Sample records for active transient storage

  1. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration

    Treesearch

    Alba Argerich; Roy Haggerty; Eugènia Martí; Francesc Sabater; Jay Zarnetske

    2011-01-01

    Water transient storage zones are hotspots for metabolic activity in streams although the contribution of different types of transient storage zones to the whole�]reach metabolic activity is difficult to quantify. In this study we present a method to measure the fraction of the transient storage that is metabolically active (MATS) in two consecutive reaches...

  2. Transient storage assessments of dye-tracer injections in rivers of the Willamette Basin, Oregon

    USGS Publications Warehouse

    Laenen, A.; Bencala, K.E.

    2001-01-01

    Rhodamine WT dye-tracer injections in rivers of the Willamette Basin yield concentration-time curves with characteristically long recession times suggestive of active transient storage processes. The scale of drainage areas contributing to the stream reaches studied in the Willamette Basin ranges from 10 to 12,000 km2. A transient storage assessment of the tracer studies has been completed using the U.S. Geological Survey's One-dimensional Transport with Inflow and Storage (OTIS) model, which incorporates storage exchange and decay functions along with the traditional dispersion and advection transport equation. The analysis estimates solute transport of the dye. It identifies first-order decay coefficients to be on the order of 10-5/sec for the nonconservative Rhodamine WT. On an individual subreach basis, the first-order decay is slower (typically by an order of magnitude) than the transient storage process, indicating that nonconservative tracers may be used to evaluate transient storage in rivers. In the transient storage analysis, a dimensionless parameter (As/A) expresses the spatial extent of storage zone area relative to stream cross section. In certain reaches of Willamette Basin pool-and-riffle, gravel-bed rivers, this parameter was as large as 0.5. A measure of the storage exchange flux was calculated for each stream subreach in the simulation analysis. This storage exchange is shown subjectively to be higher at higher stream discharges. Hyporheic linkage between streams and subsurface flows is the probable physical mechanism contributing to a significant part of this inferred active transient storage. Hyporheic linkages are further suggested by detailed measurements of river discharge with an Acoustic Doppler Current Profiler system delineating zones in two large rivers where water alternately enters and leaves the surface channels through graveland-cobble riverbeds. Measurements show patterns of hyporheic exchange that are highly variable in time and space.

  3. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    NASA Astrophysics Data System (ADS)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on porous silicon, dissolution tests for 0.1 M and 0.01 M NaOH trigger solutions, EIS analysis for VOx coated devices, and EDS compositional analysis of VOx. (ii) Video showing transient behavior of integrated VOx/porous silicon scaffolds. See DOI: 10.1039/c5nr09095d

  4. Attempting to link hydro-morphology, transient storage and metabolism in streams: Insights from reactive tracer experiments

    NASA Astrophysics Data System (ADS)

    Kurz, Marie J.; Schmidt, Christian; Blaen, Phillip; Knapp, Julia L. A.; Drummond, Jennifer D.; Martí, Eugenia; Zarnetske, Jay P.; Ward, Adam S.; Krause, Stefan

    2016-04-01

    In-stream transient storage zones, including the hyporheic zone and vegetation beds, can be hotspots of biogeochemical processing in streams, enhancing ecosystem functions such as metabolism and nutrient uptake. The spatio-temporal dynamics and reactivity of these storage zones are influenced by multiple factors, including channel geomorphology, substrate composition and hydrology, and by anthropogenic modifications to flow regimes and nutrient loads. Tracer injections are a commonly employed method to evaluate solute transport and transient storage in streams; however, reactive tracers are needed to differentiate between metabolically active and inactive transient storage zones. The reactive stream tracer resazurin (Raz), a weakly fluorescent dye which irreversibly transforms to resorufin (Rru) under mildly reducing conditions, provides a proxy for aerobic respiration and an estimate of the metabolic activity associated with transient storage zones. Across a range of lotic ecosystems, we try to assess the influence of stream channel hydro-morphology, morphologic heterogeneity, and substrate type on reach (103 m) and sub-reach (102 m) scale transient storage, respiration, and nutrient uptake. To do so, we coupled injections of Raz and conservative tracers (uranine and/or salt) at each study site. The study sites included: vegetated mesocosms controlled for water depth; vegetated and un-vegetated sediment-filled mesocosms fed by waste-water effluent; a contrasting sand- vs. gravel-bedded lowland stream (Q = 0.08 m3/s); and a series of upland streams with varying size (Q = 0.1 - 1.5 m3/s) and prevalence of morphologic features. Continuous time-series of tracer concentrations were recorded using in-situ fluorometers and EC loggers. At the stream sites, time-series were recorded at multiple downstream locations in order to resolve sub-reach dynamics. Analyses yielded highly variable transport metrics and Raz-Rru transformation between study sites and between sub-reaches within stream sites. Higher Raz-Rru transformation rates were typically observed in smaller streams, in sub-reaches with higher prevalence of morphologic features known to promote hyporheic exchange, and in mesocosms with higher water depth, vegetation density and retention time. However, relationships between transformation rates and common metrics of transient storage were not consistent among study cases, indicating the existence of yet unrealized complexities in the relationships between water and solute transport and metabolism. Further insights were also gained related to the utility of Raz and improved tracer test practices.

  5. Hydrological controls on transient aquifer storage in a karst watershed

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  6. Variations in surface water-ground water interactions along a headwater mountain stream : comparisons between transient storage and water balance analyses

    USGS Publications Warehouse

    Ward, Adam S.; Payn, Robert A.; Gooseff, Michael N.; McGlynn, Brian L.; Bencala, Kenneth E.; Kelleher, Christa A.; Wondzell, Steven M.; Wagener, Thorsten

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We conducted transient storage and mass recovery analyses of artificial tracer studies completed for 28 contiguous 100 m reaches along a stream valley, repeated under four base-flow conditions. We calculated net and gross gains and losses, temporal moments of tracer breakthrough curves, and best fit transient storage model parameters (with uncertainty estimates) for 106 individual tracer injections. Results supported predictions that gross loss of channel water would decrease with increased discharge. However, results showed no clear relationship between discharge and transient storage, and further analysis of solute tracer methods demonstrated that the lack of this relation may be explained by uncertainty and equifinality in the transient storage model framework. Furthermore, comparison of water balance and transient storage approaches reveals complications in clear interpretation of either method due to changes in advective transport time, which sets a the temporal boundary separating transient storage and channel water balance. We have little ability to parse this limitation of solute tracer methods from the physical processes we seek to study. We suggest the combined analysis of both transient storage and channel water balance more completely characterizes transport of solutes in stream networks than can be inferred from either method alone.

  7. Developing semi-analytical solution for multiple-zone transient storage model with spatially non-uniform storage

    NASA Astrophysics Data System (ADS)

    Deng, Baoqing; Si, Yinbing; Wang, Jia

    2017-12-01

    Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.

  8. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand

    USGS Publications Warehouse

    Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.

    2014-01-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

  9. Using Rising Limb Analysis to Estimate Uptake of Reactive Solutes in Advective and Transient Storage Sub-compartments of Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Thomas, S. A.; Valett, H.; Webster, J. R.; Mulholland, P. J.; Dahm, C. N.

    2001-12-01

    Identifying the locations and controls governing solute uptake is a recent area of focus in studies of stream biogeochemistry. We introduce a technique, rising limb analysis (RLA), to estimate areal nitrate uptake in the advective and transient storage (TS) zones of streams. RLA is an inverse approach that combines nutrient spiraling and transient storage modeling to calculate total uptake of reactive solutes and the fraction of uptake occurring within the advective sub-compartment of streams. The contribution of the transient storage zones to solute loss is determined by difference. Twelve-hour coinjections of conservative (Cl-) and reactive (15NO3) tracers were conducted seasonally in several headwater streams among which AS/A ranged from 0.01 - 2.0. TS characteristics were determined using an advection-dispersion model modified to include hydrologic exchange with a transient storage compartment. Whole-system uptake was determined by fitting the longitudinal pattern of NO3 to first-order, exponential decay model. Uptake in the advective sub-compartment was determined by collecting a temporal sequence of samples from a single location beginning with the arrival of the solute front and concluding with the onset of plateau conditions (i.e. the rising limb). Across the rising limb, 15NO3:Cl was regressed against the percentage of water that had resided in the transient storage zone (calculated from the TS modeling). The y-intercept thus provides an estimate of the plateau 15NO3:Cl ratio in the absence of NO3 uptake within the transient storage zone. Algebraic expressions were used to calculate the percentage of NO3 uptake occurring in the advective and transient storage sub-compartments. Application of RLA successfully estimated uptake coefficients for NO3 in the subsurface when the physical dimensions of that habitat were substantial (AS/A > 0.2) and when plateau conditions at the sampling location consisted of waters in which at least 25% had resided in the transient storage zone. In those cases, the TS zone accounted for 8 - 47 % of overall NO3 uptake and uptake rates within the subsurface ranged from 0.7 - 14.3 mg N m-2 d-1.

  10. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    USGS Publications Warehouse

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson W.

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  11. An efficient numerical solution of the transient storage equations for solute transport in small streams

    USGS Publications Warehouse

    Runkel, Robert L.; Chapra, Steven C.

    1993-01-01

    Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.

  12. Transient traceability analysis of land carbon storage dynamics: procedures and its application to two forest ecosystems

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.

    2017-12-01

    Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.

  13. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support

    NASA Astrophysics Data System (ADS)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao

    2015-07-01

    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  14. Effect of culture residence time on substrate uptake and storage by a pure culture of Thiothrix (CT3 strain) under continuous or batch feeding.

    PubMed

    Valentino, Francesco; Beccari, Mario; Villano, Marianna; Tandoi, Valter; Majone, Mauro

    2017-05-25

    A pure culture of the filamentous bacterium Thiothrix, strain CT3, was aerobically cultured in a chemostat under continuous acetate feeding at three different culture residence times (RT 6, 12 or 22 d) and the same volumetric organic load rate (OLR 0.12gCOD/L/d). Cells cultured at decreasing RT in the chemostat had an increasing transient response to acetate spikes in batch tests. The maximum specific acetate removal rate increased from 25 to 185mgCOD/gCOD/h, corresponding to a 1.8 to 8.1 fold higher respective steady-state rate in the chemostat. The transient response was mainly due to acetate storage in the form of poly(3-hydroxybutyrate) (PHB), whereas no growth response was observed at any RT. Interestingly, even though the storage rate also decreased as the RT increased, the storage yield increased from 0.41 to 0.50 COD/COD. This finding does not support the traditional view that storage plays a more important role as the transient response increases. The transient response of the steady-state cells was much lower than in cells cultured under periodic feeding (at 6 d RT, from 82 to 247mgCOD/gCOD/h), with the latter cells showing both storage and growth responses. On the other hand, even though steady-state cells had no growth response and their storage rate was also less, steady-state cells showed a higher storage yield than cells cultured under dynamic feeding. This suggests that in Thiothrix strain CT3, the growth response is triggered by periodic feeding, whereas the storage response is a constitutive mechanism, independent from previous acclimation to transient conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Scaling of Transient Storage Parameter Estimates with Increasing Reach Length in a Mountain Headwater Stream

    NASA Astrophysics Data System (ADS)

    Briggs, M.; Gooseff, M. N.; McGlynn, B.

    2006-12-01

    . Numerous studies have used the methods of stream tracer experiments and subsequent solute transport modeling to determine transient storage characteristics of streams. Experimental reach length is often determined by site logistics, morphology, specific study goals, etc. Harvey et al. [1996] provided guidance for optimal study reach lengths, based on the Dahmkoler number, as a balance between timescales of advective transport and transient storage. In this study, we investigate the scaling of parameters in a solute transport model (OTIS) with increasing spatial scale of investigation. We conducted 2 6-hour constant rate injections of dissolved NaCl in Spring Park Creek, a headwater stream in the Tenderfoot Creek Experimental Forest, Montana. Below the first injection we sampled 4 reaches ~200m in length, we then moved upstream 640m for the second injection and sampled 3 more ~200 m reaches. Solute transport simulations were conducted for each of these sub-reaches and for combinations of these sub-reaches, from which we assessed estimates of solute velocity, dispersion, transient storage exchange, storage zone size, and Fmed (proportion of median transport time due to storage). Dahmkoler values calculated for each simulation (sub-reaches as well as longer combined reach) were within an order of magnitude of 1, suggesting that our study reach lengths were appropriate. Length-weighted average solute transport and transient storage parameters for the sub-reaches were found to be comparable to their counterparts in the longer reach simulation. In particular the average dispersion found for the sub-reaches (0.43 m2/s) compared very favorably with the value for dispersion calculated for the larger reach (0.40 m2/s). In contrast the weighted average of storage zone size for the sub-reaches was much greater (1.17 m2) than those calculated for the injection reach as a whole (0.09 m2) by a factor of ~13. Weighted average values for transient storage exchange and size for the sub-reaches were both found to be higher than that of the reach as a whole, but only by factors of ~2.5 and 3 respectively. This study indicates that some values of solute transport and transient storage for a particular reach can be reasonably extrapolated from its corresponding component reach values.

  16. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods ismore » less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the relative size of the transient storage zone and how it changes in the downstream direction, as well as the nature of hydrologic variability.« less

  17. Storage in alluvial deposits controls the timing of particle delivery from large watersheds, filtering upland erosional signals and delaying benefits from watershed best management practices

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.; Skalak, K.; Karwan, D. L.

    2017-12-01

    Transport of suspended sediment and sediment-borne constituents (here termed fluvial particles) through large river systems can be significantly influenced by episodic storage in floodplains and other alluvial deposits. Geomorphologists quantify the importance of storage using sediment budgets, but these data alone are insufficient to determine how storage influences the routing of fluvial particles through river corridors across large spatial scales. For steady state systems, models that combine sediment budget data with "waiting time distributions" (to define how long deposited particles remain stored until being remobilized) and velocities during transport events can provide useful predictions. Limited field data suggest that waiting time distributions are well represented by power laws, extending from <1 to >104 years, while the probability of storage defined by sediment budgets varies from 0.1 km-1 for small drainage basins to 0.001 km-1 for the world's largest watersheds. Timescales of particle delivery from large watersheds are determined by storage rather than by transport processes, with most particles requiring 102 -104 years to reach the basin outlet. These predictions suggest that erosional "signals" induced by climate change, tectonics, or anthropogenic activity will be transformed by storage before delivery to the outlets of large watersheds. In particular, best management practices (BMPs) implemented in upland source areas, designed to reduce the loading of fluvial particles to estuarine receiving waters, will not achieve their intended benefits for centuries (or longer). For transient systems, waiting time distributions cannot be constant, but will vary as portions of transient sediment "pulses" enter and are later released from storage. The delivery of sediment pulses under transient conditions can be predicted by adopting the hypothesis that the probability of erosion of stored particles will decrease with increasing "age" (where age is defined as the elapsed time since deposition). Then, waiting time and age distributions for stored particles become predictions based on the architecture of alluvial storage and the tendency for erosional processes to preferentially remove younger deposits, improving assessment of watershed BMPs and other important applications.

  18. A comprehensive one-dimensional numerical model for solute transport in rivers

    NASA Astrophysics Data System (ADS)

    Barati Moghaddam, Maryam; Mazaheri, Mehdi; MohammadVali Samani, Jamal

    2017-01-01

    One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.

  19. Transport of a conservative and "smart" tracers' in a first-order creek: role of transient storage type

    USDA-ARS?s Scientific Manuscript database

    Quantification of microbial fate and transport in streams has become one of most important topics in studying biogeochemical properties and behavior of stream ecosystems. Using "smart" tracer such as resazurin (Raz) allows assessment of sediment-water interactions and associated biological activity ...

  20. AN INTERREGIONAL COMPARISON OF CHANNEL STRUCTURE, TRANSIENT STORAGE AND NUTRIENT UPTAKE IN STREAMS DRAINING MANAGED AND OLD GROWTH WATERSHEDS

    EPA Science Inventory

    We compared stream channel structure (width, depth, substrate composition) and riparian canopy with transient storage and nutrient uptake in 32 streams draining old-growth and managed watersheds in the Appalachian Mountains (North Carolina), Ouachita Mountains (Arkansas), Cascade...

  1. NUTRIENT UPTAKE LENGTH, CHANNEL STRUCTURE, AND TRANSIENT STORAGE IN STREAMS DRAINING HARVESTED AND OLD GROWTH WATERSHEDS

    EPA Science Inventory

    Channel structure and transient storage were correlated with nutrient uptake length in streams draining old-growth and harvested watersheds in the Cascade Mountains of Oregon, and the redwood forests of northwestern California. Channel width and riparian canopy were measured at 1...

  2. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  3. AN INTERREGIONAL COMPARISON OF CHANNEL STRUCTURE WITH TRANSIENT STORAGE IN STREAMS DRAINING HARVESTED AND OLD-GROWTH WATERSHEDS

    EPA Science Inventory

    We compared measures of channel structure and riparian canopy with estimates of transient storage in 32 streams draining old-growth and harvested watersheds in the Southern Appalachian Mountains of North Carolina (n=4), the Ouachita Mountains of Arkansas (n=5), the Cascade Mounta...

  4. N-butyldeoxynojirimycin treatment restores the innate fear response and improves learning in mucopolysaccharidosis IIIA mice.

    PubMed

    Kaidonis, Xenia; Byers, Sharon; Ranieri, Enzo; Sharp, Peter; Fletcher, Janice; Derrick-Roberts, Ainslie

    2016-06-01

    Mucopolysaccharidosis IIIA is a heritable neurodegenerative disorder resulting from the dysfunction of the lysosomal hydrolase sulphamidase. This leads to the primary accumulation of the complex carbohydrate heparan sulphate in a wide range of tissues and the secondary neuronal storage of gangliosides GM2 and GM3 in the brain. GM2 storage is associated with CNS deterioration in the GM2 gangliosidosis group of lysosomal storage disorders and may also contribute to MPS CNS disease. N-butyldeoxynojirimycin, an inhibitor of ceramide glucosyltransferase activity and therefore of ganglioside synthesis, was administered to MPS IIIA mice both prior to maximal GM2 and GM3 accumulation (early treatment) and after the maximum level of ganglioside had accumulated in the brain (late treatment) to determine if behaviour was altered by ganglioside level. Ceramide glucosyltransferase activity was decreased in both treatment groups; however, brain ganglioside levels were only decreased in the late treatment group. Learning in the water cross maze was improved in both groups and the innate fear response was also restored in both groups. A reduction in the expression of inflammatory gene Ccl3 was observed in the early treatment group, while IL1β expression was reduced in both treatment groups. Thus, it appears that NB-DNJ elicits a transient decrease in brain ganglioside levels, some modulation of inflammatory cytokines and a functional improvement in behaviour that can be elicited both before and after overt neurological changes manifest. NB-DNJ improves learning and restores the innate fear response in MPS IIIA mice by decreasing ceramide glucosyltransferase activity and transiently reducing ganglioside storage and/or modulating inflammatory signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Modeling a Transient Pressurization with Active Cooling Sizing Tool

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.

    2011-01-01

    As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank pressure recovery with ZBO of a liquid oxygen propellant tank.

  6. Defining and measuring the mean residence time of lateral surface transient storage zones in small streams

    Treesearch

    T.R. Jackson; R. Haggerty; S.V. Apte; A. Coleman; K.J. Drost

    2012-01-01

    Surface transient storage (STS) has functional significance in stream ecosystems because it increases solute interaction with sediments. After volume, mean residence time is the most important metric of STS, but it is unclear how this can be measured accurately or related to other timescales and field-measureable parameters. We studied mean residence time of lateral...

  7. Conservative and reactive solute transport in constructed wetlands

    USGS Publications Warehouse

    Keefe, Steffanie H.; Barber, Larry B.; Runkel, Robert L.; Ryan, Joseph N.; McKnight, Diane M.; Wass, Roland D.

    2004-01-01

    The transport of bromide, a conservative tracer, and rhodamine WT (RWT), a photodegrading tracer, was evaluated in three wastewater‐dependent wetlands near Phoenix, Arizona, using a solute transport model with transient storage. Coupled sodium bromide and RWT tracer tests were performed to establish conservative transport and reactive parameters in constructed wetlands with water losses ranging from (1) relatively impermeable (15%), (2) moderately leaky (45%), and (3) significantly leaky (76%). RWT first‐order photolysis rates and sorption coefficients were determined from independent field and laboratory experiments. Individual wetland hydraulic profiles influenced the extent of transient storage interaction in stagnant water areas and consequently RWT removal. Solute mixing and transient storage interaction occurred in the impermeable wetland, resulting in 21% RWT mass loss from main channel and storage zone photolysis (10%) and sorption (11%) reactions. Advection and dispersion governed solute transport in the leaky wetland, limiting RWT photolysis removal (1.2%) and favoring main channel sorption (3.6%). The moderately leaky wetland contained islands parallel to flow, producing channel flow and minimizing RWT losses (1.6%).

  8. Preliminary study of injection transients in the TPS storage ring

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Liu, Y. C.; Y Chen, J.; Chiu, M. S.; Tseng, F. H.; Fann, S.; Liang, C. C.; Huang, C. S.; Y Lee, T.; Y Chen, B.; Tsai, H. J.; Luo, G. H.; Kuo, C. C.

    2017-07-01

    An optimized injection efficiency is related to a perfect match between the pulsed magnetic fields in the storage ring and transfer line extraction in the TPS. However, misalignment errors, hardware output errors and leakage fields are unavoidable. We study the influence of injection transients on the stored TPS beam and discuss solutions to compensate these. Related simulations and measurements will be presented.

  9. Variations in surface water-ground water interactions along a headwater mountain stream: comparisons between transient storage and water balance analyses

    Treesearch

    Adam S. Ward; Robert A. Payn; Michael N. Gooseff; Brian L. McGlynn; Kenneth E. Bencala; Christa A. Kellecher; Steven M. Wondzell; Thorsten Wagener

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We...

  10. Variation in surface water-groundwater exchange with land use in an urban stream

    NASA Astrophysics Data System (ADS)

    Ryan, Robert J.; Welty, Claire; Larson, Philip C.

    2010-10-01

    SummaryA suite of methods is being utilized in the Baltimore metropolitan area to develop an understanding of the interaction between groundwater and surface water at multiple space and time scales. As part of this effort, bromide tracer experiments were conducted over two 10-day periods in August 2007 and May 2008 along two sections (each approximately 900 m long) of Dead Run, a small urban stream located in Baltimore County, Maryland, to investigate the influence of distinct zones of riparian land cover on surface-subsurface exchange and transient storage under low and high baseflow conditions. Riparian land cover varied by reach along a gradient of land use spanning parkland, suburban/residential, commercial, institutional, and transportation, and included wooded, meadow, turf grass, and impervious cover. Under summer low baseflow conditions, surface water-groundwater exchange, defined by gross inflow and gross outflow, was larger and net inflow (gross inflow minus gross outflow) had greater spatial variability, than was observed under spring high baseflow conditions. In addition, the fraction of nominal travel time attributable to transient storage ( Fmed) was lower and was more spatially variable under high baseflow conditions than under low baseflow conditions. The influence of baseflow condition on surface water-ground water exchange and transient storage was most evident in the subreaches with the least riparian forest cover and these effects are attributed to a lack of shading in reaches with little riparian forest cover. We suggest that under summer low baseflow conditions, the lack of shading allowed excess in-channel vegetation growth which acted as a transient storage zone and a conduit for outflow (i.e. uptake and evapotranspiration). Under spring high baseflow conditions the transient storage capacity of the channel was reduced because there was little in-channel vegetation.

  11. Occurrence, fate, and ecosystem implications of endocrine active compounds in select rivers of Minnesota

    NASA Astrophysics Data System (ADS)

    Writer, J.; Keefe, S.; Barber, L. B.; Brown, G.; Schoenfuss, H.; Kiesling, R.; Gray, J. L.

    2009-12-01

    Select endocrine active compounds (EACs) were measured in four rivers in southern Minnesota. Additionally, caged and wild fish were assessed for indication of endocrine disruption using plasma vitellogenin and histopathology. Low concentrations of EACs were identified in all rivers, as was elevated plasma vitellogenin in caged and wild fish, indicating potential endocrine disruption. To evaluate the persistence of these compounds in small rivers, a tracer study was performed on one of the rivers (Redwood River) using Lagrangian sampling coupled with hydrologic modeling incorporating transient storage. Mass exchange (transient storage, sorption) and degradation were approximated as pseudo first order processes, and in-stream removal rates were then computed by comparing conservative tracer concentrations to organic compound concentrations. Production of estrone and 4-nonylphenol in the studied reach as a result of biochemical transformation from their parent compounds (17β-estradiol and alkylphenolpolyethoxylates, respectively) was quantified. The distance required for 17β-estradiol and nonylphenol to undergo a 50% reduction in concentration was >2 km and >10 km, respectively. These results indicate that EACs are transported several kilometers downstream from discharge sources and therefore have the potential of adversely impacting the lotic ecosystem over these distances.

  12. A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations

    USGS Publications Warehouse

    Ward, Adam S.; Kelleher, Christa A.; Mason, Seth J. K.; Wagener, Thorsten; McIntyre, Neil; McGlynn, Brian L.; Runkel, Robert L.; Payn, Robert A.

    2017-01-01

    Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient-storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes.

  13. Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans.

    PubMed

    Najjar, Amal; Robert, Sylvie; Guérin, Clémence; Violet-Asther, Michèle; Carrière, Frédéric

    2011-03-01

    Lipase secretion, extracellular lipolysis, and fatty acid uptake were quantified in the yeast Yarrowia lipolytica grown in the presence of olive oil and/or glucose. Specific lipase assays, Western blot analysis, and ELISA indicated that most of the lipase activity measured in Y. lipolytica cultures resulted from the YLLIP2 lipase. Lipase production was triggered by olive oil and, during the first hours of culture, most of the lipase activity and YLLIP2 immunodetection remained associated with the yeast cells. YLLIP2 was then released in the culture medium before it was totally degraded by proteases. Olive oil triglycerides were largely degraded when the lipase was still attached to the cell wall. The fate of lipolysis products in the culture medium and inside the yeast cell, as well as lipid storage, was investigated simultaneously by quantitative TLC-FID and GC analysis. The intracellular levels of free fatty acids (FFA) and triglycerides increased transiently and were dependent on the carbon sources. A maximum fat storage of 37.8% w/w of yeast dry mass was observed with olive oil alone. A transient accumulation of saturated FFA was observed whereas intracellular triglycerides became enriched in unsaturated fatty acids. So far, yeasts have been mainly used for studying the intracellular synthesis, storage, and mobilization of neutral lipids. The present study shows that yeasts are also interesting models for studying extracellular lipolysis and fat uptake by the cell. The quantitative data obtained here allow for the first time to establish interesting analogies with gastrointestinal and vascular lipolysis in humans.

  14. How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Thomas J. Voltz; Michael Fitzgerald; Kamini Singha; Jay P. Zarnetske

    2013-01-01

    Measurements of transient storage in coupled surface-water and groundwater systems are widely made during base flow periods and rarely made during storm flow periods. We completed 24 sets of slug injections in three contiguous study reaches during a 1.25 year return interval storm event (discharge ranging from 21.5 to 434 L s1 ) in a net gaining headwater stream within...

  15. Diagnosis and management of von Willebrand's syndrome.

    PubMed

    Rick, M E

    1994-05-01

    von Willebrand's disease is the most common of the inherited bleeding disorders. It is caused by quantitative and/or qualitative abnormalities of von Willebrand factor, and it usually presents with bleeding from mucosal surfaces. The diagnosis is confirmed by measuring von Willebrand factor activity and antigen levels, factor VIII activity, and performing a multimer analysis of von Willebrand factor. Treatment may require plasma-derived concentrates, but can often be accomplished with DDAVP, a vasopressin analogue that causes transient release of von Willebrand factor from body storage sites.

  16. Impact of wind farms with energy storage on transient stability

    NASA Astrophysics Data System (ADS)

    Bowman, Douglas Allen

    Today's energy infrastructure will need to rapidly expand in terms of reliability and flexibility due to aging infrastructure, changing energy market conditions, projected load increases, and system reliability requirements. Over the few decades, several states in the U.S. are now requiring an increase in wind penetration. These requirements will have impacts on grid reliability given the inherent intermittency of wind generation and much research has been completed on the impact of wind on grid reliability. Energy storage has been proposed as a tool to provide greater levels of reliability; however, little research has occurred in the area of wind with storage and its impact on stability given different possible scenarios. This thesis addresses the impact of wind farm penetration on transient stability when energy storage is added. The results show that battery energy storage located at the wind energy site can improve the stability response of the system.

  17. Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient

    PubMed Central

    Dongaonkar, R. M.; Laine, G. A.; Stewart, R. H.

    2011-01-01

    Microvascular permeability to water is characterized by the microvascular filtration coefficient (Kf). Conventional gravimetric techniques to estimate Kf rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate Kf estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce Kf from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to Kf and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of Kf in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique. PMID:21346245

  18. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.

    PubMed

    Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.

  19. Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples

    DOE PAGES

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...

    2016-09-16

    Terrestrial ecosystems absorb roughly 30% of anthropogenic CO 2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production,more » NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. We also propose that the C storage potential be the targeted variable for research, market trading, and government negotiation for C credits.« less

  20. Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie

    Terrestrial ecosystems absorb roughly 30% of anthropogenic CO 2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production,more » NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. We also propose that the C storage potential be the targeted variable for research, market trading, and government negotiation for C credits.« less

  1. Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications

    DOE PAGES

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; ...

    2017-01-12

    Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Altogether, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less

  2. Transient dynamics of terrestrial carbon storage: Mathematical foundation and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie

    Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g.,more » net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Altogether, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less

  3. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.

    2013-01-01

    Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523

  4. Lectin staining of epithelia lining the uterovaginal junction and sperm-storage tubules in chicken hens

    USDA-ARS?s Scientific Manuscript database

    In most mammals sperm are subject to a transient storage period in the caudal region of the oviduct during which they undergo cellular and molecular modifications associated with capacitation. During this storage period sperm bind to a terminal carbohydrate moiety associated with a glycoconjugate o...

  5. Kinematics analysis of vertical magnetic suspension energy storage flywheel rotor under transient rotational speed

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei

    2018-05-01

    In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.

  6. 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response

    NASA Astrophysics Data System (ADS)

    Cardiff, M.; Barrash, W.

    2011-12-01

    We investigate, through numerical experiments, the viability of three-dimensional transient hydraulic tomography (3DTHT) for identifying the spatial distribution of groundwater flow parameters (primarily, hydraulic conductivity K) in permeable, unconfined aquifers. To invert the large amount of transient data collected from 3DTHT surveys, we utilize an iterative geostatistical inversion strategy in which outer iterations progressively increase the number of data points fitted and inner iterations solve the quasi-linear geostatistical formulas of Kitanidis. In order to base our numerical experiments around realistic scenarios, we utilize pumping rates, geometries, and test lengths similar to those attainable during 3DTHT field campaigns performed at the Boise Hydrogeophysical Research Site (BHRS). We also utilize hydrologic parameters that are similar to those observed at the BHRS and in other unconsolidated, unconfined fluvial aquifers. In addition to estimating K, we test the ability of 3DTHT to estimate both average storage values (specific storage Ss and specific yield Sy) as well as spatial variability in storage coefficients. The effects of model conceptualization errors during unconfined 3DTHT are investigated including: (1) assuming constant storage coefficients during inversion and (2) assuming stationary geostatistical parameter variability. Overall, our findings indicate that estimation of K is slightly degraded if storage parameters must be jointly estimated, but that this effect is quite small compared with the degradation of estimates due to violation of "structural" geostatistical assumptions. Practically, we find for our scenarios that assuming constant storage values during inversion does not appear to have a significant effect on K estimates or uncertainty bounds.

  7. Scaling of transient storage parameter estimates with increasing reach length in a mountain headwater stream

    Treesearch

    M. Briggs; M. N. Gooseff; B. McGlynn

    2006-01-01

    We performed two conservative tracer injections in a mountain stream in order to access the relationship between storage parameters on the short subreach scale to the longer reach which they comprise.

  8. Incompletely Mixed Surface Transient Storage Zones at River Restoration Structures: Modeling Implications

    NASA Astrophysics Data System (ADS)

    Endreny, T. A.; Robinson, J.

    2012-12-01

    River restoration structures, also known as river steering deflectors, are designed to reduce bank shear stress by generating wake zones between the bank and the constricted conveyance region. There is interest in characterizing the surface transient storage (STS) and associated biogeochemical processing in the STS zones around these structures to quantify the ecosystem benefits of river restoration. This research explored how the hydraulics around river restoration structures prohibits application of transient storage models designed for homogenous, completely mixed STS zones. We used slug and constant rate injections of a conservative tracer in a 3rd order river in Onondaga County, NY over the course of five experiments at varying flow regimes. Recovered breakthrough curves spanned a transect including the main channel and wake zone at a j-hook restoration structure. We noted divergent patterns of peak solute concentration and times within the wake zone regardless of transect location within the structure. Analysis reveals an inhomogeneous STS zone which is frequently still loading tracer after the main channel has peaked. The breakthrough curve loading patterns at the restoration structure violated the assumptions of simplified "random walk" 2 zone transient storage models which seek to identify representative STS zones and zone locations. Use of structure-scale Weiner filter based multi-rate mass transfer models to characterize STS zones residence times are similarly dependent on a representative zone location. Each 2 zone model assumes 1 zone is a completely mixed STS zone and the other a completely mixed main channel. Our research reveals limits to simple application of the recently developed 2 zone models, and raises important questions about the measurement scale necessary to identify critical STS properties at restoration sites. An explanation for the incompletely mixed STS zone may be the distinct hydraulics at restoration sites, including a constrained high velocity conveyance region closely abutting a wake zone that receives periodic disruption from the upstream structure shearing vortices.igure 1. River restoration j-hook with blue dye revealing main channel and edge of wake zone with multiple surface transient storage zones.

  9. Transient Auditory Storage of Acoustic Details Is Associated with Release of Speech from Informational Masking in Reverberant Conditions

    ERIC Educational Resources Information Center

    Huang, Ying; Huang, Qiang; Chen, Xun; Wu, Xihong; Li, Liang

    2009-01-01

    Perceptual integration of the sound directly emanating from the source with reflections needs both temporal storage and correlation computation of acoustic details. We examined whether the temporal storage is frequency dependent and associated with speech unmasking. In Experiment 1, a break in correlation (BIC) between interaurally correlated…

  10. Effect of transient warming of red blood cells for up to 24 h: in vitro characteristics in CPD/saline-adenine-glucose-mannitol environment.

    PubMed

    Gulliksson, H; Nordahl-Källman, A-S

    2014-01-01

    There are few studies on transient warming of red blood cells (RBCs). Occasional storage outside restricted temperature range often results in destroying of the RBC unit, even after a short period of time due to national guidelines. This study evaluates the in vitro effects associated with such accidental warming on RBCs stored in saline-adenine-glucose-mannitol (SAGM) and prepared within 8 h after blood collection. This study includes both repeated short-term exposure of RBCs to room temperature for 6 h as wells as warming for either 6, 12, 18 or 24 h after 1 week or after 3 weeks of storage in two separate studies. RBCs were stored for 42 days. We weekly measured pH, K(+) , glucose, lactate, haemolysis, red cell ATP and 2,3-diphosphoglycerate. The lowest individual ATP value observed in any of the groups of warmed units was 2·6 μmol/g haemoglobin. Increased haemolysis in warmed units was noted in two of the studies. None of the individual units exceeded the European maximum limit of 0·8% haemolysis. Our results suggest that quality of RBCs after transient warming will be maintained at acceptable levels specified in standards and in previous studies. However, increased haemolysis was observed when transient warming occurred during the second part of the storage period of 6 weeks suggesting that RBCs are more vulnerable to warming by the end of storage. © 2013 International Society of Blood Transfusion.

  11. A novel control strategy for enhancing the LVRT and voltage support capabilities of DFIG

    NASA Astrophysics Data System (ADS)

    Shen, Yangwu; Zhang, Bin; Liang, Liqing; Cui, Ting

    2018-02-01

    A novel integrated control strategy is proposed in this paper to enhance the low voltage ride through capacity for the double-fed induction generator by equipping an energy storage system. The energy storage system is installed into the DC-link capacitor of the DFIG and used to control the DC-link voltage during normal or transient operations. The energy storage device will absorb or compensate the power difference between the captured wind power and the power injected to the grid during the normal and transient period, and the grid side converter can be free from maintaining the voltage stability of the DC-link capacitor. Thus, the grid-side converter is changed to reactive power support while the rotor-side converter is used to control the maximum power production during normal operation. The grid-side converter and rotor-side converter will act as reactive power sources to further enhance the voltage support capability of double-fed induction generator during the transient period. Numerical Simulation are performed to validate the effectiveness of the proposed control designs.

  12. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  13. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  14. Study of a fail-safe abort system for an actively cooled hypersonic aircraft: Computer program documentation

    NASA Technical Reports Server (NTRS)

    Haas, L. A., Sr.

    1976-01-01

    The Fail-Safe Abort System TEMPerature Analysis Program, (FASTEMP), user's manual is presented. This program was used to analyze fail-safe abort systems for an actively cooled hypersonic aircraft. FASTEMP analyzes the steady state or transient temperature response of a thermal model defined in rectangular, cylindrical, conical and/or spherical coordinate system. FASTEMP provides the user with a large selection of subroutines for heat transfer calculations. The various modes of heat transfer available from these subroutines are: heat storage, conduction, radiation, heat addition or generation, convection, and fluid flow.

  15. Dynamic behavior of gasoline fuel cell electric vehicles

    NASA Astrophysics Data System (ADS)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  16. Impact of 1-methylcyclopropene and controlled atmosphere storage on polyamine and 4-aminobutyrate levels in “Empire” apple fruit

    PubMed Central

    Deyman, Kristen L.; Brikis, Carolyne J.; Bozzo, Gale G.; Shelp, Barry J.

    2014-01-01

    1-Methylcyclopropene (1-MCP) delays ethylene-meditated ripening of apple (Malus domestica Borkh.) fruit during controlled atmosphere (CA) storage. Here, we tested the hypothesis that 1-MCP and CA storage enhances the levels of polyamines (PAs) and 4-aminobutyrate (GABA) in apple fruit. A 46-week experiment was conducted with “Empire” apple using a split-plot design with four treatment replicates and 3°C, 2.5 kPa O2, and 0.03 or 2.5 kPa CO2 with or without 1 μL L-1 1-MCP. Total PA levels were not elevated by the 1-MCP treatment. Examination of the individual PAs revealed that: (i) total putrescine levels tended to be lower with 1-MCP regardless of the CO2 level, and while this was mostly at the expense of free putrescine, large transient increases in soluble conjugated putrescine were also evident; (ii) total spermidine levels tended to be lower with 1-MCP, particularly at 2.5 kPa CO2, and this was mostly at the expense of soluble conjugated spermidine; (iii) total spermine levels at 2.5 kPa CO2 tended to be lower with 1-MCP, and this was mostly at the expense of both soluble and insoluble conjugated spermine; and (iv) total spermidine and spermine levels at 0.03 kPa were relatively unaffected, compared to 2.5 kPa CO2, but transient increases in free spermidine and spermine were evident. These findings might be due to changes in the conversion of putrescine into higher PAs and the interconversion of free and conjugated forms in apple fruit, rather than altered S-adenosylmethionine availability. Regardless of 1-MCP and CO2 treatments, the availability of glutamate showed a transient peak initially, probably due to protein degradation, and this was followed by a steady decline over the remainder of the storage period which coincided with linear accumulation of GABA. This pattern has been attributed to the stimulation of glutamate decarboxylase activity and inhibition of GABA catabolism, rather than a contribution of PAs to GABA production. PMID:24782882

  17. Analytical solutions to the problem of transient heat transfer in living tissue.

    NASA Technical Reports Server (NTRS)

    Shitzer, A.; Chato, J. C.

    1971-01-01

    An analytical model of transient heat transfer in living biological tissue is considered. The model includes storage, generation, conduction, and convective transport of heat in the tissue. Solutions for rectangular and cylindrical coordinates are presented and discussed. Transient times for reaching the ?locally fully developed' temperature profile were found to be of the order of 5 to 25 min. These transients are dominated by a geometrical parameters and, to a lesser extent, by a parameter representing the ratio of heat supplied by blood flow to heat conducted in the tissue.

  18. Modeling biotic uptake by periphyton and transient hyporrheic storage of nitrate in a natural stream

    USGS Publications Warehouse

    Kim, Brian K.A.; Jackman, Alan P.; Triska, Frank J.

    1992-01-01

    To a convection-dispersion hydrologic transport model we coupled a transient storage submodel (Bencala, 1984) and a biotic uptake submodel based on Michaelis-Menten kinetics (Kim et al., 1990). Our purpose was threefold: (1) to simulate nitrate retention in response to change in load in a third-order stream, (2) to differentiate biotic versus hydrologie factors in nitrate retention, and (3) to produce a research tool whose properties are consistent with laboratory and field observations. Hydrodynamic parameters were fitted from chloride concentration during a 20-day chloride-nitrate coinjection (Bencala, 1984), and biotic uptake kinetics were based on flume studies by Kim et al. (1990) and Triska et al. (1983). Nitrate concentration from the 20-day coinjection experiment served as a base for model validation. The complete transport retention model reasonably predicted the observed nitrate concentration. However, simulations which lacked either the transient storage submodel or the biotic uptake submodel poorly predicted the observed nitrate concentration. Model simulations indicated that transient storage in channel and hyporrheic interstices dominated nitrate retention within the first 24 hours, whereas biotic uptake dominated thereafter. A sawtooth function for Vmax ranging from 0.10 to 0.17 μg NO3-N s−1 gAFDM−1 (grams ash free dry mass) slightly underpredicted nitrate retention in simulations of 2–7 days. This result was reasonable since uptake by other nitrate-demanding processes were not included. The model demonstrated how ecosystem retention is an interaction between physical and biotic processes and supports the validity of coupling separate hydrodynamic and reactive submodels to established solute transport models in biological studies of fluvial ecosystems.

  19. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams

    USGS Publications Warehouse

    Roberts, B.J.; Mulholland, P.J.; Houser, J.N.

    2007-01-01

    Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to 1/2 of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity, with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD. ?? 2007 by The North American Benthological Society.

  20. Storage Free Smart Energy Management for Frequency Control in a Diesel-PV-Fuel Cell-Based Hybrid AC Microgrid.

    PubMed

    Sekhar, P C; Mishra, S

    2016-08-01

    This paper proposes a novel, smart energy management scheme for a microgrid, consisting of a diesel generator and power electronic converter interfaced renewable energy-based generators, such as photovoltaic (PV) and fuel cell, for frequency regulation without any storage. In the proposed strategy, output of the PV is controlled in coordination with other generators using neurofuzzy controller, either only for transient frequency regulation or for both transient and steady-state frequency regulation, depending on the load demand, thereby eliminating the huge storage requirements. The option of demand response control is also explored along with the generation control. For accurate and quick tracking of maximum power point and its associated reserve power from the PV generator, this paper also proposes a novel adaptive-predictor-corrector-based tracking mechanism.

  1. Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage.

    PubMed

    Rossetti, Tom; Banerjee, Somdeb; Kim, Chris; Leubner, Megan; Lamar, Casey; Gupta, Pooja; Lee, Bomsol; Neve, Rachael; Lisman, John

    2017-09-27

    The abundant synaptic protein CaMKII is necessary for long-term potentiation (LTP) and memory. However, whether CaMKII is required only during initial processes or whether it also mediates memory storage remains unclear. The most direct test of a storage role is the erasure test. In this test, a putative memory molecule is inhibited after learning. The key prediction is that this should produce persistent memory erasure even after the inhibitory agent is removed. We conducted this test using transient viral (HSV) expression of dominant-negative CaMKII-alpha (K42M) in the hippocampus. This produced persistent erasure of conditioned place avoidance. As an additional test, we found that expression of activated CaMKII (T286D/T305A/T306A) impaired place avoidance, a result not expected if a process other than CaMKII stores memory. Our behavioral results, taken together with prior experiments on LTP, strongly support a critical role of CaMKII in LTP maintenance and memory storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Motivational effects on the processing of delayed intentions in the anterior prefrontal cortex.

    PubMed

    Bruening, Jovita; Ludwig, Vera U; Paschke, Lena M; Walter, Henrik; Stelzel, Christine

    2018-05-15

    Delaying intentions bears the risk of interference from distracting activities during the delay interval. Motivation can increase intention retrieval success but little is known about the underlying brain mechanisms. Here, we investigated whether motivational incentives (monetary reward) modulate the processing of delayed intentions in the anterior prefrontal cortex (aPFC), known to be crucial for intention processing. Using a mixed blocked and event-related functional Magnetic Resonance Imaging design, we specifically tested whether reward affects intention processing in the aPFC in a transient or in a sustained manner and whether this is related to individual differences in retrieval success. We found a generalized effect of reward on both correct intention retrieval and ongoing task performance. Fronto-parietal regions including bilateral lateral aPFC showed sustained activity increases in rewarded compared to non-rewarded blocks as well as transient reward-related activity during the storage phase. Additionally, individual differences in reward-related performance benefits were related to the degree of transient signal increases in right lateral aPFC, specifically during intention encoding. This suggests that the ability to integrate motivational relevance into the encoding of future intentions is crucial for successful intention retrieval in addition to general increases in processing effort. Bilateral aPFC is central to these motivation-cognition interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Caprock Breach: A Threat to Secure Geologic Sequestration

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P.; Dong, W.

    2013-12-01

    The integrity of caprock in providing a reliable barrier is crucial to several environmental geosciences endeavours related to geologic sequestration of CO2, deep geologic disposal of hazardous wastes and contaminants. The integrity of geologic barriers can be compromised by several factors. The re-activation of dormant fractures and development of new fractures in the caprock during the injection process are regarded as effects that can pose a threat to storage security. Other poromechanical influences of pore structure collapse due to chemically induced erosion of the porous fabric resulting in worm-hole type features can also contribute to compromising storage security. The assessment of the rate of steady or transient seepage through defects in the caprock can allow geoscientists to make prudent evaluations of the effectiveness of a sequestration strategy. While complicated computational simulations can be used to calculate leakage through defects, it is useful to explore alternative analytical results that could be used in providing preliminary estimates of leakage rates through defects in the caprock in a storage setting. The relevance of such developments is underscored by the fact that the permeability characteristics of the storage formation, the fracture and the surficial rocks overlying the caprock can rarely be quantified with certainty. This paper presents the problem of a crack in a caprock that connects to a storage formation and an overburden rock or surficial soil formation. The geologic media are maintained at constant far-field flow potentials and leakage takes place at either steady or transient conditions. The paper develops an analytical result that can be used to estimate the steady seepage through the crack. The analytical result can also be used to estimate the leakage through hydraulically non-intersecting cracks and leakage from caprock-well casing interfaces. The analytical result is used to estimate the accuracy of a computational procedure based on a finite element procedure.

  4. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    PubMed

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-04

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  5. Changes in streambed sediment characteristics and solute transport in the headwaters of Valley Creek, an urbanizing watershed

    NASA Astrophysics Data System (ADS)

    Ryan, Robert J.; Packman, Aaron I.

    2006-05-01

    Changes in streambed sediments were monitored in conjunction with Q series of conservative solute tracer injections over a 2-year period to assess the effects of urbanization on two streams in the Valley Creek watershed, located in Chester County, Pennsylvania approximately 30 km west of Philadelphia. The modeling package OTIS was used to analyze the solute transport behavior. Comparison of the results from the two streams demonstrates that the fine sediment fraction of the streambed controls hydraulic conductivity and transient storage exchange in this gravel- and cobble-bed Piedmont system. One site had a narrow (10-40 m) riparian corridor of mowed lawn and woody brush. At this site, the silt-clay fraction ( d<50 μm) of the fine sediment ( d<2 mm) increased from 6 to 25% during the course of the study. The relationship between sediment characteristics and transient storage exchange was evaluated using the method of Wörman et al. [Wörman, A., Packman, A.I., Johansson, H., Jonsson, K., 2002a. Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resources Research 38. doi: 10.1029/2001WR000769], who showed that the hyporheic residence time, scaled by the hydraulic conductivity and stream depth, is a function of stream velocity and physical channel characteristics. This analysis indicated that the observed change in fine sediment composition caused a two-fold reduction in the hydraulic conductivity, a four-fold reduction in the transient storage area, and an order of magnitude reduction in the exchange coefficient. The second study site had a wide (100-300 m) riparian corridor of deciduous forest. During the study period, a parcel of woodland encompassing 11% of the drainage area was cleared and nine homes were constructed on the site. Despite this prominent development of the watershed, there was no significant change in sediment characteristics or solute transport during the study period. The model-derived transient storage exchange parameters in our urbanizing study sites were found to be statistically similar to the values for forested mountain streams given in the literature. Thus, the relationship between urbanization and transient storage should be determined by examining the temporal change in the characteristics of individual stream reaches rather than by comparing the solute transport parameters obtained in different types of streams.

  6. Supercapacitor to Provide Ancillary Services: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Luo, Yusheng

    Supercapacitor technology has reached a level of maturity as a viable energy storage option available to support a modern electric power system grid; however, its application is still limited because of its energy capacity and the cost of the commercial product. In this paper, we demonstrate transient models of supercapacitor energy storage plants operating in coordination with run-of-the-river (ROR), doubly-fed induction generator hydropower plants (HPP) using a system control concept and architecture developed. A detailed transient model of a supercapacitor energy storage device is coupled with the grid via a three-phase inverter/rectifier and bidirectional DC-DC converter. In addition, we usemore » a version of a 14-bus IEEE test case that includes the models of the supercapacitor energy storage device, ROR HPPs, and synchronous condensers that use the rotating synchronous generators of retired coal-powered plants. The purpose of the synchronous condensers is to enhance the system stability by providing voltage and reactive power control, provide power system oscillations damping, and maintain system inertia at secure levels. The control layer provides coordinated, decentralized operation of distributed ROR HPPs and energy storage as aggregate support to power system operations.« less

  7. Radiocarbon constraints on the coupled growth of sediment and organic carbon reservoirs in fluvial systems

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Kemeny, P. C.; Fischer, W. W.; Lamb, M. P.

    2017-12-01

    Vast amounts of sediments are stored transiently in fluvial deposits as they move in rivers from source to sink. The timescale(s) of transient storage have the potential to set the cadence for biogeochemical reactions to occur in river sediments. However, the extent to which storage modulates the chemical composition of river sediments remains unclear. In case of the organic carbon (OC) cycle, transient sediment storage may leave an imprint in the radiocarbon (14C) content of riverine particulate OC (POC), offering a potential tool to trace the coupling of sediment storage and biogeochemical cycling in river systems. We investigated the modern and ancient budgets of sediments and POC in the Efi Haukadalsá River catchment in West Iceland to provide new empirical constraints on the role of sediment storage in the terrestrial OC cycle. This field site is attractive because the basaltic bedrock is free of rock-derived (i.e. "petrogenic") POC such that bulk 14C measurements can be interpreted more directly as constraints on catchment OC storage timescales. Additionally, Lake Haukadalsvatn at the outlet of the river catchment has captured sediment for nearly 13 ka, which offers a complementary record of the evolution of climate-sediment-OC linkages since deglaciation. New 14C measurements show that bulk POC in fine grained fluvial deposits within the Haukadalsá catchment is remarkably old (model ages between 1 and 10 ka). This evidence for "aged" POC in floodplain storage is consistent with previous measurements from Lake Haukadalsvatn, which show that POC is aged in the river system by thousands of years prior to deposition in the lake. Additionally, our estimate of the mean transit time of sediments through the river system matches the millennial-scale reservoir age of riverine POC derived from 14C, which implies a tight coupling between sediment storage and the OC cycle. We interpret the long-term increase in the 14C reservoir age of riverine POC over the last 10 ka preserved in the lake sediments to reflect the growth of a terrestrial sediment reservoir and concomitant POC storage in response to deglaciation. Our results illustrate how sediment storage by fluvial systems strongly influences the terrestrial OC cycle and its response to changes in environmental conditions.

  8. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  9. Contribution to the Chemistry of Plasma-Activated Water

    NASA Astrophysics Data System (ADS)

    Julák, J.; Hujacová, A.; Scholtz, V.; Khun, J.; Holada, K.

    2018-01-01

    Plasma-activated water (PAW) was prepared by exposure to nonthermal plasma produced by a positive dc corona discharge in a transient spark regime. The activation of water was performed in atmosphere of various surrounding gases (air, nitrogen, carbon dioxide, and argon). This PAW retains its biological activity, measured on the mouse neuroblastoma cells culture, even after storage for more than one year. The highest hydrogen peroxide content was found for PAWs prepared in the atmospheres of argon or carbon dioxide, whereas the PAWs prepared in air and nitrogen exhibited lower hydrogen peroxide content. The acidity of PAWs mediated by nitric and nitrous acid formation displayed an opposite trend. It is concluded that the long-lasting biological effect of PAW is mediated by hydrogen peroxide in acid milieu only, whereas other possible active components decompose rapidly.

  10. Wallboard with Latent Heat Storage for Passive Solar Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling testsmore » showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.« less

  11. Mars Propellant Liquefaction and Storage Performance Modeling using Thermal Desktop with an Integrated Cryocooler Model

    NASA Technical Reports Server (NTRS)

    Desai, Pooja; Hauser, Dan; Sutherlin, Steven

    2017-01-01

    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.

  12. Effects of Pump-turbine S-shaped Characteristics on Transient Behaviours: Model Setup

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-04-01

    Pumped storage stations undergo numerous transition processes, which make the pump turbines go through the unstable S-shaped region. The hydraulic transient in S-shaped region has normally been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. In this research, a pumped storage model composed of a piping system, two model units, two electrical control systems, a measurement system and a collection system was set up to study the transition processes. The model platform can be applied to simulate almost any hydraulic transition process that occurs in real power stations, such as load rejection, startup, frequency control and grid connection.

  13. Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory.

    PubMed

    Emrich, Stephen M; Riggall, Adam C; Larocque, Joshua J; Postle, Bradley R

    2013-04-10

    Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple representations. Here, we use multivoxel pattern analysis to examine the neural representations of VSTM in humans across multiple memory loads. In an important extension of previous findings, our results demonstrate that the contents of VSTM can be decoded from areas that exhibit a transient response to visual stimuli, but not from regions that exhibit elevated, sustained load-sensitive delay-period activity. Moreover, the neural information present in these transiently activated areas decreases significantly with increasing load, indicating load sensitivity of the patterns of activity that support VSTM maintenance. Importantly, the decrease in classification performance as a function of load is correlated with within-subject changes in mnemonic resolution. These findings indicate that distributed patterns of neural activity in putatively sensory visual cortex support the representation and precision of information in VSTM.

  14. Sensitivity analysis of a multilayer, finite-difference model of the Southeastern Coastal Plain regional aquifer system; Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Pernik, Meribeth

    1987-01-01

    The sensitivity of a multilayer finite-difference regional flow model was tested by changing the calibrated values for five parameters in the steady-state model and one in the transient-state model. The parameters that changed under the steady-state condition were those that had been routinely adjusted during the calibration process as part of the effort to match pre-development potentiometric surfaces, and elements of the water budget. The tested steady-state parameters include: recharge, riverbed conductance, transmissivity, confining unit leakance, and boundary location. In the transient-state model, the storage coefficient was adjusted. The sensitivity of the model to changes in the calibrated values of these parameters was evaluated with respect to the simulated response of net base flow to the rivers, and the mean value of the absolute head residual. To provide a standard measurement of sensitivity from one parameter to another, the standard deviation of the absolute head residual was calculated. The steady-state model was shown to be most sensitive to changes in rates of recharge. When the recharge rate was held constant, the model was more sensitive to variations in transmissivity. Near the rivers, the riverbed conductance becomes the dominant parameter in controlling the heads. Changes in confining unit leakance had little effect on simulated base flow, but greatly affected head residuals. The model was relatively insensitive to changes in the location of no-flow boundaries and to moderate changes in the altitude of constant head boundaries. The storage coefficient was adjusted under transient conditions to illustrate the model 's sensitivity to changes in storativity. The model is less sensitive to an increase in storage coefficient than it is to a decrease in storage coefficient. As the storage coefficient decreased, the aquifer drawdown increases, the base flow decreased. The opposite response occurred when the storage coefficient was increased. (Author 's abstract)

  15. Two new mutations in the glucose-6-phosphatase gene cause glycogen storage disease in Hungarian patients.

    PubMed

    Parvari, R; Lei, K J; Szonyi, L; Narkis, G; Moses, S; Chou, J Y

    1997-01-01

    Glycogen storage disease type 1a (von Gierke disease, GSD-1A) is caused by the deficiency of microsomal glucose-6-phosphatase (G6Pase) activity which catalyzes the final common step of glycogenolysis and gluconeogenesis. The cloning of the G6Pase cDNA and characterization of the human G6Pase gene enabled the identification of the mutations causing GSD-1a. This, in turn, allows the development of non-invasive DNA-based diagnosis that provides reliable carrier testing and prenatal diagnosis. Here we report on two new mutations E110Q and D38V causing GSD-1a in two Hungarian patients. The analyses of these mutations by site-directed mutagenesis followed by transient expression assays demonstrated that E110Q retains 17% of G6Pase enzymatic activity while the D38V abolishes the enzymatic activity. The patient with the E110Q has G222R as his other mutation. G222R was also shown to preserve about 4% of the G6Pase enzymatic activity. Nevertheless, the patient presented with the classical severe symptomatology of the GSD-1a.

  16. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liby, Alan L; Rogers, Hiram

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less

  17. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones may evolve to a preferred diffusivity in a dynamic equilibrium.

  18. Kinetics of heterotrophic biomass and storage mechanism in wetland cores measured by respirometry.

    PubMed

    Ortigara, A R C; Foladori, P; Andreottola, G

    2011-01-01

    Although oxygen uptake rate has been widely used in activated sludge for measuring kinetic and stoichiometric parameters or for wastewater characterization, its application in constructed wetlands (CWs) cores has been recently proposed. The aim of this research is to estimate the kinetic and stoichiometric parameters of the heterotrophic biomass in CW cores. Respirometric tests were carried out with pure carbonaceous substrate and real wastewater. Endogenous respiration was about 2 gO2 m(-3) h(-1) (per unit of bed volume), while the kinetic parameters obtained for COD oxidation were very high (maximum rate per unit of bed volume of 10.7-26.8 gCOD m(-3) h(-1)) which indicates high biodegradation potential in fully aerobic environment. Regarding to stoichiometric parameter, the maximum growth yield, Y(H), was 0.56-0.59 mgCOD/mgCOD, while the storage yield, Y(STO), was 0.75-0.77 mgCOD/mgCOD. The storage mechanism was observed in CW cores during COD oxidation, which leads to the transformation of the external soluble substrate in internal storage products, probably as response to intermittent loads applied in CW systems, transient concentrations of readily biodegradable substrate and alternance of feast/famine periods.

  19. Simulation of diurnal thermal energy storage systems: Preliminary results

    NASA Astrophysics Data System (ADS)

    Katipamula, S.; Somasundaram, S.; Williams, H. R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system; and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie

    Terrestrial ecosystems have absorbed roughly 30 % of anthropogenic CO 2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C inputmore » (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Overall, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models.« less

  1. Wallboard with latent heat storage for passive solar applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    1991-05-01

    Conventional wallboard impregnated with octadecane paraffin is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of themore » paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM, as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. 11 refs., 25 figs., 2 tabs.« less

  2. Nonlinear storage models of unconfined flow through a shallow aquifer on an inclined base and their quasi-steady flow application

    NASA Astrophysics Data System (ADS)

    Varvaris, Ioannis; Gravanis, Elias; Koussis, Antonis; Akylas, Evangelos

    2013-04-01

    Hillslope processes involving flow through an inclined shallow aquifer range from subsurface stormflow to stream base flow (drought flow, or groundwater recession flow). In the case of recharge, the infiltrating water moves vertically as unsaturated flow until it reaches the saturated groundwater, where the flow is approximately parallel to the base of the aquifer. Boussinesq used the Dupuit-Forchheimer (D-F) hydraulic theory to formulate unconfined groundwater flow through a soil layer resting on an impervious inclined bed, deriving a nonlinear equation for the flow rate that consists of a linear gravity-driven component and a quadratic pressure-gradient component. Inserting that flow rate equation into the differential storage balance equation (volume conservation) Boussinesq obtained a nonlinear second-order partial differential equation for the depth. So far however, only few special solutions have been advanced for that governing equation. The nonlinearity of the equation of Boussinesq is the major obstacle to deriving a general analytical solution for the depth profile of unconfined flow on a sloping base with recharge (from which the discharges could be then determined). Henderson and Wooding (1964) were able to obtain an exact analytical solution for steady unconfined flow on a sloping base, with recharge, and their work deserves special note in the realm of solutions of the nonlinear equation of Boussinesq. However, the absence of a general solution for the transient case, which is of practical interest to hydrologists, has been the motivation for developing approximate solutions of the non-linear equation of Boussinesq. In this work, we derive the aquifer storage function by integrating analytically over the aquifer base the depth profiles resulting from the complete nonlinear Boussinesq equation for steady flow. This storage function consists of a linear and a nonlinear outflow-dependent term. Then, we use this physics-based storage function in the transient storage balance over the hillslope, obtaining analytical solutions of the outflow and the storage, for recharge and drainage, via a quasi-steady flow calculation. The hydraulically derived storage model is thus embedded in a quasi-steady approximation of transient unconfined flow in sloping aquifers. We generalise this hydrologic model of groundwater flow by modifying the storage function to be the weighted sum of the linear and the nonlinear storage terms, determining the weighting factor objectively from a known integral quantity of the flow (either an initial volume of water stored in the aquifer or a drained water volume). We demonstrate the validity of this model through comparisons with experimental data and simulation results.

  3. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  4. Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA.

    Treesearch

    Steven M. Wondzell

    2006-01-01

    Stream-tracer injections were used to examine the effect of channel morphology and changing stream discharge on hyporheic exchange flows. Direct observations were made from well networks to follow tracer movement through the hyporheic zone. The reach-integrated influence of hyporheic exchange was evaluated using the transient storage model (TSM) OTIS-P. Transient...

  5. Design of an ammonia closed-loop storage system in a CSP power plant with a power tower cavity receiver

    NASA Astrophysics Data System (ADS)

    Abdiwe, Ramadan; Haider, Markus

    2017-06-01

    In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.

  6. A transient laboratory method for determining the hydraulic properties of 'tight' rocks-II. Application

    USGS Publications Warehouse

    Neuzil, C.E.; Cooley, C.; Silliman, Stephen E.; Bredehoeft, J.D.; Hsieh, P.A.

    1981-01-01

    In Part I a general analytical solution for the transient pulse test was presented. Part II presents a graphical method for analyzing data from a test to obtain the hydraulic properties of the sample. The general solution depends on both hydraulic conductivity and specific storage and, in theory, analysis of the data can provide values for both of these hydraulic properties. However, in practice, one of two limiting cases may apply in which case it is possible to calculate only hydraulic conductivity or the product of hydraulic conductivity times specific storage. In this paper we examine the conditions when both hydraulic parameters can be calculated. The analyses of data from two tests are presented. In Appendix I the general solution presented in Part I is compared with an earlier analysis, in which compressive storage in the sample is assumed negligible, and the error in calculated hydraulic conductivity due to this simplifying assumption is examined. ?? 1981.

  7. Documentation of a computer program to simulate transient leakage from confining units using the modular finite-difference, ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Leahy, P.P.; Navoy, A.S.

    1994-01-01

    Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.

  8. Data Synthesis and Data Assimilation at Global Change Experiments and Fluxnet Toward Improving Land Process Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi

    The project was conducted during the period from 7/1/2012 to 6/30/2017 with three major tasks: (1) data synthesis and development of data assimilation (DA) techniques to constrain modeled ecosystem feedback to climate change; (2) applications of DA techniques to improve process models at different scales from ecosystem to regions and the globe; and 3) improvements of modeling soil carbon (C) dynamics by land surface models. During this period, we have synthesized published data from soil incubation experiments (e.g., Chen et al., 2016; Xu et al., 2016; Feng et al., 2016), global change experiments (e.g., Li et al., 2013; Shi etmore » al., 2015, 2016; Liang et al., 2016) and fluxnet (e.g., Niu et al., 2012., Xia et al., 2015; Li et al., 2016). These data have been organized into multiple data products and have been used to identify general mechanisms and estimate parameters for model improvement. We used the data sets that we collected and the DA techniques to improve model performance of both ecosystem models and global land models. The objectives are: 1) to improve model simulations of litter and soil carbon storage (e.g., Schädel et al., 2013; Hararuk and Luo, 2014; Hararuk et al., 2014; Liang et al., 2015); 2) to explore the effects of CO 2, warming and precipitation on ecosystem processes (e.g., van Groenigen et al., 2014; Shi et al., 2015, 2016; Feng et al., 2017); and 3) to estimate parameters variability in different ecosystems (e.g., Li et al., 2016). We developed a traceability framework, which was based on matrix approaches and decomposed the modeled steady-state terrestrial ecosystem carbon storage capacity into four can trace the difference in ecosystem carbon storage capacity among different biomes to four traceable components: net primary productivity (NPP), baseline C residence times, environmental scalars and climate forcing (Xia et al., 2013). With this framework, we can diagnose the differences in modeled carbon storage across ecosystems, biomes, and models. This framework has been successfully implemented by several global land models, such as CABLE (Xia et al., 2013), LPJ-GUESS (Ahlström et al., 2015), CLM (Hararuk et al., 2014; Huang et al., 2017, submitted; Shi et al., 2017, submitted), and ORCHIDEE (Huang et al., 2017, unpublished). Moreover, we have identified the theoretical foundation of the determinants of transient C storage dynamics by adding another term, C storage potential, to the steady-state traceability framework (Luo et al., 2017). The theoretical foundation of transient C storage dynamics has been applied to develop a transient traceability framework to explore the traceable components of transient C storage dynamics responded to the rising CO 2 and climate change in the two contrasting ecosystem types Duke needleleaved forest and Harvard deciduous broadleaved forest (Jiang et al., 2017, in revision). Overall, with the data synthesis, data assimilation techniques, and the steady-state and transient traceability frameworks, we have greatly improved land process models for predicting responses and feedback of terrestrial C dynamics to global change. The matrix approaches has the potential to be applied in theoretical research on nitrogen and phosphorus cycle, and therefore, the coupling of carbon-nitrogen-phosphorus.« less

  9. Thermofluid effect on energy storage in fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Mahfoudi, Nadjiba; El Ganaoui, Mohammed; Moummi, Abdelhafid

    2016-05-01

    The development of innovative systems of heat storage is imperative to improve the efficiency of the existing systems used in the thermal solar energy applications. Several techniques were developed and realized in this context. The technology of the sand fluidized bed (sandTES) offers a promising alternative to the current state-of-the-art of the heat storage systems, such as fixed bed using a storage materials, as sand, ceramic, and stones, etc. Indeed, the use of the fluidization technique allows an effective heat transfer to the solid particles. With the sand, an important capacity of storage is obtained by an economic and ecological material [N. Mahfoudi, A. Moummi, M. El Ganaoui, Appl. Mech. Mater. 621, 214 (2014); N. Mahfoudi, A. Khachkouch, A. Moummi B. Benhaoua, M. El Ganaoui, Mech. Ind. 16, 411 (2015); N. Mahfoudi, A. Moummi, M. El Ganaoui, F. Mnasri, K.M. Aboudou, 3e Colloque internationale Francophone d"énergétique et mécanique, Comores, 2014, p. 91]. This paper presents a CFD simulation of the hydrodynamics and the thermal transient behavior of a fluidized bed reactor of sand, to determine the characteristics of storage. The simulation shows a symmetry breaking that occurs and gave way to chaotic transient generation of bubble formation after 3 s. Furthermore, the predicted average temperature of the solid phase (sand) increases gradually versus the time with a gain of 1 °C in an interval of 10 s. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  10. Recovery of Lunar Surface Access Module Residual and Reserve Propellants

    NASA Technical Reports Server (NTRS)

    Notardonato, William U.

    2007-01-01

    The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.

  11. Role of metabolite transporters in source-sink carbon allocation

    PubMed Central

    Ludewig, Frank; Flügge, Ulf-Ingo

    2013-01-01

    Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or – in combination with nitrogen – as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters. PMID:23847636

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayduk, Roman; Vonk, Vedran; Strempfer, Jörg

    We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.

  13. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    PubMed Central

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163

  14. Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems

    NASA Astrophysics Data System (ADS)

    Weber, Luke G.

    There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive power. The scope of this work is to • develop a mathematical model for a salient pole, 2 damper winding synchronous generator with d axis saturation suitable for transient analysis, • develop a mathematical model for a voltage regulator and excitation system using the IEEE AC8B voltage regulator and excitation system template, • develop mathematical models for an energy storage primary control system, LC filter and transformer suitable for transient analysis, • combine the generator and energy storage models in a micro-grid context, • develop mathematical models for electric system components in the stationary abc frame and rotating dq reference frame, • develop a secondary control network for dispatch of micro-grid assets, • establish micro-grid limits of stable operation for step changes in load and power commands based on simulations of model data assuming net load on the micro-grid, and • use generator and electric system models to assess the generator current magnitude during phase-to-ground faults.

  15. Improving Deliverability in Gas Storage Fields by Identifying the Timing and Sources of Damage Using Smart Well Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.H. Frantz Jr; K.G. Brown; W.K. Sawyer

    2006-03-01

    This report summarizes the work performed under contract DE-FC26-03NT41743. The primary objective of this study was to develop tools that would allow Underground Gas Storage (UGS) operators to use wellhead electronic flow measurement (EFM) data to quickly and efficiently identify trends in well damage over time, thus aiding in the identification of potential causes of the damage. Secondary objectives of this work included: (1) To assist UGS operators in the evaluation of hardware and software requirements for implementing an EFM system similar to the one described in this report, and (2) To provide a cost-benefit analysis framework UGS operators canmore » use to evaluate economic benefits of installing wellhead EFM systems in their particular fields. Assessment of EFM data available for use, and selection of the specific study field are reviewed. The various EFM data processing tasks, including data collection, organization, extraction, processing, and interpretation are discussed. The process of damage assessment via pressure transient analysis of EFM data is outlined and demonstrated, including such tasks as quality control, semi-log analysis, and log-log analysis of pressure transient test data extracted from routinely collected EFM data. Output from pressure transient test analyses for 21 wells is presented, and the interpretation of these analyses to determine the timing of damage development is demonstrated using output from specific study wells. Development of processing and interpretation modules to handle EFM data interpretation in horizontal wells is also a presented and discussed. A spreadsheet application developed to aid underground gas storage operators in the selection of EFM equipment is presented, discussed, and used to determine the cost benefit of installing EFM equipment in a gas storage field. Recommendations for future work related to EFM in gas storage fields are presented and discussed.« less

  16. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  17. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  18. Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem

    NASA Technical Reports Server (NTRS)

    Moore, D. M.

    1984-01-01

    The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.

  19. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    The figure shows a prototype of a relatively inexpensive electronic monitoring apparatus that measures and records selected parameters of lightning-induced transient voltages on communication and power cables. The selected parameters, listed below, are those most relevant to the ability of lightning-induced transients to damage electronic equipment. This apparatus bridges a gap between some traditional transient-voltage recorders that record complete waveforms and other traditional transient-voltage recorders that record only peak values: By recording the most relevant parameters and only those parameters this apparatus yields more useful information than does a traditional peak-value (only) recorder while imposing much smaller data-storage and data-transmission burdens than does a traditional complete-waveform recorder. Also, relative to a complete-waveform recorder, this apparatus is more reliable and can be built at lower cost because it contains fewer electronic components. The transients generated by sources other than lightning tend to have frequency components well below 1 MHz. Most commercial transient recorders can detect and record such transients, but cannot respond rapidly enough for recording lightning-induced transient voltage peaks, which can rise from 10 to 90 percent of maximum amplitude in a fraction of a microsecond. Moreover, commercial transient recorders cannot rearm themselves rapidly enough to respond to the multiple transients that occur within milliseconds of each other on some lightning strikes. One transient recorder, designed for Kennedy Space Center earlier [ Fast Transient-Voltage Recorder (KSC- 11991), NASA Tech Briefs, Vol. 23, No. 10, page 6a (October 1999)], is capable of sampling transient voltages at peak values up to 50 V in four channels at a rate of 20 MHz. That recorder contains a trigger circuit that continuously compares the amplitudes of the signals on four channels to a preset triggering threshold. When a trigger signal is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  20. Analysis of switching surges generated by current interruption in an energy-storge coil

    NASA Astrophysics Data System (ADS)

    Chowdhuri, P.

    1981-10-01

    The transient voltages which are generated when the current in a large magnetic energy storage coil is interruped by a dc vacuum circuit breaker is analyzed. The effect of the various parameters in the circuit on the transient voltage is dicussed. The self inductance of the dump resistor must be minimized to control the generated transient. Contrary to general belief, a capacitor across the coil is not an effective surge suppressor. In fact, the capacitor may excite oscillations of higher magnitude. However, a capacitor, in addition to a surge suppressor, may be used to modify the frequency components of the transient voltage so that these frequency components are not coincident with the natural frequencies of the coil. Otherwise, resonant oscillations inside the coil may attain damaging magnitudes. The capacitor would also reduce the steepness of the wavefront of the transient across the coil, thus reducing the nonlinear voltage distribution inside the coil.

  1. Mars Propellant Liquefaction Modeling in Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Desai, Pooja; Hauser, Dan; Sutherlin, Steven

    2017-01-01

    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.

  2. Conventional wallboard with latent heat storage for passive solar applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    1990-01-01

    Conventional wallboard impregnated with octadecane paraffin (Melting Point -- 73.5{degree}F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35{percent} by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreementmore » between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good. 4 refs., 8 figs.« less

  3. Conventional wallboard with latent heat storage for passive solar applications

    NASA Astrophysics Data System (ADS)

    Kedl, R. J.

    Conventional wallboard impregnated with octadecane paraffin (melting point -- 73.5 F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35 percent by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreement between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good.

  4. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    NASA Astrophysics Data System (ADS)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  5. Transient analysis of a thermal storage unit involving a phase change material

    NASA Technical Reports Server (NTRS)

    Griggs, E. I.; Pitts, D. R.; Humphries, W. R.

    1974-01-01

    The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.

  6. Simulation of groundwater flow, effects of artificial recharge, and storage volume changes in the Equus Beds aquifer near the city of Wichita, Kansas well field, 1935–2008

    USGS Publications Warehouse

    Kelly, Brian P.; Pickett, Linda L.; Hansen, Cristi V.; Ziegler, Andrew C.

    2013-01-01

    The Equus Beds aquifer is a primary water-supply source for Wichita, Kansas and the surrounding area because of shallow depth to water, large saturated thickness, and generally good water quality. Substantial water-level declines in the Equus Beds aquifer have resulted from pumping groundwater for agricultural and municipal needs, as well as periodic drought conditions. In March 2006, the city of Wichita began construction of the Equus Beds Aquifer Storage and Recovery project to store and later recover groundwater, and to form a hydraulic barrier to the known chloride-brine plume near Burrton, Kansas. In October 2009, the U.S. Geological Survey, in cooperation with the city of Wichita, began a study to determine groundwater flow in the area of the Wichita well field, and chloride transport from the Arkansas River and Burrton oilfield to the Wichita well field. Groundwater flow was simulated for the Equus Beds aquifer using the three-dimensional finite-difference groundwater-flow model MODFLOW-2000. The model simulates steady-state and transient conditions. The groundwater-flow model was calibrated by adjusting model input data and model geometry until model results matched field observations within an acceptable level of accuracy. The root mean square (RMS) error for water-level observations for the steady-state calibration simulation is 9.82 feet. The ratio of the RMS error to the total head loss in the model area is 0.049 and the mean error for water-level observations is 3.86 feet. The difference between flow into the model and flow out of the model across all model boundaries is -0.08 percent of total flow for the steady-state calibration. The RMS error for water-level observations for the transient calibration simulation is 2.48 feet, the ratio of the RMS error to the total head loss in the model area is 0.0124, and the mean error for water-level observations is 0.03 feet. The RMS error calculated for observed and simulated base flow gains or losses for the Arkansas River for the transient simulation is 7,916,564 cubic feet per day (91.6 cubic feet per second) and the RMS error divided by (/) the total range in streamflow (7,916,564/37,461,669 cubic feet per day) is 22 percent. The RMS error calculated for observed and simulated streamflow gains or losses for the Little Arkansas River for the transient simulation is 5,610,089 cubic feet per day(64.9 cubic feet per second) and the RMS error divided by the total range in streamflow (5,612,918/41,791,091 cubic feet per day) is 13 percent. The mean error between observed and simulated base flow gains or losses was 29,999 cubic feet per day (0.34 cubic feet per second) for the Arkansas River and -1,369,250 cubic feet per day (-15.8 cubic feet per second) for the Little Arkansas River. Cumulative streamflow gain and loss observations are similar to the cumulative simulated equivalents. Average percent mass balance difference for individual stress periods ranged from -0.46 to 0.51 percent. The cumulative mass balance for the transient calibration was 0.01 percent. Composite scaled sensitivities indicate the simulations are most sensitive to parameters with a large areal distribution. For the steady-state calibration, these parameters include recharge, hydraulic conductivity, and vertical conductance. For the transient simulation, these parameters include evapotranspiration, recharge, and hydraulic conductivity. The ability of the calibrated model to account for the additional groundwater recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project was assessed by using the U.S. Geological Survey subregional water budget program ZONEBUDGET and comparing those results to metered recharge for 2007 and 2008 and previous estimates of artificial recharge. The change in storage between simulations is the volume of water that estimates the recharge credit for the aquifer storage and recovery system. The estimated increase in storage of 1,607 acre-ft in the basin storage area compared to metered recharge of 1,796 acre-ft indicates some loss of metered recharge. Increased storage outside of the basin storage area of 183 acre-ft accounts for all but 6 acre-ft or 0.33 percent of the total. Previously estimated recharge credits for 2007 and 2008 are 1,018 and 600 acre-ft, respectively, and a total estimated recharge credit of 1,618 acre-ft. Storage changes calculated for this study are 4.42 percent less for 2007 and 5.67 percent more for 2008 than previous estimates. Total storage change for 2007 and 2008 is 0.68 percent less than previous estimates. The small difference between the increase in storage from artificial recharge estimated with the groundwater-flow model and metered recharge indicates the groundwater model correctly accounts for the additional water recharged to the Equus Beds aquifer as part of the Aquifer Storage and Recovery project. Small percent differences between inflows and outflows for all stress periods and all index cells in the basin storage area, improved calibration compared to the previous model, and a reasonable match between simulated and measured long-term base flow indicates the groundwater model accurately simulates groundwater flow in the study area. The change in groundwater level through recent years compared to the August 1940 groundwater level map has been documented and used to assess the change of storage volume of the Equus Beds aquifer in and near the Wichita well field for three different areas. Two methods were used to estimate changes in storage from simulation results using simulated change in groundwater levels in layer 1 between stress periods, and using ZONEBUDGET to calculate the change in storage in the same way the effects of artificial recharge were estimated within the basin storage area. The three methods indicate similar trends although the magnitude of storage changes differ. Information about the change in storage in response to hydrologic stresses is important for managing groundwater resources in the study area. The comparison between the three methods indicates similar storage change trends are estimated and each could be used to determine relative increases or decreases in storage. Use of groundwater level changes that do not include storage changes that occur in confined or semi-confined parts of the aquifer will slightly underestimate storage changes; however, use of specific yield and groundwater level changes to estimate storage change in confined or semi-confined parts of the aquifer will overestimate storage changes. Using only changes in shallow groundwater levels would provide more accurate storage change estimates for the measured groundwater levels method. The value used for specific yield is also an important consideration when estimating storage. For the Equus Beds aquifer the reported specific yield ranges between 0.08 and 0.35 and the storage coefficient (for confined conditions) ranges between 0.0004 and 0.16. Considering the importance of the value of specific yield and storage coefficient to estimates of storage change over time, and the wide range and substantial overlap for the reported values for specific yield and storage coefficient in the study area, further information on the distribution of specific yield and storage coefficient within the Equus Beds aquifer in the study area would greatly enhance the accuracy of estimated storage changes using both simulated groundwater level, simulated groundwater budget, or measured groundwater level methods.

  7. Time-variable magma pressure at Kīlauea Volcano yields constraint on the volume and volatile content of shallow magma storage

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Patrick, M. R.; Poland, M. P.; Miklius, A.

    2015-12-01

    Episodic depressurization-pressurization cycles of Kīlauea Volcano's shallow magma system cause variations in ground deformation, eruption rate, and surface height of the active summit lava lake. The mechanism responsible for these pressure-change cycles remains enigmatic, but associated monitoring signals often show a quasi-exponential temporal history that is consistent with a temporary reduction (or blockage) of supply to Kīlauea's shallow magma storage area. Regardless of their cause, the diverse signals produced by these deflation-inflation (DI) cycles offer an unrivaled opportunity to constrain properties of an active volcano's shallow magma reservoir and relation to its eruptive vents. We model transient behavior at Kīlauea Volcano using a simple mathematical model of an elastic reservoir that is coupled to magma flux through Kīlauea's East Rift Zone (ERZ) at a rate proportional to the difference in pressure between the summit reservoir and the ERZ eruptive vent (Newtonian flow). In this model, summit deflations and ERZ flux reductions are caused by a blockage in supply to the reservoir, while re-inflations occur as the system returns to a steady-state flux condition. The model naturally produces exponential variations in pressure and eruption rate which reasonably, albeit imperfectly, match observations during many of the transient events at Kīlauea. We constrain the model using a diverse range of observations including time-varying summit lava lake surface height and volume change, the temporal evolution of summit ground tilt, time-averaged eruption rate derived from TanDEM-X radar data, and height difference between the summit lava lake and the ERZ eruptive vent during brief eruptive pauses (Patrick et al., 2015). Formulating a Bayesian inverse and including independent prior constraint on magma density, host rock strength, and other properties of the system, we are able to place probabilistic constraints on the volume and volatile content of shallow magma storage, as well as properties of the ERZ conduit and influx of magma into Kīlauea's shallow magma reservoir. Reservoir influx parameters cannot in general be uniquely resolved, but reservoir volume and exsolved volatile content are well constrained; ERZ conduit radius may also be estimated given some simplifying assumptions.

  8. Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments

    USGS Publications Warehouse

    Gooseff, M.N.; Bencala, K.E.; Scott, D.T.; Runkel, R.L.; McKnight, Diane M.

    2005-01-01

    The transient storage model (TSM) has been widely used in studies of stream solute transport and fate, with an increasing emphasis on reactive solute transport. In this study we perform sensitivity analyses of a conservative TSM and two different reactive solute transport models (RSTM), one that includes first-order decay in the stream and the storage zone, and a second that considers sorption of a reactive solute on streambed sediments. Two previously analyzed data sets are examined with a focus on the reliability of these RSTMs in characterizing stream and storage zone solute reactions. Sensitivities of simulations to parameters within and among reaches, parameter coefficients of variation, and correlation coefficients are computed and analyzed. Our results indicate that (1) simulated values have the greatest sensitivity to parameters within the same reach, (2) simulated values are also sensitive to parameters in reaches immediately upstream and downstream (inter-reach sensitivity), (3) simulated values have decreasing sensitivity to parameters in reaches farther downstream, and (4) in-stream reactive solute data provide adequate data to resolve effective storage zone reaction parameters, given the model formulations. Simulations of reactive solutes are shown to be equally sensitive to transport parameters and effective reaction parameters of the model, evidence of the control of physical transport on reactive solute dynamics. Similar to conservative transport analysis, reactive solute simulations appear to be most sensitive to data collected during the rising and falling limb of the concentration breakthrough curve. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Modernisation Issues of Diesel-Electric Shunting Locomotive Power Units

    NASA Astrophysics Data System (ADS)

    Hoimoja, Hardi; Jalakas, Tanel; Rosin, Argo; Rassylkin, Anton

    2010-01-01

    The research concentrates on the modernisation issues of inefficient diesel-electric shunting locomotives, produced in the former Soviet Union. The existing diesel-generator unit, serving as an onboard power plant can be replaced by hybridised units, with an energy storage unit acting as a peaking power source for dynamic modes. By integrating an energy storage unit into the power plant, the locomotive traction drive becomes hybridised, consuming less fuel during transients and idling.

  10. Modeling E. coli Release And Transport In A Creek During Artificial High-Flow Events

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Pachepsky, Y. A.; Gish, T. J.; Cho, K.; Shelton, D. R.; Kuznetsov, M. Y.

    2012-12-01

    In-stream fate and transport of E. coli, is a leading indicator of microbial contamination of natural waters, and so needs to be understood to eventually minimize surface water contamination by microbial organisms. The objective of this work was to simulate E. coli release and transport from soil sediment in a creek bed both during and after high water flow events. The artificial high-water flow events were created by releasing 60-80 m3 of city water on a tarp-covered stream bank at a rate of 60 L/s in four equal allotments in July of 2008, 2009 and 2010. The small first-order creek used in this study is part of the Beaver Dam Creek Tributary and is located at the USDA Optimizing Production inputs for Economic and Environmental Enhancement (OPE3) research site, in Beltsville, Maryland. In 2009 and 2010 a conservative tracer difluorobenzoic acid (DFBA) was added to the released water. Specifically, water flow rates, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at the ends of the three in-stream weirs reaching a total length of 630 m. Sediment particle size distributions and the streambed E. coli concentrations were measured along a creek before and after experiment. The observed DFBA breakthrough curves (BTCs) exhibited long tails after the water pulse and tracer peaks indicating that transient storage might be an important element of the in-stream transport process. Turbidity and E. coli BTCs also exhibited long tails indicative of transient storage and low rates of settling caused by re-entrainment. Typically, turbidity peaked prior to E. coli and returned to lower base-line levels more rapidly. A one-dimensional model was applied to simulate water flow, E. coli and DFBA transport during these experiments. The Saint-Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for advection-dispersion, lateral inflow/outflow, exchange with the transient storage, and resuspension of bacteria by shear stress from stream bottom sediments. Reach-specific model parameters were estimated by using observed time series of flow rates and concentrations at three weir stations. Transient storage and dispersion parameters were obtained with DFBA BTCs, then critical shear stress and resuspension rate were assessed by fitting computed E. coli BTCs to observations. To obtain a good model fit for E. coli, we generally had to make the transient storage for E. coli larger than for DFBA. Comparison of simulated and measured E. coli concentrations indicated that significant resuspension of E. coli continued when water flow returned to the base level after the water pulse passed and bottom shear stress was small. The hypothetical mechanism of this extended release could be the enhanced boundary layer (water-streambed) exchange due to changes in biofilm properties by erosion and sloughing detachment.

  11. Space power development impact on technology requirements

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.; Fitzgerald, T. J.; Gilje, R. I.; Gordon, J. D.

    1986-01-01

    The paper is concerned with the selection of a specific spacecraft power technology and the identification of technology development to meet system requirements. Requirements which influence the selection of a given technology include the power level required, whether the load is constant or transient in nature, and in the case of transient loads, the time required to recover the power, and overall system safety. Various power technologies, such as solar voltaic power, solar dynamic power, nuclear power systems, and electrochemical energy storage, are briefly described.

  12. High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic

    NASA Astrophysics Data System (ADS)

    Hugelius, Gustaf; Virtanen, Tarmo; Kaverin, Dmitry; Pastukhov, Alexander; Rivkin, Felix; Marchenko, Sergey; Romanovsky, Vladimir; Kuhry, Peter

    2011-09-01

    This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C m-2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C m-2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C m-2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.

  13. High-speed digital imaging of cytosolic Ca2+ and contraction in single cardiomyocytes.

    PubMed

    O'Rourke, B; Reibel, D K; Thomas, A P

    1990-07-01

    A charge-coupled device (CCD) camera, with the capacity for simultaneous spatially resolved photon counting and rapid frame transfer, was utilized for high-speed digital image collection from an inverted epifluorescence microscope. The unique properties of the CCD detector were applied to an analysis of cell shortening and the Ca2+ transient from fluorescence images of fura-2-loaded [corrected] cardiomyocytes. On electrical stimulation of the cell, a series of sequential subimages was collected and used to create images of Ca2+ within the cell during contraction. The high photosensitivity of the camera, combined with a detector-based frame storage technique, permitted collection of fluorescence images 10 ms apart. This rate of image collection was sufficient to resolve the rapid events of contraction, e.g., the upstroke of the Ca2+ transient (less than 40 ms) and the time to peak shortening (less than 80 ms). The technique was used to examine the effects of beta-adrenoceptor activation, fura-2 load, and stimulus frequency on cytosolic Ca2+ transients and contractions of single cardiomyocytes. beta-Adrenoceptor stimulation resulted in pronounced increases in peak Ca2+, maximal rates of rise and decay of Ca2+, extent of shortening, and maximal velocities of shortening and relaxation. Raising the intracellular load of fura-2 had little effect on the rising phase of Ca2+ or the extent of shortening but extended the duration of the Ca2+ transient and contraction. In related experiments utilizing differential-interference contrast microscopy, the same technique was applied to visualize sarcomere dynamics in contracting cells. This newly developed technique is a versatile tool for analyzing the Ca2+ transient and mechanical events in studies of excitation-contraction coupling in cardiomyocytes.

  14. Transient well flow in vertically heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with partially penetrating wells may be estimated without the need to construct transient numerical models. A computer program based on the hybrid analytical-numerical technique is available from the author.

  15. Recharge and Transient Pore Pressure Propagation in Steep Alpine Mountain Slopes near Poschiavo, Switzerland

    NASA Astrophysics Data System (ADS)

    de Palézieux, Larissa; Loew, Simon; Zwahlen, Peter

    2017-04-01

    Within the scope of planning a hydropower pump storage plant in the Poschiavo valley by Lagobianco SA (Repower AG), numerous cored boreholes with depths of 50 to 300 m were drilled at elevations between 963 and 2538 m a.s.l.. In several boreholes Lugeon and transient pressure packer tests were executed at various depths and pore water pressure sensors were properly installed in short monitoring intervals. Several of the boreholes intersect large suspended rock slides showing the characteristic zones of highly fragmented rock mass above a kakirite layer of several tens of meters thickness. This study presents long term transient pressure records from these deep boreholes and relates them to seasonal recharge trends from snow melt and summer rainstorm events. Annual pore pressure amplitudes at depths between 45 and 278 meters, range between 4 and 40 meters. Recharge from snow melt water production is obtained from the Degree-Day Method (Rango and Martinec, 1995), despite a considerable distance between the meteorological station and the location of the boreholes. First estimations of storage properties of the aquifers intersected by the boreholes are determined by fitting a combined snow melt and precipitation pressure function to the observed (delayed and attenuated) pore pressure records using a convolution of the one-dimensional pressure diffusion equation for a semi-infinite aquifer of constant thickness (De Marsily, 1986). Initial hydraulic conductivity values were taken directly from hydraulic tests executed by Lagobianco SA in similar rock types (Figi et al., 2014). For most boreholes this strongly simplified approach yields impressively good fits of the transient pressure records and specific storage/yield values, which vary significantly as a function of sensor depth below the piezometric level. Values range from 1e-6 m-1 to 5e-4 m-1 for confined gneiss-schists aquifers and around 3e-2 m-1 for phreatic aquifers, where pore pressure sensors are located only 20-30 m below the phreatic surface. The obtained values for specific storage and the assumed values for hydraulic conductivity were then verified with a one-dimensional finite element free-surface hydraulic model under steady-state and transient conditions, again fitting the simulated values to the observed pore water pressure records. Boundary conditions were set to constant head at the foot of the column and to infiltration with seepage face review at the top of the column. The results support the observed values for hydraulic conductivity as obtained from the packer tests with low permeabilities in the intact rock mass (K=2e-8 - 3e-10 m/s) and a higher permeability in rock slide masses (around 2e-6 m/s). Furthermore, the values for specific storage found by convolution could be confirmed. Finally, the complex local hydrogeology of an alpine mountain slope with a large suspended rock slide was investigated with a 2D finite element model under steady state and transient conditions. Preliminary results support the theory of a hydraulic barrier at the base of large rock slides with a perched aquifer above and partially unsaturated conditions below the sliding plane. REFERENCES De Marsily, G. (1986), Quantitative Hydrogeology (pp. 198-199). Masson. Figi, D., Brunold, F. & Zwahlen, P. (2014), Felskennwerte - Kennwertebericht, Projekt Lagobianco. Büro für Technische Geologie AG, Sargans. Rango, A., & Martinec, J. (1995), Revisiting the Degree-Day Method for Snowmelt Computations. JAWRA Journal of the American Water Resources Association, 31(4), 657-669.

  16. A transient laboratory method for determining the hydraulic properties of 'tight' rocks-I. Theory

    USGS Publications Warehouse

    Hsieh, P.A.; Tracy, J.V.; Neuzil, C.E.; Bredehoeft, J.D.; Silliman, Stephen E.

    1981-01-01

    Transient pulse testing has been employed increasingly in the laboratory to measure the hydraulic properties of rock samples with low permeability. Several investigators have proposed a mathematical model in terms of an initial-boundary value problem to describe fluid flow in a transient pulse test. However, the solution of this problem has not been available. In analyzing data from the transient pulse test, previous investigators have either employed analytical solutions that are derived with the use of additional, restrictive assumptions, or have resorted to numerical methods. In Part I of this paper, a general, analytical solution for the transient pulse test is presented. This solution is graphically illustrated by plots of dimensionless variables for several cases of interest. The solution is shown to contain, as limiting cases, the more restrictive analytical solutions that the previous investigators have derived. A method of computing both the permeability and specific storage of the test sample from experimental data will be presented in Part II. ?? 1981.

  17. Radio-Frequency-Controlled Urea Dosing for NH₃-SCR Catalysts: NH₃ Storage Influence to Catalyst Performance under Transient Conditions.

    PubMed

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-11-28

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.

  18. Estimating Transient Water Storage from Hurricane Harvey Using GPS Observations of Vertical Land Motion

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Materna, K.; Burgmann, R.; Fu, Y.; Bekaert, D. P.; Moore, A. W.; Adhikari, S.

    2017-12-01

    The Global Positioning System (GPS) measures elastic ground motions due to variations in terrestrial water mass. Such measurements have been used to successfully study variations of hydrological loading over monthly-to-yearly timescales; e.g., seasonal changes in water storage in California (Argus et al., 2014), 3-year drought of Western US (Borsa et al., 2014) and monthly water storage change in the Pacific Northwest (Fu et al., 2015). However, inferring water storage variations from single loading events over daily-to-weekly timescales presents a major challenge, due to the relatively higher level of noise and systematic errors, such as common mode errors (CME). This makes geodetic investigations of transient hydrologic events, such as major hurricanes, particularly difficult. By using daily vertical GPS timeseries we resolve the spatial and temporal evolution of water loading from Hurricane Harvey across the Gulf coast by applying multiple network correction methods, which helps to isolate the hydrological loading signal. Using 340 GPS stations distributed across the southern US, we mitigate for the effects of spatially correlated CME by firstly removing vertical contributions from atmospheric and non-ocean tidal loading, and secondly correcting the residual positions for changes in translation, rotation and scaling using a Helmert transformation. Our results show a maximum subsidence of 1.8 cm occurring around Houston, and a clear migration of land subsidence from Corpus Christi to western Louisiana over a 7-day period, consistent with the movement of Harvey itself. We also present preliminary results using the Network Inversion Filter (Bekaert et al., 2016), in which we use a Kalman filter approach to describe the time-varying water mass in a stochastic sense. Although our results are preliminary, we find removal of systematic sources of noise can help reveal hydrological loading signals due to extreme, transient events, that would typically go missed by other spatially and temporally coarser methods (e.g., GRACE), providing valuable constraints on large and sudden changes to the hydrosphere.

  19. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less

  20. Injection envelope matching in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the {beta}-tron frequency indicate the presence of a {beta}-mismatch, while envelope oscillations at the {beta}-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.

  1. Injection envelope matching in storage rings

    NASA Astrophysics Data System (ADS)

    Minty, M. G.; Spence, W. L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the beta-tron frequency indicate the presence of a beta-mismatch, while envelope oscillations at the beta-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.

  2. COMPARTMENTAL MODEL OF NITRATE RETENTION IN STREAMS

    EPA Science Inventory

    A compartmental modeling approach is presented to route nitrate retention along a cascade of stream reach sections. A process transfer function is used for transient storage equations with first order reaction terms to represent nitrate uptake in the free stream, and denitrifica...

  3. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) has developed a vehicle framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to DOE’s Technical Targets using four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework model for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be easily estimated. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates the systems parameters required to run the storage system model. Additionally, this design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the framework model and compare it to the DOE Technical Targets. These models will be explained and exercised with existing hydrogen storage materials.« less

  4. NASTRAN postprocessor program for transient response to input accelerations. [procedure for generating and writing modal input data on tapes using NASTRAN

    NASA Technical Reports Server (NTRS)

    Wingate, R. T.; Jones, T. C.; Stephens, M. V.

    1973-01-01

    The description of a transient analysis program for computing structural responses to input base accelerations is presented. A hybrid modal formulation is used and a procedure is demonstrated for generating and writing all modal input data on user tapes via NASTRAN. Use of several new Level 15 modules is illustrated along with a problem associated with reading the postprocessor program input from a user tape. An example application of the program is presented for the analysis of a spacecraft subjected to accelerations initiated by thrust transients. Experience with the program has indicated it to be very efficient and economical because of its simplicity and small central memory storage requirements.

  5. Hydro-mechanical pressure response to fluid injection into finite aquifers highlights the non-local behavior of storage

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Carrera, Jesus

    2017-04-01

    Specific storage reflects the volumetric deformation capacity of permeable media. Classical groundwater hydrology equals elastic storage to medium compressibility, which is a constant-in-time and locally-defined parameter. This allows simplifying the flow equation into a linear diffusion equation that is relatively easy to solve. However, the hydraulic gradients, generated by fluid injection or pumping, act as forces that push the medium in the direction of flow causing it to deform, even in regions where pressure has not changed. Actual deformation depends on the elastic properties of the medium, but also on aquifer geometry and on surrounding strata, which act like constraints to displacements. Therefore the storage results to be non-local (i.e., the volume of water released at a point depends on the poroelastic response over the whole aquifer) and the proper evaluation of transient pressure requires acknowledging the hydro-mechanical (HM) coupling, which is generally disregarded by conventional hydrogeology. Here we discuss whether HM coupling effects are relevant, which is of special interest for the activities of enhanced geothermics, waste disposal, CO2 storage or shale gas extraction. We propose analytic solutions to the HM problem of fluid injection (or extraction) into finite aquifers with one-dimensional or cylindrical geometries. We find that the deviation respect to traditional purely hydraulic solutions is significant when the aquifer has limited capacity to deform. The most relevant implications are that the response time is faster and the pressure variation greater than expected, which may be relevant for aquifer characterization and for the evaluation of pressure build-up due to fluid injection.

  6. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE PAGES

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    2017-09-01

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  7. COBRA-SFS thermal-hydraulic analysis code for spent fuel storage and transportation casks: Models and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michener, Thomas E.; Rector, David R.; Cuta, Judith M.

    COBRA-SFS, a thermal-hydraulics code developed for steady-state and transient analysis of multi-assembly spent-fuel storage and transportation systems, has been incorporated into the Used Nuclear Fuel-Storage, Transportation and Disposal Analysis Resource and Data System tool as a module devoted to spent fuel package thermal analysis. This paper summarizes the basic formulation of the equations and models used in the COBRA-SFS code, showing that COBRA-SFS fully captures the important physical behavior governing the thermal performance of spent fuel storage systems, with internal and external natural convection flow patterns, and heat transfer by convection, conduction, and thermal radiation. Of particular significance is themore » capability for detailed thermal radiation modeling within the fuel rod array.« less

  8. Stability, Transient Response, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft

    NASA Technical Reports Server (NTRS)

    Armstrong, Michael; Ross, Christine; Phillips, Danny; Blackwelder, Mark

    2013-01-01

    This document contains the deliverables for the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) regarding the stability, transient response, control, and safety study for a high power cryogenic turboelectric distributed propulsion (TeDP) system. The objective of this research effort is to enumerate, characterize, and evaluate the critical issues facing the development of the N3-X concept aircraft. This includes the proposal of electrical grid architecture concepts and an evaluation of any needs for energy storage.

  9. Storage of feature conjunctions in transient auditory memory.

    PubMed

    Gomes, H; Bernstein, R; Ritter, W; Vaughan, H G; Miller, J

    1997-11-01

    The purpose of this study was to determine whether feature conjunctions are stored in transient auditory memory. The mismatch negativity (MMN), an event-related potential that is elicited by stimuli that differ from a series of preceding stimuli, was used in this endeavour. A tone that differed from the preceding series of stimuli in the conjunction of two of its features, both present in preceding stimuli but in different combinations, was found to elicit the MMN. The data are interpreted to indicate that information about the conjunction of features is stored in the memory.

  10. Circuit engineering principles for construction of bipolar large-scale integrated circuit storage devices and very large-scale main memory

    NASA Astrophysics Data System (ADS)

    Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.

    1984-06-01

    Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.

  11. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  12. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies.

    PubMed

    Rada, E C; Ragazzi, M; Fedrizzi, P

    2013-04-01

    Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Experimental study of solute transport in pool-pipe system and its significance on karst hydrogeology

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Chang, Y.; Peng, F.; Wu, J.

    2016-12-01

    Study of solute transport in karst conduit is of great significance for prediction and prevention of groundwater pollution in southwest karst region. Solute transport in karst conduit is strongly influenced by pools which often develop along karst conduit. In order to investigate the effect of transient storage within pools on solute transport in the conduit, a pool-pipe system was built in the laboratory and some tracer tests were performed in various flow conditions to characterize the solute transport in different pool-pipe structures. The Qtracer2 program was used to obtain solute transport parameters. We used retardation coefficient R to characterize the difference between the 1-D analytical solution of the classical advection-dispersion equation and experimental results. The experimental results reveal that the concentration peak decreases with the number of pools whereas the dispersion coefficient and dispersivity increase gradually. Adding transient storage increases retardation as tailing of the breakthrough curve(BTC) is growing with the number of pools. This demonstrates that transient storage within pools is transformed to retardation. The symmetrical pool has longer tails compared to the asymmetrical pool. The concentration peak lag behind significantly due to the asymmetrical pool. A decrease in dispersivity and tailing of the BTC is observed in all pipes with the increase of flow velocities. The 1-D analytical solution of the classical advection-dispersion equation is well fitted to BTC of a single pipe in maximum flow velocity but is poorly fitted to other BTCs with appreciable tails. Therefore, it requires an appropriate model to explain tailing of the BTC. The conclusion has important significance for understanding of solute transport process in karst conduit. Future work will focus on using the appropriate model to explain tailing of the BTC.

  14. Alpha-Glucan, Water Dikinase 1 Affects Starch Metabolism and Storage Root Growth in Cassava (Manihot esculenta Crantz).

    PubMed

    Zhou, Wenzhi; He, Shutao; Naconsie, Maliwan; Ma, Qiuxiang; Zeeman, Samuel C; Gruissem, Wilhelm; Zhang, Peng

    2017-08-29

    Regulation of storage root development by source strength remains largely unknown. The cassava storage root delay (srd) T-DNA mutant postpones storage root development but manifests normal foliage growth as wild-type plants. The SRD gene was identified as an orthologue of α-glucan, water dikinase 1 (GWD1), whose expression is regulated under conditions of light/dark cycles in leaves and is associated with storage root development. The GWD1-RNAi cassava plants showed both retarded plant and storage root growth, as a result of starch excess phenotypes with reduced photosynthetic capacity and decreased levels of soluble saccharides in their leaves. These leaves contained starch granules having greatly increased amylose content and type C semi-crystalline structures with increased short chains that suggested storage starch. In storage roots of GWD1-RNAi lines, maltose content was dramatically decreased and starches with much lower phosphorylation levels showed a drastically reduced β-amylolytic rate. These results suggested that GWD1 regulates transient starch morphogenesis and storage root growth by decreasing photo-assimilation partitioning from the source to the sink and by starch mobilization in root crops.

  15. Transient behavior of redox flow battery connected to circuit based on global phase structure

    NASA Astrophysics Data System (ADS)

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  16. Gelatin/graphene systems for low cost energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materialsmore » for transient, low cost energy storage device.« less

  17. Cervarix, the GSK HPV-16/HPV-18 AS04-adjuvanted cervical cancer vaccine, demonstrates stability upon long-term storage and under simulated cold chain break conditions.

    PubMed

    Le Tallec, David; Doucet, Diane; Elouahabi, Abdelatif; Harvengt, Pol; Deschuyteneer, Michel; Deschamps, Marguerite

    2009-07-01

    Cervarix is a recombinant human papillomavirus (HPV)-16 and -18 L1 virus-like-particle (VLP) AS04-adjuvanted vaccine designed to protect against cervical intraepithelial neoplasia and cervical cancer caused by the HPV types 16 and 18. Assessment of the stability of the vaccine during long-term storage and after transient exposure to temperatures out of normal storage range is an integrated part of vaccine quality evaluation. This assessment was done with vaccine samples stored at 2-8 degrees C for up to 36 months, with or without simulated cold chain break (either one week at 37 degrees C, or two or four weeks at 25 degrees C). Among the stability-indicating parameters, antigenicity and immunogenicity were evaluated along with L1 antigen integrity and adsorption to aluminum. Differential scanning calorimetry (DSC) was used to investigate the structural stability of the VLPs before and after vaccine formulation and over time. Cervarix was stable at 2-8 degrees C for at least three years, and the occurrence of cold chain break had no impact, as shown by unchanged product characteristics during the full storage period. DSC analysis demonstrated that the structure of the HPV-16 and -18 L1 proteins and their corresponding VLPs was not affected throughout the manufacturing process. Moreover, the structure of aluminum-adsorbed HPV-16 and -18 L1 VLPs was robust over a 14-month test period. In conclusion, Cervarix was very stable upon long-term storage at 2-8 degrees C with or without transient exposure to higher temperatures (up to 37 degrees C). The observed robust structure of the L1 VLPs contributes to the excellent stability of Cervarix.

  18. The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen.

    PubMed

    Arai, Shinpei; Ogiwara, Naoko; Mukai, Saki; Takezawa, Yuka; Sugano, Mitsutoshi; Honda, Takayuki; Okumura, Nobuo

    2017-06-01

    Fibrinogen storage disease (FSD) is a rare disorder that is characterized by the accumulation of fibrinogen in hepatocytes and induces liver injury. Six mutations in the γC domain (γG284R, γT314P, γD316N, the deletion of γG346-Q350, γG366S, and γR375W) have been identified for FSD. Our group previously established γ375W fibrinogen-producing Chinese hamster ovary (CHO) cells and observed aberrant large granular and fibrous forms of intracellular inclusion bodies. The aim of this study was to investigate whether fibrous intracellular inclusion bodies are specific to FSD-inducible variant fibrinogen. Thirteen expression vectors encoding the variant γ-chain were stably or transiently transfected into CHO cells expressing normal fibrinogen Aα- and Bβ-chains or HuH-7 cells, which were then immunofluorescently stained. Six CHO and HuH-7 cell lines that transiently produced FSD-inducible variant fibrinogen presented the fibrous (3.2-22.7 and 2.1-24.5%, respectively) and large granular (5.4-25.5 and 7.7-23.9%) forms of intracellular inclusion bodies. Seven CHO and HuH-7 cell lines that transiently produced FSD-non-inducible variant fibrinogen only exhibit the large granular form. These results demonstrate that transiently transfected variant fibrinogen-producing CHO cells and inclusion bodies of the fibrous form may be useful in non-invasive screening for FSD risk factors for FSD before its onset.

  19. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline.

    PubMed

    Yager, R M; Fountain, J C

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.

  20. Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline

    USGS Publications Warehouse

    Yager, R.M.; Fountain, J.C.

    2001-01-01

    The specific storage of a porous medium, a function of the compressibility of the aquifer material and the fluid within it, is essentially constant under normal hydrologic conditions. Gases dissolved in ground water can increase the effective specific storage of a confined aquifer, however, during water level declines. This causes a reduction in pore pressure that lowers the gas solubility and results in exsolution. The exsolved gas then displaces water from storage, and the specific storage increases because gas compressibility is typically much greater than that of water or aquifer material. This work describes the effective specific storage of a confined aquifer exsolving dissolved gas as a function of hydraulic head and the dimensionless Henry's law constant for the gas. This relation is applied in a transient simulation of ground water discharge from a confined aquifer system to a collapsed salt mine in the Genesee Valley in western New York. Results indicate that exsolution of gas significantly increased the effective specific storage in the aquifer system, thereby decreasing the water level drawdown.

  1. Response of GaAs charge storage devices to transient ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.

    Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.

  2. A review of candidate multilayer insulation systems for potential use on wet-launched LH2 tankage for the Space Exploration Initiative lunar missions

    NASA Technical Reports Server (NTRS)

    Knoll, Richard H.; Stochl, Robert J.; Sanabria, Rafael

    1991-01-01

    The storage of cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) for the future Space Exploration Initiative (SEI) will require lightweight, high performance thermal protection systems (TPSs). For the near-term lunar missions, the major weight element for most of the TPSs will be multilayer insulation (MLI) and/or the special structures/systems required to accommodate the MLI. Methods of applying MLI to LH2 tankage to avoid condensation or freezing of condensible gases such as nitrogen or oxygen while in the atmosphere are discussed. Because relatively thick layers of MLI will be required for storage times of a month or more, the transient performance from ground-hold to space-hold of the systems will become important in optimizing the TPSs for many of the missions. The ground-hold performance of several candidate systems are given as well as a qualitative assessment of the transient performance effects.

  3. Implizite Berechnung der Grundwasserneubildung (RUBINFLUX) im instationären Grundwasserströmungsmodell SPRING. Eine neue Methodik für regionale, räumlich hochaufgelöste Anwendungen

    NASA Astrophysics Data System (ADS)

    Zepp, Harald; König, Christoph; Kranl, Julius; Becker, Martin; Werth, Barbara; Rathje, Michael

    2017-06-01

    The application of the groundwater flow model SPRING to the city of Düsseldorf, Germany (217 km2) as part of a larger hydrological catchment area (708 km2) required developing a new, robust calculation scheme (RUBINFLUX) for groundwater recharge with a high spatial and temporal resolution. RUBINFLUX combines a novel approach for drainage from the unsaturated zone with proven hydrological components. The drainage is calculated as a natural exponential function using the difference between the actual storage and the water storage at field capacity without making use of the Richards equation. The simulated groundwater recharge values at each element of the groundwater mesh were used as the upper boundary condition. After transient calibration of the groundwater flow model against 871 observation wells, the transient variations of the groundwater levels at locations not influenced by river levels were accurately simulated. The integration of RUBINFLUX into SPRING has proved suitable for complex hydrological systems.

  4. A review of candidate multilayer insulation systems for potential use on wet-launched LH2 tankage for the space exploration initiative lunar missions

    NASA Technical Reports Server (NTRS)

    Knoll, Richard H.; Stochl, Robert J.; Sanabria, Rafael

    1991-01-01

    The storage of cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) for the future Space Exploration Initiative (SEI) will require lightweight, high performance thermal protection systems (TPS's). For the near-term lunar missions, the major weight element for most of the TPS's will be multilayer insulation (MLI) and/or the special structures/systems required to accommodate the MLI. Methods of applying MLI to LH2 tankage to avoid condensation or freezing of condensible gases such as nitrogen or oxygen while in the atmosphere are discussed. Because relatively thick layers of MLI will be required for storage times of a month or more, the transient performance from ground-hold to space-hold of the systems will become important in optimizing the TPS's for many of the missions. The ground-hold performance of several candidate systems are given as well as a qualitative assessment of the transient performance effects.

  5. One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    1998-01-01

    OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.

  6. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  7. Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis

    DOE PAGES

    Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob; ...

    2017-09-12

    Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less

  8. Radio-Frequency-Controlled Urea Dosing for NH3-SCR Catalysts: NH3 Storage Influence to Catalyst Performance under Transient Conditions

    PubMed Central

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip. PMID:29182589

  9. Transient finite element analysis of electric double layer using Nernst-Planck-Poisson equations with a modified Stern layer.

    PubMed

    Lim, Jongil; Whitcomb, John; Boyd, James; Varghese, Julian

    2007-01-01

    A finite element implementation of the transient nonlinear Nernst-Planck-Poisson (NPP) and Nernst-Planck-Poisson-modified Stern (NPPMS) models is presented. The NPPMS model uses multipoint constraints to account for finite ion size, resulting in realistic ion concentrations even at high surface potential. The Poisson-Boltzmann equation is used to provide a limited check of the transient models for low surface potential and dilute bulk solutions. The effects of the surface potential and bulk molarity on the electric potential and ion concentrations as functions of space and time are studied. The ability of the models to predict realistic energy storage capacity is investigated. The predicted energy is much more sensitive to surface potential than to bulk solution molarity.

  10. Simulation of the ground-water-flow system in the Kalamazoo County area, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.; Blumer, Stephen P.; Weaver, T.L.; Jean, Julie

    2004-01-01

    A ground-water-flow model was developed to investigate the ground-water resources of Kalamazoo County. Ground water is widely used as a source of water for drinking and industry in Kalamazoo County and the surrounding area. Additionally, lakes and streams are valued for their recreational and aesthetic uses. Stresses on the ground-water system, both natural and human-induced, have raised concerns about the long-term availability of ground water for people to use and for replenishment of lakes and streams. Potential changes in these stresses, including withdrawals and recharge, were simulated using a ground-water-flow model. Simulations included steady-state conditions (in which stresses remained constant and changes in storage were not included) and transient conditions (in which stresses changed in seasonal and monthly time scales and storage within the system was included). Steady-state simulations were used to investigate the long-term effects on water levels and streamflow of a reduction in recharge or an increase in pumping to projected 2010 withdrawal rates, withdrawal and application of water for irrigation, and a reduction in recharge in urban areas caused by impervious surfaces. Transient simulations were used to investigate changes in withdrawals to match seasonal and monthly patterns under various recharge conditions, and the potential effects of the use of water for irrigation over the summer months. With a reduction in recharge, simulated water levels declined over most of the model area in Kalamazoo County; with an increase in pumping, water levels declined primarily near pumping centers. Because withdrawals by wells intercept water that would have discharged possibly to a stream or lake, model simulations indicated that streamflow was reduced with increased withdrawals. With withdrawal and consumption of water for irrigation, simulated water levels declined. Assuming a reduction in recharge due to urbanization, water levels declined and flow to streams was reduced based on steady-state simulation results. Transient results indicated a reduction of water levels with the simulated use of water for irrigation over the summer months. Generally the transient simulation with recharge only in the winter provided the best fit to observed water levels collected during synoptic water-level measurements in some wells and to the trends observed in water levels for other wells. Analysis of the regional hydrologic budgets provides an increased understanding of water movement within the ground-water-flow system in Kalamazoo County. Budgets for the steady-state simulations indicated that with reduced recharge, less water was available for streamflow and less water left the model area through the model boundaries. Similarly, with an increase in pumping rates, less water was available to enter streams and become streamflow. When recharge was assumed to remain constant and when it was allowed to vary throughout the year, the amount of water that entered storage was greater than that which left storage. However, when recharge was distributed through October?May only or when recharge rates were reduced from October to May, the amount of water that entered storage was less than that which left storage. Thus, on the basis of model simulations, with reduced recharge or increased withdrawals, water must come from storage, rivers, or from ground-flow-system boundaries to meet withdrawal demands.

  11. AN INTERREGIONAL COMPARISON OF CHANNEL STRUCTURE, TRANSIENT STORAGE, AND RIPARIAN COVER WITH COMMUNITY METABOLISM IN STREAMS DRAINING EARLY- AND MID-SUCCESSIONAL WATERSHEDS

    EPA Science Inventory

    The goal of this research was to evaluate stream ecosystem function in response to different forest harvest intensities and time since harvest. Research was conducted in North Carolina, Arkansas, Oregon, and California.

  12. Seasonal Water Storage, the Resulting Deformation and Stress, and Occurrence of Earthquakes in California

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Burgmann, R.; Fu, Y.; Dutilleul, P.

    2015-12-01

    In California the accumulated winter snow pack in the Sierra Nevada, reservoirs and groundwater water storage in the Central Valley follow an annual periodic cycle and each contribute to the resulting surface deformation, which can be observed using GPS time series. The ongoing drought conditions in the western U.S. amplify the observed uplift signal as the Earth's crust responds to the mass changes associated with the water loss. The near surface hydrological mass loss can result in annual stress changes of ~1kPa at seismogenic depths. Similarly, small static stress perturbations have previously been associated with changes in earthquake activity. Periodicity analysis of earthquake catalog time series suggest that periods of 4-, 6-, 12-, and 14.24-months are statistically significant in regions of California, and provide documentation for the modulation of earthquake populations at periods of natural loading cycles. Knowledge of what governs the timing of earthquakes is essential to understanding the nature of the earthquake cycle. If small static stress changes influence the timing of earthquakes, then one could expect that events will occur more rapidly during periods of greater external load increases. To test this hypothesis we develop a loading model using GPS derived surface water storage for California and calculate the stress change at seismogenic depths for different faulting geometries. We then evaluate the degree of correlation between the stress models and the seismicity taking into consideration the variable amplitude of stress cycles, the orientation of transient load stress with respect to the background stress field, and the geometry of active faults revealed by focal mechanisms.

  13. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE PAGES

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.; ...

    2018-04-07

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  14. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ben; Li, Peiwen; Chan, Cholik

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  15. Design tool for estimating chemical hydrogen storage system characteristics for light-duty fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Sprik, Samuel J.; Tamburello, David A.

    The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directlymore » enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. Here, these models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH 3BH 3) and endothermic alane (AlH 3).« less

  16. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE PAGES

    Xu, Ben; Li, Peiwen; Chan, Cholik; ...

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  17. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rada, E.C., E-mail: Elena.Rada@ing.unitn.it; Ragazzi, M.; Fedrizzi, P.

    Highlights: ► As an appropriate solution for MSW management in developed and transient countries. ► As an option to increase the efficiency of MSW selective collection. ► As an opportunity to integrate MSW management needs and services inventories. ► As a tool to develop Urban Mining actions. - Abstract: Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspectsmore » related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector.« less

  18. Quantifying and Predicting Three-Dimensional Heterogeneity in Transient Storage Using Roving Profiling

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Reaver, N.; Hensley, R. T.; Cohen, M. J.

    2017-12-01

    Hydraulic transport is an important component of nutrient spiraling in streams. Quantifying conservative solute transport is a prerequisite for understanding the cycling and fate of reactive solutes, such as nutrients. Numerous studies have modeled solute transport within streams using the one-dimensional advection, dispersion and storage (ADS) equation calibrated to experimental data from tracer experiments. However, there are limitations to the information about in-stream transient storage that can be derived from calibrated ADS model parameters. Transient storage (TS) in the ADS model is most often modeled as a single process, and calibrated model parameters are "lumped" values that are the best-fit representation of multiple real-world TS processes. In this study, we developed a roving profiling method to assess and predict spatial heterogeneity of in-stream TS. We performed five tracer experiments on three spring-fed rivers in Florida (USA) using Rhodamine WT. During each tracer release, stationary fluorometers were deployed to measure breakthrough curves for multiple reaches within the river. Teams of roving samplers moved along the rivers measuring tracer concentrations at various locations and depths within the reaches. A Bayesian statistical method was used to calibrate the ADS model to the stationary breakthrough curves, resulting in probability distributions for both the advective and TS zone as a function of river distance and time. Rover samples were then assigned a probability of being from either the advective or TS zone by comparing measured concentrations to the probability distributions of concentrations in the ADS advective and TS zones. A regression model was used to predict the probability of any in-stream position being located within the advective versus TS zone based on spatiotemporal predictors (time, river position, depth, and distance from bank) and eco-geomorphological feature (eddies, woody debris, benthic depressions, and aquatic vegetation). Results confirm that TS is spatially variable as a function of spatiotemporal and eco-geomorphological features. A substantial number of samples with nearly equivalent chances of being from the advective or TS zones suggests that the distinction between zones is often poorly defined.

  19. Application of a Transient Storage Zone Model o Soil Pipeflow Tracer Injection Experiments

    USDA-ARS?s Scientific Manuscript database

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  20. Soil pipe flow tracer experiments: 2. Application of a transient storage zone model

    USDA-ARS?s Scientific Manuscript database

    Soil pipes, defined here as discrete preferential flow paths generally parallel to the slope, are important subsurface flow pathways that play a role in many soil erosion phenomena. However, limited research has been performed on quantifying and characterizing their flow and transport characteristic...

  1. Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt

    NASA Astrophysics Data System (ADS)

    Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.

    2017-01-01

    A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.

  2. Research on laser detonation pulse circuit with low-power based on super capacitor

    NASA Astrophysics Data System (ADS)

    Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong

    2018-03-01

    According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.

  3. 230 s room-temperature storage time and 1.14 eV hole localization energy in In{sub 0.5}Ga{sub 0.5}As quantum dots on a GaAs interlayer in GaP with an AlP barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonato, Leo, E-mail: leo.bonato@tu-berlin.de; Sala, Elisa M.; Stracke, Gernot

    2015-01-26

    A GaP n{sup +}p-diode containing In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) and an AlP barrier is characterized electrically, together with two reference samples: a simple n{sup +}p-diode and an n{sup +}p-diode with AlP barrier. Localization energy, capture cross-section, and storage time for holes in the QDs are determined using deep-level transient spectroscopy. The localization energy is 1.14(±0.04) eV, yielding a storage time at room temperature of 230(±60) s, which marks an improvement of 2 orders of magnitude compared to the former record value in QDs. Alternative material systems are proposed for still higher localization energies and longer storage times.

  4. Slowing light down by low magnetic fields: pulse delay by transient spectral hole-burning in ruby.

    PubMed

    Riesen, Hans; Rebane, Aleksander K; Szabo, Alex; Carceller, Ivana

    2012-08-13

    We report on the observation of slow light induced by transient spectral hole-burning in a solid, that is based on excited-state population storage. Experiments were conducted in the R1-line (2E←4A2 transition) of a 2.3 mm thick pink ruby (Al2O3:Cr(III) 130 ppm). Importantly, the pulse delay can be controlled by the application of a low external magnetic field B||c≤9 mT and delays of up to 11 ns with minimal pulse distortion are observed for ~55 ns Gaussian pulses. The delay corresponds to a group velocity value of ~c/1400. The experiment is very well modelled by linear spectral filter theory and the results indicate the possibility of using transient hole-burning based slow light experiments as a spectroscopic technique.

  5. Effects of Activation Energy to Transient Response of Semiconductor Gas Sensor

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Ohtani, Tatsuki

    The smell classifiable gas sensor will be desired for many applications such as gas detection alarms, process controls for food production and so on. We have tried to realize the sensor using transient responses of semiconductor gas sensor consisting of tin dioxide and pointed out that the sensor gave us different transient responses for kinds of gas. Results of model calculation showed the activation energy of chemical reaction on the sensor surface strongly depended on the transient response. We tried to estimate the activation energies by molecular orbital calculation with SnO2 Cluster. The results show that there is a liner relationship between the gradient of the transient responses and activation energies for carboxylic and alcoholic gases. Transient response will be predicted from activation energy in the same kind of gas and the smell discrimination by single semiconductor gas sensor will be realized by this relationship.

  6. Studying Axon-Astrocyte Functional Interactions by 3D Two-Photon Ca2+ Imaging: A Practical Guide to Experiments and "Big Data" Analysis.

    PubMed

    Savtchouk, Iaroslav; Carriero, Giovanni; Volterra, Andrea

    2018-01-01

    Recent advances in fast volumetric imaging have enabled rapid generation of large amounts of multi-dimensional functional data. While many computer frameworks exist for data storage and analysis of the multi-gigabyte Ca 2+ imaging experiments in neurons, they are less useful for analyzing Ca 2+ dynamics in astrocytes, where transients do not follow a predictable spatio-temporal distribution pattern. In this manuscript, we provide a detailed protocol and commentary for recording and analyzing three-dimensional (3D) Ca 2+ transients through time in GCaMP6f-expressing astrocytes of adult brain slices in response to axonal stimulation, using our recently developed tools to perform interactive exploration, filtering, and time-correlation analysis of the transients. In addition to the protocol, we release our in-house software tools and discuss parameters pertinent to conducting axonal stimulation/response experiments across various brain regions and conditions. Our software tools are available from the Volterra Lab webpage at https://wwwfbm.unil.ch/dnf/group/glia-an-active-synaptic-partner/member/volterra-andrea-volterra in the form of software plugins for Image J (NIH)-a de facto standard in scientific image analysis. Three programs are available: MultiROI_TZ_profiler for interactive graphing of several movable ROIs simultaneously, Gaussian_Filter5D for Gaussian filtering in several dimensions, and Correlation_Calculator for computing various cross-correlation parameters on voxel collections through time.

  7. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  8. Insights into organic carbon oxidation potential during fluvial transport from laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Scheingross, J. S.; Dellinger, M.; Eglinton, T. I.; Fuchs, M. C.; Golombek, N.; Hilton, R. G.; Hovius, N.; Lupker, M.; Repasch, M. N.; Sachse, D.; Turowski, J. M.; Vieth-Hillebrand, A.; Wittmann, H.

    2017-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, hydropshere, biosphere and geosphere can be a major control on atmospheric carbon dioxide concentrations. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion, transport, and burial of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing increasing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport, where OC is in continual motion within an aerated river, or during periods of temporary storage in river floodplains which may be anoxic. The unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to mechanistically link geochemical and geomorphic processes which are required to develop models capable of predicting OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this knowledge gap, we investigated OC oxidation in controlled laboratory experiments and a simplified field setting. We performed experiments in annular flumes that simulate fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km. Preliminary experiments exploring both rock-derived and biospheric OC sources show minimal OC oxidation during active river transport, consistent with the idea that the majority of OC loss occurs during transient floodplain storage. These results are also consistent with new field data collected in the Rio Bermejo, Argentina, a lowland river traversing 800 km with no tributary inputs, where aged floodplain deposits have 3 to 10 times lower OC concentrations compared to modern river sediments. Together our field data and experiments support the hypothesis that oxidation of OC occurs primarily during floodplain storage rather than fluvial transport.

  9. Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum.

    PubMed

    Otegui, Marisa S; Capp, Roberta; Staehelin, L Andrew

    2002-06-01

    Mineral-accumulating compartments in developing seeds of Arabidopsis were studied using high-pressure-frozen/freeze-substituted samples. Developing seeds store minerals in three locations: in the protein storage vacuoles of the embryo, and transiently in the endoplasmic reticulum (ER) and vacuolar compartments of the chalazal endosperm. Energy dispersive x-ray spectroscopy and enzyme treatments suggest that the minerals are stored as phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) salts in all three compartments, although they differ in cation composition. Whereas embryo globoids contain Mg, K, and Ca as cations, the chalazal ER deposits show high levels of Mn, and the chalazal vacuolar deposits show high levels of Zn. The appearance of the first Zn-phytate crystals coincides with the formation of network-like extensions of the chalazal vacuoles. The core of these networks consists of a branched network of tubular ER membranes, which are separated from the delineating tonoplast membranes by a layer of cytosolic material. Degradation of the networks starts with the loss of the cytosol and is followed by the retraction of the ER, generating a network of collapsed tonoplast membranes that are resorbed. Studies of fertilized fis2 seeds, which hyperaccumulate Zn-phytate crystals in the chalazal vacuolar compartments, suggest that only the intact network is active in mineral sequestration. Mineral determination analysis and structural observations showed that Zn and Mn are mobilized from the endosperm to the embryo at different developmental stages. Thus, Zn appears to be removed from the endosperm at the late globular stage, and Mn stores appear to be removed at the late bent-cotyledon stage of embryo development. The disappearance of the Mn-phytate from the endosperm coincides with the accumulation of two major Mn binding proteins in the embryo, the 33-kD protein from the oxygen-evolving complex of photosystem II and the Mn superoxide dismutase. The possible functions of transient heavy metal storage in the chalazal endosperm are discussed. A model showing how phytic acid, a potentially cytotoxic molecule, is transported from its site of synthesis, the ER, to the different mineral storage sites is presented.

  10. Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum

    PubMed Central

    Otegui, Marisa S.; Capp, Roberta; Staehelin, L. Andrew

    2002-01-01

    Mineral-accumulating compartments in developing seeds of Arabidopsis were studied using high-pressure-frozen/freeze-substituted samples. Developing seeds store minerals in three locations: in the protein storage vacuoles of the embryo, and transiently in the endoplasmic reticulum (ER) and vacuolar compartments of the chalazal endosperm. Energy dispersive x-ray spectroscopy and enzyme treatments suggest that the minerals are stored as phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate) salts in all three compartments, although they differ in cation composition. Whereas embryo globoids contain Mg, K, and Ca as cations, the chalazal ER deposits show high levels of Mn, and the chalazal vacuolar deposits show high levels of Zn. The appearance of the first Zn-phytate crystals coincides with the formation of network-like extensions of the chalazal vacuoles. The core of these networks consists of a branched network of tubular ER membranes, which are separated from the delineating tonoplast membranes by a layer of cytosolic material. Degradation of the networks starts with the loss of the cytosol and is followed by the retraction of the ER, generating a network of collapsed tonoplast membranes that are resorbed. Studies of fertilized fis2 seeds, which hyperaccumulate Zn-phytate crystals in the chalazal vacuolar compartments, suggest that only the intact network is active in mineral sequestration. Mineral determination analysis and structural observations showed that Zn and Mn are mobilized from the endosperm to the embryo at different developmental stages. Thus, Zn appears to be removed from the endosperm at the late globular stage, and Mn stores appear to be removed at the late bent-cotyledon stage of embryo development. The disappearance of the Mn-phytate from the endosperm coincides with the accumulation of two major Mn binding proteins in the embryo, the 33-kD protein from the oxygen-evolving complex of photosystem II and the Mn superoxide dismutase. The possible functions of transient heavy metal storage in the chalazal endosperm are discussed. A model showing how phytic acid, a potentially cytotoxic molecule, is transported from its site of synthesis, the ER, to the different mineral storage sites is presented. PMID:12084829

  11. Effects of water storage in the stele on measurements of the hydraulics of young roots of corn and barley.

    PubMed

    Joshi, Ankur; Knipfer, Thorsten; Steudle, Ernst

    2009-11-01

    In standard techniques (root pressure probe or high-pressure flowmeter), the hydraulic conductivity of roots is calculated from transients of root pressure using responses following step changes in volume or pressure, which may be affected by a storage of water in the stele. Storage effects were examined using both experimental data of root pressure relaxations and clamps and a physical capacity model. Young roots of corn and barley were treated as a three-compartment system, comprising a serial arrangement of xylem/probe, stele and outside medium/cortex. The hydraulic conductivities of the endodermis and of xylem vessels were derived from experimental data. The lower limit of the storage capacity of stelar tissue was caused by the compressibility of water. This was subsequently increased to account for realistic storage capacities of the stele. When root water storage was varied over up to five orders of magnitude, the results of simulations showed that storage effects could not explain the experimental data, suggesting a major contribution of effects other than water storage. It is concluded that initial water flows may be used to measure root hydraulic conductivity provided that the volumes of water used are much larger than the volumes stored.

  12. Properties of the late transient outward current in isolated intestinal smooth muscle cells of the guinea-pig.

    PubMed

    Zholos, A V; Baidan, L V; Shuba, M F

    1991-11-01

    1. Whole-cell membrane currents in voltage-clamped single isolated cells of longitudinal smooth muscle of guinea-pig ileum were studied at room temperature using patch pipettes filled with either high-K+ solution or high-Cs+ solution, to suppress K+ outward current, and containing 0.3 mM-EGTA. 2. In the presence of high-K+ solution in the pipette, membrane depolarization from the holding potential of -50 mV evoked an initial inward calcium current (ICa) followed by a large initial transient outward current and a sustained outward current with spontaneous oscillations superimposed. Prolonged depolarization above -20 mV produced a late transient outward current which reached a maximum (up to several nanoamps at +10 mV) within approximately 1 s and lasted several seconds. 3. The late outward current (ILTO) was voltage dependent and reversed at the EK (potassium equilibrium potential) in cells exposed to high-K+ external solution. It was blocked by TEA+ (tetraethylammonium) or Ba2+ applied externally (calculated Kd (dissociation constant) values were 0.67 and 4.43 mM, respectively) or by high-Cs+ solution perfusing the cell. The removal of extracellular Ca2+, application of Ca2+ channel blockers (3 mM-Co2+, 0.2 mM-Cd2+ or 1 microM-nifedipine) or perfusion of 5 mM-EGTA inside the cell also abolished the current. Thus, the current seems to be a Ca(2+)-activated K+ current. 4. There is a great discrepancy between the time course of the ICa and that of the late ILTO, which suggests that Ca2+ release from intracellular storage sites may contribute to the generation of the ILTO. 5. Bath application of caffeine (10 mM) during the development of ILTO enhanced the current. However, in the presence of caffeine ILTO was inhibited. Moderate inhibition of ICa by caffeine was also observed. 6. Ryanodine (5 microM) applied to the bathing solution completely inhibited ILTO within 3.5 min; however, it had no or little effect on the ICa. 7. Ruthenium Red (10 microM) completely blocked the ILTO and slightly and more slowly inhibited the ICa. 8. Increasing Mg2+ concentration in the pipette solution from 1 to 6 mM abolished the ILTO. 9. It was concluded that the ILTO was activated mainly by Ca2+ released from the intracellular storage sites following Ca2+ entry, presumably by a Ca(2+)-induced Ca2+ release mechanism.

  13. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation

    USDA-ARS?s Scientific Manuscript database

    Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles...

  14. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  15. Periodic alternating nystagmus during caloric stimulation.

    PubMed

    Taki, Masakatsu; Hasegawa, Tatsuhisa; Adachi, Naoko; Fujita, Tomoki; Sakaguchi, Hirofumi; Hisa, Yasuo

    2014-04-01

    Periodic alternating nystagmus (PAN) is a form of horizontal jerk nystagmus characterized by periodic reversals in direction. We report a case who exhibited transient PAN induced by caloric stimulation. The patient was a 75-year-old male. He had experienced floating sensation in January 2010. Eight months later, he was referred to our university hospital. Gaze nystagmus and positional tests revealed no nystagmus. Only weak right-beating horizontal nystagmus was observed during left Dix-Hallpike maneuver. Electronystagmography showed normal saccadic and smooth pursuit eye movements. The optokinetic nystagmus pattern test was also bilaterally normal. However, during the caloric stimulation to the right ear, at 166 s from the start of irrigation, the direction of nystagmus alternated from leftward to rightward, and thereafter this reversal of direction repeated 15 times. Magnetic resonance imaging showed no significant lesion except for chronic ischemia in the brain. The patient probably had some kind of latent lesion of impaired velocity storage and exhibited transient PAN induced by caloric stimulation. Caloric stimulation is useful and simple examination to disclose latent eye movement disorders of which velocity storage mechanism is impaired. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, J.; Kesterson, M.; Hensel, S.

    The documented safety analysis for the Savannah River Site evaluates the consequences of a postulated 1000 °C fire in a glovebox. The radiological dose consequences for a pressurized release of plutonium oxide powder during such a fire depend on the maximum pressure that is attained inside the oxide storage vial. To enable evaluation of the dose consequences, pressure transients and venting flow rates have been calculated for exposure of the storage vial to the fire. A standard B vial with a capacity of approximately 8 cc was selected for analysis. The analysis compares the pressurization rate from heating and evaporationmore » of moisture adsorbed onto the plutonium oxide contents of the vial with the pressure loss due to venting of gas through the threaded connection between the vial cap and body. Tabulated results from the analysis include maximum pressures, maximum venting velocities, and cumulative vial volumes vented during the first 10 minutes of the fire transient. Results are obtained for various amounts of oxide in the vial, various amounts of adsorbed moisture, different vial orientations, and different surface fire exposures.« less

  17. Impact of wind generator infed on dynamic performance of a power system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ahsanul

    Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by supporting STATCOM with bulk energy storage devices. Two types of energy storage system (ESS) have been considered---battery energy storage system, and supercapacitor based energy storage system. A decoupled P -- Q control strategy has been implemented on STATCOM/ESS. It is observed that wind generators when supported by STATCOM/ESS can achieve significant withstand capability in the presence of grid fault of reasonable duration. It experiences almost negligible rotor speed variation, maintains constant terminal voltage, and resumes delivery of smoothed (almost transient free) power to the grid immediately after the fault is cleared. Keywords: Wind energy, induction generator, dynamic performance of wind generators, energy storage system, decoupled P -- Q control, multimachine system.

  18. Steady and transient regimes in hydropower plants

    NASA Astrophysics Data System (ADS)

    Gajic, A.

    2013-12-01

    Hydropower plant that has been in operation for about 30 years has to be reconstructed. They have already installed 12 Kaplan turbines, the largest in the world at that time. The existing CAM relationship was determined based on hydraulic model tests and checked by efficiency on-site tests. It was also tested based on turbine bearing vibrations. In order to discover vibrations and long cracks on stay vanes detailed on-site measurements were performed. Influence of the modification of the trailing edges on the dynamic stresses of the stay vanes is also shown. In order to improve power output transient regimes were analyzed, both experimentally and numerically. Reversible hydropower plant, a pioneer in Europe since it was the first Pump storage power plant constructed with the highest head pump-turbines in the world. Analyses of transient regimes discover some problems with S-shaped characteristics coupled with non-symmetrical penstock.

  19. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, T.; Chaney, L.; Meyer, J.

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less

  20. Transient sodium current at subthreshold voltages: activation by EPSP waveforms

    PubMed Central

    Carter, Brett C.; Giessel, Andrew J.; Sabatini, Bernardo L.; Bean, Bruce P.

    2012-01-01

    Summary Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also “persistent” sodium current, a non-inactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37 °C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo. PMID:22998875

  1. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics.

    PubMed

    Milton, John G

    2012-07-01

    Power-law behaviors in brain activity in healthy animals, in the form of neuronal avalanches, potentially benefit the computational activities of the brain, including information storage, transmission and processing. In contrast, power-law behaviors associated with seizures, in the form of epileptic quakes, potentially interfere with the brain's computational activities. This review draws attention to the potential roles played by homeostatic mechanisms and multistable time-delayed recurrent inhibitory loops in the generation of power-law phenomena. Moreover, it is suggested that distinctions between health and disease are scale-dependent. In other words, what is abnormal and defines disease it is not the propagation of neural activity but the propagation of activity in a neural population that is large enough to interfere with the normal activities of the brain. From this point of view, epilepsy is a disease that results from a failure of mechanisms, possibly located in part in the cortex itself or in the deep brain nuclei and brainstem, which truncate or otherwise confine the spatiotemporal scales of these power-law phenomena. © 2012 The Author. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Modelling the fate of six common pharmaceuticals in a small stream: quantification of attenuation and retention in different stream-specific environments

    NASA Astrophysics Data System (ADS)

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-04-01

    Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.

  3. Buffering PV output during cloud transients with energy storage

    NASA Astrophysics Data System (ADS)

    Moumouni, Yacouba

    Consideration of the use of the major types of energy storage is attempted in this thesis in order to mitigate the effects of power output transients associated with grid-tied CPV systems due to fast-moving cloud coverage. The approach presented here is to buffer intermittency of CPV output power with an energy storage device (used batteries) purchased cheaply from EV owners or battery leasers. When the CPV is connected to the grid with the proper energy storage, the main goal is to smooth out the intermittent solar power and fluctuant load of the grid with a convenient control strategy. This thesis provides a detailed analysis with appropriate Matlab codes to put onto the grid during the day time a constant amount of power on one hand and on the other, shift the less valuable off-peak electricity to the on-peak time, i.e. between 1pm to 7pm, where the electricity price is much better. In this study, a range of base constant power levels were assumed including 15kW, 20kW, 21kW, 22kW, 23kW, 24kW and 25kW. The hypothesis based on an iterative solution was that the capacity of the battery was increased by steps of 5 while the base supply was decreased by the same step size until satisfactorily results were achieved. Hence, it turned out with the chosen battery capacity of 54kWh coupled to the data from the Amonix CPV 7700 unit for Las Vegas for a 3-month period, it was found that 20kW was the largest constant load the system can supply uninterruptedly to the utility company. Simulated results are presented to show the feasibility of the proposed scheme.

  4. A Wide Dynamic Range Tapped Linear Array Image Sensor

    NASA Astrophysics Data System (ADS)

    Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl

    1988-08-01

    Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of magnitide are obtained. To achieve the short integration times necessary in acousto-optic applications. t he wide dynamic range detector has been implemented into a tapped array architecture with eight outputs and 256 photoelements. Operation of each 01)1,1)111 at 16 MHz yields detector integration times of 2 micro-seconds. Buried channel two phase CCD shift register technology is utilized to minimize image sensor noise improve video output rates and increase ease of operation.

  5. Properties of the calcium-activated chloride current in heart.

    PubMed

    Zygmunt, A C; Gibbons, W R

    1992-03-01

    We used the whole cell patch clamp technique to study transient outward currents of single rabbit atrial cells. A large transient current, IA, was blocked by 4-aminopyridine (4AP) and/or by depolarized holding potentials. After block of IA, a smaller transient current remained. It was completely blocked by nisoldipine, cadmium, ryanodine, or caffeine, which indicates that all of the 4AP-resistant current is activated by the calcium transient that causes contraction. Neither calcium-activated potassium current nor calcium-activated nonspecific cation current appeared to contribute to the 4AP-resistant transient current. The transient current disappeared when ECl was made equal to the pulse potential; it was present in potassium-free internal and external solutions. It was blocked by the anion transport blockers SITS and DIDS, and the reversal potential of instantaneous current-voltage relations varied with extracellular chloride as predicted for a chloride-selective conductance. We concluded that the 4AP-resistant transient outward current of atrial cells is produced by a calcium-activated chloride current like the current ICl(Ca) of ventricular cells (1991. Circulation Research. 68:424-437). ICl(Ca) in atrial cells demonstrated outward rectification, even when intracellular chloride concentration was higher than extracellular. When ICa was inactivated or allowed to recover from inactivation, amplitudes of ICl(Ca) and ICa were closely correlated. The results were consistent with the view that ICl(Ca) does not undergo independent inactivation. Tentatively, we propose that ICl(Ca) is transient because it is activated by an intracellular calcium transient. Lowering extracellular sodium increased the peak outward transient current. The current was insensitive to the choice of sodium substitute. Because a recently identified time-independent, adrenergically activated chloride current in heart is reduced in low sodium, these data suggest that the two chloride currents are produced by different populations of channels.

  6. Thermal buffering of receivers for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.

    1980-01-01

    A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.

  7. Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, C.; Qiang, J.; Venturini, M.

    The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailingmore » magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.« less

  8. Isolation and characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in storage roots.

    PubMed

    de Souza, C R; Aragão, F J; Moreira, E C O; Costa, C N M; Nascimento, S B; Carvalho, L J

    2009-03-24

    Cassava is one of the most important tropical food crops for more than 600 million people worldwide. Transgenic technologies can be useful for increasing its nutritional value and its resistance to viral diseases and insect pests. However, tissue-specific promoters that guarantee correct expression of transgenes would be necessary. We used inverse polymerase chain reaction to isolate a promoter sequence of the Mec1 gene coding for Pt2L4, a glutamic acid-rich protein differentially expressed in cassava storage roots. In silico analysis revealed putative cis-acting regulatory elements within this promoter sequence, including root-specific elements that may be required for its expression in vascular tissues. Transient expression experiments showed that the Mec1 promoter is functional, since this sequence was able to drive GUS expression in bean embryonic axes. Results from our computational analysis can serve as a guide for functional experiments to identify regions with tissue-specific Mec1 promoter activity. The DNA sequence that we identified is a new promoter that could be a candidate for genetic engineering of cassava roots.

  9. A Dynamic Model for Nitrogen‐stressed Lettuce

    PubMed Central

    SEGINER, IDO

    2003-01-01

    A previously developed dynamic lettuce model, designed to predict growth and nitrate content under the normal range of glasshouse environmental conditions, has been extended to cover high nitrogen‐stress situations. Under severe shortage of nitrogen, lettuce has been observed to grow at a very slow rate, as well as to have abnormally low water content, low reduced‐nitrogen content and negligible nitrate content. The new model mimics these observations by adding to the original model a storage compartment for ‘excess’ carbon. The resulting model has three compartments: (1) ‘vacuole’, where the soluble non‐structural material is stored, and the nitrate : carbon ratio may vary as needed to maintain a constant osmotic potential; (2) ‘structure’, a metabolically active compartment with fixed chemical composition; and (3) ‘excess‐carbon’, which serves as a long‐term storage of ‘waterless’ carbohydrates. Simulations with the model illustrate its ability to predict the effect of light, temperature and nitrogen in the nutrient solution on the long‐term growth and composition of lettuce. They also illustrate the effects of plant size, and the associated relative growth rate, on the characteristic times of transient responses resulting from step changes in the environment. PMID:12714361

  10. Store-Operated Calcium Channel Complex in Postsynaptic Spines: A New Therapeutic Target for Alzheimer's Disease Treatment.

    PubMed

    Zhang, Hua; Sun, Suya; Wu, Lili; Pchitskaya, Ekaterina; Zakharova, Olga; Fon Tacer, Klementina; Bezprozvanny, Ilya

    2016-11-23

    Mushroom dendritic spine structures are essential for memory storage and the loss of mushroom spines may explain memory defects in aging and Alzheimer's disease (AD). The stability of mushroom spines depends on stromal interaction molecule 2 (STIM2)-mediated neuronal-store-operated Ca 2+ influx (nSOC) pathway, which is compromised in AD mouse models, in aging neurons, and in sporadic AD patients. Here, we demonstrate that the Transient Receptor Potential Canonical 6 (TRPC6) and Orai2 channels form a STIM2-regulated nSOC Ca 2+ channel complex in hippocampal mushroom spines. We further demonstrate that a known TRPC6 activator, hyperforin, and a novel nSOC positive modulator, NSN21778 (NSN), can stimulate activity of nSOC pathway in the spines and rescue mushroom spine loss in both presenilin and APP knock-in mouse models of AD. We further show that NSN rescues hippocampal long-term potentiation impairment in APP knock-in mouse model. We conclude that the STIM2-regulated TRPC6/Orai2 nSOC channel complex in dendritic mushroom spines is a new therapeutic target for the treatment of memory loss in aging and AD and that NSN is a potential candidate molecule for therapeutic intervention in brain aging and AD. Mushroom dendritic spine structures are essential for memory storage and the loss of mushroom spines may explain memory defects in Alzheimer's disease (AD). This study demonstrated that Transient Receptor Potential Canonical 6 (TRPC6) and Orai2 form stromal interaction molecule 2 (STIM2)-regulated neuronal-store-operated Ca 2+ influx (nSOC) channel complex in hippocampal synapse and the resulting Ca 2+ influx is critical for long-term maintenance of mushroom spines in hippocampal neurons. A novel nSOC-positive modulator, NSN21778 (NSN), rescues mushroom spine loss and synaptic plasticity impairment in AD mice models. The TRPC6/Orai2 nSOC channel complex is a new therapeutic target and NSN is a potential candidate molecule for therapeutic intervention in brain aging and AD. Copyright © 2016 the authors 0270-6474/16/3611837-14$15.00/0.

  11. A Study of Single Pass Ion Effects at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, J.M.; Thomson, J.; /LBL, Berkeley

    2011-09-13

    We report the results of experiments on a 'fast beam-ion instability' at the Advanced Light Source (ALS). This ion instability, which can arise even when the ions are not trapped over multiple beam passages, will likely be important for many future accelerators. In our experiments, we filled the ALS storage ring with helium gas, raising the pressure approximately two orders of magnitude above the nominal pressure. With gaps in the bunch train large enough to avoid conventional (multi-turn) ion trapping, we observed a factor of 2-3 increase in the vertical beam size along with coherent beam oscillations which increased alongmore » the bunch train. Ion trapping has long been recognized as a potential limitation in electron storage rings. The ions, generated by beam-gas collisions, become trapped in the negative potential of the beam and accumulate over multiple beam passages. The trapped ions are then observed to cause a number of deleterious effects such as an increasing beam phase space, a broadening and shifting of the beam transverse oscillation frequencies (tunes), collective beam instabilities, and beam lifetime reductions. All of these effects are of concern for the next generation of accelerators, such as the B-factories or damping rings for future linear colliders, which will store high beam currents with closely spaced bunches and ultra-low beam emittances. One of the standard solutions used to prevent ion trapping is to include a gap in the bunch train which is long compared to the bunch spacing. In this case, the ions are first strongly-focused by the passing electron bunches and then over-focused in the gap. With a sufficiently large gap, the ions can be driven to large amplitudes where they form a diffuse halo and do not affect the beam. In this paper, we describe experiments that study a new regime of transient ion instabilities predicted to arise in future electron storage rings, and linacs with bunch trains. These future rings and linacs, which will be operated with higher beam currents, small transverse beam emittances, and long bunch trains, will use ion clearing gaps to prevent conventional ion trapping. But, while the ion clearing gap may suppress the conventional ion instabilities, it will not suppress a transient beam-ion instability where ions generated and trapped during the passage of a single train lead to a fast instability. While both conventional and transient ion instabilities have the same origin, namely ions produced by the beam, they have different manifestations and, more importantly, the new transient instability can arise even after the conventional ion instability is cured. This new instability is called the 'Fast Beam-Ion Instability' (FBII). In many future rings, the FBII is predicted to have very fast growth rates, much faster than the damping rates of existing and proposed transverse feedback systems, and thus is a potential limitation. To study the FBII, we performed experiments at the ALS, a 1.5 GeV electron storage ring. At the nominal ALS pressure of about 0.24 nTorr, the FBII is not evident. To study the instability, we intentionally added helium gas to the storage-ring vacuum system until the residual gas pressure was increased about 80 nTorr. This brought the predicted growth rate of the instability at least an order of magnitude above the growth rate of conventional multibunch instabilities driven by the RF cavities and above the damping rate of the transverse feedback system (TFB) in the ALS and, thereby, established conditions very similar to those in a future storage ring. We then filled the ring with a relatively short train of bunches, suppressing conventional ion instabilities. In the following, we will first briefly describe This paper describes the experiment and results in more detail.« less

  12. Study of the thermal properties of selected PCMs for latent heat storage in buildings

    NASA Astrophysics Data System (ADS)

    Valentova, Katerina; Pechackova, Katerina; Prikryl, Radek; Ostry, Milan; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements of thermal properties of selected phase change materials (PCMs) which can be used for latent heat storage in building structures. The thermal properties were measured by the transient step-wise method and analyzed by the thermal spectroscopy. The results of three different materials (RT18HC, RT28HC, and RT35HC) and their thermal properties in solid, liquid, and phase change region were determined. They were correlated with the differential scanning calorimetry (DSC) measurement. The results will be used to determine the optimum ratio of components for the construction of drywall and plasters containing listed ingredients, respectively.

  13. Effects of Pump-turbine S-shaped Characteristics on Transient Behaviours: Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong; Tang, Renbo

    2017-05-01

    A pumped storage stations model was set up and introduced in the previous paper. In the model station, the S-shaped characteristic curves was measured at the load rejection condition with the guide vanes stalling. Load rejection tests where guide-vane closed linearly were performed to validate the effect of the S-shaped characteristics on hydraulic transients. Load rejection experiments with different guide vane closing schemes were also performed to determine a suitable scheme considering the S-shaped characteristics. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure.

  14. Opto-electro-modulated transient photovoltage and photocurrent system for investigation of charge transport and recombination in solar cells.

    PubMed

    Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2016-12-01

    An opto-electro-modulated transient photovoltage/photocurrent system has been developed to probe microscopic charge processes of a solar cell in its adjustable operating conditions. The reliability of this system is carefully determined by electric circuit simulations and experimental measurements. Using this system, the charge transport, recombination and storage properties of a conventional multicrystalline silicon solar cell under different steady-state bias voltages, and light illumination intensities are investigated. This system has also been applied to study the influence of the hole transport material layer on charge extraction and the microscopic charge processes behind the widely considered photoelectric hysteresis in perovskite solar cells.

  15. Transient Mass and Thermal Transport during Methane Adsorption into the Metal-Organic Framework HKUST-1.

    PubMed

    Babaei, Hasan; McGaughey, Alan J H; Wilmer, Christopher E

    2018-01-24

    Methane adsorption into the metal-organic framework (MOF) HKUST-1 and the resulting heat generation and dissipation are investigated using molecular dynamics simulations. Transient simulations reveal that thermal transport in the MOF occurs two orders of magnitude faster than gas diffusion. A large thermal resistance at the MOF-gas interface (equivalent to 127 nm of bulk HKUST-1), however, prevents fast release of the generated heat. The mass transport resistance at the MOF-gas interface is equivalent to 1 nm of bulk HKUST-1 and does not present a bottleneck in the adsorption process. These results provide important insights into the application of MOFs for gas storage applications.

  16. Flow and residence times of dynamic river bank storage and sinuosity-driven hyporheic exchange

    USGS Publications Warehouse

    Gomez-Velez, J.D.; Wilson, J.L.; Cardenas, M.B.; Harvey, Judson

    2017-01-01

    Hydrologic exchange fluxes (HEFs) vary significantly along river corridors due to spatiotemporal changes in discharge and geomorphology. This variability results in the emergence of biogeochemical hot-spots and hot-moments that ultimately control solute and energy transport and ecosystem services from the local to the watershed scales. In this work, we use a reduced-order model to gain mechanistic understanding of river bank storage and sinuosity-driven hyporheic exchange induced by transient river discharge. This is the first time that a systematic analysis of both processes is presented and serves as an initial step to propose parsimonious, physics-based models for better predictions of water quality at the large watershed scale. The effects of channel sinuosity, alluvial valley slope, hydraulic conductivity, and river stage forcing intensity and duration are encapsulated in dimensionless variables that can be easily estimated or constrained. We find that the importance of perturbations in the hyporheic zone's flux, residence times, and geometry is mainly explained by two-dimensionless variables representing the ratio of the hydraulic time constant of the aquifer and the duration of the event (Γd) and the importance of the ambient groundwater flow ( ). Our model additionally shows that even systems with small sensitivity, resulting in small changes in the hyporheic zone extent, are characterized by highly variable exchange fluxes and residence times. These findings highlight the importance of including dynamic changes in hyporheic zones for typical HEF models such as the transient storage model.

  17. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Optimization of Passive Voltage Multipliers for Fast Start-up and Multi-voltage Power Supplies in Electromagnetic Energy Harvesting Systems

    NASA Astrophysics Data System (ADS)

    Yang, G.; Stark, B. H.; Burrow, S. G.; Hollis, S. J.

    2014-11-01

    This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up.

  19. Leukocyte integrin activation mediates transient neutropenia after G-CSF administration

    PubMed Central

    Tuschong, Laura; Bauer, Thomas R.; Yau, Yu Ying; Leitman, Susan F.; Hickstein, Dennis D.

    2011-01-01

    After administration of granulocyte colony-stimulating factor (G-CSF), there is a marked, albeit transient, drop in circulating neutrophils. To determine the role of leukocyte integrins in this disappearance, a dog having canine leukocyte adhesion deficiency (CLAD) or CLAD dogs who had undergone gene correction either by matched littermate allogeneic transplant or autologous gene therapy were evaluated. Shortly after G-CSF administration, a dramatic, yet transient, neutropenia was observed in the control littermates. This neutropenia was not as marked in the CLAD dogs. In all instances, it was CD18+ neutrophils that preferentially egressed from the circulation. The association of CD18 with this rapid loss suggested leukocyte integrin activation after G-CSF administration. To determine the activation status of the integrin, a monoclonal antibody recognizing the activated α-subunit cation binding domain (mAb24) was used to evaluate human leukocytes after G-CSF administration. Mirroring the dramatic decrease in circulating neutrophil numbers, there was a dramatic and specific increase in the activation of the α-subunit after G-CSF expression on polymorphonuclear leukocytes. This activation, like the drop in neutrophil count, was transient. These results demonstrate that the leukocyte integrin on circulating neutrophils is transiently activated after G-CSF administration and mediates the transient neutropenia observed after G-CSF administration. PMID:21844566

  20. Terrestrial carbon storage dynamics: Chasing a moving target

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.

    2015-12-01

    Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.

  1. Recent activity in the moon; Proceedings of the Special Symposium, Houston, Tex., March 16, 1976

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K.; Oreilly, W.; Srnka, L. J.

    1977-01-01

    The papers review evidence for recent activity within the moon as manifested by lunar grid system, transient phenomena, moonquakes, and episodic emissions of radiogenic gases. Topics include a survey of lunar transient phenomena, possible causes of such phenomena, evidence that high-frequency seismic events may be shallow moonquakes, lunar seismicity and tectonics, a hypothesis on the nature of sites of lunar gas venting, and a search for sporadic gas emissions from the moon. Other contributions discuss the release of radiogenic argon-40 from the moon, radon-222 emission as an indicator of current activity on the moon, upper limits to gas emission from sites of lunar transient phenomena, physical processes that could produce transient changes on the lunar surface, critical-velocity gas-plasma interaction as a mechanism for lunar transient phenomena, and tidal triggering of moonquakes, transient phenomena, and radiogenic-gas emissions.

  2. Transient and sustained neural responses to death-related linguistic cues

    PubMed Central

    Shi, Zhenhao

    2013-01-01

    Recent research showed that perception of death-related vs death-unrelated linguistic cues produced increased frontoparietal activity but decreased insular activity. This study investigated (i) whether the increased frontoparietal and decreased insular activities are, respectively, associated with transient trial-specific processes of death-related linguistic cues and sustained death-related thought during death-relevance judgments on linguistic cues and (ii) whether the neural activity underlying death-related thought can predict individuals’ dispositional death anxiety. Participants were presented with death-related/unrelated words, life-related/unrelated words, and negative-valence/neutral words in separate sessions. Participants were scanned using functional magnetic resonance imaging while performing death-relevance, life-relevance, and valence judgments on the words, respectively. The contrast of death-related vs death-unrelated words during death-relevance judgments revealed transient increased activity in the left inferior parietal lobule, the right frontal eye field, and the right superior parietal lobule. The contrast of death-relevance judgments vs life-relevance/valence judgments showed decreased activity in the bilateral insula. The sustained insular activity was correlated with dispositional death anxiety, but only in those with weak transient frontoparietal responses to death-related words. Our results dissociate the transient and sustained neural responses to death-related linguistic cues and suggest that the combination of the transient and sustained neural activities can predict dispositional death anxiety. PMID:22422804

  3. Influence of landscape position and transient water table on soil development and carbon distribution in a steep, headwater catchment

    Treesearch

    Scott W. Bailey; Patricia A. Brousseau; Kevin J. McGuire; Donald S. Ross

    2014-01-01

    Upland headwater catchments, such as those in the AppalachianMountain region, are typified by coarse textured soils, flashy hydrologic response, and low baseflow of streams, suggesting well drained soils and minimal groundwater storage. Model formulations of soil genesis, nutrient cycling, critical loads and rainfall/runoff response are typically based on vertical...

  4. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  5. Baseline Testing of Ultracapacitors for the Next Generation Launch Technology (NGLT) Project. Revised

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.

  6. Baseline Testing of Ultracapacitors for the Next Generation Launch Technology (NGLT) Project

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2004-01-01

    The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.

  7. 41 CFR 101-28.203-1 - Government storage activity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Government storage... DISTRIBUTION 28.2-Interagency Cross-Servicing in Storage Activities § 101-28.203-1 Government storage activity. A Government activity or facility utilized for the receipt, storage, and issue of supplies...

  8. 41 CFR 101-28.203-1 - Government storage activity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Government storage... DISTRIBUTION 28.2-Interagency Cross-Servicing in Storage Activities § 101-28.203-1 Government storage activity. A Government activity or facility utilized for the receipt, storage, and issue of supplies...

  9. Materials and processing approaches for foundry-compatible transient electronics.

    PubMed

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A; Song, Enming; Yu, Xinge; Rogers, John A

    2017-07-11

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are ( i ) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, ( ii ) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and ( iii ) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  10. Materials and processing approaches for foundry-compatible transient electronics

    NASA Astrophysics Data System (ADS)

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-07-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  11. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Oncemore » complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.« less

  12. Criteria for identifying the molecular basis of the engram (CaMKII, PKMzeta).

    PubMed

    Lisman, John

    2017-11-29

    The engram refers to the molecular changes by which a memory is stored in the brain. Substantial evidence suggests that memory involves learning-dependent changes at synapses, a process termed long-term potentiation (LTP). Thus, understanding the storages process that underlies LTP may provide insight into how the engram is stored. LTP involves induction, maintenance (storage), and expression sub-processes; special tests are required to specifically reveal properties of the storage process. The strongest of these is the Erasure test in which a transiently applied agent that attacks a putative storage molecule may lead to persistent erasure of previously induced LTP/memory. Two major hypotheses have been proposed for LTP/memory storage: the CaMKII and PKM-zeta hypotheses. After discussing the tests that can be used to identify the engram (Necessity test, Saturation/Occlusion test, Erasure test), the status of these hypotheses is evaluated, based on the literature on LTP and memory-guided behavior. Review of the literature indicates that all three tests noted above support the CaMKII hypothesis when done at both the LTP level and at the behavioral level. Taken together, the results strongly suggest that the engram is stored by an LTP process in which CaMKII is a critical memory storage molecule.

  13. Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Zhang, Qisheng; Wang, Meng; Kong, Qiang; Zhang, Shengquan; He, Ruihao; Liu, Shenghui; Li, Shuhan; Yuan, Zhenzhong

    2017-11-01

    Due to the pressing demand for metallic ore exploration technology in China, several new technologies are being employed in the relevant exploration instruments. In addition to possessing the high resolution of the traditional transient electromagnetic method, high-efficiency measurements, and a short measurement time, the multichannel transient electromagnetic method (MTEM) technology can also sensitively determine the characteristics of a low-resistivity geologic body, without being affected by the terrain. Besides, the MTEM technology also solves the critical, existing interference problem in electrical exploration technology. This study develops a full-waveform voltage and current recording device for MTEM transmitters. After continuous acquisition and storage of the large, pseudo-random current signals emitted by the MTEM transmitter, these signals are then convoluted with the signals collected by the receiver to obtain the earth's impulse response. In this paper, the overall design of the full-waveform recording apparatus, including the hardware and upper-computer software designs, the software interface display, and the results of field test, is discussed in detail.

  14. Steam drum design for direct steam generation

    NASA Astrophysics Data System (ADS)

    Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus

    2017-06-01

    For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.

  15. A 'two-tank' seasonal storage concept for solar space heating of buildings

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Connor, D. W.; Mueller, R. O.

    This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.

  16. Effect of antemortem and postmortem factors on ( sup 3 H)MK-801 binding in the human brain: Transient elevation during early childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.

    1989-01-01

    The effect of a number of antemortem and postmortem factors on ({sup 3}H)MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years ({sup 3}H)MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex.

  17. Energy Dissipation in Ex-Vivo Porcine Liver during Electrosurgery

    PubMed Central

    Karaki, Wafaa; Akyildiz, Ali; De, Suvranu

    2017-01-01

    This paper explores energy dissipation in ex-vivo liver tissue during radiofrequency current excitation with application in electrosurgery. Tissue surface temperature for monopolar electrode configuration is measured using infrared thermometry. The experimental results are fitted to a finite element model for transient heat transfer taking into account energy storage and conduction in order to extract information about “apparent” specific heat, which encompasses storage and phase change. The average apparent specific heat determined for low temperatures is in agreement with published data. However, at temperatures approaching the boiling point of water, apparent specific heat increases by a factor of five, indicating that vaporization plays an important role in the energy dissipation through latent heat loss. PMID:27479955

  18. Use of MODIS Vegetation Data in Dynamic SPARROW Modeling of Reactive Nitrogen Flux

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Brakebill, J.; Schwarz, G. E.; Nolin, A. W.; Shih, J.; Blomquist, J.; Alexander, R. B.; Macauley, M.

    2012-12-01

    SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models are steady-state in form, and describe the average relationship between sources and stream conditions based on non-linear regression of long-term water quality monitoring data on spatially-referenced explanatory information. But many watershed management issues involve intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions which cause a temporary imbalance between watershed inputs and outputs. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. We describe the results of dynamic statistical calibration of a SPARROW model of total reactive nitrogen flux in the Potomac River Basin based on seasonal water quality and watershed explanatory data for 80 monitoring stations over the period 2000 to 2008. One challenge in dynamic modeling of reactive nitrogen is obtaining frequently-reported, spatially-detailed input data on the phenology of agricultural production and growth of other terrestrial vegetation. In this NASA-funded research, we use the Enhanced Vegetation Index (EVI) and gross primary productivity (GPP) data from the Terra Satellite-borne MODIS sensor to parameterize seasonal uptake and release of nitrogen. The spatial reference frame of the model is a 16,000-reach, 1:100,000-scale stream network, and the computational time step is seasonal. Precipitation and temperature data are from PRISM. The model describes transient storage and transport of nitrogen from multiple nonpoint sources including fertilized cropland, pasture, urban/suburban land, and atmospheric deposition. Removal of nitrogen from watershed storage to stream channels and to "permanent" sinks (deep groundwater and the atmosphere) occurs as parallel first-order processes. Point sources of nitrogen bypass storage and flow directly to stream channels. Model results indicate that, on average, a little more than half of the reactive nitrogen flux comes from transient storage; but in some sub-watersheds a large majority of the flux comes from stored nitrogen input to the watershed in previous seasons and years.

  19. Roles of calcium and pH in activation of eggs of the medaka fish, Oryzias latipes

    PubMed Central

    1983-01-01

    Unfertilized eggs of the medaka fish (Oryzias latipes) were injected with pH-buffered calcium buffers. Medaka egg activation is accompanied by a transient increase in cytoplasmic free calcium (Gilkey, J. C., L. F. Jaffe, E. B. Ridgway, and G. T. Reynolds, 1978, J. Cell Biol., 76:448-466). The calcium buffer injections demonstrated that (a) the threshold free calcium required to elicit the calcium transient and activate the egg is between 1.7 and 5.1 microM at pH 7.0, well below the 30 microM reached during the transient, and (b) buffers which hold free calcium below threshold prevent activation of the buffered region in subsequently fertilized eggs. Therefore an increase in free calcium is necessary and sufficient to elicit the calcium transient, and the calcium transient is necessary to activate the egg. Further, these results are additional proof that the calcium transient is initiated and propagated through the cytoplasm by a mechanism of calcium- stimulated calcium release. Finally, a normal calcium transient must propagate through the entire cytoplasm to ensure normal development. Unfertilized eggs were injected with pH buffers to produce short-term, localized changes in cytoplasmic pH. The eggs were then fertilized at various times after injection. In other experiments, unfertilized and fertilized eggs were exposed to media containing either NH4Cl or CO2 to produce longer term, global changes in cytoplasmic pH. These treatments neither activated the eggs nor interfered with the normal development of fertilized eggs, suggesting that even if a natural change in cytoplasmic pH is induced by activation, it has no role in medaka egg development. The injected pH buffers altered the rate of propagation of the calcium transient through the cytoplasm, suggesting that the threshold free calcium required to trigger calcium-stimulated calcium release might be pH dependent. The results of injection of pH-buffered calcium buffers support this conjecture: for a tenfold increase in hydrogen ion concentration, free calcium must also be raised tenfold to elicit the calcium transient. PMID:6411737

  20. On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage

    USGS Publications Warehouse

    Runkel, Robert L.

    2015-01-01

    Recent advances in fluorometry have led to increased use of rhodamine WT as a tracer in streams and rivers. In light of this increased use, a review of the dye's behavior in freshwater systems is presented. Studies in the groundwater literature indicate that rhodamine WT is transported nonconservatively, with sorption removing substantial amounts of tracer mass. Column studies document a two-step breakthrough curve in which two structural isomers are chromatographically separated. Although the potential for nonconservative transport is acknowledged in the surface water literature, many studies assume that sorptive losses will not affect the characterization of physical transport processes. A literature review and modeling analysis indicates that this assumption is valid for quantification of physical properties that are based on the bulk of the tracer mass (traveltime), and invalid for the characterization of processes represented by the tracer tail (transient storage attributable to hyporheic exchange). Rhodamine WT should be considered nonconservative in the hyporheic zone due to nonconservative behavior demonstrated for similar conditions in groundwater. As such, rhodamine WT should not be used as a quantitative tracer in hyporheic zone investigations, including the study of long flow paths and the development of models describing hyporheic zone processes. Rhodamine WT may be used to qualitatively characterize storage in large systems, where there are few practical alternatives. Qualitative investigations should rely on early portions of the tracer profile, making use of the temporal resolution afforded by in situ fluorometry, while discarding later parts of the tracer profile that are adversely affected by sorption.

  1. Novel Control Strategy for Multiple Run-of-the-River Hydro Power Plants to Provide Grid Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob

    Electricity generated by Hydropower Plants (HPPs) contributes a considerable portion of bulk electricity generation and delivers it with a low carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which includes solar and wind energy. The increasing penetration of wind and solar penetration leads to a lowered inertia in the grid and hence poses stability challenges. In recent years, breakthrough in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments in power grids. Multiple ROR HPPs if integrated with scalable, multi time-step energy storage so that the total output canmore » be controlled. Although, the size of a single energy storage is far smaller than that of a typical reservoir, cohesively managing multiple sets of energy storage distributed in different locations is proposed. The ratings of storages and multiple ROR HPPs approximately equals the rating of a large, conventional HPP. The challenges associated with the system architecture and operation are described. Energy storage technologies such as supercapacitors, flywheels, batteries etc. can function as a dispatchable synthetic reservoir with a scalable size of energy storage will be integrated. Supercapacitors, flywheels, and battery are chosen to provide fast, medium, and slow responses to support grid requirements. Various dynamic and transient power grid conditions are simulated and performances of integrated ROR HPPs with energy storage is provided. The end goal of this research is to investigate the inertial equivalence of a large, conventional HPP with a unique set of multiple ROR HPPs and optimally rated energy storage systems.« less

  2. Critical Role of Transient Activity of MT1-MMP for ECM Degradation in Invadopodia

    PubMed Central

    Watanabe, Ayako; Hosino, Daisuke; Koshikawa, Naohiko; Seiki, Motoharu; Suzuki, Takashi; Ichikawa, Kazuhisa

    2013-01-01

    Focal degradation of extracellular matrix (ECM) is the first step in the invasion of cancer cells. MT1-MMP is a potent membrane proteinase employed by aggressive cancer cells. In our previous study, we reported that MT1-MMP was preferentially located at membrane protrusions called invadopodia, where MT1-MMP underwent quick turnover. Our computer simulation and experiments showed that this quick turnover was essential for the degradation of ECM at invadopodia (Hoshino, D., et al., (2012) PLoS Comp. Biol., 8: e1002479). Here we report on characterization and analysis of the ECM-degrading activity of MT1-MMP, aiming at elucidating a possible reason for its repetitive insertion in the ECM degradation. First, in our computational model, we found a very narrow transient peak in the activity of MT1-MMP followed by steady state activity. This transient activity was due to the inhibition by TIMP-2, and the steady state activity of MT1-MMP decreased dramatically at higher TIMP-2 concentrations. Second, we evaluated the role of the narrow transient activity in the ECM degradation. When the transient activity was forcibly suppressed in computer simulations, the ECM degradation was heavily suppressed, indicating the essential role of this transient peak in the ECM degradation. Third, we compared continuous and pulsatile turnover of MT1-MMP in the ECM degradation at invadopodia. The pulsatile insertion showed basically consistent results with the continuous insertion in the ECM degradation, and the ECM degrading efficacy depended heavily on the transient activity of MT1-MMP in both models. Unexpectedly, however, low-frequency/high-concentration insertion of MT1-MMP was more effective in ECM degradation than high-frequency/low-concentration pulsatile insertion even if the time-averaged amount of inserted MT1-MMP was the same. The present analysis and characterization of ECM degradation by MT1-MMP together with our previous report indicate a dynamic nature of MT1-MMP at invadopodia and the importance of its transient peak in the degradation of the ECM. PMID:23737743

  3. Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones

    PubMed Central

    Corlew, Rebekah; Bosma, Martha M; Moody, William J

    2004-01-01

    Spontaneous [Ca2+]i transients were measured in the mouse neocortex from embryonic day 16 (E16) to postnatal day 6 (P6). On the day of birth (P0), cortical neurones generated widespread, highly synchronous [Ca2+]i transients over large areas. On average, 52% of neurones participated in these transients, and in 20% of slices, an average of 80% participated. These transients were blocked by TTX and nifedipine, indicating that they resulted from Ca2+ influx during electrical activity, and occurred at a mean frequency of 0.91 min−1. The occurrence of this activity was highly centred at P0: at E16 and P2 an average of only 15% and 24% of neurones, respectively, participated in synchronous transients, and they occurred at much lower frequencies at both E16 and P2 than at P0. The overall frequency of [Ca2+]i transients in individual cells did not change between E16 and P2, just the degree of their synchronicity. The onset of this spontaneous, synchronous activity correlated with a large increase in Na+ current density that occurred just before P0, and its cessation with a large decrease in resting resistance that occurred just after P2. This widespread, synchronous activity may serve a variety of functions in the neonatal nervous system. PMID:15297578

  4. Phorbol ester stimulates calcium sequestration in saponized human platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calciummore » sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.« less

  5. Using "StorAge Selection" functions and high resolution isotope data to unravel travel time distributions in headwater catchments

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Soulsby, Chris; Birkel, Christian; Tetzlaff, Doerthe; Botter, Gianluca; Rinaldo, Andrea

    2017-04-01

    We use high resolution tracer data from the Bruntland Burn catchment (UK) to test theoretical approaches that integrate catchment-scale flow and transport processes in a unified framework centered on selective age sampling by streamflow and evapotranspiration fluxes. Hydrologic transport is here described through StorAge Selection (SAS) functions, parametrized as simple power laws. By representing the way in which catchment storage generates outflows composed by water of different ages, the main mechanism regulating the tracer composition of runoff is clearly identified. The calibrated numerical model provides simulations that convincingly reproduce complex measured signals of daily deuterium content in stream waters during wet and dry periods. The results for the catchment under consideration are consistent with other recent studies indicating a tendency for natural catchments to preferentially release younger available water. The model allows estimating transient water age and its related uncertainty, as well as the total catchment storage. This study shows that power-law SAS functions prove a powerful tool to explain catchment-scale transport processes that also has potential in less intensively monitored sites.

  6. 41 CFR 101-28.203-1 - Government storage activity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Government storage... Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS SUPPLY AND PROCUREMENT 28-STORAGE AND DISTRIBUTION 28.2-Interagency Cross-Servicing in Storage Activities § 101-28.203-1 Government storage activity...

  7. The impact of hybrid energy storage on power quality, when high power pulsed DC loads are operated on a microgrid testbed

    NASA Astrophysics Data System (ADS)

    Kelley, Jay Paul

    As the Navy's demands for high power transient loads evolves, so too does the need for alternative energy sources to back-up the more traditional power generation. Such applications in need of support include electrical grid backup and directed energy weapon systems such as electromagnetic launchers, laser systems, and high power microwave generators, among others. Among the alternative generation sources receiving considerable attention are energy storage devices such as rechargeable electrochemical batteries and capacitors. In such applications as those mentioned above, these energy storage devices offer the ability to serve a dual role as both a power source to the various loads as well high power loads themselves to the continual generation when the high power transient loads are in periods of downtime. With the recent developments in electrochemical energy storage, lithium-ion batteries (LIBs) seem like the obvious choice, but previous research has shown that the elevated rates of charging can be detrimental to both the cycle life and the operational life span of the device. In order to preserve the batteries, their charge rate must be limited. One proposed method to accomplish the dual role task mentioned above, while preserving the life of the batteries, is by combining high energy density LIBs with high power density electric double layer capacitors (EDLCs) or lithium-ion capacitors (LICs) using controllable power electronics to adjust the flow of power to and from each device. Such a configuration is typically referred to as hybrid energy storage module (HESM). While shipboard generators start up, the combined high energy density and high power density of the HESM provides the capability to source critical loads for an extended period of time at the high rates they demand. Once the generator is operationally efficient, the HESM can act as a high energy reservoir to harvest the energy from the generator while the loads are in short periods of inactivity. This enables the generator to maintain its operation at levels of high efficiency thereby increasing the power quality of the AC bus. The work discussed here is aimed at evaluating how the use of energy storage impacts the power quality on MicroGrid's AC bus when high rate DC and AC loads are sourced simultaneously. Also HESM has been developed and evaluated as a mean to optimizing both the power and energy density of the energy storage installed.

  8. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.

  9. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida.

    PubMed

    Prieto, Auxiliadora; Escapa, Isabel F; Martínez, Virginia; Dinjaski, Nina; Herencias, Cristina; de la Peña, Fernando; Tarazona, Natalia; Revelles, Olga

    2016-02-01

    Polyhydroxyalkanoate (PHA) metabolism has been traditionally considered as a futile cycle involved in carbon and energy storage. The use of cutting-edge technologies linked to systems biology has improved our understanding of the interaction between bacterial physiology, PHA metabolism and other cell functions in model bacteria such as Pseudomonas putida KT2440. PHA granules or carbonosomes are supramolecular complexes of biopolyester and proteins that are essential for granule segregation during cell division, and for the functioning of the PHA metabolic route as a continuous cycle. The simultaneous activities of PHA synthase and depolymerase ensure the carbon flow to the transient demand for metabolic intermediates to balance the storage and use of carbon and energy. PHA cycle also determines the number and size of bacterial cells. The importance of PHAs as nutrients for members of the microbial community different to those that produce them is illustrated here via examples of bacterial predators such as Bdellovibrio bacteriovorus that prey on PHA producers and produces specific extra-cellular depolymerases. PHA hydrolysis confers Bdellovibrio ecological advantages in terms of motility and predation efficiency, demonstrating the importance of PHA producers predation in population dynamics. Metabolic modulation strategies for broadening the portfolio of PHAs are summarized and their properties are compiled. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Improving large-scale groundwater models by considering fossil gradients

    NASA Astrophysics Data System (ADS)

    Schulz, Stephan; Walther, Marc; Michelsen, Nils; Rausch, Randolf; Dirks, Heiko; Al-Saud, Mohammed; Merz, Ralf; Kolditz, Olaf; Schüth, Christoph

    2017-05-01

    Due to limited availability of surface water, many arid to semi-arid countries rely on their groundwater resources. Despite the quasi-absence of present day replenishment, some of these groundwater bodies contain large amounts of water, which was recharged during pluvial periods of the Late Pleistocene to Early Holocene. These mostly fossil, non-renewable resources require different management schemes compared to those which are usually applied in renewable systems. Fossil groundwater is a finite resource and its withdrawal implies mining of aquifer storage reserves. Although they receive almost no recharge, some of them show notable hydraulic gradients and a flow towards their discharge areas, even without pumping. As a result, these systems have more discharge than recharge and hence are not in steady state, which makes their modelling, in particular the calibration, very challenging. In this study, we introduce a new calibration approach, composed of four steps: (i) estimating the fossil discharge component, (ii) determining the origin of fossil discharge, (iii) fitting the hydraulic conductivity with a pseudo steady-state model, and (iv) fitting the storage capacity with a transient model by reconstructing head drawdown induced by pumping activities. Finally, we test the relevance of our approach and evaluated the effect of considering or ignoring fossil gradients on aquifer parameterization for the Upper Mega Aquifer (UMA) on the Arabian Peninsula.

  11. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Bo; Yang Zhenhua; Shangguan Lei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after,more » or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.« less

  12. Transient conduction-radiation analysis of an absolute active cavity radiometer using finite elements

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Kowsary, F.; Tira, N.; Gardiner, B. D.

    1987-01-01

    A NASA-developed finite element-based model of a generic active cavity radiometer (ACR) has been developed in order to study the dependence on operating temperature of the closed-loop and open-loop transient response of the instrument. Transient conduction within the sensing element is explored, and the transient temperature distribution resulting from the application of a time-varying radiative boundary condition is calculated. The results verify the prediction that operation of an ACR at cryogenic temperatures results in large gains in frequency response.

  13. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    PubMed

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  14. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering.

    PubMed

    Aluri, Sirisha; Büttner, Michael

    2007-02-13

    Sugar compartmentation into vacuoles of higher plants is a very important physiological process, providing extra space for transient and long-term sugar storage and contributing to the osmoregulation of cell turgor and shape. Despite the long-standing knowledge of this subcellular sugar partitioning, the proteins responsible for these transport steps have remained unknown. We have identified a gene family in Arabidopsis consisting of three members homologous to known sugar transporters. One member of this family, Arabidopsis thaliana vacuolar glucose transporter 1 (AtVGT1), was localized to the vacuolar membrane. Moreover, we provide evidence for transport activity of a tonoplast sugar transporter based on its functional expression in bakers' yeast and uptake studies in isolated yeast vacuoles. Analyses of Atvgt1 mutant lines indicate an important function of this vacuolar glucose transporter during developmental processes like seed germination and flowering.

  15. SANSMIC design document.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Paula D.; Rudeen, David Keith

    2015-07-01

    The United States Strategic Petroleum Reserve (SPR) maintains an underground storage system consisting of caverns that were leached or solution mined in four salt domes located near the Gulf of Mexico in Texas and Louisiana. The SPR comprises more than 60 active caverns containing approximately 700 million barrels of crude oil. Sandia National Labo- ratories (SNL) is the geotechnical advisor to the SPR. As the most pressing need at the inception of the SPR was to create and fill storage volume with oil, the decision was made to leach the caverns and fill them simultaneously (leach-fill). Therefore, A.J. Russo developedmore » SANSMIC in the early 1980s which allows for a transient oil-brine interface (OBI) making it possible to model leach-fill and withdrawal operations. As the majority of caverns are currently filled to storage capacity, the primary uses of SANSMIC at this time are related to the effects of small and large withdrawals, expansion of existing caverns, and projecting future pillar to diameter ratios. SANSMIC was identified by SNL as a priority candidate for qualification. This report continues the quality assurance (QA) process by documenting the "as built" mathematical and numerical models that comprise this document. The pro- gram flow is outlined and the models are discussed in detail. Code features that were added later or were not documented previously have been expounded. No changes in the code's physics have occurred since the original documentation (Russo, 1981, 1983) although recent experiments may yield improvements to the temperature and plume methods in the future.« less

  16. Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.

    2006-06-01

    Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.

  17. Automated Design of a High-Velocity Channel

    DTIC Science & Technology

    2006-05-01

    using Newton’s method. 2.2.2 Groundwater Applications Optimization methods are also very useful for solving groundwater problems. Townley et al... Townley 85] apply present computational algorithms to steady and transient models for groundwater °ow. The aquifer storage coe±cients, transmissivities...Reliability Analysis", Water Resources Research, Vol. 28, No. 12, December 1992, pp. 3269-3280. [ Townley 85] Townley , L. R. and Wilson, J. L

  18. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods

    USGS Publications Warehouse

    Cox, T.J.; Runkel, R.L.

    2008-01-01

    Past applications of one-dimensional advection, dispersion, and transient storage zone models have almost exclusively relied on a central differencing, Eulerian numerical approximation to the nonconservative form of the fundamental equation. However, there are scenarios where this approach generates unacceptable error. A new numerical scheme for this type of modeling is presented here that is based on tracking Lagrangian control volumes across a fixed (Eulerian) grid. Numerical tests are used to provide a direct comparison of the new scheme versus nonconservative Eulerian numerical methods, in terms of both accuracy and mass conservation. Key characteristics of systems for which the Lagrangian scheme performs better than the Eulerian scheme include: nonuniform flow fields, steep gradient plume fronts, and pulse and steady point source loadings in advection-dominated systems. A new analytical derivation is presented that provides insight into the loss of mass conservation in the nonconservative Eulerian scheme. This derivation shows that loss of mass conservation in the vicinity of spatial flow changes is directly proportional to the lateral inflow rate and the change in stream concentration due to the inflow. While the nonconservative Eulerian scheme has clearly worked well for past published applications, it is important for users to be aware of the scheme's limitations. ?? 2008 ASCE.

  19. Thermal analysis of continuous and patterned multilayer films in the presence of a nanoscale hot spot

    NASA Astrophysics Data System (ADS)

    Juang, Jia-Yang; Zheng, Jinglin

    2016-10-01

    Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal barriers at the material layer interfaces crucially impact the temperature field hence play a key role in determining the hot spot geometry, transient response and power consumption. With a representative generic media model, we further explored the possibility of optimizing thermal performances by designing layers of heat sink and thermal barrier. The modeling approach demonstrates an effective way to characterize thermal behaviors of micro and nano-scale electronic devices with multilayer thin film structures. The insights into the thermal transport scheme will be critical for design and operations of such electronic devices.

  20. Optimization of Groundwater Abstraction in the Beijing Plain using a Fuzzy Pattern Recognition Approach

    NASA Astrophysics Data System (ADS)

    Guo, H.; Li, W.; Wang, L.; Cheng, G.; Zhu, J.; Wang, Y.; Chen, Y.

    2016-12-01

    Groundwater supply accounts for two-thirds of the water supply of the Beijing municipality, and groundwater resources play a fundamental role in assuring the security and sustainability of the regional economy in Beijing. In this report, ten groundwater abstraction scenarios were designed based on the water demand and the capacity of water supply in the Beijing plain, and the impacts of these scenarios on the groundwater storage and level were illustrated with a transient 3D groundwater model constructed with MODFLOW. In addition, a set of evaluation criteria was developed taking into account of a number of factors such as the amount of groundwater exploitation, the evaporation of unconfined groundwater, river outflow, regional average groundwater depth, drawdowns in depression cones and the ratio of storage to the total recharge. Based on this set of criteria, the ten proposed groundwater abstraction scenarios were compared using a multi-criteria fuzzy pattern recognition model, which is suitable for solving large-scale, transient groundwater management problems and also proven to be a useful scientific analysis tool to identify the optimal groundwater resource utilization scenario. The evaluation results show that the groundwater resources can be rationally and optimally used when multiple measures such as control of groundwater abstraction and increase of recharge are jointly implemented.

  1. Photovoltaic effect and photopolarization in Pb [(Mg1/3Nb2/3) 0.68Ti0.32] O3 crystal

    NASA Astrophysics Data System (ADS)

    Makhort, A. S.; Chevrier, F.; Kundys, D.; Doudin, B.; Kundys, B.

    2018-01-01

    Ferroelectric materials are an alternative to semiconductor-based photovoltaics and offer the advantage of above bandgap photovoltage generation. However, there are few known compounds, and photovoltaic efficiencies remain low. Here, we report the discovery of a photovoltaic effect in undoped lead magnesium niobate-lead titanate crystal and a significant improvement in the photovoltaic response under suitable electric fields and temperatures. The photovoltaic effect is maximum near the electric-field-driven ferroelectric dipole reorientation, and increases threefold near the Curie temperature (Tc). Moreover, at ferroelectric saturation, the photovoltaic response exhibits clear remanent and transient effects. The transient-remanent combinations together with electric and thermal tuning possibilities indicate photoferroelectric crystals as emerging elements for photovoltaics and optoelectronics, relevant to all-optical information storage and beyond.

  2. Storage and executive processes in the frontal lobes.

    PubMed

    Smith, E E; Jonides, J

    1999-03-12

    The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.

  3. A Theory of Control for a Class of Electronic Power Processing Systems: Energy-Storage DC-To-DC Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III

    1977-01-01

    An analytically derived approach to the control of energy-storage dc-to-dc converters, which enables improved system performance and an extensive understanding of the manner in which this improved performance is accomplished, is presented. The control approach is derived from a state-plane analysis of dc-to-dc converter power stages which enables a graphical visualization of the movement of the system state during both steady state and transient operation. This graphical representation of the behavior of dc-to-dc converter systems yields considerable qualitative insight into the cause and effect relationships which exist between various commonly used converter control functions and the system performance which results from them.

  4. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Lurio, Charles A.

    1992-01-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollary tests showed that the MgF2 supercooled by 10-30 K and 50-90 K.

  5. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    PubMed

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  6. Materials and processing approaches for foundry-compatible transient electronics

    PubMed Central

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-01-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries. PMID:28652373

  7. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory.

    PubMed

    Zhao, Jun Hui; Thomson, Douglas J; Pilapil, Matt; Pillai, Rajesh G; Rahman, G M Aminur; Freund, Michael S

    2010-04-02

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy(0)DBS(-)Li(+) (PPy: polypyrrole; DBS(-): dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  8. Transient Performance of a Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Onol, Aykut; Yesilyurt, Serhat

    2016-11-01

    A coupled CFD/rotor dynamics modeling approach is presented for the analysis of realistic transient behavior of a height-normalized, three-straight-bladed VAWT subject to inertial effects of the rotor and generator load which is manipulated by a feedback control under standardized wind gusts. The model employs the k- ɛ turbulence model to approximate unsteady Reynolds-averaged Navier-Stokes equations and is validated with data from field measurements. As distinct from related studies, here, the angular velocity is calculated from the rotor's equation of motion; thus, the dynamic response of the rotor is taken into account. Results include the following: First, the rotor's inertia filters large amplitude oscillations in the wind torque owing to the first-order dynamics. Second, the generator and wind torques differ especially during wind transients subject to the conservation of angular momentum of the rotor. Third, oscillations of the power coefficient exceed the Betz limit temporarily due to the energy storage in the rotor, which acts as a temporary buffer that stores the kinetic energy like a flywheel in short durations. Last, average of transient power coefficients peaks at a smaller tip-speed ratio for wind gusts than steady winds. This work was supported by the Sabanci University Internal Research Grant Program (SU-IRG-985).

  9. Transient Ligand Docking Sites in Cerebratulus lacteus Mini-Hemoglobin

    PubMed Central

    Deng, Pengchi; Nienhaus, Karin; Palladino, Pasquale; Olson, John S.; Blouin, George; Moens, Luc; Dewilde, Sylvia; Geuens, Eva; Nienhaus, G. Ulrich

    2007-01-01

    The monomeric hemoglobin of the nemertean worm Cerebratulus lacteus functions as an oxygen storage protein to maintain neural activity under hypoxic conditions. It shares a large, apolar matrix tunnel with other small hemoglobins, which has been implicated as a potential ligand migration pathway. Here we explore ligand migration and binding within the distal heme pocket, to which the tunnel provides access to ligands from the outside. FTIR/TDS experiments performed at cryogenic temperatures reveal the presence of three transient ligand docking sites within the distal pocket, the primary docking site B on top of pyrrole C and secondary sites C and D. Site C is assigned to a cavity adjacent to the distal portion of the heme pocket, surrounded by the B and E helices. It has an opening to the apolar tunnel and is expected to be on the pathway for ligand entry and exit, whereas site D, circumscribed by TyrB10, GlnE7, and the CD corner, most likely is located on a side pathway of ligand migration. Flash photolysis experiments at ambient temperatures indicate that the rate-limiting step for ligand binding to CerHb is migration through the apolar channel to site C. Movement from C to B and iron-ligand bond formation involve low energy barriers and thus are very rapid processes in the wt protein. PMID:17531406

  10. Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism*

    PubMed Central

    Heier, Christoph; Taschler, Ulrike; Radulovic, Maja; Aschauer, Philip; Eichmann, Thomas O.; Grond, Susanne; Wolinski, Heimo; Oberer, Monika; Zechner, Rudolf; Kohlwein, Sepp D.; Zimmermann, Robert

    2016-01-01

    Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites. PMID:27036938

  11. Iron binding to human heavy-chain ferritin.

    PubMed

    Pozzi, Cecilia; Di Pisa, Flavio; Bernacchioni, Caterina; Ciambellotti, Silvia; Turano, Paola; Mangani, Stefano

    2015-09-01

    Maxi-ferritins are ubiquitous iron-storage proteins with a common cage architecture made up of 24 identical subunits of five α-helices that drive iron biomineralization through catalytic iron(II) oxidation occurring at oxidoreductase sites (OS). Structures of iron-bound human H ferritin were solved at high resolution by freezing ferritin crystals at different time intervals after exposure to a ferrous salt. Multiple binding sites were identified that define the iron path from the entry ion channels to the oxidoreductase sites. Similar data are available for another vertebrate ferritin: the M protein from Rana catesbeiana. A comparative analysis of the iron sites in the two proteins identifies new reaction intermediates and underlines clear differences in the pattern of ligands that define the additional iron sites that precede the oxidoreductase binding sites along this path. Stopped-flow kinetics assays revealed that human H ferritin has different levels of activity compared with its R. catesbeiana counterpart. The role of the different pattern of transient iron-binding sites in the OS is discussed with respect to the observed differences in activity across the species.

  12. Lack of anodic capacitance causes power overshoot in microbial fuel cells.

    PubMed

    Peng, Xinhong; Yu, Han; Yu, Hongbing; Wang, Xin

    2013-06-01

    Power overshoot commonly makes the performance evaluation of microbial fuel cells (MFCs) inaccurate. Here, three types of carbon with different capacitance (ultracapacitor activated carbon (UAC), plain activated carbon (PAC) and carbon black (CB)) rolled on stainless steel mesh (SSM) as anodes to investigate the relationship between overshoot and anodic capacitance. It was not observed in all cycles of UAC-MFCs (from Cycle 2 to 4) due to the largest abiotic capacitance (Cm(abiotic)) of 2.1F/cm(2), while this phenomenon was eliminated in PAC-MFCs (Cm(abiotic)=1.6 F/cm(2)) from Cycle 3 and in CB-MFCs (Cm(abiotic)=0.5F/cm(2)) from Cycle 4, indicated that the Cm(abiotic) of the anode stored charges and functioned as electron shuttle to overcome the power overshoot. With bacterial colonization, the transient charge storage in biofilm resulted in a 0.1-0.4F/cm(2) increase in total capacitance for anodes, which was the possible reason for the elimination of power overshoot in PAC/CB-MFCs after multi cycle acclimation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.

    PubMed

    Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna

    2016-04-27

    Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture.

  14. Global thunderstorm activity estimation based on number of transients in ELF-band

    NASA Astrophysics Data System (ADS)

    Ondraskova, Adriena; Sevcik, Sebastian

    2017-04-01

    Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance. Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - October 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Criteria for the identification of the burst are chosen on the basis of the transient amplitudes and their morphological features. Monthly mean daily variations in number of transients showed that African focus dominates at 14 - 16 h UT and it is more active in comparison with Asian source, which dominates at 5 - 8 h UT in dependence on winter or summer month. American source had surprisingly slight response. Meteorological observations in South America aiming to determine lightning hotspots on the Earth indicate that flash rate in this region is greatest during nocturnal 0 h - 3 h local standard time. This fact may be interpreted that Asian and South American sources contribute together in the same UT. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients could be a suitable criterion for the quantification of global lightning activity.

  15. Transient receptor potential channel superfamily: Role in lower urinary tract function.

    PubMed

    Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu

    2015-11-01

    Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.

  16. Transient Structures and Possible Limits of Data Recording in Phase-Change Materials.

    PubMed

    Hu, Jianbo; Vanacore, Giovanni M; Yang, Zhe; Miao, Xiangshui; Zewail, Ahmed H

    2015-07-28

    Phase-change materials (PCMs) represent the leading candidates for universal data storage devices, which exploit the large difference in the physical properties of their transitional lattice structures. On a nanoscale, it is fundamental to determine their performance, which is ultimately controlled by the speed limit of transformation among the different structures involved. Here, we report observation with atomic-scale resolution of transient structures of nanofilms of crystalline germanium telluride, a prototypical PCM, using ultrafast electron crystallography. A nonthermal transformation from the initial rhombohedral phase to the cubic structure was found to occur in 12 ps. On a much longer time scale, hundreds of picoseconds, equilibrium heating of the nanofilm is reached, driving the system toward amorphization, provided that high excitation energy is invoked. These results elucidate the elementary steps defining the structural pathway in the transformation of crystalline-to-amorphous phase transitions and describe the essential atomic motions involved when driven by an ultrafast excitation. The establishment of the time scales of the different transient structures, as reported here, permits determination of the possible limit of performance, which is crucial for high-speed recording applications of PCMs.

  17. Re-evaluating the relationships among filtering activity, unnecessary storage, and visual working memory capacity.

    PubMed

    Emrich, Stephen M; Busseri, Michael A

    2015-09-01

    The amount of task-irrelevant information encoded in visual working memory (VWM), referred to as unnecessary storage, has been proposed as a potential mechanism underlying individual differences in VWM capacity. In addition, a number of studies have provided evidence for additional activity that initiates the filtering process originating in the frontal cortex and basal ganglia, and is therefore a crucial step in the link between unnecessary storage and VWM capacity. Here, we re-examine data from two prominent studies that identified unnecessary storage activity as a predictor of VWM capacity by directly testing the implied path model linking filtering-related activity, unnecessary storage, and VWM capacity. Across both studies, we found that unnecessary storage was not a significant predictor of individual differences in VWM capacity once activity associated with filtering was accounted for; instead, activity associated with filtering better explained variation in VWM capacity. These findings suggest that unnecessary storage is not a limiting factor in VWM performance, whereas neural activity associated with filtering may play a more central role in determining VWM performance that goes beyond preventing unnecessary storage.

  18. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment.

    PubMed

    Richards, John R; Lapoint, Jeff M; Burillo-Putze, Guillermo

    2018-01-01

    Cannabinoid hyperemesis syndrome is a clinical disorder that has become more prevalent with increasing use of cannabis and synthetic cannabinoids, and which is difficult to treat. Standard antiemetics commonly fail to alleviate the severe nausea and vomiting characteristic of the syndrome. Curiously, cannabinoid hyperemesis syndrome patients often report dramatic relief of symptoms with hot showers and baths, and topical capsaicin. In this review, we detail the pharmacokinetics and pharmacodynamics of capsaicin and explore possible mechanisms for its beneficial effect, including activation of transient receptor potential vanilloid 1 and neurohumoral regulation. Putative mechanisms responsible for the benefit of hot water hydrotherapy are also investigated. An extensive search of PubMed, OpenGrey, and Google Scholar from inception to April 2017 was performed to identify known and theoretical thermoregulatory mechanisms associated with the endocannabinoid system. The searches resulted in 2417 articles. These articles were screened for relevant mechanisms behind capsaicin and heat activation having potential antiemetic effects. References from the selected articles were also hand-searched. A total of 137 articles were considered relevant and included. Capsaicin: Topical capsaicin is primarily used for treatment of neuropathic pain, but it has also been used successfully in some 20 cases of cannabinoid hyperemesis syndrome. The pharmacokinetics and pharmacodynamics of capsaicin as a transient receptor potential vanilloid 1 agonist may explain this effect. Topical capsaicin has a longer half-life than oral administration, thus its potential duration of benefit is longer. Capsaicin and transient receptor potential vanilloid 1: Topical capsaicin binds and activates the transient receptor potential vanilloid 1 receptor, triggering influx of calcium and sodium, as well as release of inflammatory neuropeptides leading to transient burning, stinging, and itching. This elicits a novel type of desensitization analgesia. Transient receptor potential vanilloid 1 receptors also respond to noxious stimuli, such as heat (>43 °C), acids (pH <6), pain, change in osmolarity, and endovanilloids. The action of topical capsaicin may mimic the effect of heat-activation of transient receptor potential vanilloid 1. Endocannabinoid system and transient receptor potential vanilloid 1: Cannabinoid hyperemesis syndrome may result from a derangement in the endocannabinoid system secondary to chronic exogenous stimulation. The relief of cannabinoid hyperemesis syndrome symptoms from heat and use of transient receptor potential vanilloid 1 agonists suggests a complex interrelation between the endocannabinoid system and transient receptor potential vanilloid 1. Temperature regulation: Hot water hydrotherapy is a mainstay of self-treatment for cannabinoid hyperemesis syndrome patients. This may be explained by heat-induced transient receptor potential vanilloid 1 activation. "Sensocrine" antiemetic effects: Transient receptor potential vanilloid 1 activation by heat or capsaicin results in modulation of tachykinins, somatostatin, pituitary adenylate-cyclase activating polypeptide, and calcitonin gene-related peptide as well as histaminergic, cholinergic, and serotonergic transmission. These downstream effects represent further possible explanations for transient receptor potential vanilloid 1-associated antiemesis. These complex interactions between the endocannabinoid systems and transient receptor potential vanilloid 1, in the setting of cannabinoid receptor desensitization, may yield important clues into the pathophysiology and treatment of cannabinoid hyperemesis syndrome. This knowledge can provide clinicians caring for these patients with additional treatment options that may reduce length of stay, avoid unnecessary imaging and laboratory testing, and decrease the use of potentially harmful medications such as opioids.

  19. Relationship between gamma-glutamyl transpeptidase activity and garlic greening, as controlled by temperature.

    PubMed

    Li, Lei; Hu, Dan; Jiang, Ying; Chen, Fang; Hu, Xiaosong; Zhao, Guanghua

    2008-02-13

    It was established that storage at low temperature (less than 10 degrees C) was required for garlic greening occurring either during processing or in the course of "Laba" garlic preparation while storage at high temperature (higher than 20 degrees C) inhibited its occurrence. However, the reason for this observation is unclear. To obtain insights into a tie connected between storage temperature and garlic greening, it was detected if the gamma-glutamyl transpeptidase (GGT) activity correlated with garlic greening because the activity of this enzyme is very sensitive to storage temperature. Results showed that garlic puree (which was prepared from fresh garlic) turned green upon addition of GGT but the color of garlic puree remained unchanged when either water or heat-treated GGT (which has no activity due to heat treatment) was used, a result giving a positive answer to the above proposal. Subsequently, to further clarify the relationship between the GGT activity and garlic greening, the GGT activity, the degree of garlic greening, and the concentration of total thiosulfinates in garlic bulbs were determined respectively after the garlic bulbs had been stored at 4 degrees C for up to 59 days followed by storage at 35 degrees C for up to 22 days. It was found that cold storage facilitated the GGT activity whereas warm storage inhibited the activity of this enzyme, just like the effect of storage temperature on greening, indicating that the increase of GGT activity could be a direct factor resulting in garlic greening. Consistent with this conclusion, the concentration of total thiosulfinates (the color developers) in garlic purees likewise exhibited a reversible change by moving garlic bulbs from one low storage temperature to a higher one; namely, it increased with increasing storage time during storage at 4 degrees C while decreasing as storage time increased during storage at 35 degrees C. The present study provided direct evidence that the GGT is involved in garlic greening.

  20. Number of transients/Q-bursts in ELF-band as possible criterion for global thunderstorm activity estimation.

    NASA Astrophysics Data System (ADS)

    Ondraskova, Adriena; Sevcik, Sebastian

    2015-04-01

    Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance (SOD). Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - December 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Limits (min-max) for the width of primary spike, time difference between primary and secondary spike and the amplitude of the spike were chosen as criteria for the identification of the burst. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients can be a suitable criterion for the quantification of global lightning activity.

  1. Distinct Neural Circuits Support Transient and Sustained Processes in Prospective Memory and Working Memory

    PubMed Central

    West, Robert; Braver, Todd

    2009-01-01

    Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581

  2. Transient photoresponse in amorphous In-Ga-Zn-O thin films under stretched exponential analysis

    NASA Astrophysics Data System (ADS)

    Luo, Jiajun; Adler, Alexander U.; Mason, Thomas O.; Bruce Buchholz, D.; Chang, R. P. H.; Grayson, M.

    2013-04-01

    We investigated transient photoresponse and Hall effect in amorphous In-Ga-Zn-O thin films and observed a stretched exponential response which allows characterization of the activation energy spectrum with only three fit parameters. Measurements of as-grown films and 350 K annealed films were conducted at room temperature by recording conductivity, carrier density, and mobility over day-long time scales, both under illumination and in the dark. Hall measurements verify approximately constant mobility, even as the photoinduced carrier density changes by orders of magnitude. The transient photoconductivity data fit well to a stretched exponential during both illumination and dark relaxation, but with slower response in the dark. The inverse Laplace transforms of these stretched exponentials yield the density of activation energies responsible for transient photoconductivity. An empirical equation is introduced, which determines the linewidth of the activation energy band from the stretched exponential parameter β. Dry annealing at 350 K is observed to slow the transient photoresponse.

  3. Iron Limitation and the Role of Siderophores in Marine Synechococcus

    DTIC Science & Technology

    2009-06-01

    000 per cell) in Vibrio cholerae and E. coli and may buffer Fe(II). Fe storage is important cellular strategy for using transient increases in Fe and...DS40M6 Aquachelins Halomonas aquamarina Amphibactins Vibrio spp. Ochrobactins Ochrobacter sp. SP18 Synechobactins Synechococcus PCC7002 O NH O NH...Alterobactin A Pseudoalteromonas luteoviolacea Alterobactin B P. luteoviolacea Aerobactin Vibrio sp. strain DS40M5 Desferrioxamine G Vibrio sp

  4. Transient human auditory cortex activation during volitional attention shifting

    PubMed Central

    Uhlig, Christian Harm; Gutschalk, Alexander

    2017-01-01

    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues. PMID:28273110

  5. Transient Cognitive Dynamics, Metastability, and Decision Making

    PubMed Central

    Rabinovich, Mikhail I.; Huerta, Ramón; Varona, Pablo; Afraimovich, Valentin S.

    2008-01-01

    The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain. PMID:18452000

  6. Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration

    PubMed Central

    Drumm, Bernard T.; Hennig, Grant W.; Battersby, Matthew J.; Sung, Tae Sik

    2017-01-01

    Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl− channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thus, mechanisms of Ca2+ regulation in ICC are fundamental to the motor patterns of the bowel. Here, we characterize the nature of Ca2+ transients in ICC-MY within intact muscles, using mice expressing a genetically encoded Ca2+ sensor, GCaMP3, in ICC. Ca2+ transients in ICC-MY display a complex firing pattern caused by localized Ca2+ release events arising from multiple sites in cell somata and processes. Ca2+ transients are clustered within the time course of slow waves but fire asynchronously during these clusters. The durations of Ca2+ transient clusters (CTCs) correspond to slow wave durations (plateau phase). Simultaneous imaging and intracellular electrical recordings revealed that the upstroke depolarization of slow waves precedes clusters of Ca2+ transients. Summation of CTCs results in relatively uniform Ca2+ responses from one slow wave to another. These Ca2+ transients are caused by Ca2+ release from intracellular stores and depend on ryanodine receptors as well as amplification from IP3 receptors. Reduced extracellular Ca2+ concentrations and T-type Ca2+ channel blockers decreased the number of firing sites and firing probability of Ca2+ transients. In summary, the fundamental electrical events of small intestinal muscles generated by ICC-MY depend on asynchronous firing of Ca2+ transients from multiple intracellular release sites. These events are organized into clusters by Ca2+ influx through T-type Ca2+ channels to sustain activation of ANO1 channels and generate the plateau phase of slow waves. PMID:28592421

  7. A method for classification of transient events in EEG recordings: application to epilepsy diagnosis.

    PubMed

    Tzallas, A T; Karvelis, P S; Katsis, C D; Fotiadis, D I; Giannopoulos, S; Konitsiotis, S

    2006-01-01

    The aim of the paper is to analyze transient events in inter-ictal EEG recordings, and classify epileptic activity into focal or generalized epilepsy using an automated method. A two-stage approach is proposed. In the first stage the observed transient events of a single channel are classified into four categories: epileptic spike (ES), muscle activity (EMG), eye blinking activity (EOG), and sharp alpha activity (SAA). The process is based on an artificial neural network. Different artificial neural network architectures have been tried and the network having the lowest error has been selected using the hold out approach. In the second stage a knowledge-based system is used to produce diagnosis for focal or generalized epileptic activity. The classification of transient events reported high overall accuracy (84.48%), while the knowledge-based system for epilepsy diagnosis correctly classified nine out of ten cases. The proposed method is advantageous since it effectively detects and classifies the undesirable activity into appropriate categories and produces a final outcome related to the existence of epilepsy.

  8. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens

    PubMed Central

    2017-01-01

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met5]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake. SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study demonstrates that spontaneous dopamine release is (1) dependent of the activation of nicotinic receptors, (2) independent on the spontaneous activity of cholinergic interneurons, and (3) that cocaine increased the detection of dopamine transients by prolonging the presence and increasing the diffusion of dopamine in the extracellular space. The release of acetylcholine is therefore responsible for spontaneous dopamine transients, and cocaine augments dopamine tone without altering activity of cholinergic interneurons. PMID:28115487

  9. Study of the role of epididymal alpha-glucosidase in the fertility of male rats by the administration of the enzyme inhibitor castanospermine.

    PubMed

    Yeung, C H; Cooper, T G

    1994-11-01

    The activity of epididymal alpha-glucosidase in adult rats was rapidly suppressed to histochemically undetectable levels within 2 days by the continuous release of the enzyme inhibitor castanospermine via a peritoneal osmotic pump at a rate of 100-200 nmol h-1. It was established that mating activities overnight depleted 72% of the spermatozoa in the distal cauda, which was replenished in 2 days, and that fertility began to decline 3 weeks after efferent duct ligation. Male rats of proven mating proficiency and fertility were treated with castanospermine, or buffered saline as control, for up to 30 days and enzyme inhibition was confirmed at the end of treatment by histochemistry. Fertility was normal at the first mating test on day 7, significantly decreased at the second mating on day 9, but recovered in a stepwise manner at subsequent matings on days 12 and 14. Delaying the third mating until day 25 did not sustain the transient subfertility. However, prolonging sperm storage in the distal cauda epididymides and preventing replenishment with freshly matured spermatozoa, by efferent duct ligation for 14 days performed on day 15 during castanospermine administration, caused a decrease in fertility and a change in the kinematics of epididymal spermatozoa of the castanospermine-treated group. In control rats, binding of epididymal spermatozoa to Vicia faba, a lectin specific for glucose and glucosamine, and mannose and mannosamine residues, decreased from the proximal caput to the distal corpus coincident with the increase in alpha-glucosidase activity on the epithelial brush border. Lectin binding then increased in the cauda where enzyme activity was absent. However, castanospermine treatment did not significantly alter this binding profile. The findings suggest that epididymal alpha-glucosidase does not play a crucial role in the development of sperm fertilizing capacity, but may be involved in the preparation of spermatozoa for storage.

  10. Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model

    NASA Astrophysics Data System (ADS)

    Manderla, M.; Kiniger, K.; Koutnik, J.

    2014-03-01

    Water hammer phenomena are important issues for high head hydro power plants. Especially, if several reversible pump-turbines are connected to the same waterways there may be strong interactions between the hydraulic machines. The prediction and coverage of all relevant load cases is challenging and difficult using classical simulation models. On the basis of a recent pump-storage project, dynamic measurements motivate an improved modeling approach making use of the Thoma number dependency of the actual turbine behaviour. The proposed approach is validated for several transient scenarios and turns out to increase correlation between measurement and simulation results significantly. By applying a fully automated simulation procedure broad operating ranges can be covered which provides a consistent insight into critical load case scenarios. This finally allows the optimization of the closing strategy and hence the overall power plant performance.

  11. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    PubMed

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  12. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  13. Seasonal water storage, stress modulation, and California seismicity.

    PubMed

    Johnson, Christopher W; Fu, Yuning; Bürgmann, Roland

    2017-06-16

    Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, water storage deforms the crust as snow and water accumulates during the wet winter months. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. The seasonal loading analysis reveals earthquakes occurring more frequently during stress conditions that favor earthquake rupture. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles. Copyright © 2017, American Association for the Advancement of Science.

  14. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lurio, C.A.

    1992-10-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollarymore » tests showed that the MgF2 supercooled by 10-30 K and 50-90 K. 24 refs.« less

  15. Methamphetamine-induced neurotoxicity disrupts pharmacologically evoked dopamine transients in the dorsomedial and dorsolateral striatum.

    PubMed

    Robinson, John D; Howard, Christopher D; Pastuzyn, Elissa D; Byers, Diane L; Keefe, Kristen A; Garris, Paul A

    2014-08-01

    Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.

  16. METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS PHARMACOLOGICALLY EVOKED DOPAMINE TRANSIENTS IN THE DORSOMEDIAL AND DORSOLATERAL STRIATUM

    PubMed Central

    Robinson, John D.; Howard, Christopher D.; Pastuzyn, Elissa D.; Byers, Diane L.; Keefe, Kristen A.; Garris, Paul A.

    2014-01-01

    Phasic dopamine (DA) signaling, during which burst firing by dopamine neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity. PMID:24562969

  17. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism.

    PubMed

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M; Salton, Stephen R

    2015-07-15

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a prominent role in cognitive function, and rapidly and robustly induces expression of VGF, a secreted neuronal peptide precursor. VGF knock-out mice have impaired fear and spatial memory. Our study shows that VGF and VGF-derived peptide TLQP-62 are transiently induced after fear memory training, leading to increased BDNF/TrkB signaling, and that sequestration of hippocampal TLQP-62 immediately after training impairs memory formation. We propose that TLQP-62 is a critical component of a positive regulatory loop that is induced by memory training, rapidly reinforces BDNF-TrkB signaling, and is required for hippocampal memory consolidation. Copyright © 2015 the authors 0270-6474/15/3510344-14$15.00/0.

  18. VGF and Its C-Terminal Peptide TLQP-62 Regulate Memory Formation in Hippocampus via a BDNF-TrkB-Dependent Mechanism

    PubMed Central

    Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M.

    2015-01-01

    Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. SIGNIFICANCE STATEMENT Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a prominent role in cognitive function, and rapidly and robustly induces expression of VGF, a secreted neuronal peptide precursor. VGF knock-out mice have impaired fear and spatial memory. Our study shows that VGF and VGF-derived peptide TLQP-62 are transiently induced after fear memory training, leading to increased BDNF/TrkB signaling, and that sequestration of hippocampal TLQP-62 immediately after training impairs memory formation. We propose that TLQP-62 is a critical component of a positive regulatory loop that is induced by memory training, rapidly reinforces BDNF-TrkB signaling, and is required for hippocampal memory consolidation. PMID:26180209

  19. One nuclear calcium transient induced by a single burst of action potentials represents the minimum signal strength in activity-dependent transcription in hippocampal neurons.

    PubMed

    Yu, Yan; Oberlaender, Kristin; Bengtson, C Peter; Bading, Hilmar

    2017-07-01

    Neurons undergo dramatic changes in their gene expression profiles in response to synaptic stimulation. The coupling of neuronal excitation to gene transcription is well studied and is mediated by signaling pathways activated by cytoplasmic and nuclear calcium transients. Despite this, the minimum synaptic activity required to induce gene expression remains unknown. To address this, we used cultured hippocampal neurons and cellular compartment analysis of temporal activity by fluorescence in situ hybridization (catFISH) that allows detection of nascent transcripts in the cell nucleus. We found that a single burst of action potentials, consisting of 24.4±5.1 action potentials during a 6.7±1.9s depolarization of 19.5±2.0mV causing a 9.3±0.9s somatic calcium transient, is sufficient to activate transcription of the immediate early gene arc (also known as Arg3.1). The total arc mRNA yield produced after a single burst-induced nuclear calcium transient was very small and, compared to unstimulated control neurons, did not lead to a significant increase in arc mRNA levels measured using quantitative reverse transcriptase PCR (qRT-PCR) of cell lysates. Significantly increased arc mRNA levels became detectable in hippocampal neurons that had undergone 5-8 consecutive burst-induced nuclear calcium transients at 0.05-0.15Hz. These results indicate that a single burst-induced nuclear calcium transient can activate gene expression and that transcription is rapidly shut off after synaptic stimulation has ceased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Lithium Battery Transient Response as a Diagnostic Tool

    NASA Astrophysics Data System (ADS)

    Denisov, E.; Nigmatullin, R.; Evdokimov, Y.; Timergalina, G.

    2018-05-01

    Lithium batteries are currently used as the main energy storage for electronic devices. Progress in the field of portable electronic devices is significantly determined by the improvement of their weight/dimensional characteristics and specific capacity. In addition to the high reliability required of lithium batteries, in some critical applications proper diagnostics are required. Corresponding techniques allow prediction and prevention of operation interruption and avoidance of expensive battery replacement, and also provide additional benefits. Many effective diagnostic methods have been suggested; however, most of them require expensive experimental equipment, as well as interruption or strong perturbation of the operating mode. In the framework of this investigation, a simple diagnostic method based on analysis of transient processes is proposed. The transient response is considered as a reaction to an applied load variation that typically corresponds to normal operating conditions for most real applications. The transient response contains the same information as the impedance characteristic for the system operating in linear mode. Taking into account the large number of publications describing the impedance response associated with diagnostic methods, it can be assumed that the transient response contains a sufficient amount of information for creation of effective diagnostic systems. The proposed experimental installation is based on a controlled load, providing current variation, measuring equipment, and data processing electronics. It is proposed to use the second exponent parameters U 2 and β to estimate the state of charge for secondary lithium batteries. The proposed method improves the accuracy and reliability of a set of quantitative parameters associated with electrochemical energy sources.

  1. Production of human interferon alfa 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression.

    PubMed

    Sindarovska, Y R; Gerasymenko, I M; Sheludko, Y V; Olevinskaya, Z M; Spivak, N Y; Kuchuk, N V

    2010-01-01

    Human interferon alpha2b gene was transiently expressed in Nicotiana excelsior plants. Fusion with N. plumbaginifolia calreticulin signal peptide for improved apoplast targeting and carrying out the expression under optimized conditions resulted in maximal interferon activity of 3.2 x 10(3) IU/g fresh weight (FW) with an average of 2.1 +/- 0.8 x 10(3) IU/g FW. It proves that N. excelsior is a suitable host for Agrobacterium-mediated transient expression of genes encoding physiologically active human proteins. The transient expression conditions optimized for GFP marker protein were confirmed to be preferable for hIFN alpha2b.

  2. A COMPARISON OF TRANSIENT INFINITE ELEMENTS AND TRANSIENT KIRCHHOFF INTEGRAL METHODS FOR FAR FIELD ACOUSTIC ANALYSIS

    DOE PAGES

    WALSH, TIMOTHY F.; JONES, ANDREA; BHARDWAJ, MANOJ; ...

    2013-04-01

    Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, onemore » derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. Here, we show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.« less

  3. Comparative study of transient hydraulic tomography with varying parameterizations and zonations: Laboratory sandbox investigation

    NASA Astrophysics Data System (ADS)

    Luo, Ning; Zhao, Zhanfeng; Illman, Walter A.; Berg, Steven J.

    2017-11-01

    Transient hydraulic tomography (THT) is a robust method of aquifer characterization to estimate the spatial distributions (or tomograms) of both hydraulic conductivity (K) and specific storage (Ss). However, the highly-parameterized nature of the geostatistical inversion approach renders it computationally intensive for large-scale investigations. In addition, geostatistics-based THT may produce overly smooth tomograms when head data used to constrain the inversion is limited. Therefore, alternative model conceptualizations for THT need to be examined. To investigate this, we simultaneously calibrated different groundwater models with varying parameterizations and zonations using two cases of different pumping and monitoring data densities from a laboratory sandbox. Specifically, one effective parameter model, four geology-based zonation models with varying accuracy and resolution, and five geostatistical models with different prior information are calibrated. Model performance is quantitatively assessed by examining the calibration and validation results. Our study reveals that highly parameterized geostatistical models perform the best among the models compared, while the zonation model with excellent knowledge of stratigraphy also yields comparable results. When few pumping tests with sparse monitoring intervals are available, the incorporation of accurate or simplified geological information into geostatistical models reveals more details in heterogeneity and yields more robust validation results. However, results deteriorate when inaccurate geological information are incorporated. Finally, our study reveals that transient inversions are necessary to obtain reliable K and Ss estimates for making accurate predictions of transient drawdown events.

  4. SSV Launch Monitoring Strategies: HGDS Design and Development Through System Maturity

    NASA Technical Reports Server (NTRS)

    Shoemaker, Marc D.; Crimi, Thomas

    2010-01-01

    This poster presentation reviews the design and development of the Hazardous Gas Detection System (HGDS). It includes a overview schematic of the HGDS, pictures of the shuttle on the Mobile Launch platform, the original HGDS, the current HGDS and parts of the original and current system. There are charts showing the dynamics of the orbiter during external tank loading, and transient leaks observed on HGDS during Power Reactant Storage and Distribution (PRSD) load.

  5. Concurrent Computational and Dimensional Analyses of Design of Vehicle Floor-Plates for Landmine-Blast Survivability

    DTIC Science & Technology

    2014-01-01

    soil, etc.) (Ref 6); (b) the kinematic and structural response of the target to blast loading including the role of target design and use of blast...both the role of material behavior under transient-dynamic loading conditions as well as the kinematic and structural responses of the target structure... seats , ammunition storage racks, power-train lines, etc.). Tradition- ally, the floor-rupture problem is solved through the use of thicker floor-plates

  6. Using a physically-based water flow model to explore the dynamics of transit times and mixing in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Heidbüchel, Ingo; Musolff, Andreas; Fleckenstein, Jan H.

    2017-04-01

    Catchment-scale transit time distributions (TTDs) for discharge and residence time distributions of the water in storage (RTDs) are promising tools to characterize the discharge and mixing behavior of a catchment and can help to interpret the associated solute loads to the stream in a spatially implicit way. TTDs and RTDs are dynamic in time, influenced by dynamic rainfall and evapotranspiration forcing, and changing groundwater storage in the catchment. In order to understand the links between the dynamics of TTDs and groundwater mixing in the small agricultural catchment Schäfertal, in central Germany, a 3D hydrological model was set up for the catchment using the fully coupled surface-subsurface numerical model HydroGeoSphere (HGS). The model is calibrated using discharge and groundwater level measurements, and runs transiently for a period of 10 years from 1997 to 2007. A particle tracking tool was implemented in HGS to track the movement of water parcels in the subsurface, outputting TTDs of channel discharge and RTDs of groundwater storage at daily intervals. Results show that the mean age of the discharge water is significantly younger than that of the water in storage, indicating a poorly mixed subsurface. Discharge preferentially samples faster flowing younger water originating from the more conductive top parts of the aquifer. Spatial variations of the age of water in storage are observed, highly influenced by aquifer heterogeneity. Computed StorAge Selection (SAS) functions [Rinaldo et al. 2015] show clear shifts in the discharge sampling preferences between wet and dry states: during wet states in winter and spring, discharge has a preference for younger water because the shallow flow paths are active due to high groundwater levels and low evapotranspiration. Conversely, during dry states in summer and autumn, discharge has a preference for older water because the shallow flow paths are inactive due to low groundwater levels and stronger evapotranspiration. Measured nitrate (NO3) loads in discharge, mainly originating from fertilizer in shallow soils, decrease significantly with decreasing wetness of the catchment. This trend confirms the shifts of discharge sampling preferences between wet and dry states. Reference: Rinaldo, A., P. Benettin, C. J. Harman, M. Hrachowitz, K. J. McGuire, Y. van der Velde, E. Bertuzzo, and G. Botter (2015), Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes, Water Resour. Res., 51, 4840-4847, doi:10.1002/2015WR017273.

  7. Effects of urban stream burial on nitrogen uptake and ...

    EPA Pesticide Factsheets

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  8. Starch Turnover and Metabolism during Flower and Early Embryo Development1[CC-BY

    PubMed Central

    Pazmino, Diana; Gagliardini, Valeria

    2016-01-01

    The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been characterized extensively in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other than dedicated storage organs is poorly characterized, and its function is not well understood. Here, we report on the characterization of starch turnover during flower, early embryo, and silique development in Arabidopsis (Arabidopsis thaliana) using a combined clearing-staining technique on whole-mount tissue. Besides the two previously documented waves of transient starch accumulation in the stamen envelope, occurring during meiosis and pollen mitosis I, we identified a novel, third wave of starch amylogenesis/amylolysis during the last stages of stamen development. To gain insights into the underlying molecular mechanisms, we analyzed publicly available microarray data, which revealed a developmentally coordinated expression of carbohydrate transport and metabolism genes during these waves of transient starch accumulation. Based on this analysis, we characterized starch dynamics in mutants affecting hexose phosphate metabolism and translocation, and identified the Glc-6-phosphate/phosphate antiporter GPT1 as the putative translocator of Glc-6-phosphate for starch biosynthesis in reproductive tissues. Based on these results, we propose a model of starch synthesis within the pollen grain and discuss the nutrient transport route feeding the embryo within the developing seed. PMID:27794100

  9. Evaluating the fate of six common pharmaceuticals using a reactive transport model: insights from a stream tracer test.

    PubMed

    Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael

    2013-08-01

    Quantitative information regarding the capacity of rivers to self-purify pharmaceutical residues is limited. To bridge this knowledge gap, we present a methodology for quantifying the governing processes affecting the fate of pharmaceuticals in streaming waters and, especially, to evaluate their relative significance for tracer observations. A tracer test in Säva Brook, Sweden was evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream, which are presumably important for the retention and attenuation of pharmaceuticals. To assess the key processes affecting the environmental fate of the compounds, we linked the uncertainty estimates of the reaction rate coefficients to the relative influence of transformation and sorption that occurred in different stream environments. The hydrological and biogeochemical contributions to the fate of the pharmaceuticals were decoupled, and the results indicate a moderate hydrological retention in the hyporheic zone as well as in the densely vegetated parts of the stream. Biogeochemical reactions in these transient storage zones further affected the fate of the pharmaceuticals, and we found that sorption was the key process for bezafibrate, metoprolol, and naproxen, while primary transformation was the most important process for clofibric acid and ibuprofen. Conversely, diclofenac was not affected by sorption or transformation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Storage change in a flat-lying fracture during well tests

    NASA Astrophysics Data System (ADS)

    Murdoch, Lawrence C.; Germanovich, Leonid N.

    2012-12-01

    The volume of water released from storage per unit head drop per volume of an REV is a basic quantity in groundwater hydrology, but the details of the process of storage change in the vicinity of a well are commonly overlooked. We characterize storage change in a flat-lying fracture or thin sedimentary bed through the apparent hydraulic compliance,Cf, the change in aperture of the fracture or thickness of the layer per unit change in pressure. The results of theoretical analyses and field measurements show that Cf increases with time near the well during pumping, but it drops suddenly and may become negative at the beginning of recovery during a well test. Profiles of Cfincrease with radial distance from a well, but they are marked by a sharp increase and a sharp decrease at the edge of the region affected by the wellbore pressure transient. The conventional view in groundwater hydrology is that storage change at a point is proportional to the local change in pressure, which requires that the hydraulic compliance is uniform and constant. It appears that this conventional view is a simplification of a process that varies in both space and time and can even take on negative values. This simplification may be a source of uncertainty when interpreting well tests and extensometer records or predicting long-term well performance.

  11. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    NASA Astrophysics Data System (ADS)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on average 0.3°C when comparing the first to the third year of our study period. This warming trend was more pronounced in summer stream temperatures where differences were about 0.7°C. During winter months cooling was observed and temperatures decreased about -0.2°C over the reach. Annual tracer studies also captured an 81min (238%) increase in residence times due primarily to the increased channel complexity and storage over the three-year period. Our study provides reach scale understanding regarding the temporal influence of beavers to not only change physical template of the channel, but also influence the hydrology and temperature regime of streams.

  12. A signaling pathway contributing to platelet storage lesion development: targeting PI3-kinase–dependent Rap1 activation slows storage-induced platelet deterioration

    PubMed Central

    Schubert, Peter; Thon, Jonathan N.; Walsh, Geraldine M.; Chen, Cindy H.I.; Moore, Edwin D.; Devine, Dana V.; Kast, Juergen

    2015-01-01

    BACKGROUND The term platelet storage lesion (PSL) describes the structural and biochemical changes in platelets (PLTs) during storage. These are typified by alterations of morphologic features and PLT metabolism leading to reduced functionality and hence reduced viability for transfusion. While the manifestations of the storage lesion are well characterized, the biochemical pathways involved in the initiation of this process are unknown. STUDY DESIGN AND METHODS A complementary proteomic approach has recently been applied to analyze changes in the PLT proteome during storage. By employing stringent proteomic criteria, 12 proteins were identified as significantly and consistently changing in relative concentration over a 7-day storage period. Microscopy, Western blot analysis, flow cytometry, and PLT functionality analyses were used to unravel the involvement of a subset of these 12 proteins, which are connected through integrin signaling in one potential signaling pathway underlying storage lesion development. RESULTS Microscopic analysis revealed changes in localization of glycoprotein IIIa, Rap1, and talin during storage. Rap1 activation was observed to correlate with expression of the PLT activation marker CD62P. PLTs incubated for 7 days with the PI3-kinase inhibitor LY294002 showed diminished Rap1 activation as well as a moderate reduction in integrin αIIbβ3 activation and release of α-granules. Furthermore, this inhibitor seemed to improve PLT integrity and quality during storage as several in vitro probes showed a deceleration of PLT activation. CONCLUSION These results provide the first evidence for a signaling pathway mediating PSL in which PI3-kinase–dependent Rap1 activation leads to integrin αIIbβ3 activation and PLT degranulation. PMID:19497060

  13. Studying the transient magnetar 3XMMJ185246.6+003317 close to SNR Kes 79

    NASA Astrophysics Data System (ADS)

    Murray, Stephen

    2014-09-01

    We have discovered a new transient AXP just south of SNR Kes 79. It has the longest period among transient AXPs and the second longest period among isolated X-ray NSs. It is also only the third low-B magnetar. We propose two 10 ks ACIS-I observations, separated by about six months, to monitor the activity of the transient AXP, which was in a quiescent state from late 2012 to late 2013 and is expected to have a duty cycle of less than 10%. We plan to use these two observations to start our long-term campaign on the AXP and Kes 79, which will address important questions like the nature of this rare, low-B, transient AXP, its connection with Kes 79, the activity of the central compact object at the center of Kes 79 and the non-thermal and ejecta emission from Kes 79.

  14. Radon inhalation protects against transient global cerebral ischemic injury in gerbils.

    PubMed

    Kataoka, Takahiro; Etani, Reo; Takata, Yuji; Nishiyama, Yuichi; Kawabe, Atsushi; Kumashiro, Masayuki; Taguchi, Takehito; Yamaoka, Kiyonori

    2014-10-01

    Although brain disorders are not the main indication for radon therapy, our previous study suggested that radon inhalation therapy might mitigate brain disorders. In this study, we assessed whether radon inhalation protects against transient global cerebral ischemic injury in gerbils. Gerbils were treated with inhaled radon at a concentration of 2,000 Bq/m(3) for 24 h. After radon inhalation, transient global cerebral ischemia was induced by bilateral occlusion of the common carotid artery. Results showed that transient global cerebral ischemia induced neuronal damage in hippocampal CA1, and the number of damaged neurons was significantly increased compared with control. However, radon treatment inhibited ischemic damage. Superoxide dismutase (SOD) activity in the radon-treated gerbil brain was significantly higher than that in sham-operated gerbils. These findings suggested that radon inhalation activates antioxidative function, especially SOD, thereby inhibiting transient global cerebral ischemic injury in gerbils.

  15. Simulation of space-based (GRACE) gravity variations caused by storage changes in large confined and unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Scanlon, B. R.

    2017-12-01

    There is uncertainty of how storage change in confined and unconfined aquifers would register from space-based platforms, such as the GRACE (Gravity Recovery and Climate Experiment) satellites. To address this concern, superposition groundwater models (MODFLOW) of equivalent storage change in simplified confined and unconfined aquifers of extent, 500 km2 or approximately 5X5 degrees at mid-latitudes, and uniform transmissivity were constructed. Gravity change resulting from the spatial distribution of aquifer storage change for each aquifer type was calculated at the initial GRACE satellite altitude ( 500 km). To approximate real-world conditions, the confined aquifer includes a small region of unconfined conditions at one margin. A uniform storage coefficient (specific yield) was distributed across the unconfined aquifer. For both cases, storage change was produced by 1 year of groundwater withdrawal from identical aquifer-centered well distributions followed by decades of no withdrawal and redistribution of the initial storage loss toward a new steady-state condition. The transient simulated storage loss includes equivalent volumes for both conceptualizations, but spatial distributions differ because of the contrasting aquifer diffusivity (Transmissivity/Storativity). Much higher diffusivity in the confined aquifer results in more rapid storage redistribution across a much larger area than for the unconfined aquifer. After the 1 year of withdrawals, the two simulated storage loss distributions are primarily limited to small regions within the model extent. Gravity change after 1 year observed at the satellite altitude is similar for both aquifers including maximum gravity reductions that are coincident with the aquifer center. With time, the maximum gravity reduction for the confined aquifer case shifts toward the aquifer margin as much as 200 km because of increased storage loss in the unconfined region. Results of the exercise indicate that GRACE observations are largely insensitive to confined or unconfined conditions for most aquifers. Lateral shifts in storage change with time in confined aquifers could be resolved by space-based gravity missions with durations of decades and improved spatial resolution, 1 degree or less ( 100 km), over the GRACE resolution of 3 degrees ( 300 km).

  16. Multimodality of Ca2+ signaling in rat atrial myocytes.

    PubMed

    Morad, Martin; Javaheri, Ashkan; Risius, Tim; Belmonte, Steve

    2005-06-01

    It has been suggested that the multiplicity of Ca(2+) signaling pathways in atrial myocytes may contribute to the variability of its function. This article reports on a novel Ca(2+) signaling cascade initiated by mechanical forces induced by "puffing" of solution onto the myocytes. Ca(i) transients were measured in fura-2 acetoxymethyl (AM) loaded cells using alternating 340- and 410-nm excitation waves at 1.2 kHz. Pressurized puffs of bathing solutions, applied by an electronically controlled micro-barrel system, activated slowly (approximately 300 ms) developing Ca(i) transients that lasted 1,693 +/- 68 ms at room temperature. Subsequent second and third puffs, applied at approximately 20 s intervals activated significantly smaller or no Ca(i) transients. Puff-triggered Ca(i) transients could be reactivated once again following caffeine (10 mM)-induced release of Ca(2+) from sarcoplasmic reticulum (SR). Puff-triggered Ca(i) transients were independent of [Ca(2+)](o), and activation of voltage-gated Ca(2+) or cationic stretch channels or influx of Ca(2+) on Na(+)/Ca(2+)exchanger, because puffing solution containing no Ca(2+), 10 microM diltiazem, 1 mM Cd(2+), 5 mM Ni(2+), or 100 microM Gd(3+) failed to suppress them. Puff-triggered Ca(i) transients were enhanced in paced compared to quiescent myocytes. Electrically activated Ca(i) transients triggered during the time course of puff-induced transients were unaltered, suggesting functionally separate Ca(2+) pools. Contribution of inositol 1,4,5-triphosphate (IP(3))-gated or mitochondrial Ca(2+) pools or modulation of SR stores by nitric oxide/nitric oxide synthase (NO/NOS) signaling were evaluated using 0.5 to 500 microM 2-aminoethoxydiphenyl borate (2-APB) and 0.1 to 1 microM carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), and 1 mM Nomega-Nitro-L-arginine methyl ester (L-NAME) and 7-nitroindizole, respectively. Only FCCP appeared to significantly suppress the puff-triggered Ca(i) transients. It was concluded that neither Ca(2+) influx nor depolarization was required for activation of this signaling pathway. These studies suggest that pressurized puffs of solutions activate a mechanically sensitive receptor, which signals in turn the release of Ca(2+) from a limited Ca(2+) store of mitochondria. How mechanical forces are sensed and transmitted to mitochondria to induce Ca(2+) release and what role such a Ca(2+) signaling pathway plays in the physiology or pathophysiology of the heart remain to be worked out.

  17. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the agreement period. This includes technical support for a multi-instrument aircraft campaign, Leonid MAC.

  18. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  19. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis)

    PubMed Central

    Yang, Shihai; Zhou, Yanli; Dong, Chao; Ren, Jian; Sun, Xudong; Yang, Yongping

    2015-01-01

    Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd) is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs) accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO) and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3), Mitogen-activated protein kinase 6 (MPK6) and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT) may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress. PMID:26349064

  20. Receptors, channels, and signalling in the urothelial sensory system in the bladder

    PubMed Central

    Merrill, Liana; Gonzalez, Eric J.; Girard, Beatrice M.; Vizzard, Margaret A.

    2017-01-01

    The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246

  1. A system for the automated data-acquisition of fast transient signals in excitable membranes.

    PubMed

    Bustamante, J O

    1988-01-01

    This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.

  2. Transient Response of Shells of Revolution by Direct Integration and Modal Superposition Methods

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Adelman, H. M.

    1974-01-01

    The results of an analytical effort to obtain and evaluate transient response data for a cylindrical and a conical shell by use of two different approaches: direct integration and modal superposition are described. The inclusion of nonlinear terms is more important than the inclusion of secondary linear effects (transverse shear deformation and rotary inertia) although there are thin-shell structures where these secondary effects are important. The advantages of the direct integration approach are that geometric nonlinear and secondary effects are easy to include and high-frequency response may be calculated. In comparison to the modal superposition technique the computer storage requirements are smaller. The advantages of the modal superposition approach are that the solution is independent of the previous time history and that once the modal data are obtained, the response for repeated cases may be efficiently computed. Also, any admissible set of initial conditions can be applied.

  3. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  4. Benchmarking of Improved DPAC Transient Deflagration Analysis Code

    DOE PAGES

    Laurinat, James E.; Hensel, Steve J.

    2017-09-27

    The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less

  5. Benchmarking of Improved DPAC Transient Deflagration Analysis Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, James E.; Hensel, Steve J.

    The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less

  6. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    PubMed

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  7. Analysis on influence of guide vanes closure laws of pump-turbine on load rejection transient process

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Bi, H. L.; Huang, Q. S.; Li, Z. J.; Wang, Z. W.

    2013-12-01

    In load rejection transient process, the sudden shut down of guide vanes may cause units speed rise and a sharp increase in water hammer pressure of diversion system, which endangers the safety operation of the power plant. Adopting reasonable guide vane closure law is a kind of economic and effective measurement to reduce the water hammer pressure and limit rotational speed increases. In this paper, combined with Guangzhou Pumped Storage Power Station plant A, the load rejection condition under different guide vanes closure laws is calculated and the key factor of guide vanes closure laws on the impact of the load rejection transition process is analyzed. The different inflection points, which are the closure modes, on the impact of unit speed change, water level fluctuation of surge tank, and the pressure fluctuation of volute inlet and draft tube inlet are further discussed. By compared with the calculation results, a reasonable guide vanes inflection point position can be determined according to security requirements and a reasonable guide vanes closure law can be attained to effectively coordinate the unit speed rise and the rapid pressure change in the load rejection transient process.

  8. The combined effect of platelet storage media and intercept pathogen reduction technology on platelet activation/activability and cellular apoptosis/necrosis: Lisbon-RBS experience.

    PubMed

    Carvalho, Helena; Alguero, Carmen; Santos, Matilde; de Sousa, Gracinda; Trindade, Helder; Seghatchian, Jerard

    2006-04-01

    Platelets are known to undergo shape change, activation, a release reaction and apoptosis/necrosis during processing and storage, all of which are collectively known as the platelet storage lesion. Any additional processing may have some deleterious impact on platelet activability and functional integrity, which need to be investigated. This preliminary investigation was undertaken to establish the combined effects of standard platelet storage media and the intercept pathogen reduction technology on platelet activation and activability during 7 day storage, using buffy-coat derived platelets in standard storage media containing 35% plasma (N=24). P-selectin (CD62p) expression, a classical marker of platelet activation, and phosphatidylserine (PS) exposure on the platelet surface membrane, a hallmark of cellular necrosis/apoptosis, were both measured by flow cytometry. The results reveal significant increases in activation, from an average of 22.7% on day 1 before treatment to 31.6% on day 2 after treatment and 58.7% at the end of storage. Concomitantly, the basal expression of PS was slightly increased from 1.9% to 2.8% at day 2 after treatment and 7.3% at the end of storage. However, the functional reserve of platelets during storage, which reflects their capability to undergo activation and the release reaction when platelets were challenged with either calcium ionophore or thrombin, was relatively well maintained. These preliminary data confirm the earlier data on the use of intercept, and for the first time, based on the assessment of platelet functional integrity, suggest that platelet functional reserve is relatively well maintained, with little change in the formation of apoptotic cells.

  9. Transient spatiotemporal chaos in the Morris-Lecar neuronal ring network.

    PubMed

    Keplinger, Keegan; Wackerbauer, Renate

    2014-03-01

    Transient behavior is thought to play an integral role in brain functionality. Numerical simulations of the firing activity of diffusively coupled, excitable Morris-Lecar neurons reveal transient spatiotemporal chaos in the parameter regime below the saddle-node on invariant circle bifurcation point. The neighborhood of the chaotic saddle is reached through perturbations of the rest state, in which few initially active neurons at an effective spatial distance can initiate spatiotemporal chaos. The system escapes from the neighborhood of the chaotic saddle to either the rest state or to a state of pulse propagation. The lifetime of the chaotic transients is manipulated in a statistical sense through a singular application of a synchronous perturbation to a group of neurons.

  10. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    PubMed Central

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  11. Glycogen storage disease type 1a in Israel: biochemical, clinical, and mutational studies.

    PubMed

    Parvari, R; Lei, K J; Bashan, N; Hershkovitz, E; Korman, S H; Barash, V; Lerman-Sagie, T; Mandel, H; Chou, J Y; Moses, S W

    1997-10-31

    Glycogen storage disease type 1a (von Gierke disease, GSD 1a) is caused by the deficiency of microsomal glucose-6-phosphatase (G6Pase) activity which catalyzes the final common step of glycogenolysis and gluconeogenesis. The recent cloning of the G6Pase cDNA and characterization of the human G6Pase gene enabled the characterization of the mutations causing GSD 1a. This, in turn, allows the introduction of a noninvasive DNA-based diagnosis that provides reliable carrier testing and prenatal diagnosis. In this study, we report the biochemical and clinical characteristics as well as mutational analyses of 12 Israeli GSD 1a patients of different families, who represent most GSD 1a patients in Israel. The mutations, G6Pase activity, and glycogen content of 7 of these patients were reported previously. The biochemical data and clinical findings of all patients were similar and compatible with those described in other reports. All 9 Jewish patients, as well as one Muslim Arab patient, presented the R83C mutation. Two Muslim Arab patients had the V166G mutation which was not found in other patients' populations. The V166G mutation, which was introduced into the G6Pase cDNA by site-directed mutagenesis following transient expression in COS-1 cells, was shown to cause complete inactivation of the G6Pase. The characterization of all GSD 1a mutations in the Israeli population lends itself to carrier testing in these families as well as to prenatal diagnosis, which was carried out in 2 families. Since all Ashkenzai Jewish patients harbor the same mutation, our study suggests that DNA-based diagnosis may be used as an initial diagnostic step in Ashkenazi Jews suspected of having GSD 1a, thereby avoiding liver biopsy.

  12. AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation.

    PubMed

    Sojikul, Punchapat; Kongsawadworakul, Panida; Viboonjun, Unchera; Thaiprasit, Jittrawan; Intawong, Burapat; Narangajavana, Jarunya; Svasti, Mom Rajawong Jisnuson

    2010-10-01

    Cassava (Manihot esculenta Crantz) is a root crop that accumulates large quantities of starch, and it is an important source of carbohydrate. Study on gene expressions during storage root development provides important information on storage root formation and starch accumulation as well as unlock new traits for improving of starch yield. cDNA-Amplified Fragment Length Polymorphism (AFLP) was used to compare gene expression profiles in fibrous and storage roots of cassava cultivar Kasetsart 50. Total of 155 differentially expressed transcript-derived fragments with undetectable or low expression in leaves were characterized and classified into 11 groups regarding to their functions. The four major groups were no similarity (20%), hypothetical or unknown proteins (17%), cellular metabolism and biosynthesis (17%) and cellular communication and signaling (14%). Interestingly, sulfite reductase (MeKD82), calcium-dependent protein kinase (CDPK) (MeKD83), ent-kaurene synthase (KS) (MeKD106) and hexose transporter (HT) (MeKD154) showed root-specific expression patterns. This finding is consistent with previously reported genes involved in the initiation of potato tuber. Semi-quantitative reverse transcription polymerase chain reaction of early-developed root samples confirmed that those four genes exhibited significant expression with similar pattern in the storage root initiation and early developmental stages. We proposed that KS and HT may involve in transient induction of CDPK expression, which may play an important role in the signaling pathway of storage root initiation. Sulfite reductase, on the other hand, may involve in storage root development by facilitating sulfur-containing protein biosynthesis or detoxifying the cyanogenic glucoside content through aspartate biosynthesis. Copyright © Physiologia Plantarum 2010.

  13. Spatial and temporal modeling of sub- and supercritical thermal energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, LA; Ganapathi, GB; Wirz, RE

    2014-05-01

    This paper describes a thermodynamic model that simulates the discharge cycle of a single-tank thermal energy storage (TES) system that can operate from the two-phase (liquid-vapor) to supercritical regimes for storage fluid temperatures typical of concentrating solar power plants. State-of-the-art TES design utilizes a two-tank system with molten nitrate salts; one major problem is the high capital cost of the salts (International Renewable Energy Agency, 2012). The alternate approach explored here opens up the use of low-cost fluids by considering operation at higher pressures associated with the two-phase and supercritical regimes. The main challenge to such a system is itsmore » high pressures and temperatures which necessitate a relatively high-cost containment vessel that represents a large fraction of the system capital cost. To mitigate this cost, the proposed design utilizes a single-tank TES system, effectively halving the required wall material. A single-tank approach also significantly reduces the complexity of the system in comparison to the two-tank systems, which require expensive pumps and external heat exchangers. A thermodynamic model is used to evaluate system performance; in particular it predicts the volume of tank wall material needed to encapsulate the storage fluid. The transient temperature of the tank is observed to remain hottest at the storage tank exit, which is beneficial to system operation. It is also shown that there is an optimum storage fluid loading that generates a given turbine energy output while minimizing the required tank wall material. Overall, this study explores opportunities to further improve current solar thermal technologies. The proposed single-tank system shows promise for decreasing the cost of thermal energy storage. (C) 2014 Elsevier Ltd. All rights reserved.« less

  14. Localization and in-Vivo Characterization of Thapsia garganica CYP76AE2 Indicates a Role in Thapsigargin Biosynthesis1

    PubMed Central

    Andersen, Trine Bundgaard; Martinez-Swatson, Karen Agatha; Rasmussen, Silas Anselm; Boughton, Berin Alain; Jørgensen, Kirsten; Andersen-Ranberg, Johan; Nyberg, Nils; Christensen, Søren Brøgger; Simonsen, Henrik Toft

    2017-01-01

    The Mediterranean plant Thapsia garganica (dicot, Apiaceae), also known as deadly carrot, produces the highly toxic compound thapsigargin. This compound is a potent inhibitor of the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase calcium pump in mammals and is of industrial importance as the active moiety of the anticancer drug mipsagargin, currently in clinical trials. Knowledge of thapsigargin in planta storage and biosynthesis has been limited. Here, we present the putative second step in thapsigargin biosynthesis, by showing that the cytochrome P450 TgCYP76AE2, transiently expressed in Nicotiana benthamiana, converts epikunzeaol into epidihydrocostunolide. Furthermore, we show that thapsigargin is likely to be stored in secretory ducts in the roots. Transcripts from TgTPS2 (epikunzeaol synthase) and TgCYP76AE2 in roots were found only in the epithelial cells lining these secretory ducts. This emphasizes the involvement of these cells in the biosynthesis of thapsigargin. This study paves the way for further studies of thapsigargin biosynthesis. PMID:28275147

  15. Interfacial dynamics and solar fuel formation in dye-sensitized photoelectrosynthesis cells.

    PubMed

    Song, Wenjing; Chen, Zuofeng; Glasson, Christopher R K; Hanson, Kenneth; Luo, Hanlin; Norris, Michael R; Ashford, Dennis L; Concepcion, Javier J; Brennaman, M Kyle; Meyer, Thomas J

    2012-08-27

    Dye-sensitized photoelectrosynthesis cells (DSPECs) represent a promising approach to solar fuels with solar-energy storage in chemical bonds. The targets are water splitting and carbon dioxide reduction by water to CO, other oxygenates, or hydrocarbons. DSPECs are based on dye-sensitized solar cells (DSSCs) but with photoexcitation driving physically separated solar fuel half reactions. A systematic basis for DSPECs is available based on a modular approach with light absorption/excited-state electron injection, and catalyst activation assembled in integrated structures. Progress has been made on catalysts for water oxidation and CO(2) reduction, dynamics of electron injection, back electron transfer, and photostability under conditions appropriate for water splitting. With added reductive scavengers, as surrogates for water oxidation, DSPECs have been investigated for hydrogen generation based on transient absorption and photocurrent measurements. Detailed insights are emerging which define kinetic and thermodynamic requirements for the individual processes underlying DSPEC performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thermo-physical performance prediction of the KSC Ground Operation Demonstration Unit for liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Baik, J. H.; Notardonato, W. U.; Karng, S. W.; Oh, I.

    2015-12-01

    NASA Kennedy Space Center (KSC) researchers have been working on enhanced and modernized cryogenic liquid propellant handling techniques to reduce life cycle costs of propellant management system for the unique KSC application. The KSC Ground Operation Demonstration Unit (GODU) for liquid hydrogen (LH2) plans to demonstrate integrated refrigeration, zero-loss flexible term storage of LH2, and densified hydrogen handling techniques. The Florida Solar Energy Center (FSEC) has partnered with the KSC researchers to develop thermal performance prediction model of the GODU for LH2. The model includes integrated refrigeration cooling performance, thermal losses in the tank and distribution lines, transient system characteristics during chilling and loading, and long term steady-state propellant storage. This paper will discuss recent experimental data of the GODU for LH2 system and modeling results.

  17. Acoustic transient classification with a template correlation processor.

    PubMed

    Edwards, R T

    1999-10-01

    I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.

  18. Digital phase-locked-loop speed sensor for accuracy improvement in analog speed controls. [feedback control and integrated circuits

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1975-01-01

    A digital speed control that can be combined with a proportional analog controller is described. The stability and transient response of the analog controller were retained and combined with the long-term accuracy of a crystal-controlled integral controller. A relatively simple circuit was developed by using phase-locked-loop techniques and total error storage. The integral digital controller will maintain speed control accuracy equal to that of the crystal reference oscillator.

  19. Fast transient digitizer

    DOEpatents

    Villa, Francesco

    1982-01-01

    Method and apparatus for sequentially scanning a plurality of target elements with an electron scanning beam modulated in accordance with variations in a high-frequency analog signal to provide discrete analog signal samples representative of successive portions of the analog signal; coupling the discrete analog signal samples from each of the target elements to a different one of a plurality of high speed storage devices; converting the discrete analog signal samples to equivalent digital signals; and storing the digital signals in a digital memory unit for subsequent measurement or display.

  20. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  1. Transient deformation of karst aquifers observed by GPS: improved knowledge from Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Silverii, F.; D'Agostino, N.; Borsa, A. A.

    2017-12-01

    The redistribution of water masses due to temporal variations of hydrological conditions can produce observable deformation of the shallow crust. Space geodesy, e.g., GPS and InSAR, has provided a considerable improvement in terms of data accuracy and spatial and temporal resolution for the detection and investigation of this kind of deformation. In particular, in the areas where snow and water accumulate for long periods, such as aquifers, relatively high deformation (up to several millimeters) has been observed. Karst aquifers are able to store huge amounts of water and a clear deformation related to the groundwater storage variations has been observed in some regions. In a recent study we showed that the karst aquifers of Southern Apennines deform in response of seasonal and interannual variations of groundwater content, producing a visible transient signal in the time series of the surrounding GPS sites. In this work, we analyze the GPS time series and hydrological data of Central Italy, an interesting and complex area which hosts huge karst aquifers and is characterized by high seismic activity. We show that a noticeable transient signal with features similar to those of Southern Apennines affects also the time series of Central Apennines, suggesting that the large karst aquifers of this region experience a process analogue to the ones in Southern Italy. Thanks to the availability of a dense GPS network and different kinds of hydrological data (rainfall, spring discharge, groundwater level) we focus on the process causing the observed deformation. In particular, we model the observed deformation by inverting the GPS data using Green's functions for finite strain cuboid sources (Barbot et al. 2017). An enhanced understanding of the causes and implications of the highlighted deformation of karst aquifers is of primary interest for an improved management of this important water resource and for a better understanding of the possible interactions between groundwater variations, variations of pore pressure in the crust and seismicity.

  2. System Modeling for Ammonia Synthesis Energy Recovery System

    NASA Astrophysics Data System (ADS)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Ammonia thermochemical Energy Storage Team

    2015-11-01

    An ammonia thermochemical energy storage system is an alternative solution to the state-of-the-art molten salt TES system for concentrating solar power. Some of the advantages of this emerging technology include its high energy density, no heat losses during the storage duration, and the possibility of long storage periods. Solar energy powers an endothermic reaction to disassociate ammonia into hydrogen and nitrogen, which can be stored for future use. The reverse reaction is carried out in the energy recovery process; a hydrogen-nitrogen mixture flowing through a catalyst bed undergoes the exothermic ammonia synthesis reaction. The goal is to use the ammonia synthesis reaction to heat supercritical steam to temperatures on the order of 650°C as required for a supercritical steam Rankine cycle. The steam will flow through channels in a combined reactor-heat exchanger. A numerical model has been developed to determine the optimal design to heat supercritical steam while maintaining a stable exothermic reaction. The model consists of a transient one dimensional concentric tube counter-flow reactor-heat exchanger. The numerical model determines the inlet mixture conditions needed to achieve various steam outlet conditions.

  3. Structural Components of Synaptic Plasticity and Memory Consolidation

    PubMed Central

    Bailey, Craig H.; Kandel, Eric R.; Harris, Kristen M.

    2015-01-01

    Consolidation of implicit memory in the invertebrate Aplysia and explicit memory in the mammalian hippocampus are associated with remodeling and growth of preexisting synapses and the formation of new synapses. Here, we compare and contrast structural components of the synaptic plasticity that underlies these two distinct forms of memory. In both cases, the structural changes involve time-dependent processes. Thus, some modifications are transient and may contribute to early formative stages of long-term memory, whereas others are more stable, longer lasting, and likely to confer persistence to memory storage. In addition, we explore the possibility that trans-synaptic signaling mechanisms governing de novo synapse formation during development can be reused in the adult for the purposes of structural synaptic plasticity and memory storage. Finally, we discuss how these mechanisms set in motion structural rearrangements that prepare a synapse to strengthen the same memory and, perhaps, to allow it to take part in other memories as a basis for understanding how their anatomical representation results in the enhanced expression and storage of memories in the brain. PMID:26134321

  4. Ground operations demonstration unit for liquid hydrogen initial test results

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-12-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  5. Battery cycle life balancing in a microgrid through flexible distribution of energy and storage resources

    NASA Astrophysics Data System (ADS)

    Khasawneh, Hussam J.; Illindala, Mahesh S.

    2014-09-01

    In this paper, a microgrid consisting of four fuel cell-battery hybrid Distributed Energy Resources (DERs) is devised for an industrial crusher-conveyor load. Each fuel cell was accompanied by a Li-ion battery to provide energy storage support under islanded condition of the microgrid since the fuel cells typically have poor transient response characteristics. After carrying out extensive modeling and analysis in MATLAB®, the battery utilization was found to vary significantly based on the DER's 'electrical' placement within the microgrid. This paper presents, under such conditions, a variety of battery life balancing solutions through the use of the new framework of Flexible Distribution of EneRgy and Storage Resources (FDERS). It is based on an in-situ reconfiguration approach through 'virtual' reactances that help in changing the 'electrical' position of each DER without physically displacing any component in the system. Several possible approaches toward balancing the battery utilization are compared in this paper taking advantage of the flexibility that FDERS offers. It was observed that the estimated battery life is dependent on factors such as cycling sequence, pattern, and occurrence.

  6. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  7. Changes in antioxidant and biochemical activities in castor oil-coated Capsicum annuum L. during postharvest storage.

    PubMed

    Panigrahi, Jitendriya; Patel, Mansi; Patel, Niyati; Gheewala, Bhumi; Gantait, Saikat

    2018-06-01

    This study, for the first time, evaluates the efficiency of castor oil when used as an external coating on Capsicum annuum L., to increase postharvest storage-life at 4 ± 1 °C. The castor oil-coated fruits were successfully stored for 36 days, while the non-coated fruits could only sustain for 18 days. Throughout the storage period (at 9-day intervals), different antioxidants and biochemical assays (allied with storage) such as titratable acidity, ascorbic acid content, ferrous ion chelating activity, reducing power, DPPH scavenging activity, hydroxyl radical scavenging activity, total phenolic content, total sugar estimation, and enzymatic study of polyphenol oxidase and pectate lyase, were assessed. During storage, the castor oil-coated fruits showed a substantial decrease in titratable acidity, ascorbic acid content, total phenolic content, including antioxidant activities such as reducing power and DPPH activity; however, an increase in ferrous ion chelating activity, total soluble sugar content, polyphenol oxidase activity and initial pectate lyase activity was observed, in contrast to that of the non-coated fruits. The application of castor oil proved to be effective in delaying the ripening process of fruits during storage.

  8. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine.

    PubMed

    Baker, Salah A; Drumm, Bernard T; Saur, Dieter; Hennig, Grant W; Ward, Sean M; Sanders, Kenton M

    2016-06-15

    Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it was determined that firing was stochastic in nature. Ca(2+) transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca(2+) transients, suggesting that ICC-DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca(2+) transients were minimally affected after 12 min in Ca(2+) free solution, indicating these events do not depend immediately upon Ca(2+) influx. However, inhibitors of sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3 R) and ryanodine receptor (RyR) channels blocked ICC Ca(2+) transients. These data suggest an interdependence between RyR and InsP3 R in the generation of Ca(2+) transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high-resolution recording of the subcellular Ca(2+) dynamics that control the behaviour of ICC-DMP in situ. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. Spontaneous Ca2+ transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine

    PubMed Central

    Baker, Salah A.; Drumm, Bernard T.; Saur, Dieter; Hennig, Grant W.; Ward, Sean M.

    2016-01-01

    Key points Interstitial cells of Cajal at the level of the deep muscular plexus (ICC‐DMP) in the small intestine generate spontaneous Ca2+ transients that consist of localized Ca2+ events and limited propagating Ca2+ waves.Ca2+ transients in ICC‐DMP display variable characteristics: from discrete, highly localized Ca2+ transients to regionalized Ca2+ waves with variable rates of occurrence, amplitude, duration and spatial spread.Ca2+ transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells.Ca2+ transients in ICC‐DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s).Functional intracellular Ca2+ stores are essential for spontaneous Ca2+ transients, and the sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump is necessary for maintenance of spontaneity.Ca2+ release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs). Release from these channels is interdependent.ICC express transcripts of multiple RyRs and InsP3Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. Abstract Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC‐DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC‐DMP are mediated by activation of Ca2+‐activated Cl− channels; thus, Ca2+ signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca2+ transients in ICC‐DMP within intact jejunal muscles expressing a genetically encoded Ca2+ indicator (GCaMP3) selectively in ICC. ICC‐DMP displayed spontaneous Ca2+ transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca2+ transients was highly variable, and it was determined that firing was stochastic in nature. Ca2+ transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca2+ transients, suggesting that ICC‐DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca2+ transients were minimally affected after 12 min in Ca2+ free solution, indicating these events do not depend immediately upon Ca2+ influx. However, inhibitors of sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels blocked ICC Ca2+ transients. These data suggest an interdependence between RyR and InsP3R in the generation of Ca2+ transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high‐resolution recording of the subcellular Ca2+ dynamics that control the behaviour of ICC‐DMP in situ. PMID:26824875

  10. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  11. Fast transient X-rays and gamma ray bursts - Are they stellar flares?

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    Short period transient X-ray emissions (FTX) have been observed from several sources in the sky and the largest single group of objects identified with such sources are active stars: flare stars, and RS CVn binaries. The study of the number, source and flux distribution of the fast transient X-ray sources shows that all the FTX emission can be treated as flares in the interbinary regions of active stars. It is suggested that the FTX emission is a common feature of the gamma ray bursts (GRBs). The evidence for the similarity between the hard X-ray flares and GRBs is discussed, and the possibility that the gamma ray bursts are the impulsive precursors of FTX originating from active stars with large scale magnetic activity is examined.

  12. Analytical Solutions to Coupled HM Problems to Highlight the Nonlocal Nature of Aquifer Storage

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Carrera, Jesús

    2017-11-01

    Specific storage reflects the volumetric deformation capacity of permeable media. Classical groundwater hydrology equates elastic storage to medium compressibility (plus fluid compressibility times porosity). However, it is unclear if storage behavior can be represented by a single parameter. Hydraulic gradients act as body forces that push the medium in the direction of flow causing it to deform instantaneously everywhere, i.e., even in regions where pressure would not have changed according to conventional fluid flow. Therefore, actual deformation depends not only on the mechanical properties of the medium but also on aquifer geometry and on surrounding strata, which act like constraints to displacements. Here we discuss the question and highlight the nonlocal nature of storage (i.e., the volume of water released at a point depends on the poroelastic response over the whole aquifer). Proper evaluation of transient pressure and water release from storage requires acknowledging the hydromechanical coupling, which generally involves the use of numerical methods. We propose analytical solutions to the HM problem of fluid injection (extraction) into finite aquifers with one-dimensional or cylindrical geometries. We find that pressure response is much faster (virtually instantaneous) and larger than expected from traditional purely hydraulic solutions when aquifer deformation is restrained, whereas the pressure response is reversed (i.e., pressure drop in response to injection) when the permeable medium is free to deform. These findings suggest that accounting for hydromechanical coupling may be required when hydraulic testing is performed in low permeability media, which is becoming increasingly demanded for energy-related applications.

  13. [Collagenolytic activity in several species of deuteromycetes under various storage conditions].

    PubMed

    Iakovleva, M B; Khoang, T L; Nikitina, Z K

    2006-01-01

    The ability of deuteromycetes of the genera Penicillium, Aspergillus, and Botrytis to retain collagenolytic activity was studied after both 2 and 10 years of storage on a Czapek medium under a layer of mineral oil at 4 degrees C, as well as in silica gel granules at 20 and -60 degrees C. The enzymatic activity of several species, including Botrytis terrestris, Penicillium janthinellum, Penicillium chrysogenum, and Penicillium citrinum, was retained under both conditions of storage. Aspergillus repens retained enzymatic activity only if stored under a layer of mineral oil. The viability of conidia and the collagenolytic activity of Botrytis terrestris, P. janthinellum, P. chrysogenum, and Penicillium citrinum, maintained on silica gel for 10 years, depended on the storage temperature. The viability of the test strains improved after storage on a silica gel at -60 degrees C. A strain of Aspergillus repens lost its ability to dissolve collagen at various storage temperatures on the silica gel. The index of lysis for three strains of Penicillium deuteromycetes (Penicillium janthinellum, Penicillium chrysogenum, and Penicillium citrinum) increased after a 10-year storage on silica gel at -60 degrees C.

  14. Free Fatty Acid Storage in Human Visceral and Subcutaneous Adipose Tissue

    PubMed Central

    Ali, Asem H.; Koutsari, Christina; Mundi, Manpreet; Stegall, Mark D.; Heimbach, Julie K.; Taler, Sandra J.; Nygren, Jonas; Thorell, Anders; Bogachus, Lindsey D.; Turcotte, Lorraine P.; Bernlohr, David; Jensen, Michael D.

    2011-01-01

    OBJECTIVE Because direct adipose tissue free fatty acid (FFA) storage may contribute to body fat distribution, we measured FFA (palmitate) storage rates and fatty acid (FA) storage enzymes/proteins in omental and abdominal subcutaneous fat. RESEARCH DESIGN AND METHODS Elective surgery patients received a bolus of [1-14C]palmitate followed by omental and abdominal subcutaneous fat biopsies to measure direct FFA storage. Long chain acyl-CoA synthetase (ACS) and diacylglycerol acyltransferase activities, CD36, fatty acid-binding protein, and fatty acid transport protein 1 were measured. RESULTS Palmitate tracer storage (dpm/g adipose lipid) and calculated palmitate storage rates were greater in omental than abdominal subcutaneous fat in women (1.2 ± 0.8 vs. 0.7 ± 0.4 μmol ⋅ kg adipose lipid−1 ⋅ min−1, P = 0.005) and men (0.7 ± 0.2 vs. 0.2 ± 0.1, P < 0.001), and both were greater in women than men (P < 0.0001). Abdominal subcutaneous adipose tissue palmitate storage rates correlated with ACS activity (women: r = 0.66, P = 0.001; men: r = 0.70, P = 0.007); in men, CD36 was also independently related to palmitate storage rates. The content/activity of FA storage enzymes/proteins in omental fat was dramatically lower in those with more visceral fat. In women, only omental palmitate storage rates were correlated (r = 0.54, P = 0.03) with ACS activity. CONCLUSIONS Some adipocyte FA storage factors correlate with direct FFA storage, but sex differences in this process in visceral fat do not account for sex differences in visceral fatness. The reduced storage proteins in those with greater visceral fat suggest that the storage factors we measured are not a predominant cause of visceral adipose tissue accumulation. PMID:21810594

  15. Effects of hermetic storage on adult Sitophilus oryzae L. (Coleoptera: Curculionidae) acoustic activity patterns and mortality

    USDA-ARS?s Scientific Manuscript database

    Hermetic storage is of interest to farmers and warehouse managers as a method to control insect pests in small storage facilities. To develop improved understanding of effects of hermetic storage on insect pest activity and mortality over time, oxygen levels, acoustic signals, and observations of vi...

  16. Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion.

    PubMed

    Li, Xiaogai; von Holst, Hans; Kleiven, Svein

    2013-01-01

    A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion.

  17. Early and late components of EEG delay activity correlate differently with scene working memory performance

    PubMed Central

    Ng, Kenneth; Reichert, Chelsea P.

    2017-01-01

    Sustained and elevated activity during the working memory delay period has long been considered the primary neural correlate for maintaining information over short time intervals. This idea has recently been reinterpreted in light of findings generated from multiple neural recording modalities and levels of analysis. To further investigate the sustained or transient nature of activity, the temporal-spectral evolution (TSE) of delay period activity was examined in humans with high density EEG during performance of a Sternberg working memory paradigm with a relatively long six second delay and with novel scenes as stimuli. Multiple analyses were conducted using different trial window durations and different baseline periods for TSE computation. Sensor level analyses revealed transient rather than sustained activity during delay periods. Specifically, the consistent finding among the analyses was that high amplitude activity encompassing the theta range was found early in the first three seconds of the delay period. These increases in activity early in the delay period correlated positively with subsequent ability to distinguish new from old probe scenes. Source level signal estimation implicated a right parietal region of transient early delay activity that correlated positively with working memory ability. This pattern of results adds to recent evidence that transient rather than sustained delay period activity supports visual working memory performance. The findings are discussed in relation to synchronous and desynchronous intra- and inter-regional neural transmission, and choosing an optimal baseline for expressing temporal-spectral delay activity change. PMID:29016657

  18. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  19. Preliminary analysis of data from SRI international transient pulse monitor on board P78-2 SCATHA satellite

    NASA Technical Reports Server (NTRS)

    Damron, S. A.; Adamo, R. C.; Nanevicz, J. E.

    1980-01-01

    The satellite charging at high altitudes (SCATHA) program addresses the occurrence of electrostatic discharges causing undesirable effects like deleterious transients in electronic circuits on satellites. The high altitude plasma environment and the effects of the interaction of this environment with the orbiting satellite are studied. The SRI transient pulse monitor (TPM) detects the transient electromagnetic signals induced in selected circuits. As a transient detector the TPM records transient signals, indicates the number of transients observed, and gives peak amplitude of the largest transient during each second's interval. Most of the early data from the TPM contain pulses associated with internal electrical activity and electrostatic charging on the surface of the P78-2 is evidenced. It is found that periods of external discharging do not necessarily coincide with periods in which high potentials are measured on the satellite's surface.

  20. PYK2: A Calcium-sensitive Protein Tyrosine Kinase Activated in Response to Fertilization of the Zebrafish Oocyte

    PubMed Central

    Sharma, Dipika; Kinsey, William H.

    2012-01-01

    Fertilization begins with binding and fusion of a sperm with the oocyte, a process that triggers a high amplitude calcium transient which propagates through the oocyte and stimulates a series of preprogrammed signal transduction events critical for zygote development. Identification of the pathways downstream of this calcium transient remains an important step in understanding the basis of zygote quality. The present study demonstrates that the calcium-calmodulin sensitive protein tyrosine kinase PYK2 is a target of the fertilization-induced calcium transient in the zebrafish oocyte and that it plays an important role in actin-mediated events critical for sperm incorporation. At fertilization, PYK2 was activated initially at the site of sperm-oocyte interaction and was closely associated with actin filaments forming the fertilization cone. Later PYK2 activation was evident throughout the entire oocyte cortex, however activation was most intense over the animal hemisphere. Fertilization-induced PYK2 activation could be blocked by suppressing calcium transients in the ooplasm via injection of BAPTA as a calcium chelator. PYK2 activation could be artificially induced in unfertilized oocytes by injection of IP3 at concentrations sufficient to induce calcium release. Functionally, suppression of PYK2 activity by chemical inhibition or by injection of a dominant-negative construct encoding the N-terminal ERM domain of PKY2 inhibited formation of an organized fertilization cone and reduced the frequency of successful sperm incorporation. Together, the above findings support a model in which PYK2 responds to the fertilization-induced calcium transient by promoting reorganization of the cortical actin cytoskeleton to form the fertilization cone. PMID:23084926

  1. Aquifer response to stream-stage and recharge variations. II. Convolution method and applications

    USGS Publications Warehouse

    Barlow, P.M.; DeSimone, L.A.; Moench, A.F.

    2000-01-01

    In this second of two papers, analytical step-response functions, developed in the companion paper for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to streamstage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems in the northeastern and central United States. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank hydraulic properties, recharge rates, streambank seepage rates, and bank storage. Analysis of the water-table aquifer adjacent to the Blackstone River in Massachusetts suggests that the very shallow depth of water table and associated thin unsaturated zone at the site cause the aquifer to behave like a confined aquifer (negligible specific yield). This finding is consistent with previous studies that have shown that the effective specific yield of an unconfined aquifer approaches zero when the capillary fringe, where sediment pores are saturated by tension, extends to land surface. Under this condition, the aquifer's response is determined by elastic storage only. Estimates of horizontal and vertical hydraulic conductivity, specific yield, specific storage, and recharge for a water-table aquifer adjacent to the Cedar River in eastern Iowa, determined by the use of analytical methods, are in close agreement with those estimated by use of a more complex, multilayer numerical model of the aquifer. Streambank leakance of the semipervious streambank materials also was estimated for the site. The streambank-leakance parameter may be considered to be a general (or lumped) parameter that accounts not only for the resistance of flow at the river-aquifer boundary, but also for the effects of partial penetration of the river and other near-stream flow phenomena not included in the theoretical development of the step-response functions.Analytical step-response functions, developed for several cases of transient hydraulic interaction between a fully penetrating stream and a confined, leaky, or water-table aquifer, are used in the convolution integral to calculate aquifer heads, streambank seepage rates, and bank storage that occur in response to stream-stage fluctuations and basinwide recharge or evapotranspiration. Two computer programs developed on the basis of these step-response functions and the convolution integral are applied to the analysis of hydraulic interaction of two alluvial stream-aquifer systems. These applications demonstrate the utility of the analytical functions and computer programs for estimating aquifer and streambank seepage rates and bank storage.

  2. Time course of ongoing activity during neuritis and following axonal transport disruption.

    PubMed

    Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew

    2018-05-01

    Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (<10%) A- and C-fiber neurons showed ongoing activity 1-15 days following vinblastine treatment. In contrast, AMS increased transiently at the vinblastine treatment site, peaking on days 4-5 (28% of C/slow Aδ-fiber neurons) and resolved by day 15. Conduction velocities were slowed in all groups. In summary, the disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.

  3. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origins of spreading injury depolarizations.

    PubMed

    von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica L; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A; Moskowitz, Michael A; Lo, Eng H; Dreier, Jens P; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk

    2015-03-04

    Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes stroke patients to PIDs as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origin of spreading injury depolarizations

    PubMed Central

    von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A.; Moskowitz, Michael A.; Lo, Eng H.; Dreier, Jens P.; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk

    2015-01-01

    SUMMARY Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes to PIDs in human stroke as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. PMID:25741731

  5. Distinct effects of CGRP on typical and atypical smooth muscle cells involved in generating spontaneous contractions in the mouse renal pelvis

    PubMed Central

    Hashitani, Hikaru; Lang, Richard J; Mitsui, Retsu; Mabuchi, Yoshio; Suzuki, Hikaru

    2009-01-01

    Background and purpose: We investigated the cellular mechanisms underlying spontaneous contractions in the mouse renal pelvis, regulated by calcitonin gene-related peptide (CGRP). Experimental approach: Spontaneous contractions, action potentials and Ca2+ transients in typical and atypical smooth muscle cells (TSMCs and ATSMCs) within the renal pelvis wall were recorded separately using tension and intracellular microelectrode recording techniques and Fluo-4 Ca2+ imaging. Immunohistochemical and electron microscopic studies were also carried out. Key results: Bundles of CGRP containing transient receptor potential cation channel, subfamily V, member 1-positive sensory nerves were situated near both TSMCs and ATSMCs. Nerve stimulation reduced the frequency but augmented the amplitude and duration of spontaneous phasic contractions, action potentials and Ca2+ transients in TSMCs. CGRP and agents increasing internal cyclic adenosine monophosphate (cAMP) mimicked the nerve-mediated modulation of TSMC activity and suppressed ATSMCs Ca2+ transients. Membrane hyperpolarization induced by CGRP or cAMP stimulators was blocked by glibenclamide, while their negative chronotropic effects were less affected. Glibenclamide enhanced TSMC Ca2+ transients but inhibited ATSMC Ca2+ transients, while both 5-hydroxydecanoate and diazoxide, a blocker and opener of mitochondrial ATP-sensitive K+ channels, respectively, reduced the Ca2+ transient frequency in both TSMCs and ATSMCs. Inhibition of mitochondrial function blocked ATSMCs Ca2+ transients and inhibited spontaneous excitation of TSMCs. Conclusions and implications: The negative chronotropic effects of CGRP result primarily from suppression of ATSMC Ca2+ transients rather than opening of plasmalemmal ATP-sensitive K+ channels in TSMCs. The positive inotropic effects of CGRP may derive from activation of TSMC L-type Ca2+ channels. Mitochondrial Ca2+ handling in ATSMCs also plays a critical role in generating Ca2+ transients. PMID:20050194

  6. Fiber type-specific afferent nerve activity induced by transient contractions of rat bladder smooth muscle in pathological states

    PubMed Central

    Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki

    2017-01-01

    Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380

  7. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    NASA Astrophysics Data System (ADS)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  8. A pulse of blue light induces a transient increase in activity of apoplastic K+ in laminar pulvinus of Phaseolus vulgaris L.

    PubMed

    Okazaki, Y; Azuma, K; Nishizaki, Y

    2000-02-01

    A pulse of blue light induced both a transient increase in activity of apoplastic K+ and membrane depolarization in laminar pulvinus of Phaseolus vulgaris L. This shows that blue-light-induced net efflux of K+ from motor cells is closely related to membrane depolarization.

  9. Antecedent occipital alpha band activity predicts the impact of oculomotor events in perceptual switching

    PubMed Central

    Nakatani, Hironori; van Leeuwen, Cees

    2013-01-01

    Oculomotor events such as blinks and saccades transiently interrupt the visual input and, even though this mostly goes undetected, these brief interruptions could still influence the percept. In particular, both blinking and saccades facilitate switching in ambiguous figures such as the Necker cube. To investigate the neural state antecedent to these oculomotor events during the perception of an ambiguous figure, we measured the human scalp electroencephalogram (EEG). When blinking led to perceptual switching, antecedent occipital alpha band activity exhibited a transient increase in amplitude. When a saccade led to switching, a series of transient increases and decreases in amplitude was observed in the antecedent occipital alpha band activity. Our results suggest that the state of occipital alpha band activity predicts the impact of oculomotor events on the percept. PMID:23745106

  10. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections

    USGS Publications Warehouse

    Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.

    2011-01-01

    Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.

  11. Arctic water tracks retain phosphorus and transport ammonium

    NASA Astrophysics Data System (ADS)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  12. Long time response of soft magnetorheological gels.

    PubMed

    An, Hai-Ning; Sun, Bin; Picken, Stephen J; Mendes, Eduardo

    2012-04-19

    Swollen physical magnetorheological (MR) gels were obtained by self-assembling of triblock copolymers containing dispersed soft magnetic particles. The transient rheological responses of these systems were investigated experimentally. Upon sudden application of a homogeneous magnetic field step change, the storage modulus of MR gels continued to increase with time. Such increase trend of the storage modulus could be expressed by a double-exponential function with two distinct modes, a fast and a slow one. The result was compared with the transient rheological response of equivalent MR fluids (paraffin oil without copolymer) and a MR elastomer (PDMS) and interpreted as the consequence of strong rearrangement of the original particle network under magnetic field. Similar to the structure evolution of MR fluids, the ensemble of results suggests that "chaining" and "clustering" processes are also happening inside the gel and are responsible for the rheological behavior, provided they are happening on a smaller length scale (long chains and clusters are hindered). We show that response times of several minutes are typical for the slow response of MR gels. The characteristic time t(2) for the slow process is significantly dependent on the magnetic flux density, the matrix viscoelastic property, particle volume fraction, and sample's initial particle distribution. In order to validate our results, the role of dynamic strain history was clarified. We show that, in the linear viscoelastic region, the particle rearrangement of MR gels was not hindered or accelerated by the dynamic strain history.

  13. "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".

    PubMed

    Doidy, Joan; Li, Ying; Neymotin, Benjamin; Edwards, Molly B; Varala, Kranthi; Gresham, David; Coruzzi, Gloria M

    2016-02-03

    Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking. Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run"). Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the functional read-out of de novo transcripts produced by transient TF-target interactions allowed us to capture new models for genome-wide transcriptional control.

  14. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  15. Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.

    2015-01-01

    This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  16. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE PAGES

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  17. Transient Thermal State of an Active Braille Matrix with Incorporated Thermal Actuators by Means of Finite Element Method

    ERIC Educational Resources Information Center

    Alutei, Alexandra-Maria; Szelitzky, Emoke; Mandru, Dan

    2013-01-01

    In this article the authors present the transient thermal analysis for a developed thermal linear actuator based on wax paraffin used to drive the cells of a Braille device. A numerical investigation of transient heat transfer phenomenon during paraffin melting and solidification in an encapsulated recipient has been carried out using the ANSYS…

  18. Stability of Beriplast P fibrin sealant: storage and reconstitution.

    PubMed

    Eberhard, Ulrich; Broder, Martin; Witzke, Günther

    2006-04-26

    This study was performed to investigate the stability of Beriplast P fibrin sealant (FS) across a range of storage conditions, both pre- and post-reconstitution. Storage stability of the FS was evaluated during long-term refrigeration (24 months) with or without interim storage at elevated temperatures (40 degrees C for 1 week and 25 degrees C for 1 and 3 months). Stability of individual FS components was assessed by measuring: fibrinogen content, Factor XIII activity (FXIII), thrombin activity and aprotinin potency. The package integrity of each component was also checked (sterility testing, moisture content and pH). Storage stability was also evaluated by testing the reconstituted product for adhesion (tearing force testing after mixing the solutions) and sterility. Reconstitution stability was evaluated following 3-months' storage, for up to 50 h post-reconstitution using the same tests as for the storage stability investigations. Pre-defined specifications were met for fibrinogen content, Factor XIII activity, and thrombin activity, demonstrating storage stability. Package integrity and the functionality and sterility of the reconstituted product were confirmed throughout. Reconstitution stability was demonstrated for up to 50 h following reconstitution, in terms of both tearing force and sterility tests. In conclusion, the storage stability of Beriplast P was demonstrated over a range of 24-month storage schedules including interim exposure to elevated temperature, and the reconstituted product was stable for up to 50 h.

  19. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling.

    PubMed

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-09-15

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system.

  20. Local tolerance and stability up to 24 months of a new 20% proline-stabilized polyclonal immunoglobulin for subcutaneous administration.

    PubMed

    Maeder, Werner; Lieby, Patricia; Sebald, Andrea; Spycher, Martin; Pedrussio, Renzo; Bolli, Reinhard

    2011-01-01

    Subcutaneous administration of human IgG is an alternative to intravenous replacement therapy that is associated with more stable serum IgG levels and fewer systemic adverse events. Highly concentrated IgG solutions are most convenient to minimize infusion volume, but their preparation and stability presents substantial technical difficulties. We report on the stability and local tolerance of IgPro20, an l-proline-stabilized, 20% polyvalent human IgG developed for subcutaneous administration. Stability was tested according to ICH guidelines. Local tolerance and vasoactivity were examined in rabbit and rat models, respectively. The presence of l-proline in IgPro20 reduced viscosity and addition of Polysorbate 80 and inert gassing improved the appearance of the solution. After storage at 25 °C for 24 months, monomer + dimer content, aggregates, and fragments were within specification (≥ 90.0%, ≤ 4.0%, and ≤ 10.0%, respectively), and Fc function and antibody activities were maintained. In rats, intravenous injection of IgPro20 produced mild and transient hypotension comparable to that seen with intravenous IgG products. Local tolerance of IgPro20 in rabbits was comparable to that of a marketed subcutaneous IgG, Beriglobin P. Functionality and quality of IgPro20 are maintained during storage at 25 °C for at least 24 months. The product is well tolerated as assessed in animal models. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  1. Control of liquid cooling garments: technical control of body heat storage.

    PubMed

    Hexamer, M; Werner, J

    1996-07-01

    This paper describes a concept of how liquid cooling garments (LCG) can be automatically controlled by the objective physiological state. The technically controlled parameter was mean body temperature which was calculated from the measured rectal and mean skin temperature. This was motivated by the fact that mean body temperature is the basis for estimating body heat storage, a commonly used measure of thermal strain. Here the setpoint of mean body temperature was the individual value taken in a preceeding resting period and it was the task of the technical controller to keep the actual value of mean body temperature as close as possible to the setpoint. The most important tuning parameters of the controller were the weighting coefficients for rectal and mean skin temperature in the calculation for mean body temperature. The ratio of these two coefficients determined the degree of compensation for any rectal temperature shift by changing mean skin temperature. Test experiments were carried out (n = 5) in which the controller was able to clamp mean body temperature to the setpoint thereby preventing heat storage. Although exercise rate (75 W) was the same, sweating and warm discomfort occurred in some cases due to the individual rectal temperature rise. Another source of discomfort were delays or paradoxical time courses of rectal temperature at the start or end of exercise which were responsible for a delayed onset of cooling or heating. To avoid these effects, the oxygen consumption signal, which is very fast and directly correlated to the exercise rate, was added to the control loop. Each increase of this parameter above its resting level lowered suit temperature. As heat storage should not be completely rejected by this new signal pathway, the controller for mean body temperature still remained active. The repetition of the experiments showed that the load error in the control loop was smaller and the comfort level in transient phases higher. For a further improvement of this concept it is recommended that the weighting coefficients be tuned to the individual requirements.

  2. Subnanosecond control of excitons in coupled quantum well nanostructures: Photonic storage and Exciton Conveyer devices

    NASA Astrophysics Data System (ADS)

    Winbow, Alexander Graham

    Indirect excitons in GaAs coupled quantum well nanostructures are a versatile system for fundamental study of cold neutral bosonic gases and demonstration of novel optoelectronic devices based on excitons --- a bound electron--hole pair --- rather than electrons. Indirect exciton lifetimes range from nanoseconds to microseconds and cool rapidly after photoexcitation to the lattice temperature. Lithographically-patterned electrodes enable design of potential energy landscapes, and both energy and lifetime can be controlled in situ, rapidly, on timescales much shorter than the exciton lifetime. Such intrinsically optoelectronic devices can operate at speeds relevant to optical networks, and later be fabricated in other semiconductors for higher-temperature operation. Two different kinds of devices are demonstrated: Photon storage --- an optical memory --- with 250 ps rise time of the readout optical signal and storage time reaching microseconds was implemented with indirect excitons in CQW. The storage and release of photons was controlled by the gate voltage pulse, and the transient processes in the CQW studied by measuring the kinetics of the exciton emission spectra. This control of excitons on timescales much shorter than the exciton lifetime demonstrates the feasibility of studying excitons in in situ controlled electrostatic traps. The Exciton Conveyer is a laterally moving electrostatic lattice potential for actively transporting excitons. Generated by laterally modulated electrodes, the potential velocity and depth are controlled in situ by frequency and voltage. We observed exciton transport characterized by average exciton cloud spatial extension over several tens of microns, and observed dynamical localization--delocalization transitions for the excitons in the conveyer: In the localization regime of deeper potentials and moderate exciton density, excitons are moved by the conveyer; in the delocalized regime of shallower lattice potential or high exciton density, excitons do not follow the conveyer motion. We explore conveyer velocities both slower and faster than phonon velocities. Realizing subnanosecond manipulations of exciton energy and lifetime required versatile control of pulsed and multiple AC RF electrical signals in optical, liquid helium cryogenic systems. Considerable detail is presented of design, construction, and test of flexible experimental apparatus.

  3. Site 300 City Water Master Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jeff

    Lawrence Livermore National Laboratory (LLNL), a scientific research facility, operates an experimental test site known as Site 300. The site is located in a remote area of southeastern Alameda County, California, and consists of about 100 facilities spread across 7,000-acres. The Site 300 water system includes groundwater wells and a system of storage tanks, booster pumps, and underground piping to distribute water to buildings and significant areas throughout the site. Site 300, which is classified as a non-transient non-community (NTNC) water system, serves approximately 110 employees through 109 service connections. The distribution system includes approximately 76,500-feet of water mains varyingmore » from 4- to 10-inches in diameter, mostly asbestos cement (AC) pipe, and eleven water storage tanks. The water system is divided into four pressure zones fed by three booster pump stations to tanks in each zone.« less

  4. A single-atom quantum memory in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freer, Solomon; Simmons, Stephanie; Laucht, Arne

    Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less

  5. A single-atom quantum memory in silicon

    DOE PAGES

    Freer, Solomon; Simmons, Stephanie; Laucht, Arne; ...

    2017-03-20

    Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less

  6. Flight experiment of thermal energy storage. [for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1989-01-01

    Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. Salts shrink as they solidify, a change reaching 30 percent for some salts. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity.

  7. Switching on Flowers: Transient LEAFY Induction Reveals Novel Aspects of the Regulation of Reproductive Development in Arabidopsis

    PubMed Central

    Wagner, Doris; Meyerowitz, Elliot M.

    2011-01-01

    Developmental fate decisions in cell populations fundamentally depend on at least two parameters: a signal that is perceived by the cell and the intrinsic ability of the cell to respond to the signal. The same regulatory logic holds for phase transitions in the life cycle of an organism, for example the switch to reproductive development in flowering plants. Here we have tested the response of the monocarpic plant species Arabidopsis thaliana to a signal that directs flower formation, the plant-specific transcription factor LEAFY (LFY). Using transient steroid-dependent LEAFY (LFY) activation in lfy null mutant Arabidopsis plants, we show that the plant’s competence to respond to the LFY signal changes during development. Very early in the life cycle, the plant is not competent to respond to the signal. Subsequently, transient LFY activation can direct primordia at the flanks of the shoot apical meristem to adopt a floral fate. Finally, the plants acquire competence to initiate the flower-patterning program in response to transient LFY activation. Similar to a perennial life strategy, we did not observe reprogramming of all primordia after perception of the transient signal, instead only a small number of meristems responded, followed by reversion to the prior developmental program. The ability to initiate flower formation and to direct flower patterning in response to transient LFY upregulation was dependent on the known direct LFY target APETALA1 (AP1). Prolonged LFY or activation could alter the developmental gradient and bypass the requirement for AP1. Prolonged high AP1 levels, in turn, can also alter the plants’ competence. Our findings shed light on how plants can fine-tune important phase transitions and developmental responses. PMID:22639600

  8. Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage.

    PubMed

    Fonseca, F; Béal, C; Corrieu, G

    2000-02-01

    We have developed a method to quantify the resistance to freezing and frozen storage of lactic acid starters, based on measuring the time necessary to reach the maximum acidification rate in milk (tm) using the Cinac system. Depending on the operating conditions, tm increased during the freezing step and storage. The loss of acidification activity during freezing was quantified by the difference (delta tm) between the tm values of the concentrated cell suspension before and after freezing. During storage at -20 degrees C, linear relationships between tm and the storage time were established. Their slope, k, allowed the quantitation of the decrease in acidification activity during 9-14 weeks of frozen storage. The method was applied to determine the resistance to freezing and frozen storage of four strains of lactic acid bacteria and to quantify the cryoprotective effect of glycerol.

  9. Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal epithelial cells

    PubMed Central

    Mergler, Stefan; Garreis, Fabian; Sahlmüller, Monika; Reinach, Peter S.; Paulsen, Friedrich; Pleyer, Uwe

    2010-01-01

    Thermosensitive transient receptor potential proteins (TRPs) such as TRPV1-TRPV4 are all heat-activated non-selective cation channels that are modestly permeable to Ca2+. TRPV1, TRPV3 and TRPV4 functional expression were previously identified in human corneal epithelial cells (HCEC). However, the membrane currents were not described underlying their activation by either selective agonists or thermal variation. This study characterized the membrane currents and [Ca 2+]i transients induced by thermal and agonist TRPV1 and 4 stimulation. TRPV1 and 4 expressions were confirmed by RT-PCR and TRPV2 transcripts were also detected. In fura2-loaded HCEC, a TRPV1-3 selective agonist, 100 µM 2-aminoethoxydiphenyl borate (2-APB), induced intracellular Ca2+ transients and an increase in non-selective cation outward currents that were suppressed by ruthenium-red (RuR) (10–20 µM), a nonselective TRPV channel blocker. These changes were also elicited by rises in ambient temperature from 25 °C to over 40 °C. RuR (5 µM) and a selective TRPV1 channel blocker capsazepine (CPZ) (10 µM) or another related blocker, lanthanum chloride (La3+) (100 µM) suppressed these temperature-induced Ca2+ increases. Planar patch-clamp technique was used to characterize the currents underlying Ca2+ transients. Increasing the temperature to over 40 °C induced reversible rises in non-selective cation currents. Moreover, a hypotonic challenge (25 %) increased non-selective cation currents confirming TRPV4 activity. We conclude that HCEC possess in addition to thermo-sensitive TRPV3 activity TRPV1, TRPV2 and TRPV4 activity. Their activation confers temperature sensitivity at the ocular surface, which may protect the cornea against such stress. PMID:21506114

  10. Dynamin and myosin regulate differential exocytosis from mouse adrenal chromaffin cells.

    PubMed

    Chan, Shyue-An; Doreian, Bryan; Smith, Corey

    2010-11-01

    Neuroendocrine chromaffin cells of the adrenal medulla represent a primary output for the sympathetic nervous system. Chromaffin cells release catecholamine as well as vaso- and neuro-active peptide transmitters into the circulation through exocytic fusion of large dense-core secretory granules. Under basal sympathetic activity, chromaffin cells selectively release modest levels of catecholamines, helping to set the "rest and digest" status of energy storage. Under stress activation, elevated sympathetic firing leads to increased catecholamine as well as peptide transmitter release to set the "fight or flight" status of energy expenditure. While the mechanism for catecholamine release has been widely investigated, relatively little is known of how peptide transmitter release is regulated to occur selectively under elevated stimulation. Recent studies have shown selective catecholamine release under basal stimulation is accomplished through a transient, restricted exocytic fusion pore between granule and plasma membrane, releasing a soluble fraction of the small, diffusible molecules. Elevated cell firing leads to the active dilation of the fusion pore, leading to the release of both catecholamine and the less diffusible peptide transmitters. Here we propose a molecular mechanism regulating the activity-dependent dilation of the fusion pore. We review the immediate literature and provide new data to formulate a working mechanistic hypothesis whereby calcium-mediated dephosphorylation of dynamin I at Ser-774 leads to the recruitment of the molecular motor myosin II to actively dilate the fusion pore to facilitate release of peptide transmitters. Thus, activity-dependent dephosphorylation of dynamin is hypothesized to represent a key molecular step in the sympatho-adrenal stress response.

  11. Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons.

    PubMed

    Zillmer, Rüdiger; Brunel, Nicolas; Hansel, David

    2009-03-01

    We present results of an extensive numerical study of the dynamics of networks of integrate-and-fire neurons connected randomly through inhibitory interactions. We first consider delayed interactions with infinitely fast rise and decay. Depending on the parameters, the network displays transients which are short or exponentially long in the network size. At the end of these transients, the dynamics settle on a periodic attractor. If the number of connections per neuron is large ( approximately 1000) , this attractor is a cluster state with a short period. In contrast, if the number of connections per neuron is small ( approximately 100) , the attractor has complex dynamics and very long period. During the long transients the neurons fire in a highly irregular manner. They can be viewed as quasistationary states in which, depending on the coupling strength, the pattern of activity is asynchronous or displays population oscillations. In the first case, the average firing rates and the variability of the single-neuron activity are well described by a mean-field theory valid in the thermodynamic limit. Bifurcations of the long transient dynamics from asynchronous to synchronous activity are also well predicted by this theory. The transient dynamics display features reminiscent of stable chaos. In particular, despite being linearly stable, the trajectories of the transient dynamics are destabilized by finite perturbations as small as O(1/N) . We further show that stable chaos is also observed for postsynaptic currents with finite decay time. However, we report in this type of network that chaotic dynamics characterized by positive Lyapunov exponents can also be observed. We show in fact that chaos occurs when the decay time of the synaptic currents is long compared to the synaptic delay, provided that the network is sufficiently large.

  12. Transient Volcano Deformation Event Detection over Variable Spatial Scales in Alaska

    NASA Astrophysics Data System (ADS)

    Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Transient deformation events driven by volcanic activity can be monitored using increasingly dense networks of continuous Global Positioning System (GPS) ground stations. The wide spatial extent of GPS networks, the large number of GPS stations, and the spatially and temporally varying scale of deformation events result in the mixing of signals from multiple sources. Typical analysis then necessitates manual identification of times and regions of volcanic activity for further study and the careful tuning of algorithmic parameters to extract possible transient events. Here we present a computer-aided discovery system that facilitates the discovery of potential transient deformation events at volcanoes by providing a framework for selecting varying spatial regions of interest and for tuning the analysis parameters. This site specification step in the framework reduces the spatial mixing of signals from different volcanic sources before applying filters to remove interfering signals originating from other geophysical processes. We analyze GPS data recorded by the Plate Boundary Observatory network and volcanic activity logs from the Alaska Volcano Observatory to search for and characterize transient inflation events in Alaska. We find 3 transient inflation events between 2008 and 2015 at the Akutan, Westdahl, and Shishaldin volcanoes in the Aleutian Islands. The inflation event detected in the first half of 2008 at Akutan is validated other studies, while the inflation events observed in early 2011 at Westdahl and in early 2013 at Shishaldin are previously unreported. Our analysis framework also incorporates modelling of the transient inflation events and enables a comparison of different magma chamber inversion models. Here, we also estimate the magma sources that best describe the deformation observed by the GPS stations at Akutan, Westdahl, and Shishaldin. We acknowledge support from NASA AIST-NNX15AG84G (PI: V. Pankratius).

  13. Role of invertase activity in processing quality of potatoes: Effect of storage temperature and duration.

    PubMed

    Bandana; Sharma, Vineet; Singh, Brajesh; Raigond, Pinky; Kaushik, S K

    2016-03-01

    Invertase activity and processing attributes of three potato cultivars were studied to find the reason for deterioration of processing quality during their prolonged storage in commercial cold stores (4°C) as compared to elevated temperature storage (12 ± 0.5°C), with CIPC {Isopropyl-N-(3-Cholorophenyl) carbamate}. Lower storage temperature (4°C) tended to be more effective in increasing invertase activity of potato tubers than elevated temperature. Non-processing cultivar viz., Kufri Pukhraj resulted in accumulation of more invertase activity than relatively two processing cultivars. Kufri Chipsona-1 and Kufri Chipsona-3 at 12 ± 0.5°C possessed basal invertase activity ranging from 39.3 to 79.8 and 54.1 to 93.8 (pmoles hexose h⁻¹ g⁻¹ f.wt.) respectively, during two years. Total invertase activity at 4°C increased abruptly and remained high from 30 to 60 days of storage. The activity progressively reached 90.6 to 106.6 and 81.4 to 101.3 during both the years respectively, after 60 days of storage to that observed initially. Reducing sugar content increased from 23.3 to 105.7 and 389.0 to 1138.2 (mg 100g⁻¹ f.wt.) after 90 days of storage at 12 ± 0.5°C and 4°C, respectively. Studies concluded that basal and total invertase, were responsible for cold-induced sweetening and resulted in deterioration of processing quality of potatoes during storage at 4°C. Since this activity is low at 12 ± 0.5°C, the processing traits remained acceptable to industry and consumers.

  14. Isothiocyanates from Wasabia japonica activate transient receptor potential ankyrin 1 channel.

    PubMed

    Uchida, Kunitoshi; Miura, Yosuke; Nagai, Masashi; Tominaga, Makoto

    2012-11-01

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) and 6-(methylthio)hexyl isothiocyanate (6-MTITC) have low pungency and are responsible for the fresh flavor of wasabi (Wasabia japonica [Miq] Matsumura). In this study, we found that these two isothiocyanates activate transient receptor potential ankyrin 1 (TRPA1), and 6-MSITC activates transient receptor potential vanilloid 1 (TRPV1), but not other transient receptor potential channels expressed in sensory neurons. Both 6-MSITC and 6-MTITCinduced intracellular Ca(2+) increases in human embryonic kidney-derived 293 cells expressing mouse TRPA1 (mTRPA1) as measured by Ca(2+) imaging. In whole-cell patch-clamp recordings, 6-MSITC and 6-MTITC dose-dependently activated both mTRPA1 (EC(50) = 147±26 µM for 6-MSITC and 30±3 µM for 6-MTITC) and human TRPA1 (hTRPA1; EC(50) = 39±4 µM for 6-MSITC and 34±3 µM for 6-MTITC). In addition, TRPA1 N-terminal cysteines, which are reported to be important for channel activation by electrophilic ligands, were involved in 6-MSITC- and 6-MTITC-evoked TRPA1 activation. These isothiocyanates also activated endogenous TRPA1 expressed in mouse dorsal root ganglion neurons and intraplantar injection of 10-30 mM 6-MSITC-evoked pain-related behaviors in mice. These results indicate the following: 1) 6-MSITC and 6-MTITC activate both mTRPA1 and hTRPA1; 2) 6-MSITC activates mTRPV1; and 3) the pharmacological functions of these isothiocyanates could be derived from TRPA1 activation.

  15. Effects from fine muscle and cutaneous afferents on spinal locomotion in cats

    PubMed Central

    Kniffki, K.-D.; Schomburg, E. D.; Steffens, H.

    1981-01-01

    1. The effects of chemically activated fine muscle afferents (groups III and IV) and electrically activated cutaneous afferents on motoneuronal discharges were studied before and during fictive locomotion induced pharmacologically by i.v. administration of nialamide and l-DOPA in high spinal cats. Efferent activity was recorded simultaneously from nerve filaments to ipsi- and contralateral extensor and flexor muscles. In addition, intracellular recordings were made from lumbar α-motoneurones. 2. After nialamide but before treatment with l-DOPA, in some cases, transient locomotor-like discharges were induced by an increased activity in fine muscle afferents. The response pattern in nerves to both hind limbs could be different showing e.g. only transient alternating activity between knee flexor and extensor of one limb but not of the other one. 3. Treatment with l-DOPA did not always cause fictive locomotion. Often not all motoneurone pools showed rhythmic activity. In these cases stimulation of group III and IV muscle afferents usually caused transient periodic activity. In cases with apparent rhythmic activity, algesic stimulation of the gastrocnemius—soleus muscle caused an accentuation of the rhythm by a more abrupt transition from the active phase to the non-active interval. Again, the response patterns on both sides were not uniform in all cases. 4. A second type of response to activation of fine muscle afferents had a quite different character: the rhythmic activity was more or less completely overridden by a strong transient tonic hyperactivity or the rhythm was transiently blocked. These phenomena did not occur in the same way in all nerves. 5. Electrical stimulation of cutaneous nerves of the hind limb generally induced the same response pattern as chemical stimulation of the group III and IV muscle afferents. The effects varied depending on the stimulus strength and the nerve. 6. The results revealed that cutaneous and fine muscle afferents not only have similar functions in the reflex control of a limb but also in evocation and modulation of locomotion. Therefore, it is assumed that both types of afferents may serve together as a peripheral feed-back to the spinal locomotor centre. PMID:7320927

  16. Effect of frozen storage on the structure and enzymatic activities of myofibrillar proteins of rabbit skeletal muscle.

    PubMed

    Kang, J O; Ito, T; Fukazawa, T

    1983-01-01

    The effect of frozen storage on the biochemical properties of myofibrils, and of their major constituents, actin and myosin, was investigated. Extractability of myofibrillar proteins increased slightly for 3 weeks during frozen storage of muscle, decreasing thereafter. The change in myofibrillar ATPase activity during frozen storage was consistent with that of a reconstituted acto-heavy meromyosin (HMM) complex prepared from frozen stored muscle at the same weight ratio of actin to myosin as in situ. However, myosin ATPase activity showed a different pattern of change when compared with myofibrillar ATPase activity. The maximum velocity of acto-HMM ATPase activity and the apparent dissociation constant of the acto-HMM complex decreased for 1 week during frozen storage, increasing thereafter, indicating that the affinity of actin for myosin was greatest in muscle which had been frozen for 1 week. Copyright © 1983. Published by Elsevier Ltd.

  17. Numerical simulation of the groundwater-flow system of the Kitsap Peninsula, west-central Washington

    USGS Publications Warehouse

    Frans, Lonna M.; Olsen, Theresa D.

    2016-05-05

    A groundwater-flow model was developed to improve understanding of water resources on the Kitsap Peninsula. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater, and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Twelve hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit form the basis of the groundwater-flow model.Groundwater flow on the Kitsap Peninsula was simulated using the groundwater-flow model, MODFLOW‑NWT. The finite difference model grid comprises 536 rows, 362 columns, and 14 layers. Each model cell has a horizontal dimension of 500 by 500 feet, and the model contains a total of 1,227,772 active cells. Groundwater flow was simulated for transient conditions. Transient conditions were simulated for January 1985–December 2012 using annual stress periods for 1985–2004 and monthly stress periods for 2005–2012. During model calibration, variables were adjusted within probable ranges to minimize differences between measured and simulated groundwater levels and stream baseflows. As calibrated to transient conditions, the model has a standard deviation for heads and flows of 47.04 feet and 2.46 cubic feet per second, respectively.Simulated inflow to the model area for the 2005–2012 period from precipitation and secondary recharge was 585,323 acre-feet per year (acre-ft/yr) (93 percent of total simulated inflow ignoring changes in storage), and simulated inflow from stream and lake leakage was 43,905 acre-ft/yr (7 percent of total simulated inflow). Simulated outflow from the model primarily was through discharge to streams, lakes, springs, seeps, and Puget Sound (594,595 acre-ft/yr; 95 percent of total simulated outflow excluding changes in storage) and through withdrawals from wells (30,761 acre-ft/yr; 5 percent of total simulated outflow excluding changes in storage).Six scenarios were formulated with input from project stakeholders and were simulated using the calibrated model to provide representative examples of how the model could be used to evaluate the effects on water levels and stream baseflows of potential changes in groundwater withdrawals, in consumptive use, and in recharge. These included simulations of a steady-state system, no-pumping and return flows, 15-percent increase in current withdrawals in all wells, 80-percent decrease in outdoor water to simulate effects of conservation efforts, 15-percent decrease in recharge from precipitation to simulate a drought, and particle tracking to determine flow paths.Changes in water-level altitudes and baseflow amounts vary depending on the stress applied to the system in these various scenarios. Reducing recharge by 15 percent between 2005 and 2012 had the largest effect, with water-level altitudes declining throughout the model domain and baseflow amounts decreasing by as much as 18 percent compared to baseline conditions. Changes in pumping volumes had a smaller effect on the model. Removing all pumping and resulting return flows caused increased water-level altitudes in many areas and increased baseflow amounts of between 1 and 3 percent.

  18. Transient behavior of an actively mode-locked semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Bergman, L. A.; Johnston, A. R.

    1982-01-01

    Experimental investigation was carried out to study the transient regimes during the buildup and decay of the active mode-locked state in a laser diode. The mode locking was achieved through a sinusoidal modulation of the diode current with the laser in an external cavity. The pulse shape evolution and the time constants for the buildup and decay were determined.

  19. Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels.

    PubMed

    Wojciechowski, Jonathan P; Martin, Adam D; Thordarson, Pall

    2018-02-28

    It remains challenging to program soft materials to show dynamic, tunable time-dependent properties. In this work, we report a strategy to design transient supramolecular hydrogels based on kinetic control of competing reactions. Specifically, the pH-triggered self-assembly of a redox-active supramolecular gelator, N,N'-dibenzoyl-l-cystine (DBC) in the presence of a reducing agent, which acts to disassemble the system. The lifetimes of the transient hydrogels can be tuned simply by pH or reducing agent concentration. We find through kinetic analysis that gel formation hinders the ability of the reducing agent and enables longer transient hydrogel lifetimes than would be predicted. The transient hydrogels undergo clean cycles, with no kinetically trapped aggregates observed. As a result, multiple transient hydrogel cycles are demonstrated and can be predicted. This work contributes to our understanding of designing transient assemblies with tunable temporal control.

  20. Influence of time, storage temperature and freeze/thaw cycles on the activity of digestive enzymes from gilthead sea bream (Sparus aurata).

    PubMed

    Solovyev, Mikhail; Gisbert, Enric

    2016-10-01

    In this study, we tested the effects of long-term storage (2 years) at -20 °C and short-term storage (several hours) in ice and freeze/thaw cycles on the activities of pancreatic, gastric and intestinal (brush border and cytosolic) digestive enzymes in a teleost fish species. The results revealed a significant lose in activity of pancreatic (trypsin, chymotrypsin, total alkaline proteases and α-amylase) and intestinal cytosolic (leucine-alanine peptidase) enzymes between 140 and 270 days of storage at -20 °C, whereas in contrast, the activity of all the assayed brush border enzymes remained constant during the first 2 years of storage at -20 °C. During short-term storage conditions, the most stable enzymes assayed were those of the enterocytes of the brush border, which did not show any change in activity after being held for 5 h in ice. Five freezing and thawing cycles did not affect the activity of the intestinal brush border enzymes and the cytosolic ones, whereas the activity of trypsin, α-amylase and bile-salt-activated lipase was significantly affected by the number of freezing and thawing cycles. No changes in pepsin activity were found in samples exposed to 1 and 2 freezing and thawing cycles.

  1. Bypass apparatus and method for series connected energy storage devices

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik

    2000-01-01

    A bypass apparatus and method for series connected energy storage devices. Each of the energy storage devices coupled to a common series connection has an associated bypass unit connected thereto in parallel. A current bypass unit includes a sensor which is coupled in parallel with an associated energy storage device or cell and senses an energy parameter indicative of an energy state of the cell, such as cell voltage. A bypass switch is coupled in parallel with the energy storage cell and operable between a non-activated state and an activated state. The bypass switch, when in the non-activated state, is substantially non-conductive with respect to current passing through the energy storage cell and, when in the activated state, provides a bypass current path for passing current to the series connection so as to bypass the associated cell. A controller controls activation of the bypass switch in response to the voltage of the cell deviating from a pre-established voltage setpoint. The controller may be included within the bypass unit or be disposed on a control platform external to the bypass unit. The bypass switch may, when activated, establish a permanent or a temporary bypass current path.

  2. Application of the finite element groundwater model FEWA to the engineered test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, P.M.; Davis, E.C.

    1985-09-01

    A finite element model for water transport through porous media (FEWA) has been applied to the unconfined aquifer at the Oak Ridge National Laboratory Solid Waste Storage Area 6 Engineered Test Facility (ETF). The model was developed in 1983 as part of the Shallow Land Burial Technology - Humid Task (ONL-WL14) and was previously verified using several general hydrologic problems for which an analytic solution exists. Model application and calibration, as described in this report, consisted of modeling the ETF water table for three specialized cases: a one-dimensional steady-state simulation, a one-dimensional transient simulation, and a two-dimensional transient simulation. Inmore » the one-dimensional steady-state simulation, the FEWA output accurately predicted the water table during a long period in which there were no man-induced or natural perturbations to the system. The input parameters of most importance for this case were hydraulic conductivity and aquifer bottom elevation. In the two transient cases, the FEWA output has matched observed water table responses to a single rainfall event occurring in February 1983, yielding a calibrated finite element model that is useful for further study of additional precipitation events as well as contaminant transport at the experimental site.« less

  3. Characterizing the role of the hippocampus during episodic simulation and encoding.

    PubMed

    Thakral, Preston P; Benoit, Roland G; Schacter, Daniel L

    2017-12-01

    The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval. © 2017 Wiley Periodicals, Inc.

  4. Twisting and subunit rotation in single FOF1-ATP synthase

    PubMed Central

    Sielaff, Hendrik; Börsch, Michael

    2013-01-01

    FOF1-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single FOF1-ATP synthases. PMID:23267178

  5. Transient Air Infiltration/Exfiltration in Walk-In Coolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faramarzi, Ramin; Navaz, H. K.; Kamensky, K.

    Walk-in coolers are room-sized, insulated, and refrigerated compartments for food product storage. Walk-ins have areas equal or below 280 m2 (3,000 ft2), and are classified either as coolers operating above 0 degrees C (32 degrees F) (medium-temperature) to store fresh fruit, vegetables, and dairy products, or freezers that operate below 0 degrees C (32 degrees F) (low-temperature) to meet health and safety standards of frozen food products. Walk-ins are typically found in restaurants as well as small- and medium-to-large grocery stores or supermarkets.

  6. Transient plasma estimation: a noise cancelling/identification approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J.V.; Casper, T.; Kane, R.

    1985-03-01

    The application of a noise cancelling technique to extract energy storage information from sensors occurring during fusion reactor experiments on the Tandem Mirror Experiment-Upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is examined. We show how this technique can be used to decrease the uncertainty in the corresponding sensor measurements used for diagnostics in both real-time and post-experimental environments. We analyze the performance of algorithm on the sensor data and discuss the various tradeoffs. The algorithm suggested is designed using SIG, an interactive signal processing package developed at LLNL.

  7. Pulse power applications of silicon diodes in EML capacitive pulsers

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Rolf; McNab, Ian; Dobbie, Clyde; Bernhardt, Tom; Puterbaugh, Robert; Levine, Frank; Coradeschi, Tom; Rinaldi, Vito

    1993-01-01

    Crowbar diodes are used for increasing the energy transfer from capacitive pulse forming networks. They also prevent voltage reversal on the energy storage capacitors. 52 mm diameter diodes with a 5 kV reverse blocking voltage, rated 40 kA were successfully used for the 32 MJ SSG rail gun. An uprated diode with increased current capability and a 15 kV reverse blocking voltage has been developed. Transient thermal analysis has predicted the current ratings for different pulse length. Analysis verification is obtained from destructive testing.

  8. Preconditioning the Helmholtz Equation for Rigid Ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1998-01-01

    An innovative hyperbolic preconditioning technique is developed for the numerical solution of the Helmholtz equation which governs acoustic propagation in ducts. Two pseudo-time parameters are used to produce an explicit iterative finite difference scheme. This scheme eliminates the large matrix storage requirements normally associated with numerical solutions to the Helmholtz equation. The solution procedure is very fast when compared to other transient and steady methods. Optimization and an error analysis of the preconditioning factors are present. For validation, the method is applied to sound propagation in a 2D semi-infinite hard wall duct.

  9. Changes in the enzymatic activity of soil samples upon their storage

    NASA Astrophysics Data System (ADS)

    Dadenko, E. V.; Kazeev, K. Sh.; Kolesnikov, S. I.; Val'Kov, V. F.

    2009-12-01

    The influence of the duration and conditions of storage of soil samples on the activity of soil enzymes (catalase, β-fructofuranosidase, and dehydrogenase) was studied for the main soils of southern Russia (different subtypes of chernozems, chestnut soils, brown forest soils, gray forest soils, solonetzes, and solonchaks). The following soil storage conditions were tested: (1) the air-dry state at room temperature, (2) the airdry state at a low positive (in a refrigerator, +4°C) temperature, (3) naturally moist samples at a low positive temperature, and (4) naturally moist samples at a negative (in a freezer, -5°C) temperature. It was found that the sample storing caused significant changes in the enzymatic activities, which depended on the soil type, the land use, the type of enzyme, and the duration and conditions of the sample storage. In the course of the storage, the changes in the enzymatic activity had a nonlinear character. The maximum changes were observed in the initial period (up to 12 weeks). Then, a very gradual decrease in the activity of the studied enzymes was observed. Upon the long-term (>12 weeks) storage under the different conditions, the difference in the activities of the soil enzymes became less pronounced. The storage of soil samples in the air-dried state at room temperature can be recommended for mass investigations.

  10. Using New Theory and Experimental Methods to Understand the Relative Controls of Storage, Antecedent Conditions and Precipitation Intensity on Transit Time Distributions through a Sloping Soil Lysimeter

    NASA Astrophysics Data System (ADS)

    Kim, M.; Pangle, L. A.; Cardoso, C.; Lora, M.; Wang, Y.; Harman, C. J.; Troch, P. A. A.

    2014-12-01

    Transit time distributions (TTD) are an efficient way of characterizing transport through the complex flow dynamics of a hydrologic system, and can serve as a basis for spatially-integrated solute transport modeling. Recently there has been progress in the development of a theory of time-variable TTDs that captures the effect of temporal variability in the timing of fluxes as well as changes in flow pathways. Furthermore, a new formulation of this theory allows the essential transport properties of a system to be parameterized by a physically meaningful time-variable probability distribution, the Ω function. This distribution determines how the age distribution of water in storage is sampled by the outflow. The form of the Ω function varies if the flow pathways change, but is not determined by the timing of fluxes (unlike the TTD). In this study, we use this theory to characterize transport by transient flows through a homogeneously packed 1 m3 sloping soil lysimeter. The transit time distribution associated with each of four irrigation periods (repeated daily for 24 days) are compared to examine the significance of changes in the Ω function due to variations in total storage, antecedent conditions, and precipitation intensity. We observe both the time-variable TTD and the Ω function experimentally by applying the PERTH method (Harman and Kim, 2014, GRL, 41, 1567-1575). The method allows us to observe multiple overlapping time-variable TTD in controlled experiments using only two conservative tracers. We hypothesize that both the TTD and the Ω function will vary in time, even in this small scale, because water will take different flow pathways depending on the initial state of the lysimeter and irrigation intensity. However, based on primarily modeling, we conjecture that major variability in the Ω function will be limited to a period during and immediately after each irrigation. We anticipate the Ω function is almost time-invariant (or scales simply with total storage) during the recession period because flow pathways are stable during this period. This is one of the first experimental studies of this type, and the results offer insights into solute transport in transient, variably-saturated systems.

  11. Pesticide storage and release in unsaturated soil in Illinois, USA

    USGS Publications Warehouse

    Roy, W.R.; Krapac, I.G.; Chou, S.-F.J.; Simmons, F.W.

    2001-01-01

    The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1 x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha-1 and 1.3 kg ha-1, respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha-1). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1 x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 ?? L-1. Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 ??g L-1. Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.

  12. Decreased akt activity is associated with activation of forkhead transcription factor after transient forebrain ischemia in gerbil hippocampus.

    PubMed

    Kawano, Takayuki; Morioka, Motohiro; Yano, Shigetoshi; Hamada, Jun-Ichiro; Ushio, Yukitaka; Miyamoto, Eishichi; Fukunaga, Kohji

    2002-08-01

    The authors recently reported that sodium orthovanadate rescues cells from delayed neuronal death in gerbil hippocampus after transient forebrain ischemia through phosphatidylinositol 3-kinase-protein kinase B (Akt) pathway (Kawano et al., 2001). In the current study, they demonstrated that the activation of FKHR, a Forkhead transcription factor and a substrate for Akt, preceded delayed neuronal death in CA1 regions after transient forebrain ischemia. Adult Mongolian gerbils were subjected to 5-minute forebrain ischemia. Immunoblotting analysis with anti-phospho-FKHR antibody showed that phosphorylation of FKHR at serine-256 in the CA1 region decreased immediately after and 0.5 and 1 hour after reperfusion. The dephosphorylation of FKHR was correlated with the decreased Akt activity. Intracerebroventricular injection of orthovanadate 30 minutes before ischemia inhibited dephosphorylation of FKHR after reperfusion, and blocked delayed neuronal death in the CA1 region. Gel mobility shift analysis using nuclear extracts from the CA1 region prepared immediately after reperfusion revealed increases in DNA binding activity for the FKHR-responsive element on the Fas ligand promoter. The orthovanadate injection administered before ischemia inhibited its binding activity. Two days after reperfusion, expression of Fas ligand increased in the CA1 region and the orthovanadate injection inhibited this increased expression. These results suggest that the inactivation of Akt results in the activation of FKHR and, in turn, relates to the expression of Fas ligand in the CA1 region after transient forebrain ischemia.

  13. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  14. Will anyone rmember us? Thoughts on information loss caused by progress

    NASA Astrophysics Data System (ADS)

    Townsend, Peter

    2010-10-01

    speed, fibre optic communication or cost per CCD pixel often follow a smooth logarithmic improvement per year. This seems desirable, but progress is frequently only achievable by introduction of new software, different types of storage media or new operating conditions. Consequently technologies become outdated. For transient information this is unimportant, but for long term storage and archiving of information, images, photographs etc, there is an inevitable loss of earlier records. This is not a new phenomenon as even information on stone or clay tablets has decayed or been lost, either by physical decay of storage materials or loss of understanding because of changing language and cultural nuances. Examples emphasise how technological progress has speeded up information decay and loss. Since logarithmic "laws" have been proposed to describe the trends for electronic improvements, one may consider if equivalent trends apply to information loss. It appears that one may propose that the product of three factors is roughly constant. These are the time needed to write the new information; the quantity of information stored, and the average survival time of the information before the storage medium has decayed or is obsolete. The reality of such a "law" is that, whereas we may currently have records and photographs from many earlier generations, our rapidly stored electronic data may be lost within a few years, and certainly will have vanished in a readable form for the next generation.

  15. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses

    PubMed Central

    Lemieux, Mado; Labrecque, Simon; Tardif, Christian; Labrie-Dion, Étienne; LeBel, Éric

    2012-01-01

    The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca2+ oscillations. The downstream signaling evoked by these local Ca2+ transients and their impact on local synaptic development and remodeling are unknown. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca2+ signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca2+ transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca2+ transients to support remodeling of local synapses. PMID:22965911

  16. Atlantic salmon skin and fillet color changes effected by perimortem handling stress, rigor mortis, and ice storage.

    PubMed

    Erikson, U; Misimi, E

    2008-03-01

    The changes in skin and fillet color of anesthetized and exhausted Atlantic salmon were determined immediately after killing, during rigor mortis, and after ice storage for 7 d. Skin color (CIE L*, a*, b*, and related values) was determined by a Minolta Chroma Meter. Roche SalmoFan Lineal and Roche Color Card values were determined by a computer vision method and a sensory panel. Before color assessment, the stress levels of the 2 fish groups were characterized in terms of white muscle parameters (pH, rigor mortis, and core temperature). The results showed that perimortem handling stress initially significantly affected several color parameters of skin and fillets. Significant transient fillet color changes also occurred in the prerigor phase and during the development of rigor mortis. Our results suggested that fillet color was affected by postmortem glycolysis (pH drop, particularly in anesthetized fillets), then by onset and development of rigor mortis. The color change patterns during storage were different for the 2 groups of fish. The computer vision method was considered suitable for automated (online) quality control and grading of salmonid fillets according to color.

  17. Putative storage root specific promoters from cassava and yam: cloning and evaluation in transgenic carrots as a model system.

    PubMed

    Arango, Jacobo; Salazar, Bertha; Welsch, Ralf; Sarmiento, Felipe; Beyer, Peter; Al-Babili, Salim

    2010-06-01

    A prerequisite for biotechnological improvements of storage roots is the availability of tissue-specific promoters enabling high expression of transgenes. In this work, we cloned two genomic fragments, pMe1 and pDJ3S, controlling the expression of a gene with unknown function from cassava (Manihot esculenta) and of the storage protein dioscorin 3 small subunit gene from yam (Dioscorea japonica), respectively. Using beta-glucuronidase as a reporter, the activities of pMe1 and pDJ3S were evaluated in independent transgenic carrot lines and compared to the constitutive CaMV35S and the previously described cassava p15 promoters. Activities of pMe1 and pDJ3S in storage roots were assessed using quantitative GUS assays that showed pDJ3S as the most active one. To determine organ specificities, uidA transcript levels in leaves, stems and roots were measured by real-time RT-PCR analyses showing highest storage root specificity for pDJ3S. Root cross sections revealed that pMe1 was highly active in secondary xylem. In contrast, pDJ3S was active in all root tissues except for the central xylem. The expression patterns caused by the cassava p15 promoter in carrot storage roots were consistent with its previously described activities for the original storage organ. Our data demonstrate that the pDJ3S and, to a lesser extent, the pMe1 regulatory sequences represent feasible candidates to drive high and preferential expression of genes in carrot storage roots.

  18. 76 FR 12355 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Underground Storage Tank: Information... docket, go to http://www.regulations.gov . Title: Underground Storage Tank: Information Request Letters... Storage Tanks: Technical and Financial Requirements, and State Program Approval Procedures.'' This...

  19. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    PubMed

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P < 0.05), and greater variabilities were observed (P < 0.05). Rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep [median (interquartile range): 5.2 (2.6-8.9) times per h] was preceded by a transient decrease in RR intervals, and was accompanied by a transient decrease in delta elelctroencephalogram power. In humans, masseter bursts of rhythmic masticatory muscle activity were characterized by a lower activity, longer duration and longer cycle length than those of chewing (P < 0.05). Rhythmic masticatory muscle activity during non-rapid eye movement sleep [1.4 (1.18-2.11) times per h] was preceded by a transient decrease in RR intervals and an increase in cortical activity. Rhythmic masticatory muscle activity in animals had common physiological components representing transient arousal-related rhythmic jaw motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  20. The Caltech-NRAO Stripe 82 Survey (CNSS) Paper. I. The Pilot Radio Transient Survey in 50 Deg.(exp. 2)

    NASA Technical Reports Server (NTRS)

    Mooley, K. P.; Hallinan, G.; Bourke, S.; Horesh, A.; Myers, S. T.; Frail, D. A.; Kulkarni, S. R.; Levitan, D. B.; Kasliwal, M. M.; Cenko, S. B.; hide

    2016-01-01

    We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire approx. 270 deg.(exp. 2) of Stripe 82, an eventual deep combined map with an rms noise of approx. 40 proper motion epoch y and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3 inches. This first paper presents the results from an initial pilot survey of a 50 deg.(exp. 2) region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 proper motion epoch y. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg.(exp. 2) survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of 3.9(+0.5%/-0.9%) of the few thousand detected point sources werefound to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly variable and transient sources on timescales between 5 and 20 yr, largely associated with renewed AGN activity. The rates of such AGNs possibly imply episodes of enhanced accretion and jet activity occurring once every approx. 40,000 yr in these galaxies. We compile the revised radio transient rates and make recommendations for future transient surveys and joint radio-optical experiments.

  1. Application of Monte Carlo techniques to transient thermal modeling of cavity radiometers having diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Eskin, L. D.

    1981-01-01

    A viable alternative to the net exchange method of radiative analysis which is equally applicable to diffuse and diffuse-specular enclosures is presented. It is particularly more advantageous to use than the net exchange method in the case of a transient thermal analysis involving conduction and storage of energy as well as radiative exchange. A new quantity, called the distribution factor is defined which replaces the angle factor and the configuration factor. Once obtained, the array of distribution factors for an ensemble of surface elements which define an enclosure permits the instantaneous net radiative heat fluxes to all of the surfaces to be computed directly in terms of the known surface temperatures at that instant. The formulation of the thermal model is described, as is the determination of distribution factors by application of a Monte Carlo analysis. The results show that when fewer than 10,000 packets are emitted, an unsatisfactory approximation for the distribution factors is obtained, but that 10,000 packets is sufficient.

  2. Review: Moisture loading—the hidden information in groundwater observation well records

    NASA Astrophysics Data System (ADS)

    van der Kamp, Garth; Schmidt, Randy

    2017-12-01

    Changes of total moisture mass above an aquifer such as snow accumulation, soil moisture, and storage at the water table, represent changes of mechanical load acting on the aquifer. The resulting moisture-loading effects occur in all observation well records for confined aquifers. Deep observation wells therefore act as large-scale geological weighing lysimeters, referred to as "geolysimeters". Barometric pressure effects on groundwater levels are a similar response to surface loading and are familiar to every hydrogeologist dealing with the "barometric efficiency" of observation wells. Moisture-loading effects are small and generally not recognized because they are obscured by hydraulic head fluctuations due to other causes, primarily barometric pressure changes. For semiconfined aquifers, long-term moisture-loading effects may be dissipated and obscured by transient flow through overlying aquitards. Removal of barometric and earth tide effects from observation well records allows identification of moisture loading and comparison with hydrological observations, and also comparison with the results of numerical models that can account for transient groundwater flow.

  3. Transient well flow in leaky multiple-aquifer systems

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  4. Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    NASA Astrophysics Data System (ADS)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.

    2017-11-01

    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  5. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE PAGES

    Misenheimer, Corey T.; Terry, Stephen D.

    2016-06-27

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  6. Modeling Hybrid Nuclear Systems With Chilled-Water Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misenheimer, Corey T.; Terry, Stephen D.

    Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recentmore » development of small modular nuclear reactors (SMRs). In this paper, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Finally and also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).« less

  7. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehrhart, Brian David; Gill, David Dennis

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is amore » fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.« less

  8. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    PubMed

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  9. 76 FR 11775 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Activities; Submission to OMB for Review and Approval; Comment Request; Underground Storage Tanks: [email protected] , or by mail to: EPA Docket Center, Environmental Protection Agency, Underground Storage Tank... White, Office of Underground Storage Tanks, Mail Code 5403P, Environmental Protection Agency, 1200...

  10. 76 FR 40749 - Agency Information Collection Activities: Records and Supporting Data: Importation, Receipt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ...] Agency Information Collection Activities: Records and Supporting Data: Importation, Receipt, Storage, and... collection. (2) Title of the Form/Collection: Records and Supporting Data: Importation, Receipt, Storage, and... importation, manufacture, receipt, storage, and disposition of all explosive materials covered under 18 U.S.C...

  11. Storage-stable foamable polyurethane is activated by heat

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Polyurethane foamable mixture remains inert in storage unit activated to produce a rapid foaming reaction. The storage-stable foamable composition is spread as a paste on the surface of an expandable structure and, when heated, yields a rigid open-cell polyurethane foam that is self-bondable to the substrate.

  12. Synthesis, characterization and evaluation of CO-oxidation catalysts for high repetition rate CO2 TEA lasers

    NASA Technical Reports Server (NTRS)

    Moser, Thomas P.

    1990-01-01

    An extremely active class of noble metal catalysts supported on titania was developed and fabricated at Hughes for the recombination of oxygen (O2) and carbon monoxide (CO) in closed-cycle CO2 TEA lasers. The incipient wetness technique was used to impregnate titania and alumina pellets with precious metals including platinum and palladium. In particular, the addition of cerium (used as an oxygen storage promoter) produced an extremely active Pt/Ce/TiO2 catalyst. By comparison, the complementary Pt/Ce/ gamma-Al2O3 catalyst was considerably less active. In general, chloride-free catalyst precursors proved critical in obtaining an active catalyst while also providing uniform metal distributions throughout the support structure. Detailed characterization of the Pt/Ce/TiO2 catalyst demonstrated uniform dendritic crystal growth of the metals throughout the support. Electron spectroscopy for Chemical Analysis (ESCA) analysis was used to characterize the oxidation states of Pt, Ce and Ti. The performance of the catalysts was evaluated with an integral flow reactor system incorporating real time analysis of O2 and CO. With this system, the transient and steady-state behavior of the catalysts were evaluated. The kinetic evaluation was complemented by tests in a compact, closed-cycle Hughes CO2 TEA laser operating at a pulse repetition rate of 100 Hz with a catalyst temperature of 75 to 95 C. The Pt/Ce/TiO2 catalyst was compatible with a C(13)O(16)2 gas fill.

  13. Sealing behavior of Container Closure Systems under Frozen Storage Conditions: Nonlinear Finite Element Simulation of Serum Rubber Stoppers.

    PubMed

    Nieto, Alejandra; Roehl, Holger

    2018-03-15

    There has been a growing interest in recent years in the assessment of suitable vial/stopper combinations for storage and shipment of frozen drug products. Considering that the glass transition temperature (Tg) of butyl rubber stoppers used in Container Closure Systems (CCS) is between -55°C to -65°C, a storage or shipment temperature of a frozen product below the Tg of the rubber stopper, may require special attention, since below the Tg the rubber becomes more plastic-like and loses its elastic (sealing) characteristics. Thus they risk maintaining Container Closure Integrity (CCI). Given that the rubber regains its elastic properties and reseals after rewarming to ambient temperature, leaks during frozen temperature storage and transportation are transient and the CCI methods used at room temperature conditions are unable to confirm CCI in the frozen state. Hence, several experimental methods have been developed in recent years in order to evaluate CCI at low temperatures. Finite Element (FE) simulations were applied in order to investigate the sealing behaviour of rubber stoppers for the drug product CCS under frozen storage conditions. FE analysis can help reducing the experimental design space and thus number of measurements needed, as they can be used as an ad-on to experimental testing. Several scenarios have been simulated including the effect of thermal history, rubber type, storage time, worst case CCS geometric tolerances and capping pressure. The results of these calculations have been validated with experimental data derived from laboratory experiments (CCI at low temperatures), and a concept for tightness has been developed. It has been concluded that FE simulations have the potential to become a powerful predictive tool towards a better understanding of the influence of cold storage on the rubber sealing properties (and hence on CCI) when dealing with frozen drug products. Copyright © 2018, Parenteral Drug Association.

  14. Activation of acid-sensing ion channels by localized proton transient reveals their role in proton signaling

    PubMed Central

    Zeng, Wei-Zheng; Liu, Di-Shi; Liu, Lu; She, Liang; Wu, Long-Jun; Xu, Tian-Le

    2015-01-01

    Extracellular transients of pH alterations likely mediate signal transduction in the nervous system. Neuronal acid-sensing ion channels (ASICs) act as sensors for extracellular protons, but the mechanism underlying ASIC activation remains largely unknown. Here, we show that, following activation of a light-activated proton pump, Archaerhodopsin-3 (Arch), proton transients induced ASIC currents in both neurons and HEK293T cells co-expressing ASIC1a channels. Using chimera proteins that bridge Arch and ASIC1a by a glycine/serine linker, we found that successful coupling occurred within 15 nm distance. Furthermore, two-cell sniffer patch recording revealed that regulated release of protons through either Arch or voltage-gated proton channel Hv1 activated neighbouring cells expressing ASIC1a channels. Finally, computational modelling predicted the peak proton concentration at the intercellular interface to be at pH 6.7, which is acidic enough to activate ASICs in vivo. Our results highlight the pathophysiological role of proton signalling in the nervous system. PMID:26370138

  15. Performance analysis of smart laminated composite plate integrated with distributed AFC material undergoing geometrically nonlinear transient vibrations

    NASA Astrophysics Data System (ADS)

    Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh

    2018-02-01

    The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.

  16. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  17. Groundwater storage inferred from earthquake activities around East Asia and West Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Shih, David Ching-Fang

    2017-01-01

    Groundwater is a necessary and indispensable resource in the gradual depletion of the amount in the world. Groundwater storage is an important indicator to evaluate the capability of volume of water can be released from the aquifer. This research highlights a new assessment to infer the storage of aquifer using earthquakes activated around East Asia and the ring of fire at West Pacific Ocean. Ten significant seismic events are used to evaluate the groundwater storage at an observation station. By analyzing the spectra of groundwater level and seismogram, it is evident that the period varied in 7-25 s of Rayleigh waves significantly dominate propagation from the epicenter of earthquakes to the observation station. The storage coefficient is then shown in the order of 10-4-10-3. The major innovation of this study suggests that to concretely deduce the groundwater storage by earthquake activity has become feasible.

  18. Effects of Processing and Storage on Pediococcus pentosaceus SB83 in Vaginal Formulations: Lyophilized Powder and Tablets

    PubMed Central

    Borges, Sandra; Costa, Paulo; Silva, Joana; Teixeira, Paula

    2013-01-01

    Vaginal probiotics have an important role in preventing the colonization of the vagina by pathogens. This study aimed to investigate different formulations with Pediococcus pentosaceus SB83 (lyophilized powder and tablets with and without retarding polymer) in order to verify its stability and antilisterial activity after manufacture and during storage. The bacteriocinogenic activity of P. pentosaceus SB83 against Listeria monocytogenes was evaluated in simulated vaginal fluid. Suspension of Pediococcus pentosaceus SB83 reduced the pathogen only after 2 h and the lyophilized bacteria after 24 h of contact, and, in the tablets, P. pentosaceus SB83 lost the antimicrobial activity. The pH of simulated vaginal fluid decreased for all the tested conditions. As lyophilized powder demonstrated better results concerning antimicrobial activity, this formulation was selected to evaluate the antilisterial activity during the 12 months of storage. During storage at room temperature, lyophilized bacteria totally inhibited the pathogen only until one month of storage. At 4°C, P. pentosaceus SB83 showed antimicrobial activity during all the time of storage investigated. Therefore, the better formulation of P. pentosaceus SB83 is the lyophilized powder stored at 4°C, which may be administered intravaginally as a washing solution. PMID:23844367

  19. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE PAGES

    Cui, Borui; Gao, Dian-ce; Xiao, Fu; ...

    2016-12-23

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  20. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Borui; Gao, Dian-ce; Xiao, Fu

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  1. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity.

  2. Evaluation of in vitro storage characteristics of cold stored platelet concentrates with N acetylcysteine (NAC).

    PubMed

    Handigund, Mallikarjun; Bae, Tae Won; Lee, Jaehyeon; Cho, Yong Gon

    2016-02-01

    Platelets play a vital role in hemostasis and thrombosis, and their demand and usage has multiplied many folds over the years. However, due to the short life span and storage constraints on platelets, it is allowed to store them for up to 7 days at room temperature (RT); thus, there is a need for an alternative storage strategy for extension of shelf life. Current investigation involves the addition of 50 mM N acetylcysteine (NAC) in refrigerated concentrates. Investigation results revealed that addition of NAC to refrigerated concentrates prevented platelet activation and reduced the sialidase activity upon rewarming as well as on prolonged storage. Refrigerated concentrates with 50 mM NAC expressed a 23.91 ± 6.23% of CD62P (P-Selectin) and 22.33 ± 3.42% of phosphotidylserine (PS), whereas RT-stored platelets showed a 46.87 ± 5.23% of CD62P and 25.9 ± 6.48% of phosphotidylserine (PS) after 5 days of storage. Further, key metabolic parameters such as glucose and lactate accumulation indicated reduced metabolic activity. Taken together, investigation and observations indicate that addition of NAC potentially protects refrigerated concentrates by preventing platelet activation, stabilizing sialidase activity, and further reducing the metabolic activity. Hence, we believe that NAC can be a good candidate for an additive solution to retain platelet characteristics during cold storage and may pave the way for extension of storage shelf life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Novel Active Transient Cooling Systems

    DTIC Science & Technology

    2010-05-04

    NOVEL ACTIVE TRANSIENT COOLING SYSTEMS PI: R.V. Ramanujan Co-PI: P. Keblinski*, G. Ramanath*, E.V. Sampathkumaran^ School of Materials...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Raju Ramanujan 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...Report (SAR) 18. NUMBER OF PAGES 13 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified

  4. Resazurin as a Proxy for Estimating Stream Respiration

    NASA Astrophysics Data System (ADS)

    Gonzalez Pinzon, R. A.; Haggerty, R.; Argerich, A.; Briggs, M.; Lautz, L. K.; Lemke, D.; Hare, D. K.

    2010-12-01

    Hydrologic retention in stream ecosystems favors the reactions of solutes and nutrients in metabolically active transient storage (MATS) zones. These zones are hot spots where metabolic activity is expected to contribute significantly to ecosystem respiration. We compare the results of a series of coinjections of resazurin (Raz) as a redox sensitive tracer, and NaCl as a conservative tracer to investigate the function of MATS zones. Raz is a dye that undergoes an irreversible reduction to resorufin (Rru) when exposed to aerobic respiration. To characterize the transformation of Raz we measured the BTC of the tracers at the boundary conditions, and during plateau concentrations we sampled the longitudinal profile of surface water. We also used the two-station diel technique to quantify gross primary production (GPP) and community respiration (CR) within the reaches. Injections have been performed in streams with different morphology, streambed composition, and riparian vegetation in Oregon-USA (WS 1 and WS 3 in the HJ Andrews Forest LTER, and Drift Creek), Spain (Riera de Santa Fe del Montseny, Catalonia) and Wyoming-USA (Cherry Creek). The results support the idea that under different ranges of community respiration, the transformation of Raz to Rru is a proxy for quantifying MATS, characterizing spatial heterogeneity in respiration rates, and ultimately, could be used to estimate ecosystem respiration in environments where direct measurement is challenging.

  5. Free-Standing Optically Switchable Chiral Plasmonic Photonic Crystal Based on Self-Assembled Cellulose Nanorods and Gold Nanoparticles.

    PubMed

    Chu, Guang; Wang, Xuesi; Yin, Hang; Shi, Ying; Jiang, Haijing; Chen, Tianrui; Gao, Jianxiong; Qu, Dan; Xu, Yan; Ding, Dajun

    2015-10-07

    Photonic crystals incorporating with plasmonic nanoparticles have recently attracted considerable attention due to their novel optical properties and potential applications in future subwavelength optics, biosensing and data storage device. Here we demonstrate a free-standing chiral plasmonic film composed of entropy-driven self-co-assembly of gold nanoparticles (GNPs) and rod-like cellulose nanocrystals (CNCs). The CNCs-GNPs composite films not only preserve the photonic ordering of the CNCs matrix but also retain the plasmonic resonance of GNPs, leading to a distinct plasmon-induced chiroptical activity and a strong resonant plasmonic-photonic coupling that is confirmed by the stationary and ultrafast transient optical response. Switchable optical activity can be obtained by either varying the incidence angle of lights, or by taking advantage of the responsive feature of the CNCs matrix. Notably, an angle-dependent plasmon resonance in chiral nematic hybrid film has been observed for the first time, which differs drastically from that of the GNPs embed in three-dimensional photonic crystals, revealing a close relation with the structure of the host matrix. The current approach for fabricating device-scale, macroscopic chiral plasmonic materials from abundant CNCs with robust chiral nematic matrix may enable the mass production of functional optical metamaterials.

  6. Amelioration of lesions associated with 24-hour suboptimal platelet storage at 16 °C by a p38MAPK inhibitor, VX-702.

    PubMed

    Wagner, S J; Skripchenko, A; Seetharaman, S; Kurtz, J

    2015-04-01

    Previous studies with p38MAPK inhibitors at room temperature demonstrated that they improve a large number of platelet storage parameters, but cannot substantially inhibit p38MAPK activation nor protect against widespread decrements in platelet quality parameters during 4 °C storage. In this study, platelet quality parameters and inhibition of p38MAPK by VX-702 were studied after incubation of platelets at 16 °C without agitation, suboptimal storage conditions which produce moderate platelet decrements. Trima apheresis units were collected and aliquoted into three 60-ml CLX storage bags: (i) a control aliquot which was held at 20-24 °C with constant agitation; (ii) a test aliquot which was held at 20-24 °C with agitation until Day 2, when it was reincubated at 16 ± 1 °C for 24 ± 0·5 h without agitation and then returned 20-24 °C with agitation; (iii) a test aliquot containing 1 μm VX-702 stored in an identical fashion as aliquot 2. Aliquots were tested for an array of platelet storage parameters and p38MAPK activation on Days 1, 4 and 7. Many platelet storage parameters and p38MAPK activation were adversely affected by 24-h incubation at 16 °C without agitation. With the exception of ESC, addition of VX-702 prevented p38MAPK activation and the decrements in most observed parameters. Unlike 4 °C storage, VX-702 prevents activation of p38MAPK and decrements in many platelet storage parameters after exposure to 16 °C without agitation for 24 h. © 2014 International Society of Blood Transfusion.

  7. Platelet storage lesion in interim platelet unit concentrates: A comparison with buffy-coat and apheresis concentrates.

    PubMed

    Singh, Sukhi; Shams Hakimi, Caroline; Jeppsson, Anders; Hesse, Camilla

    2017-12-01

    Platelet storage lesion is characterized by morphological changes and impaired platelet function. The collection method and storage medium may influence the magnitude of the storage lesion. The aim of this study was to compare the newly introduced interim platelet unit (IPU) platelet concentrates (PCs) (additive solution SSP+, 40% residual plasma content) with the more established buffy-coat PCs (SSP, 20% residual plasma content) and apheresis PCs (autologous plasma) in terms of platelet storage lesions. Thirty PCs (n=10 for each type) were assessed by measuring metabolic parameters (lactate, glucose, and pH), platelet activation markers, and in vitro platelet aggregability on days 1, 4, and 7 after donation. The expression of platelet activation markers CD62p (P-selectin), CD63 (LAMP-3), and phosphatidylserine was measured using flow cytometry and in vitro aggregability was measured with multiple electrode aggregometry. Higher platelet activation and lower in vitro aggregability was observed in IPU than in buffy-coat PCs on day 1 after donation. In contrast, metabolic parameters, expression of platelet activation markers, and in vitro aggregability were better maintained in IPU than in buffy-coat PCs at the end of the storage period. Compared to apheresis PCs, IPU PCs had higher expression of activation markers and lower in vitro aggregability throughout storage. In conclusion, the results indicate that there are significant differences in platelet storage lesions between IPU, buffy-coat, and apheresis PCs. The quality of IPU PCs appears to be at least comparable to buffy-coat preparations. Further studies are required to distinguish the effect of the preparation methods from storage conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. What can He II 304 Å tell us about transient seismic emission from solar flares?

    NASA Astrophysics Data System (ADS)

    Lindsey, C.; Donea, A. C.

    2017-10-01

    After neary 20 years since their discovery by Kosovichev and Zharkova, the mechanics of the release of seismic transients into the solar interior from some flares remain a mystery. Seismically emissive flares invariably show the signatures of intense chromosphere heating consistent with pressure variations sufficient to drive seismic transients commensurate with helioseismic observations-under certain conditions. Magnetic observations show the signatures of apparent magnetic changes, suggesting Lorentz-force transients that could likewise drive seismic transients-similarly subject to certain conditions. But, the diagnostic signatures of both of these prospective drivers are apparent over vast regions from which no significant seismic emission emanates. What distinguishes the source regions of transient seismic emission from the much vaster regions that show the signatures of both transient heating and magnetic variations but are acoustically unproductive? Observations of acoustically active flares in He II 304 Å by the Atomospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) offer a promising new resource with which to address this question.

  9. Effects of nitroglycerin and ethylene glycol dinitrate mixture (blasting oil) on rat brain, liver and kidney.

    PubMed

    Zitting, A; Savolainen, H

    1982-07-01

    Rats were injected intraperitoneally (150 mg/kg) with a mixture of nitroglycerin and ethylene glycol dinitrate (1:3). Treatment caused a transient small increase in methemoglobin contents in blood and diminished contents of reduced glutathione in liver and brain. Hepatic cytochrome P-450 concentration and ethoxycoumarin deethylase activity decreased shortly after exposure but later the effect disappeared. Succinate dehydrogenase activity decreased in liver, kidney and brain. In brain, activity of creatine kinase increased significantly and slight increase in hepatic UDPglucuronosyltransferase and epoxide hydrolase activity was observed. Renal ethoxycoumarin activity increased transiently. The results point to interaction of hydrolytically released nitrite with hemoproteins.

  10. Novel Material Systems and Methodologies for Transient Thermal Management

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of multifunctional and thermally switchable systems to address reduced mass and components, and tailored for both structural and transient thermal applications. Active, passive, and novel combinations of the two functional approaches are being developed along two lines of research investigation: switchable systems and transient heat spreading. The approach is to build in thermal functionality to structural elements to lay the foundation for a revolution in the way high energy space systems are designed.

  11. Method of making improved gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

    2002-11-05

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  12. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.

  13. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents

    PubMed Central

    Bahadori, Laleh; Chakrabarti, Mohammed Harun; Manan, Ninie Suhana Abdul; Hashim, Mohd Ali; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Brandon, Nigel

    2015-01-01

    The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden’s rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices. PMID:26642045

  14. Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks.

    PubMed

    Scarpetta, Silvia; Giacco, Ferdinando

    2013-04-01

    We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stable precise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.

  15. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    PubMed

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions.

    PubMed

    Li, Weili; Liu, Linshu; Jin, Tony Z

    2012-12-01

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm(2) of surface area) significantly (P < 0.05) inhibited the growth of Salmonella during 24 h of incubation at 22°C, while the populations of Salmonella in controls increased from ca. 4 to over 8 log CFU/ml, indicating a minimum inactivation of 4 log CFU/ml on films in comparison to the growth on controls. Statistical analyses indicated that storage time, storage temperature, and surface abrasion affected the antimicrobial activity of the films significantly (P < 0.05). However, the differences in microbial reduction between those conditions were less than 0.5 log cycle. The results suggest that the films' antimicrobial properties are stable under practical storage and handling conditions and that these antimicrobial films have potential applications in food packaging.

  17. Cyclic high temperature heat storage using borehole heat exchangers

    NASA Astrophysics Data System (ADS)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for varying storage cycle times, operating conditions and storage set-ups. A sensitivity analysis shows that storage efficiency strongly depends on the number of BHEs composing the storage site and the cycle time. Using a half-yearly cycle of heat injection and extraction with the maximum possible rates shows that the fraction of recovered heat increases with the number of storage cycles used, as initial losses due to heat conduction become smaller. Also, overall recovery rates of 70 to 80% are possible in the set-ups investigated. Temperature distribution in the geological heat storage site is most sensitive to the thermal conductivity of both borehole grouting and storage formation, while storage efficiency is dominated by the thermal conductivity of the storage formation. For the large cycle times of 6 months each used, heat capacity is less sensitive than the heat conductivity. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  18. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    PubMed

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into the brain. © 2013 International Society for Neurochemistry.

  19. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma*

    PubMed Central

    Stockmann, Chris; Romero, Erin G.; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L.; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A.; Ward, Robert M.; Veranth, John M.; Reilly, Christopher A.

    2016-01-01

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. PMID:27758864

  20. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    PubMed

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Differentiation of endosperm transfer cells of barley: a comprehensive analysis at the micro-scale.

    PubMed

    Thiel, Johannes; Riewe, David; Rutten, Twan; Melzer, Michael; Friedel, Swetlana; Bollenbeck, Felix; Weschke, Winfriede; Weber, Hans

    2012-08-01

    Barley endosperm cells differentiate into transfer cells (ETCs) opposite the nucellar projection. To comprehensively analyse ETC differentiation, laser microdissection-based transcript and metabolite profiles were obtained from laser microdissected tissues and cell morphology was analysed. Flange-like secondary-wall ingrowths appeared between 5 and 7 days after pollination within the three outermost cell layers. Gene expression analysis indicated that ethylene-signalling pathways initiate ETC morphology. This is accompanied by gene activity related to cell shape control and vesicle transport, with abundant mitochondria and endomembrane structures. Gene expression analyses indicate predominant formation of hemicelluloses, glucuronoxylans and arabinoxylans, and transient formation of callose, together with proline and 4-hydroxyproline biosynthesis. Activation of the methylation cycle is probably required for biosynthesis of phospholipids, pectins and ethylene. Membrane microdomains involving sterols/sphingolipids and remorins are potentially involved in ETC development. The transcriptional activity of assimilate and micronutrient transporters suggests ETCs as the main uptake organs of solutes into the endosperm. Accordingly, the endosperm grows maximally after ETCs are fully developed. Up-regulated gene expression related to amino acid catabolism, C:N balances, carbohydrate oxidation, mitochondrial activity and starch degradation meets high demands for respiratory energy and carbohydrates, required for cell proliferation and wall synthesis. At 10 days after pollination, ETCs undergo further differentiation, potentially initiated by abscisic acid, and metabolism is reprogrammed as shown by activated storage and stress-related processes. Overall, the data provide a comprehensive view of barley ETC differentiation and development, and identify candidate genes and associated pathways. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.

  3. Cold induces reactive oxygen species production and activation of the NF-kappa B response in endothelial cells and inflammation in vivo.

    PubMed

    Awad, E M; Khan, S Y; Sokolikova, B; Brunner, P M; Olcaydu, D; Wojta, J; Breuss, J M; Uhrin, P

    2013-09-01

    Organs intended for transplantation are generally stored in the cold for better preservation of their function. However, following transplantation and reperfusion, the microvasculature of transplanted organs often proves to be activated. Extensive leukocyte adhesion and microthrombus formation contribute to failure of the transplanted organ. In this study we analyzed cold-induced changes to the activation status of cultured endothelial cells, possibly contributing to organ failure. We exposed human umbilical vein endothelial cells (HUVECs) to temperatures below 37 °C (mostly to 8 °C) for 30 min and upon rewarming to 37 °C kept incubating them for up to 24 h. We also in vivo locally exposed mice to cold. The exposure to low temperatures induced, in HUVECs, expression of the prothrombotic factors plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF) and of the inflammatory adhesion molecules, E-selectin, intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Furthermore, upon rewarming for 30 min, we detected activation of the inflammatory NF-κB pathway, as measured by transient NF-κB translocation to the nucleus and IκBα degradation. Using butylated hydroxytoluene (BHT), a scavenger of reactive oxygen species (ROS), we further demonstrated that cold-induced NF-κB activation depends on ROS production. Local exposure to cold also, in vivo, induced ROS production and ICAM-1 expression and resulted in leukocyte infiltration. Our results point to a causative link between ROS production and NF-κB activation, suppression of which had been shown to be beneficial during hypothermic storage and subsequent rewarming of organs for transplantation. © 2013 International Society on Thrombosis and Haemostasis.

  4. Solar Wind Plasma Flows and Space Weather Aspects Recent Solar Cycle

    NASA Astrophysics Data System (ADS)

    Kaushik, Sonia; Kaushik, Subhash Chandra

    2016-07-01

    Solar transients are responsible for initiating short - term and long - term variations in earth's magnetosphere. These variations are termed as geomagnetic disturbances, and driven by the interaction of solar wind features with the geo-magnetosphere. The strength of this modulation process depends upon the magnitude and orientation of the Interplanetary Magnetic Field and solar wind parameters. These interplanetary transients are large scale structures containing plasma and magnetic field expelled from the transient active regions of solar atmosphere. As they come to interplanetary medium the interplanetary magnetic field drape around them. This field line draping was thought as possible cause of the characteristic eastward deflection and giving rise to geomagnetic activities as well as a prime factor in producing the modulation effects in the near Earth environment. The Solar cycle 23 has exhibited the unique extended minima and peculiar effects in the geomagnetosphere. Selecting such transients, occurred during this interval, an attempt has been made to determine quantitative relationships of these transients with solar/ interplanetary and Geophysical Parameters. In this work we used hourly values of IMF data obtained from the NSSD Center. The analysis mainly based on looking into the effects of these transients on earth's magnetic field. The high-resolution data IMF Bz and solar wind data obtained from WDC-A, through its omniweb, available during the selected period. Dst and Ap obtained from WDC-Kyoto are taken as indicator of geomagnetic activities. It is found that Dst index, solar wind velocity, proton temperature and the Bz component of magnetic field have higher values and increase just before the occurrence of these events. Larger and varying magnetic field mainly responsible for producing the short-term changes in geomagnetic intensity are observed during these events associated with coronal holes.

  5. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex.

    PubMed

    Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E; Dichter, Marc A; Lucas, Timothy H; Viventi, Jonathan; Litt, Brian; Rogers, John A

    2016-07-01

    Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.

  6. Heavy Ion Transient Characterization of a Photobit Hardened-by-Design Active Pixel Sensor Array

    NASA Technical Reports Server (NTRS)

    Marshall, Paul W.; Byers, Wheaton B.; Conger, Christopher; Eid, El-Sayed; Gee, George; Jones, Michael R.; Marshall, Cheryl J.; Reed, Robert; Pickel, Jim; Kniffin, Scott

    2002-01-01

    This paper presents heavy ion data on the single event transient (SET) response of a Photobit active pixel sensor (APS) four quadrant test chip with different radiation tolerant designs in a standard 0.35 micron CMOS process. The physical design techniques of enclosed geometry and P-channel guard rings are used to design the four N-type active photodiode pixels as described in a previous paper. Argon transient measurements on the 256 x 256 chip array as a function of incident angle show a significant variation in the amount of charge collected as well as the charge spreading dependent on the pixel type. The results are correlated with processing and design information provided by Photobit. In addition, there is a large degree of statistical variability between individual ion strikes. No latch-up is observed up to an LET of 106 MeV/mg/sq cm.

  7. Enantioselective remote meta-C-H arylation and alkylation via a chiral transient mediator.

    PubMed

    Shi, Hang; Herron, Alastair N; Shao, Ying; Shao, Qian; Yu, Jin-Quan

    2018-06-18

    Enantioselective carbon-hydrogen (C-H) activation reactions by asymmetric metallation could provide new routes for the construction of chiral molecules 1,2 . However, current methods are typically limited to the formation of five- or six-membered metallacycles, thereby preventing the asymmetric functionalization of C-H bonds at positions remote to existing functional groups. Here we report enantioselective remote C-H activation using a catalytic amount of a chiral norbornene as a transient mediator, which relays initial ortho-C-H activation to the meta position. This was used in the enantioselective meta-C-H arylation of benzylamines, as well as the arylation and alkylation of homobenzylamines. The enantioselectivities obtained using the chiral transient mediator are comparable across different classes of substrates containing either neutral σ-donor or anionic coordinating groups. This relay strategy could provide an alternative means to remote chiral induction, one of the most challenging problems in asymmetric catalysis 3,4 .

  8. Organic chemistry. Functionalization of C(sp3)-H bonds using a transient directing group.

    PubMed

    Zhang, Fang-Lin; Hong, Kai; Li, Tuan-Jie; Park, Hojoon; Yu, Jin-Quan

    2016-01-15

    Proximity-driven metalation has been extensively exploited to achieve reactivity and selectivity in carbon-hydrogen (C-H) bond activation. Despite the substantial improvement in developing more efficient and practical directing groups, their stoichiometric installation and removal limit efficiency and, often, applicability as well. Here we report the development of an amino acid reagent that reversibly reacts with aldehydes and ketones in situ via imine formation to serve as a transient directing group for activation of inert C-H bonds. Arylation of a wide range of aldehydes and ketones at the β or γ positions proceeds in the presence of a palladium catalyst and a catalytic amount of amino acid. The feasibility of achieving enantioselective C-H activation reactions using a chiral amino acid as the transient directing group is also demonstrated. Copyright © 2016, American Association for the Advancement of Science.

  9. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.

    PubMed

    Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J

    2017-08-25

    The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Calcium Domains around Single and Clustered IP3 Receptors and Their Modulation by Buffers

    PubMed Central

    Rüdiger, S.; Nagaiah, Ch.; Warnecke, G.; Shuai, J.W.

    2010-01-01

    Abstract We study Ca2+ release through single and clustered IP3 receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca2+ buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP3Rs produces a distinct [Ca2+] scale (0.5–10 μM), which is smaller than channel pore concentrations (>100 μM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca2+ evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals. PMID:20655827

  11. Mature Luffa Leaves (Luffa cylindrica L.) as a Tool for Gene Expression Analysis by Agroinfiltration

    PubMed Central

    Błażejewska, Kamila; Kapusta, Małgorzata; Zielińska, Elżbieta; Tukaj, Zbigniew; Chincinska, Izabela A.

    2017-01-01

    We exploited the potential of cucurbits for ectopic gene expression. Agroinfiltration is a simple and commonly used method to obtain transient expression of foreign genes in plants. In contrast to in vitro transformation techniques, agroinfiltration can be used for genetic modification of mature plant tissues. Although the cucurbits are commonly used as model plants for molecular biology and biotechnology studies, to date there are no literature sources on the possibility of transient gene expression in mature cucurbit tissues. Our research has shown that mature leaves of Luffa cylindrica L. (luffa), in contrast to other cucurbit species, can be successfully transiently transformed with Agrobacterium tumefaciens. We efficiently transformed luffa leaves with a reporter gene encoding β-glucuronidase (GUS). The GUS activity in transiently transformed leaf tissues was detected within 24 h after the infiltration with bacteria. Additionally, we have shown that the activity of a transiently expressed the GUS gene can be monitored directly in the EDTA-exudates collected from the cut petioles of the agroinfiltrated leaves. The results suggest that luffa leaves can be useful as a plant expression system for studies of physiological and biochemical processes in cucurbits. PMID:28270826

  12. Association between physical activity and risk of bleeding in children with hemophilia.

    PubMed

    Broderick, Carolyn R; Herbert, Robert D; Latimer, Jane; Barnes, Chris; Curtin, Julie A; Mathieu, Erin; Monagle, Paul; Brown, Simon A

    2012-10-10

    Vigorous physical activity is thought to increase risk of bleeds in children with hemophilia, but the magnitude of the risk is unknown. To quantify the transient increase in risk of bleeds associated with physical activity in children with hemophilia. A case-crossover study nested within a prospective cohort study was conducted at 3 pediatric hemophilia centers in Australia between July 2008 and October 2010. A total of 104 children and adolescent boys aged 4 through 18 years with moderate or severe hemophilia A or B were monitored for bleeds for up to 1 year. Following each bleed, the child or parent was interviewed to ascertain exposures to physical activity preceding the bleed. Physical activity was categorized according to expected frequency and severity of collisions. The risk of bleeds associated with physical activity was estimated by contrasting exposure to physical activity in the 8 hours before the bleed with exposures in two 8-hour control windows, controlling for levels of clotting factor in the blood. Association of physical activity and factor level with risk of bleeding. The participants were observed for 4839 person-weeks during which time 436 bleeds occurred. Of these, 336 bleeds occurred more than 2 weeks after the preceding bleed and were used in the primary analysis of risk. Compared with inactivity and category 1 activities (eg, swimming), category 2 activities (eg, basketball) were associated with a transient increase in the risk of bleeding (30.6% of bleed windows vs 24.8% of first control windows; odds ratio, 2.7; 95% CI, 1.7-4.8, P < .001). Category 3 activities (eg, wrestling) were associated with a greater transient increase in risk (7.0% of bleed windows vs 3.4% of first control windows; odds ratio, 3.7; 95% CI, 2.3-7.3, P < .001). To illustrate absolute risk increase, for a child who bleeds 5 times annually and is exposed on average to category 2 activities twice weekly and to category 3 activities once weekly, exposure to these activities was associated with only 1 of the 5 annual bleeds. For every 1% increase in clotting factor level, bleeding incidence was lower by 2% (95% CI, 1%-3%; P = .004). In children and adolescents with hemophilia, vigorous physical activity was transiently associated with a moderate relative increase in risk of bleeding. Because the increased relative risk is transient, the absolute increase in risk of bleeds associated with physical activity is likely to be small.

  13. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-mediated Adaptations.

    PubMed

    Danielczok, Jens G; Terriac, Emmanuel; Hertz, Laura; Petkova-Kirova, Polina; Lautenschläger, Franziska; Laschke, Matthias W; Kaestner, Lars

    2017-01-01

    When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca 2+ -signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca 2+ when RBCs were passing through small capillaries in vivo . Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca 2+ -signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca 2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K + , Cl - , and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction.

  14. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca2+-mediated Adaptations

    PubMed Central

    Danielczok, Jens G.; Terriac, Emmanuel; Hertz, Laura; Petkova-Kirova, Polina; Lautenschläger, Franziska; Laschke, Matthias W.; Kaestner, Lars

    2017-01-01

    When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca2+-signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca2+ when RBCs were passing through small capillaries in vivo. Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca2+-signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K+, Cl−, and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction. PMID:29259557

  15. Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4.

    PubMed

    Shibasaki, Koji; Suzuki, Makoto; Mizuno, Atsuko; Tominaga, Makoto

    2007-02-14

    Physiological body temperature is an important determinant for neural functions, and it is well established that changes in temperature have dynamic influences on hippocampal neural activities. However, the detailed molecular mechanisms have never been clarified. Here, we show that hippocampal neurons express functional transient receptor potential vanilloid 4 (TRPV4), one of the thermosensitive TRP (transient receptor potential) channels, and that TRPV4 is constitutively active at physiological temperature. Activation of TRPV4 at 37 degrees C depolarized the resting membrane potential in hippocampal neurons by allowing cation influx, which was observed in wild-type (WT) neurons, but not in TRPV4-deficient (TRPV4KO) cells, although dendritic morphology, synaptic marker clustering, and synaptic currents were indistinguishable between the two genotypes. Furthermore, current injection studies revealed that TRPV4KO neurons required larger depolarization to evoke firing, equivalent to WT neurons, indicating that TRPV4 is a key regulator for hippocampal neural excitabilities. We conclude that TRPV4 is activated by physiological temperature in hippocampal neurons and thereby controls their excitability.

  16. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: Data used in Geosphere Journal Article

    DOE Data Explorer

    Thomas A. Buscheck

    2015-06-01

    This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for geologic CO2 storage. This data submission includes all data used in the Geosphere Journal article by Buscheck et al (2016). All assumptions are discussed in that article.

  17. Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream (Sparus aurata) Fillets

    PubMed Central

    Ortega Blázquez, Irene; Grande Burgos, María J.; Pérez-Pulido, Rubén; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP) treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs) found at time 0 in control samples (Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium) rapidly changed during storage (with an increase of Vibrio, Photobacterium, and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage). The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax, and Sphingomonas as main OTUs) and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium, and Shewanella as main OTUs) and approached control samples. HP treatments (singly or in combination with activated films) determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella) during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied. PMID:29541064

  18. Treatment With High-Hydrostatic Pressure, Activated Film Packaging With Thymol Plus Enterocin AS-48, and Its Combination Modify the Bacterial Communities of Refrigerated Sea Bream (Sparus aurata) Fillets.

    PubMed

    Ortega Blázquez, Irene; Grande Burgos, María J; Pérez-Pulido, Rubén; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    The aim of this study was to determine the impact of activated plastic films with thymol and enterocin AS-48 and high-hydrostatic pressure (HP) treatment on the bacterial load and bacterial diversity of vacuum-packaged sea bream fillets under refrigerated storage for 10 days. The activated film and the HP treatment reduced aerobic mesophiles viable counts by 1.46 and 2.36 log cycles, respectively, while the combined treatment achieved a reduction of 4.13 log cycles. HP and combined treatments resulted in longer delays in bacterial growth. Proteobacteria were the dominant phyla in sea bream fillets. The relative abundance of Firmicutes increased by the end of storage both in controls and in samples treated by HP singly or in combination with the activated films. The predominant operational taxonomic units (OTUs) found at time 0 in control samples ( Listeria, Acinetobacter, Pseudomonas, Enterobacteriaceae, Chryseobacterium ) rapidly changed during storage (with an increase of Vibrio, Photobacterium , and Shewanella together with Cloacibacterium and Lactobacillales by the end of storage). The activated film and the HP treatment induced drastic changes in bacterial diversity right after treatments (with Comamonadaceae, Methylobacterium, Acidovorax , and Sphingomonas as main OTUs) and also induced further modifications during storage. Bacterial diversity in activated film samples was quite homogeneous during storage (with Vibrio, Photobacterium , and Shewanella as main OTUs) and approached control samples. HP treatments (singly or in combination with activated films) determined a high relative abundance of Acinetobacter (followed by Pseudomonas and Shewanella ) during early storage as well as a higher relative abundance of lactic acid bacteria by the end of storage. The results indicate that the complex dynamics of bacterial populations in the refrigerated sea bream fillets are markedly influenced by treatment and antimicrobials applied.

  19. Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anant, K.S.

    1997-06-01

    In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the Pmore » as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the feature identification methods of Chapter 3, the compression methods of Chapter 4, as well as the wavelet design methods of Chapter 5, are general enough to be easily applied to other transient signals.« less

  20. Finite Element Modeling of Transient Head Field Associated with Partially Penetrating, Slug Tests in a Heterogeneous Aquifer with Low Permeability, Stratigraphic Zones and Faults

    NASA Astrophysics Data System (ADS)

    Cheng, J.; Johnson, B.; Everett, M.

    2003-12-01

    Preliminary field work shows slug interference tests using an array of multilevel active and monitoring wells have potential of permitting enhanced aquifer characterization. Analysis of these test data, however, ultimately will rely on numerical geophysical inverse models. In order to gain insight as well as to provide synthetic data sets, we use a 3-D finite element analysis (code:FEHM-LANL) to explore the effect of idealized, low permeability, stratigraphical and structural (faults) heterogeneities on the transient head field associated with a slug test in a packer-isolated interval of an open borehole. The borehole and packers are modeled explicitly; wellbore storage is selected to match values of field tests. The homogeneous model exhibits excellent agreement with that of the semi-analytical model of Liu and Butler (1995). Models are axisymmetric with a centrally located slugged interval within a homogenous, isotropic, confined aquifer with embedded, horizontal or vertical zones of lower permeability that represent low permeability strata or faults, respectively. Either one or two horizontal layers are located opposite the borehole packers, which is a common situation at the field site; layer thickness (0.15-0.75 m), permeability contrast (up to 4 orders of magnitude contrast) and lateral continuity of layers are varied between models. The effect of a "hole" in a layer also is assessed. Fault models explore effects of thickness (0.05-0.75 m) and permeability contrast as well as additional effects associated with the offset of low permeability strata. Results of models are represented most clearly by contour maps of time of arrival and normalized amplitude of peak head perturbation, but transient head histories at selected locations provide additional insight. Synthesis of the models is on-going but a few points can be made at present. Spatial patterns are distinctive and allow easy discrimination between stratigraphic and structural impedance features. Time delays and amplitude reduction increase nonlinearly with increasing permeability contrast. The capacity to discriminate the effect of layer thickness decreases as permeability contrast increases.

  1. Effect of cooking and cold storage on biologically active antibiotic residues in meat.

    PubMed Central

    O'Brien, J. J.; Campbell, N.; Conaghan, T.

    1981-01-01

    An investigation was undertaken to see if cooking or cold storage would destroy or decrease the level of biologically active antibiotic in tissues from animals given therapeutic doses of antibiotic on three occasions prior to slaughter. The effects of cooking and cold storage on the biological activity of the residues of ampicillin, chloramphenicol, oxytetracycline, streptomycin and sulphadimidine were varied; in some instances the effects were minimal, in others nil. PMID:7310129

  2. Effects of self-carbon dioxide-generation material for active packaging on pH, water-holding capacity, meat color, lipid oxidation and microbial growth in beef during cold storage.

    PubMed

    Lee, Seung-Jae; Lee, Seung Yun; Kim, Gap-Don; Kim, Geun-Bae; Jin, Sang Keun; Hur, Sun Jin

    2017-08-01

    Active packaging refers to the mixing of additive agents into packaging materials with the purpose of maintaining or extending food product quality and shelf life. The aim of this study was to develop an easy and cheap active packaging for beef. Beef loin samples were divided into three packaging groups (C, ziplock bag packaging; T1, vacuum packaging; T2, active packaging) and stored at 4 °C for 21 days. The water-holding capacity was significantly (P < 0.05) higher in C and T2 than in T1 for up to 7 days of storage. The TBARS value was significantly (P < 0.05) lower in T1 and T2 after 7 days of storage. The counts of some microorganism were significantly (P < 0.05) lower in T1 and T2 after 7 days of storage; the total bacterial count and Escherichia coli count were lowest in T2 at the end of storage. These results indicate that active packaging using self-CO 2 -generation materials can extend the shelf life similarly to that observed with vacuum packaging, and that the active packaging method can improve the quality characteristics of beef during cold storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Transient sixth cranial nerve palsy following orgasm abrogated by treatment with sympathomimetic amines.

    PubMed

    Check, J H; Katsoff, B

    2014-01-01

    To describe a unique disorder where a transient 6th nerve palsy leading to diploplia following orgasm developed in a 28-year-old woman. This coincided with a weight gain of 100 pounds in a short time without a corresponding change in dietary habits. She was treated with the sympathomimetic amine dextroamphetamine sulfate. Indeed she immediately responded to treatment with dextroamphetamine sulfate sustained release capsules with complete resolution of the episodes of 6th nerve palsy following orgasm. The main importance of this case is that it suggests that orgasm causes a transient generalized decrease in sympathetic nervous system activity and that the achievement of an orgasm may require an increase in the sympathetic nervous system activity.

  4. Transient thermal state of an active Braille matrix with incorporated thermal actuators by means of finite element method.

    PubMed

    Aluţei, Alexandra-Maria; Szelitzky, Emoke; Mândru, Dan

    2013-01-01

    In this article the authors present the transient thermal analysis for a developed thermal linear actuator based on wax paraffin used to drive the cells of a Braille device. A numerical investigation of transient heat transfer phenomenon during paraffin melting and solidification in an encapsulated recipient has been carried out using the ANSYS v.12 software. The researchers offer data on the heat distribution in the proposed model of the actuator as well as on the material properties required for these applications and provide the opportunity to identify new problems specific to thermal actuation, such as the heater properties and the cooling process of the active material in the structure of the Braille cell.

  5. Transient osteoporosis of pregnancy of the bilateral hips in twin gestation: a case series.

    PubMed

    Reese, Maria E; Fitzgerald, Colleen; Hynes, Christina

    2015-01-01

    Transient osteoporosis of pregnancy has been described as a rare, self-limiting disease of unclear etiology that presents as severe pain, which typically affects pregnant women in their third trimester. We describe 3 cases of primigravid pregnant women with twin gestation who reported unilateral hip pain and who were diagnosed with transient osteoporosis of pregnancy of the hip by magnetic resonance imaging. These women were advised to undergo limited weight bearing and activity modification to minimize the risk of fracture. Each patient was able to proceed through her pregnancy, delivery, and postpartum course without complication, with symptom resolution, and return to unrestricted activity. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    PubMed

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  7. Electrical stimulation-based renal nerve mapping exacerbates ventricular arrhythmias during acute myocardial ischaemia.

    PubMed

    Huang, Bing; Zhou, Xiaoya; Wang, Menglong; Li, Xuefei; Zhou, Liping; Meng, Guannan; Wang, Yuhong; Wang, Zhuo; Wang, Songyun; Yu, Lilei; Jiang, Hong

    2018-06-01

    Blood pressure elevation in response to transient renal nerve stimulation (RNS) has been used to determine the ablation target and endpoint of renal denervation. This study aimed to evaluate the safety of transient RNS in canines with normal or ischaemic hearts. In ten normal (Group 1) and six healed myocardial infarction (HMI) (Group 2) canines, a large-tip catheter was inserted into the left or right renal artery to perform transient RNS. The left stellate ganglion neural activity (LSGNA) and ventricular electrophysiological parameters were measured at baseline and during transient RNS. In another 20 acute myocardial infarction (AMI) canines, RNS (Group 3, n = 10) or sham RNS (Group 4, n = 10) was intermittently (1 min ON and 4 min OFF) performed for 1 h following AMI induction. The LSGNA and AMI-induced ventricular arrhythmias were analysed. In normal and HMI canines, although transient RNS significantly increased the LSGNA and facilitated the action potential duration (APD) alternans, it did not induce any ventricular arrhythmias and did not change the ventricular effective refractory period, APD or maximum slope of the APD restitution curve. In AMI canines, transient RNS significantly exacerbated LSG activation and promoted the incidence of ventricular arrhythmias. Transient RNS did not increase the risk of ventricular arrhythmias in normal or HMI hearts, but it significantly promoted the occurrence of ventricular arrhythmias in AMI hearts. Therefore, electrical stimulation-based renal nerve mapping may be unsafe in AMI patients and in patients with a high risk for malignant ventricular arrhythmias.

  8. High flexible Hydropower Generation concepts for future grids

    NASA Astrophysics Data System (ADS)

    Hell, Johann

    2017-04-01

    The ongoing changes in electric power generation are resulting in new requirements for the classical generating units. In consequence a paradigm change in operation of power systems is necessary and a new approach in finding solutions is needed. The presented paper is dealing with the new requirements on current and future energy systems with the focus on hydro power generation. A power generation landscape for some European regions is shown and generation and operational flexibility is explained. Based on the requirements from the Transmission System Operator in UK, the transient performance of a Pumped Storage installation is discussed.

  9. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  10. Alginate edible films containing microencapsulated lemongrass oil or citral: effect of encapsulating agent and storage time on physical and antimicrobial properties.

    PubMed

    Alarcón-Moyano, Jessica K; Bustos, Rubén O; Herrera, María Lidia; Matiacevich, Silvia B

    2017-08-01

    Active edible films have been proposed as an alternative to extend shelf life of fresh foods. Most essential oils have antimicrobial properties; however, storage conditions could reduce their activity. To avoid this effect the essential oil (EO) can be microencapsulated prior to film casting. The aim of this study was to determine the effects of the type of encapsulating agent (EA), type of EO and storage time on physical properties and antimicrobial activity of alginate-based films against Escherichia coli ATCC 25922. Trehalose (TH), Capsul ® (CAP) and Tween 20 (Tw20) were used as EA. Lemongrass essential oil (LMO) and citral were used as active agents. The results showed that the type of EA affected the stability of the film forming-emulsions as well as the changes in opacity and colour of the films during storage but not the antimicrobial activity of them. Both microencapsulated EOs showed a prolonged release from the alginate films during the 28 days of storage. Trehalose was selected to encapsulate both active compounds because the films made with this microencapsulated EA showed the greatest physical stability and the lowest color variation among all the films studied.

  11. Fructan:fructan 1-fructosyltransferase and inulin hydrolase activities relating to inulin and soluble sugars in Jerusalem artichoke (Helianthus tuberosus Linn.) tubers during storage.

    PubMed

    Maicaurkaew, Sukanya; Jogloy, Sanun; Hamaker, Bruce R; Ningsanond, Suwayd

    2017-03-01

    Influences of harvest time and storage conditions on activities of fructan:fructan1-fructosyltransferase (1-FFT) and inulin hydrolase (InH) in relation to inulin and soluble sugars of Jerusalem artichoke ( Helianthus tuberosus L.) tubers were investigated. Maturity affected 1-FFT-activity, inulin contents, and inulin profiles of the tubers harvested between 30 and 70 days after flowering (DAF). Decreases in 1-FFT activity, high molecular weight inulin, and inulin content were observed in late-harvested tubers. The tubers harvested at 50 DAF had the highest inulin content (734.9 ± 20.5 g kg -1 DW) with a high degree of polymerization (28% of DP >30). During storage of the tubers, increases in InH activity (reached its peak at 15 days of storage) and gradual decreases in 1-FFT activity took placed. These changes were associated with inulin depolymerization, causing decreases in inulin content and increases in soluble sugars. As well, decreasing storage temperatures would retain high inulin content and keep low soluble sugars; and freezing at -18 °C would best retard 1-FFT, InH, and inulin changes.

  12. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement.

    PubMed

    Kim, Kyung Man; Baratta, Michael V; Yang, Aimei; Lee, Doheon; Boyden, Edward S; Fiorillo, Christopher D

    2012-01-01

    Activation of dopamine receptors in forebrain regions, for minutes or longer, is known to be sufficient for positive reinforcement of stimuli and actions. However, the firing rate of dopamine neurons is increased for only about 200 milliseconds following natural reward events that are better than expected, a response which has been described as a "reward prediction error" (RPE). Although RPE drives reinforcement learning (RL) in computational models, it has not been possible to directly test whether the transient dopamine signal actually drives RL. Here we have performed optical stimulation of genetically targeted ventral tegmental area (VTA) dopamine neurons expressing Channelrhodopsin-2 (ChR2) in mice. We mimicked the transient activation of dopamine neurons that occurs in response to natural reward by applying a light pulse of 200 ms in VTA. When a single light pulse followed each self-initiated nose poke, it was sufficient in itself to cause operant reinforcement. Furthermore, when optical stimulation was delivered in separate sessions according to a predetermined pattern, it increased locomotion and contralateral rotations, behaviors that are known to result from activation of dopamine neurons. All three of the optically induced operant and locomotor behaviors were tightly correlated with the number of VTA dopamine neurons that expressed ChR2, providing additional evidence that the behavioral responses were caused by activation of dopamine neurons. These results provide strong evidence that the transient activation of dopamine neurons provides a functional reward signal that drives learning, in support of RL theories of dopamine function.

  13. Magnetic Oscillations Mark Sites of Magnetic Transients in an Acoustically Active Flare

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles A.; Donea, A.; Hudson, H. S.; Martinez Oliveros, J.; Hanson, C.

    2011-05-01

    The flare of 2011 February 15, in NOAA AR11158, was the first acoustically active flare of solar cycle 24, and the first observed by the Solar Dynamics Observatory (SDO). It was exceptional in a number of respects (Kosovichev 2011a,b). Sharp ribbon-like transient Doppler, and magnetic signatures swept over parts of the active region during the impulsive phase of the flare. We apply seismic holography to a 2-hr time series of HMI observations encompassing the flare. The acoustic source distribution appears to have been strongly concentrated in a single highly compact penumbral region in which the continuum-intensity signature was unusually weak. The line-of-sight magnetic transient was strong in parts of the active region, but relatively weak in the seismic-source region. On the other hand, the neighbourhoods of the regions visited by the strongest magnetic transients maintained conspicuous 5-minutes-period variations in the line of sight magnetic signature for the full 2-hr duration of the time series, before the flare as well as after. We apply standard helioseismic control diagnostics for clues as to the physics underlying 5-minute magnetic oscillations in regions conducive to magnetic transients during a flare and consider the prospective development of this property as an indicator of flare potentiality on some time scale. We make use of high-resolution data from AIA, using diffracted images where necessary to obtain good photometry where the image is otherwise saturated. This is relevant to seismic emission driven by thick-target heating in the absence of back-warming. We also use RHESSI imaging spectroscopy to compare the source distributions of HXR and seismic emission.

  14. Expanded interleaved solid-state memory for a wide bandwidth transient waveform recorder

    NASA Technical Reports Server (NTRS)

    Thomas, R. M., Jr.

    1980-01-01

    An interleaved, solid state expanded memory for a 100 MHz bandwidth waveform recorder is described. The memory development resulted in a significant increase in the storage capacity of a commercially available recorder. The motivation for the memory expansion of the waveform recorder, which is used to support in-flight measurement of the electromagnetic characteristics of lightning discharges, was the need for a significantly longer data window than that provided by the commercially available unit. The expanded recorder provides a data window that is 128 times longer than the commercial unit, while maintaining the same time resolution, by increasing the storage capacity from 1024 to 131 072 data samples. The expanded unit operates at sample periods as small as 10 ns. Sampling once every 10 ns, the commercial unit records for about 10 microseconds before the memory is filled, whereas, the expanded unit records for about 1300 microseconds. A photo of the expanded waveform recorder is shown.

  15. Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Vandresar, N. T.

    1991-01-01

    Results are presented for an experimental investigation of self-pressurization and thermal stratification of a 4.89 cu m liquid hydrogen (LH2) storage tank subjected to low heat flux (0.35, 2.0, and 3.5 W/sq m) under normal gravity conditions. Tests were performed at fill levels of 83 to 84 percent (by volume). The LH2 tank was representative of future spacecraft tankage, having a low mass-to-volume ratio and high performance multilayer thermal insulation. Results show that the pressure rise rate and thermal stratification increase with increasing heat flux. At the lowest heat flux, the pressure rise rate is comparable to the homogenous rate, while at the highest heat flux, the rate is more than three times the homogeneous rate. It was found that initial conditions have a significant impact on the initial pressure rise rate. The quasi-steady pressure rise rates are nearly independent of the initial condition after an initial transient period has passed.

  16. Seed proteomics.

    PubMed

    Miernyk, Ján A; Hajduch, Martin

    2011-04-01

    Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cell biologists, and many of the complicated aspects of their processing, assembly, and compartmentation are now well understood. Unfortunately, the abundance and complexity of the SSP requires that they be avoided or removed prior to gel-based analysis of non-SSP. While much of the extant data from MS-based proteomic analysis of seeds is descriptive, it has nevertheless provided a preliminary metabolic picture explaining much of their biology. Contemporary studies are moving more toward analysis of protein interactions and posttranslational modifications, and functions of metabolic networks. Many aspects of the biology of seeds make then an attractive platform for heterologous protein expression. Herein we present a broad review of the results from the proteomic studies of seeds, and speculate on a potential future research directions. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Viscoelastic properties of PLA/PCL blends compatibilized with different methods

    NASA Astrophysics Data System (ADS)

    Shin, Boo Young; Han, Do Hung

    2017-11-01

    The aim of this study was to observe changes in the viscoelastic properties of PLA/PCL (80/20) blends produced using different compatibilization methods. Reactive extrusion and high-energy radiation methods were used for blend compatibilization. Storage and loss moduli, complex viscosity, transient stress relaxation modulus, and tan δ of blends were analyzed and blend morphologies were examined. All compatibilized PLA/PCL blends had smaller dispersed particle sizes than the non-compatibilized blend, and well compatibilized blends had finer morphologies than poorly compatibilized blends. Viscoelastic properties differentiated well compatibilized and poorly compatibilized blends. Well compatibilized blends had higher storage and loss moduli and complex viscosities than those calculated by the log-additive mixing rule due to strong interfacial adhesion, whereas poorly compatibilized blends showed negative deviations due to weak interfacial adhesion. Moreover, well compatibilized blends had much slower stress relaxation than poorly compatibilized blends and didn't show tan δ plateau region caused by slippage at the interface between continuous and dispersed phases.

  18. Computational modeling of latent-heat-storage in PCM modified interior plaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fořt, Jan; Maděra, Jiří; Trník, Anton

    2016-06-08

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On themore » basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.« less

  19. Energy Storage. Teachers Guide. Science Activities in Energy.

    ERIC Educational Resources Information Center

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  20. Effects of Different Drying Methods and Storage Time on Free Radical Scavenging Activity and Total Phenolic Content of Cosmos Caudatus.

    PubMed

    Mediani, Ahmed; Abas, Faridah; Tan, Chin Ping; Khatib, Alfi

    2014-05-07

    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained.

  1. Effects of Different Drying Methods and Storage Time on Free Radical Scavenging Activity and Total Phenolic Content of Cosmos caudatus

    PubMed Central

    Mediani, Ahmed; Abas, Faridah; Tan, Chin Ping; Khatib, Alfi

    2014-01-01

    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained. PMID:26784876

  2. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  3. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

    PubMed

    Unda, Jesus E Zerpa; Roduner, Emil

    2012-03-21

    A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

  4. The Relationship between Processing and Storage in Working Memory Span: Not Two Sides of the Same Coin

    ERIC Educational Resources Information Center

    Maehara, Yukio; Saito, Satoru

    2007-01-01

    In working memory (WM) span tests, participants maintain memory items while performing processing tasks. In this study, we examined the impact of task processing requirements on memory-storage activities, looking at the stimulus order effect and the impact of storage requirements on processing activities, testing the processing time effect in WM…

  5. Criticality meets learning: Criticality signatures in a self-organizing recurrent neural network

    PubMed Central

    Del Papa, Bruno; Priesemann, Viola

    2017-01-01

    Many experiments have suggested that the brain operates close to a critical state, based on signatures of criticality such as power-law distributed neuronal avalanches. In neural network models, criticality is a dynamical state that maximizes information processing capacities, e.g. sensitivity to input, dynamical range and storage capacity, which makes it a favorable candidate state for brain function. Although models that self-organize towards a critical state have been proposed, the relation between criticality signatures and learning is still unclear. Here, we investigate signatures of criticality in a self-organizing recurrent neural network (SORN). Investigating criticality in the SORN is of particular interest because it has not been developed to show criticality. Instead, the SORN has been shown to exhibit spatio-temporal pattern learning through a combination of neural plasticity mechanisms and it reproduces a number of biological findings on neural variability and the statistics and fluctuations of synaptic efficacies. We show that, after a transient, the SORN spontaneously self-organizes into a dynamical state that shows criticality signatures comparable to those found in experiments. The plasticity mechanisms are necessary to attain that dynamical state, but not to maintain it. Furthermore, onset of external input transiently changes the slope of the avalanche distributions – matching recent experimental findings. Interestingly, the membrane noise level necessary for the occurrence of the criticality signatures reduces the model’s performance in simple learning tasks. Overall, our work shows that the biologically inspired plasticity and homeostasis mechanisms responsible for the SORN’s spatio-temporal learning abilities can give rise to criticality signatures in its activity when driven by random input, but these break down under the structured input of short repeating sequences. PMID:28552964

  6. The resolution of reservoir dynamics with noise based technologies: A case study from the 2006 Basel injection experiment

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Husen, Stephan; Obermann, Anne; Planes, Thomas; Campillo, Michel; Larose, Eric

    2014-05-01

    We explore the applicability of noise-based monitoring and imaging techniques in the context of the 2006 Basel stimulation experiment using data from five borehole velocimeters and five surface accelerometers located around the injection site. We observe a significant perturbation of medium properties associated with the reservoir stimulation. The transient perturbation, with a duration of 20-30 days, reaches its maximum about 15 days after shut in, when microseismic activity has ceased; it is thus associated with aseismic deformation. Inverting relative velocity change and decorrelation observations using techniques developed and applied on laboratory and local to regional seismological scales, we can image the associated deformation pattern. We discuss limits of the the frequency- and lapse-time dependent resolution and suggestions for improvements considering the 3-D network geometry together with wave propagation models. The depth sensitivity of the analyzed wave field indicates resolution of perturbation in the shallow parts of the sedimentary layer above the stimulated deep volume located in the crystalline base layer. The deformation pattern is similar to InSAR/satellite observations associated with CO2 sequestration experiments, and indicates the transfer of deformation beyond scales associated with the instantaneously stimulated volume. Our detection and localization of delayed induced shallow aseismic transient deformation indicates that monitoring the evolution of reservoir properties using the ambient seismic field provides observables that complement information obtained with standard microseismic approaches. The results constitute a significant advance for the resolution of reservoir dynamics; the technology has the potential to provide critical constraints in related geotechnical situations associated with fluid injection, fracking, (nuclear) waste management, and carbon capture and storage.

  7. Volatile emission after controlled atmosphere storage of Mondial Gala apples (Malus domestica): relationship to some involved enzyme activities.

    PubMed

    Lara, Isabel; Echeverría, Gemma; Graell, Jordi; López, María Luisa

    2007-07-25

    Mondial Gala apples were harvested at commercial maturity and stored at 1 degrees C under either air or controlled atmosphere (CA) conditions (2 kPa O2/2 kPa CO2 and 1 kPa O2/1 kPa CO2), where they remained for 3 or 6 months. Data on emission of selected volatile esters, alcohol precursors, and activity of some aroma-related enzymes in both peel and pulp tissues were obtained during subsequent shelf life of fruit and submitted to multivariate analysis procedures. CA storage caused a decrease in the emission of volatile esters in comparison to storage in air. Results suggest that lessened ester production was the consequence of modifications in activities of alcohol o-acyltransferase (AAT) and lipoxygenase (LOX) activities. For short-term storage, inhibition of lipoxygenase activity in CA stored fruit possibly led to a shortage of lipid-derived substrates, resulting in decreased production of volatile esters in spite of substantial ester-forming capacity that allowed for some recovery of fruit capacity for ester emission during the shelf life. For long-term storage, strong inhibition of AAT activity in CA stored fruit in combination with low LOX activities resulted in unrecoverable diminution of biosynthesis of volatile esters.

  8. Effect of commercial long-term extenders on metabolic activity and membrane integrity of boar spermatozoa stored at 17 degrees C.

    PubMed

    Dziekońska, A; Fraser, L; Majewska, A; Lecewicz, M; Zasiadczyk, Ł; Kordan, W

    2013-01-01

    This study was aimed to analyze the metabolic activity and membrane integrity of boar spermatozoa following storage in long-term semen extenders. Boar semen was diluted with Androhep EnduraGuard (AeG), DILU-Cell (DC), SafeCell Plus (SCP) and Vitasem LD (VLD) extenders and stored for 10 days at 17 degrees C. Parameters of the analyzed sperm metabolic activity included total motility (TMOT), progressive motility (PMOT), high mitochondrial membrane potential (MMP) and ATP content, whereas those of the membrane integrity included plasma membrane integrity (PMI) and normal apical ridge (NAR) acrosome. Extender type was a significant (P < 0.05) source of variation in all the analyzed sperm parameters, except for ATP content. Furthermore, the storage time had a significant effect (P < 0.05) on the sperm metabolic activity and membrane integrity during semen storage. In all extenders the metabolic activity and membrane integrity of the stored spermatozoa decreased continuously over time. Among the four analyzed extenders, AeG and SCP showed the best performance in terms of TMOT and PMI on Days 5, 7 and 10 of storage. Marked differences in the proportions of spermatozoa with high MMP were observed between the extenders, particularly on Day 10 of storage. There were not any marked differences in sperm ATP content between the extenders, regardless of the storage time. Furthermore, the percentage of spermatozoa with NAR acrosomes decreased during prolonged storage, being markedly lower in DC-diluted semen compared with semen diluted with either AeG or SCP extender. The results of this study indicated that components of the long-term extenders have different effects on the sperm functionality and prolonged semen longevity by delaying the processes associated with sperm ageing during liquid storage.

  9. Simulation of ground-water flow in the Mojave River basin, California

    USGS Publications Warehouse

    Stamos, Christina L.; Martin, Peter; Nishikawa, Tracy; Cox, Brett F.

    2001-01-01

    The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has led to rapid growth in population and, consequently, to an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry-except for a small stretch of perennial flow and periods of flow after intense storms. Thus, the region relies almost entirely on ground water to meet its agricultural and municipal needs. Ground-water withdrawal since the late 1800's has resulted in discharge, primarily from pumping wells, that exceeds natural recharge. To better understand the relation between the regional and the floodplain aquifer systems and to develop a management tool that could be used to estimate the effects that future stresses may have on the ground-water system, a numerical ground-water flow model of the Mojave River ground-water basin was developed, in part, on the basis of a previously developed analog model. The ground-water flow model has two horizontal layers; the top layer (layer 1) corresponds to the floodplain aquifer and the bottom layer (layer 2) corresponds to the regional aquifer. There are 161 rows and 200 columns with a horizontal grid spacing of 2,000 by 2,000 feet. Two stress periods (wet and dry) per year are used where the duration of each stress period is a function of the occurrence, quantity of discharge, and length of stormflow from the headwaters each year. A steady-state model provided initial conditions for the transient-state simulation. The model was calibrated to transient-state conditions (1931-94) using a trial-and-error approach. The transient-state simulation results are in good agreement with measured data. Under transient-state conditions, the simulated floodplain aquifer and regional aquifer hydrographs matched the general trends observed for the measured water levels. The simulated streamflow hydrographs matched wet stress period average flow rates and times of no flow at the Barstow and Afton Canyon gages. Steady-state particle-tracking was used to estimate travel times for mountain-front and streamflow recharge. The simulated travel times for mountain-front recharge to reach the area west of Victorville were about 5,000 to 6,000 years; this result is in reasonable agreement with published results. Steady-state particle-tracking results for streamflow recharge indicate that in most subareas along the river, the particles quickly leave and reenter the river. The complaint that resulted in the adjudication of the Mojave River ground-water basin alleged that the cumulative water production upstream of the city of Barstow had overdrafted the ground-water basin. In order to ascertain the effect of pumping on ground-water and surface-water relations along the Mojave River, two pumping simulations were compared with the 1931-90 transient-state simulation (base case). The first simulation assumed 1931-90 pumping in the upper region (Este, Oeste, Alto, and Transition zone model subareas) but with no pumping in the remainder of the basin, and the second assumed 1931-90 pumping in the lower region (Centro, Harper Lake, Baja, Coyote Lake, and Afton Canyon model subareas) but with no pumping in remainder of the basin. In the upper region, assuming pumping only in the upper region, there was no change in storage, recharge from the Mojave River, ground-water discharge to the Mojave River, or evapotranspiration when compared with the base case. In the lower region, assuming pumping only in the upper region, there was storage accretion, decreased recharge from the Mojave River, increased ground-water discharge to the Mojave River, and increased evapotranspiration when compared with the base case. In the upper region, assuming pumping only in the lower region, there was storage accretion, decreased recharge from the Mojave River, increased ground-water discharge to the Mojave River, and increased evapotranspiration when compared with the base case. In the

  10. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    PubMed

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  11. M.I.T. studies of transient X-ray phenomena. [astronomical observations

    NASA Technical Reports Server (NTRS)

    Canizares, C. R.

    1976-01-01

    A variety of transient X-ray phenomena have been studied. Data from the OSO-7 satellite reveal both long and short time-scale transients. Extensive observations have been made of the Lupus X-ray Nova (3U1543-47) and GX339-4(MX 1658-48) which may represent a very different type of transient source. A unique, intense X-ray flare lasting ten minutes was also recorded, and the X-ray emission from the active galaxy Cen A was found to vary significantly over a period of several days. In a recent balloon flight the Crab pulsar, NP0532, was observed to exhibit a transient pulsed component distinct from the usual main pulse and interpulse. A sounding-rocket experiment detected an ultrasoft transient X-ray source tentatively associated with SS Cygni, and preliminary results from SAS-3 show a very hard spectrum for the new source A0535 + 26. On the other hand, extensive OSO-7 null observations of both Type I and II supernovae and of the flaring radio star Algol make it unlikely that these types of objects are potent transient X-ray emitters.

  12. Effect of storage temperature and time on the nutritional quality of walnut male inflorescences.

    PubMed

    Zhang, Wen-E; Wang, Chang-Lei; Shi, Bin-Bin; Pan, Xue-Jun

    2017-04-01

    The objective of this study was to investigate the effect of storage temperature and time on nutrients, bioactive compounds, and antioxidant activities of walnut male inflorescences. The results showed that the moisture, saccharides, fat, protein, amino acids, ascorbic acid, phenolic and flavonoid compound contents, and antioxidant activities of walnut male inflorescences were markedly influenced by storage temperature, and different degrees of decrease in these parameters were observed during the entire storage period. Moreover, higher storage temperature had a more significant effect on the nutrients, bioactive compounds, and antioxidant activities of walnut male flowers, and the loss rate of these components at 25°C was higher than that determined at 4°C. However, the results also presented that the ash and mineral contents did not appear to be influenced significantly by the storage temperature, and slightly significant changes were observed in crude fiber throughout storage, which indicated that the influence of storage on the individual mineral and crude fiber content was minimal. Based on the findings in this study, in order to maximize nutrients concentration, walnut male inflorescences should be kept at 4°C for <6 days and be consumed as fresh as possible. Copyright © 2016. Published by Elsevier B.V.

  13. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T).

    PubMed

    Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A

    2012-03-01

    The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.

  14. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant.

    PubMed

    Ródenas, J; Abarca, A; Gallardo, S

    2011-08-01

    BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool. 2010 Elsevier Ltd. All rights reserved.

  15. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan

    2015-10-01

    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  16. Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines.

    PubMed

    Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf

    2015-09-02

    Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions.

  17. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.

    PubMed

    Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie

    2014-09-10

    Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.

  18. Development of a Ground Operations Demonstration Unit for Liquid Hydrogen at Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Notardonato, W. U.

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project will design, assemble, and test a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives and will culminate with an operational demonstration of the loading of a simulated flight tank with densified propellants. The system will be unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. The integrated refrigerator is the critical feature enabling the testing of the following three functions: zero-loss storage and transfer, propellant densification/conditioning, and on-site liquefaction. This paper will discuss the test objectives, the design of the system, and the current status of the installation.

  19. Phase change energy storage for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  20. Phase change energy storage for solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Chiaramonte, F. P.; Taylor, J. D.

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

Top