy should enable integrated nanodevices for the real-time control of biological motors to the nanodevices, which can be a significant stepping stone toward hybrid nanomechanical systems based on motor proteins.

  9. Activation of glycolysis and apoptosis in glycogen storage disease type Ia.

    PubMed

    Sun, Baodong; Li, Songtao; Yang, Liu; Damodaran, Tirupapuliyur; Desai, Dev; Diehl, Anna Mae; Alzate, Oscar; Koeberl, Dwight D

    2009-08-01

    The deficiency of glucose-6-phosphatase (G6Pase) underlies glycogen storage disease type Ia (GSD-Ia, von Gierke disease; MIM 232200), an autosomal recessive disorder of metabolism associated with life-threatening hypoglycemia, growth retardation, renal failure, hepatic adenomas, and hepatocellular carcinoma. Liver involvement includes the massive accumulation of glycogen and lipids due to accumulated glucose-6-phosphate and glycolytic intermediates. Proteomic analysis revealed elevations in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and other enzymes involved in glycolysis. GAPDH was markedly increased in murine G6Pase-deficient hepatocytes. The moonlighting role of GAPDH includes increasing apoptosis, which was demonstrated by increased TUNEL assay positivity and caspase 3 activation in the murine GSD-Ia liver. These analyses of hepatic involvement in GSD-Ia mice have implicated the induction of apoptosis in the pathobiology of GSD-Ia.

  10. Active Damping of the E-P Instability at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, R.J.; Assadi, S.; Byrd, J.M.; Deibele, C.E.; Henderson, S.D.; Lee, S.Y.; McCrady, R.C.; Pivi, M.F.T.; Plum, M.A.; Walbridge, S.B.; Zaugg, T.J.; /Los Alamos

    2008-03-17

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  11. Active damping of the e-p instability at the Los Alamos Proton Storage Ring

    SciTech Connect

    Macek, R. J.; Assadi, S.; Byrd, J. M.; Deibele, C. E.; Henderson, S. D.; Lee, S. Y.; McCrady, R. C.; Pivi, M. F. T.; Plum, M. A.; Walbridge, S. B.; Zaugg, T. J.

    2007-12-15

    A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). The feedback system configuration, setup procedures, and optimization of performance are described. Results of several experimental tests of system performance are presented including observations of instability threshold improvement and grow-damp experiments, which yield estimates of instability growth and damping rates. A major effort was undertaken to identify and study several factors limiting system performance. Evidence obtained from these tests suggests that performance of the prototype was limited by higher instability growth rates arising from beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback.

  12. Antioxidant activity of membrane-fractionated coffee extracts in dependence of the storage conditions

    NASA Astrophysics Data System (ADS)

    Mitev, D.; Peshev, D.; Peev, G.; Peeva, L.

    2016-10-01

    Present paper aims at one of the important aspects of the application of products with antioxidant activity: namely the preservation and change of their properties during the storage in different conditions, as well as their reliable characterisation. The tests of antioxidant properties were conducted with membrane-separated coffee extracts, isolated using a “Microdyn Nadir NP030P” type of commercial nanofiltration membrane (30% retention of NaCl; MWCO∼400). Prepared coffee permeates and retentates were stored 0÷10 days in cool/warm conditions, with/without air access and at different illumination conditions. The kinetics of content changes was evaluated according to Folin-Ciocalteu method of total phenolic/reducing content determination.

  13. Endotoxin Induces Fibrosis in Vascular Endothelial Cells through a Mechanism Dependent on Transient Receptor Protein Melastatin 7 Activity

    PubMed Central

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A.; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial­to­mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  14. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.

  15. Toluene diisocyanate exposure induces airway inflammation of bronchial epithelial cells via the activation of transient receptor potential melastatin 8

    PubMed Central

    Kim, Joo-Hee; Jang, Young-Sook; Jang, Seung-Hun; Jung, Ki-Suck; Kim, Seung-Hyun; Ye, Young-Min; Park, Hae-Sim

    2017-01-01

    Toluene diisocyanate (TDI) is the most important cause of occupational asthma (OA), and various pathogenic mechanisms have been suggested. Of these mechanisms, neurogenic inflammation is an important inducer of airway inflammation. Transient receptor potential melastatin 8 (TRPM8) is a well-established cold-sensing cation channel that is expressed in both neuronal cells and bronchial epithelial cells. A recent genome-wide association study of TDI-exposed workers found a significant association between the phenotype of TDI-induced OA and the single-nucleotide polymorphism rs10803666, which has been mapped to the TRPM8 gene. We hypothesized that TRPM8 located in airway epithelial cells may be involved in the pathogenic mechanisms of TDI-induced OA and investigated its role. Bronchial epithelial cells were treated with TDI in a dose- and time-dependent manner. The expression levels of TRPM8 mRNA and protein were determined by quantitative real-time polymerase chain reaction and western blotting. TDI-induced morphological changes in the cells were evaluated by immunocytochemistry. Alterations in the transcripts of inflammatory cytokines were examined in accordance with TRPM8 activation by TDI. TRPM8 expression at both the mRNA and protein levels was enhanced by TDI in airway epithelial cells. TRPM8 activation by TDI led to significant increases in the mRNA of interleukin (IL)-4, IL-13, IL-25 and IL-33. The increased expression of the cytokine genes by TDI was partly attenuated after treatment with a TRPM8 antagonist. TDI exposure induces increased expression of TRPM8 mRNA in airway epithelial cells coupled with enhanced expression of inflammatory cytokines, suggesting a novel role of TRPM8 in the pathogenesis of TDI-induced OA. PMID:28255167

  16. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors.

    PubMed

    Steiner, Alexandre A; Turek, Victoria F; Almeida, Maria C; Burmeister, Jeffrey J; Oliveira, Daniela L; Roberts, Jennifer L; Bannon, Anthony W; Norman, Mark H; Louis, Jean-Claude; Treanor, James J S; Gavva, Narender R; Romanovsky, Andrej A

    2007-07-11

    An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T(b) of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T(b) nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T(b) response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T(b).

  17. Identification of Methanoculleus spp. as Active Methanogens during Anoxic Incubations of Swine Manure Storage Tank Samples

    PubMed Central

    Barret, Maialen; Gagnon, Nathalie; Kalmokoff, Martin L.; Topp, Edward; Verastegui, Yris; Brooks, Stephen P. J.; Matias, Fernando; Neufeld, Josh D.

    2013-01-01

    Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-13C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of 13C into DNA was detectable at in situ acetate concentrations (∼7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the 13C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis. PMID:23104405

  18. Volatile emission after controlled atmosphere storage of Mondial Gala apples (Malus domestica): relationship to some involved enzyme activities.

    PubMed

    Lara, Isabel; Echeverría, Gemma; Graell, Jordi; López, María Luisa

    2007-07-25

    Mondial Gala apples were harvested at commercial maturity and stored at 1 degrees C under either air or controlled atmosphere (CA) conditions (2 kPa O2/2 kPa CO2 and 1 kPa O2/1 kPa CO2), where they remained for 3 or 6 months. Data on emission of selected volatile esters, alcohol precursors, and activity of some aroma-related enzymes in both peel and pulp tissues were obtained during subsequent shelf life of fruit and submitted to multivariate analysis procedures. CA storage caused a decrease in the emission of volatile esters in comparison to storage in air. Results suggest that lessened ester production was the consequence of modifications in activities of alcohol o-acyltransferase (AAT) and lipoxygenase (LOX) activities. For short-term storage, inhibition of lipoxygenase activity in CA stored fruit possibly led to a shortage of lipid-derived substrates, resulting in decreased production of volatile esters in spite of substantial ester-forming capacity that allowed for some recovery of fruit capacity for ester emission during the shelf life. For long-term storage, strong inhibition of AAT activity in CA stored fruit in combination with low LOX activities resulted in unrecoverable diminution of biosynthesis of volatile esters.

  19. Hydrolytic activity and ultrastructural changes in fruit skins from two prickly pear (Opuntia sp.) varieties during storage.

    PubMed

    Carrillo-López, Armando; Cruz-Hernández, Andrés; Cárabez-Trejo, Alfonso; Guevara-Lara, Fidel; Paredes-López, Octavio

    2002-03-13

    The activity of four cell wall hydrolases, pectinmethylesterase (PME), polygalacturonase (PG), cellulase, and beta-galactosidase (beta-Gal), was measured in fruit skins of two prickly pear varieties, Naranjona and Charola, during storage at 18 degrees C and 85-95% relative humidity (RH). In Naranjona (Opuntia ficus indica), of short postharvest life (ca. 2 weeks), PG, cellulase, and beta-Gal increased their activity more than twice, whereas PME activity tended to increase only slightly during storage. In Charola (Opuntia sp.), of long postharvest life (ca. 2 months), only beta-Gal increased its activity (77%), showing a high PG activity from the beginning of storage. Transmission electron microscopy observations showed middle lamella dissolution at the end of storage for both varieties. Naranjona showed a higher cell wall enzymatic activity than Charola, in agreement with their storability differences. Our results suggest that PG and cellulase in Naranjona and PG and beta-Gal in Charola are the main enzymes responsible for cell wall hydrolytic and ultrastructural changes in skins of stored prickly pears.

  20. Mold-inhibitory activity of different yeast species during airtight storage of wheat grain.

    PubMed

    Adel Druvefors, Ulrika; Schnürer, Johan

    2005-02-01

    The yeast Pichia anomala J121 inhibits spoilage by Penicillium roqueforti in laboratory and pilot studies with high-moisture wheat in malfunctioning airtight storage. We tested the biocontrol ability of an additional 57 yeast species in a grain mini silo system. Most yeast species grew to CFU levels comparable to that of P. anomala J121 after 14 days of incubation (>10(6) CFU g(-1)). Of the 58 species, 38 (63 strains) had no mold-inhibitory effects (Pen. roqueforti levels >10(5) CFU g(-1)). Among these were 11 species (18 strains) that did not grow on the wheat grain. Several of the non-inhibiting yeast species have previously been reported as biocontrol agents in other postharvest environments. Weak inhibitory activity, reducing Pen. roqueforti levels to between 10(4) and 10(5) CFU g(-1), was observed with 11 species (12 strains). Candida silvicola and Pichia guillermondii reduced Pen. roqueforti to <10(4) CFU g(-1). Candida fennica, Candida pelliculosa, Candida silvicultrix, P. anomala (29 strains), Pichia burtonii, Pichia farinosa and Pichia membranifaciens strongly inhibited Pen. roqueforti (<10(3) CFU g(-1)) in the mini silos, but none had higher biocontrol activity than P. anomala strain J121. This report is the first of biocontrol activity of C. fennica and C. silvicultrix. The ability of 27 yeast species to grow to high CFU values without inhibiting mold growth suggests that nutrient competition may not be the main mode of action of P. anomala J121.

  1. Transient induction of photolyase activity in arrested frog cells in response to a short-wave ultraviolet segment of simulated ''sunlight''

    SciTech Connect

    Chao, C.C.; Lin-Chao, S.

    1987-05-29

    Induction of photolyase activity was studied in cultured frog cells using clonogenic assays. Exposure of arrested cells to a pre-irradiation (90% survival) of 254 nm ultraviolet light resulted in a transient enhancement of photolyase activity. Cells expressed a decreased level of photolyase activity in response to an equitoxic fluence of simulated sunlight wavelengths 280-310 nm. However, no significant increase of enzyme activity was detected in cells following treatment with sunlight wavelengths 310-330 nm. In addition, this process depends on newly biosynthesized protein(s).

  2. Changes in calpain and calpastatin activities of osmotically dehydrated bovine muscle during storage after treatment with calcium.

    PubMed

    Gerelt, B; Rusman, H; Nishiumi, T; Suzuki, A

    2005-05-01

    Calpain and calpastatin activities were investigated in calcium-treated beef after osmotic dehydration. Dehydrated beef was soaked in 150 mM calcium chloride solution for 3 h, and then stored for 48 h at 3-4 °C. The untreated sample (control) was soaked in deionized water for 3 h instead of calcium chloride solution, after osmotic dehydration. The increase and decrease in the relative activity of crude calpain were observed in the untreated and the calcium-treated meat, respectively, during the storage. When the crude calpains were subjected to DEAE-Sephacel column chromatography, it was found that μ-calpain activity decreased rapidly during the storage in the untreated meat, whereas there was almost no change in the activity of m-calpain during the storage. The decrease of calpastatin activity was moderate compared with the decrease of μ-calpain activity. In the calcium chloride-treated meat, however, no μ-calpain nor calpastatin activities was detectable after 48 h at cold-room temperature, and m-calpain activity after 48 h had decreased to 6.1% of its activity immediately after thawing. It was concluded that 150 mM calcium chloride treatment after osmotic dehydration was sufficient to introduce calcium ions into the meat. In the presence of sufficient calcium, autolysis of calpains and proteolytic degradation of calpastatin, which eventually related to the rate of decrease in calpain and calpastatin activities, clearly seem to be related to a decrease in meat toughness.

  3. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-02-01

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.

  4. Decreased Vesicular Storage and Aldehyde Dehydrogenase Activity in Multiple System Atrophy

    PubMed Central

    Goldstein, David S.; Sullivan, Patricia; Holmes, Courtney; Kopin, Irwin J.; Sharabi, Yehonatan; Mash, Deborah C.

    2015-01-01

    Background Parkinson disease (PD) and multiple system atrophy (MSA) share some neuropathologic findings (nigrostriatal dopaminergic lesion, alpha-synuclein deposition) but not others (Lewy bodies in PD, glial cytoplasmic inclusions in MSA). In PD evidence has accrued for a vesicular storage defect and aldehyde dehydrogenase (ALDH) inhibition in residual dopaminergic terminals, resulting in accumulation of the toxic dopamine (DA) metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). In this study we asked whether MSA entails a similar abnormal neurochemical pattern. Methods DA and its main neuronal metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE) and its main neuronal metabolite 3,4-dihydroxyphenylglycol (DHPG), the catecholamine precursor DOPA, and DOPAL were measured in striatal and frontal cortical tissue from patients with pathologically proven end-stage MSA (N=15), sporadic PD (N=17), and control subjects (N=18). Results Compared to the control group, the MSA and PD groups had similarly decreased putamen DA (by 96% and 93%, p<0.0001), DOPAC (97% and 95%, p<0.0001), NE (91% and 74%, p<0.0001), and DHPG (81% and 74%, p<0.0001). In the MSA and PD groups, ratios of DOPAL:DA were 2.3 and 3.5 times control and DHPG:NE 3.1 and 2.6 times control, while DOPAC:DOPAL ratios were decreased by 61% and 74%. In both diseases cortical NE and DHPG were decreased, while DA and DOPAC were not. Conclusions MSA and PD entail a catecholamine metabolic profile indicating impaired vesicular storage, decreased ALDH activity, and DOPAL buildup, which may be part of a common pathway in catecholamine neuronal death. Targeting this pathway by interfering with catecholaldehyde production or effects constitutes a novel treatment approach. PMID:25829070

  5. Characterization of the surface changes during the activation process of erbium/erbium oxide for hydrogen storage.

    SciTech Connect

    Zavadil, Kevin Robert; Snow, Clark Sheldon; Ohlhausen, James Anthony; Brumbach, Michael Todd

    2010-10-01

    Erbium is known to effectively load with hydrogen when held at high temperature in a hydrogen atmosphere. To make the storage of hydrogen kinetically feasible, a thermal activation step is required. Activation is a routine practice, but very little is known about the physical, chemical, and/or electronic processes that occur during Activation. This work presents in situ characterization of erbium Activation using variable energy photoelectron spectroscopy at various stages of the Activation process. Modification of the passive surface oxide plays a significant role in Activation. The chemical and electronic changes observed from core-level and valence band spectra will be discussed along with corroborating ion scattering spectroscopy measurements.

  6. Transient Growth Theory Prediction of Optimal Placing of Passive and Active Flow Control Devices for Separation Delay in LPT Airfoils

    NASA Technical Reports Server (NTRS)

    Tumin, Anatoli; Ashpis, David E.

    2003-01-01

    An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.

  7. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  8. CALCULATING ENERGY STORAGE DUE TO TOPOLOGICAL CHANGES IN EMERGING ACTIVE REGION NOAA AR 11112

    SciTech Connect

    Tarr, Lucas; Longcope, Dana

    2012-04-10

    The minimum current corona model provides a way to estimate stored coronal energy using the number of field lines connecting regions of positive and negative photospheric flux. This information is quantified by the net flux connecting pairs of opposing regions in a connectivity matrix. Changes in the coronal magnetic field, due to processes such as magnetic reconnection, manifest themselves as changes in the connectivity matrix. However, the connectivity matrix will also change when flux sources emerge or submerge through the photosphere, as often happens in active regions. We have developed an algorithm to estimate the changes in flux due to emergence and submergence of magnetic flux sources. These estimated changes must be accounted for in order to quantify storage and release of magnetic energy in the corona. To perform this calculation over extended periods of time, we must additionally have a consistently labeled connectivity matrix over the entire observational time span. We have therefore developed an automated tracking algorithm to generate a consistent connectivity matrix as the photospheric source regions evolve over time. We have applied this method to NOAA Active Region 11112, which underwent a GOES M2.9 class flare around 19:00 on 2010 October 16th, and calculated a lower bound on the free magnetic energy buildup of {approx}8.25 Multiplication-Sign 10{sup 30} erg over 3 days.

  9. Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity

    PubMed Central

    Khalifeh-Soltani, Amin; Gupta, Deepti; Ha, Arnold; Iqbal, Jahangir; Hussain, Mahmood; Podolsky, Michael J.

    2016-01-01

    The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2–dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing. PMID:27812539

  10. Enhanced methane storage of chemically and physically activated carbide-derived carbon

    NASA Astrophysics Data System (ADS)

    Yeon, Sun-Hwa; Osswald, Sebastian; Gogotsi, Yury; Singer, Jonathan P.; Simmons, Jason M.; Fischer, John E.; Lillo-Ródenas, María A.; Linares-Solano, Ángel

    Carbide-derived carbons (CDCs) produced by chlorination of carbides offer great potential for precise pore size control at the atomic level, making them attractive candidates for energy storage media. CDCs activated with CO 2 or KOH possess distinct improvements in porosity, displaying specific surface areas above 3000 m 2 g -1 and pore volumes above 1.3 cm 3 g -1. These correspond to gravimetric methane uptake of 16 wt% at 35 bar and 25 °C, close to the currently best reported material PCN-14, a metal-organic framework (MOF), at 35 bar and 17 °C or KOH activated anthracite at 35 bar and 25 °C. The best excess gravimetric methane uptake is obtained with a TiC-derived CDC activated with CO 2 at 975 °C for 2 h, namely a very large surface area of 3360 m 2 g -1 resulting in 18.5 wt% at 25 °C and 60 bar. To obtain realistic volumetric methane capacity, the packing density of completely dried CDC was measured, from which we obtain excess capacity of 145 v(STP) v -1 from CDC activated with CO 2 at 875 °C for 8 h, 81% of the DOE target (180 v(STP) v -1) at 35 bar and 25 °C. From small-angle X-ray scattering (SAXS) measurements, pore radii of gyration (R g) between 0.5 nm and 1 nm are determined. Temperature-dependent methane isotherms show that the isosteric heat of adsorption reaches 24 kJ mol -1 at the initial stage of low loading.

  11. Study on the interaction of ions of transient metals with ascorbic acid in the presence of different scavengers of active oxygen species in SOS chromotest.

    PubMed

    Marczewska, Jadwiga; Koziorowska, Jadwiga H

    2002-03-01

    SOS chromotest was employed to study the interaction of ascorbic acid with free ions of transient metals in the presence of added catalase, superoxide dismutase or D-mannitol. Catalase diminished the genotoxic activity of the mixture of ascorbic acid with copper ions in E. coli strains PQ37 and PQ 300, but genotoxicity of this mixture was not suppressed by superoxide dismutase and D-mannitol. The results suggest that copper ions diminished the content of peroxide generated by ascorbic acid.

  12. Dependence of fructooligosaccharide content on activity of fructooligosaccharide-metabolizing enzymes in yacon (Smallanthus sonchifolius) tuberous roots during storage.

    PubMed

    Narai-Kanayama, A; Tokita, N; Aso, K

    2007-08-01

    Tuberous roots of yacon (Smallanthus sonchifolius) accumulate about 10%, on a fresh weight basis, of inulin-type fructooligosacharides (FOSs), known as a food ingredient with various healthy benefits. However, we have a great difficulty to ensure these benefits because FOSs with a lower degree of polymerization (DP) decreased remarkably, and fructose increased when the tuberous roots were stored after harvesting even under previously recommended storage conditions of low temperature with high humidity. In the present study, to elucidate the involvement of FOS-metabolizing enzymes in FOS reduction during storage at 90% relative humidity and 8 degrees C, we extracted a crude protein from yacon tuberous roots and measured the activities of invertase (beta-fructofuranosidase, EC 3.2.1.26), sucrose:sucrose 1-fructosyltransferase (1-SST, EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (1-FFT, EC 2.4.1.100), and fructan 1-exohydrolase (1-FEH, EC 3.2.1.80). The enzyme activities acting on sucrose, both invertase and 1-SST, were weakened after storage for a month. In addition, the activity of 1-FEH acting on short FOSs such as 1-kestose (GF(2)) and 1-nystose (GF(3)) was higher than that of 1-FFT. These results suggest that the continuous decline in FOSs of low DP during storage was dependent mainly on the 1-FEH activity. On the other hand, FOSs with a DP of >or= 9 only slightly decreased in stored yacon tuberous roots during storage, though distinct 1-FEH activity was observed in vitro toward a high-DP inulin-type substrate, indicating that highly polymerized FOSs content was unlikely to be closely connected with the 1-FEH activity.

  13. Induction conductivity and natural gamma logs collected in 15 wells at Camp Stanley Storage Activity, Bexar County, Texas

    USGS Publications Warehouse

    Stanton, Gregory P.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Camp Stanley Storage Activity conducted electromagnetic induction conductivity and natural gamma logging of 15 selected wells on the Camp Stanley Storage Activity, located in northern Bexar County, Texas, during March 28-30, 2005. In late 2004, a helicopter electromagnetic survey was flown of the Camp Stanley Storage Activity as part of a U.S. Geological Survey project to better define subsurface geologic units, the structure, and the catchment area of the Trinity aquifer. The electromagnetic induction conductivity and natural gamma log data in this report were collected to constrain the calculation of resistivity depth sections and to provide subsurface controls for interpretation of the helicopter electromagnetic data collected for the Camp Stanley Storage Activity. Logs were recorded digitally while moving the probe in an upward direction to maintain proper depth control. Logging speed was no greater than 30 feet per minute. During logging, a repeat section of at least 100 feet was recorded to check repeatability of log responses. Several of the wells logged were completed with polyvinyl chloride casing that can be penetrated by electromagnetic induction fields and allows conductivity measurement. However, some wells were constructed with steel centralizers and stainless steel screen that caused spikes on both conductivity and resulting resistivity log curves. These responses are easily recognizable and appear at regular intervals on several logs.

  14. The Effect of Long-Term Storage on the Physiochemical and Bactericidal Properties of Electrochemically Activated Solutions

    PubMed Central

    Robinson, Gareth; Thorn, Robin; Reynolds, Darren

    2013-01-01

    Electrochemically activated solutions (ECAS) are generated by electrolysis of NaCl solutions, and demonstrate broad spectrum antimicrobial activity and high environmental compatibility. The biocidal efficacy of ECAS at the point of production is widely reported in the literature, as are its credentials as a “green biocide.” Acidic ECAS are considered most effective as biocides at the point of production and ill suited for extended storage. Acidic ECAS samples were stored at 4 °C and 20 °C in glass and polystyrene containers for 398 days, and tested for free chlorine, pH, ORP and bactericidal activity throughout. ORP and free chlorine (mg/L) in stored ECAS declined over time, declining at the fastest rate when stored at 20 °C in polystyrene and at the slowest rate when stored at 4 °C in glass. Bactericidal efficacy was also affected by storage and ECAS failed to produce a 5 log10 reduction on five occasions when stored at 20 °C. pH remained stable throughout the storage period. This study represents the longest storage evaluation of the physiochemical parameters and bactericidal efficacy of acidic ECAS within the published literature and reveals that acidic ECAS retain useful bactericidal activity for in excess of 12 months, widening potential applications. PMID:23263673

  15. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid (PLA) and chitosan were incorporated with AIT and coated on one side of the film. T...

  16. Associations between active shooter incidents and gun ownership and storage among families with young children in the United States.

    PubMed

    Morrissey, Taryn W

    2017-04-04

    The presence of firearms and their unsafe storage in the home can increase risk of firearm-related death and injury, but public opinion suggests that firearm ownership is a protective factor against gun violence. This study examined the effects of a recent nearby active shooter incident on gun ownership and storage practices among families with young children. A series of regression models, with data from the nationally representative Early Childhood Longitudinal Study-Birth Cohort merged with the FBI's Active Shooter Incidents data collected in 2003-2006, were used to examine whether household gun ownership and storage practices differed in the months prior to and following an active shooter incident that occurred anywhere in the United States or within the same state. Approximately one-fifth of young children lived in households with one or more guns; of these children, only two-thirds lived in homes that stored all guns in locked cabinets. Results suggest that the experience of a recent active shooter incident was associated with an increased likelihood of storing all guns locked, with the magnitude dependent on the temporal and geographic proximity of the incident. The severity of the incident, defined as the number of fatalities, predicted an increase in storing guns locked. Findings suggest that public shootings change behaviors related to firearm storage among families with young children.

  17. Effect of tea polyphenols on lipid peroxidation and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit during cold storage.

    PubMed

    Chen, Wenrong; Zhang, Zhenzhen; Shen, Yanwen; Duan, Xuewu; Jiang, Yuemin

    2014-10-20

    To understand the potential of application of tea polyphenols to the shelf life extension and quality maintenance of litchi (Litchi chinensis Sonn.) fruit, the fruits were dipped into a solution of 1% tea phenols for 5 min before cold storage at 4 °C. Changes in browning index, contents of anthocyanins and phenolic compounds, superoxide dismutase (SOD) and peroxidase (POD) activities, O2.- production rate and H2O2 content, levels of relative leakage rate and lipid peroxidation, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were measured after 0, 10, 20 and 30 days of cold storage. The results showed that application of tea polyphenols markedly delayed pericarp browning, alleviated the decreases in contents of total soluble solids (TSS) and ascorbic acid, and maintained relatively high levels of total phenolics and anthocyanins of litchi fruit after 30 days of cold storage. Meanwhile, the treatment reduced the increases in relative leakage rate and lipid peroxidation content, delayed the increases in both O2.- production rate and H2O2 contents, and increased SOD activity but reduced POD activity throughout this storage period. These data indicated that the delayed pericarp browning of litchi fruit by the treatment with tea polyphenols could be due to enhanced antioxidant capability, reduced accumulations of reactive oxygen species and lipid peroxidation, and improved membrane integrity.

  18. Effects of Liquid Storage and Cryopreservation on Platelet Surface Glycoproteins, Light Scatter, and Procoagulant Activity

    DTIC Science & Technology

    1996-05-01

    determination of pre-transfusion plateletpheresis product quality. INTRODUCTION The availability of monoclonal antibodies directed against well...Testing plateletpheresis products with a panel of antibodies will provide a comprehensive "picture" allowing assessment of the overall quality...methods of plateletpheresis product storage: conventional room temperature liquid storage and cryopreservation with dimethylsulfoxide as the

  19. A fuel cell energy storage system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  20. 76 FR 5613 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Storage and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ...; Storage and Handling of Anhydrous Ammonia ACTION: Notice. SUMMARY: The Department of Labor (DOL) hereby... collection request (ICR) titled, ``Storage and Handling of Anhydrous Ammonia,'' to the Office of Management... Anhydrous Ammonia information collection help ensure that employers use only properly designed and...

  1. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    PubMed

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  2. Long term storage of Pleurotus ostreatus and Trametes versicolor isolates using different cryopreservation techniques and its impact on laccase activity.

    PubMed

    Eichlerová, Ivana; Homolka, Ladislav; Tomšovský, Michal; Lisá, Ludmila

    2015-12-01

    The strain Pleurotus ostreatus Florida f6, its 45 basidiospore-derived isolates (both monokaryons and dikaryons prepared in our laboratory), Trametes versicolor strain CCBAS 614 and 22 other T. versicolor isolates obtained from the sporocarps collected in distant localities were successfully preserved for 12 y using perlite and straw cryopreservation protocols. All tested isolates survived a 12-year storage in liquid nitrogen (LN) and their laccase production and Poly B411 decolorization capacity was preserved. Also mycelium extension rate and the types of colony appearance of individual isolates remained unchanged. Different cryopreservation techniques were also tested for the short time (24 h) and the long time (6 m) storage of the culture liquid with extracellular laccase produced by T. versicolor strain CCBAS 614. The results showed that 10 % glycerol was the most suitable cryopreservant. The absence of the cryopreservant did not cause high loss of laccase activity in the samples; the presence of DMSO (5 or 10 %) in LN-stored samples caused mostly a decrease of laccase activity. For the preservation of laccase activity in the liquid culture the storage in the freezer at -80 °C is more convenient than the storage in liquid nitrogen.

  3. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage.

    PubMed

    Tan, Xiao-Fei; Liu, Shao-Bo; Liu, Yun-Guo; Gu, Yan-Ling; Zeng, Guang-Ming; Hu, Xin-Jiang; Wang, Xin; Liu, Shao-Heng; Jiang, Lu-Hua

    2017-03-01

    There is a growing interest of the scientific community on production of activated carbon using biochar as potential sustainable precursors pyrolyzed from biomass wastes. Physical activation and chemical activation are the main methods applied in the activation process. These methods could have significantly beneficial effects on biochar chemical/physical properties, which make it suitable for multiple applications including water pollution treatment, CO2 capture, and energy storage. The feedstock with different compositions, pyrolysis conditions and activation parameters of biochar have significant influences on the properties of resultant activated carbon. Compared with traditional activated carbon, activated biochar appears to be a new potential cost-effective and environmentally-friendly carbon materials with great application prospect in many fields. This review not only summarizes information from the current analysis of activated biochar and their multiple applications for further optimization and understanding, but also offers new directions for development of activated biochar.

  4. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  5. The influence of small-mammal burrowing activity on water storage at the Hanford Site

    SciTech Connect

    Landeen, D.S.

    1994-12-31

    This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator). Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil.

  6. Review of ALARA plan for activities at the 105 K-East fuel storage basin

    SciTech Connect

    Vargo, G.J.; Durham, J.S.; Hickey, E.E.; Stansbury, P.S.; Cicotte, G.R.

    1994-09-01

    As part of its ongoing efforts to reduce doses to workers to levels as low as reasonably achievable (ALARA), Westinghouse Hanford Company (WHC) tasked the Health Protection Department of the Pacific Northwest Laboratory (PNL) to review operations at the 105 K-East Fuel Storage Basin (105 K-East). This review included both routine operations and a proposed campaign to encapsulate N-Reactor fuel stored there. This report summarizes the results of PNL`s reviews of policy, procedures, and practices for operations at 105 K-East as well as an evaluation of the major sources of occupational radiation exposures. Where possible, data previously collected by WHC and its predecessors were used. In addition, PNL staff developed a three-dimensional model of the radiological environment within 105 K-East to assess the relative contributions of different radiation sources to worker dose and to provide a decision tool for use in evaluating alternative methods of dose rate reduction. The model developed by PNL indicates that for most areas in the basin the primary source of occupational radiation exposure is the contaminated concrete surfaces of the basin near the waterline. Basin cooling water piping represents a significant source in a number of areas, particularly the Technical Viewing Pit. This report contains specific recommendations to reduce the impact of these sources of occupational radiation exposure in 105 K-East. Other recommendations to reduce doses to workers during activities such as filter changes and filter sampling are also included.

  7. Yap5 Is an Iron-Responsive Transcriptional Activator That Regulates Vacuolar Iron Storage in Yeast▿

    PubMed Central

    Li, Liangtao; Bagley, Dustin; Ward, Diane M.; Kaplan, Jerry

    2008-01-01

    The transporter Ccc1 imports iron into the vacuole, which is the major site of iron storage in fungi and plants. CCC1 mRNA is destabilized under low-iron conditions by the binding of Cth1 and Cth2 to the 3′ untranslated region (S. Puig, E. Askeland, and D. J. Thiele, Cell 120:99-110, 2005). Here, we show that the transcription of CCC1 is stimulated by iron through a Yap consensus site in the CCC1 promoter. We identified YAP5 as being the iron-sensitive transcription factor and show that a yap5Δ strain is sensitive to high iron. Green fluorescent protein-tagged Yap5 is localized to the nucleus and occupies the CCC1 promoter independent of the iron concentration. Yap5 contains two cysteine-rich domains, and the mutation of the cysteines to alanines in each of the domains affects the transcription of CCC1 but not DNA binding. The fusion of the Yap5 cysteine-containing domains to a GAL4 DNA binding domain results in iron-sensitive GAL1-lacZ expression. Iron affects the sulfhydryl status of Yap5, which is indicative of the generation of intramolecular disulfide bonds. These results show that Yap5 is an iron-sensing transcription factor and that iron regulates transcriptional activation. PMID:18070921

  8. The influence of small mammal burrowing activity on water storage at the Hanford Site

    SciTech Connect

    Landeen, D.S.

    1994-09-01

    The amount and rate at which water may penetrate a protective barrier and come into contact with buried radioactive waste is a major concern. Because burrowing animals eventually will reside on the surface of any protective barrier, the effect these burrow systems may have on the loss or retention of water needs to be determined. The first section of this document summarizes the known literature relative to small mammals and the effects that burrowing activities have on water distribution, infiltration, and the overall impact of burrows on the ecosystem. Topics that are summarized include burrow air pressures, airflow, burrow humidity, microtopography, mounding, infiltration, climate, soil evaporation, and discussions of large pores relative to water distribution. The second section of this document provides the results of the study that was conducted at the Hanford Site to determine what effect small mammal burrows have on water storage. This Biointrusion task is identified in the Permanent Isolation Surface Barrier Development Plan in support of protective barriers. This particular animal intrusion task is one part of the overall animal intrusion task identified in Animal Intrusion Test Plan.

  9. Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast.

    PubMed

    Li, Liangtao; Bagley, Dustin; Ward, Diane M; Kaplan, Jerry

    2008-02-01

    The transporter Ccc1 imports iron into the vacuole, which is the major site of iron storage in fungi and plants. CCC1 mRNA is destabilized under low-iron conditions by the binding of Cth1 and Cth2 to the 3' untranslated region (S. Puig, E. Askeland, and D. J. Thiele, Cell 120:99-110, 2005). Here, we show that the transcription of CCC1 is stimulated by iron through a Yap consensus site in the CCC1 promoter. We identified YAP5 as being the iron-sensitive transcription factor and show that a yap5Delta strain is sensitive to high iron. Green fluorescent protein-tagged Yap5 is localized to the nucleus and occupies the CCC1 promoter independent of the iron concentration. Yap5 contains two cysteine-rich domains, and the mutation of the cysteines to alanines in each of the domains affects the transcription of CCC1 but not DNA binding. The fusion of the Yap5 cysteine-containing domains to a GAL4 DNA binding domain results in iron-sensitive GAL1-lacZ expression. Iron affects the sulfhydryl status of Yap5, which is indicative of the generation of intramolecular disulfide bonds. These results show that Yap5 is an iron-sensing transcription factor and that iron regulates transcriptional activation.

  10. Active heat exchange system development for latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Alario, J.; Haslett, R.

    1980-03-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  11. Physiological Control of Exo- and Endoproteolytic Activities in Germinating Wheat and Their Relationship to Storage Protein Hydrolysis 1

    PubMed Central

    Preston, Ken R.; Kruger, James E.

    1979-01-01

    The effects of gibberellic acid, abscisic acid, cycloheximide, actinomycin D, and cordycepin upon exo- and endoproteolytic activities and storage (gluten) protein hydrolysis in germinating wheat and in incubated embryoless wheat seeds have been studied. Early increases in endoproteolytic activity were insensitive to the addition of gibberellic acid and inhibitors of protein and RNA synthesis. Later increases in endoproteolytic activity were enhanced by gibberellic acid, strongly inhibited by abscisic acid and cycloheximide, and partially inhibited by actinomycin D and cordycepin. Increases in exoproteolytic activity were insensitive to the addition of gibberellic acid, abscisic acid, actinomycin D, and cordycepin but were inhibited in whole seeds when cycloheximide was added in the steeping medium. However, cycloheximide did not inhibit increases in exoproteolytic activity when added to embryoless seeds, to germinating whole seeds, or to seeds which had been stored at 4 C for extended periods of time. Comparison of the effects of gibberellic acid, abscisic acid, and inhibitors of protein and RNA synthesis upon storage protein hydrolysis and their effects upon proteolytic activity indicated that storage protein hydrolysis in germinating wheat is controlled by the rate of hormonally induced de novo synthesis of endoproteolytic enzymes. PMID:16660986

  12. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing

    PubMed Central

    Carrasco, Elisa; Calvo, María I.; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C.; Hamblin, Michael R.; Juarranz, Ángeles; Espada, Jesús

    2015-01-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and ageing, but recent findings suggest that can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the hair follicle, a major reservoir of epidermal stem cells, promoting hair growth as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism. PMID:26134949

  13. Changes in grammage, tearing resistance, and water vapor transmission rate of active paper incorporated with Cinnamaldehyde during storage at various temperatures

    NASA Astrophysics Data System (ADS)

    Manuhara, G. J.; Khasanah, L. U.; Utami, R.

    2016-02-01

    Antimicrobial properties of active paper packaging incorporated with cinnamaldehyde and its application in the storage of agricultural products had been studied. However, changes in grammage, tear resistance and water vapor transmission rate (WVTR) of the active paper during storage is not yet known, whereas it is important to provide consideration in application of the active paper. This study aims to determine the changes in those physical properties during storage (20 days) at various temperatures (10, 20, 25, 30, and 40 °C). The grammage and WVTR of the active paper decreased as increase in storage time and temperature, while the tearing resistance increased as storage time. Higher temperature caused slower increase in tearing resistance, but the results showed fluctuation. The results of Arrhenius plot indicated the activation energy (in kJ/mol) of those physical properties, sorted from the highest to the lowest as follows: 53.6 (grammage), 14.8 (WVTR) and 13.8 (tearing resistance).

  14. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles.

    PubMed

    Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme

    2016-04-15

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function.

  15. A repressor activator protein1 homologue from an oleaginous strain of Candida tropicalis increases storage lipid production in Saccharomyces cerevisiae.

    PubMed

    Chattopadhyay, Atrayee; Dey, Prabuddha; Barik, Amita; Bahadur, Ranjit P; Maiti, Mrinal K

    2015-06-01

    The repressor activator protein1 (Rap1) has been studied over the years as a multifunctional regulator in Saccharomyces cerevisiae. However, its role in storage lipid accumulation has not been investigated. This report documents the identification and isolation of a putative transcription factor CtRap1 gene from an oleaginous strain of Candida tropicalis, and establishes the direct effect of its expression on the storage lipid accumulation in S. cerevisiae, usually a non-oleaginous yeast. In silico analysis revealed that the CtRap1 polypeptide binds relatively more strongly to the promoter of fatty acid synthase1 (FAS1) gene of S. cerevisiae than ScRap1. The expression level of CtRap1 transcript in vivo was found to correlate directly with the amount of lipid produced in oleaginous native host C. tropicalis. Heterologous expression of the CtRap1 gene resulted in ∼ 4-fold enhancement of storage lipid content (57.3%) in S. cerevisiae. We also showed that the functionally active CtRap1 upregulates the endogenous ScFAS1 and ScDGAT genes of S. cerevisiae, and this, in turn, might be responsible for the increased lipid production in the transformed yeast. Our findings pave the way for the possible utility of the CtRap1 gene in suitable microorganisms to increase their storage lipid content through transcription factor engineering.

  16. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage.

    PubMed

    Castro-López, C; Sánchez-Alejo, E J; Saucedo-Pompa, S; Rojas, R; Aranda-Ruiz, J; Martínez-Avila, G C G

    2016-09-01

    Stability of the total phenolic content, ascorbic acid, total carotenoids and antioxidant activity in eight fruit beverages was analyzed. The influence of storage temperature (4, 8 and 11 °C) during the product shelf-life (20 days) was evaluated. Pomegranate Juice presented the highest values for antioxidant activity by DPPH• assay (552.93 ± 6.00 GAE μg mL(-1)), total carotenoids (3.18 ± 0.11 βCE μg mL(-1)), and total phenolic content (3967.07 ± 2.47 GAE μg mL(-1)); while Splash Blend recorded the highest levels of ascorbic acid (607.39 ± 2.13 AAE μg mL(-1)). The antioxidant capacity was stable at 4 and 8 °C for the first 8 days of storage; while carotenoids and ascorbic acid were slightly degraded through the storage time, possibly due to oxidation and/or reactions with other compounds. The results suggest that the observed variation during testing could be related to storage conditions of the final product.

  17. Korea's activities for the development of ITER tritium storage and delivery systems

    SciTech Connect

    Chung, H.; Shim, M.; Ahn, D. H.; Lee, M.; Hong, C.; Yoshida, H.; Song, K. M.; Kim, D. J.

    2008-07-15

    The ITER fuel cycle plant is composed of various subsystems such as a long term tritium storage system (LTS), a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea shares in the construction of the ITER fuel cycle plant with the EU (Japan)) and US, and is responsible for the development and supply of the SDS and LTS. The authors thus present details on the development status of the tritium transport container, the long term tritium storage beds, the short-term delivery system T{sub 2}, DT, and the D{sub 2} storage beds, the calorimetry system, and the associated He-3 recovery loop, the over pressure protection systems, and the gas analysis manifold connected to the tritium plant's analytical systems. (authors)

  18. Method of testing active latent-heat storage devices based on thermal performance. (ASHRAE standard)

    SciTech Connect

    1985-01-26

    The purpose of this standard is to provide a standard procedure for determining the thermal performance of latent heat thermal energy storage devices used in heating, air-conditioning, and service hot water systems.

  19. Assessing the impact of long term frozen storage of faecal samples on protein concentration and protease activity

    PubMed Central

    Morris, Laura S.; Marchesi, Julian R.

    2016-01-01

    Background The proteome is the second axis of the microbiome:host interactome and proteases are a significant aspect in this interaction. They interact with a large variety of host proteins and structures and in many situations are implicated in pathogenesis. Furthermore faecal samples are commonly collected and stored frozen so they can be analysed at a later date. So we were interested to know whether long term storage affected the integrity of proteases and total protein and whether historical native faecal samples were still a viable option for answering research questions around the functional proteome. Methods Faecal samples were collected from 3 healthy volunteers (3 biological replicates) and processed in order to be stored at both − 20 °C and − 80 °C and in a variety of storage buffers. Protein extraction, protein content and protease activity were assessed at the time of collection, after 24 h, 1 week, 1 month, 3 months 6 months and finally 1 year. Results Beadbeating impacted the quantity of protein extracted, while sodium azide did not impact protease assays. Long term storage of extracted proteins showed that both total protein and protease activity were affected when they were stored as extracted protein. Intact faecal samples were shown to maintain both protein levels and protease activity regardless of time and temperature. Conclusions Beadbeating increases the protein and protease activity when extracting from a faecal sample, however, the extracted protein is not stable and activity is lost, even with a suitable storage buffer. The most robust solution is to store the proteins in an intact frozen native faecal matrix and extract at the time of assay or analysis, this approach was shown to be suitable for samples in which, there are low levels of protease activity and which had been frozen for a year. PMID:26853125

  20. Dual observation of the ATP-evoked small GTPase activation and Ca2+ transient in astrocytes using a dark red fluorescent protein

    PubMed Central

    Nakahata, Yoshihisa; Nabekura, Junichi; Murakoshi, Hideji

    2016-01-01

    Intracellular signal transduction involves a number of biochemical reactions, which largely consist of protein-protein interactions and protein conformational changes. Monitoring Förster resonance energy transfer (FRET) by fluorescence lifetime imaging microscopy (FLIM), called FLIM-FRET, is one of the best ways to visualize such protein dynamics. Here, we attempted to apply dark red fluorescent proteins with significantly smaller quantum yields. Application of the dark mCherry mutants to single-molecule FRET sensors revealed that these dark mCherry mutants are a good acceptor in a pair with mRuby2. Because the FRET measurement between mRuby2 and dark mCherry requires only the red region of wavelengths, it facilitates dual observation with other signaling sensors such as genetically encoded Ca2+ sensors. Taking advantage of this approach, we attempted dual observation of Ca2+ and Rho GTPase (RhoA and Cdc42) activities in astrocytes and found that ATP triggers both RhoA and Cdc42 activation. In early phase, while Cdc42 activity is independent of Ca2+ transient evoked by ATP, RhoA activity is Ca2+ dependent. Moreover, the transient Ca2+ upregulation triggers long-lasting Cdc42 and RhoA activities, thereby converting short-term Ca2+ signaling to long-term signaling. Thus, the new FRET pair should be useful for dual observation of intracellular biochemical reactions. PMID:28004840

  1. Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton.

    PubMed Central

    Tilly, B C; Edixhoven, M J; Tertoolen, L G; Morii, N; Saitoh, Y; Narumiya, S; de Jonge, H R

    1996-01-01

    Hypo-osmotic stimulation of human Intestine 407 cells rapidly activated compensatory CL- and K+ conductances that limited excessive cell swelling and, finally, restored the original cell volume. Osmotic cell swelling was accompanied by a rapid and transient reorganization of the F-actin cytoskeleton, affecting both stress fibers as well as apical ruffles. In addition, an increase in total cellular F-actin was observed. Pretreatment of the cells with recombinant Clostridium botulinum C3 exoenzyme, but not with mutant enzyme (C3-E173Q) devoid of ADP-ribosyltransferase activity, greatly reduced the activation of the osmo-sensitive anion efflux, suggesting a role for the ras-related GTPase p21rho. In contrast, introducing dominant negative N17-p21rac into the cells did not affect the volume-sensitive efflux. Cell swelling-induced reorganization of F-actin coincided with a transient, C3 exoenzyme-sensitive tyrosine phosphorylation of p125 focal adhesion kinase (p125FAK) as well as with an increase in phosphatidylinositol-3-kinase (PtdIns-3-kinase) activity. Pretreatment of the cells with wortmannin, a specific inhibitor of PtdIns-3-kinase, largely inhibited the volume-sensitive ion efflux. Taken together, our results indicate the involvement of a p21rho signaling cascade and actin filaments in the activation of volume-sensitive chloride channels. Images PMID:8885236

  2. Transient analysis of the 1991 Hijiori Shallow Reservoir Circulation Test

    SciTech Connect

    Hyodo, M.; Shinohara, N.; Takasugi, S.; Wright, C.A.; Conant, R..

    1996-01-24

    Like any dynamic system, HDR reservoirs cannot be fully characterized by their steady-state behavior. Circulation tests analysis should be performed on both the steady-state response and the transient response of HDR systems. Transient analysis allows not only estimation of critical reservoir parameters and how these parameters change with operating conditions / history, but transient analysis also aids in evaluating the feasibility of various modes of HDR system operation (base load, load following, etc.). This paper details the transient analysis of NEDO's FY 1991 Shallow Reservoir Circulation Test at the Hijiori HDR site in Japan. Reservoir fluid storage is carefully bounded through the employment of two distinct methods for calculation of the fluid storage from the observed transient response. A brief discussion is also included of the distribution of reservoir fluid storage; the relationship between pressure, reservoir stress, and apparent reservoir capacitance; and appropriate circulation test design to facilitate transient analysis.

  3. Effects of chilled storage and cryopreservation on sperm characteristics, antioxidant enzyme activities, and lipid peroxidation in Pacific cod Gadus microcephalus

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Shi, Xuehui; Liu, Yifan; Yu, Daode; Guan, Shuguang; Liu, Qinghua; Li, Jun

    2016-07-01

    The present study evaluated the effects of chilled storage and cryopreservation on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod Gadus macrocephalus. Sperm motility and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (Gr), and lipid peroxidation (measured via malondialdehyde (MDA) content) were determined after the milt was stored at 4°C for 12 h, cryopreserved without cryoprotectant in 12% propylene glycol (PG), cryopreserved in 12% PG+0.1 mol/L trehalose, or cryopreserved in 12% PG spermatozoa but centrifuged to decant the supernatant prior to cryopreservation (only sperm cells were cryopreserved). After chilled storage or cryopreservation, the SOD, CAT and GPx activities were reduced in sperm cells and increased in seminal plasma in almost all treatments; sperm motility parameters were also decreased. However, the addition of trehalose into the cryoprotectant could significantly improve the postthaw sperm quality as revealed by the sperm average path velocity. This improvement might be attributed to the function of trehalose in scavenging reactive oxygen species. Chilled storage and cryopreservation had significant effects on sperm motion characteristics, antioxidant enzyme activities, and lipid peroxidation in the Pacific cod.

  4. Regional groundwater storage changes in the Indian subcontinent: The role of anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Bhanja, S. N.; Mukherjee, A.; Rodell, M.; Velicogna, I.; Pangaluru, K.; Famiglietti, J. S.

    2014-12-01

    A large number of people around the globe depend on groundwater as a source of fresh water. Groundwater dependence will be further intensified by the world's exponentially increasing population and climate change. Therefore, quantification of groundwater storage (GWS) changes is a critical issue in the densely populated regions of the world. Approximately, 90% of groundwater withdrawals are associated with irrigational activities in the Indian subcontinent. We used a combination of Gravity Recovery and Climate Experiment (GRACE) observations, hydrological data from the Global Land Data Assimilation System (GLDAS) together with groundwater level measurements and ERA-Interim precipitation, for the period 2003-2012 to estimate regional GWS changes and to regionally evaluate the anthropogenic and climatic forcing control on the observed changes. Rapid GWS depletion (>10 mm/year) has been observed in the northern and eastern parts of the Indian subcontinent. Most of the groundwater depleted regions coincide with the highly fertile alluvial aquifers of Ganges-Brahmaputra basin, which is subjected to intense groundwater withdrawals associated with crop irrigation. Our GWS change estimates are consistent with ground-based water level measurements (n> 13,000) from the region. Over this ten year period, GWS data show little to moderate replenishments in southern and western regions of Indian subcontinent, probably because of advanced water resource management in these areas. Precipitation is the key factor controlling the renewability of groundwater resources, however, precipitation during the period was generally near normal to historical levels, suggesting strong anthropogenic influence on GWS change in the northern and eastern parts of India during the study period.

  5. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels

    PubMed Central

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2015-01-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I(5-HTi)) and accelerated spontaneous firing in ~80% of LHb neurons in rat brain slices. I(5-HTi) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I(5-HTi) was diminished by 5-HT2/3 receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT2/3 agonists 1-(3- Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I(5-HTi) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression. PMID:26471419

  6. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels.

    PubMed

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2016-02-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I((5-HTi))) and accelerated spontaneous firing in ∼80% of LHb neurons in rat brain slices. I((5-HTi)) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I((5-HTi)) was diminished by 5-HT(2/3) receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT(2/3) agonists 1-(3-Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I((5-HTi)) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression.

  7. Effect of storage conditions on the biological activity of phenolic compounds of blueberry extract packed in glass bottles.

    PubMed

    Srivastava, Anita; Akoh, Casimir C; Yi, Weiguang; Fischer, Joan; Krewer, Gerard

    2007-04-04

    Recent research suggests that blueberries are rich in total polyphenols and total anthocyanins. Phenolic compounds are highly unstable and may be lost during processing, particularly when heat treatment is involved. There is no systematic study available providing information on the fate of phenolic compounds during storage and how that affects their biological activity. We provide a systematic evaluation of the changes observed in total polyphenols (TPP), total anthocyanins (TACY), Trolox equivalent antioxidant capacity (TEAC), phenolic acids, and individual anthocyanins of blueberry extract stored in glass bottles and the ability of blueberry extract to inhibit cell proliferation. The extract was stored at different temperatures (-20 +/- 1, 6 +/- 1, 23 +/- 1, and 35 +/- 1 degrees C). Two cultivars, Tifblue and Powderblue, were chosen for the study. The recoveries of TPP, TACY, and TEAC in blueberry extract after pressing and heating were approximately 25, approximately 29, and approximately 69%, respectively, for both cultivars. The recovery of gallic acid, catechin, and quercetin was approximately 25%. Ferulic acid was not detected in the final extract in both Tifblue and Powderblue cultivars. The recovery of peonidin, malvidin, and cyanidin glycosides was approximately 20% in the final extract in both cultivars. Losses due to storage were less when compared with initial losses due to processing. At -20 degrees C, no statistically significant loss of TPP, TACY, and TEAC was observed up to 30 days (P < 0.05). At 6 degrees C storage, there was a significant loss observed from 15 to 30 days. Similar results were obtained at 23 and 35 degrees C (P < 0.05). There was retention of more than 40% of ellagic and quercetin after 60 days at 35 +/- 1 degrees C. Anthocyanins were not detected after 60 days of storage at 35 +/- 1 degrees C. Significant retention (P < 0.05) was obtained for malvidin (42.8 and 25.8%) and peonidin (74.0 and 79.5%) after 60 days of storage at 23

  8. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  9. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    A 3-axis active attitude control system with only one rotating part was developed using a momentum wheel with magnetic gimballing capability as a torque actuator for all three body axes. A brief description of magnetic bearing technology is given. It is concluded that based on this technology an integrated energy storage/attitude control system with one air of counterrotating rings could reduce the complexity and weight of conventional systems.

  10. Effects of water activity on the lipid oxidation and antioxidants of dried laver (porphyra) during storage in the dark.

    PubMed

    Choe, Eunok; Oh, Soojung

    2013-08-01

    Lipid oxidation and antioxidant degradation in dried laver (Porphyra) were determined during storage at water activities (Aw ) of 0.11, 0.30, 0.51, 0.75, or 0.89 in the dark at 40 °C for 15 d. Lipid oxidation was evaluated by measuring peroxide value (POV) and conjugated dienoic acid (CDA) contents, and fatty acid composition was analyzed by gas chromatography. Contents of polyphenols, tocopherols, and porphyran were determined by spectrophotometry, HPLC, and gravimetry, respectively. The POV and CDA contents of the dried laver lipids increased during storage as Aw increased from 0.11 to 0.30, 0.51, 0.75, and 0.89, whereas the relative content of eicosapentaenoic acid was decreased; however, the contents of polyphenols, α-tocopherol, and porphyran in dried laver showed the reverse phenomena. Lipid oxidation and antioxidant degradation in dried laver sharply increased at an Aw of 0.51. Polyphenols, α-tocopherol, and porphyran contributed to reduction of lipid oxidation in dried laver. The degree of lipid oxidation of dried laver was more dependent on the concentration of α-tocopherol than that of either polyphenols or porphyran during storage in the dark. The results strongly suggest that the quality of dried laver can be improved by preserving tocopherols as much as possible while decreasing A(w) during storage.

  11. SERI solar energy storage program

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Copeland, R. J.; Kotch, A.; Kriz, T.; Luft, W.; Nix, R. G.; Wright, J. O.

    1982-05-01

    Thermal energy storage technologies are identified for specific solar thermal applications. The capabilities and limitations of direct-contact thermal storage and thermochemical energy storage and transport are examined. Storage of energy from active solar thermal systems for industrial process heat and the heating of buildings is analyzed and seasonal energy storage is covered. The coordination of numerous thermal energy storage research and development activities is described.

  12. Inulin sugar glasses preserve the structural integrity and biological activity of influenza virosomes during freeze-drying and storage.

    PubMed

    de Jonge, Jørgen; Amorij, Jean-Pierre; Hinrichs, Wouter L J; Wilschut, Jan; Huckriede, Anke; Frijlink, Henderik W

    2007-09-01

    Influenza virosomes are reconstituted influenza virus envelopes that may be used as vaccines or as carrier systems for cellular delivery of therapeutic molecules. Here we present a procedure to generate influenza virosomes as a stable dry-powder formulation by freeze-drying (lyophilization) using an amorphous inulin matrix as a stabilizer. In the presence of inulin the structural integrity and fusogenic activity of virosomes were fully preserved during freeze-drying. For example, the immunological properties of the virosomes, i.e. the HA potency in vitro and the immunogenic potential in vivo, were maintained during lyophilization in the presence of inulin. In addition, compared to virosomes dispersed in buffer, inulin-formulated virosomes showed substantially prolonged preservation of the HA potency upon storage. Also the capacity of virosomes to mediate cellular delivery of macromolecules was maintained during lyophilization in the presence of inulin and upon subsequent storage. Specifically, when dispersed in buffer, virosomes with encapsulated plasmid DNA lost their transfection activity completely within 6 weeks, whereas their transfection activity was fully preserved for at least 12 weeks after incorporation in an inulin matrix. Thus, in the presence of inulin as a stabilizing agent, the shelf-life of influenza virosomes with and without encapsulated macromolecules was considerably prolonged. Formulation of influenza virosomes as a dry-powder is advantageous for storage and transport and offers the possibility to develop needle-free dosage forms, e.g. for oral, nasal, pulmonal, or dermal delivery.

  13. Evaluation of bioactive compounds of black mulberry juice after thermal, microwave, ultrasonic processing, and storage at different temperatures.

    PubMed

    Jiang, Bo; Mantri, Nitin; Hu, Ya; Lu, Jiayin; Jiang, Wu; Lu, Hongfei

    2015-07-01

    The effect of different sterilization methods (thermal, microwave, and ultrasonic processing) on the main bioactive compounds and antioxidant activity of black mulberry juice during selected storage time (8 days) and temperatures (5, 15, and 25 ℃) was investigated. The antioxidant activity of thermal-treated juice depleted with storage time, whilst both ultrasound- and microwave-treated juices showed transient increase in antioxidant activity during the first 2 days that later decreased with storage time. Lower temperature storage preserved more bioactive compounds and antioxidant activity, especially in ultrasound sterilized samples. The activation energy values were 15.99, 13.07, and 12.81 kJ/mol for ultrasonic, microwave, and thermal pasteurization processes, respectively. In general, ultrasound-sterilized samples showed higher total phenolics, anthocyanin, and antioxidant activity compared to the microwave- and thermal-processed juice during the storage time especially at lower temperatures.

  14. New Swift/XRT observation shows faint X-ray transient SAX J1806.5-2215 remains active 1 year after outburst

    NASA Astrophysics Data System (ADS)

    Kaur, R.; Wijnands, R.; Heinke, C.; Degenaar, N.

    2012-02-01

    The faint X-ray transient SAX J1806.5-2215 was discovered through the detection of two type-I bursts by BeppoSAX's WFC in 1996-1997 (in't Zand et al. 1999, NuPhS, 69, 228). Around the times of both bursts, no persistent emission was detected from the source with BeppoSAX. RXTE/ASM observations suggested that the source was active from early 1996 till late 1997 with an X-ray luminosity of ~ 1E+36 erg/s (for d=8 kpc; Cornelisse et al.

  15. [Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon].

    PubMed

    Wang, Hul; Wang, Xu-dong; Tian, Xiao-hong

    2014-12-01

    The impacts of straw mulching and returning on the storage of soil dissolved organic carbon (DOC), particulate organic carbon (POC) and mineral associated organic carbon (MOC), and their proportions to the total organic carbon (TOC) were studied based on a field experiment. The results showed that compared to the treatment of wheat straw soil-returning (WR), the storage of TOC and MOC decreased by 4.1% and 9.7% respectively in 0-20 cm soil in the treatment with wheat straw mulching (WM), but the storage of DOC and POC increased by 207.7% and 11.9%, and TOC and POC increased significantly in 20-40 cm soil. Compared to the treatment with maize straw soil-returning (MR), the storage of TOC and MOC in the plough pan soil of the treatment with maize straw mulching (MM) increased by 13.6% and 14.6% , respectively. Compared to the WR-MR treatment, the storage of TOC and MOC in top soil (0-20 icm) significantly decreased by 8.5% and 10.3% respectively in WM-MM treatment. The storage of TOC, and POC in top soil was significantly higher in the treatments with maize straw soil-returning or mulching than that with wheat straw. Compared to the treatment without straw (CK), the storage of TOC in top soil increased by 5.2% to 18.0% in the treatments with straw returning or mulching in the six modes (WM, WR, MM, MR, WM-MM,WR-MR) (P<0.05), but the storage of TOC in the plough pan soil decreased by 8.0% to 11.5% (P<0.05) except for the treatments of WM and MM. The storage of DOC and DOC/TOC ratio decreased significantly in top soil in the treatments with straw mulching or returning in six modes. The storage of POC and POC/TOC ratio in WM and WM-MM treatments, MOC and MOC/TOC ratio in WR treatment, increased significantly in top soil. In the other three treatments with straw mulching and returning (MM, MR, WR-MR), the storage of POC and MOC increased significantly in top soil. These results suggested that straw mulching had the potential to accumulate active organic carbon fraction

  16. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility.

    PubMed

    Sugio, Shouta; Nagasawa, Masami; Kojima, Itaru; Ishizaki, Yasuki; Shibasaki, Koji

    2016-12-22

    We have previously reported that transient receptor potential vanilloid 2 (TRPV2) can be activated by mechanical stimulation, which enhances axonal outgrowth in developing neurons; however, the molecular mechanisms that govern the contribution of TRPV2 activation to axonal outgrowth remain unclear. In the present study, we examined this mechanism by using PC12 cells as a neuronal model. Overexpression of TRPV2 enhanced axonal outgrowth in a mechanical stimulus-dependent manner. Accumulation of TRPV2 at the cell surface was 4-fold greater in the growth cone compared with the soma. In the growth cone, TRPV2 is not static, but dynamically accumulates (within ∼100 ms) to the site of mechanical stimulation. The dynamic and acute clustering of TRPV2 can enhance very weak mechanical stimuli via focal accumulation of TRPV2. Focal application of mechanical stimuli dramatically increased growth cone motility and caused actin reorganization via activation of TRPV2. We also found that TRPV2 physically interacts with actin and that changes in the actin cytoskeleton are required for its activation. Here, we demonstrated for the first time to our knowledge that TRPV2 clustering is induced by mechanical stimulation generated by axonal outgrowth and that TRPV2 activation is triggered by actin rearrangements that result from mechanical stimulation. Moreover, TRPV2 activation enhances growth cone motility and actin accumulation to promote axonal outgrowth. Sugio, S., Nagasawa, M., Kojima, I., Ishizaki, Y., Shibasaki, K. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility.

  17. Re-Imagining the 21st Century School Library: From Storage Space to Active Learning Space

    ERIC Educational Resources Information Center

    Grigsby, Susan K. S.

    2015-01-01

    As libraries adjust to the needs of the 21st century, there needs to be a different way of thinking in regards to its design. School libraries have traditionally been designed as large rooms for the storage of materials for research and pleasure reading. As more and more districts focus their attention on digital acquisitions, the need for storage…

  18. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties.

    PubMed

    Gomtsyan, Arthur; Bayburt, Erol K; Schmidt, Robert G; Zheng, Guo Zhu; Perner, Richard J; Didomenico, Stanley; Koenig, John R; Turner, Sean; Jinkerson, Tammie; Drizin, Irene; Hannick, Steven M; Macri, Bryan S; McDonald, Heath A; Honore, Prisca; Wismer, Carol T; Marsh, Kennan C; Wetter, Jill; Stewart, Kent D; Oie, Tetsuro; Jarvis, Michael F; Surowy, Carol S; Faltynek, Connie R; Lee, Chih-Hung

    2005-02-10

    Novel transient receptor potential vanilloid 1 (TRPV1) receptor antagonists with various bicyclic heteroaromatic pharmacophores were synthesized, and their in vitro activity in blocking capsaicin activation of TRPV1 was assessed. On the basis of the contribution of these pharmacophores to the in vitro potency, they were ranked in the order of 5-isoquinoline > 8-quinoline = 8-quinazoline > 8-isoquinoline > or = cinnoline approximately phthalazine approximately quinoxaline approximately 5-quinoline. The 5-isoquinoline-containing compound 14a (hTRPV1 IC50 = 4 nM) exhibited 46% oral bioavailability and in vivo activity in animal models of visceral and inflammatory pain. Pharmacokinetic and pharmacological properties of 14a are substantial improvements over the profile of the high-throughput screening hit 1 (hTRPV1 IC50 = 22 nM), which was not efficacious in animal pain models and was not orally bioavailable.

  19. Magnetic bearing momentum wheels with magnetic gimballing capability for 3-axis active attitude control and energy storage

    NASA Technical Reports Server (NTRS)

    Sindlinger, R. S.

    1977-01-01

    Magnetic bearings used for the suspension of momentum wheels provide conclusive advantages: the low friction torques and the absence of abrasion allow the realization of lightweight high speed wheels with high angular momentum and energy storage capacity and virtually unlimited lifetime. The use of actively controlled bearings provides a magnetic gimballing capability by applying the external signals to the two servo loops controlling the rotational degrees of freedom. Thus, an attitude control system can be realized by using only one rotating mass for 3-axis active satellite stabilization.

  20. Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method.

    PubMed

    Peng, Shengfeng; Zou, Liqiang; Liu, Wei; Gan, Lu; Liu, Weilin; Liang, Ruihong; Liu, Chengmei; Niu, Jing; Cao, Yanlin; Liu, Zhen; Chen, Xing

    2015-01-01

    Eugenol is a major phenolic component with diverse biological activities. However, it is difficult to formulate into an aqueous solution due to poor water solubility, and this limits its application. In the present study, eugenol nanoliposomes (EN) were prepared by combining the ethanol injection method with the dynamic high-pressure microfluidization method. Good physicochemical characterizations of EN were obtained. The successful encapsulation of eugenol in nanoliposomes was confirmed by Fourier transform infrared spectroscopy. A good storage stability of EN was confirmed by its low variation of average particle diameter and encapsulation efficiency after 8 weeks of storage. No oil drops were found in EN after 8 weeks of storage at 4°C and at room temperature, which suggested that the poor water solubility of eugenol was overcome by nanoliposome encapsulation. Compared with that of eugenol solution, a relatively good sustained release property was observed in EN. The antibacterial activity of EN against four common foodborne pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes) was evaluated in both Luria broth and milk medium.

  1. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage

    PubMed Central

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-01-01

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices. PMID:25650133

  2. Active uptake and extravesicular storage of m-iodobenzylguanidine in human neuroblastoma SK-N-SH cells

    SciTech Connect

    Smets, L.A.; Loesberg, C.; Janssen, M.; Metwally, E.A.; Huiskamp, R.

    1989-06-01

    Radioiodinated m-iodobenzylguanidine (MIBG), an analogue of the neurotransmitter norepinephrine (NE), is increasingly used in the diagnosis and treatment of neural crest tumors. Active uptake and subsequent retention of MIBG and NE was studied in human neuroblastoma SK-N-SH cells. Neuron-specific uptake of (125I)MIBG and (3H)NE saturated at extracellular concentration of 10(-6) M and exceeded by 20-30-fold that by passive diffusion alone. A minimum of 50% of accumulated MIBG remained permanently stored but the SK-N-SH cells were incapable of retaining recaptured (3H)NE. (125I)MIBG was displaced from intracellular binding sites by unlabeled MIBG with 10-fold higher potency than by unlabeled NE. MIBG stored in SK-N-SH cells was insensitive to depletion by the inhibitor of granular uptake reserpine (RSP) and was not precipitated in a granular fraction by differential centrifugation. Only few electron-dense granules were found in these cells by electron microscopy. In contrast, MIBG storage in PC-12 pheochromocytoma cells which contained many storage granules, was sensitive to RSP and part of accumulated drug was recovered in a granular fraction. Accordingly, storage of MIBG in the SK-N-SH neuroblastoma cells is predominantly extravesicular and thus essentially different from that of biogenic amines in normal adrenomedullary tissue or in pheochromocytoma tumors, while sharing with these tissues a common mechanism of active uptake.

  3. HPLC quantitative analysis of rhein and antidermatophytic activity of Cassia fistula pod pulp extracts of various storage conditions.

    PubMed

    Chewchinda, Savita; Wuthi-udomlert, Mansuang; Gritsanapan, Wandee

    2013-01-01

    Cassia fistula is well known for its laxative and antifungal properties due to anthraquinone compounds in the pods. This study quantitatively analyzed rhein in the C. fistula pod pulp decoction extracts kept under various storage conditions using HPLC. The antifungal activity of the extracts and their hydrolyzed mixture was also evaluated against dermatophytes. The contents of rhein in all stored decoction extracts remained more than 95% (95.69-100.66%) of the initial amount (0.0823 ± 0.001% w/w). There was no significant change of the extracts kept in glass vials and in aluminum foil bags. The decoction extract of C. fistula pod pulp and its hydrolyzed mixture containing anthraquinone aglycones were tested against clinical strains of dermatophytes by broth microdilution technique. The results revealed good chemical and antifungal stabilities against dermatophytes of C. fistula pod pulp decoction extracts stored under various accelerated and real time storage conditions.

  4. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks.

    PubMed

    Li, Yanqiang; Ben, Teng; Zhang, Bingyao; Fu, Yao; Qiu, Shilun

    2013-01-01

    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage.

  5. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  6. Egr1 is rapidly and transiently induced by estrogen and bisphenol A via activation of nuclear estrogen receptor-dependent ERK1/2 pathway in the uterus.

    PubMed

    Kim, Hye-Ryun; Kim, Yeon Sun; Yoon, Jung Ah; Lyu, Sang Woo; Shin, Hyejin; Lim, Hyunjung J; Hong, Seok-Ho; Lee, Dong Ryul; Song, Haengseok

    2014-12-01

    Coordinate actions of ovarian estrogen (E2) and progesterone (P4) via their own receptors are critical for establishing uterine receptivity for embryo implantation in the uterus. E2 regulates expression of an array of genes to mediate its major actions on heterogeneous uterine cell types. Here we have investigated regulatory mechanism(s) of E2 and bisphenol A (BPA), an endocrine disruptor with potent estrogenic activity on expression of early growth response 1 (Egr1), a zinc finger transcription factor that regulates cell growth, differentiation and apoptosis in the uterus. Egr1 was rapidly and transiently induced by E2 and BPA mainly in stromal cells via nuclear estrogen receptor (ER)-ERK1/2 pathway. ICI 182,780, an ER antagonist, effectively inhibited their actions on EGR1 expression following ERK1/2 phosphorylation. Administration of pharmacological inhibitors for ERK1/2, but not AKT significantly blocked EGR1 expression induced by E2 and BPA. P4 effectively dampened action(s) of E2 and BPA on Egr1 expression via nuclear progesterone receptor. Its antagonistic effects were partially interfered with RU486 pretreatment. Interestingly, EGR1 is specifically induced in stromal cells surrounding implanting blastocyst. Collectively, our results show that through nuclear ER-dependent ERK1/2 phosphorylation, not only E2 but also endocrine disruptors with estrogenic activity such as BPA rapidly and transiently induce Egr1 which may be important for embryo implantation and decidualization in mouse uterus.

  7. Effects of thermal treatments and storage on pectin methylesterase and peroxidase activity in freshly squeezed orange juice.

    PubMed

    Hirsch, Angelika R; Förch, Kirsten; Neidhart, Sybille; Wolf, Gudrun; Carle, Reinhold

    2008-07-23

    A specific indicator of freshness, allowing routine distinction between freshly squeezed orange juices (FSOJs) and FSOJ-like products, was to be identified. Using the Actijoule unit of a tubular heater at a flow rate of 60 L/h, FSOJs from Citrus sinensis (L.) Osbeck cv. Valencia Late were continuously heated on a pilot plant scale at six different temperatures (42-92 degrees C), followed by continuous cooling to ambient temperature and subsequent filling into sterilized glass jars. The cloud stability and residual activities of pectin methylesterase (PE) and peroxidase (POD) were monitored over the storage at 4 degrees C for up to 62 days, thus considering the storage conditions of FSOJs in retail markets. As shown by the viable microbial counts throughout storage, microbial activity was insignificant due to good sanitary practice, thus proving that the enzyme activities detected were of plant origin. The juices processed at temperatures > or =62 degrees C were characterized by minor residual activities. When exposed to temperatures <62 degrees C in the genuine acidic matrix of the juices, the heat stability of PE exceeded that of POD. Compared with the aforementioned samples, the juice processed at 52 degrees C with a residual PE activity of 33.8% was hardly inferior in terms of cloud stability within the first 14 days. After the juice was processed at 42 degrees C, rapid clarification occurred within the first 8 days, consistent with undetectable PE deactivation. Hence, only the range of approximately 50-60 degrees C is relevant in minimal heat-processing for the retention of cloud stability within the short turnover period of FSOJ-like products, with partial PE and POD deactivation being already sufficient to distinguish those juices from FSOJs. Irrespective of the previous thermal treatment, the total PE activity remained nearly constant during storage, whereas the POD activity rapidly declined to minor levels after 20 days. Consequently, as to the future

  8. Determining the effect of storage conditions on prothrombin time, activated partial thromboplastin time and fibrinogen concentration in rat plasma samples.

    PubMed

    Goyal, Vinod Kumar; Kakade, Somesh; Pandey, Santosh Kumar; Gothi, Anil Kalidas; Nirogi, Ramakrishna

    2015-10-01

    Coagulation parameters are usually included in clinical and preclinical safety studies to evaluate the effect of xenobiotics on the extrinsic or intrinsic pathways of coagulation. The analysis is generally performed at the time of terminal sacrifice where many activities are scheduled. Chances of delay in analysis are likely particularly when blood is collected for coagulation via the abdominal vena cava. This experiment was planned to assess the variations in coagulation parameters caused by delay in analysis as well as by storage conditions. Blood was collected from the posterior vena cava under isoflurane anesthesia, and the plasma was separated immediately. Coagulation parameters were evaluated at 0, 6, 24 and 48 h from the plasma stored at room temperature, as well as plasma stored under refrigerated and freezing conditions. Stability of the analytes in blood was also evaluated under refrigerated conditions for 6 h. All parameters were analyzed using a semi-automated coagulometer. Prothrombin time (PT) was stable under all three storage conditions for up to 6 h. Although statistically significant differences were observed for activated partial thromboplastin time (APTT) at room and refrigeration temperatures for up to 6 h, the difference was clinically non-relevant. Fibrinogen was found to be the most stable parameter that showed consistency in results even up to 48 h under all three storage conditions. Plasma for PT can be stored and analyzed without any significant changes for up to 6 h from the actual blood collection, while fibrinogen level testing can be extended for up to 48 h after collection under any storage condition. For reliable APTT results, plasma samples should be run immediately after collection.

  9. Understanding medial temporal activation in memory tasks: evidence from fMRI of encoding and recognition in a case of transient global amnesia.

    PubMed

    Westmacott, Robyn; Silver, Frank L; McAndrews, Mary Pat

    2008-01-01

    We used fMRI to examine the activation patterns of patient AE during encoding and recognition of visual scenes during an episode of transient global amnesia (TGA) and 3 months later. Controls (n = 5) showed bilateral (R > L) activation in parahippocampal and fusiform gyri during encoding and right-sided activation in the same regions associated with recognition of previously viewed scenes. AE showed a similar pattern at follow-up. During acute TGA, when performance was profoundly impaired, AE showed no medial temporal activation associated with encoding of new scenes or recognition of old scenes. In both contrasts, the percent signal change in relevant medial temporal regions was more than three standard deviations below the control sample mean. She did, however, show striking bilateral hippocampal activation for recognition attempts (old + new scenes > baseline) even though retrieval was unsuccessful (55% recognition accuracy). This finding was unique to AE on this occasion. This is the first study to document normalization of both encoding and recognition activation patterns in TGA. Furthermore, the strong hippocampal activation during unsuccessful retrieval highlights important issues in interpreting memory-related activations, particularly in dysfunctional systems.

  10. Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution.

    PubMed

    Pereira, Rui Cruz; Scaranari, Monica; Benelli, Roberto; Strada, Paolo; Reis, Rui L; Cancedda, Ranieri; Gentili, Chiara

    2013-06-01

    Platelet-rich plasma (PRP), a cocktail of platelet growth factors and bioactive proteins, has been proposed as a therapeutic agent to restore damaged articular cartilage. We report the biological effect of the platelet lysate (PL), a PRP derivative, on primary human articular chondrocytes cultured under both physiological and inflammatory conditions. When added to the culture medium, PL induced a strong mitogenic response in the chondrocytes. The in vitro expanded cell population maintained a chondrogenic redifferentiation potential as revealed by micromass culture in vitro and ectopic cartilage formation in vivo. Further, in chondrocytes cultured in the presence of the proinflammatory cytokine interleukin-1α (IL-1α), the PL induced a drastic enhancement of the synthesis of the cytokines IL-6 and IL-8 and of neutrophil-gelatinase associated lipocalin, a lipocalin expressed during chondrocyte differentiation and inflammation. These events were mediated by the p38 MAP kinase and NF-κB pathways. We observed that inflammatory stimuli activated phospo-MAP kinase-activated protein kinase 2, a direct target of p38. The proinflammatory effect of the PL was a transient phenomenon; after an initial upregulation, we observed significant reduction of the NF-κB activity together with the repression of the inflammatory enzyme cyclooxygenase-2. Moreover, the medium of chondrocytes cultured in the simultaneous presence of PL and IL-1α, showed a significant enhancement of the chemoattractant activity versus untreated chondrocytes. Our findings support the concept that the platelet products have a direct beneficial effect on articular chondrocytes and could drive in sequence a transient activation and the resolution of the inflammatory process, thus providing a rational for their use as therapeutic agents in cartilage inflammation and damage.

  11. Energy Storage

    SciTech Connect

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  12. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  13. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    PubMed Central

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2015-01-01

    Abstract. We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell. PMID:26719944

  14. Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation.

    PubMed

    Heredia, María del Puy; Delgado, Carmen; Pereira, Laetitia; Perrier, Romain; Richard, Sylvain; Vassort, Guy; Bénitah, Jean-Pierre; Gómez, Ana María

    2005-01-01

    Neuropeptide Y (NPY) is the most abundant peptide in the mammalian heart, but its cardiac actions are not fully understood. Here we investigate the effect of NPY in intracellular Ca2+ release, using isolated rat cardiac myocytes and confocal microscopy. Cardiac myocytes were field-stimulated at 1 Hz. The evoked [Ca2+]i transient was of higher amplitude and of faster decay in the presence of 100 nM NPY. Cell contraction was also increased by NPY. We analyzed the occurrence of Ca2+ sparks and their characteristics after NPY application. NPY significantly increased Ca2+ sparks frequency in quiescent cells. The Ca2+ spark amplitude was enhanced by NPY but the other characteristics of Ca2+ sparks were not significantly altered. Because cardiac myocytes express both Y1 and Y2 NPY receptors, we repeated the experiments in the presence of the receptor blockers, BIBP3226 and BIIE0246. We found that Y1 NPY receptor blockade completely inhibited NPY effects on [Ca2+]i transient. PTX-sensitive G-proteins and/or phospholypase C (PLC) have been invoked to mediate NPY effects in other cell types. We tested these two hypotheses. In PTX-treated myocytes NPY was still effective, which suggests that the observed NPY actions are not mediated by PTX-sensitive G-proteins. In contrast, the increase in [Ca2+]i transient by NPY was completely inhibited by the PLC inhibitor U73122. In conclusion, we find that NPY has a positive inotropic effect in isolated rat cardiac myocytes, which involves increase in Ca2+ release after activation of Y1 NPY receptor and subsequent stimulation of PLC.

  15. Effects of fertilization and clipping on carbon, nitrogen storage, and soil microbial activity in a natural grassland in southern China.

    PubMed

    Du, Zhimin; Xie, Yan; Hu, Liqun; Hu, Longxing; Xu, Shendong; Li, Daoxin; Wang, Gongfang; Fu, Jinmin

    2014-01-01

    Grassland managements can affect carbon (C) and nitrogen (N) storage in grassland ecosystems with consequent feedbacks to climate change. We investigated the impacts of compound fertilization and clipping on grass biomass, plant and soil (0-20 cm depth) C, N storage, plant and soil C: N ratios, soil microbial activity and diversity, and C, N sequestration rates in grassland in situ in the National Dalaoling Forest Park of China beginning July, 2011. In July, 2012, the fertilization increased total biomass by 30.1%, plant C by 34.5%, plant N by 79.8%, soil C by 18.8% and soil N by 23.8% compared with the control, respectively. Whereas the clipping decreased total biomass, plant C and N, soil C and N by 24.9%, 30.3%, 39.3%, 18.5%, and 19.4%, respectively, when compared to the control. The plant C: N ratio was lower for the fertilization than for the control and the clipping treatments. The soil microbial activity and diversity indices were higher for the fertilization than for the control. The clipping generally exhibited a lower level of soil microbial activity and diversity compared to the control. The principal component analysis indicated that the soil microbial communities of the control, fertilization and clipping treatments formed three distinct groups. The plant C and N sequestration rates of the fertilization were significantly higher than the clipping treatment. Our results suggest that fertilization is an efficient management practice in improving the C and N storage of the grassland ecosystem via increasing the grass biomass and soil microbial activity and diversity.

  16. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation

    PubMed Central

    Krebs, Melanie; Beyhl, Diana; Görlich, Esther; Al-Rasheid, Khaled A. S.; Marten, Irene; Stierhof, York-Dieter; Hedrich, Rainer; Schumacher, Karin

    2010-01-01

    The productivity of higher plants as a major source of food and energy is linked to their ability to buffer changes in the concentrations of essential and toxic ions. Transport across the tonoplast is energized by two proton pumps, the vacuolar H+-ATPase (V-ATPase) and the vacuolar H+-pyrophosphatase (V-PPase); however, their functional relation and relative contributions to ion storage and detoxification are unclear. We have identified an Arabidopsis mutant in which energization of vacuolar transport solely relies on the activity of the V-PPase. The vha-a2 vha-a3 double mutant, which lacks the two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a, is viable but shows day-length-dependent growth retardation. Nitrate content is reduced whereas nitrate assimilation is increased in the vha-a2 vha-a3 mutant, indicating that vacuolar nitrate storage represents a major growth-limiting factor. Zinc is an essential micronutrient that is toxic at excess concentrations and is detoxified via a vacuolar Zn2+/H+-antiport system. Accordingly, the double mutant shows reduced zinc tolerance. In the same way the vacuolar Na+/H+-antiport system is assumed to be an important component of the system that removes sodium from the cytosol. Unexpectedly, salt tolerance and accumulation are not affected in the vha-a2 vha-a3 double mutant. In contrast, reduction of V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) leads to increased salt sensitivity. Taken together, our results show that during gametophyte and embryo development V-PPase activity at the tonoplast is sufficient whereas tonoplast V-ATPase activity is limiting for nutrient storage but not for sodium tolerance during vegetative and reproductive growth. PMID:20133698

  17. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms.

    PubMed

    Cândido, Elizabete de Souza; Pinto, Michelle Flaviane Soares; Pelegrini, Patrícia Barbosa; Lima, Thais Bergamin; Silva, Osmar Nascimento; Pogue, Robert; Grossi-de-Sá, Maria Fátima; Franco, Octávio Luiz

    2011-10-01

    Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined signals, they may be used by the different plant tissues in response to pathogen attack. To shed some light on these remarkable proteins with dual functions, storage proteins found in germinative tissues, such as seeds and kernels, and in vegetative tissues, such as tubercles and leaves, are extensively discussed here, along with the related mechanisms of protein expression. Among these proteins, we focus on 2S albumins, Kunitz proteinase inhibitors, plant lectins, glycine-rich proteins, vicilins, patatins, tarins, and ocatins. Finally, the potential use of these molecules in development of drugs to combat human and plant pathogens, contributing to the development of new biotechnology-based medications and products for agribusiness, is also presented.

  18. Polymers for subterranean containment barriers for underground storage tanks (USTs). Letter report on FY 1992 activities

    SciTech Connect

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks.

  19. Opaque7 Encodes an Acyl-Activating Enzyme-Like Protein That Affects Storage Protein Synthesis in Maize Endosperm

    PubMed Central

    Wang, Gang; Sun, Xiaoliang; Wang, Guifeng; Wang, Fei; Gao, Qiang; Sun, Xin; Tang, Yuanping; Chang, Chong; Lai, Jinsheng; Zhu, Lihuang; Xu, Zhengkai; Song, Rentao

    2011-01-01

    In maize, a series of seed mutants with starchy endosperm could increase the lysine content by decreased amount of zeins, the main storage proteins in endosperm. Cloning and characterization of these mutants could reveal regulatory mechanisms for zeins accumulation in maize endosperm. Opaque7 (o7) is a classic maize starchy endosperm mutant with large effects on zeins accumulation and high lysine content. In this study, the O7 gene was cloned by map-based cloning and confirmed by transgenic functional complementation and RNAi. The o7-ref allele has a 12-bp in-frame deletion. The four-amino-acid deletion caused low accumulation of o7 protein in vivo. The O7 gene encodes an acyl-activating enzyme with high similarity to AAE3. The opaque phenotype of the o7 mutant was produced by the reduction of protein body size and number caused by a decrease in the α-zeins concentrations. Analysis of amino acids and metabolites suggested that the O7 gene might affect amino acid biosynthesis by affecting α-ketoglutaric acid and oxaloacetic acid. Transgenic rice seeds containing RNAi constructs targeting the rice ortholog of maize O7 also produced lower amounts of seed proteins and displayed an opaque endosperm phenotype, indicating a conserved biological function of O7 in cereal crops. The cloning of O7 revealed a novel regulatory mechanism for storage protein synthesis and highlighted an effective target for the genetic manipulation of storage protein contents in cereal seeds. PMID:21954158

  20. FGF inhibits the activity of the cyclin B1/CDK1 kinase to induce a transient G₂arrest in RCS chondrocytes.

    PubMed

    Tran, Tri; Kolupaeva, Victoria; Basilico, Claudio

    2010-11-01

    Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G₁ phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G₂ phase of the cycle for the first 4-6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G₁ arrest. The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase, that however appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop, and not the activation of specific phosphatases. the inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling, and not a consequence of the G₂ arrest as it can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and AtM/ATR kinase are known to play essential roles in the G₂ checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G₂ arrest. Additionally our results indicate that the transient G₂ arrest is induced by FGF in RCS cell through mechanisms that are independent of the G₁ arrest, and that the G₂ block is not strictly required for the sustained G₁ arrest but may provide a pausing mechanism that allows the FGF response to be fully established.

  1. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.

    PubMed

    Ventura, Jessica D; Klute, Glenn K; Neptune, Richard R

    2011-02-01

    In an effort to improve amputee gait, energy storage and return (ESAR) prosthetic feet have been developed to provide enhanced function by storing and returning mechanical energy through elastic structures. However, the effect of ESAR feet on muscle activity in amputee walking is not well understood. Previous studies have analyzed commercial prosthetic feet with a wide range of material properties and geometries, making it difficult to associate specific ESAR properties with changes in muscle activity. In contrast, prosthetic ankles offer a systematic way to manipulate ESAR properties while keeping the prosthetic heel and keel geometry intact. In the present study, ESAR ankles were added to a Seattle Lightfoot2 to carefully control the energy storage and return by altering the ankle stiffness and orientation in order to identify its effect on lower extremity muscle activity during below-knee amputee walking. A total of five foot conditions were analyzed: solid ankle (SA), stiff forward-facing ankle (FA), compliant FA, stiff reverse-facing ankle (RA) and compliant RA. The ESAR ankles decreased the activity of muscles that contribute to body forward propulsion and increased the activity of muscles that provide body support. The compliant ankles generally caused a greater change in muscle activity than the stiff ankles, but without a corresponding increase in energy return. Ankle orientation also had an effect, with RA generally causing a lower change in muscle activity than FA. These results highlight the influence of ESAR stiffness on muscle activity and the importance of prescribing appropriate prosthetic foot stiffness to improve rehabilitation outcomes.

  2. The Potential of Microbial Activity to Increase the Efficacy of Geologic Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cunningham, A. B.; Gerlach, R.; Phillips, A. J.; Eldring, J.; Lauchnor, E.; Klapper, I.; Ebigbo, A.; Mitchell, A. C.; Spangler, L.

    2012-12-01

    Geologic carbon capture and storage involves the injection of CO2 into underground formations such as brine aquifers where microbe-rock-fluid interactions will occur. These interactions may be important for the long-term fate of the injected CO2 particularly near well bores and potential leakage pathways. Herein, concepts and results are presented from bench to meso-scale experiments focusing on the utility of attached microorganisms and biofilms to enhance storage security of injected CO2. Batch and flow experiments at atmospheric and geologic CO2storage-relevant pressures have demonstrated the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Recently, the microbially catalyzed process of ureolysis has been investigated for the potential to promote calcium carbonate mineralization in subsurface reservoirs using native or introduced ureolytic microorganisms, which increase the saturation state of CaCO3 via the hydrolysis of urea. The anticipated applications for this biomineralization process in the subsurface include sealing microfractures and CO2 leakage pathways for increased security of geologic carbon storage. Recent work has focused on facilitating this biomineralization process in large scale (74 cm diameter, 38 cm high sandstone) radial flow systems under ambient and subsurface relevant pressures with the goal of developing injection strategies suited for field scale deployment. Methods for microscopic and macroscopic visualization of relevant processes, such as growth of microbial biofilms, their interactions with minerals and influence on pore spaces in porous media reactors are being developed and have been used to calibrate reactive transport models. As a result, these models are being used to predict the effect of biological processes on CO2

  3. Automotive hydrogen storage system using cryo-adsorption on activated carbon.

    SciTech Connect

    Ahluwalia, R. K.; Peng, J. K.; Nuclear Engineering Division

    2009-07-01

    An integrated model of a sorbent-based cryogenic compressed hydrogen system is used to assess the prospect of meeting the near-term targets of 36 kg-H{sub 2}/m{sup 3} volumetric and 4.5 wt% gravimetric capacity for hydrogen-fueled vehicles. The model includes the thermodynamics of H{sub 2} sorption, heat transfer during adsorption and desorption, sorption dynamics, energetics of cryogenic tank cooling, and containment of H{sub 2} in geodesically wound carbon fiber tanks. The results from the model show that recoverable hydrogen, rather than excess or absolute adsorption, is a determining measure of whether a sorbent is a good candidate material for on-board storage of H{sub 2}. A temperature swing is needed to recover >80% of the sorption capacity of the superactivated carbon sorbent at 100 K and 100 bar as the tank is depressurized to 3-8 bar. The storage pressure at which the system needs to operate in order to approach the system capacity targets has been determined and compared with the breakeven pressure above which the storage tank is more compact if H{sub 2} is stored only as a cryo-compressed gas. The amount of liquid N{sub 2} needed to cool the hydrogen dispensed to the vehicle to 100 K and to remove the heat of adsorption during refueling has been estimated. The electrical energy needed to produce the requisite liquid N{sub 2} by air liquefaction is compared with the electrical energy needed to liquefy the same amount of H{sub 2} at a central plant. The alternate option of adiabatically refueling the sorbent tank with liquid H{sub 2} has been evaluated to determine the relationship between the storage temperature and the sustainable temperature swing. Finally, simulations have been run to estimate the increase in specific surface area and bulk density of medium needed to satisfy the system capacity targets with H{sub 2} storage at 100 bar.

  4. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro.

    PubMed Central

    Kaye, D; Pimental, D; Prasad, S; Mäki, T; Berger, H J; McNeil, P L; Smith, T W; Kelly, R A

    1996-01-01

    One of the trophic factors that has been implicated in initiating or facilitating growth in response to increased mechanical stress in several tissues and cell types is basic fibroblast growth factor (bFGF; FGF-2). Although mammalian cardiac muscle cells express bFGF, it is not known whether it plays a role in mediating cardiac adaptation to increased load, nor how release of the cytosolic 18-kD isoform of bFGF would be regulated in response to increased mechanical stress. To test the hypothesis that increased mechanical activity induces transient alterations in sarcolemmal permeability that allow cytosolic bFGF to be released and subsequently to act as an autocrine and paracrine growth stimulus, we examined primary isolates of adult rat ventricular myocytes maintained in serum-free, defined medium that were continually paced at 3 Hz for up to 5 d. Paced myocytes, but not nonpaced control cells, exhibited a "hypertrophic" response, which was characterized by increases in the rate of phenylalanine incorporation, total cellular protein content, and cell size. These changes could be mimicked in control cells by exogenous recombinant bFGF and could be blocked in continually paced cells by a specific neutralizing anti-bFGF antibody. In addition, medium conditioned by continually paced myocytes contained significantly more bFGF measured by ELISA and more mitogenic activity for 3T3 cells, activity that could be reduced by a neutralizing anti-bFGF antibody. The hypothesis that transient membrane disruptions sufficient to allow release of cytosolic bFGF occur in paced myocytes was examined by monitoring the rate of uptake into myocytes from the medium of 10-kD dextran linked to fluorescein. Paced myocytes exhibited a significantly higher rate of fluoresceinlabeled dextran uptake. These data are consistent with the hypothesis that nonlethal, transient alterations in sarcolemmal membrane permeability with release of cytosolic bFGF is one mechanism by which increased

  5. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  6. Signal-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate without activation of phospholipase C: implications on gating of Drosophila TRPL (transient receptor potential-like) channel.

    PubMed

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-06

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P(2) in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P(2) was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P(2) is not an inhibitor of TRPL channel activation. PI(4,5)P(2) hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P(2) levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P(2) is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.

  7. Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree.

    PubMed

    Nowicka, Paulina; Wojdyło, Aneta

    2016-04-01

    The aim of this study was to describe the changes in phenolic compounds, antioxidant activity and colour of sour cherry puree supplemented with different natural sweeteners (sucrose, palm sugar, erythritol, xylitol, steviol glycoside, Luo Han Kuo), and natural prebiotic (inulin). A total of 18 types of polyphenolic compounds were assessed in the following sour cherry puree by LC-MS-QTof analysis, before and after 6 months of storage at 4 °C and 30 °C. Total phenolics determined by UPLC-PDA-FL was 1179.6 mg/100 g dm. In samples with addition of sweeteners the content of phenolic compounds ranged from 1133.1 (puree with steviol glycoside) to 725.6 mg/100 g dm (puree with erythritol), and the content of these compounds strongly affected on antioxidant activity. After 6-month storage, protective effects of some additives (palm sugar, erythritol, steviol glycoside, xylitol and inulin) on the polyphenol content, especially on anthocyanins and consequently on colour, and antioxidant activity were noticed. The results showed that some natural sweeteners might be interesting from a nutritional as well as commercial and pharmaceutical perspective.

  8. Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates.

    PubMed

    Kim, Donghee; Cavanaugh, Eric J

    2007-06-13

    Pungent chemicals such as allyl isothiocyanate (AITC), cinnamaldehyde, and allicin, produce nociceptive sensation by directly activating transient receptor potential A1 (TRPA1) expressed in sensory afferent neurons. In this study, we found that pungent chemicals added to the pipette or bath solution easily activated TRPA1 in cell-attached patches but failed to do so in inside-out or outside-out patches. Thus, a soluble cytosolic factor was required to activate TRPA1. N-Ethylmaleimide, (2-aminoethyl)-methane thiosulfonate, 2-aminoethoxydiphneyl borate, and trinitrophenol, compounds that are known to activate TRPA1, also failed to activate it in inside-out patches. To identify a factor that supports activation of TRPA1 by pungent chemicals, we screened approximately 30 intracellular molecules known to modulate ion channels. Among them, pyrophosphate (PPi) and polytriphosphate (PPPi) were found to support activation of TRPA1 by pungent chemicals. Structure-function studies showed that inorganic polyphosphates (polyP(n), where n = number of phosphates) with at least four phosphate groups were highly effective (polyP4 approximately = polyP65 approximately = polyP45 approximately = polyP25 > PPPi > PPi), with K(1/2) values ranging from 0.2 to 2.8 mM. Inositol-trisphosphate and inositol-hexaphosphate also partially supported activation of TRPA1 by AITC. ATP, GTP, and phosphatidylinositol-4,5-bisphosphate that have three phosphate groups did not support TRPA1 activation. TRPA1 recorded from cell bodies of trigeminal ganglion neurons showed similar behavior with respect to sensitivity to pungent chemicals; no activation was observed in inside-out patches unless a polyphosphate was present. These results show that TRPA1 requires an intracellular factor to adopt a functional conformation that is sensitive to pungent chemicals and suggest that polyphosphates may partly act as such a factor.

  9. Activity release from damaged fuel during the Paks-2 cleaning tank incident in the spent fuel storage pool

    NASA Astrophysics Data System (ADS)

    Hózer, Zoltán; Szabó, Emese; Pintér, Tamás; Varjú, Ilona Baracska; Bujtás, Tibor; Farkas, Gábor; Vajda, Nóra

    2009-07-01

    During crud removal operations the integrity of 30 fuel assemblies was lost at high temperature at the unit No. 2 of the Paks NPP. Part of the fission products was released from the damaged fuel into the coolant of the spent fuel storage pool. The gaseous fission products escaped through the chimney from the reactor hall. The volatile and non-volatile materials remained mainly in the coolant and were collected on the filters of water purification system. The activity release from damaged fuel rods during the Paks-2 cleaning tank incident was estimated on the basis of coolant activity concentration measurements and chimney activity data. The typical release rate of noble gases, iodine and caesium was 1-3%. The release of non-volatile fission products and actinides was also detected.

  10. Influence of time, storage temperature and freeze/thaw cycles on the activity of digestive enzymes from gilthead sea bream (Sparus aurata).

    PubMed

    Solovyev, Mikhail; Gisbert, Enric

    2016-10-01

    In this study, we tested the effects of long-term storage (2 years) at -20 °C and short-term storage (several hours) in ice and freeze/thaw cycles on the activities of pancreatic, gastric and intestinal (brush border and cytosolic) digestive enzymes in a teleost fish species. The results revealed a significant lose in activity of pancreatic (trypsin, chymotrypsin, total alkaline proteases and α-amylase) and intestinal cytosolic (leucine-alanine peptidase) enzymes between 140 and 270 days of storage at -20 °C, whereas in contrast, the activity of all the assayed brush border enzymes remained constant during the first 2 years of storage at -20 °C. During short-term storage conditions, the most stable enzymes assayed were those of the enterocytes of the brush border, which did not show any change in activity after being held for 5 h in ice. Five freezing and thawing cycles did not affect the activity of the intestinal brush border enzymes and the cytosolic ones, whereas the activity of trypsin, α-amylase and bile-salt-activated lipase was significantly affected by the number of freezing and thawing cycles. No changes in pepsin activity were found in samples exposed to 1 and 2 freezing and thawing cycles.

  11. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation.

    PubMed

    Zhao, Limin; Sullivan, Michelle N; Chase, Marlee; Gonzales, Albert L; Earley, Scott

    2014-06-01

    Proliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca(2+) influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs. Furthermore, we demonstrate that Ca(2+) influx through individual TRPV4 channels produces Ca(2+) microdomains in ASMCs, called "TRPV4 Ca(2+) sparklets." We also show that TRPV4 channels colocalize with the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin in ASMCs. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT) transcription factors cytosolic (c) to allow nuclear translocation and activation of synthetic transcriptional pathways. We show that ASMC proliferation in response to TRPV4 activity is associated with calcineurin-dependent nuclear translocation of the NFATc3 isoform tagged with green florescent protein. Our findings suggest that Ca(2+) microdomains created by TRPV4 Ca(2+) sparklets activate calcineurin to stimulate nuclear translocation of NFAT and ASMC proliferation. These findings further suggest that inhibition of TRPV4 could diminish asthma-induced airway remodeling.

  12. Calcium Transients in Dendrites of Neocortical Neurons Evoked by Single Subthreshold Excitatory Postsynaptic Potentials via Low-Voltage-Activated Calcium Channels

    NASA Astrophysics Data System (ADS)

    Markram, Henry; Sakmann, Bert

    1994-05-01

    Simultaneous recordings of membrane voltage and concentration of intracellular Ca2+ ([Ca2+]_i) were made in apical dendrites of layer 5 pyramidal cells of rat neocortex after filling dendrites with the fluorescent Ca2+ indicator Calcium Green-1. Subthreshold excitatory postsynaptic potentials (EPSPs), mediated by the activation of glutamate receptor channels, caused a brief increase in dendritic [Ca2+]_i. This rise in dendritic [Ca2+]_i was mediated by the opening of low-voltage-activated Ca2+ channels in the dendritic membrane. The results provide direct evidence that dendrites do not function as passive cables even at low-frequency synaptic activity; rather, a single subthreshold EPSP changes the dendritic membrane conductance by opening Ca2+ channels and generating a [Ca2+]_i transient that may propagate towards the soma. The activation of these Ca2+ channels at a low-voltage threshold is likely to influence the way in which dendritic EPSPs contribute to the electrical activity of the neuron.

  13. Protease Activated Receptor 2 (PAR2) Induces Long-Term Depression in the Hippocampus through Transient Receptor Potential Vanilloid 4 (TRPV4)

    PubMed Central

    Shavit-Stein, Efrat; Artan-Furman, Avital; Feingold, Ekaterina; Ben Shimon, Marina; Itzekson-Hayosh, Zeev; Chapman, Joab; Vlachos, Andreas; Maggio, Nicola

    2017-01-01

    Protease activated receptors (PARs) are involved in regulating synaptic transmission and plasticity in the brain. While it is well-accepted that PAR1 mediates long-term potentiation (LTP) of excitatory synaptic strength, the role of PAR2 in synaptic plasticity remains not well-understood. In this study, we assessed the role of PAR2-signaling in plasticity at hippocampal Schaffer collateral-CA1 synapses. Using field potential recordings, we report that PAR2-activation leads to long-term depression (LTD) of synaptic transmission through a protein kinase A -dependent, Transient Receptor Potential Vanilloid 4 -mediated mechanism, which requires the activation of N-methyl-D-aspartate receptors. These results demonstrate that the effects of PAR2 on synaptic plasticity are distinct from what is observed upon PAR1-activation. Thus, we propose that the activation of different classes of PARs, i.e., PAR1 and PAR2, may set the threshold of synaptic plasticity in the hippocampal network by balancing LTP and LTD. PMID:28303089

  14. U.S. Department of Energy thermal energy storage research activities review: 1989 Proceedings

    SciTech Connect

    Hoffman, H.W.; Tomlinson, J.J.

    1989-03-01

    Thermal Energy Storage (TES) offers the opportunity for the recovery and re-use of heat currently rejected to the ambient environment. Further, through the ability of TES to match an energy supply with a thermal energy demand, TES increases efficiencies of energy systems and improves capacity factors of power plants. The US Department of Energy has been the leader in TES research, development, and demonstration since recognition in 1976 of the need for fostering energy conservation as a component of the national energy budget. The federal program on TES R and D is the responsibility of the Office of Energy Storage and Distribution within the US Department of Energy (DOE). The overall program is organized into three program areas: diurnal--relating primarily to lower temperature heat for use in residential and commercial buildings on a daily cycle; industrial--relating primarily to higher temperature heat for use in industrial and utility processes on an hourly to daily cycle; seasonal--relating primarily to lower temperature heat or chill for use in residential complexes (central supply as for apartments or housing developments), commercial (light manufacturing, processing, or retail), and industrial (space conditioning) on a seasonal to annual cycle. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Arcelins from an Indian wild pulse, Lablab purpureus, and insecticidal activity in storage pests.

    PubMed

    Janarthanan, Sundaram; Suresh, Palaniappan; Radke, Gary; Morgan, Thomas D; Oppert, Brenda

    2008-03-12

    A partially purified protein fraction was isolated from seed flour of the Indian wild bean, Lablab purpureus, by ion exchange and size-exclusion chromatographies. Partially purified L. purpureus proteins had hemagglutination and glycoslyation properties similar to those of lectins or lectin-like proteins from other pulses. Data obtained from two-dimensional gel electrophoresis, MALDI-TOF, and MALDI-TOF/TOF and N-terminal protein sequencing of the isolated polypeptides from L. purpureus demonstrated that the extract contained proteins similar to isoforms of arcelins 3 and 4 and pathogenesis-related protein 1 (PvPR1) of Phaseolus vulgaris. L. purpureus proteins were resistant to degradation by the commercial enzymes trypsin and chymotrypsin and were moderately resistant to pepsin, but were readily hydrolyzed to smaller peptides by papain. Insect feeding bioassays of the extract with the storage pests Rhyzopertha dominica and Oryzaephilus surinamensis, internal and external feeders of grain, respectively, demonstrated that L. purpureus proteins at 2% in the diet resulted in retarded development. However, a 5% dose of the L. purpureus fraction resulted in complete mortality of all larvae in both species. This study has demonstrated that proteins in the partially purified L. purpureus extract have the potential to control storage pests in cereals transformed with L. purpureus defense-related genes, but the need for more studies regarding efficacy and safety is discussed.

  16. Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor-inositol 1,4,5-trisphosphate-transient receptor potential canonical channel pathways.

    PubMed

    Barr, Jeffrey L; Deliu, Elena; Brailoiu, G Cristina; Zhao, Pingwei; Yan, Guang; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2015-08-01

    Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The present study examined direct effects of cocaine on dissociated nAcc neurons expressing phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 microinjection robustly elevated intracellular Ca(2+) concentration, [Ca(2+)]i. While cocaine alone was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-injection. Likewise, cocaine augmented the [Ca(2+)]i increase elicited by extracellularly applying an IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the IP3/ATP-mediated Ca(2+) elevation occurred at pharmacologically relevant concentrations and was mediated by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and contingent on [Ca(2+)]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic reticulum, resulting in augmented Ca(2+) release and amplified depolarization due to subsequent stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological significance of the pathway

  17. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage.

    PubMed

    Sung, Jung-Min; Kim, Young-Boong; Kum, Jun-Seok; Choi, Yun-Sang; Seo, Dong-Ho; Choi, Hyun-Wook; Park, Jong-Dae

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt.

  18. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage

    PubMed Central

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt. PMID:26877641

  19. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases

    PubMed Central

    Palmieri, Michela; Pal, Rituraj; Nelvagal, Hemanth R.; Lotfi, Parisa; Stinnett, Gary R.; Seymour, Michelle L.; Chaudhury, Arindam; Bajaj, Lakshya; Bondar, Vitaliy V.; Bremner, Laura; Saleem, Usama; Tse, Dennis Y.; Sanagasetti, Deepthi; Wu, Samuel M.; Neilson, Joel R.; Pereira, Fred A.; Pautler, Robia G.; Rodney, George G.; Cooper, Jonathan D.; Sardiello, Marco

    2017-01-01

    Neurodegenerative diseases characterized by aberrant accumulation of undigested cellular components represent unmet medical conditions for which the identification of actionable targets is urgently needed. Here we identify a pharmacologically actionable pathway that controls cellular clearance via Akt modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathways. We show that Akt phosphorylates TFEB at Ser467 and represses TFEB nuclear translocation independently of mechanistic target of rapamycin complex 1 (mTORC1), a known TFEB inhibitor. The autophagy enhancer trehalose activates TFEB by diminishing Akt activity. Administration of trehalose to a mouse model of Batten disease, a prototypical neurodegenerative disease presenting with intralysosomal storage, enhances clearance of proteolipid aggregates, reduces neuropathology and prolongs survival of diseased mice. Pharmacological inhibition of Akt promotes cellular clearance in cells from patients with a variety of lysosomal diseases, thus suggesting broad applicability of this approach. These findings open new perspectives for the clinical translation of TFEB-mediated enhancement of cellular clearance in neurodegenerative storage diseases. PMID:28165011

  20. Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion.

    PubMed

    De Ancos, Begoña; Cilla, Antonio; Barberá, Reyes; Sánchez-Moreno, Concepción; Cano, M Pilar

    2017-06-15

    Polyphenols, ascorbic acid content and antioxidant activity of two sweet oranges (Navel-N and Cara Cara-CC) and mandarin (Clementine-M) as well as their bioaccessibilities were evaluated in pulps and compared to those in fresh juice. Thus, pulps of oranges and mandarins displayed higher hesperidin (HES), narirutin (NAR), total flavonoids (TF), total phenols (TP) and antioxidant activity (AAC) than their corresponding juices. Also, CC products presented higher bioactive compounds content than N ones. Bioaccessibility of bioactive compounds and AAC were higher in pulps of both oranges and mandarin than in their corresponding juices. Oranges (N and CC) pulps and juices presented higher bioaccessibilities than mandarin ones. The postharvest storage of mandarin at 12°C during 5weeks not only produced a significant increase of the bioactive compounds but also an increase of their bioaccessibility. The bioaccessibility of Citrus bioactive compounds is necessary for calculating more accurately their daily intake amount.

  1. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    PubMed

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  2. Antifungal activity of storage 2S albumins from seeds of the invasive weed dandelion Taraxacum officinale Wigg.

    PubMed

    Odintsova, T I; Rogozhin, E A; Sklyar, I V; Musolyamov, A K; Kudryavtsev, A M; Pukhalsky, V A; Smirnov, A N; Grishin, E V; Egorov, T A

    2010-04-01

    In this work, we isolated and characterized novel antifungal proteins from seeds of dandelion (Taraxacum officinale Wigg.). We showed that they are represented by five isoforms, each consisting of two disulphide-bonded large and small subunits. One of them, To-A1 was studied in detail, including N-terminal amino acid sequencing of both subunits, and shown to display sequence homology with the sunflower 2S albumin. Using different assays we demonstrated that dandelion 2S albumins possess inhibitory activity against phytopathogenic fungi and the oomycete Phytophtora infestans at micromolar concentrations with various isoforms differing in their antifungal activity. Thus, 2S albumins of dandelion seeds represent a novel example of storage proteins with defense functions.

  3. Development of high catalytic activity disordered hydrogen-storage alloys for electrochemical application in nickel-metal hydride batterie

    NASA Astrophysics Data System (ADS)

    Ovshinsky, S. R.; Fetcenko, M. A.

    2001-04-01

    Multi-element, multiphase disordered metal hydride alloys have enabled the widespread commercialization of nickel-metal hydride (NiMH) batteries by allowing high capacity and good kinetics while overcoming the crucial barrier of unstable oxidation/corrosion behavior to obtain long cycle life. Alloy-formula optimization and advanced materials processing have been used to promote a high concentration of active hydrogen-storage sites vital for raising NiMH specific energy. New commercial applications demand fundamentally higher specific power and discharge-rate kinetics. Disorder at the metal/electrolyte interface has enabled a surface oxide with less than 70 Å metallic nickel alloy inclusions suspended within the oxide, which provide exceptional catalytic activity to the metal hydride electrode surface.

  4. Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging.

    PubMed

    Calucci, Lucia; Capocchi, Antonella; Galleschi, Luciano; Ghiringhelli, Silvia; Pinzino, Calogero; Saviozzi, Franco; Zandomeneghi, Maurizio

    2004-06-30

    Seeds of bread wheat were incubated at 40 degrees C and 100% relative humidity for 0, 3, 4, 6, and 10 days. The effects of accelerated aging on seed germinability and some biochemical properties of flour (carotenoid, free radical, and protein contents and proteolytic activity) and gluten (free radical content and flexibility) were investigated. Seed germinability decreased during aging, resulting in seed death after 10 days. A progressive decrease of carotenoid content, in particular, lutein, was observed, prolonging the incubation, whereas the free radical content increased in both flour and gluten. A degradation of soluble and storage proteins was found, associated with a marked increase of proteolytic activity and a loss of viscoelastic properties of gluten. On the contrary, puroindolines were quite resistant to the treatment. The results are discussed in comparison with those previously obtained during accelerated aging of durum wheat seeds.

  5. Pregnenolone sulfate activates basic region leucine zipper transcription factors in insulinoma cells: role of voltage-gated Ca2+ channels and transient receptor potential melastatin 3 channels.

    PubMed

    Müller, Isabelle; Rössler, Oliver G; Thiel, Gerald

    2011-12-01

    The neurosteroid pregnenolone sulfate activates a signaling cascade in insulinoma cells involving activation of extracellular signal-regulated protein kinase and enhanced expression of the transcription factor Egr-1. Here, we show that pregnenolone sulfate stimulation leads to a significant elevation of activator protein-1 (AP-1) activity in insulinoma cells. Expression of the basic region leucine zipper (bZIP) transcription factors c-Jun and c-Fos is up-regulated in insulinoma cells and pancreatic β-cells in primary culture after pregnenolone sulfate stimulation. Up-regulation of a chromatin-embedded c-Jun promoter/luciferase reporter gene transcription in pregnenolone sulfate-stimulated insulinoma cells was impaired when the AP-1 binding sites were mutated, indicating that these motifs function as pregnenolone sulfate response elements. In addition, phosphorylation of cAMP response element (CRE)-binding protein is induced and transcription of a CRE-controlled reporter gene is stimulated after pregnenolone sulfate treatment, indicating that the CRE functions as a pregnenolone sulfate response element as well. Pharmacological and genetic experiments revealed that both L-type Ca(2+) channels and transient receptor potential melastatin 3 (TRPM3) channels are essential for connecting pregnenolone sulfate stimulation with enhanced AP-1 activity and bZIP-mediated transcription in insulinoma cells. In contrast, pregnenolone sulfate stimulation did not enhance AP-1 activity or c-Jun and c-Fos expression in pituitary corticotrophs that express functional L-type Ca(2+) channels but only trace amounts of TRPM3. We conclude that expression of L-type Ca(2+) channels is not sufficient to activate bZIP-mediated gene transcription by pregnenolone sulfate. Rather, additional expression of TRPM3 or depolarization of the cells is required to connect pregnenolone sulfate stimulation with enhanced gene transcription.

  6. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands.

    PubMed

    Puttock, Alan; Graham, Hugh A; Cunliffe, Andrew M; Elliott, Mark; Brazier, Richard E

    2017-01-15

    Beavers are the archetypal keystone species, which can profoundly alter ecosystem structure and function through their ecosystem engineering activity, most notably the building of dams. This can have a major impact upon water resource management, flow regimes and water quality. Previous research has predominantly focused on the activities of North American beaver (Castor canadensis) located in very different environments, to the intensive lowland agricultural landscapes of the United Kingdom and elsewhere in Europe. Two Eurasian beavers (Castor fiber) were introduced to a wooded site, situated on a first order tributary, draining from intensively managed grassland. The site was monitored to understand impacts upon water storage, flow regimes and water quality. Results indicated that beaver activity, primarily via the creation of 13 dams, has increased water storage within the site (holding ca. 1000m(3) in beaver ponds) and beavers were likely to have had a significant flow attenuation impact, as determined from peak discharges (mean 30±19% reduction), total discharges (mean 34±9% reduction) and peak rainfall to peak discharge lag times (mean 29±21% increase) during storm events. Event monitoring of water entering and leaving the site showed lower concentrations of suspended sediment, nitrogen and phosphate leaving the site (e.g. for suspended sediment; average entering site: 112±72mgl(-1), average leaving site: 39±37mgl(-1)). Combined with attenuated flows, this resulted in lower diffuse pollutant loads in water downstream. Conversely, dissolved organic carbon concentrations and loads downstream were higher. These observed changes are argued to be directly attributable to beaver activity at the site which has created a diverse wetland environment, reducing downstream hydrological connectivity. Results have important implications for beaver reintroduction programs which may provide nature based solutions to the catchment-scale water resource management issues

  7. The Role of Water Activity and Capillarity in Partially Saturated Porous Media at Geologic CO2 Storage Sites

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Bryan, C. R.; Matteo, E. N.; Dewers, T. A.; Wang, Y.

    2012-12-01

    The activity of water in supercritical CO2 may affect performance of geologic CO2 storage, including CO2 injectivity, and shrink-swell properties and sealing efficiency of clayey caprocks. We present a pore-scale unit cell model of water film adsorption and capillary condensation as an explicit function of water activity in supercritical CO2. This model estimates water film configuration in slit to other pore shapes with edges and corners. With the model, we investigate water saturation in porous media in mineral-CO2-water systems under different water activities. Maximum water activities in equilibrium with an aqueous phase are significantly less than unity due to dissolution of CO2 in water (i.e., the mole fraction of water in the aqueous phase is much less than one) and variable dissolved salt concentration. The unit cell approach is used to upscale from the single pore to the core-sample-scale, giving saturation curves as a function of water activity in the supercritical phase and the texture of the porous media. We evaluate the model and the importance of water activity through ongoing small angle neutron scattering experiments and other column experiments, which investigate shrink-swell properties and capillarity under realistic in situ stresses. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Melanopsin Variants as Intrinsic Optogenetic On and Off Switches for Transient versus Sustained Activation of G Protein Pathways.

    PubMed

    Spoida, Katharina; Eickelbeck, Dennis; Karapinar, Raziye; Eckhardt, Tobias; Mark, Melanie D; Jancke, Dirk; Ehinger, Benedikt Valerian; König, Peter; Dalkara, Deniz; Herlitze, Stefan; Masseck, Olivia A

    2016-05-09

    G-protein-coupled receptors (GPCRs) represent the major protein family for cellular modulation in mammals. Therefore, various strategies have been developed to analyze the function of GPCRs involving pharmaco- and optogenetic approaches [1, 2]. However, a tool that combines precise control of the activation and deactivation of GPCR pathways and/or neuronal firing with limited phototoxicity is still missing. We compared the biophysical properties and optogenetic application of a human and a mouse melanopsin variant (hOpn4L and mOpn4L) on the control of Gi/o and Gq pathways in heterologous expression systems and mouse brain. We found that GPCR pathways can be switched on/off by blue/yellow light. The proteins differ in their kinetics and wavelength dependence to activate and deactivate G protein pathways. Whereas mOpn4L is maximally activated by very short light pulses, leading to sustained G protein activation, G protein responses of hOpn4L need longer light pulses to be activated and decline in amplitude. Based on the different biophysical properties, brief light activation of mOpn4L is sufficient to induce sustained neuronal firing in cerebellar Purkinje cells (PC), whereas brief light activation of hOpn4L induces AP firing, which declines in frequency over time. Most importantly, mOpn4L-induced sustained firing can be switched off by yellow light. Based on the biophysical properties, hOpn4L and mOpn4L represent the first GPCR optogenetic tools, which can be used to switch GPCR pathways/neuronal firing on an off with temporal precision and limited phototoxicity. We suggest to name these tools moMo and huMo for future optogenetic applications.

  9. Activation of gene transcription via CIM0216, a synthetic ligand of transient receptor potential melastatin-3 (TRPM3) channels.

    PubMed

    Rubil, Sandra; Thiel, Gerald

    2017-01-02

    Several compounds have been proposed to stimulate TRPM3 Ca(2+) channels. We recently showed that stimulation of TRPM3 channels with pregnenolone sulfate activated the transcription factor AP-1, while other proposed TRPM3 ligands (nifedipine, D-erythro-sphingosine) exhibited either no or TRPM3-independent effects on gene transcription. Here, we have analyzed the transcriptional activity of CIM0216, a synthetic TRPM3 ligand proposed to have a higher potency and affinity for TRPM3 than pregnenolone sulfate. The results show that CIM0216 treatment of HEK293 cells expressing TRPM3 channels activated AP-1 and stimulated the transcriptional activation potential of c-Jun and c-Fos, 2 basic region leucine zipper transcription factors that constitute AP-1. CIM0216-induced gene transcription was attenuated by knock-down of TRPM3 or treatment with mefenamic acid, a TRPM3 inhibitor. CIM0216 was similarly or less capable in activating TRPM3-mediated gene transcription, suggesting that pregnenolone sulfate is still the ligand of choice for changing the gene expression pattern via TRPM3.

  10. Activity and storage of commercial amylases in the 2013 Louisiana grinding season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current problem in the application of amylases at sugarcane factories is the existence of a wide variation in the activities and activity per unit cost of commercial amylases. The efficiency of amylase action to break down starch in the factory is related to the activity of the amylase used. Until...

  11. Transient tachypnea - newborn

    MedlinePlus

    TTN; Wet lungs - newborns; Retained fetal lung fluid; Transient RDS; Prolonged transition; Neonatal - transient tachypnea ... As the baby grows in the womb, the lungs make a special fluid. This fluid fills the ...

  12. Blubber transcriptome response to acute stress axis activation involves transient changes in adipogenesis and lipolysis in a fasting-adapted marine mammal

    PubMed Central

    Khudyakov, J. I.; Champagne, C. D.; Meneghetti, L. M.; Crocker, D. E.

    2017-01-01

    Stress can compromise an animal’s ability to conserve metabolic stores and participate in energy-demanding activities that are critical for fitness. Understanding how wild animals, especially those already experiencing physiological extremes (e.g. fasting), regulate stress responses is critical for evaluating the impacts of anthropogenic disturbance on physiology and fitness, key challenges for conservation. However, studies of stress in wildlife are often limited to baseline endocrine measurements and few have investigated stress effects in fasting-adapted species. We examined downstream molecular consequences of hypothalamic-pituitary-adrenal (HPA) axis activation by exogenous adrenocorticotropic hormone (ACTH) in blubber of northern elephant seals due to the ease of blubber sampling and its key role in metabolic regulation in marine mammals. We report the first phocid blubber transcriptome produced by RNAseq, containing over 140,000 annotated transcripts, including metabolic and adipocytokine genes of interest. The acute response of blubber to stress axis activation, measured 2 hours after ACTH administration, involved highly specific, transient (lasting <24 hours) induction of gene networks that promote lipolysis and adipogenesis in mammalian adipocytes. Differentially expressed genes included key adipogenesis factors which can be used as blubber-specific markers of acute stress in marine mammals of concern for which sampling of other tissues is not possible. PMID:28186107

  13. Early Signaling in Primary T Cells Activated by Antigen Presenting Cells Is Associated with a Deep and Transient Lamellal Actin Network

    PubMed Central

    Roybal, Kole T.; Mace, Emily M.; Mantell, Judith M.; Verkade, Paul; Orange, Jordan S.; Wülfing, Christoph

    2015-01-01

    Cellular signaling transduction critically depends on molecular interactions that are in turn governed by dynamic subcellular distributions of the signaling system components. Comprehensive insight into signal transduction requires an understanding of such distributions and cellular structures driving them. To investigate the activation of primary murine T cells by antigen presenting cells (APC) we have imaged more than 60 signaling intermediates during T cell stimulation with microscopy across resolution limits. A substantial number of signaling intermediates associated with a transient, wide, and actin-associated lamellum extending from an interdigitated T cell:APC interface several micrometers into the T cell, as characterized in detail here. By mapping the more than 60 signaling intermediates onto the spatiotemporal features of cell biological structures, the lamellum and other ones previously described, we also define distinct spatial and temporal characteristics of T cell signal initiation, amplification, and core signaling in the activation of primary T cells by APCs. These characteristics differ substantially from ones seen when T cells are activated using common reductionist approaches. PMID:26237050

  14. Optical Recording Reveals Novel Properties of GSK1016790A-Induced Vanilloid Transient Receptor Potential Channel TRPV4 Activity in Primary Human Endothelial Cells

    PubMed Central

    Sullivan, Michelle N.; Francis, Michael; Pitts, Natalie L.; Taylor, Mark S.

    2012-01-01

    Critical functions of the vascular endothelium are regulated by changes in intracellular [Ca2+]. Endothelial dysfunction is tightly associated with cardiovascular disease, and improved understanding of Ca2+ entry pathways in these cells will have a significant impact on human health. However, much about Ca2+ influx channels in endothelial cells remains unknown because they are difficult to study using conventional patch-clamp electrophysiology. Here we describe a novel, highly efficient method for recording and analyzing Ca2+-permeable channel activity in primary human endothelial cells using a unique combination of total internal reflection fluorescence microscopy (TIRFM), custom software-based detection, and selective pharmacology. Our findings indicate that activity of the vanilloid (V) transient receptor potential (TRP) channel TRPV4 can be rapidly recorded and characterized at the single-channel level using this method, providing novel insight into channel function. Using this method, we show that although TRPV4 protein is evenly distributed throughout the plasma membrane, most channels are silent even during maximal stimulation with the potent TRPV4 agonist N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A). Furthermore, our findings indicate that GSK1016790A acts by recruiting previously inactive channels, rather than through increasing elevation of basal activity. PMID:22689561

  15. Modeling Transport in Fractured Porous Media with the Random-Walk Particle Method: The Transient Activity Range and the Particle-Transfer Probability

    SciTech Connect

    Lehua Pan; G.S. Bodvarsson

    2001-10-22

    Multiscale features of transport processes in fractured porous media make numerical modeling a difficult task, both in conceptualization and computation. Modeling the mass transfer through the fracture-matrix interface is one of the critical issues in the simulation of transport in a fractured porous medium. Because conventional dual-continuum-based numerical methods are unable to capture the transient features of the diffusion depth into the matrix (unless they assume a passive matrix medium), such methods will overestimate the transport of tracers through the fractures, especially for the cases with large fracture spacing, resulting in artificial early breakthroughs. We have developed a new method for calculating the particle-transfer probability that can capture the transient features of diffusion depth into the matrix within the framework of the dual-continuum random-walk particle method (RWPM) by introducing a new concept of activity range of a particle within the matrix. Unlike the multiple-continuum approach, the new dual-continuum RWPM does not require using additional grid blocks to represent the matrix. It does not assume a passive matrix medium and can be applied to the cases where global water flow exists in both continua. The new method has been verified against analytical solutions for transport in the fracture-matrix systems with various fracture spacing. The calculations of the breakthrough curves of radionuclides from a potential repository to the water table in Yucca Mountain demonstrate the effectiveness of the new method for simulating 3-D, mountain-scale transport in a heterogeneous, fractured porous medium under variably saturated conditions.

  16. Glutathione depletion activates the yeast vacuolar transient receptor potential channel, Yvc1p, by reversible glutathionylation of specific cysteines

    PubMed Central

    Chandel, Avinash; Das, Krishna K.; Bachhawat, Anand K.

    2016-01-01

    Glutathione depletion and calcium influx into the cytoplasm are two hallmarks of apoptosis. We have been investigating how glutathione depletion leads to apoptosis in yeast. We show here that glutathione depletion in yeast leads to the activation of two cytoplasmically inward-facing channels: the plasma membrane, Cch1p, and the vacuolar calcium channel, Yvc1p. Deletion of these channels partially rescues cells from glutathione depletion–induced cell death. Subsequent investigations on the Yvc1p channel, a homologue of the mammalian TRP channels, revealed that the channel is activated by glutathionylation. Yvc1p has nine cysteine residues, of which eight are located in the cytoplasmic regions and one on the transmembrane domain. We show that three of these cysteines, Cys-17, Cys-79, and Cys-191, are specifically glutathionylated. Mutation of these cysteines to alanine leads to a loss in glutathionylation and a concomitant loss in calcium channel activity. We further investigated the mechanism of glutathionylation and demonstrate a role for the yeast glutathione S-transferase Gtt1p in glutathionylation. Yvc1p is also deglutathionylated, and this was found to be mediated by the yeast thioredoxin, Trx2p. A model for redox activation and deactivation of the yeast Yvc1p channel is presented. PMID:27708136

  17. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability.

    PubMed

    Iannotti, Fabio Arturo; Hill, Charlotte L; Leo, Antonio; Alhusaini, Ahlam; Soubrane, Camille; Mazzarella, Enrico; Russo, Emilio; Whalley, Benjamin J; Di Marzo, Vincenzo; Stephens, Gary J

    2014-11-19

    Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg(2+)-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg(2+)-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg(2+)-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.

  18. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  19. Optimisation of enzymatic production of sulforaphane in broccoli sprouts and their total antioxidant activity at different growth and storage days.

    PubMed

    Tian, Ming; Xu, Xiaoyun; Hu, Hao; Liu, Yu; Pan, Siyi

    2017-01-01

    Sulforaphane, a type of isothiocyanate hydrolysed from glucosinolate, is a powerful anticancer compound naturally found in food especially in broccoli sprouts. Despite the function of sulforaphane has been extensively studied in recent years, little attention has been given to methods that can maximize the production of this compound in broccoli sprouts. The present study optimised the enzymolysis conditions for sulforaphane production in broccoli sprouts using response surface methodology. The maximum sulforaphane production (246.95 μg/g DW) was achieved using a solid-liquid ratio of 1:30, hydrolysis time of 1.5 h, ascorbic acid content of 3.95 mg/g DW sample, and temperature of 65 °C. The highest sulforaphane content in broccoli sprouts were 233.80 μg/g DW in 5-day-old sprouts and 1555.95 μg/g DW at day 4 of storage. The highest antioxidant activities were 37.22 U/min/g DW in 3-day-old sprouts and 35.08 U/min/g DW on 4th day of storage.

  20. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  1. A Method for Preparation, Storage and Activation of Large Populations of Immotile Sea Urchin Sperm

    NASA Technical Reports Server (NTRS)

    Bracho, Geracimo E.; Fritch, Jennifer J.; Tash, Joseph S.

    1997-01-01

    Reversible protein phosphorylation is associated with initiation and modulation of sperm flagellar motility. Many studies aimed at examining the signal transduction mechanisms underlying the expression of motility have relied on detergent-permeabilized sperm reactivated with exogenous 32 P-ATP. However, the reactivation conditions allow variable levels of motility to be expressed and phosphorylation of many proteins that appear to be unrelated to sperm motility. Thus, identification of the few relevant proteins is difficult. We have developed a method to collect and keep sperm immotile until reactivated for analysis to normal motility levels. Artificial sea water (ASW) buffered with 5 mM 2-[N-morpholino]ethanesulfonic acid at pH 6.0 and containing 50 mM KCI, allows collection and storage of immotile sea urchin sperm for up to 96 h at 4-5 C. Motility under these conditions is essentially zero, but sperm is rapidly reactivated to normal motility by diluting with ASW to standard pH (8.0) and KCI concentration (10 mM).

  2. Valproic acid induces differentiation and transient tumor regression, but spares leukemia-initiating activity in mouse models of APL.

    PubMed

    Leiva, M; Moretti, S; Soilihi, H; Pallavicini, I; Peres, L; Mercurio, C; Dal Zuffo, R; Minucci, S; de Thé, H

    2012-07-01

    Aberrant histone acetylation was physiopathologically associated with the development of acute myeloid leukemias (AMLs). Reversal of histone deacetylation by histone deacetylase inhibitor (HDACis) activates a cell death program that allows tumor regression in mouse models of AMLs. We have used several models of PML-RARA-driven acute promyelocytic leukemias (APLs) to analyze the in vivo effects of valproic acid, a well-characterized HDACis. Valproic acid (VPA)-induced rapid tumor regression and sharply prolonged survival. However, discontinuation of treatment was associated to an immediate relapse. In vivo, as well as ex vivo, VPA-induced terminal granulocytic differentiation. Yet, despite full differentiation, leukemia-initiating cell (LIC) activity was actually enhanced by VPA treatment. In contrast to all-trans retinoic acid (ATRA) or arsenic, VPA did not