Science.gov

Sample records for active transport mechanism

  1. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. PMID:25887939

  2. Active transport of vesicles in neurons is modulated by mechanical tension

    NASA Astrophysics Data System (ADS)

    Ahmed, Wylie W.; Saif, Taher A.

    2014-03-01

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.

  3. A fully resolved active musculo-mechanical model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-10-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.

  4. Activation and proton transport mechanism in influenza A M2 channel.

    PubMed

    Wei, Chenyu; Pohorille, Andrew

    2013-11-01

    Molecular dynamics trajectories 2 μs in length have been generated for the pH-activated, tetrameric M2 proton channel of the influenza A virus in all protonation states of the pH sensor located at the His(37) tetrad. All simulated structures are in very good agreement with high-resolution structures. Changes in the channel caused by progressive protonation of His(37) provide insight into the mechanism of proton transport. The channel is closed at both His(37) and Trp(41) sites in the singly and doubly protonated states, but it opens at Trp(41) upon further protonation. Anions access the charged His(37) and by doing so stabilize the protonated states of the channel. The narrow opening at the His(37) site, further blocked by anions, is inconsistent with the water-wire mechanism of proton transport. Instead, conformational interconversions of His(37) correlated with hydrogen bonding to water molecules indicate that these residues shuttle protons in high-protonation states. Hydrogen bonds between charged and uncharged histidines are rare. The valve at Val(27) remains on average quite narrow in all protonation states but fluctuates sufficiently to support water and proton transport. A proton transport mechanism in which the channel, depending on pH, opens at either the histidine or valine gate is only partially supported by the simulations. PMID:24209848

  5. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear.

    PubMed

    Kurabi, Arwa; Pak, Kwang K; Bernhardt, Marlen; Baird, Andrew; Ryan, Allen F

    2016-01-01

    Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of linear phage library displaying 10(10th) 12mer peptides were applied on the TM of rats with active bacterial OM. The middle ear (ME) contents were then harvested, amplified and the preparation re-applied for additional rounds. Second, the same naïve library was sequentially screened for phage exhibiting TM binding, internalization and then transit. Results revealed a novel set of peptides that transit across the TM to the ME in a time and temperature dependent manner. The peptides with highest transport capacities shared sequence similarities. Historically, the TM was viewed as an impermeable barrier. However, our studies reveal that it is possible to translocate peptide-linked small particles across the TM. This is the first comprehensive biopanning for the isolation of TM transiting peptidic ligands. The identified mechanism offers a new drug delivery platform into the ME. PMID:26946957

  6. Discovery of a Biological Mechanism of Active Transport through the Tympanic Membrane to the Middle Ear

    PubMed Central

    Kurabi, Arwa; Pak, Kwang K.; Bernhardt, Marlen; Baird, Andrew; Ryan, Allen F.

    2016-01-01

    Otitis media (OM) is a common pediatric disease for which systemic antibiotics are often prescribed. While local treatment would avoid the systemic treatment side-effects, the tympanic membrane (TM) represents an impenetrable barrier unless surgically breached. We hypothesized that the TM might harbor innate biological mechanisms that could mediate trans-TM transport. We used two M13-bacteriophage display biopanning strategies to search for mediators of trans-TM transport. First, aliquots of linear phage library displaying 1010th 12mer peptides were applied on the TM of rats with active bacterial OM. The middle ear (ME) contents were then harvested, amplified and the preparation re-applied for additional rounds. Second, the same naïve library was sequentially screened for phage exhibiting TM binding, internalization and then transit. Results revealed a novel set of peptides that transit across the TM to the ME in a time and temperature dependent manner. The peptides with highest transport capacities shared sequence similarities. Historically, the TM was viewed as an impermeable barrier. However, our studies reveal that it is possible to translocate peptide-linked small particles across the TM. This is the first comprehensive biopanning for the isolation of TM transiting peptidic ligands. The identified mechanism offers a new drug delivery platform into the ME. PMID:26946957

  7. Dissecting the Molecular Mechanism of Nucleotide-Dependent Activation of the KtrAB K+ Transporter

    PubMed Central

    Szollosi, Andras; Vieira-Pires, Ricardo S.; Teixeira-Duarte, Celso M.; Rocha, Rita; Morais-Cabral, João H.

    2016-01-01

    KtrAB belongs to the Trk/Ktr/HKT superfamily of monovalent cation (K+ and Na+) transport proteins that closely resemble K+ channels. These proteins underlie a plethora of cellular functions that are crucial for environmental adaptation in plants, fungi, archaea, and bacteria. The activation mechanism of the Trk/Ktr/HKT proteins remains unknown. It has been shown that ATP stimulates the activity of KtrAB while ADP does not. Here, we present X-ray structural information on the KtrAB complex with bound ADP. A comparison with the KtrAB-ATP structure reveals conformational changes in the ring and in the membrane protein. In combination with a biochemical and functional analysis, we uncover how ligand-dependent changes in the KtrA ring are propagated to the KtrB membrane protein and conclude that, despite their structural similarity, the activation mechanism of KtrAB is markedly different from the activation mechanism of K+ channels. PMID:26771197

  8. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    NASA Technical Reports Server (NTRS)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  9. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  10. Sediment transport mechanics

    NASA Astrophysics Data System (ADS)

    Ballio, Francesco; Tait, Simon

    2012-12-01

    The Editor of Acta Geophysica and the Guest Editors wish to dedicate this Topical Issue on Sediment Transport Mechanics to the memory of Stephen Coleman, who died recently. During his career, Stephen had made an outstanding scientific contribution to the topic of Sediment Transport. The level of his contribution is demonstrated in the paper by Aberle, Coleman, and Nikora included in this issue, on which he started working before becoming aware of the illness that led to his untimely death. For scholars and colleagues Stephen remains an example of intellectual honesty and scientific insight.

  11. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms.

    PubMed

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called "repeat-swap modeling" to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport also

  12. Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms

    PubMed Central

    Vergara-Jaque, Ariela; Fenollar-Ferrer, Cristina; Kaufmann, Desirée; Forrest, Lucy R.

    2015-01-01

    Secondary active transporters are critical for neurotransmitter clearance and recycling during synaptic transmission and uptake of nutrients. These proteins mediate the movement of solutes against their concentration gradients, by using the energy released in the movement of ions down pre-existing concentration gradients. To achieve this, transporters conform to the so-called alternating-access hypothesis, whereby the protein adopts at least two conformations in which the substrate binding sites are exposed to one or other side of the membrane, but not both simultaneously. Structures of a bacterial homolog of neuronal glutamate transporters, GltPh, in several different conformational states have revealed that the protein structure is asymmetric in the outward- and inward-open states, and that the conformational change connecting them involves a elevator-like movement of a substrate binding domain across the membrane. The structural asymmetry is created by inverted-topology repeats, i.e., structural repeats with similar overall folds whose transmembrane topologies are related to each other by two-fold pseudo-symmetry around an axis parallel to the membrane plane. Inverted repeats have been found in around three-quarters of secondary transporter folds. Moreover, the (a)symmetry of these systems has been successfully used as a bioinformatic tool, called “repeat-swap modeling” to predict structural models of a transporter in one conformation using the known structure of the transporter in the complementary conformation as a template. Here, we describe an updated repeat-swap homology modeling protocol, and calibrate the accuracy of the method using GltPh, for which both inward- and outward-facing conformations are known. We then apply this repeat-swap homology modeling procedure to a concentrative nucleoside transporter, VcCNT, which has a three-dimensional arrangement related to that of GltPh. The repeat-swapped model of VcCNT predicts that nucleoside transport

  13. Retrograde TrkAIII transport from ERGIC to ER: a re-localisation mechanism for oncogenic activity

    PubMed Central

    Farina, Antonietta Rosella; Cappabianca, Lucia; Ruggeri, Pierdomenico; Gneo, Luciana; Maccarone, Rita; Mackay, Andrew Reay

    2015-01-01

    In human SH-SY5Y neuroblastoma (NB) cells, nascent immature N-glycosylated 110kDa TrkA moves rapidly from the endoplasmic reticulum (ER) to the Golgi Network (GN), where it matures into the 140kDa receptor prior to being transported to the cell surface, creating GN and cell surface pools of inactive receptor maintained below the spontaneous activation threshold by a full compliment of inhibitory domains and endogenous PTPases. In contrast, the oncogenic alternative TrkAIII splice variant is not expressed at the cell surface but re-localises to intracellular membranes, within which it exhibits spontaneous ERGIC/COPI-associated activation and oncogenic Akt signalling. In this study, we characterise the mechanism responsible for TrkAIII re-localisation. Spontaneous TrkAIII activation, facilitated by D4 IG-like domain and N-glycosylation site omission, increases spontaneous activation potential by altering intracellular trafficking, inhibiting cell surface expression and eliminating an important inhibitory domain. TrkAIII, spontaneously activated within the permissive ERGIC/COPI compartment, rather than moving in an anterograde direction to the GN exhibits retrograde transport back to the ER, where it is inactivated. This sets-up self-perpetuating TrkAIII re-cycling between the ERGIC and ER, that ensures continual accumulation above the spontaneous activation threshold of the ERGIC/COPI compartment. This is reversed by TrkA tyrosine kinase inhibitors, which promote anterograde transport of inactivated TrkAIII to the GN, resulting in GN-associated TrkAIII maturation to a 120kDa species that is degraded at the proteasome. PMID:26415233

  14. Laboratory Exercise on Active Transport.

    ERIC Educational Resources Information Center

    Stalheim-Smith, Ann; Fitch, Greg K.

    1985-01-01

    Describes a laboratory exercise which demonstrates qualitatively the specificity of the transport mechanism, including a consideration of the competitive inhibition, and the role of adenosine triphosphate (ATP) in active transport. The exercise, which can be completed in two to three hours by groups of four students, consistently produces reliable…

  15. Tape transport mechanism

    DOEpatents

    Groh, Edward F.; McDowell, William; Modjeski, Norbert S.; Keefe, Donald J.; Groer, Peter

    1979-01-01

    A device is provided for transporting, in a stepwise manner, tape between a feed reel and takeup reel. An indexer moves across the normal path of the tape displacing it while the tape on the takeup reel side of the indexer is braked. After displacement, the takeup reel takes up the displaced tape while the tape on the feed reel side of the indexer is braked, providing stepwise tape transport in precise intervals determined by the amount of displacement caused by the indexer.

  16. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  17. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    PubMed Central

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  18. Diagnostics of coronal heating and mechanisms of energy transport from IRIS and AIA observations of active region moss

    NASA Astrophysics Data System (ADS)

    Testa, Paola; Reale, Fabio; De Pontieu, Bart; Hansteen, Viggo; Carlsson, Mats; Allred, Joel; Daw, Adrian

    The variability of emission of the "moss", i.e., the upper transition region (TR) layer of high pressure loops in active regions provides stringent constraints on the characteristics of heating events. The Interface Region Imaging Spectrograph (IRIS), launched in June 2013, provides imaging and spectral observations at high spatial (0.166 arcsec/pix), and temporal (down to ~1s) resolution at FUV and NUV wavelengths, and together with the high spatial and temporal resolution observations of SDO/AIA, can provide important insights into the coronal heating mechanisms. We present here an analysis of the temporal variability properties of moss regions at the footpoints of hot active region core loops undergoing heating, as observed by IRIS and AIA, covering emission from the corona to the transition region and the chromosphere. We model the observations using dynamic loop models (the Palermo-Harvard code, and RADYN, which also includes the effects of non-thermal particles) and discuss the implications on energy transport mechanisms (thermal conduction vs beams of non-thermal particles).

  19. Diagnostics of coronal heating and mechanisms of energy transport from IRIS and AIA observations of active region moss

    NASA Astrophysics Data System (ADS)

    Testa, Paola; De Pontieu, Bart; Allred, Joel C.; Carlsson, Mats; Reale, Fabio; Daw, Adrian N.; Hansteen, Viggo

    2014-06-01

    The variability of emission of the "moss", i.e., the upper transition region (TR) layer of high pressure loops in active regions provides stringent constraints on the characteristics of heating events. The Interface Region Imaging Spectrograph (IRIS), launched in June 2013, provides imaging and spectral observations at high spatial (0.166 arcsec/pix), and temporal (down to ~1s) resolution at FUV and NUV wavelengths, and together with the high spatial and temporal resolution observations of SDO/AIA, can provide important insights into the coronal heating mechanisms. We present here an analysis of the temporal variability properties of moss regions at the footpoints of hot active region core loops undergoing heating, as observed by IRIS and AIA, covering emission from the corona to the transition region and the chromosphere. We model the observations using dynamic loop models (the Palermo-Harvard code, and RADYN, which also includes the effects of non-thermal particles) and discuss the implications on energy transport mechanisms (thermal conduction vs beams of non-thermal particles).

  20. Manganese Transport via the Transferrin Mechanism

    PubMed Central

    Gunter, Thomas E.; Gerstner, Brent; Gunter, Karlene K.; Malecki, Jon; Gelein, Robert; Valentine, William M.; Aschner, Michael; Yule, David I.

    2013-01-01

    Excessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn2+ is transported into cells via a number of mechanisms, while Mn3+ is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn2+, Mn3+ and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity. While uptake of Fe3+ via the Tf mechanism is well understood, uptake of Mn3+ via this mechanism has not been systematically studied. The stability of the Mn3+Tf complex allowed us to form and purify this complex and label it with a fluorescent (Alexa green) tag. Using purified and labeled Mn3+Tf and biophysical tools, we have developed a novel approach to study Mn3+Tf transport independently of other Mn transport mechanisms. This approach was used to compare the uptake of Mn3+Tf into neuronal cell lines with published descriptions of Fe3+ uptake via the Tf mechanism, and to obtain quantitative information on Mn uptake via the Tf mechanism. Results confirm that in these cell lines significant Mn3+ is transported by the Tf mechanism similarly to Fe3+Tf transport; although Mn3+Tf transport is markedly slower than other Mn transport mechanisms. This novel approach may prove useful for studying Mn toxicity in other systems and cell types. PMID:23146871

  1. Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5.

    PubMed

    Hoang, Tuan; Smith, Matthew D; Jelokhani-Niaraki, Masoud

    2012-05-15

    Neuronal uncoupling proteins (UCP2, UCP4, and UCP5) have crucial roles in the function and protection of the central nervous system (CNS). Extensive biochemical studies of UCP2 have provided ample evidence of its participation in proton and anion transport. To date, functional studies of UCP4 and UCP5 are scarce. In this study, we show for the first time that, despite a low level of amino acid sequence identity with the previously characterized UCPs (UCP1-UCP3), UCP4 and UCP5 share their functional properties. Recombinantly expressed in Escherichia coli, UCP2, UCP4, and UCP5 were isolated and reconstituted into liposome systems, where their conformations and ion (proton and chloride) transport properties were examined. All three neuronal UCPs are able to transport protons across lipid membranes with characteristics similar to those of the archetypal protein UCP1, which is activated by fatty acids and inhibited by purine nucleotides. Neuronal UCPs also exhibit transmembrane chloride transport activity. Circular dichroism spectroscopy shows that these three transporters exist in different conformations. In addition, their structures and functions are differentially modulated by the mitochondrial lipid cardiolipin. In total, this study supports the existence of general conformational and ion transport features in neuronal UCPs. On the other hand, it also emphasizes the subtle structural and functional differences between UCPs that could distinguish their physiological roles. Differentiation between structure-function relationships of neuronal UCPs is essential for understanding their physiological functions in the CNS. PMID:22524567

  2. In vitro reconstitution of an mRNA-transport complex reveals mechanisms of assembly and motor activation

    PubMed Central

    Heym, Roland G.; Zimmermann, Dennis; Edelmann, Franziska T.; Israel, Lars; Ökten, Zeynep; Kovar, David R.

    2013-01-01

    The assembly and composition of ribonucleic acid (RNA)–transporting particles for asymmetric messenger RNA (mRNA) localization is not well understood. During mitosis of budding yeast, the Swi5p-dependent HO expression (SHE) complex transports a set of mRNAs into the daughter cell. We recombinantly reconstituted the core SHE complex and assessed its properties. The cytoplasmic precomplex contains only one motor and is unable to support continuous transport. However, a defined interaction with a second, RNA-bound precomplex after its nuclear export dimerizes the motor and activates processive RNA transport. The run length observed in vitro is compatible with long-distance transport in vivo. Surprisingly, SHE complexes that either contain or lack RNA cargo show similar motility properties, demonstrating that the RNA-binding protein and not its cargo activates motility. We further show that SHE complexes have a defined size but multimerize into variable particles upon binding of RNAs with multiple localization elements. Based on these findings, we provide an estimate of number, size, and composition of such multimeric SHE particles in the cell. PMID:24368805

  3. EPAct Transportation Regulatory Activities

    SciTech Connect

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  4. Truck and Transport Mechanic. Occupational Analyses Series.

    ERIC Educational Resources Information Center

    McRory, Aline; Ally, Mohamed

    This analysis covers tasks performed by a truck and transport mechanic, an occupational title some provinces and territories of Canada have also identified as commercial transport vehicle mechanic; transport truck mechanic; truck and coach technician; and truck and transport service technician. A guide to analysis discusses development, structure,…

  5. Evidence of two mechanisms for the activation of the glucose transporter GLUT1 by anisomycin: p38(MAP kinase) activation and protein synthesis inhibition in mammalian cells.

    PubMed Central

    Barros, L F; Young, M; Saklatvala, J; Baldwin, S A

    1997-01-01

    1. Inhibitors of protein synthesis stimulate sugar transport in mammalian cells through activation of plasma membrane GLUT1, the housekeeping isoform of the glucose transporter. However, it has been reported that some of these compounds, in addition to their effect on protein synthesis, also activate protein kinases. 2. In the present study we have explored the role of these two effects on GLUT1 activation. In 3T3-L1 adipocytes and Clone 9 cells, stimulation of sugar transport by puromycin, a translational inhibitor that does not activate kinases, was not detectable until 90 min after exposure. In contrast, stimulation by anisomycin, a potent Jun-NH2-terminal kinase (JNK) agonist, exhibited no lag phase. An intermediate response was observed to emetine and cycloheximide, weak activators of JNK. 3. The potency of anisomycin to stimulate transport acutely (30 min of exposure) was 5- to 10-fold greater than for its chronic stimulation of transport, measured after 4 h of exposure. The stimulation of transport by a low concentration of anisomycin (0.3 microM) was transient, peaked at 30-60 min and it was inhibited (IC50 < 1 microM) by SB203580, which indicates that its mediator is not JNK, but the homologous p38(MAP kinase) (p38(MAPK)). In contrast, the responses to 4 h exposure to 300 microM anisomycin or puromycin were refractory to SB203580. 4. Exposure to anisomycin resulted in rapid activation of p38(MAPK). Activation of both p38(MAPK) and GLUT1 by 0.3 microM anisomycin was cancelled by puromycin. 5. We conclude that the activation of GLUT1 in response to anisomycin includes two components: a delayed component involving translational inhibition and a fast, puromycin-inhibitable component that is secondary to activation of p38(MAPK). Images Figure 2 Figure 7 PMID:9401960

  6. Peroxisomal ABC transporters: functions and mechanism

    PubMed Central

    Baker, Alison; Carrier, David J.; Schaedler, Theresia; Waterham, Hans R.; van Roermund, Carlo W.; Theodoulou, Frederica L.

    2015-01-01

    Peroxisomes are arguably the most biochemically versatile of all eukaryotic organelles. Their metabolic functions vary between different organisms, between different tissue types of the same organism and even between different developmental stages or in response to changed environmental conditions. New functions for peroxisomes are still being discovered and their importance is underscored by the severe phenotypes that can arise as a result of peroxisome dysfunction. The β-oxidation pathway is central to peroxisomal metabolism, but the substrates processed are very diverse, reflecting the diversity of peroxisomes across species. Substrates for β-oxidation enter peroxisomes via ATP-binding cassette (ABC) transporters of subfamily D; (ABCD) and are activated by specific acyl CoA synthetases for further metabolism. Humans have three peroxisomal ABCD family members, which are half transporters that homodimerize and have distinct but partially overlapping substrate specificity; Saccharomyces cerevisiae has two half transporters that heterodimerize and plants have a single peroxisomal ABC transporter that is a fused heterodimer and which appears to be the single entry point into peroxisomes for a very wide variety of β-oxidation substrates. Our studies suggest that the Arabidopsis peroxisomal ABC transporter AtABCD1 accepts acyl CoA substrates, cleaves them before or during transport followed by reactivation by peroxisomal synthetases. We propose that this is a general mechanism to provide specificity to this class of transporters and by which amphipathic compounds are moved across peroxisome membranes. PMID:26517910

  7. Mechanical forces and lymphatic transport.

    PubMed

    Breslin, Jerome W

    2014-11-01

    This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  8. Mechanical Forces and Lymphatic Transport

    PubMed Central

    Breslin, Jerome W.

    2014-01-01

    This review examines current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including: evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. Improved understanding of the physiological mechanisms by lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  9. Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels.

    PubMed

    Bogdan, Roman; Veith, Christine; Clauss, Wolfgang; Fronius, Martin

    2008-09-01

    Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I (SC): 24 +/- 1%, n = 152), slightly decreased the transepithelial resistance (R (T): 7 +/- 2%, n = 152), but increased the apical membrane capacitance (C (M): 16 +/- 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl(-) (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+), glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl(-), and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation. PMID:18581136

  10. Transport mechanism of a glutamate transporter homologue GltPh.

    PubMed

    Ji, Yurui; Postis, Vincent L G; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-06-15

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  11. Transport mechanism of a glutamate transporter homologue GltPh

    PubMed Central

    Ji, Yurui; Postis, Vincent L.G.; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  12. Molecular Mechanisms of Renal Ammonia Transport

    PubMed Central

    Weiner, I. David; Hamm, L. Lee

    2015-01-01

    Acid-base homeostasis to a great extent relies on renal ammonia metabolism. In the past several years, seminal studies have generated important new insights into the mechanisms of renal ammonia transport. In particular, the theory that ammonia transport occurs almost exclusively through nonionic NH3 diffusion and NH4+ trapping has given way to a model postulating that a variety of proteins specifically transport NH3 and NH4+ and that this transport is critical for normal ammonia metabolism. Many of these proteins transport primarily H+ or K+ but also transport NH4+. Nonerythroid Rh glycoproteins transport ammonia and may represent critical facilitators of ammonia transport in the kidney. This review discusses the underlying aspects of renal ammonia transport as well as specific proteins with important roles in renal ammonia transport. PMID:17002591

  13. Introduction to nucleocytoplasmic transport: molecules and mechanisms.

    PubMed

    Peters, Reiner

    2006-01-01

    Nucleocytoplasmic transport, the exchange of matter between nucleus and cytoplasm, plays a fundamental role in human and other eukaryotic cells, affecting almost every aspect of health and disease. The only gate for the transport of small and large molecules as well as supramolecular complexes between nucleus and cytoplasm is the nuclear pore complex (NPC). The NPC is not a normal membrane transport protein (transporter). Composed of 500 to 1000 peptide chains, the NPC features a mysterious functional duality. For most molecules, it constitutes a molecular sieve with a blurred cutoff at approx 10 nm, but for molecules binding to phenylalanine-glycine (FG) motifs, the NPC appears to be a channel of approx 50 nm diameter, permitting bidirectional translocation at high speed. To achieve this, the NPC cooperates with soluble factors, the nuclear transport receptors, which shuttle between nuclear contents and cytoplasm. Here, we provide a short introduction to nucleocytoplasmic transport by describing first the structure and composition of the nuclear pore complex. Then, mechanisms of nucleocytoplasmic transport are discussed. Finally, the still essentially unresolved mechanisms by which nuclear transport receptors and transport complexes are translocated through the nuclear pore complex are considered, and a novel translocation model is suggested. PMID:16739728

  14. Secondary metabolites in plants: transport and self-tolerance mechanisms.

    PubMed

    Shitan, Nobukazu

    2016-07-01

    Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future. PMID:26940949

  15. [Inflammasome: activation mechanisms].

    PubMed

    Suárez, Raibel; Buelvas, Neudo

    2015-03-01

    Inflammation is a rapid biologic response of the immune system in vascular tissues, directed to eliminate stimuli capable of causing damage and begin the process of repair. The macromolecular complexes known as "inflammasomes" are formed by a receptor, either NOD (NLR) or ALR, the receptor absent in melanoma 2 (AIM2). In addition, the inflammasome is formed by the speck-like protein associated to apoptosis (ASC) and procaspase-1, that may be activated by variations in the ionic and intracellular and extracellular ATP concentrations; and the loss of stabilization of the fagolisosomme by internalization of insoluble crystals and redox mechanisms. As a result, there is activation of the molecular platform and the processing of inflammatory prointerleukins to their active forms. There are two modalities of activation of the inflammasome: canonical and non-canonical, both capable of generating effector responses. Recent data associate NLRP 3, IL-1β and IL-18 in the pathogenesis of a variety of diseases, including atherosclerosis, type II diabetes, hyperhomocysteinemia, gout, malaria and hypertension. The inflammasome cascade is emerging as a new chemotherapeutic target in these diseases. In this review we shall discuss the mechanisms of activation and regulation of the inflammasome that stimulate, modulate and resolve inflammation. PMID:25920188

  16. Transport Mechanism of a Bacterial Homologue of Glutamate Transporters

    SciTech Connect

    Reyes, N.; Ginter, C; Boudker, O

    2009-01-01

    Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, GltPh, which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt{sub Ph} in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt{sub Ph} and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.

  17. Molecular Mechanism of Biological Proton Transport

    SciTech Connect

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  18. Mechanically Activated Ion Channels.

    PubMed

    Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem

    2015-09-23

    Mechanotransduction, the conversion of physical forces into biochemical signals, is essential for various physiological processes such as the conscious sensations of touch and hearing, and the unconscious sensation of blood flow. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  19. Drag of the Cytosol as a Transport Mechanism in Neurons

    PubMed Central

    Mussel, Matan; Zeevy, Keren; Diamant, Haim; Nevo, Uri

    2014-01-01

    Axonal transport is typically divided into two components, which can be distinguished by their mean velocity. The fast component includes steady trafficking of different organelles and vesicles actively transported by motor proteins. The slow component comprises nonmembranous materials that undergo infrequent bidirectional motion. The underlying mechanism of slow axonal transport has been under debate during the past three decades. We propose a simple displacement mechanism that may be central for the distribution of molecules not carried by vesicles. It relies on the cytoplasmic drag induced by organelle movement and readily accounts for key experimental observations pertaining to slow-component transport. The induced cytoplasmic drag is predicted to depend mainly on the distribution of microtubules in the axon and the organelle transport rate. PMID:24940788

  20. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    ERIC Educational Resources Information Center

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  1. Comparative physiology of renal tubular transport mechanisms.

    PubMed Central

    Long, S.; Giebisch, G.

    1979-01-01

    This manuscript discusses current concepts of glomerular filtration and tubular transport of sodium, water, potassium, and urinary acidification by vertebrate kidneys in a comparative context. Work in mammalian and amphibian nephrons receives major emphasis due to our interest in application of new techniques for investigation of cellular mechanisms; when available, data from other vertebrate classes are discussed. Images FIG. 3 PMID:395765

  2. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter

    PubMed Central

    Parker, Joanne L; Mindell, Joseph A; Newstead, Simon

    2014-01-01

    Peptide transport plays an important role in cellular homeostasis as a key route for nitrogen acquisition in mammalian cells. PepT1 and PepT2, the mammalian proton coupled peptide transporters (POTs), function to assimilate and retain diet-derived peptides and play important roles in drug pharmacokinetics. A key characteristic of the POT family is the mechanism of peptide selectivity, with members able to recognise and transport >8000 different peptides. In this study, we present thermodynamic evidence that in the bacterial POT family transporter PepTSt, from Streptococcus thermophilus, at least two alternative transport mechanisms operate to move peptides into the cell. Whilst tri-peptides are transported with a proton:peptide stoichiometry of 3:1, di-peptides are co-transported with either 4 or 5 protons. This is the first thermodynamic study of proton:peptide stoichiometry in the POT family and reveals that secondary active transporters can evolve different coupling mechanisms to accommodate and transport chemically and physically diverse ligands across the membrane. DOI: http://dx.doi.org/10.7554/eLife.04273.001 PMID:25457052

  3. An active matter analysis of intracellular Active Transport

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Chen, Kejia; Bae, Sung Chul; Granick, Steve

    2012-02-01

    Tens of thousands of fluorescence-based trajectories at nm resolution have been analyzed, regarding active transport along microtubules in living cells. The following picture emerges. Directed motion to pre-determined locations is certainly an attractive idea, but cannot be pre-programmed as to do so would sacrifice adaptability. The polarity of microtubules is inadequate to identify these directions in cells, and no other mechanism is currently known. We conclude that molecular motors carry cargo through disordered intracellular microtubule networks in a statistical way, with loud cellular ``noise'' both in directionality and speed. Programmed random walks describe how local 1D active transport traverses crowded cellular space efficiently, rapidly, minimizing the energy waste that would result from redundant activity. The mechanism of statistical regulation is not yet understood, however.

  4. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  5. Shared Molecular Mechanisms of Membrane Transporters.

    PubMed

    Drew, David; Boudker, Olga

    2016-06-01

    The determination of the crystal structures of small-molecule transporters has shed light on the conformational changes that take place during structural isomerization from outward- to inward-facing states. Rather than using a simple rocking movement of two bundles around a central substrate-binding site, it has become clear that even the most simplistic transporters utilize rearrangements of nonrigid bodies. In the most dramatic cases, one bundle is fixed while the other, structurally divergent, bundle carries the substrate some 18 Å across the membrane, which in this review is termed an elevator alternating-access mechanism. Here, we compare and contrast rocker-switch, rocking-bundle, and elevator alternating-access mechanisms to highlight shared features and novel refinements to the basic alternating-access model. PMID:27023848

  6. X-ray structure of dopamine transporter elucidates antidepressant mechanism.

    PubMed

    Penmatsa, Aravind; Wang, Kevin H; Gouaux, Eric

    2013-11-01

    Antidepressants targeting Na(+)/Cl(-)-coupled neurotransmitter uptake define a key therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors, and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels, has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between transmembrane helices 1, 3, 6 and 8, blocking the transporter from binding substrate and from isomerizing to an inward-facing conformation. Although the overall structure of the dopamine transporter is similar to that of its prokaryotic relative LeuT, there are multiple distinctions, including a kink in transmembrane helix 12 halfway across the membrane bilayer, a latch-like carboxy-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by transmembrane helices 1a, 5 and 7. Taken together, the dopamine transporter structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and elucidates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of the mechanism and regulation of neurotransmitter uptake at chemical synapses. PMID:24037379

  7. Effect of ethanolic extract of Cryptolepis sanguinolenta stem on in vivo and in vitro glucose absorption and transport: Mechanism of its antidiabetic activity

    PubMed Central

    Ajayi, A. F.; Akhigbe, R. E.; Adewumi, O. M.; Okeleji, L. O.; Mujaidu, K. B.; Olaleye, S. B.

    2012-01-01

    Objective: Extracts from various morphological parts of Cryptolepis sanguinolenta are widely used traditionally in folklore medicine in many parts of the world for the management, control, and/or treatment of a plethora of human ailments, including diabetes mellitus. In order to scientifically appraise some of the ethnomedical uses of Cryptolepis sanguinolenta, the present study was undertaken to investigate its influence at varying doses on intestinal glucose absorption and transport in relation to its hypoglycemic and hypolipidemic effects in rat experimental paradigms. Materials and Methods: The animals used were divided into four groups. Control animals received 2 ml of distilled water, while treated groups received 50, 150, and 250 mg/kg bw of Cryptolepis sanguinolenta extract per oral respectively daily for 21 days. Results: Cryptolepis sanguinolenta led to a significant decrease in glucose transport and absorption. It also caused significant reductions in plasma glucose, total cholesterol, triglyceride, and LDL cholesterol. Biochemical changes observed were suggestive of dose dependence. Histopathological studies also showed increased sizes of β cells of the pancreas. Conclusion: The findings in these normoglycemic laboratory animals suggest that Cryptolepis sanguinolenta has hypoglycemic and hypolipidemic activities, possibly by reducing glucose absorption and transport, and enhancing the structural and functional abilities of the β cells. This is the first study to report the effect of Cryptolepis sanguinolenta on intestinal glucose absorption. This effect could be attributed to its major bioactive principle, cryptolepine, an indoloquinoline alkaloid. This study thus lends credence to the use of Cryptolepis sanguinolenta in the management of diabetes mellitus. PMID:22701855

  8. Insights into transport mechanism from LeuT engineered to transport tryptophan

    SciTech Connect

    Piscitelli, Chayne L.; Gouaux, Eric

    2012-01-10

    LeuT is a bacterial homologue of the neurotransmitter:sodium symporter (NSS) family and, being the only NSS member to have been structurally characterized by X-ray crystallography, is a model protein for studying transporter structure and mechanism. Transport activity in LeuT was hypothesized to require structural transitions between open-to-out and occluded conformations dependent upon protein:ligand binding complementarity. Here, using crystallographic and functional analysis, we show that binding site modification produces changes in both structure and activity that are consistent with complementarity-dependent structural transitions to the occluded state. The mutation I359Q converts the activity of tryptophan from inhibitor to transportable substrate. This mutation changes the local environment of the binding site, inducing the bound tryptophan to adopt a different conformer than in the wild-type complex. Instead of trapping the transporter open, tryptophan binding now allows the formation of an occluded state. Thus, transport activity is correlated to the ability of the ligand to promote the structural transition to the occluded state, a step in the transport cycle that is dependent on protein:ligand complementarity in the central binding site.

  9. Interpretation of current-voltage relationships for "active" ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.

    PubMed

    Hansen, U P; Gradmann, D; Sanders, D; Slayman, C L

    1981-01-01

    This paper develops a simple reaction-kinetic model to describe electrogenic pumping and co- (or counter-) transport of ions. It uses the standard steady-state approach for cyclic enzyme- or carrier-mediated transport, but does not assume rate-limitation by any particular reaction step. Voltage-dependence is introduced, after the suggestion of Läuger and Stark (Biochim. Biophys. Acta 211:458-466, 1970), via a symmetric Eyring barrier, in which the charge-transit reaction constants are written as k12 = ko12 exp(zF delta psi/2RT) and k21 = ko21 exp(-zF delta psi/2RT). For interpretation of current-voltage relationships, all voltage-independent reaction steps are lumped together, so the model in its simplest form can be described as a pseudo-2-state model. It is characterized by the two voltage-dependent reaction constants, two lumped voltage-independent reaction constants (k12, k21), and two reserve factors (ri, ro) which formally take account of carrier states that are indistinguishable in the current-voltage (I-V) analysis. The model generates a wide range of I-V relationships, depending on the relative magnitudes of the four reaction constants, sufficient to describe essentially all I-V datas now available on "active" ion-transport systems. Algebraic and numerical analysis of the reserve factors, by means of expanded pseudo-3-, 4-, and 5-state models, shows them to be bounded and not large for most combinations of reaction constants in the lumped pathway. The most important exception to this rule occurs when carrier decharging immediately follows charge transit of the membrane and is very fast relative to other constituent voltage-independent reactions. Such a circumstance generates kinetic equivalence of chemical and electrical gradients, thus providing a consistent definition of ion-motive forces (e.g., proton-motive force, PMF). With appropriate restrictions, it also yields both linear and log-linear relationships between net transport velocity and either

  10. Energetics of active transport processes.

    PubMed

    Essig, A; Caplan, S R

    1968-12-01

    Discussions of active transport usually assume stoichiometry between the rate of transport J(+) and the metabolic rate J(r). However, the observation of a linear relationship between J(+) and J(r) does not imply a stoichiometric relationship, i.e., complete coupling. Since coupling may possibly be incomplete, we examine systems of an arbitrary degree of coupling q, regarding stoichiometry as a limiting case. We consider a sodium pump, with J(+) and J(r) linear functions of the electrochemical potential difference, -X(+), and the chemical affinity of the metabolic driving reaction, A. The affinity is well defined even for various complex reaction pathways. Incorporation of a series barrier and a parallel leak does not affect the linearity of the composite observable system. The affinity of some region of the metabolic chain may be maintained constant, either by large pools of reactants or by regulation. If so, this affinity can be evaluated by two independent methods. Sodium transport is conveniently characterized by the open-circuit potential (Deltapsi)(I=0) and the natural limits, level flow (J(+))(X+=0), and static head X(0) (+) = (X(+))(J+=0). With high degrees of coupling -X(0) (+)/F approaches the electromotive force E(Na) (Ussing); -X(0) (+)/F cannot be identified with ((RT/F) ln f)(X+=0), where f is the flux ratio. The efficiency eta = -J(+)X(+)/J(r)A is of significance only when appreciable energy is being converted from one form to another. When either J(+) or -X(+) is small eta is low; the significant parameters are then the efficacies epsilon(J+) = J(+)/J(r)A and epsilon(X+) = -X(+)/J(r)A, respectively maximal at level flow and static head. Leak increases both J(+) and epsilon(J+) for isotonic saline reabsorption, but diminishes -X(0) (+) and epsilon(Xfemale symbol). Electrical resistance reflects both passive parameters and metabolism. Various fundamental relations are preserved despite coupling of passive ion and water flows. PMID:5713453

  11. Novel Mechanism of Impaired Function of Organic Anion-Transporting Polypeptide 1B3 in Human Hepatocytes: Post-Translational Regulation of OATP1B3 by Protein Kinase C Activation

    PubMed Central

    Powell, John; Farasyn, Taleah; Köck, Kathleen; Meng, Xiaojie; Pahwa, Sonia; Brouwer, Kim L. R.

    2014-01-01

    The organic anion-transporting polypeptide (OATP) 1B3 is a membrane transport protein that mediates hepatic uptake of many drugs and endogenous compounds. Currently, determination of OATP-mediated drug-drug interactions in vitro is focused primarily on direct substrate inhibition. Indirect inhibition of OATP1B3 activity is under-appreciated. OATP1B3 has putative protein kinase C (PKC) phosphorylation sites. Studies were designed to determine the effect of PKC activation on OATP1B3-mediated transport in human hepatocytes using cholecystokinin-8 (CCK-8), a specific OATP1B3 substrate, as the probe. A PKC activator, phorbol-12-myristate-13-acetate (PMA), did not directly inhibit [3H]CCK-8 accumulation in human sandwich-cultured hepatocytes (SCH). However, pretreatment with PMA for as little as 10 minutes rapidly decreased [3H]CCK-8 accumulation. Treatment with a PKC inhibitor bisindolylmaleimide (BIM) I prior to PMA treatment blocked the inhibitory effect of PMA, indicating PKC activation is essential for downregulating OATP1B3 activity. PMA pretreatment did not affect OATP1B3 mRNA or total protein levels. To determine the mechanism(s) underlying the indirect inhibition of OATP1B3 activity upon PKC activation, adenoviral vectors expressing FLAG-Myc-tagged OATP1B3 (Ad-OATP1B3) were transduced into human hepatocytes; surface expression and phosphorylation of OATP1B3 were determined by biotinylation and by an anti–phosphor-Ser/Thr/Tyr antibody, respectively. PMA pretreatment markedly increased OATP1B3 phosphorylation without affecting surface or total OATP1B3 protein levels. In conclusion, PKC activation rapidly decreases OATP1B3 transport activity by post-translational regulation of OATP1B3. These studies elucidate a novel indirect inhibitory mechanism affecting hepatic uptake mediated by OATP1B3, and provide new insights into predicting OATP-mediated drug interactions between OATP substrates and kinase modulator drugs/endogenous compounds. PMID:25200870

  12. Electrochemical reactivity and proton transport mechanisms in nanostructured ceria.

    PubMed

    Ding, J; Strelcov, E; Kalinin, S V; Bassiri-Gharb, N

    2016-08-26

    Electrochemical reactivity and ionic transport at the nanoscale are essential in many energy applications. In this study, time-resolved Kelvin probe force microscopy (tr-KPFM) is utilized for surface potential mapping of nanostructured ceria, in both space and time domains. The fundamental mechanisms of proton injection and transport are studied as a function of environmental conditions and the presence or absence of triple phase boundaries. Finite element modeling is used to extract physical parameters from the experimental data, allowing not only quantification of the observed processes, but also decoupling of their contributions to the measured signal. The constructed phase diagrams of the parameters demonstrate a thermally activated proton injection reaction at the triple phase boundary, and two transport processes that are responsible for the low-temperature proton conductivity of nanostructured ceria. PMID:27407076

  13. Electrochemical reactivity and proton transport mechanisms in nanostructured ceria

    NASA Astrophysics Data System (ADS)

    Ding, J.; Strelcov, E.; Kalinin, S. V.; Bassiri-Gharb, N.

    2016-08-01

    Electrochemical reactivity and ionic transport at the nanoscale are essential in many energy applications. In this study, time-resolved Kelvin probe force microscopy (tr-KPFM) is utilized for surface potential mapping of nanostructured ceria, in both space and time domains. The fundamental mechanisms of proton injection and transport are studied as a function of environmental conditions and the presence or absence of triple phase boundaries. Finite element modeling is used to extract physical parameters from the experimental data, allowing not only quantification of the observed processes, but also decoupling of their contributions to the measured signal. The constructed phase diagrams of the parameters demonstrate a thermally activated proton injection reaction at the triple phase boundary, and two transport processes that are responsible for the low-temperature proton conductivity of nanostructured ceria.

  14. Structure and mechanism of the mammalian fructose transporter GLUT5.

    PubMed

    Nomura, Norimichi; Verdon, Grégory; Kang, Hae Joo; Shimamura, Tatsuro; Nomura, Yayoi; Sonoda, Yo; Hussien, Saba Abdul; Qureshi, Aziz Abdul; Coincon, Mathieu; Sato, Yumi; Abe, Hitomi; Nakada-Nakura, Yoshiko; Hino, Tomoya; Arakawa, Takatoshi; Kusano-Arai, Osamu; Iwanari, Hiroko; Murata, Takeshi; Kobayashi, Takuya; Hamakubo, Takao; Kasahara, Michihiro; Iwata, So; Drew, David

    2015-10-15

    The altered activity of the fructose transporter GLUT5, an isoform of the facilitated-diffusion glucose transporter family, has been linked to disorders such as type 2 diabetes and obesity. GLUT5 is also overexpressed in certain tumour cells, and inhibitors are potential drugs for these conditions. Here we describe the crystal structures of GLUT5 from Rattus norvegicus and Bos taurus in open outward- and open inward-facing conformations, respectively. GLUT5 has a major facilitator superfamily fold like other homologous monosaccharide transporters. On the basis of a comparison of the inward-facing structures of GLUT5 and human GLUT1, a ubiquitous glucose transporter, we show that a single point mutation is enough to switch the substrate-binding preference of GLUT5 from fructose to glucose. A comparison of the substrate-free structures of GLUT5 with occluded substrate-bound structures of Escherichia coli XylE suggests that, in addition to global rocker-switch-like re-orientation of the bundles, local asymmetric rearrangements of carboxy-terminal transmembrane bundle helices TM7 and TM10 underlie a 'gated-pore' transport mechanism in such monosaccharide transporters. PMID:26416735

  15. Structure and mechanism of the mammalian fructose transporter GLUT5

    PubMed Central

    Shimamura, Tatsuro; Nomura, Yayoi; Sonoda, Yo; Hussien, Saba Abdul; Qureshi, Aziz Abdul; Coincon, Mathieu; Sato, Yumi; Abe, Hitomi; Nakada-Nakura, Yoshiko; Hino, Tomoya; Arakawa, Takatoshi; Kusano-Arai, Osamu; Iwanari, Hiroko; Murata, Takeshi; Kobayashi, Takuya; Hamakubo, Takao; Kasahara, Michihiro; Iwata, So; Drew, David

    2015-01-01

    The altered activity of the fructose transporter GLUT5, an isoform of the facilitated-diffusion glucose transporter family, has been linked to disorders such as type 2 diabetes and obesity. GLUT5 is also overexpressed in certain tumor cells and inhibitors are potential drugs for these conditions. Here, we describe the crystal structure of GLUT5 from Rattus norvegicus and Bos taurus in open outward- and open inward-facing conformations, respectively. GLUT5 has a major facilitator superfamily fold like other homologous monosaccharide transporters. Based on a comparison of the inward-facing structures of GLUT5 and human GLUT1, a ubiquitous glucose transporter, we show that a single point mutation is enough to switch the substrate binding preference of GLUT5 from fructose to glucose. A comparison of the substrate-free structures of GLUT5 with occluded substrate-bound structures of XylE suggests that, besides global rocker-switch like re-orientation of the bundles, local asymmetric rearrangements of C-terminal bundle helices TMs 7 and 10 underlie a “gated-pore” transport mechanism in such monosaccharide transporters. PMID:26416735

  16. Mechanically Active Electrospun Materials

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee M.

    Electrospinning, a technique used to fabricate small diameter polymer fibers, has been employed to develop unique, active materials falling under two categories: (1) shape memory elastomeric composites (SMECs) and (2) water responsive fiber mats. (1) Previous work has characterized in detail the properties and behavior of traditional SMECs with isotropic fibers embedded in an elastomer matrix. The current work has two goals: (i) characterize laminated anisotropic SMECs and (ii) develop a fabrication process that is scalable for commercial SMEC manufacturing. The former ((i)) requires electrospinning aligned polymer fibers. The aligned fibers are similarly embedded in an elastomer matrix and stacked at various fiber orientations. The resulting laminated composite has a unique response to tensile deformation: after stretching and releasing, the composite curls. This curling response was characterized based on fiber orientation. The latter goal ((ii)) required use of a dual-electrospinning process to simultaneously electrospin two polymers. This fabrication approach incorporated only industrially relevant processing techniques, enabling the possibility of commercial application of a shape memory rubber. Furthermore, the approach had the added benefit of increased control over composition and material properties. (2) The strong elongational forces experienced by polymer chains during the electrospinning process induce molecular alignment along the length of electrospun fibers. Such orientation is maintained in the fibers as the polymer vitrifies. Consequently, residual stress is stored in electrospun fiber mats and can be recovered by heating through the polymer's glass transition temperature. Alternatively, the glass transition temperature can be depressed by introducing a plasticizing agent. Poly(vinyl acetate) (PVAc) is plasticized by water, and its glass transition temperature is lowered below room temperature. Therefore, the residual stress can be relaxed at room

  17. Catalytic Mechanism of the Maltose Transporter Hydrolyzing ATP.

    PubMed

    Huang, Wenting; Liao, Jie-Lou

    2016-01-12

    We use quantum mechanical and molecular mechanical (QM/MM) simulations to study ATP hydrolysis catalyzed by the maltose transporter. This protein is a prototypical member of a large family that consists of ATP-binding cassette (ABC) transporters. The ABC proteins catalyze ATP hydrolysis to perform a variety of biological functions. Despite extensive research efforts, the precise molecular mechanism of ATP hydrolysis catalyzed by the ABC enzymes remains elusive. In this work, the reaction pathway for ATP hydrolysis in the maltose transporter is evaluated using a QM/MM implementation of the nudged elastic band method without presuming reaction coordinates. The potential of mean force along the reaction pathway is obtained with an activation free energy of 19.2 kcal/mol in agreement with experiments. The results demonstrate that the reaction proceeds via a dissociative-like pathway with a trigonal bipyramidal transition state in which the cleavage of the γ-phosphate P-O bond occurs and the O-H bond of the lytic water molecule is not yet broken. Our calculations clearly show that the Walker B glutamate as well as the switch histidine stabilizes the transition state via electrostatic interactions rather than serving as a catalytic base. The results are consistent with biochemical and structural experiments, providing novel insight into the molecular mechanism of ATP hydrolysis in the ABC proteins. PMID:26666844

  18. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.

    PubMed

    Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing

    2016-08-22

    Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs. PMID:27472561

  19. Charge transport mechanisms in phthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Colesniuc, Corneliu; Sharoni, Amos; Schuller, Ivan K.

    2008-03-01

    Devices consisting of phthalocyanine thin films sandwiched between gold electrodes were fabricated by organic molecular beam deposition. Samples with different organic layer thickness were deposited on sapphire substrates in-situ, using a shadow mask and a mobile sample holder controlled manually. The structural asymmetry of the devices determined by the different metal-organic interfaces is reflected in the I-V curves at positive and negative voltages. The logarithmic scale I-V plots can be fitted with linear functions of different slopes corresponding to different conduction regimes. At low temperatures a transition from the ohmic regime to a slope two space charge limited conduction mechanism is followed at higher voltages by a high slope linear dependence that tends to saturate when the voltage reaches maximum values. At higher temperatures the intermediary space charge limited regime disappears and the transition is from ohmic to high slope space charge limited. Traps with different energy and energy distribution determine the different conduction regimes. Shallow traps located at discrete energy levels control the transport at intermediate voltages while exponentially distributed traps determine the high voltage behavior. Work supported by AFOSR-MURI.

  20. Mechanism of ochratoxin A transport in kidney

    SciTech Connect

    Sokol, P.P.; Ripich, G.; Holohan, P.D.; Ross, C.R.

    1988-08-01

    The effect of the fungal metabolite (mycotoxin) Ochratoxin A (OTA) on the transport of p-amino(/sup 3/H)hippurate (PAH), a prototypic organic anion, was examined in renal brush border (BBMV) and basolateral membrane vesicles (BLMV). OTA was as effective an inhibitor of PAH uptake in both membranes as probenecid. The dose response curves for OTA in BBMV and BLMV gave IC50 values of 20 +/- 6 and 32 +/- 7 microM, respectively. The effect was specific since the transport of the organic cation N1-methylnicotinamide was not affected. The phenomenon of counterflow was studied to establish that OTA is translocated. OTA produced trans stimulation of PAH transport in both BBMV and BLMV, demonstrating that OTA is transported across both these membranes. The data suggest that OTA interacts with the PAH transport system in both BBMV and BLMV. We conclude that OTA transport in the kidney is mediated via the renal organic anion transport system.

  1. Activities of the Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.

  2. Quantum-mechanical transport equation for atomic systems.

    NASA Technical Reports Server (NTRS)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  3. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    NASA Astrophysics Data System (ADS)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  4. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  5. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  6. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    PubMed Central

    Stigter, Kyla A.; Plaxton, William C.

    2015-01-01

    Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters. PMID:27135351

  7. Mechanism of electrochemical charge transport in individual transition metal complexes.

    PubMed

    Albrecht, Tim; Guckian, Adrian; Kuznetsov, Alexander M; Vos, Johannes G; Ulstrup, Jens

    2006-12-27

    We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (Vbias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels. PMID:17177467

  8. Structural insights into ABC transporter mechanism

    SciTech Connect

    Oldham, Michael L.; Davidson, Amy L.; Chen, Jue

    2010-07-27

    ATP-binding cassette (ABC) transporters utilize the energy from ATP hydrolysis to transport substances across the membrane. In recent years, crystal structures of several ABC transporters have become available. These structures show that both importers and exporters oscillate between two conformations: an inward-facing conformation with the substrate translocation pathway open to the cytoplasm and an outward-facing conformation with the translocation pathway facing the opposite side of the membrane. In this review, conformational differences found in the structures of homologous ABC transporters are analyzed to understand how alternating-access is achieved. It appears that rigid-body rotations of the transmembrane subunits, coinciding with the opening and closing of the nucleotide-binding subunits, couples ATP hydrolysis to substrate translocation.

  9. Developing Hypothetical Inhibition Mechanism of Novel Urea Transporter B Inhibitor

    NASA Astrophysics Data System (ADS)

    Li, Min; Tou, Weng Ieong; Zhou, Hong; Li, Fei; Ren, Huiwen; Chen, Calvin Yu-Chian; Yang, Baoxue

    2014-07-01

    Urea transporter B (UT-B) is a membrane channel protein that specifically transports urea. UT-B null mouse exhibited urea selective urine concentrating ability deficiency, which suggests the potential clinical applications of the UT-B inhibitors as novel diuretics. Primary high-throughput virtual screening (HTVS) of 50000 small-molecular drug-like compounds identified 2319 hit compounds. These 2319 compounds were screened by high-throughput screening using an erythrocyte osmotic lysis assay. Based on the pharmacological data, putative UT-B binding sites were identified by structure-based drug design and validated by ligand-based and QSAR model. Additionally, UT-B structural and functional characteristics under inhibitors treated and untreated conditions were simulated by molecular dynamics (MD). As the result, we identified four classes of compounds with UT-B inhibitory activity and predicted a human UT-B model, based on which computative binding sites were identified and validated. A novel potential mechanism of UT-B inhibitory activity was discovered by comparing UT-B from different species. Results suggest residue PHE198 in rat and mouse UT-B might block the inhibitor migration pathway. Inhibitory mechanisms of UT-B inhibitors and the functions of key residues in UT-B were proposed. The binding site analysis provides a structural basis for lead identification and optimization of UT-B inhibitors.

  10. Molecular mechanisms of microglial activation.

    PubMed

    Zielasek, J; Hartung, H P

    1996-01-01

    Microglial cells are brain macrophages which serve specific functions in the defense of the central nervous system (CNS) against microorganisms, the removal of tissue debris in neurodegenerative diseases or during normal development, and in autoimmune inflammatory disorders of the brain. In cultured microglial cells, several soluble inflammatory mediators such as cytokines and bacterial products like lipopolysaccharide (LPS) were demonstrated to induce a wide range of microglial activities, e.g. increased phagocytosis, chemotaxis, secretion of cytokines, activation of the respiratory burst and induction of nitric oxide synthase. Since heightened microglial activation was shown to play a role in the pathogenesis of experimental inflammatory CNS disorders, understanding the molecular mechanisms of microglial activation may lead to new treatment strategies for neurodegenerative disorders, multiple sclerosis and bacterial or viral infections of the nervous system. PMID:8876774

  11. Jaumann transport in relativistic continuum mechanics

    NASA Astrophysics Data System (ADS)

    Radhakrishna, L.; Katkar, L. N.; Date, T. H.

    1981-10-01

    We define the Jaumann derivative of a tensor field in relativity by a formal generalization of a stress rate in viscoelasticity. A tensor field is said to be Jaumann transported iff its Jaumann derivative vanishes. It is found that the gravitational potentials are Jaumann transported identically. The concept of a “complete rotation tensor” has been introduced to study the Jaumann derivative with respect to a null vector field. This provides a characterization of the integrability of a hypersurface orthogonal congruence. A perfect fluid collapsing by neutrino emission and undergoing Jaumann transport with respect to the neutrino flow is found to be compatible with that of a catastrophic collapse. The circumstances leading to the existence of “ghost neutrinos” are cited. The degeneracy of the Kerr-Newman black hole into the Reissner-Nordstrom black hole is expressed in terms of the Jaumann propagation.

  12. Ratchet transport powered by chiral active particles

    PubMed Central

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  13. Ratchet transport powered by chiral active particles

    NASA Astrophysics Data System (ADS)

    Ai, Bao-Quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles.

  14. Ratchet transport powered by chiral active particles.

    PubMed

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a 'sea' of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  15. Grain transport mechanics in shallow flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  16. Grain transport mechanics in shallow overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  17. Stochastic steps in secondary active sugar transport.

    PubMed

    Adelman, Joshua L; Ghezzi, Chiara; Bisignano, Paola; Loo, Donald D F; Choe, Seungho; Abramson, Jeff; Rosenberg, John M; Wright, Ernest M; Grabe, Michael

    2016-07-01

    Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state. PMID:27325773

  18. Calcium transport mechanism in molting crayfish revealed by microanalysis

    SciTech Connect

    Mizuhira, V.; Ueno, M.

    1983-01-01

    Crayfish provide a good model in which to study the transport mechanism of Ca ions. During the molting stage, decalcified Ca ions are transferred into the blood and accumulate in the gastrolith epithelium, after which a gastrolith is formed on the surface of the epithelium. The gastrolith is dissolved in the stomach after molting, and the Ca is reabsorbed and redistributed throughout the newly formed exoskeleton. We studied the mechanism of Ca transport by cytochemical precipitation of Ca ions and by electron microanalysis, including X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS), with a computer. In EDX analysis, the fine precipitates of K-antimonate in the gastrolith mitochondria clearly defined Ca with antimony; we also observed a large amount of Ca-oxalate in the mitochondria, and Ca-K X-ray pulses were clearly defined. Ca-K X-rays were also detected from fresh freeze-substituted mitochondria. Finally, we succeeded in taking a Ca-L EELS image from the mitochondria of fresh freeze-substituted thin sections. Only a very small amount of Ca was detected from the cell membrane and other organelles. Ca-adenosine triphosphatase (ATPase) and Mg-ATPase activity was also very clearly demonstrated in the mitochondria. These enzymes may play an important role in Ca metabolism.

  19. Statistical Mechanics of Collective Transport by Ants

    NASA Astrophysics Data System (ADS)

    Pinkoviezky, Itai; Gelblum, Aviram; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    Collective decisions and cooperation within groups are essential for the survival of many species. Conflicts within the group must be suppressed but conformism may render the system unresponsive to new information. Collective transport by ants is therefore an ideal model system to study how animal groups optimize these opposing requirements. We combine experiments and theory to characterize the collective transport. The ants are modeled as binary Ising spins, representing the two roles ants can perform during transport. It turns out that the ants poise themselves collectively near a critical point where the response to a newly attached ant is maximized. We identify the size as being proportional to an inverse effective temperature and thus the system can exhibit a mesoscopic transition between order and disorder by manipulating the size. Constraining the cargo with a string makes the system behave as a strongly non-linear pendulum. Theoretically we predict that a Hopf bifurcation occurs at a critical size followed by a global bifurcation where full swings emerge. Remarkably, these theoretical predictions were verified experimentally.

  20. Active water transport in unicellular algae: where, why, and how.

    PubMed

    Raven, John A; Doblin, Martina A

    2014-12-01

    The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole. PMID:25205578

  1. Phloem transport: a review of mechanisms and controls.

    PubMed

    De Schepper, Veerle; De Swaef, Tom; Bauweraerts, Ingvar; Steppe, Kathy

    2013-11-01

    It is generally believed that an osmotically generated pressure gradient drives the phloem mass flow. So far, this widely accepted Münch theory has required remarkably few adaptations, but the debate on alternative and additional hypotheses is still ongoing. Recently, a possible shortcoming of the Münch theory has been pointed out, suggesting that the Münch pressure flow is more suitable for herbs than for trees. Estimation of the phloem resistance indicates that a point might be reached in long sieve tubes where the pressure required to drive the Münch flow cannot be generated. Therefore, the relay hypothesis regained belief as it implies that the sieve tubes are shorter then the plant's axial axis. In the source phloem, three different loading strategies exist which probably result from evolutionary advantages. Passive diffusion seems to be the most primitive one, whereas active loading strategies substantially increase the growth potential. Along the transport phloem, a leakage-retrieval mechanism is observed. Appreciable amounts of carbohydrates are lost from the sieve tubes to feed the lateral sinks, while a part of these lost carbohydrates is subsequently reloaded into the sieve tubes. This mechanism is probably involved to buffer short-term irregularities in phloem turgor and gradient. In the long term, the mechanism controls the replenishment and remobilization of lateral stem storage tissues. As phloem of higher plants has multiple functions in plant development, reproduction, signalling, and growth, the fundamental understanding of the mechanisms behind phloem transport should be elucidated to increase our ability to influence plant growth and development. PMID:24106290

  2. Development of novel active transport membrande devices

    SciTech Connect

    Laciak, D.V.

    1994-11-01

    Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

  3. Health Impacts of Active Transportation in Europe.

    PubMed

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S; Tainio, Marko; Nieuwenhuijsen, Mark J

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76-163) annual deaths avoided, Prague 61 (29-104), Barcelona 37 (24-56), Paris 37 (18-64) and Basel 5 (3-9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3-42) deaths avoided annually in Warsaw, 11(3-21) in Prague, 6 (4-9) in Basel, 3 (2-6) in Copenhagen and 3 (2-4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation. PMID:26930213

  4. Health Impacts of Active Transportation in Europe

    PubMed Central

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J.; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S.; Tainio, Marko; Nieuwenhuijsen, Mark J.

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16–64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76–163) annual deaths avoided, Prague 61 (29–104), Barcelona 37 (24–56), Paris 37 (18–64) and Basel 5 (3–9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3–42) deaths avoided annually in Warsaw, 11(3–21) in Prague, 6 (4–9) in Basel, 3 (2–6) in Copenhagen and 3 (2–4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation. PMID:26930213

  5. Mechanism of isotonic water transport in glands.

    PubMed

    Ussing, H H; Eskesen, K

    1989-07-01

    Since water and electrolytes pass cell membranes via separate channels, there can be no interactions in the membranes, and osmotic interactions between water and solutes can be expressed as the product of solute flux, frictional coefficient of solute, and length of pathway. It becomes clear that isotonic transport via a cell is impossible. In glands, where cation-selective junctions impede anion flux between the cells, isotonic water transport is only possible if sodium, after having passed the junction, is reabsorbed in the acinus and returned to the serosal side. Thus it can be recycled via the cation-selective junction and exert its drag on water more than once. This hypothesis was tested on frog skin glands. Skins were mounted in flux chambers with identical Ringer solutions on both sides. Na channels of the principal cells were closed with amiloride in the outside solution, and secretion stimulated with noradrenaline in the inside solution. Influx and efflux of Na, K and Br (used as tracer for Cl) were measured on paired half-skins during the constant-secretion phase. Flux ratios for both Na and K were higher than expected for electrodiffusion, indicating outgoing solvent drag. Flux ratios for K were much higher than those for Na. This is an agreement with the concept that Na is reabsorbed in the acinus and K is not. Two independent expressions for the degree of sodium recycling are developed. Under all experimental conditions these expressions give values for the recycling which are in good agreement. PMID:2473601

  6. Regulators of Slc4 bicarbonate transporter activity

    PubMed Central

    Thornell, Ian M.; Bevensee, Mark O.

    2015-01-01

    The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family. PMID:26124722

  7. Studies on optical, mechanical and transport properties of NLO active L-alanine formate single crystal grown by modified Sankaranarayanan Ramasamy (SR) method

    NASA Astrophysics Data System (ADS)

    Justin Raj, C.; Dinakaran, S.; Krishnan, S.; Milton Boaz, B.; Robert, R.; Jerome Das, S.

    2008-04-01

    Bulk single crystals of L-alanine formate of 10 mm diameter and 50 mm length have been grown with an aid of modified Sankaranarayanan-Ramasamy (SR) uniaxial crystal growth method within a period of ten days. The optical properties of the grown crystal were calculated from UV transmission spectral analysis. The second harmonic generation efficiency of the grown crystal was confirmed by Kurtz powder test. In order to determine the mechanical strength of the crystal, Vicker's microhardness test was carried along the growth plane (0 0 1). Dielectric studies reveal that both dielectric constant and dielectric loss decreases with increase in frequency. Photoconductivity study confirms the negative photoconducting nature of the crystal.

  8. Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters.

    PubMed

    LeVine, Michael V; Cuendet, Michel A; Khelashvili, George; Weinstein, Harel

    2016-06-01

    Solute transport across cell membranes is ubiquitous in biology as an essential physiological process. Secondary active transporters couple the unfavorable process of solute transport against its concentration gradient to the energetically favorable transport of one or several ions. The study of such transporters over several decades indicates that their function involves complex allosteric mechanisms that are progressively being revealed in atomistic detail. We focus on two well-characterized sodium-coupled symporters: the bacterial amino acid transporter LeuT, which is the prototype for the "gated pore" mechanism in the mammalian synaptic monoamine transporters, and the archaeal GltPh, which is the prototype for the "elevator" mechanism in the mammalian excitatory amino acid transporters. We present the evidence for the role of allostery in the context of a quantitative formalism that can reconcile biochemical and biophysical data and thereby connects directly to recent insights into the molecular structure and dynamics of these proteins. We demonstrate that, while the structures and mechanisms of these transporters are very different, the available data suggest a common role of specific models of allostery in their functions. We argue that such allosteric mechanisms appear essential not only for sodium-coupled symport in general but also for the function of other types of molecular machines in the membrane. PMID:26892914

  9. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  10. Substrate regulation of ascorbate transport activity in astrocytes

    SciTech Connect

    Wilson, J.X.; Jaworski, E.M.; Kulaga, A.; Dixon, S.J. )

    1990-10-01

    Astrocytes possess a concentrative L-ascorbate (vitamin C) uptake mechanism involving a Na(+)-dependent L-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellular L-ascorbate on the activity of this transport system. Initial rates of L-ascorbate uptake were measured by incubating primary cultures of rat astrocytes with L-(14C)ascorbate for 1 min at 37 degrees C. We observed that the apparent maximal rate of uptake (Vmax) increased rapidly (less than 1 h) when cultured cells were deprived of L-ascorbate. In contrast, there was no change in the apparent affinity of the transport system for L-(14C)ascorbate. The increase in Vmax was reversed by addition of L-ascorbate, but not D-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures with L-ascorbate did not affect uptake of 2-deoxy-D-(3H(G))glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.

  11. A Thermodynamic Description of Active Transport

    NASA Astrophysics Data System (ADS)

    Kjelstrup, S.; Rubi, J. M.; Bedeaux, D.

    We present a solution to problems that were raised in the 1960s: How can the vectorial ion flux couple to the scalar energy of the reaction of ATP to ADP and P, to give active transport of the ion; i.e. transport against its chemical potential? And, is it possible, on thermodynamic grounds to obtain non-linear flux force relations for this transport? Using non-equilibrium thermodynamics (NET) on the stochastic (mesoscopic) level, we explain how the second law of thermodynamics gives a basis for the description of active transport of Ca2+ by the Ca-ATPase. Coupling takes place at the surface, because the symmetry of the fluxes changes here. The theory gives the energy dissipated as heat during transport and reaction. Experiments are defined to determine coupling coefficients. We propose that the coefficients for coupling between chemical reaction, ion flux and heat flux are named thermogenesis coefficients. They are all probably significant. We discuss that the complete set of coefficients can explain slippage in molecular pumps as well as thermogenesis that is triggered by a temperature jump.

  12. Quantum mechanisms of density wave transport

    PubMed Central

    Miller, John H.; Wijesinghe, Asanga I.

    2012-01-01

    We report on new developments in the quantum picture of correlated electron transport in charge and spin density waves. The model treats the condensate as a quantum fluid in which charge soliton domain wall pairs nucleate above a Coulomb blockade threshold field. We employ a time-correlated soliton tunneling model, analogous to the theory of time-correlated single electron tunneling, to interpret the voltage oscillations and nonlinear current-voltage characteristics above threshold. An inverse scaling relationship between threshold field and dielectric response, originally proposed by Grüner, emerges naturally from the model. Flat dielectric and other ac responses below threshold in NbSe3 and TaS3, as well as small density wave phase displacements, indicate that the measured threshold is often much smaller than the classical depinning field. In some materials, the existence of two distinct threshold fields suggests that both soliton nucleation and classical depinning may occur. In our model, the ratio of electrostatic charging to pinning energy helps determine whether soliton nucleation or classical depinning dominates. PMID:22711979

  13. Molecular parameters and transmembrane transport mechanism of imidazolium-functionalized binols.

    PubMed

    Vidal, Marc; Schmitzer, Andreea

    2014-08-01

    We describe the molecular parameters governing the transmembrane activity of imidazolium-functionalized anion transporters and present a detailed mechanistic study. These ionophores adopt a mobile-carrier mechanism for short methyl and butyl chains, a combined mobile-carrier/transmembrane-pore mechanism for octyl and dodecyl chains, and form transmembrane aggregates for hexadecyl chains. PMID:25043746

  14. New molecular mechanisms of inter-organelle lipid transport.

    PubMed

    Drin, Guillaume; von Filseck, Joachim Moser; Čopič, Alenka

    2016-04-15

    Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are currently made to decipher how lipid transfer proteins (LTPs) work either across long distances or confined to membrane contact sites (MCSs) where two organelles are at close proximity. Recent findings reveal that proteins of the oxysterol-binding protein related-proteins (ORP)/oxysterol-binding homology (Osh) family are not all just sterol transporters/sensors: some can bind either phosphatidylinositol 4-phosphate (PtdIns(4)P) and sterol or PtdIns(4)P and phosphatidylserine (PS), exchange these lipids between membranes, and thereby use phosphoinositide metabolism to create cellular lipid gradients. Lipid exchange is likely a widespread mechanism also utilized by other LTPs to efficiently trade lipids between organelle membranes. Finally, the discovery of more proteins bearing a lipid-binding module (SMP or START-like domain) raises new questions on how lipids are conveyed in cells and how the activities of different LTPs are coordinated. PMID:27068959

  15. NEURONAL ACTIVITY REGULATES GLUTAMATE TRANSPORTER DYNAMICS IN DEVELOPING ASTROCYTES

    PubMed Central

    Benediktsson, A.M.; Marrs, G.S.; Tu, J.C.; Worley, P.F.; Rothstein, J.D.; Bergles, D.E.; Dailey, M.E.

    2011-01-01

    Glutamate transporters maintain a low ambient level of glutamate in the CNS and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here we examined the subcellular distribution and dynamic remodeling of the predominant glutamate transporter GLT-1 (EAAT2) in developing hippocampal astrocytes. Immunolabeling revealed that endogenous GLT-1 is concentrated into discrete clusters along branches of developing astrocytes that were apposed preferentially to synapsin-1 positive synapses. GFP-GLT-1 fusion proteins expressed in astrocytes also formed distinct clusters that lined the edges of astrocyte processes, as well as the tips of filopodia and spine-like structures. Time-lapse 3D confocal imaging in tissue slices revealed that GFP-GLT-1 clusters were dynamically remodeled on a timescale of minutes. Some transporter clusters moved within developing astrocyte branches as filopodia extended and retracted, while others maintained stable positions at the tips of spine-like structures. Blockade of neuronal activity with tetrodotoxin reduced both the density and perisynaptic localization of GLT-1 clusters. Conversely, enhancement of neuronal activity increased the size of GLT-1 clusters and their proximity to synapses. Together, these findings indicate that neuronal activity influences both the organization of glutamate transporters in developing astrocyte membranes and their position relative to synapses. PMID:22052455

  16. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  17. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  18. Active transport and cluster formation on 2D networks.

    PubMed

    Greulich, P; Santen, L

    2010-06-01

    We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered. PMID:20556462

  19. The Mechanism of Cu+ Transport ATPases

    PubMed Central

    Padilla-Benavides, Teresita; McCann, Courtney J.; Argüello, José M.

    2013-01-01

    Cu+-ATPases are membrane proteins that couple the hydrolysis of ATP to the efflux of cytoplasmic Cu+. In cells, soluble chaperone proteins bind and distribute cytoplasmic Cu+, delivering the ion to the transmembrane metal-binding sites in the ATPase. The structure of Legionella pneumophila Cu+-ATPase (Gourdon, P., Liu, X. Y., Skjørringe, T., Morth, J. P., Møller, L. B., Pedersen, B. P., and Nissen, P. (2011) Nature 475, 59–64) shows that a kinked transmembrane segment forms a “platform” exposed to the cytoplasm. In addition, neighboring invariant Met, Asp, and Glu are located at the “entrance” of the ion path. Mutations of amino acids in these regions of the Archaeoglobus fulgidus Cu+-ATPase CopA do not affect ATPase activity in the presence of Cu+ free in solution. However, Cu+ bound to the corresponding chaperone (CopZ) could not activate the mutated ATPases, and in parallel experiments, CopZ was unable to transfer Cu+ to CopA. Furthermore, mutation of a specific electronegative patch on the CopZ surface abolishes the ATPase activation and Cu+ transference, indicating that the region is required for the CopZ-CopA interaction. Moreover, the data suggest that the interaction is driven by the complementation of the electropositive platform in the ATPase and the electronegative Cu+ chaperone. This docking likely places the Cu+ proximal to the conserved carboxyl and thiol groups in the entrance site that induce metal release from the chaperone via ligand exchange. The initial interaction of Cu+ with the pump is transient because Cu+ is transferred from the entrance site to transmembrane metal-binding sites involved in transmembrane translocation. PMID:23184962

  20. Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms

    PubMed Central

    Anderson, Debra F.; Cheung, Cecilia Y.

    2014-01-01

    Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. PMID:25186112

  1. Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms.

    PubMed

    Brace, Robert A; Anderson, Debra F; Cheung, Cecilia Y

    2014-11-15

    Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measured changes in AF volume and composition over time. The model included fetal urine excretion and lung liquid secretion as inflows into the amniotic compartment plus fetal swallowing and intramembranous absorption as outflows. By using experimental flows and solute concentrations for urine, lung liquid, and swallowed fluid in combination with the passive and active transport mechanisms of the intramembranous pathway, we simulated AF responses to basal conditions, intra-amniotic fluid infusions, fetal intravascular infusions, urine replacement, and tracheoesophageal occlusion. The experimental data are consistent with four intramembranous transport mechanisms acting in concert: 1) an active unidirectional bulk transport of AF with all dissolved solutes out of AF into fetal blood presumably by vesicles; 2) passive bidirectional diffusion of solutes, such as sodium and chloride, between fetal blood and AF; 3) passive bidirectional water movement between AF and fetal blood; and 4) unidirectional transport of lactate into the AF. Further, only unidirectional bulk transport is dynamically regulated. The simulations also identified areas for future study: 1) identifying intramembranous stimulators and inhibitors, 2) determining the semipermeability characteristics of the intramembranous pathway, and 3) characterizing the vesicles that are the primary mediators of intramembranous transport. PMID:25186112

  2. Atmospheric transport and diffusion mechanisms in coastal circulation systems

    SciTech Connect

    Kaleel, R.J.; Shearer, D.L.; MacRae, B.L.

    1983-06-01

    This study defines the cyclical aspects of coastal atmospheric behavior that are important to the transport and diffusion (dispersion) of radionuclides. The report is developed around discussions of the meteorological dynamics of the cyclical and (cellular) atmospheric coastal phenomena and the atmospheric transport/diffusion mechanisms along with an assessment of the measurements accompanying both. Further, the efforts directed to modeling both the atmospheric and transport/diffusion processes are summarized and evaluated. Lastly, the review is summarized through a set of conclusions about the current level of understanding of coastal atmospheric phenomena. Recommendations are offered which identify certain aspects of local scale cyclical coastal phenomena that are important to the NRC.

  3. Macrophages require different nucleoside transport systems for proliferation and activation.

    PubMed

    Soler, C; García-Manteiga, J; Valdés, R; Xaus, J; Comalada, M; Casado, F J; Pastor-Anglada, M; Celada, A; Felipe, A

    2001-09-01

    To evaluate the mechanisms involved in macrophage proliferation and activation, we studied the regulation of the nucleoside transport systems. In murine bone marrow-derived macrophages, the nucleosides required for DNA and RNA synthesis are recruited from the extracellular medium. M-CSF induced macrophage proliferation and DNA and RNA synthesis, whereas interferon gamma (IFN-gamma) led to activation, blocked proliferation, and induced only RNA synthesis. Macrophages express at least the concentrative systems N1 and N2 (CNT2 and CNT1 genes, respectively) and the equilibrative systems es and ei (ENT1 and ENT2 genes, respectively). Incubation with M-CSF only up-regulated the equilibrative system es. Inhibition of this transport system blocked M-CSF-dependent proliferation. Treatment with IFN-gamma only induced the concentrative N1 and N2 systems. IFN-gamma also down-regulated the increased expression of the es equilibrative system induced by M-CSF. Thus, macrophage proliferation and activation require selective regulation of nucleoside transporters and may respond to specific requirements for DNA and RNA synthesis. This report also shows that the nucleoside transporters are critical for macrophage proliferation and activation. PMID:11532978

  4. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  5. Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts.

    PubMed

    Chao, A C; Dix, J A; Sellers, M C; Verkman, A S

    1989-12-01

    The methodology has been developed to measure Cl activity and transport in cultured cells grown on a monolayer using the entrapped Cl-sensitive fluorophore 6-methoxy-N-[3-sulfopropyl] quinolinium (SPQ). The method was applied to a renal epithelial cell line, LLC-PKI, and a nonepithelial cell line, Swiss 3T3 fibroblasts. SPQ was nontoxic to cells when present for greater than h in the culture media. To load with SPQ (5 mM), cells were made transiently permeable by exposure to hypotonic buffer (150 mOsm, 4 min). Intracellular fluorescence was monitored continuously by epifluorescence microscopy using low illumination intensity at 360 +/- 5 nm excitation wavelength and photomultiplier detection at greater than 410 nm. Over 60 min at 37 degrees C, there was no photobleaching and less than 10% leakage of SPQ out of cells; intracellular SPQ fluorescence was uniform. SPQ fluorescence was calibrated against intracellular [Cl] using high K solutions containing the ionophores nigericin and tributyltin. The Stern-Volmer constant (Kq) for quenching of intracellular SPQ by Cl was 13 M-1 for fibroblasts and LLC-PKl cells. In the absence of Cl, SPQ lifetime was 26 ns in aqueous solution and 3.7 +/- 0.6 ns in cells, showing that the lower Kq in cells than in free solution (Kq = 118 M-1) was due to SPQ quenching by intracellular anions. To examine Cl transport mechanisms, the time course of intracellular [Cl] was measured in response to rapid Cl addition and removal in the presence of ion or pH gradients. In fibroblasts, three distinct Cl transporting systems were identified: a stilbeneinhibitable Cl/HCO3 exchanger, a furosemide-sensitive Na/K/2Cl cotransporter, and a Ca-regulated Cl conductance. These results establish a direct optical method to measure intracellular [Cl] continuously in cultured cells. PMID:2482083

  6. Catalyst Transport in Corn Stover Internodes: Elucidating Transport Mechanisms Using Direct Blue-I

    SciTech Connect

    Viamajala, S.; Selig, M. J.; Vinzant, T. B.; Tucker, M. P.; Himmel, M. E.; McMillan, J. D.; Decker, S. R.

    2006-04-01

    The transport of catalysts (chemicals and enzymes) within plant biomass is believed to be a major bottleneck during thermochemical pretreatment and enzymatic conversion of lignocellulose. Subjecting biomass to size reduction and mechanical homogenization can reduce catalyst transport limitations; however, such processing adds complexity and cost to the over-all process. Using high-resolution light microscopy, we have monitored the transport of an aqueous solution of Direct Blue-I (DB-I) dye through intact corn internodes under a variety of impregnation conditions. DB-I is a hydrophilic anionic dye with affinity for cellulose. This model system has enabled us to visualize likely barriers and mechanisms of catalyst transport in corn stems. Microscopic images were compared with calculated degrees of saturation (i.e., volume fraction of internode void space occupied by dye solution) to correlate impregnation strategies with dye distribution and transport mechanisms. Results show the waxy rind exterior and air trapped within individual cells to be the major barriers to dye transport, whereas the vascular bundles, apoplastic continuum (i.e., the intercellular void space at cell junctions), and fissures formed during the drying process provided the most utilized pathways for transport. Although representing only 20-30% of the internode volume, complete saturation of the apoplast and vascular bundles by fluid allowed dye contact with a majority of the cells in the internode interior.

  7. Unveiling the gating mechanism of ECF Transporter RibU

    NASA Astrophysics Data System (ADS)

    Song, Jianing; Ji, Changge; Zhang, John Z. H.

    2013-12-01

    Energy-coupling factor (ECF) transporters are responsible for uptake of micronutrients in prokaryotes. The recently reported crystal structure of an ECF transporter RibU provided a foundation for understanding the structure and transport mechanism of ECF transporters. In the present study, molecular dynamics (MD) was carried out to study the conformational changes of the S component RibU upon binding by riboflavin. Our result and analysis revealed a critically important gating mechanism, in which part of loop5 (L5') (eleven residues, missing in the crystal structure) between TM5 and TM6 is dynamically flexible and serves as a gate. Specifically, the L5' opens a large cavity accessible to riboflavin from the extracellular space in Apo-RibU and closes the cavity upon riboflavin binding through hydrophobic packing with riboflavin. Thus, L5'is proposed to be the gate for riboflavin binding. In addition, steered molecular dynamics (SMD) simulation is employed to investigate the translocation dynamics of RibU during riboflavin transport. The simulation result does not show evidence that the S component alone can carry out the transport function. Since loop regions are very flexible and therefore could not be resolved by crystallography, their dynamics are hard to predict based on crystal structure alone.

  8. Directional auxin transport mechanisms in early diverging land plants.

    PubMed

    Viaene, Tom; Landberg, Katarina; Thelander, Mattias; Medvecka, Eva; Pederson, Eric; Feraru, Elena; Cooper, Endymion D; Karimi, Mansour; Delwiche, Charles F; Ljung, Karin; Geisler, Markus; Sundberg, Eva; Friml, Jiří

    2014-12-01

    The emergence and radiation of multicellular land plants was driven by crucial innovations to their body plans. The directional transport of the phytohormone auxin represents a key, plant-specific mechanism for polarization and patterning in complex seed plants. Here, we show that already in the early diverging land plant lineage, as exemplified by the moss Physcomitrella patens, auxin transport by PIN transporters is operational and diversified into ER-localized and plasma membrane-localized PIN proteins. Gain-of-function and loss-of-function analyses revealed that PIN-dependent intercellular auxin transport in Physcomitrella mediates crucial developmental transitions in tip-growing filaments and waves of polarization and differentiation in leaf-like structures. Plasma membrane PIN proteins localize in a polar manner to the tips of moss filaments, revealing an unexpected relation between polarization mechanisms in moss tip-growing cells and multicellular tissues of seed plants. Our results trace the origins of polarization and auxin-mediated patterning mechanisms and highlight the crucial role of polarized auxin transport during the evolution of multicellular land plants. PMID:25448004

  9. Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis.

    PubMed

    Franker, Mariella A M; Hoogenraad, Casper C

    2013-06-01

    Microtubule-based transport is essential for neuronal function because of the large distances that must be traveled by various building blocks and cellular materials. Recent studies in various model systems have unraveled several regulatory mechanisms and traffic rules that control the specificity, directionality and delivery of neuronal cargos. Local microtubule cues, opposing motor activity and cargo-adaptors that regulate motor activity control microtubule-based transport in neurons. Impairment of intracellular transport is detrimental to neurons and has emerged as a common factor in several neurological disorders. Genetic approaches have revealed strong links between intracellular transport processes and the pathogenesis of neurological diseases in both the central and peripheral nervous system. This Commentary highlights recent advances in these areas and discusses the transport defects that are associated with the development of neurological diseases. PMID:23729742

  10. Richardson-Schottky transport mechanism in ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Hassan; Khan, Usman; Rafiq, M. A.; Falak, Attia; Narain, Adeela; Jing, Tang; Xu, Xiulai

    2016-05-01

    We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  11. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    SciTech Connect

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-{beta} toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E {times} B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs.

  12. Temperature and Mechanisms of Methane Transport in Trees

    NASA Astrophysics Data System (ADS)

    Kutschera, E.; Khalil, A. K.; Rice, A. L.; Rosenstiel, T. N.; Butenhoff, C. L.

    2012-12-01

    The mechanisms of methane (CH4) transport through trees are still not well understood. Previous work has established that transport mechanisms likely differ from rice and emergent aquatic plants. Establishing the role of trees in overall plant CH4 emissions requires a thorough understanding of tree transport. Using stable isotope measurements of CH4 assists in elucidating these transport mechanisms. Although it has been shown that CH4 is transported through the stems of trees, emission from leaves by transpiration has not been ruled out. The effect of temperature on these mechanisms is important to the prediction of changes in CH4 emissions from the biosphere in altered global climates. The effect of temperature on methane (CH4) emitted from black cottonwood (Populus trichocarpa) trees has been measured. Trees were grown hydroponically under greenhouse conditions. After several months of growth, CH4 canopy flux was measured over three weeks. Temperatures were altered from 22oC the first week to 25oC the second week and to 18oC the final week. CH4 flux increased with temperature, where the difference in flux between the coolest and warmest week was statistically significant. A Q10 for CH4 flux from trees was calculated to be 2.7. Stable carbon isotope measurements of emitted CH4 were enriched at the warmest temperature compared to the coolest temperature, although all measurements were depleted with respect to the isotopic composition of root water CH4. This data not only gives insight into the temperature effects on CH4 flux from trees, but the mechanisms of CH4 flux themselves. This research was supported in part by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-08ER64515, and through NASA / Oregon Space Grant Consortium, grants NNG05GJ85H and NNX10AK68H.

  13. Modeling Transport and Flow Regulatory Mechanisms of the Kidney

    PubMed Central

    Layton, Anita T.

    2013-01-01

    The kidney plays an indispensable role in the regulation of whole-organism water balance, electrolyte balance, and acid-base balance, and in the excretion of metabolic wastes and toxins. In this paper, we review representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, and regulation of renal oxygen transport. We discuss how such modeling efforts have significantly expanded our understanding of renal function in both health and disease. PMID:23914303

  14. The mechanical cost of transport of fast running animals.

    PubMed

    Fuentes, Mauricio A

    2014-03-21

    Regarding running animals, algebraic expressions for the horizontal (ωx) and vertical (ωy) components of the mechanical cost of transport are deduced for a ground force pattern based on the Spring-mass model. Defining μ˜ as the maximum ground forces ratio μ˜=max(Fx)/max(Fy), the analysis shows that the mechanical cost of transport ωx+ωy for fast running animals is approximately proportional to μ˜, and to the relative contact length, and positively correlated to the limb take-off angle and the collision angle. The vertical cost ωy is shown to approximate to zero for fast running animals. Sustained top running speeds are predicted to require the largest possible values of μ˜ and therefore relatively large horizontal propulsive forces, as well as a minimum possible ground contact time. The equations also show that animals running relatively slow would tend to prefer certain interval of values for parameter μ˜, which would minimize both their mechanical cost of transport and their metabolic cost of transport. Very large animals are suspected to be less capable of developing large values of μ˜, which possibly renders them incapable of developing great speeds. PMID:24333209

  15. Activation product transport in fusion reactors. [RAPTOR

    SciTech Connect

    Klein, A.C.

    1983-01-01

    Activated corrosion and neutron sputtering products will enter the coolant and/or tritium breeding material of fusion reactor power plants and experiments and cause personnel access problems. Radiation levels around plant components due to these products will cause difficulties with maintenance and repair operations throughout the plant. Similar problems are experienced around fission reactor systems. The determination of the transport of radioactive corrosion and neutron sputtering products through the system is achieved using the computer code RAPTOR. This code calculates the mass transfer of a number of activation products based on the corrosion and sputtering rates through the system, the deposition and release characteristics of various plant components, the neturon flux spectrum, as well as other plant parameters. RAPTOR assembles a system of first order linear differential equations into a matrix equation based upon the reactor system parameters. Included in the transfer matrix are the deposition and erosion coefficients, and the decay and activation data for the various plant nodes and radioactive isotopes. A source vector supplies the corrosion and neutron sputtering source rates. This matrix equation is then solved using a matrix operator technique to give the specific activity distribution of each radioactive species throughout the plant. Once the amount of mass transfer is determined, the photon transport due to the radioactive corrosion and sputtering product sources can be evaluated, and dose rates around the plant components of interest as a function of time can be determined. This method has been used to estimate the radiation hazards around a number of fusion reactor system designs.

  16. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  17. Insights into the mechanisms of sterol transport between organelles.

    PubMed

    Mesmin, Bruno; Antonny, Bruno; Drin, Guillaume

    2013-09-01

    In cells, the levels of sterol vary greatly among organelles. This uneven distribution depends largely on non-vesicular routes of transfer, which are mediated by soluble carriers called lipid-transfer proteins (LTPs). These proteins have a domain with a hydrophobic cavity that accommodates one sterol molecule. However, a demonstration of their role in sterol transport in cells remains difficult. Numerous LTPs also contain membrane-binding elements, but it is not clear how these LTPs couple their ability to target organelles with lipid transport activity. This issue appears critical, since many sterol transporters are thought to act at contact sites between two membrane-bound compartments. Here, we emphasize that biochemical and structural studies provide precious insights into the mode of action of sterol-binding proteins. Recent studies on START, Osh/ORP and NPC proteins suggest models on how these proteins could transport sterol between organelles and, thereby, influence cellular functions. PMID:23283302

  18. Interannual forcing mechanisms of California Current transports II: Mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Davis, Andrew; Di Lorenzo, Emanuele

    2015-02-01

    Mesoscale eddies exert dominant control of cross-shelf exchanges, yet the forcing dynamics underlying their interannual and decadal variability remain uncertain. Using an ensemble of high-resolution ocean model hindcasts of the central and eastern North Pacific from 1950 to 2010 we diagnose the forcing mechanisms of low-frequency eddy variability in the California Current System (CCS). We quantify eddy activity by developing eddy counts based on closed contours of the Okubo-Weiss parameter and find that the spatial and temporal features of model-derived counts largely reproduce the short AVISO observational record. Comparison of model ensemble members allows us to separate the intrinsic and deterministic fractions of eddy variability in the northern CCS (34.5-50°N) and in the southern CCS (28.5-34.5°N). In the North, a large fraction of low-frequency eddy variability (30% anticyclones, 20% cyclones) is deterministic and shared with satellite observations. We develop a diagnostic model based on indices of the large-scale barotropic and baroclinic states of the CCS which recovers this deterministic variance. This model also strongly correlates with local atmospheric forcing. In contrast to the North, Southern CCS eddy counts exhibit very little deterministic variance, and eddy formation closely resembles a red-noise process. This new understanding of the external forcings of eddy variability allows us to better estimate how climate variability and change impact mesoscale transports in the California Current. The skill of our diagnostic model and its close association with local wind stress curl indicate that local atmospheric forcing is the dominant driver of eddy activity on interannual and decadal time scales north of pt. conception (~33°N).

  19. The 2-Hydroxycarboxylate Transporter Family: Physiology, Structure, and Mechanism

    PubMed Central

    Sobczak, Iwona; Lolkema, Juke S.

    2005-01-01

    The 2-hydroxycarboxylate transporter family is a family of secondary transporters found exclusively in the bacterial kingdom. They function in the metabolism of the di- and tricarboxylates malate and citrate, mostly in fermentative pathways involving decarboxylation of malate or oxaloacetate. These pathways are found in the class Bacillales of the low-CG gram-positive bacteria and in the gamma subdivision of the Proteobacteria. The pathways have evolved into a remarkable diversity in terms of the combinations of enzymes and transporters that built the pathways and of energy conservation mechanisms. The transporter family includes H+ and Na+ symporters and precursor/product exchangers. The proteins consist of a bundle of 11 transmembrane helices formed from two homologous domains containing five transmembrane segments each, plus one additional segment at the N terminus. The two domains have opposite orientations in the membrane and contain a pore-loop or reentrant loop structure between the fourth and fifth transmembrane segments. The two pore-loops enter the membrane from opposite sides and are believed to be part of the translocation site. The binding site is located asymmetrically in the membrane, close to the interface of membrane and cytoplasm. The binding site in the translocation pore is believed to be alternatively exposed to the internal and external media. The proposed structure of the 2HCT transporters is different from any known structure of a membrane protein and represents a new structural class of secondary transporters. PMID:16339740

  20. Active transporters as enzymes: an energetic framework applied to major facilitator superfamily and ABC importer systems.

    PubMed

    Shilton, Brian H

    2015-04-15

    Active membrane transporters are dynamic molecular machines that catalyse transport across a membrane by coupling solute movement to a source of energy such as ATP or a secondary ion gradient. A central question for many active transporters concerns the mechanism by which transport is coupled to a source of energy. The transport process and associated energetic coupling involve conformational changes in the transporter. For efficient transport, the conformational changes must be tightly regulated and they must link energy use to movement of the substrate across the membrane. The present review discusses active transport using the well-established energetic framework for enzyme-mediated catalysis. In particular, membrane transport systems can be viewed as ensembles consisting of low-energy and high-energy conformations. The transport process involves binding interactions that selectively stabilize the higher energy conformations, and in this way promote conformational changes in the system that are coupled to decreases in free energy and substrate translocation. The major facilitator superfamily of secondary active transporters is used to illustrate these ideas, which are then be expanded to primary active transport mediated by ABC (ATP-binding cassette) import systems, with a focus on the well-studied maltose transporter. PMID:25837849

  1. The transport mechanism of the mitochondrial ADP/ATP carrier.

    PubMed

    Kunji, Edmund R S; Aleksandrova, Antoniya; King, Martin S; Majd, Homa; Ashton, Valerie L; Cerson, Elizabeth; Springett, Roger; Kibalchenko, Mikhail; Tavoulari, Sotiria; Crichton, Paul G; Ruprecht, Jonathan J

    2016-10-01

    The mitochondrial ADP/ATP carrier imports ADP from the cytosol and exports ATP from the mitochondrial matrix, which are key transport steps for oxidative phosphorylation in eukaryotic organisms. The transport protein belongs to the mitochondrial carrier family, a large transporter family in the inner membrane of mitochondria. It is one of the best studied members of the family and serves as a paradigm for the molecular mechanism of mitochondrial carriers. Structurally, the carrier consists of three homologous domains, each composed of two transmembrane α-helices linked with a loop and short α-helix on the matrix side. The transporter cycles between a cytoplasmic and matrix state in which a central substrate binding site is alternately accessible to these compartments for binding of ADP or ATP. On both the cytoplasmic and matrix side of the carrier are networks consisting of three salt bridges each. In the cytoplasmic state, the matrix salt bridge network is formed and the cytoplasmic network is disrupted, opening the central substrate binding site to the intermembrane space and cytosol, whereas the converse occurs in the matrix state. In the transport cycle, tighter substrate binding in the intermediate states allows the interconversion of conformations by lowering the energy barrier for disruption and formation of these networks, opening and closing the carrier to either side of the membrane in an alternating way. Conversion between cytoplasmic and matrix states might require the simultaneous rotation of three domains around a central translocation pathway, constituting a unique mechanism among transport proteins. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:27001633

  2. [Helicopter transportation of a sedated, mechanically ventilated patient with cervical cord injury].

    PubMed

    Kato, Hideya; Nishiwaki, Yuko; Hosoi, Kunihiko; Shiomi, Naoto; Hirata, Masashi

    2013-09-01

    We report helicopter transportation of a sedated, mechanically ventilated patient with cervical cord injury. A 20-year-old male sustained traumatic injury to the cervical spinal cord during extracurricular activities in a college. On arrival at the hospital, a halo vest was placed on the patient and tracheostomy was performed. On the 38th hospital day, he was transported a distance of 520km by helicopter to a specialized hospital in Fukuoka for medical repatriation. Cabin space was narrow. Since power supply and carrying capacity were limited, battery-driven and portable medical devices were used. In consideration for patient's psychological stress, he was sedated with propofol. RSS (Ramsay sedation scale) scores were recorded to evaluate whether the patient was adequately sedated during helicopter transportation. Prior to transport, we rehearsed the sedation using bispectral index monitoring (BIS) in the hospital to further ensure the patient's safety during the transport. PMID:24063142

  3. Inactivation of the glutamine/amino acid transporter ASCT2 by 1,2,3-dithiazoles: proteoliposomes as a tool to gain insights in the molecular mechanism of action and of antitumor activity

    SciTech Connect

    Oppedisano, Francesca; Catto, Marco; Koutentis, Panayiotis A.; Nicolotti, Orazio; Pochini, Lorena; Koyioni, Maria; Introcaso, Antonellina; Michaelidou, Sophia S.; Carotti, Angelo; Indiveri, Cesare

    2012-11-15

    The ASCT2 transport system catalyses a sodium-dependent antiport of glutamine and other neutral amino acids which is involved in amino acid metabolism. A library of 1,2,3-dithiazoles was designed, synthesized and evaluated as inhibitors of the glutamine/amino acid ASCT2 transporter in the model system of proteoliposomes reconstituted with the rat liver transporter. Fifteen of the tested compounds at concentration of 20 μM or below, inhibited more than 50% the glutamine/glutamine antiport catalysed by the reconstituted transporter. These good inhibitors bear a phenyl ring with electron withdrawing substituents. The inhibition was reversed by 1,4-dithioerythritol indicating that the effect was likely owed to the formation of mixed sulfides with the protein's Cys residue(s). A dose–response analysis of the most active compounds gave IC{sub 50} values in the range of 3–30 μM. Kinetic inhibition studies indicated a non-competitive inhibition, presumably because of a potential covalent interaction of the dithiazoles with cysteine thiol groups that are not located at the substrate binding site. Indeed, computational studies using a homology structural model of ASCT2 transporter, suggested as possible binding targets, Cys-207 or Cys-210, that belong to the CXXC motif of the protein. -- Highlights: ► Non‐competitive inhibition of ASCT2 by 1,2,3-dithiazoles was studied in proteoliposomes. ► Different 1,2,3-dithiazoles were synthesized and evaluated as transporter inhibitors. ► Many compounds potently inhibited the glutamine/glutamine antiport catalyzed by ASCT2. ► The inhibition was reversed by DTE indicating reaction with protein Cys. ► The most active compounds gave IC{sub 50} in the range of 3–30 μM.

  4. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    NASA Astrophysics Data System (ADS)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  5. A mirror transport mechanism for use at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Stark, Kenneth W.; Wilson, Meredith

    1986-01-01

    The Mirror Transport Mechanism (MTM), which supports a pair of dihedral mirrors and moves them in a very smooth and uniform scanning motion normal to a beamsplitter is described. Each scan is followed by a quick flyback and repeat. Material selection, design, and testing of all major components of the MTM are discussed. Flex pivot failures during vibration testing, excessive dihedral platform sag under one g operation, electronic and fiber optic characteristics, and tolerancing considerations are covered. Development of the mechanism has reached the final phase of thermal and vibration qualification. Environmental testing of the complete FIRAS experiment is just beginning.

  6. Mechanisms of Carrier Transport Induced by a Microswimmer Bath

    SciTech Connect

    Kaiser, Andreas; Sokolov, Andrey; Aranson, Igor S.; Lowen, Hartmut

    2015-04-01

    Recently, it was found that a wedgelike microparticle (referred to as ”carrier”) which is only allowed to translate but not to rotate exhibits a directed translational motion along the wedge cusp if it is exposed to a bath of microswimmers. Here we model this effect in detail by resolving the microswimmers explicitly using interaction models with different degrees of mutual alignment. Using computer simulations we study the impact of these interactions on the transport efficiency of V-shaped carrier. We show that the transport mechanisms itself strongly depends on the degree of alignment embodied in the modelling of the individual swimmer dynamics. For weak alignment, optimal carrier transport occurs in the turbulent microswimmer state and is induced by swirl depletion inside the carrier. For strong aligning interactions, optimal transport occurs already in the dilute regime and is mediated by a polar cloud of swimmers in the carrier wake pushing the wedge-particle forward. We also demonstrate that the optimal shape of the carrier leading to maximal transport speed depends on the kind of interaction model used.

  7. Mechanism of coupling drug transport reactions located in two different membranes.

    PubMed

    Zgurskaya, Helen I; Weeks, Jon W; Ntreh, Abigail T; Nickels, Logan M; Wolloscheck, David

    2015-01-01

    Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of the cell. Some transporters, together with periplasmic membrane fusion proteins (MFPs) and outer membrane channels, assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protects bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates) to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes. PMID:25759685

  8. Mechanism of coupling drug transport reactions located in two different membranes

    PubMed Central

    Zgurskaya, Helen I.; Weeks, Jon W.; Ntreh, Abigail T.; Nickels, Logan M.; Wolloscheck, David

    2015-01-01

    Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of the cell. Some transporters, together with periplasmic membrane fusion proteins (MFPs) and outer membrane channels, assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protects bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates) to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes. PMID:25759685

  9. The mechanism of folate transport in rabbit reticulocytes

    PubMed Central

    Bobzien, William F.; Goldman, David

    1972-01-01

    Folate transport in phenylhydrazine-induced rabbit reticulocytes was studied with the non-metabolized folate-analog, methotrexate. The time-course of methotrexate uptake into a mixed population of reticulocytes and mature erythrocytes is a two-component process consisting of a small, but rapid, initial uptake phase followed by a much slower uptake component which remains essentially constant over the period of observation. The velocity of the latter uptake component is directly proportional to the per cent reticulocytes and appears to represent a unidirectional influx of methotrexate into these cells. Uptake of methotrexate into reticulocytes was found to have the following characteristics: (a) temperature sensitivity, Q10 of 4; (b) uptake velocity as a function of the extracellular methotrexate concentration approximated Michaelis-Menten kinetics with a maximum transport velocity of 48 pmoles/min per g dry wt; the extracellular methotrexate level at which the uptake velocity was one-half maximum was 1.4 μM; (c) 5-formyltetrahydrofolate markedly inhibited methotrexate uptake but pteroylglutamic acid inhibition was weak; (d) uptake was stimulated in cells preincubated with 5-formyltetrahydrofolate, indicative of hetero-exchange diffusion; (e) uptake was independent of extracellular sodium but was inhibited by anions including nitrate, phosphate, and glucose-6-phosphate; (f) uptake was enhanced by azide plus iodoacetate. These data indicate that folate transport in rabbit reticulocytes is mediated by a carrier mechanism which disappears with reticulocyte maturation. The mechanism of folate transport in rabbit reticulocytes is qualitatively similar to tumor cells previously studied; both appear to have an energy-dependent mechanism limiting folate uptake, and influx in both is inhibited by structurally unrelated inorganic and organic anions. These studies suggest that circulating pteroylglutamic acid is of little importance in meeting the folate requirements of

  10. Transport and defect mechanism in copper-based delafossite materials

    NASA Astrophysics Data System (ADS)

    Ingram, Brian James

    The defect mechanism and transport properties of cuprous-based delafossite compounds of the general form CuMO2 (M = Al, Sc, and Y) were investigated. The size of the B-site cation (M), plays a significant role in determining the electrical properties of the compound. All the systems under investigation, regardless of B-site cation, are small polaron conductors which exhibit thermally activated mobilities, consequently the upper bound of mobility is 0.10--1.0 cm2 V -1 s-1. The defect mechanism is strongly dependant on the size and chemistry of the B-site cation. The Al-compound has a moderate room temperature conductivity of ˜1.5 x 10-2 S/cm and a hole concentration on the order of 1019 cm-3. Intrinsic defects such as Oi″ and VCu• as well as tramp impurity (e.g., CaAl') do not contribute significantly to the hole population, which corresponds to approximately 1% polaron occupation of the Cu sites at high temperatures. A defect associate of the form (AlCu••2O i″)″ was found to be the dominant source of hole generation in CuAlO2. At low temperatures two holes (CuCu•) tightly bind with forming a neutral complex. The large B-site cation compounds (CuScO2 and CuYO2) do not exhibit an equivalent defect associate due to the instability of Sc and Y in low coordination sites, therefore the intrinsic Sc- and Y-compounds have inferior electrical properties compared to CuAlO2. The large B-site compounds do, however, have a propensity for acceptor dopants, e.g., oxygen interstitials and extrinsic doping. Under the experimental conditions of this study, isolated oxygen interstitials were found in insignificant concentrations. The solubility limits of Mg in CuScO2 and Ca in CuYO2 were found to be approximately 1% and 0.2%, respectively, corresponding to room temperature conductivities of 2 x 10-2 and 1.7 x 10-3 S cm-1---substantial increases from the undoped values. Based on small polaron theory a maximum conductivity was determined to be ˜600 S cm-1 for the

  11. How to move an amphipathic molecule across a lipid bilayer: different mechanisms for different ABC transporters?

    PubMed

    Theodoulou, Frederica L; Carrier, David J; Schaedler, Theresia A; Baldwin, Stephen A; Baker, Alison

    2016-06-15

    Import of β-oxidation substrates into peroxisomes is mediated by ATP binding cassette (ABC) transporters belonging to subfamily D. In order to enter the β-oxidation pathway, fatty acids are activated by conversion to fatty acyl-CoA esters, a reaction which is catalysed by acyl-CoA synthetases (ACSs). Here, we present evidence for an unusual transport mechanism, in which fatty acyl-CoA substrates are accepted by ABC subclass D protein (ABCD) transporters, cleaved by the transporters during transit across the lipid bilayer to release CoA, and ultimately re-esterified in the peroxisome lumen by ACSs which interact with the transporter. We propose that this solves the biophysical problem of moving an amphipathic molecule across the peroxisomal membrane, since the intrinsic thioesterase activity of the transporter permits separate membrane translocation pathways for the hydrophobic fatty acid moiety and the polar CoA moiety. The cleavage/re-esterification mechanism also has the potential to control entry of disparate substrates into the β-oxidation pathway when coupled with distinct peroxisomal ACSs. A different solution to the movement of amphipathic molecules across a lipid bilayer is deployed by the bacterial lipid-linked oligosaccharide (LLO) flippase, PglK, in which the hydrophilic head group and the hydrophobic polyprenyl tail of the substrate are proposed to have distinct translocation pathways but are not chemically separated during transport. We discuss a speculative alternating access model for ABCD proteins based on the mammalian ABC transporter associated with antigen processing (TAP) and compare it to the novel mechanism suggested by the recent PglK crystal structures and biochemical data. PMID:27284041

  12. How to move an amphipathic molecule across a lipid bilayer: different mechanisms for different ABC transporters?

    PubMed Central

    Theodoulou, Frederica L.; Carrier, David J.; Schaedler, Theresia A.; Baldwin, Stephen A.; Baker, Alison

    2016-01-01

    Import of β-oxidation substrates into peroxisomes is mediated by ATP binding cassette (ABC) transporters belonging to subfamily D. In order to enter the β-oxidation pathway, fatty acids are activated by conversion to fatty acyl-CoA esters, a reaction which is catalysed by acyl-CoA synthetases (ACSs). Here, we present evidence for an unusual transport mechanism, in which fatty acyl-CoA substrates are accepted by ABC subclass D protein (ABCD) transporters, cleaved by the transporters during transit across the lipid bilayer to release CoA, and ultimately re-esterified in the peroxisome lumen by ACSs which interact with the transporter. We propose that this solves the biophysical problem of moving an amphipathic molecule across the peroxisomal membrane, since the intrinsic thioesterase activity of the transporter permits separate membrane translocation pathways for the hydrophobic fatty acid moiety and the polar CoA moiety. The cleavage/re-esterification mechanism also has the potential to control entry of disparate substrates into the β-oxidation pathway when coupled with distinct peroxisomal ACSs. A different solution to the movement of amphipathic molecules across a lipid bilayer is deployed by the bacterial lipid-linked oligosaccharide (LLO) flippase, PglK, in which the hydrophilic head group and the hydrophobic polyprenyl tail of the substrate are proposed to have distinct translocation pathways but are not chemically separated during transport. We discuss a speculative alternating access model for ABCD proteins based on the mammalian ABC transporter associated with antigen processing (TAP) and compare it to the novel mechanism suggested by the recent PglK crystal structures and biochemical data. PMID:27284041

  13. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    PubMed

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  14. Associations between street connectivity and active transportation

    PubMed Central

    2010-01-01

    Background Past studies of associations between measures of the built environment, particularly street connectivity, and active transportation (AT) or leisure walking/bicycling have largely failed to account for spatial autocorrelation of connectivity variables and have seldom examined both the propensity for AT and its duration in a coherent fashion. Such efforts could improve our understanding of the spatial and behavioral aspects of AT. We analyzed spatially identified data from Los Angeles and San Diego Counties collected as part of the 2001 California Health Interview Survey. Results Principal components analysis indicated that ~85% of the variance in nine measures of street connectivity are accounted for by two components representing buffers with short blocks and dense nodes (PRIN1) or buffers with longer blocks that still maintain a grid like structure (PRIN2). PRIN1 and PRIN2 were positively associated with active transportation (AT) after adjustment for diverse demographic and health related variables. Propensity and duration of AT were correlated in both Los Angeles (r = 0.14) and San Diego (r = 0.49) at the zip code level. Multivariate analysis could account for the correlation between the two outcomes. After controlling for demography, measures of the built environment and other factors, no spatial autocorrelation remained for propensity to report AT (i.e., report of AT appeared to be independent among neighborhood residents). However, very localized correlation was evident in duration of AT, particularly in San Diego, where the variance of duration, after accounting for spatial autocorrelation, was 5% smaller within small neighborhoods (~0.01 square latitude/longitude degrees = 0.6 mile diameter) compared to within larger zip code areas. Thus a finer spatial scale of analysis seems to be more appropriate for explaining variation in connectivity and AT. Conclusions Joint analysis of the propensity and duration of AT behavior and an explicitly

  15. Na(+)-independent multispecific anion transporter mediates active transport of pravastatin into rat liver.

    PubMed

    Yamazaki, M; Suzuki, H; Hanano, M; Tokui, T; Komai, T; Sugiyama, Y

    1993-01-01

    To examine whether the relatively selective inhibition of hepatic cholesterol synthesis by the hydrophilic 3-hydroxyl-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pravastatin in vivo may be due to the existence of a specific uptake mechanism in the liver, the uptake by isolated rat hepatocytes was investigated. The uptake was composed of a saturable component [Michaelis constant (Km) 29 microM, maximal uptake rate 546 pmol.min-1.mg-1] and nonspecific diffusion (nonspecific uptake clearance 1.6 microliters.min-1.mg-1), inhibited by hypothermia, metabolic inhibitors, sulfhydryl-modifying reagents, and inhibitor of anion exchanger, whereas replacement of Na+ by choline+ or Cl- by gluconate- did not alter the uptake. Competitive inhibition was observed by a more highly lipophilic HMG-CoA reductase inhibitor simvastatin (open acid form), dibromosulfophthalein, cholate, and taurocholate. Pravastatin inhibited Na(+)-independent taurocholate uptake with an inhibition constant comparable with the Km value of pravastatin itself. Furthermore, the hepatic permeability clearance in vivo obtained with intact rats was comparable with that in vitro, indicating that the carrier-mediated active transport system we demonstrated in vitro is responsible for the hepatic uptake in vivo. These findings demonstrated that the hepatic uptake of pravastatin occurs via a carrier-mediated active transport mechanism utilizing the so-called multispecific anion transporter, which is common with the Na(+)-independent bile acid uptake system, and that this is one of the mechanisms for its selective inhibition of hepatic cholesterol synthesis in vivo. PMID:8430803

  16. Endoplasmic reticulum: Where nucleotide sugar transport meets cytokinin control mechanisms

    PubMed Central

    Niemann, Michael CE; Werner, Tomáš

    2015-01-01

    The endoplasmic reticulum (ER) is a multifunctional eukaryotic organelle where the vast majority of secretory proteins are folded and assembled to achieve their correct tertiary structures. The lumen of the ER and Golgi apparatus also provides an environment for numerous glycosylation reactions essential for modifications of proteins and lipids, and for cell wall biosynthesis. These glycosylation reactions require a constant supply of cytosolically synthesized substrate precursors, nucleotide sugars, which are transported by a group of dedicated nucleotide sugar transporters (NST). Recently, we have reported on the identification of a novel ER-localized NST protein, ROCK1, which mediates the transport of UDP-linked acetylated hexosamines across the ER membrane in Arabidopsis. Interestingly, it has been demonstrated that the activity of ROCK1 is important for the regulation of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKX), in the ER and, thus, for cytokinin responses. In this addendum we will address the biochemical and cellular activity of the ROCK1 transporter and its phylogenetic relation to other NST proteins. PMID:26418963

  17. Evaporation as the transport mechanism of metals in arid regions.

    PubMed

    Lima, Ana T; Safar, Zeinab; Loch, J P Gustav

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. PMID:24997976

  18. Structural insights into thyroid hormone transport mechanisms of the L-type amino acid transporter 2.

    PubMed

    Hinz, Katrin M; Meyer, Katja; Kinne, Anita; Schülein, Ralf; Köhrle, Josef; Krause, Gerd

    2015-06-01

    Thyroid hormones (THs) are transported across cell membranes by different transmembrane transporter proteins. In previous studies, we showed marked 3,3'-diiodothyronine (3,3'-T2) but moderate T3 uptake by the L-type amino acid transporter 2 (Lat2). We have now studied the structure-function relationships of this transporter and TH-like molecules. Our Lat2 homology model is based on 2 crystal structures of the homologous 12-transmembrane helix transporters arginine/agmatine antiporter and amino acid/polyamine/organocation transporter. Model-driven mutagenesis of residues lining an extracellular recognition site and a TH-traversing channel identified 9 sensitive residues. Using Xenopus laevis oocytes as expression system, we found that side chain shortening (N51S, N133S, N248S, and Y130A) expanded the channel and increased 3,3'-T2 transport. Side chain enlargements (T140F, Y130R, and I137M) decreased 3,3'-T2 uptake, indicating channel obstructions. The opposite results with mutations maintaining (F242W) or impairing (F242V) uptake suggest that F242 may have a gating function. Competitive inhibition studies of 14 TH-like compounds revealed that recognition by Lat2 requires amino and carboxylic acid groups. The size of the adjacent hydrophobic group is restricted. Bulky substituents in positions 3 and 5 of the tyrosine ring are allowed. The phenolic ring may be enlarged, provided that the whole molecule is flexible enough to fit into the distinctly shaped TH-traversing channel of Lat2. Taken together, the next Lat2 features were identified 1) TH recognition site; 2) TH-traversing channel in the center of Lat2; and 3) switch site that potentially facilitates intracellular substrate release. Together with identified substrate features, these data help to elucidate the molecular mechanisms and role of Lat2 in T2 transport. PMID:25945809

  19. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  20. Electron transport mechanisms in polymer-carbon sphere composites

    NASA Astrophysics Data System (ADS)

    Nieves, Cesar A.; Ramos, Idalia; Pinto, Nicholas J.; Zimbovskaya, Natalya A.

    2016-07-01

    A set of uniform carbon microspheres (CSs) whose diameters have the order of 0.125 μm to 10 μm was prepared from aqueous sucrose solution by means of hydrothermal carbonization of sugar molecules. A pressed pellet was composed by mixing CSs with polyethylene oxide (PEO). Electrical characterization of the pellet was carried out showing Ohmic current-voltage characteristics and temperature-dependent conductivity in the range of 80 K mechanisms of electron transport. It was shown that thermally induced electron tunneling between adjacent spheres may take on an important part in the electron transport through the CS/PEO composites.

  1. Study of internal transport barrier triggering mechanism in tokamak plasmas

    SciTech Connect

    Dong, J.Q.; Mou, Z.Z.; Long, Y.X.; Mahajan, S.M.

    2004-12-01

    Sheared flow layers driven by magnetic energy, released in tearing-reconnection processes inherent in dissipative magnetohydrodynamics, are proposed as a triggering mechanism for the creation of the internal transport barrier (ITB) in tokamak plasmas. The double tearing mode, mediated by anomalous electron viscosity in configurations with a nonmonotonic safety factor, is investigated as an example. Particular emphasis is placed on the formation of sheared poloidal flow layers in the vicinity of the magnetic islands. A quasilinear simulation demonstrates that the sheared flows induced by the mode have desirable characteristics (lying just outside the magnetic islands), and sufficient levels required for ITB formation. A possible explanation is also proffered for the experimental observation that the transport barriers are preferentially formed in the proximity of low-order rational surfaces.

  2. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    SciTech Connect

    Wang, Jy-An John; Wang, Hong

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  3. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  4. Mechanical transport in two-dimensional networks of fractures

    SciTech Connect

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables.

  5. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  6. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  7. Curcumin directly inhibits the transport activity of GLUT1.

    PubMed

    Gunnink, Leesha K; Alabi, Ola D; Kuiper, Benjamin D; Gunnink, Stephen M; Schuiteman, Sam J; Strohbehn, Lauren E; Hamilton, Kathryn E; Wrobel, Kathryn E; Louters, Larry L

    2016-06-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin's inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  8. Artemisinin Inhibits Chloroplast Electron Transport Activity: Mode of Action

    PubMed Central

    Bharati, Adyasha; Kar, Monaranjan; Sabat, Surendra Chandra

    2012-01-01

    Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo), behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the QB; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth. PMID:22719995

  9. Dopamine Transporter Activity Is Modulated by α-Synuclein.

    PubMed

    Butler, Brittany; Saha, Kaustuv; Rana, Tanu; Becker, Jonas P; Sambo, Danielle; Davari, Paran; Goodwin, J Shawn; Khoshbouei, Habibeh

    2015-12-01

    The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains. PMID:26442590

  10. Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics.

    PubMed

    Lee, Jeihyun; Park, Soohyung; Lee, Younjoo; Kim, Hyein; Shin, Dongguen; Jeong, Junkyeong; Jeong, Kwangho; Cho, Sang Wan; Lee, Hyunbok; Yi, Yeonjin

    2016-02-21

    Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed. PMID:26821701

  11. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation

    PubMed Central

    Guh, Ying-Jey; Lin, Chia-Hao; Hwang, Pung-Pung

    2015-01-01

    Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na+ uptake/H+ secretion/NH4+ excretion, Ca2+ uptake, Na+/Cl- uptake, K+ secretion, and Cl- uptake/HCO3- secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields. PMID:26600749

  12. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter

    PubMed Central

    Davis, Bruce A.; Nagarajan, Anu; Forrest, Lucy R.; Singh, Satinder K.

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT’s substrate binding site directly depends on this pocket’s charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  13. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter.

    PubMed

    Davis, Bruce A; Nagarajan, Anu; Forrest, Lucy R; Singh, Satinder K

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT's substrate binding site directly depends on this pocket's charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  14. Tuning transport properties on graphene multiterminal structures by mechanical deformations

    NASA Astrophysics Data System (ADS)

    Latge, Andrea; Torres, Vanessa; Faria, Daiara

    The realization of mechanical strain on graphene structures is viewed as a promise route to tune electronic and transport properties such as changing energy band-gaps and promoting localization of states. Using continuum models, mechanical deformations are described by effective gauge fields, mirrored as pseudomagnetic fields that may reach quite high values. Interesting symmetry features are developed due to out of plane deformations on graphene; lift sublattice symmetry was predicted and observed in centrosymmetric bumps and strained nanobubbles. Here we discuss the effects of Gaussian-like strain on a hexagonal graphene flake connected to three leads, modeled as perfect graphene nanoribbons. The Green function formalism is used within a tight-binding approximation. For this particular deformation sharp resonant states are achieved depending on the strained structure details. We also study a fold-strained structure in which the three leads are deformed extending up to the very center of the hexagonal flake. We show that conductance suppressions can be controlled by the strain intensity and important transport features are modeled by the electronic band structure of the leads.

  15. Characteristics and Possible Functions of Mitochondrial Ca2+ Transport Mechanisms

    PubMed Central

    Gunter, Thomas E.; Sheu, Shey-Shing

    2009-01-01

    Mitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca2+ concentration ([Ca2+]m) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca2+]m also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis. Therefore, [Ca2+]m can control whether the cell has sufficient ATP to fulfill its functions and survive or is condemned to death. Ca2+ is also one of the most important second messengers within the cytosol, signaling changes in cellular response through Ca2+ pulses or transients. Mitochondria can also sequester Ca2+ from these transients so as to modify the shape of Ca2+ signaling transients or control their location within the cell. All of this is controlled by the action of four or five mitochondrial Ca2+ transport mechanisms and the PTP. The characteristics of these mechanisms of Ca2+ transport and a discussion of how they might function are described in this paper. PMID:19161975

  16. Multi-scale mechanical and transport properties of a hydrogel.

    PubMed

    Salahshoor, Hossein; Rahbar, Nima

    2014-09-01

    In this paper, molecular dynamic simulation was used to study the effect of water on the equilibrated structure and mechanical properties of cross-linked hydrogel at multiple scales. The hydrogel consisted of Polyethylene glycol diglycidyl ether (PEGDGE) as epoxy and the Jeffamine, poly-oxy-alkylene-amines, as curing agent. The results for systems with various water contents indicated that the cross-links were more hydrophilic within the hydrogel structure. Effects of cross-linking on the transport properties were also investigated by computing diffusion coefficients of water molecules. A new Coarse-Grained (CG) scheme for hydrogels is proposed, and validated by comparing the transport properties with the all-atom method, demonstrating the capability of the model to capture the correct dynamic evolution of the system. The all-atom model of the hydrogel was mapped to the CG model using the MARTINI force field. This method resulted in a more realistic representation of the stiffness of the system, compared to the previous experimental studies in the literature. The variation of the stiffness of the hydrogel as a function of the water content showed that 40% water content is the optimal value for mechanical performance of the hydrogel. PMID:24967978

  17. Active Transport Can Greatly Enhance Cdc20:Mad2 Formation

    PubMed Central

    Ibrahim, Bashar; Henze, Richard

    2014-01-01

    To guarantee genomic integrity and viability, the cell must ensure proper distribution of the replicated chromosomes among the two daughter cells in mitosis. The mitotic spindle assembly checkpoint (SAC) is a central regulatory mechanism to achieve this goal. A dysfunction of this checkpoint may lead to aneuploidy and likely contributes to the development of cancer. Kinetochores of unattached or misaligned chromosomes are thought to generate a diffusible “wait-anaphase” signal, which is the basis for downstream events to inhibit the anaphase promoting complex/cyclosome (APC/C). The rate of Cdc20:C-Mad2 complex formation at the kinetochore is a key regulatory factor in the context of APC/C inhibition. Computer simulations of a quantitative SAC model show that the formation of Cdc20:C-Mad2 is too slow for checkpoint maintenance when cytosolic O-Mad2 has to encounter kinetochores by diffusion alone. Here, we show that an active transport of O-Mad2 towards the spindle mid-zone increases the efficiency of Mad2-activation. Our in-silico data indicate that this mechanism can greatly enhance the formation of Cdc20:Mad2 and furthermore gives an explanation on how the “wait-anaphase” signal can dissolve abruptly within a short time. Our results help to understand parts of the SAC mechanism that remain unclear. PMID:25338047

  18. Molecular mechanism of proton transport in CLC Cl-/H+ exchange transporters

    PubMed Central

    Feng, Liang; Campbell, Ernest B.; MacKinnon, Roderick

    2012-01-01

    CLC proteins underlie muscle, kidney, bone, and other organ system function by catalyzing the transport of Cl- ions across cell and organellar membranes. Some CLC proteins are ion channels while others are pumps that exchange Cl- for H+. The pathway through which Cl- ions cross the membrane has been characterized, but the transport of H+ and the principle by which their movement is coupled to Cl- movement is not well understood. Here we show that H+ transport depends not only on the presence of a specific glutamate residue but also the presence of Cl- ions. H+ transport, however, can be isolated and analyzed in the absence of Cl- by mutating the glutamate to alanine and adding carboxylate-containing molecules to solution, consistent with the notion that H+ transfer is mediated through the entry of a carboxylate group into the anion pathway. Cl- ions and carboxylate interact with each other strongly. These data support a mechanism in which the glutamate carboxylate functions as a surrogate Cl- ion, but it can accept a H+ and transfer it between the external solution and the central Cl- binding site, coupled to the movement of 2 Cl- ions. PMID:22753511

  19. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  20. An Autoregulatory Mechanism Governing Mucociliary Transport Is Sensitive to Mucus Load

    PubMed Central

    Liu, Linbo; Shastry, Suresh; Byan-Parker, Suzanne; Houser, Grace; K. Chu, Kengyeh; Birket, Susan E.; Fernandez, Courtney M.; Gardecki, Joseph A.; Grizzle, William E.; Wilsterman, Eric J.; Sorscher, Eric J.; Rowe, Steven M.

    2014-01-01

    Mucociliary clearance, characterized by mucus secretion and its conveyance by ciliary action, is a fundamental physiological process that plays an important role in host defense. Although it is known that ciliary activity changes with chemical and mechanical stimuli, the autoregulatory mechanisms that govern ciliary activity and mucus transport in response to normal and pathophysiological variations in mucus are not clear. We have developed a high-speed, 1-μm-resolution, cross-sectional imaging modality, termed micro-optical coherence tomography (μOCT), which provides the first integrated view of the functional microanatomy of the epithelial surface. We monitored invasion of the periciliary liquid (PCL) layer by mucus in fully differentiated human bronchial epithelial cultures and full thickness swine trachea using μOCT. We further monitored mucociliary transport (MCT) and intracellular calcium concentration simultaneously during invasion of the PCL layer by mucus using colocalized μOCT and confocal fluorescence microscopy in cell cultures. Ciliary beating and mucus transport are up-regulated via a calcium-dependent pathway when mucus causes a reduction in the PCL layer and cilia height. When the load exceeds a physiological limit of approximately 2 μm, this gravity-independent autoregulatory mechanism can no longer compensate, resulting in diminished ciliary motion and abrogation of stimulated MCT. A fundamental integrated mechanism with specific operating limits governs MCT in the lung and fails when periciliary layer compression and mucus viscosity exceeds normal physiologic limits. PMID:24937762

  1. Mechanism of persulfate activation by phenols.

    PubMed

    Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2013-06-01

    The activation of persulfate by phenols was investigated to further the understanding of persulfate chemistry for in situ chemical oxidation (ISCO). Phenol (pKa = 10.0) activated persulfate at pH 12 but not at pH 8, suggesting activation occurred only via the phenoxide form. Evaluation of the phenoxide activation mechanism was complicated by the concurrent activation of persulfate by hydroperoxide anion, which is generated by the base catalyzed hydrolysis of persulfate. Therefore, phenoxide activation was investigated using pentachlorophenoxide at pH 8.3, midway between the pKa of pentachlorophenol (pKa = 4.8) and that of hydrogen peroxide (pKa = 11.8). Of the two possible mechanisms for phenoxide activation of persulfate (reduction or nucleophilic attack) the results were consistent with reduction of persulfate by phenoxide with oxidation of the phenoxide. The concentration of phenoxide required for maximum persulfate activation was low (1 mM). The results of this research document that phenoxides activate persulfate via reduction; phenolic moieties ubiquitous to soil organic matter in the subsurface may have a significant role in the activation of persulfate during its injection into the subsurface for ISCO. Furthermore, the results provide the foundation for activation of persulfate by other organic anions without the toxicity of phenols, such as keto acids. PMID:23663058

  2. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model

    PubMed Central

    Vaquer, Sergi; Cuyàs, Elisabet; Rabadán, Arnau; González, Albert; Fenollosa, Felip; de la Torre, Rafael

    2014-01-01

    Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette) transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay ® (Solvo Biotechnology, Hungary) was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2) trans-membrane estradiol-17-β-glucuronide (E17βG) transport activity, when activated by adenosine-tri-phosphate (ATP) during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology opens new and

  3. Compromising KCC2 transporter activity enhances the development of continuous seizure activity.

    PubMed

    Kelley, Matthew R; Deeb, Tarek Z; Brandon, Nicholas J; Dunlop, John; Davies, Paul A; Moss, Stephen J

    2016-09-01

    Impaired neuronal inhibition has long been associated with the increased probability of seizure occurrence and heightened seizure severity. Fast synaptic inhibition in the brain is primarily mediated by the type A γ-aminobutyric acid receptors (GABAARs), ligand-gated ion channels that can mediate Cl(-) influx resulting in membrane hyperpolarization and the restriction of neuronal firing. In most adult brain neurons, the K(+)/Cl(-) co-transporter-2 (KCC2) establishes hyperpolarizing GABAergic inhibition by maintaining low [Cl(-)]i. In this study, we sought to understand how decreased KCC2 transport function affects seizure event severity. We impaired KCC2 transport in the 0-Mg(2+) ACSF and 4-aminopyridine in vitro models of epileptiform activity in acute mouse brain slices. Experiments with the selective KCC2 inhibitor VU0463271 demonstrated that reduced KCC2 transport increased the duration of SLEs, resulting in non-terminating discharges of clonic-like activity. We also investigated slices obtained from the KCC2-Ser940Ala (S940A) point-mutant mouse, which has a mutation at a known functional phosphorylation site causing behavioral and cellular deficits under hyperexcitable conditions. We recorded from the entorhinal cortex of S940A mouse brain slices in both 0-Mg(2+) ACSF and 4-aminopyridine, and demonstrated that loss of the S940 residue increased the susceptibility of continuous clonic-like discharges, an in vitro form of status epilepticus. Our experiments revealed KCC2 transport activity is a critical factor in seizure event duration and mechanisms of termination. Our results highlight the need for therapeutic strategies that potentiate KCC2 transport function in order to decrease seizure event severity and prevent the development of status epilepticus. PMID:27108931

  4. Active Transport of Nanomaterials Using Motor Proteins -Final Report

    SciTech Connect

    Hess, Henry

    2005-09-01

    During the six months of funding we have focused first on the completion of the research begun at the University of Washington in the previous funding cycle. Specifically, we developed a method to polymerize oriented networks of microtubules on lithographically patterned surfaces (M.S. thesis Robert Doot). The properties of active transport have been studied detail, yielding insights into the dispersion mechanisms (Nitta et al.). The assembly of multifunctional structures with a microtubule core has been investigated (Ramachandran et al.). Isaac Luria (B.S. in physics, U. of Florida 2005) worked on the directed assembly of nanoscale, non-equilibrium structures as a summer intern. He is now a graduate student in my group at the University of Florida. T. Nitta and H. Hess: Dispersion in Active Transport by Kinesin-Powered Molecular Shuttles, Nano Letters, 5, 1337-1342 (2005) S. Ramachandran, K.-H. Ernst, G. D. Bachand, V. Vogel, H. Hess*: Selective Loading of Kinesin-Powered Molecular Shuttles with Protein Cargo and its Application to Biosensing, submitted to Small (2005)

  5. Competing activation mechanisms in epidemics on networks

    NASA Astrophysics Data System (ADS)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2012-04-01

    In contrast to previous common wisdom that epidemic activity in heterogeneous networks is dominated by the hubs with the largest number of connections, recent research has pointed out the role that the innermost, dense core of the network plays in sustaining epidemic processes. Here we show that the mechanism responsible of spreading depends on the nature of the process. Epidemics with a transient state are boosted by the innermost core. Contrarily, epidemics allowing a steady state present a dual scenario, where either the hub independently sustains activity and propagates it to the rest of the system, or, alternatively, the innermost network core collectively turns into the active state, maintaining it globally. In uncorrelated networks the former mechanism dominates if the degree distribution decays with an exponent larger than 5/2, and the latter otherwise. Topological correlations, rife in real networks, may perturb this picture, mixing the role of both mechanisms.

  6. Mechanisms of xenobiotic receptor activation: Direct vs. indirect.

    PubMed

    Mackowiak, Bryan; Wang, Hongbing

    2016-09-01

    The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26877237

  7. Mechanism of transport and distribution of organic solvents in blood

    NASA Technical Reports Server (NTRS)

    Lam, C. W.; Galen, T. J.; Boyd, J. F.; Pierson, D. L.

    1990-01-01

    Little is known about the mechanism of transport and distribution of volatile organic compounds in blood. Studies were conducted on five typical organic solvents to investigate how these compounds are transported and distributed in blood. Groups of four to five rats were exposed for 2 hr to 500 ppm of n-hexane, toluene, chloroform, methyl isobutyl ketone (MIBK), or diethyl ether vapor; 94, 66, 90, 51, or 49%, respectively, of these solvents in the blood were found in the red blood cells (RBCs). Very similar results were obtained in vitro when aqueous solutions of these solvents were added to rat blood. In vitro studies were also conducted on human blood with these solvents; 66, 43, 65, 49, or 46%, respectively, of the added solvent was taken up by the RBCs. These results indicate that RBCs from humans and rats exhibited substantial differences in affinity for the three more hydrophobic solvents studied. When solutions of these solvents were added to human plasma and RBC samples, large fractions (51-96%) of the solvents were recovered from ammonium sulfate-precipitated plasma proteins and hemoglobin. Smaller fractions were recovered from plasma water and red cell water. Less than 10% of each of the added solvents in RBC samples was found in the red cell membrane ghosts. These results indicate that RBCs play an important role in the uptake and transport of these solvents. Proteins, chiefly hemoglobin, are the major carriers of these compounds in blood. It can be inferred from the results of the present study that volatile lipophilic organic solvents are probably taken up by the hydrophobic sites of blood proteins.

  8. Statistical-mechanical theory of passive transport through semipermeable membranes.

    PubMed

    del Castillo, L F; Mason, E A; Revercomb, H E

    1979-09-01

    The first general multicomponent equations for transport through semipermeable membranes are derived from basic statistical-mechanical principles. The procedure follows that used earlier for open membranes, but semipermeability is modelled mathematically by the introduction of external forces on the impermeant species. Gases are treated first in order to clarify the problems involved, but the final results apply to general nonideal solutions of any concentration. The mixed-solvent effect is treated rigorously, and a mixed-solvent osmotic pressure is defined. A useful specific identification of so-called osmotic flow is given, along with a demonstration that such an identification cannot be unique. Results are obtained both for discontinuous membrane models, and for a continuous model. PMID:486702

  9. Mechanisms and scalings of energetic ion transport via tokamak microturbulence

    SciTech Connect

    Hauff, T.; Jenko, F.

    2008-11-15

    The turbulent ExB advection of energetic ions in three-dimensional tokamak geometry is investigated both analytically and numerically. It is shown that orbit averaging (leading to a significant reduction of the diffusivity) is only valid for low magnetic shear. At moderate or high magnetic shear, a rather slow decrease of the diffusivity is found, proportional to (E/T{sub e}){sup -1} or (E/T{sub e}){sup -1.5} for particles with a large or small parallel velocity component, respectively. The decorrelation mechanisms responsible for this behavior are studied and explained in detail. Moreover, it is found that resonances between the toroidal drift of the particles and the diamagnetic drift of the turbulence can lead to an enhancement of the fast ion transport.

  10. Flexible Mechanical Conveyors for Regolith Extraction and Transport

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Vollmer, Hubert J.

    2013-01-01

    A report describes flexible mechanical conveying systems for transporting fine cohesive regolith under microgravity and vacuum conditions. They are totally enclosed, virtually dust-free, and can include enough flexibility in the conveying path to enable an expanded range of extraction and transport scenarios, including nonlinear drill-holes and excavation of enlarged subsurface openings without large entry holes. The design of the conveyors is a modification of conventional screw conveyors such that the central screw-shaft and the outer housing or conveyingtube have a degree of bending flexibility, allowing the conveyors to become nonlinear conveying systems that can convey around gentle bends. The central flexible shaft is similar to those used in common tools like a weed whacker, consisting of multiple layers of tightly wound wires around a central wire core. Utilization of compliant components (screw blade or outer wall) increases the robustness of the conveying, allowing an occasional oversized particle to pass hough the conveyor without causing a jam or stoppage

  11. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  12. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  13. Heat transport in active harmonic chains

    SciTech Connect

    Zheng, Mei C.; Ellis, Fred M.; Kottos, Tsampikos; Fleischmann, Ragnar; Geisel, Theo; Prosen, Tomaz

    2011-08-15

    We show that a harmonic lattice model with amplifying and attenuating elements, when coupled to two thermal baths, exhibits unique heat transport properties. Some of these novel features include anomalous nonequilibrium steady-state heat currents, negative differential thermal conductance, as well as nonreciprocal heat transport. We find that when these elements are arranged in a PT-symmetric manner, the domain of existence of the nonequilibrium steady state is maximized. We propose an electronic experimental setup based on resistive-inductive-capacitive (RLC) transmission lines, where our predictions can be tested.

  14. Opposite-polarity motors activate one another to trigger cargo transport in live cells.

    PubMed

    Ally, Shabeen; Larson, Adam G; Barlan, Kari; Rice, Sarah E; Gelfand, Vladimir I

    2009-12-28

    Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells. PMID:20038680

  15. Opposite-polarity motors activate one another to trigger cargo transport in live cells

    PubMed Central

    Ally, Shabeen; Larson, Adam G.; Barlan, Kari; Rice, Sarah E.

    2009-01-01

    Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells. PMID:20038680

  16. Application of active controls to civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.

    1975-01-01

    The impact of active controls on civil transport aircraft and some of the complex problems involved are described. The approach taken by NASA as part of the Active Control Technology Program is discussed to integrate active controls in the conceptual design phase. It is shown that when handled correctly, active controls improve aircraft performance.

  17. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    PubMed Central

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  18. CLUB FORMATION MECHANISM FOR TRANSPORT-COMMUNITY CREDIT CARDS

    NASA Astrophysics Data System (ADS)

    Ding, Yue; Kobayashi, Kiyoshi; Nishida, Junji; Yoshida, Mamoru

    In this paper, the roles of transport-community cards jointly issued by a public transport firm and retails are investigated as a means to vitalize an obsolescence shopping center located in a middle of a city. When both the price of goods supplied by the retails and the transport fares affect the consumers' behavior, there exist pecuniary externality between the behaviors of the retails and transport firms. The introduction of a transport-community cards system enables to integrate a basket of goods and transport service into a single commodity; thus, the pecuniary externality can be internalized by price coordination. In addition, the paper clarifies theoretically that the transport firm initiatively decides the price of the transportation service and the retails transfer their incomes to the transport firm so that they are induced to jointly issue the transport-community cards.

  19. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  20. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms

    PubMed Central

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela

    2015-01-01

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines. PMID:25999427

  1. Simulation of Electrical Transport in Rocks under Mechanical Action

    NASA Astrophysics Data System (ADS)

    Salgueiro da Silva, M. A.; Seixas, T. M.

    2015-12-01

    Rock's electrical properties can be changed by mechanical action, especially when deformation is accompanied by micro-fracturing processes. Knowing how electrical charge is generated in inelastically deformed rocks, the nature and properties of the generated charge carriers, and their spatial distribution and propagation is crucial to gain insight into the origin of seismo-electromagnetic signals. In this work, we describe briefly a model for the numerical simulation of electrical transport in rocks under mechanical action, assuming that high and low mobility charge carriers of opposite signs can be simultaneously generated by micro-fracturing processes and recombine, diffuse and drift across the sample rock. The electrical behavior can then be described using an adaptation of the formalism applied to semiconductors. We provide simulation results on a one-dimensional lattice using finite-difference discretization. Our results show that a large mobility contrast among charge carriers allows charge separation inside the deformation region, which leads to the formation of charged layers of alternate signs. Inside these layers, rapid electric field variations are observed which can lead to the emission of electromagnetic radiation. With proper positioning of current electrodes inside the deformation region, it is possible to collect electrical current even without any applied voltage. We discuss our results in the light of available experimental results on the generation of electrical and electromagnetic signals in deformed rocks.

  2. Competing mechanisms of momentum transport in large wind farms

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Meneveau, Charles

    2011-11-01

    In very large wind farms in the atmospheric boundary layer, energy, and momentum are on average transported from layers above the farm downward towards the turbines (Calaf, Meneveau, Meyers, Phys. Fluids 2010). In the current work, we investigate in more detail the three-dimensional flows of mass, momentum and energy towards individual turbines, based on a suite of large-eddy simulations. We find that there are two competing mechanisms which bring momentum to the turbines, i.e. a sideways flux, and a top-down flux of momentum (sideways fluxes themselves are fed by a top-down flux in regions outside the turbine wake area). For large spanwise turbine spacings, sideways momentum fluxes are dominating; for small spanwise spacings, the top-down mechanism is dominant. Inspired by these observations, we propose a new integral model for wind-farm performance, in which competing fluxes of momentum are represented by closed analytical expressions obtained by integrating momentum equations over different regions in the ABL. The research of CM is supported by NSF AGS 1045189.

  3. To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants.

    PubMed

    Ueki, Shoko; Citovsky, Vitaly

    2011-09-01

    Cell-to-cell signal transduction is vital for orchestrating the whole-body physiology of multi-cellular organisms, and many endogenous macromolecules, proteins, and nucleic acids function as such transported signals. In plants, many of these molecules are transported through plasmodesmata (Pd), the cell wall-spanning channel structures that interconnect plant cells. Furthermore, Pd also act as conduits for cell-to-cell movement of most plant viruses that have evolved to pirate these channels to spread the infection. Pd transport is presumed to be highly selective, and only a limited repertoire of molecules is transported through these channels. Recent studies have begun to unravel mechanisms that actively regulate the opening of the Pd channel to allow traffic. This macromolecular transport between cells comprises two consecutive steps: intracellular targeting to Pd and translocation through the channel to the adjacent cell. Here, we review the current knowledge of molecular species that are transported though Pd and the mechanisms that control this traffic. Generally, Pd traffic can occur by passive diffusion through the trans-Pd cytoplasm or through the membrane/lumen of the trans-Pd ER, or by active transport that includes protein-protein interactions. It is this latter mode of Pd transport that is involved in intercellular traffic of most signal molecules and is regulated by distinct and sometimes interdependent mechanisms, which represent the focus of this article. PMID:21746703

  4. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  5. Molecular mechanisms regulating NLRP3 inflammasome activation

    PubMed Central

    Jo, Eun-Kyeong; Kim, Jin Kyung; Shin, Dong-Min; Sasakawa, Chihiro

    2016-01-01

    Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the maturation of interleukin-1β. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3 inflammasome. PMID:26549800

  6. Transport mechanisms of contaminants released from fine sediment in rivers

    NASA Astrophysics Data System (ADS)

    Cheng, Pengda; Zhu, Hongwei; Zhong, Baochang; Wang, Daozeng

    2015-12-01

    Contaminants released from sediment into rivers are one of the main problems to study in environmental hydrodynamics. For contaminants released into the overlying water under different hydrodynamic conditions, the mechanical mechanisms involved can be roughly divided into convective diffusion, molecular diffusion, and adsorption/desorption. Because of the obvious environmental influence of fine sediment (D_{90}= 0.06 mm), non-cohesive fine sediment, and cohesive fine sediment are researched in this paper, and phosphorus is chosen for a typical adsorption of a contaminant. Through theoretical analysis of the contaminant release process, according to different hydraulic conditions, the contaminant release coupling mathematical model can be established by the N-S equation, the Darcy equation, the solute transport equation, and the adsorption/desorption equation. Then, the experiments are completed in an open water flume. The simulation results and experimental results show that convective diffusion dominates the contaminant release both in non-cohesive and cohesive fine sediment after their suspension, and that they contribute more than 90 % of the total release. Molecular diffusion and desorption have more of a contribution for contaminant release from unsuspended sediment. In unsuspension sediment, convective diffusion is about 10-50 times larger than molecular diffusion during the initial stages under high velocity; it is close to molecular diffusion in the later stages. Convective diffusion is about 6 times larger than molecular diffusion during the initial stages under low velocity, it is about a quarter of molecular diffusion in later stages, and has a similar level with desorption/adsorption. In unsuspended sediment, a seepage boundary layer exists below the water-sediment interface, and various release mechanisms in that layer mostly dominate the contaminant release process. In non-cohesive fine sediment, the depth of that layer increases linearly with shear

  7. Modeling of Active Transmembrane Transport in a Mixture Theory Framework

    PubMed Central

    Ateshian, Gerard A.; Morrison, Barclay; Hung, Clark T.

    2010-01-01

    This study formulates governing equations for active transport across semi-permeable membranes within the framework of the theory of mixtures. In mixture theory, which models the interactions of any number of fluid and solid constituents, a supply term appears in the conservation of linear momentum to describe momentum exchanges among the constituents. In past applications, this momentum supply was used to model frictional interactions only, thereby describing passive transport processes. In this study, it is shown that active transport processes, which impart momentum to solutes or solvent, may also be incorporated in this term. By projecting the equation of conservation of linear momentum along the normal to the membrane, a jump condition is formulated for the mechano-electrochemical potential of fluid constituents which is generally applicable to nonequilibrium processes involving active transport. The resulting relations are simple and easy to use, and address an important need in the membrane transport literature. PMID:20213212

  8. Thermally activated charge transport in microbial protein nanowires

    PubMed Central

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  9. Thermally activated charge transport in microbial protein nanowires.

    PubMed

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  10. Mechanisms of Cell Propulsion by Active Stresses.

    PubMed

    Carlsson, A E

    2011-07-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  11. Mechanisms of Cell Propulsion by Active Stresses

    PubMed Central

    Carlsson, A. E.

    2011-01-01

    The mechanisms by which cytoskeletal flows and cell-substrate interactions interact to generate cell motion are explored using a simplified model of the cytoskeleton as a viscous gel containing active stresses. This model yields explicit general results relating cell speed and traction forces to the distributions of active stress and cell-substrate friction. It is found that 1) the cell velocity is given by a function that quantifies the asymmetry of the active-stress distribution, 2) gradients in cell-substrate friction can induce motion even when the active stresses are symmetrically distributed, 3) the traction-force dipole is enhanced by protrusive stresses near the cell edges or contractile stresses near the center of the cell, and 4) the cell velocity depends biphasically on the cell-substrate adhesion strength if active stress is enhanced by adhesion. Specific experimental tests of the calculated dependences are proposed. PMID:21804763

  12. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization.

    PubMed

    Cameron, Krasnodara N; Solis, Ernesto; Ruchala, Iwona; De Felice, Louis J; Eltit, Jose M

    2015-11-01

    Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation. PMID:26162812

  13. Comets: mechanisms of x-ray activity

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  14. Alkaline pH activates the transport activity of GLUT1in L929 fibroblast cells

    PubMed Central

    Gunnink, Stephen M.; Kerk, Samuel A.; Kuiper, Benjamin D.; Alabi, Ola D.; Kuipers, David P.; Praamsma, Riemer C.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  15. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    PubMed

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  16. The Role of Flexible Loops in Folding, Trafficking and Activity of Equilibrative Nucleoside Transporters

    PubMed Central

    Aseervatham, Jaya; Tran, Lucky; Machaca, Khaled; Boudker, Olga

    2015-01-01

    Equilibrative nucleoside transporters (ENTs) are integral membrane proteins, which reside in plasma membranes of all eukaryotic cells and mediate thermodynamically downhill transport of nucleosides. This process is essential for nucleoside recycling, and also plays a key role in terminating adenosine-mediated cellular signaling. Furthermore, ENTs mediate the uptake of many drugs, including anticancer and antiviral nucleoside analogues. The structure and mechanism, by which ENTs catalyze trans-membrane transport of their substrates, remain unknown. To identify the core of the transporter needed for stability, activity, and for its correct trafficking to the plasma membrane, we have expressed human ENT deletion mutants in Xenopus laevis oocytes and determined their localization, transport properties and susceptibility to inhibition. We found that the carboxyl terminal trans-membrane segments are essential for correct protein folding and trafficking. In contrast, the soluble extracellular and intracellular loops appear to be dispensable, and must be involved in the fine-tuning of transport regulation. PMID:26406980

  17. The Role of Flexible Loops in Folding, Trafficking and Activity of Equilibrative Nucleoside Transporters.

    PubMed

    Aseervatham, Jaya; Tran, Lucky; Machaca, Khaled; Boudker, Olga

    2015-01-01

    Equilibrative nucleoside transporters (ENTs) are integral membrane proteins, which reside in plasma membranes of all eukaryotic cells and mediate thermodynamically downhill transport of nucleosides. This process is essential for nucleoside recycling, and also plays a key role in terminating adenosine-mediated cellular signaling. Furthermore, ENTs mediate the uptake of many drugs, including anticancer and antiviral nucleoside analogues. The structure and mechanism, by which ENTs catalyze trans-membrane transport of their substrates, remain unknown. To identify the core of the transporter needed for stability, activity, and for its correct trafficking to the plasma membrane, we have expressed human ENT deletion mutants in Xenopus laevis oocytes and determined their localization, transport properties and susceptibility to inhibition. We found that the carboxyl terminal trans-membrane segments are essential for correct protein folding and trafficking. In contrast, the soluble extracellular and intracellular loops appear to be dispensable, and must be involved in the fine-tuning of transport regulation. PMID:26406980

  18. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    SciTech Connect

    Sode, Olaseni; Voth, Gregory A.

    2014-12-14

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A{sup 2−}, a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A{sup 2-} by closing a cavity that could otherwise fill with water near the proximal Fe of the active site.

  19. Transport mechanisms of a novel antileukemic and antiviral compound 9-norbornyl-6-chloropurine.

    PubMed

    Plačková, Pavla; Hřebabecký, Hubert; Šála, Michal; Nencka, Radim; Elbert, Tomáš; Mertlíková-Kaiserová, Helena

    2015-02-01

    6-Chloropurines substituted at the position 9 with variously modified bicyclic skeletons represent promising antiviral and anticancer agents. This work aimed to investigate the transport mechanisms of 9-[(1R*,2R*,4S*)-bicyclo[2.2.1]hept-2-yl]-6-chloro-9H-purine (9-norbornyl-6-chloropurine, NCP) and their relationship to the metabolism and biological activity of the compound. Transport experiments were conducted in CCRF-CEM cells using radiolabeled compound ([(3)H]NCP). The pattern of the intracellular uptake of [(3)H]NCP in CCRF-CEM cells pointed to a combination of passive and facilitated diffusion as prevailing transport mechanisms. NCP intracellular metabolism was found to enhance its uptake by modifying NCP concentration gradient. The transport kinetics reached steady state under the conditions of MRP and MDR proteins blockade, indicating that NCP is a substrate for these efflux pumps. Their inhibition also increased the cytotoxicity of NCP. Our findings suggest that the novel nucleoside analog NCP has potential to become a new orally available antileukemic agent due to its rapid membrane permeation. PMID:24679051

  20. An Ekman Transport Mechanism for the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Pratt, V. R.

    2014-12-01

    Multidecadal global climate since 1850 consists of the expected greenhouse warming and two cycles of a fluctuation commonly associated with the AMO that so far has not been satisfactorily explained. In GC53C-06 at AGUFM13 we compared land and sea temperatures during the global warmings of 1860-1880 and 1910-1940 and inferred that heat flowed sea to land, ruling out aerosol-based external forcings and indicating an internal source such as an instability in the AMOC. Length of day during the past century has varied by ~4 ms inversely with the AMO. Noting that the ocean floor is some five times thinner than the continental crust, we propose here that Earth's rotation regulates heat flux through the ocean floor. One mechanism for this is centrifugal force pulling plates apart, particularly along the Mid-Atlantic Ridge and around the Ring of Fire, increasing flux by an amount that would easily pass unnoticed in the 1930s. Another mechanism, perhaps less strong, is stress from rotational acceleration increasing the thermal conductivity of the young rocks comprising the ocean floor. A difficulty is that the ocean would absorb the fluctuations before reaching the surface. We overcome this difficulty via Ekman transport. This mechanism acts on a 50 m deep layer at the surface to drive it polewards from the ITCZ at 3 cm/sec or 1000 km/yr, orders of magnitude faster than the MOC which therefore cannot interfere. This creates a suction at the ITCZ and a downwards pumping action at 30°. In order to close this cycle there must be a flow equal in volume rate towards the ITCZ at depth. We propose that the heat entering the ocean bottom between 30° S and 30° N enters these two "Ekman cells", which carry it to the surface via the ITCZ. To evaluate feasibility, take the area of the participating 50m surface layer to be 1014 m2, making the volume of the top and bottom layers 1016 m3. Only 1022 J of heat is needed to warm or cool this by 1/3.85 = 0.26 °C. Over the 30 years 1910

  1. [Molecular mechanisms of niclosamide antitumor activity].

    PubMed

    Moskaleva, E Yu; Perevozchikova, V G; Zhirnik, A S; Severin, S E

    2015-01-01

    In this review the recent data regarding the antitumor activity of niclosamide and the molecular mechanisms of its antitumor activity are presented. Niclosamide has been used in the clinic for the treatment of intestinal parasite infections. In recent years in several screening investigations of various drugs and chemical compounds niclosamide was identified as a potential anticancer agent. Niclosamide not only inhibits the Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways, but also targets mitochondria in cancer cells to induce growth inhibition and apoptosis. A number of studies have established the anticancer activity of niclosamide in both in vitro and in vivo in xenotransplantation models using human tumors and immunodeficient mice. It is important that niclosamide is active not only against tumor cells but also cancer stem cells. Normal cells are resistant to niclosamide. The accumulated experimental data suggest niclosamide is a promising drug for the treatment of various types of cancer. PMID:26716739

  2. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Public transportation programs and activities in existing facilities. 37.61 Section 37.61 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities...

  3. Transport mechanisms for adenosine and uridine in primary-cultured rat cortical neurons and astrocytes.

    PubMed

    Nagai, Katsuhito; Nagasawa, Kazuki; Fujimoto, Sadaki

    2005-09-01

    Endogenous adenosine and uridine are important modulators of neural survival and activity. In the present study, we examined transport mechanisms of adenosine and uridine in primary-cultured rat cortical neurons, and compared the results for neurons with those for astrocytes. Reverse transcription-polymerase chain reaction identified the mRNAs for ENT1, ENT2, and CNT2, but not CNT1 and CNT3, in neurons and astrocytes. [3H]Adenosine and [3H]uridine were time-, temperature-, and concentration-dependently taken up into neurons and astrocytes. In kinetic analyses, the uptake of both substrates by neurons and astrocytes consisted of two and one, respectively, saturable transport components. The uptake clearance for both substrates by neurons was greater than that by astrocytes. The relative contribution of the high-affinity major component of both substrates to total uptake was estimated to be approximately 80% in neurons. The uptake of [3H]adenosine and [3H]uridine by both neurons and astrocytes was almost entirely Na+-independent, and sensitive to micro, but not nano, molar concentrations of nitrobenzylmercaptopurine riboside, which are transport characteristics of ENT2. Therefore, it was indicated that adenosine and uridine are more efficiently taken up into neurons than into astrocytes, and ENT2 may predominantly contribute to the transport of the nucleosides as a high-affinity transport system in neurons, as in the case of astrocytes. PMID:16043124

  4. Mechanism of Orientation-Dependent Asymmetric Charge Transport in Tunneling Junctions Comprising Photosystem I.

    PubMed

    Castañeda Ocampo, Olga E; Gordiichuk, Pavlo; Catarci, Stefano; Gautier, Daniel A; Herrmann, Andreas; Chiechi, Ryan C

    2015-07-01

    Recently, photoactive proteins have gained a lot of attention due to their incorporation into bioinspired (photo)electrochemical and solar cells. This paper describes the measurement of the asymmetry of current transport of self-assembled monolayers (SAMs) of the entire photosystem I (PSI) protein complex (not the isolated reaction center, RCI), on two different "director SAMs" supported by ultraflat Au substrates. The director SAMs induce the preferential orientation of PSI, which manifest as asymmetry in tunneling charge-transport. We measured the oriented SAMs of PSI using eutectic Ga-In (EGaIn), a large-area technique, and conducting probe atomic force microscopy (CP-AFM), a single-complex technique, and determined that the transport properties are comparable. By varying the temperatures at which the measurements were performed, we found that there is no measurable dependence of the current on temperature from ±0.1 to ±1.0 V bias, and thus, we suggest tunneling as the mechanism for transport; there are no thermally activated (e.g., hopping) processes. Therefore, it is likely that relaxation in the electron transport chain is not responsible for the asymmetry in the conductance of SAMs of PSI complexes in these junctions, which we ascribe instead to the presence of a large, net dipole moment present in PSI. PMID:26057523

  5. Mechanism of Orientation-Dependent Asymmetric Charge Transport in Tunneling Junctions Comprising Photosystem I

    PubMed Central

    2016-01-01

    Recently, photoactive proteins have gained a lot of attention due to their incorporation into bioinspired (photo)electrochemical and solar cells. This paper describes the measurement of the asymmetry of current transport of self-assembled monolayers (SAMs) of the entire photosystem I (PSI) protein complex (not the isolated reaction center, RCI), on two different “director SAMs” supported by ultraflat Au substrates. The director SAMs induce the preferential orientation of PSI, which manifest as asymmetry in tunneling charge-transport. We measured the oriented SAMs of PSI using eutectic Ga–In (EGaIn), a large-area technique, and conducting probe atomic force microscopy (CP-AFM), a single-complex technique, and determined that the transport properties are comparable. By varying the temperatures at which the measurements were performed, we found that there is no measurable dependence of the current on temperature from ±0.1 to ±1.0 V bias, and thus, we suggest tunneling as the mechanism for transport; there are no thermally activated (e.g., hopping) processes. Therefore, it is likely that relaxation in the electron transport chain is not responsible for the asymmetry in the conductance of SAMs of PSI complexes in these junctions, which we ascribe instead to the presence of a large, net dipole moment present in PSI. PMID:26057523

  6. Active transportation safety features around schools in Canada.

    PubMed

    Pinkerton, Bryn; Rosu, Andrei; Janssen, Ian; Pickett, William

    2013-11-01

    The purpose of this study was to describe the presence and quality of active transportation safety features in Canadian school environments that relate to pedestrian and bicycle safety. Variations in these features and associated traffic concerns as perceived by school administrators were examined by geographic status and school type. The study was based on schools that participated in 2009/2010 Health Behaviour in School-aged Children (HBSC) survey. ArcGIS software version 10 and Google Earth were used to assess the presence and quality of ten different active transportation safety features. Findings suggest that there are crosswalks and good sidewalk coverage in the environments surrounding most Canadian schools, but a dearth of bicycle lanes and other traffic calming measures (e.g., speed bumps, traffic chokers). Significant urban/rural inequities exist with a greater prevalence of sidewalk coverage, crosswalks, traffic medians, and speed bumps in urban areas. With the exception of bicycle lanes, the active transportation safety features that were present were generally rated as high quality. Traffic was more of a concern to administrators in urban areas. This study provides novel information about active transportation safety features in Canadian school environments. This information could help guide public health efforts aimed at increasing active transportation levels while simultaneously decreasing active transportation injuries. PMID:24185844

  7. Topological mechanics: from metamaterials to active matter

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo

    2015-03-01

    Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable acoustic response, which originate in the geometry of their unit cell. At the heart of such unusual behavior is often a mechanism: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, these soft motions become the building blocks of robots and smart materials. In this talk, we discuss topological mechanisms that possess two key properties: (i) their existence cannot be traced to a local imbalance between degrees of freedom and constraints (ii) they are robust against a wide range of structural deformations or changes in material parameters. The continuum elasticity of these mechanical structures is captured by non-linear field theories with a topological boundary term similar to topological insulators and quantum Hall systems. We present several applications of these concepts to the design and experimental realization of 2D and 3D topological structures based on linkages, origami, buckling meta-materials and lastly active media that break time-reversal symmetry.

  8. Mechanisms of lithium transport in amorphous polyethylene oxide.

    PubMed

    Duan, Yuhua; Halley, J W; Curtiss, Larry; Redfern, Paul

    2005-02-01

    We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase. PMID:15740341

  9. Mechanical manipulations on electronic transport of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Guiping; Ye, Fei; Wang, Xiaoqun

    2015-06-01

    We study the effects of uniaxial strains on the transport properties of graphene nanoribbons (GNRs) connected with two metallic leads in heterojunctions, using the transfer matrix method. Two typical GNRs with zigzag and armchair boundaries are considered and the tension is applied either parallel or perpendicular to the ribbon axis. It turns out that the electron-hole symmetry is missing in the gate voltage dependence of the conductance data of the armchair GNRs, while it persists in the zigzag ribbons under any strains. For an armchair GNR with a vertical tension applied, a sharp drop of conductance is found near the critical value of the strain inducing a quantum phase transition, which allows one to determine the critical strain accurately via measuring the conductance. In the zigzag ribbon, there exists a range of gate voltage around zero, where the conductance is insensitive to the small horizontal strains. The band structures and low-energy properties are calculated to elucidate the mechanism on the strain effects in GNRs. We expect that our results can be useful in developing graphene-based strain sensors.

  10. Analog performance of vertical nanowire TFETs as a function of temperature and transport mechanism

    NASA Astrophysics Data System (ADS)

    Martino, Marcio Dalla Valle; Neves, Felipe; Ghedini Der Agopian, Paula; Martino, João Antonio; Vandooren, Anne; Rooyackers, Rita; Simoen, Eddy; Thean, Aaron; Claeys, Cor

    2015-10-01

    The goal of this work is to study the analog performance of tunnel field effect transistors (TFETs) and its susceptibility to temperature variation and to different dominant transport mechanisms. The experimental input characteristic of nanowire TFETs with different source compositions (100% Si and Si1-xGex) has been presented, leading to the extraction of the Activation Energy for each bias condition. These first results have been connected to the prevailing transport mechanism for each configuration, namely band-to-band tunneling (BTBT) or trap assisted tunneling (TAT). Afterward, this work analyzes the analog behavior, with the intrinsic voltage gain calculated in terms of Early voltage, transistor efficiency, transconductance and output conductance. Comparing the results for devices with different source compositions, it is interesting to note how the analog trends vary depending on the source characteristics and the prevailing transport mechanisms. This behavior results in a different suitability analysis depending on the working temperature. In other words, devices with full-Silicon source and non-abrupt junction profile present the worst intrinsic voltage gain at room temperature, but the best results for high temperatures. This was possible since, among the 4 studied devices, this configuration was the only one with a positive intrinsic voltage gain dependence on the temperature variation.

  11. Entropic Ratchet transport of interacting active Brownian particles

    SciTech Connect

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  12. Mechanically activated artificial cell by using microfluidics.

    PubMed

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  13. Mechanically activated artificial cell by using microfluidics

    PubMed Central

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  14. Intestinal ammonia transport in freshwater and seawater acclimated rainbow trout (Oncorhynchus mykiss): evidence for a Na+ coupled uptake mechanism.

    PubMed

    Rubino, Julian G; Zimmer, Alex M; Wood, Chris M

    2015-05-01

    In vitro gut sac experiments were performed on freshwater and 60% seawater acclimated trout (Oncorhynchus mykiss) under treatments designed to discern possible mechanisms of intestinal ammonia transport. Seawater acclimation increased ammonia flux rate into the serosal saline (Jsamm) in the anterior intestine, however it did not alter Jsamm in the mid- or posterior intestine suggesting similar mechanisms of ammonia handling in freshwater and seawater fish. Both fluid transport rate (FTR) and Jsamm were inhibited in response to basolateral ouabain treatment, suggesting a linkage of ammonia uptake to active transport, possibly coupled to fluid transport processes via solvent drag. Furthermore, decreases in FTR and Jsamm caused by low Na(+) treatment indicated a Na(+) linked transport mechanism. Mucosal bumetanide (10(-4) M) had no impact on FTR, yet decreased Jsamm in the anterior and mid-intestine, suggesting NH4(+) substitution for K(+) on an apical NKCC, and at least a partial uncoupling of ammonia transport from fluid transport. Additional treatments (amiloride, 5-(N-ethyl-N-isopropyl)amiloride (EIPA), phenamil, bafilomycin, 4',6-diamidino-2-phenylindole (DAPI), high sodium) intended to disrupt alternative routes of Na(+) uptake yielded no change in FTR or Jsamm, suggesting the absence of direct competition between Na(+) and ammonia for transport. Finally, [(14)C]methylamine permeability (PMA) measurements indicated the likely presence of an intestinal Rh-mediated ammonia transport system, as increasing NH4Cl (0, 1, 5 mmol l(-1)) concentrations reduced PMA, suggesting competition for transport through Rh proteins. Overall, the data presented in this paper provide some of the first insights into mechanisms of teleost intestinal ammonia transport. PMID:25545914

  15. Cellular Mechanisms Controlling Caspase Activation and Function

    PubMed Central

    Parrish, Amanda B.; Freel, Christopher D.; Kornbluth, Sally

    2013-01-01

    Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death. PMID:23732469

  16. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    PubMed Central

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  17. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure.

    PubMed

    McDonough, Alicia A

    2010-04-01

    One-hundred years ago, Starling articulated the interdependence of renal control of circulating blood volume and effective cardiac performance. During the past 25 years, the molecular mechanisms responsible for the interdependence of blood pressure (BP), extracellular fluid volume (ECFV), the renin-angiotensin system (RAS), and sympathetic nervous system (SNS) have begun to be revealed. These variables all converge on regulation of renal proximal tubule (PT) sodium transport. The PT reabsorbs two-thirds of the filtered Na(+) and volume at baseline. This fraction is decreased when BP or perfusion pressure is increased, during a high-salt diet (elevated ECFV), and during inhibition of the production of ANG II; conversely, this fraction is increased by ANG II, SNS activation, and a low-salt diet. These variables all regulate the distribution of the Na(+)/H(+) exchanger isoform 3 (NHE3) and the Na(+)-phosphate cotransporter (NaPi2), along the apical microvilli of the PT. Natriuretic stimuli provoke the dynamic redistribution of these transporters along with associated regulators, molecular motors, and cytoskeleton-associated proteins to the base of the microvilli. The lipid raft-associated NHE3 remains at the base, and the nonraft-associated NaPi2 is endocytosed, culminating in decreased Na(+) transport and increased PT flow rate. Antinatriuretic stimuli return the same transporters and regulators to the body of the microvilli associated with an increase in transport activity and decrease in PT flow rate. In summary, ECFV and BP homeostasis are, at least in part, maintained by continuous and acute redistribution of transporter complexes up and down the PT microvilli, which affect regulation of PT sodium reabsorption in response to fluctuations in ECFV, BP, SNS, and RAS. PMID:20106993

  18. Active matter transport on complex substrates

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, C. J.; Ray, D.; Reichhardt, C.

    2014-09-01

    Colloids interacting with complex landscapes created by optical means exhibit a remarkable variety of novel orderings and equilibrium states. It is also possible to study nonequilibrium properties for colloids driven over optical traps when there is an additional external electric field or some other form of external driving. Recently a new type of colloidal system has been realized in which the colloids are self-driven or self-motile and undergo a persistent random walk. Self motile particle systems fall into the broader class of self-driven systems called active matter. For the case of externally driven colloidal particles moving over random or periodic arrangements of traps, various types of pinning or jamming effects can arise. Far less is known about the mobility of active matter particles in the presence or random or periodic substrates. For example, it is not known whether increasing the activity of the particles would reduce the jamming effects caused by effective friction between particles. Here we show by varying the activity and the density of active particles that various types of motion can arise. In some cases, increasing the self-driving leads to a reduction in the net flow of particles through the system.

  19. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Krooss, B. M.; Littke, R.

    2012-12-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a subbituminous A coal from the Surat Basin, Queensland Australia (figure). From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg-corrected permeability depends on gas type. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa, with increasing mean pore pressure at lower confining pressure an increase in permeability is observed, which is attributed to a widening of cleat aperture. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane and CO2. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals was significantly lower (by 50%) than that of dry coals, no hysteresis was observed between sorption and desorption on dry and moisture-equilibrated samples and the

  20. Mechanism of FGF receptor dimerization and activation

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  1. Mechanism of FGF receptor dimerization and activation.

    PubMed

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  2. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  3. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    PubMed

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT. PMID:23878376

  4. Fluid flow and particle transport in mechanically ventilated airways. Part II: particle transport.

    PubMed

    Alzahrany, Mohammed; Van Rhein, Timothy; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    The flow mechanisms that play a role on aerosol deposition were identified and presented in a companion paper (Timothy et al. in Med Biol Eng Comput. doi: 10.1007/s11517-015-1407-3 , 2015). In the current paper, the effects of invasive conventional mechanical ventilation waveforms and endotracheal tube (ETT) on the aerosol transport were investigated. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by jet caused by the ETT. The orientation of the ETT toward right bronchus resulted in a substantial deposition inside right lung compared to left lung. The deposition inside right lung was ~12-fold higher than left lung for all considered cases, except for the case of using pressure-controlled sinusoidal waveform where a reduction of this ratio by ~50 % was found. The total deposition during pressure constant, volume ramp, and ascending ramp waveforms was similar and ~1.44 times higher than deposition fraction when using pressure sinusoidal waveform. Varying respiratory waveform demonstrated a significant role on the deposition enhancement factors and give evidence of drug aerosol concentrations in key deposition sites, which may be significant for drugs with negative side effects in high concentrations. These observations are thought to be important for ventilation treatment strategy. PMID:26541600

  5. Shaping Neuronal Network Activity by Presynaptic Mechanisms

    PubMed Central

    Ashery, Uri

    2015-01-01

    Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048

  6. Classroom Activities in Transportation: Technology Education.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison.

    This curriculum supplement was designed to correlate directly with "A Guide to Curriculum Planning in Technology Education," published by the Wisconsin Department of Public Instruction. It is also a companion book to three other classroom activity compilations, one in each of the other three major systems of technology--manufacturing,…

  7. Activation of a new proline transport system in Salmonella typhimurium.

    PubMed

    Ekena, K; Liao, M K; Maloy, S

    1990-06-01

    Proline uptake can be mediated by three different transport systems in wild-type Salmonella typhimurium: a high-affinity proline transport system encoded by the putP gene and two glycine-betaine transport systems with a low affinity for proline encoded by the proP and proU genes. However, only the PutP permease transports proline well enough t allow growth on proline as a sole carbon or nitrogen source. By selecting for mutations that allow a putP mutant to grow on proline as a sole nitrogen source, we isolated mutants (designated proZ) that appeared to activate a cryptic proline transport system. These mutants enhanced the transport of proline and proline analogs but did not require the function of any of the known proline transport genes. The mutations mapped between 75 and 77.5 min on the S. typhimurium linkage map. Proline transport by the proZ mutants was competitively inhibited by isoleucine and leucine, which suggests that the ProZ phenotype may be due to unusual mutations that alter the substrate specificity of the branched-chain amino acid transport system encoded by the liv genes. PMID:2160931

  8. Center for low-gravity fluid mechanics and transport phenomena

    NASA Technical Reports Server (NTRS)

    Kassoy, D. R.; Sani, R. L.

    1991-01-01

    Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.

  9. Mechanisms of methylmercury transport across the blood-brain barrier

    SciTech Connect

    Kerper, L.E.

    1993-01-01

    Methylmercury readily enters the brain of exposed individuals, and is highly neurotoxic. The goal of this research was to determine the mechanisms of methylmercury transport across both the luminal and abluminal membranes of brain capillary endothelial cells, the cells which comprise the blood-brain barrier. The rapid carotid injection technique was used in rats to investigate the uptake of methylmercury from blood into brain endothelial cells. Uptake of ([sup 203]Hg)-methylmercury complexed with L-cysteine (CH[sub 3] [sup 203]Hg-L-Cys) was more rapid than that of ([sup 203]Hg)-methylmercury complexed with D-cysteine or bovine serum albumin. Uptake of CH[sub 3][sup 203]Hg-L-Cys was saturable, and was inhibited by substrates for the L (alanine-preferring) carrier. Brain uptake of [sup 14]C-L-methionine was inhibited by CH[sub 3]Hg-L-Cys but not by CH[sub 3]HgCl. Uptake of [sup 203]Hg administered as CH[sub 3]Hg-L-Cys-glutathione (CH[sub 3][sup 203]Hg-GSH) was comparable to CH[sub 3][sup 203]Hg-L-Cys uptake at 2 [mu]M. L-Methionine and 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) inhibited [sup 203]Hg uptake administered as CH[sub 3][sup 203]Hg-GSH, whereas acivicin had no effect. This uptake was also inhibited by S-ethylglutathione when pH of the injection solution was allowed to rise to 8.5. In later experiments performed at pH 8.2, uptake of [sup 203]Hg administered as CH[sub 3][sup 203]Hg-GSH was inhibited only by BCH. To study mechanisms of methylmercury efflux from endothelial cells, a primary culture of bovine brain capillary endothelial cells was developed. Intracellular glutathione concentration was 2.6 [+-] 0.7 mM. Incubation of CH[sub 3][sup 203]HgCl-preloaded cells with GSH depletors decreased ([sup 203]Hg)-methylmercury efflux in a dose-dependent manner which correlated with intracellular GSH concentrations. ([sup 203]Hg)-Methylmercury efflux was also inhibited by GSH-S-conjugates an GSH analogs, but not by amino acids.

  10. Ion homeostasis, channels, and transporters: an update on cellular mechanisms.

    PubMed

    Dubyak, George R

    2004-12-01

    The steady-state maintenance of highly asymmetric concentrations of the major inorganic cations and anions is a major function of both plasma membranes and the membranes of intracellular organelles. Homeostatic regulation of these ionic gradients is critical for most functions. Due to their charge, the movements of ions across biological membranes necessarily involves facilitation by intrinsic membrane transport proteins. The functional characterization and categorization of membrane transport proteins was a major focus of cell physiological research from the 1950s through the 1980s. On the basis of these functional analyses, ion transport proteins were broadly divided into two classes: channels and carrier-type transporters (which include exchangers, cotransporters, and ATP-driven ion pumps). Beginning in the mid-1980s, these functional analyses of ion transport and homeostasis were complemented by the cloning of genes encoding many ion channels and transporter proteins. Comparison of the predicted primary amino acid sequences and structures of functionally similar ion transport proteins facilitated their grouping within families and superfamilies of structurally related membrane proteins. Postgenomics research in ion transport biology increasingly involves two powerful approaches. One involves elucidation of the molecular structures, at the atomic level in some cases, of model ion transport proteins. The second uses the tools of cell biology to explore the cell-specific function or subcellular localization of ion transport proteins. This review will describe how these approaches have provided new, and sometimes surprising, insights regarding four major questions in current ion transporter research. 1) What are the fundamental differences between ion channels and ion transporters? 2) How does the interaction of an ion transport protein with so-called adapter proteins affect its subcellular localization or regulation by various intracellular signal transduction

  11. Alternate mechanism for amino acid entry into Neurospora crassa: extracellular deamination and subsequent keto acid transport.

    PubMed Central

    DeBusk, R M; Brown, D T; DeBusk, A G; Penderghast, R D

    1981-01-01

    The growth of the pm nbg mutant strain of Neurospora crassa was inhibited by the amino acid analog para-fluorophenylalanine despite the fact that none of the three constitutive amino acid permeases is functional in this strain. This observation led to the detection of both a deaminase which was released into the growth medium in response to para-fluorophenylalanine and a keto acid transport system which allowed entry of the resulting keto acid into the cell. The transported keto acid was recovered in cellular protein, suggesting its regeneration as the amino acid. The cooperative activity of these two systems represents an additional mechanism for the intracellular accumulation of amino acids, which is distinct from the known amino acid permeases. Images PMID:6452443

  12. Mechanism of sodium and chloride transport in the thin ascending limb of Henle.

    PubMed Central

    Imai, M; Kokko, J P

    1976-01-01

    Our previous in vitro studies have disclosed that the thin ascending limb of Henle (tALH) possesses some unique membrane characteristics. In those studies we failed to demonstrated active transport of sodium chloride by the tALH, although it was shown that the isotopic permeability to sodium and chloride was unusually high. However, we did not examine the mechanisms by which the apparent high permeation of sodium chloride occurs. Thus the purpose of the present studies was to elucidate the mechanism of sodium chloride transport across the isolated tALH of the rabbit by conducting four different types of studies: (1) comparison of the observed chloride and sodium flux ratios to those predicted by Ussing's equation under imposed salt concentration gradients; (2) kinetic evaluation of chloride and sodium fluxes; (3) examination of the effect of bromide on the kinetics of chloride transport; and (4) experiments to test for the existence of exchange diffusion of chloride. In the first set of studies the predicted and the theoretical flux ratios of sodium were identical in those experiments in which sodium chloride was added either to the perfusate or to the bath. However, the observed chloride flux ratio, lumen-to-bath/bath-to-lumen, was significantly lower than that predicted from Ussing's equation when 100 mM sodium chloride was added to the bath. In the second set of experiments the apparent isotopic permeability for sodium and for chloride was measured under varying perfusate and bath NaCl concentrations. There was no statistical change in the apparent sodium permeability coefficient when the NaCl concentration was raised by varying increments from 85.5 to 309.5 mM. However, permeation of 36Cl decrease significantly with an increase in Cl from 73.6 to 598.6 mM. These events could be explained by a two component chloride transport process consisting of simple diffusion and a saturable facilitated diffusion process with a Vmax = 3.71 neq mm-1 min-1. In the third set

  13. Active Transportation to School: Findings from a National Survey

    ERIC Educational Resources Information Center

    Fulton, Janet E.; Shisler, Jessica L.; Yore, Michelle M.; Caspersen, Carl J.

    2005-01-01

    In the past, active transportation to school offered an important source of daily physical activity for youth; more recently, however, factors related to distance, safety, or physical or social environments may have contributed to the proportion of children who travel to school by motorized vehicle. The authors examine the characteristics of…

  14. Molecular mechanisms of asymmetric RAF dimer activation.

    PubMed

    Jambrina, Pablo G; Bohuszewicz, Olga; Buchete, Nicolae-Viorel; Kolch, Walter; Rosta, Edina

    2014-08-01

    Protein phosphorylation is one of the most common post-translational modifications in cell regulatory mechanisms. Dimerization plays also a crucial role in the kinase activity of many kinases, including RAF, CDK2 (cyclin-dependent kinase 2) and EGFR (epidermal growth factor receptor), with heterodimers often being the most active forms. However, the structural and mechanistic details of how phosphorylation affects the activity of homo- and hetero-dimers are largely unknown. Experimentally, synthesizing protein samples with fully specified and homogeneous phosphorylation states remains a challenge for structural biology and biochemical studies. Typically, multiple changes in phosphorylation lead to activation of the same protein, which makes structural determination methods particularly difficult. It is also not well understood how the occurrence of phosphorylation and dimerization processes synergize to affect kinase activities. In the present article, we review available structural data and discuss how MD simulations can be used to model conformational transitions of RAF kinase dimers, in both their phosphorylated and unphosphorylated forms. PMID:25109958

  15. Microchamber Device for Detection of Transporter Activity of Adherent Cells

    PubMed Central

    Tsugane, Mamiko; Uejima, Etsuko; Suzuki, Hiroaki

    2015-01-01

    We present a method to detect the transporter activity of intact adherent cells using a microchamber device. When adherent cells are seeded onto the poly-di-methyl siloxane substrate having microchambers with openings smaller than the size of a cell, the cells form a confluent layer that covers the microchambers, creating minute, confined spaces. As substances exported across the cell membrane accumulate, transporter activity can be detected by observing the fluorescence intensity increase in the microchamber. We tested the microchamber device with HeLa cells over-expressing MDR1, an ATP-binding cassette transporter, and succeeded in detecting the transport of fluorescence-conjugated paclitaxel, the anti-cancer drug, at the single-cell level. PMID:25853126

  16. Differential Mechanisms of Tenofovir and Tenofovir Disoproxil Fumarate Cellular Transport and Implications for Topical Preexposure Prophylaxis

    PubMed Central

    Crooker, Kerry; Park, Sung Hyun; Su, Jonathan T.; Ott, Adina; Cheshenko, Natalia; Szleifer, Igal; Kiser, Patrick F.; Frank, Bruce; Mesquita, Pedro M. M.

    2015-01-01

    Intravaginal rings releasing tenofovir (TFV) or its prodrug, tenofovir disoproxil fumarate (TDF), are being evaluated for HIV and herpes simplex virus (HSV) prevention. The current studies were designed to determine the mechanisms of drug accumulation in human vaginal and immune cells. The exposure of vaginal epithelial or T cells to equimolar concentrations of radiolabeled TDF resulted in over 10-fold higher intracellular drug levels than exposure to TFV. Permeability studies demonstrated that TDF, but not TFV, entered cells by passive diffusion. TDF uptake was energy independent but its accumulation followed nonlinear kinetics, and excess unlabeled TDF inhibited radiolabeled TDF uptake in competition studies. The carboxylesterase inhibitor bis-nitrophenyl phosphate reduced TDF uptake, suggesting saturability of intracellular carboxylesterases. In contrast, although TFV uptake was energy dependent, no competition between unlabeled and radiolabeled TFV was observed, and the previously identified transporters, organic anion transporters (OATs) 1 and 3, were not expressed in human vaginal or T cells. The intracellular accumulation of TFV was reduced by the addition of endocytosis inhibitors, and this resulted in the loss of TFV antiviral activity. Kinetics of drug transport and metabolism were monitored by quantifying the parent drugs and their metabolites by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Results were consistent with the identified mechanisms of transport, and the exposure of vaginal epithelial cells to equimolar concentrations of TDF compared to TFV resulted in ∼40-fold higher levels of the active metabolite, tenofovir diphosphate. Together, these findings indicate that substantially lower concentrations of TDF than TFV are needed to protect cells from HIV and HSV-2. PMID:26711762

  17. Differential Mechanisms of Tenofovir and Tenofovir Disoproxil Fumarate Cellular Transport and Implications for Topical Preexposure Prophylaxis.

    PubMed

    Taneva, Ekaterina; Crooker, Kerry; Park, Sung Hyun; Su, Jonathan T; Ott, Adina; Cheshenko, Natalia; Szleifer, Igal; Kiser, Patrick F; Frank, Bruce; Mesquita, Pedro M M; Herold, Betsy C

    2016-03-01

    Intravaginal rings releasing tenofovir (TFV) or its prodrug, tenofovir disoproxil fumarate (TDF), are being evaluated for HIV and herpes simplex virus (HSV) prevention. The current studies were designed to determine the mechanisms of drug accumulation in human vaginal and immune cells. The exposure of vaginal epithelial or T cells to equimolar concentrations of radiolabeled TDF resulted in over 10-fold higher intracellular drug levels than exposure to TFV. Permeability studies demonstrated that TDF, but not TFV, entered cells by passive diffusion. TDF uptake was energy independent but its accumulation followed nonlinear kinetics, and excess unlabeled TDF inhibited radiolabeled TDF uptake in competition studies. The carboxylesterase inhibitor bis-nitrophenyl phosphate reduced TDF uptake, suggesting saturability of intracellular carboxylesterases. In contrast, although TFV uptake was energy dependent, no competition between unlabeled and radiolabeled TFV was observed, and the previously identified transporters, organic anion transporters (OATs) 1 and 3, were not expressed in human vaginal or T cells. The intracellular accumulation of TFV was reduced by the addition of endocytosis inhibitors, and this resulted in the loss of TFV antiviral activity. Kinetics of drug transport and metabolism were monitored by quantifying the parent drugs and their metabolites by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Results were consistent with the identified mechanisms of transport, and the exposure of vaginal epithelial cells to equimolar concentrations of TDF compared to TFV resulted in ∼40-fold higher levels of the active metabolite, tenofovir diphosphate. Together, these findings indicate that substantially lower concentrations of TDF than TFV are needed to protect cells from HIV and HSV-2. PMID:26711762

  18. Mechanism and active variety of allelochemicals

    USGS Publications Warehouse

    Peng, S.-L.; Wen, J.; Guo, Q.-F.

    2004-01-01

    This article summarizes allelochemicals' active variety, its potential causes and function mechanisms. Allelochemicals' activity varies with temperature, photoperiod, water and soils during natural processes, with its initial concentration, compound structure and mixed degree during functional processes, with plant accessions, tissues and maturity within-species, and with research techniques and operation processes. The prospective developmental aspects of allelopathy studies in the future are discussed. Future research should focus on: (1) to identify and purify allelochemicals more effectively, especially for agriculture, (2) the functions of allelopathy at the molecular structure level, (3) using allelopathy to explain plant species interactions, (4) allelopathy as a driving force of succession, and (5) the significance of allelopathy in the evolutionary processes.

  19. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport.

    PubMed

    Montigny, Cédric; Lyons, Joseph; Champeil, Philippe; Nissen, Poul; Lenoir, Guillaume

    2016-08-01

    Phospholipid flippases are key regulators of transbilayer lipid asymmetry in eukaryotic cell membranes, critical to many trafficking and signaling pathways. P4-ATPases, in particular, are responsible for the uphill transport of phospholipids from the exoplasmic to the cytosolic leaflet of the plasma membrane, as well as membranes of the late secretory/endocytic pathways, thereby establishing transbilayer asymmetry. Recent studies combining cell biology and biochemical approaches have improved our understanding of the path taken by lipids through P4-ATPases. Additionally, identification of several protein families catalyzing phospholipid 'scrambling', i.e. disruption of phospholipid asymmetry through energy-independent bi-directional phospholipid transport, as well as the recent report of the structure of such a scramblase, opens the way to a deeper characterization of their mechanism of action. Here, we discuss the molecular nature of the mechanism by which lipids may 'flip' across membranes, with an emphasis on active lipid transport catalyzed by P4-ATPases. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26747647

  20. Resolution of parameters in the equivalent electrical circuit of the sodium transport mechanism across toad skin.

    PubMed

    Isaacson, L C

    1977-01-28

    In amphibian epithelia, amiloride reduces net sodium transport by hindering the entry of sodium to the active transport mechanism, that is, by increasing the series resistance (Rser). Theoretically, therefore, analysis of amiloride-induced changes in potential differences and short-circuit current should yield numerical estimates of all the parameters in the equivalent electrical circuit of the sodium transport mechanism. The concept has been explored by analysis of such changes in toad skins (Xenopus laevis) bathed in hypotonic sulphate Ringer's, after exposure to varying doses of amiloride, or to amphotericin, dinitrophenol or Pitressin. The estimated values of Rser, of the electromotive force of the sodium pump (ENa), and of the shunt resistance (Rsh) were independent of the dose of amiloride employed. Skins bathed in hypotonic sulphate Ringer's exhibited a progressive rise in ENa. Amphotericin produced a fall in Rser, while dinitrophenol caused a fall in ENa; washout of the drugs reversed these effects. Pitressin produced a fall in both Rser and Rsh, with a rise in ENa. These results are in accord with earlier suggestions regarding the site(s) of action of these agents. PMID:839526

  1. Molecular mechanism of ligand recognition by membrane transport protein, Mhp1

    PubMed Central

    Simmons, Katie J; Jackson, Scott M; Brueckner, Florian; Patching, Simon G; Beckstein, Oliver; Ivanova, Ekaterina; Geng, Tian; Weyand, Simone; Drew, David; Lanigan, Joseph; Sharples, David J; Sansom, Mark SP; Iwata, So; Fishwick, Colin WG; Johnson, A Peter; Cameron, Alexander D; Henderson, Peter JF

    2014-01-01

    The hydantoin transporter Mhp1 is a sodium-coupled secondary active transport protein of the nucleobase-cation-symport family and a member of the widespread 5-helix inverted repeat superfamily of transporters. The structure of Mhp1 was previously solved in three different conformations providing insight into the molecular basis of the alternating access mechanism. Here, we elucidate detailed events of substrate binding, through a combination of crystallography, molecular dynamics, site-directed mutagenesis, biochemical/biophysical assays, and the design and synthesis of novel ligands. We show precisely where 5-substituted hydantoin substrates bind in an extended configuration at the interface of the bundle and hash domains. They are recognised through hydrogen bonds to the hydantoin moiety and the complementarity of the 5-substituent for a hydrophobic pocket in the protein. Furthermore, we describe a novel structure of an intermediate state of the protein with the external thin gate locked open by an inhibitor, 5-(2-naphthylmethyl)-L-hydantoin, which becomes a substrate when leucine 363 is changed to an alanine. We deduce the molecular events that underlie acquisition and transport of a ligand by Mhp1. PMID:24952894

  2. Numerical investigation of transport mechanism in four-body problem using Lagrangian coherent structure

    NASA Astrophysics Data System (ADS)

    Qi, Rui; Huang, Biao

    2016-01-01

    Transport mechanism is critical for understanding natural phenomena in the solar system and is beneficial to space mission design. In this study, transport mechanism in the bicircular four-body problem is numerically explored by using Lagrangian coherent structure (LCS), a tool widely used for identifying transport barriers in fluid flow. First, equations of motion of the bicircular problem are derived and five topology configurations of forbidden region are presented. Then, definition and computational method of LCS are introduced. Finally, properties of LCS which are useful for revealing transport mechanism in the four-body problem are numerically investigated.

  3. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  4. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Cumming, D.; Krooss, B. M.

    2012-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  5. Advocacy for active transport: advocate and city council perspectives

    PubMed Central

    2010-01-01

    Background Effective advocacy is an important part of efforts to increase population participation in physical activity. Research about effective health advocacy is scarce, however, the health sector can learn from the experiences and knowledge of community advocates and those who are on the receiving end of this advocacy. The aim of this study is to explore advocacy for active transport from the perspectives of community advocates and representatives from City councils. Methods Cycling and walking advocates were identified from the local contact list of Cycling Advocates Network and Living Streets Aotearoa. Semi-structured telephone interviews were conducted with cycle and walking advocates from throughout New Zealand. Advocates also nominated a suitable council officer at their local City council to be interviewed. Interviews were recorded and transcribed and categories of responses for each of the questions created. Results Several processes were used by advocates to engage with council staff, including formal council submissions, meetings, stakeholder forums and partnership in running community events promoting active transport. Several other agencies were identified as being influential for active transport, some as potential coalition partners and others as potential adversaries. Barriers to improving conditions for active transport included a lack of funding, a lack of will-power among either council staff or councillors, limited council staff capacity (time or training) and a culture of providing infrastructure for motor vehicles instead of people. Several suggestions were made about how the health sector could contribute to advocacy efforts, including encouraging political commitment, engaging the media, communicating the potential health benefits of active transport to the general public and being role models in terms of personal travel mode choice and having workplaces that support participation in active transport. Conclusions There is potential for the

  6. Physiological roles and transport mechanisms of boron: perspectives from plants.

    PubMed

    Tanaka, Mayuki; Fujiwara, Toru

    2008-07-01

    Boron, an orphan of the periodic table of the elements, is unique not only in its chemical properties but also in its roles in biology. Its requirement in plants was described more than 80 years ago. Understandings of the molecular basis of the requirement and transport have been advanced greatly in the last decade. This article reviews recent findings of boron function and transport in plants and discusses possible implication to other organisms including humans. PMID:17965876

  7. Identifying Clusters of Active Transportation Using Spatial Scan Statistics

    PubMed Central

    Huang, Lan; Stinchcomb, David G.; Pickle, Linda W.; Dill, Jennifer; Berrigan, David

    2009-01-01

    Background There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Methods Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007–2008. Results Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. Conclusions The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units. PMID:19589451

  8. Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Scully, Shawn Ryan

    Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of

  9. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4)

    NASA Technical Reports Server (NTRS)

    Hardy, R. W.; Ladenson, J. H.; Henriksen, E. J.; Holloszy, J. O.; McDonald, J. M.

    1991-01-01

    In rat adipocytes, palmitate: a) increases basal 2-deoxyglucose transport 129 +/- 27% (p less than 0.02), b) decreases the insulin sensitive glucose transporter (GLUT4) in low density microsomes and increases GLUT4 in plasma membranes and c) increases the activity of the insulin receptor tyrosine kinase. Palmitate-stimulated glucose transport is not additive with the effect of insulin and is not inhibited by the protein kinase C inhibitors staurosporine and sphingosine. In rat muscle, palmitate: a) does not affect basal glucose transport in either the soleus or epitrochlearis and b) inhibits insulin-stimulated glucose transport by 28% (p less than 0.005) in soleus but not in epitrochlearis muscle. These studies demonstrate a potentially important differential role for fatty acids in the regulation of glucose transport in different insulin target tissues.

  10. Vitamin A Transport Mechanism of the Multitransmembrane Cell-Surface Receptor STRA6

    PubMed Central

    Kawaguchi, Riki; Zhong, Ming; Kassai, Miki; Ter-Stepanian, Mariam; Sun, Hui

    2015-01-01

    Vitamin A has biological functions as diverse as sensing light for vision, regulating stem cell differentiation, maintaining epithelial integrity, promoting immune competency, regulating learning and memory, and acting as a key developmental morphogen. Vitamin A derivatives have also been used in treating human diseases. If vitamin A is considered a drug that everyone needs to take to survive, evolution has come up with a natural drug delivery system that combines sustained release with precise and controlled delivery to the cells or tissues that depend on it. This “drug delivery system” is mediated by plasma retinol binding protein (RBP), the principle and specific vitamin A carrier protein in the blood, and STRA6, the cell-surface receptor for RBP that mediates cellular vitamin A uptake. The mechanism by which the RBP receptor absorbs vitamin A from the blood is distinct from other known cellular uptake mechanisms. This review summarizes recent progress in elucidating the fundamental molecular mechanism mediated by the RBP receptor and multiple newly discovered catalytic activities of this receptor, and compares this transport system with retinoid transport independent of RBP/STRA6. How to target this new type of transmembrane receptor using small molecules in treating diseases is also discussed. PMID:26343735

  11. Mechanism for radical cation transport in duplex DNA oligonucleotides.

    PubMed

    Liu, Chu-Sheng; Hernandez, Rigoberto; Schuster, Gary B

    2004-03-10

    We investigated the photoinduced one-electron oxidation of a series of DNA oligomers having a covalently linked anthraquinone group (AQ) and containing [(A)(n)GG](m) or [(T)(n)GG](m) segments. These oligomers have m GG steps, where m = 4 or 6, separated by (A)(n) or (T)(n) segments, where n = 1-7 for the (A)(n) set and 1-5 for the (T)(n) set. Irradiation with UV light that is absorbed by the AQ causes injection of a radical cation into the DNA. The radical cation migrates through the DNA, causing chemical reaction, primarily at GG steps, that leads to strand cleavage after piperidine treatment. The uniform, systematic structure of the DNA oligonucleotides investigated permits the numerical solution of a kinetic scheme that models these reactions. This analysis yields two rate constants, k(hop), for hopping of the radical cation from one site to adjacent sites, and k(trap), for irreversible reaction of the radical cation with H(2)O or O(2). Analysis of these findings indicates that radical cation hopping in these duplex DNA oligomers is a process that occurs on a microsecond time scale. The value of k(hop) depends on the number of base pairs in the (A)(n) and (T)(n) segments in a systematic way. We interpret these results in terms of a thermally activated adiabatic mechanism for radical cation hopping that we identify as phonon-assisted polaron hopping. PMID:14995205

  12. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    SciTech Connect

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  13. Enhancement of carrier-mediated transport after immunologic activation of peritoneal macrophages.

    PubMed

    Bonventre, P F; Straus, D; Baughn, R E; Imhoff, J

    1977-05-01

    hexose or amino acid transport. The kinetics of transport by the immunologically activated macrophages do not change measurably after phagocytosis. We conclude that either immunological activation or phagocytosis results in augmented 2-deoxy-D-glucose transport via identical or related mechanisms and that transport of the sugar can't be increased above that level induced by either event. The reasons why immunologic activation increases both glucose and leucine transport but phagocytosis increases only the former are not yet understood. PMID:404359

  14. Osmotic water transport in aquaporins: evidence for a stochastic mechanism

    PubMed Central

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna

    2013-01-01

    We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676

  15. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle

    PubMed Central

    Szodorai, A; Kuan, Y-H; Hunzelmann, S; Engel, U; Sakane, A; Sasaki, T; Takai, Y; Kirsch, J; Müller, U; Beyreuther, K; Brady, S; Morfini, G; Kins, S

    2010-01-01

    The amyloid precursor protein (APP) may be sequentially cleaved by β- and γ-secretases leading to accumulation of Aβ peptides in brains of Alzheimer’s Disease patients. Cleavage by α-secretase prevents Aβ generation. APP is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochemical composition of such a vesicle as well as the specific kinesin-1 motor responsible for transport are poorly defined. Here, we demonstrate by time-lapse analysis and immunoisolations that APP is a cargo of a vesicle containing the kinesin heavy chain isoform kinesin-1C, the small GTPase Rab3A and a specific subset of presynaptic protein components. Moreover, we report that assembly of kinesin-1C and APP in this vesicle type requires Rab3A GTPase activity. Finally, we show cleavage of APP in the analyzed transport vesicles by α-secretase activity, likely mediated by ADAM10. Together, these data indicate for the first time that maturation of transport vesicles, including coupling of conventional kinesin, requires Rab GTPase activity. PMID:19923287

  16. The molecular mechanism of ion-dependent gating in secondary transporters.

    PubMed

    Zhao, Chunfeng; Noskov, Sergei Yu

    2013-10-01

    LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable than that to the

  17. Nanoscale mechanisms for the reduction of heat transport in bismuth

    NASA Astrophysics Data System (ADS)

    Markov, Maxime; Sjakste, Jelena; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Vast, Nathalie

    2016-02-01

    Hand-on routes to reduce lattice thermal conductivity (LTC) in bismuth have been explored by employing a combination of Boltzmann's transport equation and ab initio calculations of phonon-phonon interaction within the density functional perturbation theory. We have first obtained the temperature dependence of the bulk LTC in excellent agreement with available experiments. A very accurate microscopic description of heat transport has been achieved and the electronic contribution to thermal conductivity has been determined. By controlling the interplay between phonon-phonon interaction and phonon scattering by sample boundaries, we predict the effect of size reduction for various temperatures and nanostructure shapes. The largest heat transport reduction is obtained in polycrystals with grain sizes smaller than 100 nm.

  18. Liquid water transport mechanism in the gas diffusion layer

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Wu, C. W.

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water.

  19. Atomistic mechanisms of rapid energy transport in light-harvesting molecules

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Koga, Shiro; Akai, Ichiro; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2011-03-01

    Synthetic supermolecules such as π-conjugated light-harvesting dendrimers efficiently harvest energy from sunlight, which is of significant importance for the global energy problem. Key to their success is rapid transport of electronic excitation energy from peripheral antennas to photochemical reaction cores, the atomistic mechanisms of which remains elusive. Here, quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals the key molecular motion that significantly accelerates the energy transport based on the Dexter mechanism.

  20. Origin of traps and charge transport mechanism in hafnia

    SciTech Connect

    Islamov, D. R. Gritsenko, V. A.; Cheng, C. H.; Chin, A.

    2014-12-01

    In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.

  1. Transport of active ellipsoidal particles in ratchet potentials

    SciTech Connect

    Ai, Bao-Quan Wu, Jian-Chun

    2014-03-07

    Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)

  2. The Allosteric Regulatory Mechanism of the Escherichia coli MetNI Methionine ATP Binding Cassette (ABC) Transporter*

    PubMed Central

    Yang, Janet G.; Rees, Douglas C.

    2015-01-01

    The MetNI methionine importer of Escherichia coli, an ATP binding cassette (ABC) transporter, uses the energy of ATP binding and hydrolysis to catalyze the high affinity uptake of d- and l-methionine. Early in vivo studies showed that the uptake of external methionine is repressed by the level of the internal methionine pool, a phenomenon termed transinhibition. Our understanding of the MetNI mechanism has thus far been limited to a series of crystal structures in an inward-facing conformation. To understand the molecular mechanism of transinhibition, we studied the kinetics of ATP hydrolysis using detergent-solubilized MetNI. We find that transinhibition is due to noncompetitive inhibition by l-methionine, much like a negative feedback loop. Thermodynamic analyses revealed two allosteric methionine binding sites per transporter. This quantitative analysis of transinhibition, the first to our knowledge for a structurally defined transporter, builds upon the previously proposed structurally based model for regulation. This mechanism of regulation at the transporter activity level could be applicable to not only ABC transporters but other types of membrane transporters as well. PMID:25678706

  3. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β

    PubMed Central

    Xu, Jordan C.; Fomenko, Vira; Miyamoto, Takashi; Suberbielle, Elsa; Knox, Joseph A.; Ho, Kaitlyn; Kim, Daniel H.; Yu, Gui-Qiu

    2015-01-01

    Axonal transport deficits in Alzheimer’s disease (AD) are attributed to amyloid β (Aβ) peptides and pathological forms of the microtubule-associated protein tau. Genetic ablation of tau prevents neuronal overexcitation and axonal transport deficits caused by recombinant Aβ oligomers. Relevance of these findings to naturally secreted Aβ and mechanisms underlying tau’s enabling effect are unknown. Here we demonstrate deficits in anterograde axonal transport of mitochondria in primary neurons from transgenic mice expressing familial AD-linked forms of human amyloid precursor protein. We show that these deficits depend on Aβ1–42 production and are prevented by tau reduction. The copathogenic effect of tau did not depend on its microtubule binding, interactions with Fyn, or potential role in neuronal development. Inhibition of neuronal activity, N-methyl-d-aspartate receptor function, or glycogen synthase kinase 3β (GSK3β) activity or expression also abolished Aβ-induced transport deficits. Tau ablation prevented Aβ-induced GSK3β activation. Thus, tau allows Aβ oligomers to inhibit axonal transport through activation of GSK3β, possibly by facilitating aberrant neuronal activity. PMID:25963821

  4. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta

    PubMed Central

    Pigino, G.; Morfini, G.; Atagi, Y.; Deshpande, A.; Yu, C.; Jungbauer, L.; LaDu, M.; Busciglio, J.; Brady, S.

    2009-01-01

    The pathological mechanism by which Aβ causes neuronal dysfunction and death remains largely unknown. Deficiencies in fast axonal transport (FAT) were suggested to play a crucial role in neuronal dysfunction and loss for a diverse set of dying back neuropathologies including Alzheimer's disease (AD), but the molecular basis for pathological changes in FAT were undetermined. Recent findings indicate that soluble intracellular oligomeric Aβ (oAβ) species may play a critical role in AD pathology. Real-time analysis of vesicle mobility in isolated axoplasms perfused with oAβ showed bidirectional axonal transport inhibition as a consequence of endogenous casein kinase 2 (CK2) activation. Conversely, neither unaggregated amyloid beta nor fibrillar amyloid beta affected FAT. Inhibition of FAT by oAβ was prevented by two specific pharmacological inhibitors of CK2, as well as by competition with a CK2 substrate peptide. Furthermore, perfusion of axoplasms with active CK2 mimics the inhibitory effects of oAβ on FAT. Both oAβ and CK2 treatment of axoplasm led to increased phosphorylation of kinesin-1 light chains and subsequent release of kinesin from its cargoes. Therefore pharmacological modulation of CK2 activity may represent a promising target for therapeutic intervention in AD. PMID:19321417

  5. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  6. Parental Factors in Children’s Active Transport to School

    PubMed Central

    Henne, Heather M.; Tandon, Pooja S.; Frank, Larry D.; Saelens, Brian E.

    2014-01-01

    Objective Identify non-distance factors related to children’s active transport (AT) to school, including parental, home, and environment characteristics. Understanding the factors related to children’s AT to school, beyond distance to school, could inform interventions to increase AT and children’s overall physical activity. Study Design Participants were in the Neighborhood Impact on Kids Study, a longitudinal, observational cohort study of children aged 6 - 11 and their parents in King County, WA and San Diego County, CA between 2007-2009. Parents reported frequency and mode of child transport to school, perceived neighborhood, home and family environments, parental travel behaviors, and sociodemographics. Methods Children living less than a 20 minute walk to school were in this analysis. Children classified as active transporters (walked/bicycled to or from school at least once per week) were compared with those not using AT as often. Results Children using AT were older and had parents who reported themselves using active transport. Having a family rule that restricts the child to stay within sight of the parent or home and more parent working hours was related to lower odds of a child using AT. Conclusions Children’s AT to school is associated with parental AT to work and other locations. Interventions should be considered that enable whole family AT, ameliorate safety concerns and decrease the need for parental supervision, such as walking school buses. PMID:24999161

  7. Price Analysis of Railway Freight Transport under Marketing Mechanism

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Fang, Xiaoping; Chen, Zhiya

    Regarding the problems in the reform of the railway tariff system and the pricing of the transport, by means of assaying the influence of the price elasticity on the artifice used for price, this article proposed multiple regressive model which analyzed price elasticity quantitatively. This model conclude multi-factors which influences on the price elasticity, such as the averagely railway freight charge, the averagely freight haulage of proximate supersede transportation mode, the GDP per capita in the point of origin, and a series of dummy variable which can reflect the features of some productive and consume demesne. It can calculate the price elasticity of different classes in different domains, and predict the freight traffic volume on different rate levels. It can calculate confidence-level, and evaluate the relevance of each parameter to get rid of irrelevant or little relevant variables. It supplied a good theoretical basis for directing the pricing of transport enterprises in market economic conditions, which is suitable for railway freight, passenger traffic and other transportation manner as well. SPSS (Statistical Package for the Social Science) software was used to calculate and analysis the example. This article realized the calculation by HYFX system(Ministry of Railways fund).

  8. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    NASA Astrophysics Data System (ADS)

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-11-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms.

  9. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    PubMed Central

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-01-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms. PMID:26608479

  10. Activation energy-activation volume master plots for ion transport behavior in polymer electrolytes and supercooled molten salts.

    PubMed

    Ingram, Malcolm D; Imrie, Corrie T; Stoeva, Zlatka; Pas, Steven J; Funke, Klaus; Chandler, Howard W

    2005-09-01

    We demonstrate the use of activation energy versus activation volume "master plots" to explore ion transport in typical fragile glass forming systems exhibiting non-Arrhenius behavior. These systems include solvent-free salt complexes in poly(ethylene oxide) (PEO) and low molecular weight poly(propylene oxide) (PPO) and molten 2Ca(NO3)2.3KNO3 (CKN). Plots showing variations in apparent activation energy EA versus apparent activation volume VA are straight lines with slopes given by M = DeltaEA/DeltaVA. A simple ion transport mechanism is described where the rate determining step involves a dilatation (expressed as VA) around microscopic cavities and a corresponding work of expansion (EA). The slopes of the master plots M are equated to internal elastic moduli, which vary from 1.1 GPa for liquid PPO to 5.0 GPa for molten CKN on account of differing intermolecular forces in these materials. PMID:16853106

  11. The Concentration Dependence of Active Potassium Transport in the Human Red Blood Cell*

    PubMed Central

    Sachs, John R.; Welt, Louis G.

    1967-01-01

    The relation between the active potassium influx in the human red blood cell and the extracellular potassium concentration does not appear to be consistent with the Michaelis-Menten model, but is adequately described by a model in which two potassium ions are required simultaneously at some site or sites in the transport mechanism before transport occurs. The same type of relation appears to exist between that portion of the sodium outflux that requires the presence of extracellular potassium and the extracellular potassium concentration. Rubidium, cesium, and lithium, which are apparently transported by the same system that transports potassium, stimulate the potassium influx when both potassium and the second ion are present at low concentrations, as is predicted by the two-site model. PMID:6018751

  12. Engineering intracellular active transport systems as in vivo biomolecular tools.

    SciTech Connect

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further

  13. Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors

    SciTech Connect

    Uren, Michael J.; Cäsar, Markus; Kuball, Martin; Gajda, Mark A.

    2014-06-30

    Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band with activation energy 0.86 eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ∼0.65 eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.

  14. Buffer transport mechanisms in intentionally carbon doped GaN heterojunction field effect transistors

    NASA Astrophysics Data System (ADS)

    Uren, Michael J.; Cäsar, Markus; Gajda, Mark A.; Kuball, Martin

    2014-06-01

    Temperature dependent pulsed and ramped substrate bias measurements are used to develop a detailed understanding of the vertical carrier transport in the buffer layers in a carbon doped GaN power heterojunction field effect transistor. Carbon doped GaN and multiple layers of AlGaN alloy are used in these devices to deliver an insulating and strain relieved buffer with high breakdown voltage capability. However, understanding of the detailed physical mechanism for its operation is still lacking. At the lowest electric fields (<10 MV/m), charge redistribution within the C doped layer is shown to occur by hole conduction in the valence band with activation energy 0.86 eV. At higher fields, leakage between the two-dimensional electron gas and the buffer dominates occurring by a Poole-Frenkel mechanism with activation energy ˜0.65 eV, presumably along threading dislocations. At higher fields still, the strain relief buffer starts to conduct by a field dependent process. Balancing the onset of these leakage mechanisms is essential to allow the build-up of positive rather than negative space charge, and thus minimize bulk-related current-collapse in these devices.

  15. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a...

  16. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a...

  17. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a...

  18. 49 CFR 37.61 - Public transportation programs and activities in existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Public transportation programs and activities in... TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.61 Public transportation programs and activities in existing facilities. (a) A public entity shall operate a...

  19. Drug transport mechanism of P-glycoprotein monitored by single molecule fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Ernst, S.; Verhalen, B.; Zarrabi, N.; Wilkens, S.; Börsch, M.

    2011-03-01

    In this work we monitor the catalytic mechanism of P-glycoprotein (Pgp) using single-molecule fluorescence resonance energy transfer (FRET). Pgp, a member of the ATP binding cassette family of transport proteins, is found in the plasma membrane of animal cells where it is involved in the ATP hydrolysis driven export of hydrophobic molecules. When expressed in the plasma membrane of cancer cells, the transport activity of Pgp can lead to the failure of chemotherapy by excluding the mostly hydrophobic drugs from the interior of the cell. Despite ongoing effort, the catalytic mechanism by which Pgp couples MgATP binding and hydrolysis to translocation of drug molecules across the lipid bilayer is poorly understood. Using site directed mutagenesis, we have introduced cysteine residues for fluorescence labeling into different regions of the nucleotide binding domains (NBDs) of Pgp. Double-labeled single Pgp molecules showed fluctuating FRET efficiencies during drug stimulated ATP hydrolysis suggesting that the NBDs undergo significant movements during catalysis. Duty cycle-optimized alternating laser excitation (DCO-ALEX) is applied to minimize FRET artifacts and to select the appropriate molecules. The data show that Pgp is a highly dynamic enzyme that appears to fluctuate between at least two major conformations during steady state turnover.

  20. Analysis of Charge Carrier Transport in Organic Photovoltaic Active Layers

    NASA Astrophysics Data System (ADS)

    Han, Xu; Maroudas, Dimitrios

    2015-03-01

    We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological, deterministic charge carrier transport models. The models describe free electron and hole transport, trapping, and detrapping, as well as geminate charge-pair dissociation and geminate and bimolecular recombination, self-consistently with Poisson's equation for the electric field in the active layer. We predict photocurrent evolution in devices with active layers of P3HT, P3HT/PMMA, and P3HT/PS, as well as P3HT/PCBM blends, and photocurrent-voltage (I-V) relations in these devices at steady state. Charge generation propensity, zero-field charge mobilities, and trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental measurements. We have analyzed effects of the active layer morphology for layers consisting of both pristine drop-cast films and of nanoparticle (NP) assemblies, as well as effects on device performance of insulating NP doping in conducting polymers and of specially designed interlayers placed between an electrode and the active layer. The model predictions provide valuable input toward synthesis of active layers with prescribed morphology that optimize OPV device performance.

  1. Amyloid-β Precursor Protein: Multiple fragments, numerous transport routes and mechanisms

    PubMed Central

    Muresan, Virgil; Muresan, Zoia Ladescu

    2015-01-01

    This review provides insight into the intraneuronal transport of the Amyloid-β Precursor Protein (APP), the prototype of an extensively posttranslationally modified and proteolytically cleaved transmembrane protein. Uncovering the intricacies of APP transport proves to be a challenging endeavor of cell biology research, deserving increased priority, since APP is at the core of the pathogenic process in Alzheimer’s disease. After being synthesized in the endoplasmic reticulum in the neuronal soma, APP enters the intracellular transport along the secretory, endocytic, and recycling routes. Along these routes, APP undergoes cleavage into defined sets of fragments, which themselves are transported – mostly independently – to distinct sites in neurons, where they exert their functions. We review the currently known routes and mechanisms of transport of full-length APP, and of APP fragments, commenting largely on the experimental challenges posed by studying transport of extensively cleaved proteins. The review emphasizes the interrelationships between the proteolytic and posttranslational modifications, the intracellular transport, and the functions of the APP species. A goal remaining to be addressed in the future is the incorporation of the various views on APP transport into a coherent picture. In this review, the disease context is only marginally addressed; the focus is on the basic biology of APP transport in normal conditions. As shown, the studies of APP transport uncovered numerous mechanisms of transport, some of them conventional, and others, novel, awaiting exploration. PMID:25573596

  2. Sediment transport mechanisms through the sustainable vegetated flow networks

    NASA Astrophysics Data System (ADS)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Understanding the pollution treatment efficiency of a sustainable urban drainage (SuDS) asset or network requires the influx, transport, detention and discharge of the pollutant within the system. To date event specific monitoring of sediment (primarily total suspended solids) concentrations in the inflow and discharge from SuDS have been monitored. Long term analysis of where the sediment is transported to and the residency time of this pollutant within the SuDS asset or network have not been unraveled due to the difficulty in monitoring specific sediment particulate movement. Using REO tracing methodology, sediment particulate movement has become possible. In tracing sediment movement from an urban surface the internal residency and transportation of this sediment has illustrated SuDS asset differences in multi-event detention. Of key importance is the finding that sediment remains within the SuDS asset for extended periods of time, but that the location sediment detention changes. Thus, over multiple rainfall-runoff events sediment is seen to move through the SuDS assets and network proving the assumption that detained sediment is permanent and stationary to be inaccurate. Furthermore, mass balance analysis of SuDS sediment indicates that there is notable re-suspension and ongoing release of sediment from the SuDS over time and cumulative rainfall-runoff events. Continued monitoring of sediment deposition and concentration in suspension illustrates that sediment detention within SuDS decreases over time/multiple events, without stabilizing within a 12 month period. Repeated experiments show a consistent pattern of detention and release for the three SuDS networks monitored in Scotland. Through consideration of both rainfall and flow factors the drivers of sediment transport within the monitored SuDS have been identified. Within the limitation of this field study the key drivers to SuDS sediment detention efficiency (or transport of sediment through the system

  3. Mechanism of Na+-dependent citrate transport from the structure of an asymmetrical CitS dimer

    PubMed Central

    Wöhlert, David; Grötzinger, Maria J; Kühlbrandt, Werner; Yildiz, Özkan

    2015-01-01

    The common human pathogen Salmonella enterica takes up citrate as a nutrient via the sodium symporter SeCitS. Uniquely, our 2.5 Å x-ray structure of the SeCitS dimer shows three different conformations of the active protomer. One protomer is in the outside-facing state. Two are in different inside-facing states. All three states resolve the substrates in their respective binding environments. Together with comprehensive functional studies on reconstituted proteoliposomes, the structures explain the transport mechanism in detail. Our results indicate a six-step process, with a rigid-body 31° rotation of a helix bundle that translocates the bound substrates by 16 Å across the membrane. Similar transport mechanisms may apply to a wide variety of related and unrelated secondary transporters, including important drug targets. DOI: http://dx.doi.org/10.7554/eLife.09375.001 PMID:26636752

  4. Activation of sucrose transport in defoliated Lolium perenne L.: an example of apoplastic phloem loading plasticity.

    PubMed

    Berthier, Alexandre; Desclos, Marie; Amiard, Véronique; Morvan-Bertrand, Annette; Demmig-Adams, Barbara; Adams, William W; Turgeon, Robert; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie

    2009-07-01

    The pathway of carbon phloem loading was examined in leaf tissues of the forage grass Lolium perenne. The effect of defoliation (leaf blade removal) on sucrose transport capacity was assessed in leaf sheaths as the major carbon source for regrowth. The pathway of carbon transport was assessed via a combination of electron microscopy, plasmolysis experiments and plasma membrane vesicles (PMVs) purified by aqueous two-phase partitioning from the microsomal fraction. Results support an apoplastic phloem loading mechanism. Imposition of an artificial proton-motive force to PMVs from leaf sheaths energized an active, transient and saturable uptake of sucrose (Suc). The affinity of Suc carriers for Suc was 580 microM in leaf sheaths of undefoliated plants. Defoliation induced a decrease of K(m) followed by an increase of V(max). A transporter was isolated from stubble (including leaf sheaths) cDNA libraries and functionally expressed in yeast. The level of L.perenne SUcrose Transporter 1 (LpSUT1) expression increased in leaf sheaths in response to defoliation. Taken together, the results indicate that Suc transport capacity increased in leaf sheaths of L. perenne in response to leaf blade removal. This increase might imply de novo synthesis of Suc transporters, including LpSUT1, and may represent one of the mechanisms contributing to rapid refoliation. PMID:19520670

  5. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces.

    PubMed

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-01-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field. PMID:24149467

  6. Fractional vesamicol receptor occupancy and acetylcholine active transport inhibition in synaptic vesicles.

    PubMed

    Kaufman, R; Rogers, G A; Fehlmann, C; Parsons, S M

    1989-09-01

    Vesamicol [(-)-(trans)-2-(4-phenylpiperidino)cyclohexanol] receptor binding and inhibition of acetylcholine (AcCh) active transport by cholinergic synaptic vesicles that were isolated from Torpedo electric organ were studied for 23 vesamicol enantiomers, analogues, and other drugs. Use of trace [3H]vesamicol and [14C]AcCh allowed simultaneous determination of the concentrations of enantiomer, analogue, or drug required to half-saturate the vesamicol receptor (Ki) and to half-inhibit transport (IC50), respectively. Throughout a wide range of potencies for different compounds, the Ki/IC50 ratios varied from 1.5 to 24. Compounds representative of the diverse structures studied, namely deoxyvesamicol, chloroquine, and levorphanol, were competitive inhibitors of vesamicol binding. It is concluded that many drugs can bind to the vesamicol receptor and binding to only a small fraction of the receptors can result in AcCh active transport inhibition. Possible mechanisms for this effect are discussed. PMID:2550778

  7. Active and passive calcium transport systems in plant cells. Progress report, May 1986--January 1991

    SciTech Connect

    Sze, H.

    1991-12-31

    The ability to change cytoplasmic Ca{sup 2+} levels ([Ca{sup 2+}]) by cells has made this cation a key regulator of many biological processes. Cytoplasmic [Ca{sup 2+}] is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic [Ca{sup 2+}] and active Ca{sup 2+} transport systems that lower cytosolic [Ca{sup 2+}]. The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  8. Mechanisms of Specificity for Hox Factor Activity

    PubMed Central

    Zandvakili, Arya; Gebelein, Brian

    2016-01-01

    Metazoans encode clusters of paralogous Hox genes that are critical for proper development of the body plan. However, there are a number of unresolved issues regarding how paralogous Hox factors achieve specificity to control distinct cell fates. First, how do Hox paralogs, which have very similar DNA binding preferences in vitro, drive different transcriptional programs in vivo? Second, the number of potential Hox binding sites within the genome is vast compared to the number of sites bound. Hence, what determines where in the genome Hox factors bind? Third, what determines whether a Hox factor will activate or repress a specific target gene? Here, we review the current evidence that is beginning to shed light onto these questions. In particular, we highlight how cooperative interactions with other transcription factors (especially PBC and HMP proteins) and the sequences of cis-regulatory modules provide a basis for the mechanisms of Hox specificity. We conclude by integrating a number of the concepts described throughout the review in a case study of a highly interrogated Drosophila cis-regulatory module named “The Distal-less Conserved Regulatory Element” (DCRE). PMID:27583210

  9. Effect of insulin-like factors on glucose transport activity in unweighted rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Ritter, Leslie S.

    1993-01-01

    The effect of 3 or 6 days of unweighting on glucose transport activity, as assessed by 2-deoxyglucose uptake, in soleus strips stimulated by maximally effective concentrations of insulin, IGF-I, vanadate, or phospholipase C (PLC) is examined. Progressively increased responses to maximally effective doses of insulin or insulin-like growth factor were observed after 3 and 6 days of unweighting compared with weight matched control strips. Enhanced maximal responses to vanadate (6 days only) and PLC (3 and 6 days) were also observed. The data provide support for the existance of postreceptor binding mechanisms for the increased action of insulin on the glucose transport system in unweighted rat skeletal muscle.

  10. Structure, Mechanics, and Transport in Block Copolymer-Nanoparticle Composites at the Macroscopic and Nanometer Lengthscales

    NASA Astrophysics Data System (ADS)

    Cheng, Vicki Alice

    2013-08-01

    Pluronic triblock copolymers self-assemble in water to form thermoreversible soft solids that comprise of periodically spaced micelles. The interstitial spacings of these micellar crystals are on the order of tens of nanometers, and have been used to template comparably sized nanoparticles with hydrodynamic diameters (Dh) ranging from 4-7 nm. Here, nanoparticle diffusivity is studied and modeled in these self-assembling block copolymers across a range of polymer concentrations. Transport in the disordered micellar solution is described as diffusion through a polymer solution, while diffusive behavior in the structured micellar phase is modeled as an activated hopping process. The effects of protein loading, shear alignment, particle type, and block copolymer composition on particle transport are also examined, and they affect particle diffusivity to varying degrees. Block copolymer architecture influences the micellar structure and dimensions, which in turn affects protein templating and protein aggregation behavior. The overall micellar dimensions are smaller in block copolymers with shorter block lengths, and efforts to template particles which are larger than the interstitial spacings result in changes to the block copolymer structure and mechanics. It is possible, however, for block copolymers to accommodate a limited amount of particles which are larger than the estimated micellar interstitial site. When examining protein aggregation behavior in block copolymers with varying PEO chain lengths, striking differences in aggregation behavior are observed as well. Ultimately, this work underscores the interplay between the structure, mechanics, and transport behavior in nanoparticle-block copolymer composites, and this knowledge can be applied towards the design of self-assembling nanoscale materials.

  11. Mechanisms Underlying Food-Drug Interactions: Inhibition of Intestinal Metabolism and Transport

    PubMed Central

    Won, Christina S.; Oberlies, Nicholas H.; Paine, Mary F.

    2012-01-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively. PMID:22884524

  12. Mechanism of electrodialytic ion transport through solvent extraction membranes

    SciTech Connect

    Moskvin, L.N.; Shmatko, A.G.; Krasnoperov, V.M.

    1987-02-01

    The authors construct a mathematical model for electrodialysis and solvent extraction via an ion-selective ion exchange membrane and accounts for the electrochemical, ion exchange, and diffusional behavior of the processes including their dependence on component concentration and current and voltage. The model is tested against experimental data for the electrodialytic transport of anionic platinum complexes of chlorides from hydrochloric acid solution through tributylphosphate membranes. The platinum concentration in the aqueous solution was determined by gamma spectroscopy obtained via platinum 191 as a radiotracer.

  13. Nanoscale charge transport in cytochrome c3/DNA network: Comparative studies between redox-active molecules

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Harumasa; Che, Dock-Chil; Hirano, Yoshiaki; Suzuki, Masayuki; Higuchi, Yoshiki; Matsumoto, Takuya

    2015-09-01

    The redox-active molecule of a cytochrome c3/DNA network exhibits nonlinear current-voltage (I-V) characteristics with a threshold bias voltage at low temperature and zero-bias conductance at room temperature. I-V curves for the cytochrome c3/DNA network are well matched with the Coulomb blockade network model. Comparative studies of the Mn12 cluster, cytochrome c, and cytochrome c3, which have a wide variety of redox potentials, indicate no difference in charge transport, which suggests that the conduction mechanism is not directly related to the redox states. The charge transport mechanism has been discussed in terms of the newly-formed electronic energy states near the Fermi level, induced by the ionic interaction between redox-active molecules with the DNA network.

  14. Angler awareness of aquatic nuisance species and potential transport mechanisms

    USGS Publications Warehouse

    Gates, K.K.; Guy, C.S.; Zale, A.V.; Horton, T.B.

    2009-01-01

    The role anglers play in transporting aquatic nuisance species (ANS) is important in managing infestations and preventing introductions. The objectives of this study were to: (1) quantify angler movement patterns in southwestern Montana, ANS awareness and equipment cleaning practices; and (2) quantify the amount of soil transported on boots and waders. Mean distance travelled by residents from their home to the survey site was 115 km (??17, 95% CI). Mean distance travelled by non-residents was 1738 km (??74). Fifty-one percent of residents and 49% of non-residents reported occasionally, rarely or never cleaning their boots and waders between uses. Mean weight of soil carried on one boot leg was 8.39 g (??1.50). Movement and equipment cleaning practices of anglers in southwestern Montana suggest that future control of ANS dispersal may require restricting the use of felt-soled wading boots, requiring river-specific wading equipment or providing cleaning stations and requiring their use. ?? 2009 Blackwell Publishing Ltd.

  15. Turbulence elasticity—A new mechanism for transport barrier dynamics

    SciTech Connect

    Guo, Z. B.; Diamond, P. H.; Kosuga, Y.; Gürcan, Ö. D.

    2014-09-15

    We present a new, unified model of transport barrier formation in “elastic” drift wave-zonal flow (DW-ZF) turbulence. A new physical quantity—the delay time (i.e., the mixing time for the DW turbulence)—is demonstrated to parameterize each stage of the transport barrier formation. Quantitative predictions for the onset of limit-cycle-oscillation (LCO) among DW and ZF intensities (also denoted as I-mode) and I-mode to high-confinement mode (H-mode) transition are also given. The LCO occurs when the ZF shearing rate (|〈v〉{sub ZF}{sup ′}|) enters the regime Δω{sub k}<|〈V〉{sub ZF}{sup ′}|<τ{sub cr}{sup −1}, where Δω{sub k} is the local turbulence decorrelation rate and τ{sub cr} is the threshold delay time. In the basic predator-prey feedback system, τ{sub cr} is also derived. The I-H transition occurs when |〈V〉{sub E×B}{sup ′}|>τ{sub cr}{sup −1}, where the mean E × B shear flow driven by ion pressure “locks” the DW-ZF system to the H-mode by reducing the delay time below the threshold value.

  16. Mechanism(S) Involved in the Colon-Specific Expression of the Thiamine Pyrophosphate (Tpp) Transporter

    PubMed Central

    Nabokina, Svetlana M.; Ramos, Mel Brendan; Said, Hamid M.

    2016-01-01

    Microbiota of the large intestine synthesizes considerable amount of vitamin B1 (thiamine) in the form of thiamine pyrophosphate (TPP). We have recently demonstrated the existence of an efficient and specific carrier-mediated uptake process for TPP in human colonocytes, identified the TPP transporter (TPPT) involved (product of the SLC44A4 gene), and shown that expression of TPPT along the gastrointestinal (GI) tract is restricted to the colon. Our aim in this study was to determine the molecular basis of the colon-specific expression of TPPT focusing on a possible epigenetic mechanism. Our results showed that the CpG island predicted in the SLC44A4 promoter is non-methylated in the human colonic epithelial NCM460 cells, but is hyper-methylated in the human duodenal epithelial HuTu80 cells (as well as in the human retinal pigment epithelial ARPE19 cells). In the mouse (where TPPT expression in the GI tract is also restricted to the colon), the CpG island predicted in the Slc44a4 promoter is non-methylated in both the jejunum and colon, thus arguing against possible contribution of DNA methylation in the colon-specific expression of TPPT. A role for histone modifications in the tissue-specific pattern of Slc44a4 expression, however, was suggested by the findings that in mouse colon, histone H3 in the 5’-regulatory region of Slc44a4 is tri-methylated at lysine 4 and acetylated at lysine 9, whereas the tri-methylation at lysine 27 modification was negligible. In contrast, in the mouse jejunum, histone H3 is hyper-trimethylated at lysine 27 (repressor mark). Similarly, possible involvement of miRNA(s) in the tissue-specific expression of TPPT was also suggested by the findings that the 3’-UTR of SLC44A4 is targeted by specific miRNAs/RNA binding proteins in non-colonic, but not in colonic, epithelial cells. These studies show, for the first time, epigenetic mechanisms (histone modifications) play a role in determining the tissue-specific pattern of expression of

  17. Mechanism(S) Involved in the Colon-Specific Expression of the Thiamine Pyrophosphate (Tpp) Transporter.

    PubMed

    Nabokina, Svetlana M; Ramos, Mel Brendan; Said, Hamid M

    2016-01-01

    Microbiota of the large intestine synthesizes considerable amount of vitamin B1 (thiamine) in the form of thiamine pyrophosphate (TPP). We have recently demonstrated the existence of an efficient and specific carrier-mediated uptake process for TPP in human colonocytes, identified the TPP transporter (TPPT) involved (product of the SLC44A4 gene), and shown that expression of TPPT along the gastrointestinal (GI) tract is restricted to the colon. Our aim in this study was to determine the molecular basis of the colon-specific expression of TPPT focusing on a possible epigenetic mechanism. Our results showed that the CpG island predicted in the SLC44A4 promoter is non-methylated in the human colonic epithelial NCM460 cells, but is hyper-methylated in the human duodenal epithelial HuTu80 cells (as well as in the human retinal pigment epithelial ARPE19 cells). In the mouse (where TPPT expression in the GI tract is also restricted to the colon), the CpG island predicted in the Slc44a4 promoter is non-methylated in both the jejunum and colon, thus arguing against possible contribution of DNA methylation in the colon-specific expression of TPPT. A role for histone modifications in the tissue-specific pattern of Slc44a4 expression, however, was suggested by the findings that in mouse colon, histone H3 in the 5'-regulatory region of Slc44a4 is tri-methylated at lysine 4 and acetylated at lysine 9, whereas the tri-methylation at lysine 27 modification was negligible. In contrast, in the mouse jejunum, histone H3 is hyper-trimethylated at lysine 27 (repressor mark). Similarly, possible involvement of miRNA(s) in the tissue-specific expression of TPPT was also suggested by the findings that the 3'-UTR of SLC44A4 is targeted by specific miRNAs/RNA binding proteins in non-colonic, but not in colonic, epithelial cells. These studies show, for the first time, epigenetic mechanisms (histone modifications) play a role in determining the tissue-specific pattern of expression of TPPT

  18. Active intracellular transport in metastatic cells studied by spatial light interference microscopy

    NASA Astrophysics Data System (ADS)

    Ceballos, Silvia; Kandel, Mikhail; Sridharan, Shamira; Majeed, Hassaan; Monroy, Freddy; Popescu, Gabriel

    2015-11-01

    Spatiotemporal patterns of intracellular transport are very difficult to quantify and, consequently, continue to be insufficiently understood. While it is well documented that mass trafficking inside living cells consists of both random and deterministic motions, quantitative data over broad spatiotemporal scales are lacking. We studied the intracellular transport in live cells using spatial light interference microscopy, a high spatiotemporal resolution quantitative phase imaging tool. The results indicate that in the cytoplasm, the intracellular transport is mainly active (directed, deterministic), while inside the nucleus it is both active and passive (diffusive, random). Furthermore, we studied the behavior of the two-dimensional mass density over 30 h in HeLa cells and focused on the active component. We determined the standard deviation of the velocity distribution at the point of cell division for each cell and compared the standard deviation velocity inside the cytoplasm and the nucleus. We found that the velocity distribution in the cytoplasm is consistently broader than in the nucleus, suggesting mechanisms for faster transport in the cytosol versus the nucleus. Future studies will focus on improving phase measurements by applying a fluorescent tag to understand how particular proteins are transported inside the cell.

  19. Active intracellular transport in metastatic cells studied by spatial light interference microscopy.

    PubMed

    Ceballos, Silvia; Kandel, Mikhail; Sridharan, Shamira; Majeed, Hassaan; Monroy, Freddy; Popescu, Gabriel

    2015-01-01

    Spatiotemporal patterns of intracellular transport are very difficult to quantify and, consequently, continue to be insufficiently understood. While it is well documented that mass trafficking inside living cells consists of both random and deterministic motions, quantitative data over broad spatiotemporal scales are lacking. We studied the intracellular transport in live cells using spatial light interference microscopy, a high spatiotemporal resolution quantitative phase imaging tool. The results indicate that in the cytoplasm, the intracellular transport is mainly active (directed, deterministic), while inside the nucleus it is both active and passive (diffusive, random). Furthermore, we studied the behavior of the two-dimensional mass density over 30 h in HeLa cells and focused on the active component. We determined the standard deviation of the velocity distribution at the point of cell division for each cell and compared the standard deviation velocity inside the cytoplasm and the nucleus. We found that the velocity distribution in the cytoplasm is consistently broader than in the nucleus, suggesting mechanisms for faster transport in the cytosol versus the nucleus. Future studies will focus on improving phase measurements by applying a fluorescent tag to understand how particular proteins are transported inside the cell. PMID:26271006

  20. Structure and permeation mechanism of a mammalian urea transporter

    SciTech Connect

    Levin, Elena J.; Cao, Yu; Enkavi, Giray; Quick, Matthias; Pan, Yaping; Tajkhorshid, Emad; Zhou, Ming

    2012-09-17

    As an adaptation to infrequent access to water, terrestrial mammals produce urine that is hyperosmotic to plasma. To prevent osmotic diuresis by the large quantity of urea generated by protein catabolism, the kidney epithelia contain facilitative urea transporters (UTs) that allow rapid equilibration between the urinary space and the hyperosmotic interstitium. Here we report the first X-ray crystal structure of a mammalian UT, UT-B, at a resolution of 2.36 {angstrom}. UT-B is a homotrimer and each protomer contains a urea conduction pore with a narrow selectivity filter. Structural analyses and molecular dynamics simulations showed that the selectivity filter has two urea binding sites separated by an approximately 5.0 kcal/mol energy barrier. Functional studies showed that the rate of urea conduction in UT-B is increased by hypoosmotic stress, and that the site of osmoregulation coincides with the location of the energy barrier.

  1. On the mechanisms of heat transport across vacuum gaps

    NASA Astrophysics Data System (ADS)

    Budaev, Bair V.; Bogy, David B.

    2011-12-01

    Heat exchange between closely positioned bodies has become an important issue for many areas of modern technology including, but not limited to, integrated circuits, atomic force microscopy, and high-density magnetic recording, which deal with bodies separated by gaps as narrow as a few nanometers. It is now recognized that heat transport across a gap of sub-micron width does not follow the Stefan-Boltzmann law, which is based on a conventional theory developed for sufficiently wide gaps. This paper describes the structure of thermally excited electromagnetic fields in arbitrarily narrow gaps, and it also shows that heat can be carried across narrow vacuum gaps by acoustic waves. The structure of the acoustic wave fields is also described, and it is shown that they become the dominant heat carriers in gaps narrower than a certain critical width, which is estimated to be a few nanometers. For example, consider a vacuum gap between silicon half-spaces. When the gap's width is below a critical value, which is about 7.5 nm, the contribution of acoustic waves must be taken into account. Assuming that the wavelength of thermally excited acoustic waves is of order 1 nm, it may be possible to estimate the contribution of acoustic waves to heat transport across gaps with 4 nm < h < 7.5 nm by the kinetic theory, but for narrower gaps with h < 4 nm, this approximation is not valid, and then the full wave theory must be used. Also for gaps narrower than about 2.5 nm, there is no need to take into account electromagnetic radiation because its contribution is negligible compared to that of acoustic waves.

  2. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.

    PubMed

    Bredeston, Luis M; González Flecha, F Luis

    2016-07-01

    Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP. PMID:27086711

  3. Elastic tunneling charge transport mechanisms in silicon quantum dots / Si O 2 thin films and superlattices

    NASA Astrophysics Data System (ADS)

    Illera, S.; Prades, J. D.; Cirera, A.

    2015-05-01

    The role of different charge transport mechanisms in Si / Si O 2 structures has been studied. A theoretical model based on the Transfer Hamiltonian Formalism has been developed to explain experimental current trends in terms of three different elastic tunneling processes: (1) trap assisted tunneling; (2) transport through an intermediate quantum dot; and (3) direct tunneling between leads. In general, at low fields carrier transport is dominated by the quantum dots whereas, for moderate and high fields, transport through deep traps inherent to the SiO2 is the most relevant process. Besides, current trends in Si / Si O 2 superlattice structure have been properly reproduced.

  4. 78 FR 68908 - Proposed Information Collection (Veterans Transportation Service Data Collection); Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... AFFAIRS Proposed Information Collection (Veterans Transportation Service Data Collection); Activity... needed to evaluate the Veterans Transportation Service Data Collection program to ensure Veterans... Control No. 2900-NEW (Veterans Transportation Service Data Collection)'' in any correspondence. During...

  5. Transportation R and D included in thermal and mechanical sciences program

    SciTech Connect

    1995-03-01

    Argonne National Laboratory is a multiprogram research and development laboratory operated by The University of Chicago for the US Department of Energy. At Argonne, applied research in thermal and mechanical sciences is performed within the Thermal and Mechanical Sciences Section of the Energy Technology Division. Current program areas include compact evaporators and condensers for the process and transportation industries, ice slurries for district cooling, advanced fluids for improved heat transfer and reduced pressure drop, flow-induced vibration and flow distribution in shell-and-tube heat exchangers, and dynamics and control of maglev systems. In general, the objective of the research is to extend the technology base in each of these areas and to facilitate its application in solving problems of importance to US industries and utilities. This is accomplished by developing validated design correlations and predictive methods. The staff of the Thermal and Mechanical Sciences Section have extensive experimental and analytical experience in heat transfer, multiphase flow, structural dynamics and control, fluid-structure interaction, transient flow and mixing, thermally driven flows, and flow visualization using ultra-high-speed video. Large, general-purpose test facilities and smaller, single-purpose test apparatuses are available for experiments and component design evaluation. A world-class capability in the study of flow-induced vibrations exists within the Section. Individual fact sheets, describing currently active research program areas, related facilities, and listing, as a contact, the principal investigator, are included.

  6. Transportation R and D included in thermal and mechanical sciences program

    NASA Astrophysics Data System (ADS)

    1995-06-01

    Argonne National Laboratory is a multiprogram research and development laboratory operated by The University of Chicago for the US Department of Energy. At Argonne, applied research in thermal and mechanical sciences is performed within the Thermal and Mechanical Sciences Section of the Energy Technology Division. Current program areas include compact evaporators and condensers for the process and transportation industries, ice slurries for district cooling, advanced fluids for improved heat transfer and reduced pressure drop, flow-induced vibration and flow distribution in shell-and-tube heat exchangers, and dynamics and control of maglev systems. In general, the objective of the research is to extend the technology base in each of these areas and to facilitate its application in solving problems of importance to US industries and utilities. This is accomplished by developing validated design correlations and predictive methods. The staff of the Thermal and Mechanical Sciences Section have extensive experimental and analytical experience in heat transfer, multiphase flow, structural dynamics and control, fluid-structure interaction, transient flow and mixing, thermally driven flows, and flow visualization using ultra-high-speed video. Large, general-purpose test facilities and smaller, single-purpose test apparatuses are available for experiments and component design evaluation. A world-class capability in the study of flow-induced vibrations exists within the section. Individual fact sheets, describing currently active research program areas and related facilities and listing, as a contact, the principal investigator, are included.

  7. Active patterning and asymmetric transport in a model actomyosin network

    SciTech Connect

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  8. Active patterning and asymmetric transport in a model actomyosin network

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-01

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  9. Agmatine transport in brain mitochondria: a different mechanism from that in liver mitochondria.

    PubMed

    Battaglia, V; Grancara, S; Mancon, M; Cravanzola, C; Colombatto, S; Grillo, M A; Tempera, G; Agostinelli, E; Toninello, A

    2010-02-01

    The diamine agmatine (AGM), exhibiting two positive charges at physiological pH, is transported into rat brain mitochondria (RBM) by an electrophoretic mechanism, requiring high membrane potential values and exhibiting a marked non-ohmic force-flux relationship. The mechanism of this transport apparently resembles that observed in rat liver mitochondria (RLM), but there are several characteristics that strongly suggest the presence of a different transporter of agmatine in RBM. In this type of mitochondria, the extent of initial binding and total accumulation is higher and lower, respectively, than that in liver; saturation kinetics and the flux-voltage relationship also exhibit different trends, whereas idazoxan and putrescine, ineffective in RLM, act as inhibitors. The characteristics of agmatine uptake in RBM lead to the conclusion that its transporter is a channel with two asymmetric energy barriers, showing some characteristics similar to those of the imidazoline receptor I(2) and the sharing with the polyamine transporter. PMID:19997762

  10. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation. PMID:25862996

  11. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.

    PubMed

    Si, Wen; Xin, Pengyang; Li, Zhan-Ting; Hou, Jun-Li

    2015-06-16

    Lipid bilayer membranes separate living cells from their environment. Membrane proteins are responsible for the processing of ion and molecular inputs and exports, sensing stimuli and signals across the bilayers, which may operate in a channel or carrier mechanism. Inspired by these wide-ranging functions of membrane proteins, chemists have made great efforts in constructing synthetic mimics in order to understand the transport mechanisms, create materials for separation, and develop therapeutic agents. Since the report of an alkylated cyclodextrin for transporting Cu(2+) and Co(2+) by Tabushi and co-workers in 1982, chemists have constructed a variety of artificial transmembrane channels by making use of either the multimolecular self-assembly or unimolecular strategy. In the context of the design of unimolecular channels, important advances have been made, including, among others, the tethering of natural gramicidin A or alamethicin and the modification of various macrocycles such as crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Many of these unimolecular channels exhibit high transport ability for metal ions, particularly K(+) and Na(+). Concerning the development of artificial channels based on macrocyclic frameworks, one straightforward and efficient approach is to introduce discrete chains to reinforce their capability to insert into bilayers. Currently, this approach has found the widest applications in the systems of crown ethers and calixarenes. We envisioned that for macrocycle-based unimolecular channels, control of the arrangement of the appended chains in the upward and/or downward direction would favor the insertion of the molecular systems into bilayers, while the introduction of additional interactions among the chains would further stabilize a tubular conformation. Both factors should be helpful for the formation of new efficient channels. In this Account, we discuss our efforts in designing new unimolecular artificial channels from

  12. Coupling mechanical forces to electrical signaling: molecular motors and the intracellular transport of ion channels.

    PubMed

    Barry, Joshua; Gu, Chen

    2013-04-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  13. Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices

    NASA Astrophysics Data System (ADS)

    Miyake, Takeo; Rolandi, Marco

    2016-01-01

    In 1804, Theodore von Grotthuss proposed a mechanism for proton (H+) transport between water molecules that involves the exchange of a covalent bond between H and O with a hydrogen bond. This mechanism also supports the transport of OH- as a proton hole and is essential in explaining proton transport in intramembrane proton channels. Inspired by the Grotthuss mechanism and its similarity to electron and hole transport in semiconductors, we have developed semiconductor type devices that are able to control and monitor a current of H+ as well as OH- in hydrated biopolymers. In this topical review, we revisit these devices that include protonic diodes, complementary, transistors, memories and transducers as well as a phenomenological description of their behavior that is analogous to electronic semiconductor devices.

  14. Coupling Mechanical Forces to Electrical Signaling: Molecular Motors and the Intracellular Transport of Ion Channels

    PubMed Central

    Barry, Joshua; Gu, Chen

    2013-01-01

    Proper localization of various ion channels is fundamental to neuronal functions, including postsynaptic potential plasticity, dendritic integration, action potential initiation and propagation, and neurotransmitter release. Microtubule-based forward transport mediated by kinesin motors plays a key role in placing ion channel proteins to correct subcellular compartments. PDZ- and coiled-coil-domain proteins function as adaptor proteins linking ionotropic glutamate and GABA receptors to various kinesin motors, respectively. Recent studies show that several voltage-gated ion channel/transporter proteins directly bind to kinesins during forward transport. Three major regulatory mechanisms underlying intracellular transport of ion channels are also revealed. These studies contribute to understanding how mechanical forces are coupled to electrical signaling and illuminating pathogenic mechanisms in neurodegenerative diseases. PMID:22910031

  15. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  16. Uterine activity, sperm transport, and the role of boar stimuli around insemination in sows.

    PubMed

    Langendijk, P; Soede, N M; Kemp, B

    2005-01-15

    This paper describes changes in spontaneous myometrial activity around estrus, factors that affect myometrial activity, and the possible role of uterine contractions in the process of (artificial) insemination, sperm transport and fertilization. Myometrial activity in the sow increases during estrus. The activity is myogenic in origin, but several factors have been shown to affect myometrial activity. Natural mating stimulates uterine contractions through several mechanisms. The presence of a boar, rather than the act of mating, induces central oxytocin release in the sow and thus increases uterine activity. Estrogens in the ejaculate of a boar can trigger prostaglandin release by the endometrium and thus increase uterine activity. Tactile stimulation of the genital tract (cervix) or tactile stimulation of the back and flanks of the sow during artificial insemination does not cause a release of oxytocin. There is hardly any evidence for the effects of these latter stimuli on uterine activity, and if they are present at all, the effects are very small. Evidence for the effects of synthetic boar odor on oxytocin release and/or uterine activity is inconsistent. The mere presence of a boar during insemination, in contrast, clearly stimulates uterine activity through the release of oxytocin. Hormonal stimulation (intrauterine) of uterine activity with estrogens, prostaglandins, or oxytocins before, during or after insemination generally improves fertilization rate, especially in situations with reduced fertility. Therefore, uterine contractions are believed to play an important role in the transport of sperm cells to the oviducts after insemination. Whether uterine contractions are absolutely necessary for sperm transport through the uterine horns, however, is not clear. Intensive stimulation of uterine contractions using hormones can also reduce the fertilization rate, probably by increasing the reflux of sperm cells during insemination. In this respect, the presence

  17. Mechanism of unassisted ion transport across membrane bilayers

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  18. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  19. Intestinal absorption mechanism of tebipenem pivoxil, a novel oral carbapenem: involvement of human OATP family in apical membrane transport.

    PubMed

    Kato, Kazuhiko; Shirasaka, Yoshiyuki; Kuraoka, Erika; Kikuchi, Akihiro; Iguchi, Maki; Suzuki, Hisashi; Shibasaki, Shigeki; Kurosawa, Tohru; Tamai, Ikumi

    2010-10-01

    Tebipenem pivoxil (TBPM-PI) is an oral carbapenem antibiotic for treating otolaryngologic and respiratory infections in pediatric patients. This agent is a prodrug to improve intestinal absorption of TBPM, an active form, and an absorption rate of TBPM-PI is higher than those of other prodrug-type β-lactam antibiotics. In the present study, we hypothesized that a certain mechanism other than simple diffusion is involved in the process of improved intestinal absorption of TBPM-PI and examined the mechanism. TBPM-PI uptake by Caco-2 cells was decreased by ATP-depletion and lowering the temperature to 4 °C, suggesting the contribution of carrier-mediated transport mechanisms. This uptake was partially decreased by ACE inhibitors, and the reduction of the absorption by captopril was observed by in vivo study and in situ single-pass intestinal perfusion study in rat, supporting the contribution of influx transporters. Since some ACE inhibitors and β-lactam antibiotics are reported to be substrates of PEPT and OATP families, we measured transporting activity of TBPM-PI by intestinally expressed transporters, PEPT1, OATP1A2, and OATP2B1. As a result, significant transport activities were observed by both OATP1A2 and OATP2B1 but not by PEPT1. Interestingly, pH dependence of TBPM-PI transports was different between OATP1A2 and OATP2B1, showing highest activity by OATP1A2 at pH 6.5, while OATP2B1-mediated uptake was higher at neutral and weak alkaline pH. OATP1A2 exhibited higher affinity for TBPM-PI (K(m) = 41.1 μM) than OATP2B1 (K(m) > 1 mM) for this agent. These results suggested that TBPM-PI has high intestinal apical membrane permeability due to plural intestinal transport routes, including the uptake transporters such as OATP1A2 and OATP2B1 as well as simple diffusion. PMID:20735088

  20. Heteromeric amino acid transporters. In search of the molecular bases of transport cycle mechanisms.

    PubMed

    Palacín, Manuel; Errasti-Murugarren, Ekaitz; Rosell, Albert

    2016-06-15

    Heteromeric amino acid transporters (HATs) are relevant targets for structural studies. On the one hand, HATs are involved in inherited and acquired human pathologies. On the other hand, these molecules are the only known examples of solute transporters composed of two subunits (heavy and light) linked by a disulfide bridge. Unfortunately, structural knowledge of HATs is scarce and limited to the atomic structure of the ectodomain of a heavy subunit (human 4F2hc-ED) and distant prokaryotic homologues of the light subunits that share a LeuT-fold. Recent data on human 4F2hc/LAT2 at nanometer resolution revealed 4F2hc-ED positioned on top of the external loops of the light subunit LAT2. Improved resolution of the structure of HATs, combined with conformational studies, is essential to establish the structural bases for light subunit recognition and to evaluate the functional relevance of heavy and light subunit interactions for the amino acid transport cycle. PMID:27284037

  1. From Mechanical Motion to Brownian Motion, Thermodynamics and Particle Transport Theory

    ERIC Educational Resources Information Center

    Bringuier, E.

    2008-01-01

    The motion of a particle in a medium is dealt with either as a problem of mechanics or as a transport process in non-equilibrium statistical physics. The two kinds of approach are often unrelated as they are taught in different textbooks. The aim of this paper is to highlight the link between the mechanical and statistical treatments of particle…

  2. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    SciTech Connect

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L.

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  3. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 6 through 9.

    ERIC Educational Resources Information Center

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 6-9. It contains forty-two learning activities grouped…

  4. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 9 through 12.

    ERIC Educational Resources Information Center

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 9-12. It contains forty-nine learning activities grouped…

  5. Evidence for enhanced cross-field transport mechanisms in the TCV Snowflake divertor

    NASA Astrophysics Data System (ADS)

    Vijvers, Wouter

    2015-11-01

    TCV experiments demonstrate that cross-field plasma transport is enhanced in the Snowflake divertor (SFD) compared to a standard single-null divertor (SND). This enhanced cross-field transport spreads the exhaust power over a larger surface area than can be achieved by magnetic geometry alone and, thereby, reduces the peak heat flux. Comparison of the experiments with modelling identifies steepened radial gradients, ExB drift effects, and βp-driven instabilities as the responsible transport mechanisms. The uncovered physics is also relevant to the SND and may help improve predictive models for the target profiles in ITER and DEMO. In SFD variants with an X-point in the scrape-off layer (SOL), part of the heat flux profile is split off and redirected to an additional target. The resulting steepened radial gradients enhance cross-field diffusion. This is confirmed by EMC3-Eirene simulations, which show a factor two reduction of the parallel heat flux, even if diffusivities remain constant. Theoretical analysis predicts enhanced ExB drifts in the SFD by increased poloidal gradients of the temperature and density. The predictions are confirmed by target heat and particle flux measurements in dedicated experiments with both toroidal field directions. Cross-field convection by curvature-driven modes at high βp (``churning modes'') explains the large fluxes into the private flux region of the SFD. This activates the extra targets and reduces the peak power to the primary targets up to a factor four. This mechanism is expected to be most effective when the divertor conditions are most severe: near the separatrix of a narrow, high-pressure SOL of a large tokamak. These and other alternative divertor configurations thus provide potential solutions to the power exhaust challenge, as well as laboratories to study SOL transport, one of the most important topics in tokamak research. This project was carried out with financial support from NWO. The work was carried out within

  6. Defence mechanisms of olfactory neuro-epithelium: mucosa regeneration, metabolising enzymes and transporters.

    PubMed

    Watelet, J B; Strolin-Benedetti, M; Whomsley, R

    2009-01-01

    The olfactory neuro-epithelium is highly sensitive to chemicals and its direct microbiological environment. It also plays a role as an interface between the airways and the nervous system, and so it has developed several defence instruments for rapid regeneration or for the detoxification of the immediate environment. This review illustrates three of these defence mechanisms: regeneration of the epithelium, local production of metabolising enzymes and xenobiotic transporters. Toxicants can inflict damage by a direct toxic response. Alternatively, they may require metabolic activation to produce the proximate toxicant. In addition to detoxifying inhaled and systemically derived xenobiotics, the local olfactory metabolism may fulfil multiple functions such as the modification of inhaled odorant, the modulation of endogenous signalling molecules and the protection of other tissues such as the CNS and lungs from inhaled toxicants. Finally, the permeability of nasal and olfactory mucosa is an important efficacy parameter for some anti-allergic drugs delivered by intranasal administration or inhalation. Efflux or update transporters expressed in these tissues may therefore significantly influence the pharmacokinetics of drugs administered topically. PMID:20084803

  7. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  8. Identification of regulatory mechanisms of intestinal folate transport in condition of folate deficiency.

    PubMed

    Thakur, Shilpa; Rahat, Beenish; Hamid, Abid; Najar, Rauf Ahmad; Kaur, Jyotdeep

    2015-10-01

    Folic acid is an essential micronutrient, deficiency of which can lead to disturbance in various metabolic processes of cell. Folate transport across intestine occurs via the involvement of specialized folate transporters viz. proton coupled folate transporter (PCFT) and reduced folate carrier (RFC), which express at the membrane surfaces. The current study was designed to identify the regulatory mechanisms underlying the effects of folate deficiency (FD) on folate transport in human intestinal cell line as well as in rats and to check the reversibility of such effects. Caco-2 cells were grown for five generations in control and FD medium. Following treatment, one subgroup of cells was shifted on folate sufficient medium and grown for three more generations. Similarly, rats were fed an FD diet for 3 and 5 months, and after 3 months of FD treatment, one group of rats were shifted on normal folate-containing diet. Increase in folate transport and expression of folate transporters were observed on FD treatment. However, when cells and rats were shifted to control conditions after treatment, transport and expression of these genes restored to the control level. FD was found to have no impact on promoter methylation of PCFT and RFC; however, messenger RNA stability of transporters was found to be decreased, suggesting some adaptive response. Overall, increased expression of transporters under FD conditions can be attributed to enhanced rate of transcription of folate transporters and also to the increased binding of specificity protein 1 transcription factor to the RFC promoter only. PMID:26168702

  9. Acetaminophen inhibits intestinal p-glycoprotein transport activity.

    PubMed

    Novak, Analia; Carpini, Griselda Delli; Ruiz, María Laura; Luquita, Marcelo G; Rubio, Modesto C; Mottino, Aldo D; Ghanem, Carolina I

    2013-10-01

    Repeated acetaminophen (AP) administration modulates intestinal P-glycoprotein (P-gp) expression. Whether AP can modulate P-gp activity in a short-term fashion is unknown. We investigated the acute effect of AP on rat intestinal P-gp activity in vivo and in vitro. In everted intestinal sacs, AP inhibited serosal-mucosal transport of rhodamine 123 (R123), a prototypical P-gp substrate. R123 efflux plotted against R123 concentration adjusted well to a sigmoidal curve. Vmax decreased 50% in the presence of AP, with no modification in EC50, or slope, ruling out the possibility of inhibition to be competitive. Inhibition by AP was absent at 0°C, consistent with interference of the active transport of R123 by AP. Additionally, AP showed no effect on normal localization of P-gp at the apical membrane of the enterocyte and neither affected paracellular permeability. Consistent with absence of a competitive inhibition, two further strategies strongly suggested that AP is not a P-gp substrate. First, serosal-mucosal transport of AP was not affected by the classical P-gp inhibitors verapamil or Psc 833. Second, AP accumulation was not different between P-gp knock-down and wild-type HepG2 cells. In vivo intestinal absorption of digoxin, another substrate of P-gp, was assessed in the presence or absence of AP (100 μM). Portal digoxin concentration was increased by 214%, in average, by AP, as compared with digoxin alone. In conclusion, AP inhibited P-gp activity, increasing intestinal absorption of digoxin, a prototypical substrate. These results suggest that therapeutic efficacy of P-gp substrates can be altered if coadministered with AP. PMID:23897240

  10. Identification of a Novel Regulatory Mechanism of Nutrient Transport Controlled by TORC1-Npr1-Amu1/Par32.

    PubMed

    Boeckstaens, Mélanie; Merhi, Ahmad; Llinares, Elisa; Van Vooren, Pascale; Springael, Jean-Yves; Wintjens, René; Marini, Anna Maria

    2015-07-01

    Fine-tuning the plasma-membrane permeability to essential nutrients is fundamental to cell growth optimization. Nutritional signals including nitrogen availability are integrated by the TORC1 complex which notably regulates arrestin-mediated endocytosis of amino-acid transporters. Ammonium is a ubiquitous compound playing key physiological roles in many, if not all, organisms. In yeast, it is a preferred nitrogen source transported by three Mep proteins which are orthologues of the mammalian Rhesus factors. By combining genetic, kinetic, biochemical and cell microscopy analyses, the current study reveals a novel mechanism enabling TORC1 to regulate the inherent activity of ammonium transport proteins, independently of arrestin-mediated endocytosis, identifying the still functional orphan Amu1/Par32 as a selective regulator intermediate. We show that, under poor nitrogen supply, the TORC1 effector kinase' Npr1' promotes phosphorylation of Amu1/Par32 which appears mainly cytosolic while ammonium transport proteins are active. Upon preferred nitrogen supplementation, like glutamine or ammonium addition, TORC1 upregulation enables Npr1 inhibition and Amu1/Par32 dephosphorylation. In these conditions, as in Npr1-lacking cells, hypophosphorylated Amu1/Par32 accumulates at the cell surface and mediates the inhibition of specific ammonium transport proteins. We show that the integrity of a conserved repeated motif of Amu1/Par32 is required for the interaction with these transport proteins. This study underscores the diversity of strategies enabling TORC1-Npr1 to selectively monitor cell permeability to nutrients by discriminating between transporters to be degraded or transiently inactivated and kept stable at the plasma membrane. This study further identifies the function of Amu1/Par32 in acute control of ammonium transport in response to variations in nitrogen availability. PMID:26172854

  11. Identification of a Novel Regulatory Mechanism of Nutrient Transport Controlled by TORC1-Npr1-Amu1/Par32

    PubMed Central

    Boeckstaens, Mélanie; Merhi, Ahmad; Llinares, Elisa; Van Vooren, Pascale; Springael, Jean-Yves; Wintjens, René; Marini, Anna Maria

    2015-01-01

    Fine-tuning the plasma-membrane permeability to essential nutrients is fundamental to cell growth optimization. Nutritional signals including nitrogen availability are integrated by the TORC1 complex which notably regulates arrestin-mediated endocytosis of amino-acid transporters. Ammonium is a ubiquitous compound playing key physiological roles in many, if not all, organisms. In yeast, it is a preferred nitrogen source transported by three Mep proteins which are orthologues of the mammalian Rhesus factors. By combining genetic, kinetic, biochemical and cell microscopy analyses, the current study reveals a novel mechanism enabling TORC1 to regulate the inherent activity of ammonium transport proteins, independently of arrestin-mediated endocytosis, identifying the still functional orphan Amu1/Par32 as a selective regulator intermediate. We show that, under poor nitrogen supply, the TORC1 effector kinase' Npr1' promotes phosphorylation of Amu1/Par32 which appears mainly cytosolic while ammonium transport proteins are active. Upon preferred nitrogen supplementation, like glutamine or ammonium addition, TORC1 upregulation enables Npr1 inhibition and Amu1/Par32 dephosphorylation. In these conditions, as in Npr1-lacking cells, hypophosphorylated Amu1/Par32 accumulates at the cell surface and mediates the inhibition of specific ammonium transport proteins. We show that the integrity of a conserved repeated motif of Amu1/Par32 is required for the interaction with these transport proteins. This study underscores the diversity of strategies enabling TORC1-Npr1 to selectively monitor cell permeability to nutrients by discriminating between transporters to be degraded or transiently inactivated and kept stable at the plasma membrane. This study further identifies the function of Amu1/Par32 in acute control of ammonium transport in response to variations in nitrogen availability. PMID:26172854

  12. Platelet Activation: The Mechanisms and Potential Biomarkers

    PubMed Central

    Yun, Seong-Hoon; Sim, Eun-Hye; Goh, Ri-Young; Park, Joo-In

    2016-01-01

    Beyond hemostasis and thrombosis, an increasing number of studies indicate that platelets play an integral role in intercellular communication, mediating inflammatory and immunomodulatory activities. Our knowledge about how platelets modulate inflammatory and immunity has greatly improved in recent years. In this review, we discuss recent advances in the pathways of platelet activation and potential application of platelet activation biomarkers to diagnosis and prediction of disease states. PMID:27403440

  13. Activity ratios of (234)U/(238)U and (226)Ra/(228)Ra for transport mechanisms of elevated uranium in alluvial aquifers of groundwater in south-western (SW) Punjab, India.

    PubMed

    Kumar, A; Karpe, R K; Rout, S; Gautam, Y P; Mishra, M K; Ravi, P M; Tripathi, R M

    2016-01-01

    The concentrations of total dissolved uranium (U), its isotopic composition ((234)U, (235)U, (238)U) and two long lived Ra isotopes ((226)Ra and (228)Ra) in alluvial aquifers of groundwater were determined to investigate the groundwater flow pattern in the south-western (SW) Punjab, India. Particular attention was given to the spatial variability of activity ratios (ARs) of (234)U/(238)U and (226)Ra/(228)Ra to predict the possible sources and supply process of U into the water from the solid phase. The measured groundwater (234)U/(238)U ARs were ∼1 or >1 in the shallow zone (depth < 30 m) with high U concentration and <1 in the deeper zone (depth > 30 m) with relatively low U concentration. The simultaneous elevated U concentration and (234)U/(238)U ARs in waters were possibly due to differences in imprints of rock-water interactions under hydrologic conditions. However, (234)U/(238)U ARs < 1 clearly indicate the lack of recharge from surface water to groundwater leading to (234)U deficit in groundwater. This deficit might be also attributed to alpha recoil processes under strong dissolution. Overall, the decreasing pattern of (234)U/(238)U ARs observed from SE to SW or NW ward clearly indicates a groundwater flow paths from SE to SW/NW. Similarly, (226)Ra/(238)U ARs < 1 for all water samples reflect that the precursor (238)U is fairly mobile relative to (226)Ra. This might be due to unusually high amount of (238)U in groundwaters and subsequently the different geochemistry of the two isotopes. On the other hand, (226)Ra/(228)Ra ARs in groundwaters varied widely and observed about 50-300 times higher than (238)U/(232)Th ARs in granitic rocks or soils. Such elevation in ARs might be attributed to different dissolution properties of their parents during water-rock interactions or lattice damage during decay or local enrichments of uranium in the aquifers. PMID:26555366

  14. Structure and Mechanism of the S Component of a Bacterial ECF Transporter

    SciTech Connect

    P Zhang; J Wang; Y Shi

    2011-12-31

    The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-{angstrom} resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.

  15. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    PubMed

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  16. Active sodium transport and the electrophysiology of rabbit colon.

    PubMed

    Schultz, S G; Frizzell, R A; Nellans, H N

    1977-05-12

    The electrophysiologic properties of rabbit colonic epithelial cells were investigated employing microelectrode techniques. Under open-circuit conditions, the transepithelial electrical potential difference (PD) averaged 20 mV, serosa positive, and the intracellular electrical potential (psimc) averaged -32 mV, cell interior negative with respect to the mucosal solution; under short-circuit conditions, psimc averaged -46 mV. The addition of amiloride to the mucosal solution abolishes the transepithelial PD and active Na transport, and psimc is hyperpolarized to an average value of -53 mV. These results indicate that Na entry into the mucosal cell is a conductive process which, normally, depolarized psimc. The data obtained were interpreted using a double-membrane equivalent electrical circuit model of the "active Na transport pathway" involving two voltage-independent electromotive forces (emf's) and two voltage-independent resistances arrayed in series. Our observations are consistent with the notions that: (a) The emf's and resistances across the mucosal and baso-lateral membranes are determined predominantly by the emf (64 mV) and resistance of the Na entry process and the emf (53 mV) and resistance of the process responsible for active Na extrusion across the baso-lateral membranes: that is, the electrophysiological properties of the cell appear to be determined solely by the properties and processes responsible for transcellular active Na transport. The emf of the Na entry process is consistent with the notion that the Na activity in the intracellular transport pool is approximately one-tenth that in the mucosal solution or about 14 mM. (b) In the presence of amiloride, the transcellular conductance is essentially abolished and the total tissue conductance is the result of ionic diffusion through paracellular pathways. (c) The negative intracellular potential (with respect to the mucosal solution) is due primarily to the presence of a low resistance

  17. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  18. Review: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments

    DOE PAGESBeta

    Carroll, Susan A.; Carey, William J.; Dzombak, David; Huerta, Nicolas J.; Li, Li; Richard, Tom; Um, Wooyong; Walsh, Stuart D. C.; Zhang, Liwei

    2016-03-22

    rate and nature of alteration depends on the cement, brine, and injected fluid compositions. For example, the presence of co-injected gases (e.g. O2, H2S, and SO2) and pozzolan amendments (fly ash) to cement influences the rate and the nature of cement reactions. A more complete understanding of the coupled physical-chemical mechanisms involved with sealing and opening of leakage pathways is needed. An important challenge is to take empirically based chemical, mechanical, and transport models reviewed here and assess leakage risk for carbon storage at the field scale. Furthermore, field observations to accompany laboratory and modeling studies are critical to validating understanding of leakage risk. Long-term risk at the field scale is an area of active research made difficult by the large variability of material types (cement, geologic material, casing), field conditions (pressure, temperature, gradient in potential, residence time), and leaking fluid composition (CO2, co-injected gases, brine). Of particular interest are the circumstances when sealing and other protective mechanisms are likely to be effective, when they are likely to fail, and the zone of uncertainty between these two extremes.« less

  19. Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells.

    PubMed

    Donnenberg, Vera S; Meyer, E Michael; Donnenberg, Albert D

    2009-01-01

    Multiple drug resistance, mediated by the expression and activity of ABC-transporters, is a major obstacle to antineoplastic therapy. Normal tissue stem cells and their malignant counterparts share MDR transporter activity as a major mechanism of self-protection. Although MDR activity is upregulated in response to substrate chemotherapeutic agents, it is also constitutively expressed on both normal tissue stem cells and a subset of tumor cells prior to the initiation of therapy, representing a built-in obstacle to therapeutic ratio. Constitutive and induced MDR activity can be detected in cellular subsets of disaggregated tissues, using the fluorescent substrates Rhodamine 123 and Hoechst 33342 for ABCB1 (also known as P-gp and MDR1) and ABCG2 (BCRP1). In this chapter, we will describe the complete procedure for the detection of MDR activity, including: (1) Preparing single-cell suspensions from tumor and normal tissue specimens; (2) An efficient method to perform cell surface marker staining on large numbers of cells; (3) Flow cytometer setup and controls; (4) Simultaneous measurement of Hoechst 33342 and Rhodamine123 transport; and (5) Data acquisition and analysis. PMID:19582433

  20. The Mechanical Design for the DARHT-II Downstream Beam Transport Line

    NASA Astrophysics Data System (ADS)

    Westenskow, Glen

    This paper describes the mechanical design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT II) Facility. The DARHT-II project is a collaboration between LANL, LBNL and LLNL. DARHT II is a 20-MeV, 2000-Amperes, 2-msec linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The down-stream beam transport line is approximately 20-meter long region extending from the end of the accelerator to the bremsstrahlung target. Within this proposed transport line there are 15 conventional solenoid, quadrupole and dipole magnets; as well as several speciality magnets, which transport and focus the beam to the target and to the beam dumps. There are two high power beam dumps, which are designed to absorb 80-kJ per pulse during accelerator start-up and operation. Aspects of the mechanical design of these elements are presented.

  1. Evaluation of potential sources and transport mechanisms of fecal indicator bacteria to beach water, Murphy Park Beach, Door County, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Corsi, Steven R.; McDermott, Colleen; Kleinheinz, Gregory; Fogarty, Lisa R.; Haack, Sheridan K.; Johnson, Heather E.

    2013-01-01

    Fecal Indicator Bacteria (FIB) concentrations in beach water have been used for many years as a criterion for closing beaches due to potential health concerns. Yet, current understanding of sources and transport mechanisms that drive FIB occurrence remains insufficient for accurate prediction of closures at many beaches. Murphy Park Beach, a relatively pristine beach on Green Bay in Door County, Wis., was selected for a study to evaluate FIB sources and transport mechanisms. Although the relatively pristine nature of the beach yielded no detection of pathogenic bacterial genes and relatively low FIB concentrations during the study period compared with other Great Lakes Beaches, its selection limited the number of confounding FIB sources and associated transport mechanisms. The primary sources of FIB appear to be internal to the beach rather than external sources such as rivers, storm sewer outfalls, and industrial discharges. Three potential FIB sources were identified: sand, swash-zone groundwater, and Cladophora mats. Modest correlations between FIB concentrations in these potential source reservoirs and FIB concentrations at the beach from the same day illustrate the importance of understanding transport mechanisms between FIB sources and the water column. One likely mechanism for transport and dispersion of FIB from sand and Cladophora sources appears to be agitation of Cladophora mats and erosion of beach sand due to storm activity, as inferred from storm indicators including turbidity, wave height, current speed, wind speed, sky visibility, 24-hour precipitation, and suspended particulate concentration. FIB concentrations in beach water had a statistically significant relation (p-value ‹0.05) with the magnitude of these storm indicators. In addition, transport of FIB in swash-zone groundwater into beach water appears to be driven by groundwater recharge associated with multiday precipitation and corresponding increased swash-zone groundwater discharge at

  2. Evidence for a Novel Affinity Mechanism of Motor-assisted Transport Along MicrotubulesV⃞

    PubMed Central

    Wada, Yuuko; Hamasaki, Toshikazu; Satir, Peter

    2000-01-01

    In microtubule (MT) translocation assays, using colloidal gold particles coupled to monoclonal tubulin antibodies to mark positions along MTs, we found that relative motion is possible between the gold particle and an MT, gliding on dynein or kinesin. Such motion evidently occurred by an affinity release and rebinding mechanism that did not require motor activity on the particle. As the MTs moved, particles drifted to the trailing edge of the MT and then were released. Sometimes the particles transferred from one MT to another, moving orthogonally. Although motion of the particles was uniformly rearward, movement was toward the (−) or (+) end of the MT, depending on whether dynein or kinesin, respectively, was used in the assay. These results open possibilities for physiological mechanisms of organelle and other movement that, although dependent on motor-driven microtubule transport, do not require direct motor attachment between the organelle and the microtubule. Our observations on the direction of particle drift and time of release may also provide confirmation in a dynamic system for the conclusion that β tubulin is exposed at the (+) end of the MT. PMID:10637299

  3. Mechanisms of improvement of intestinal transport of baicalin and puerarin by extracts of Radix Angelicae Dahuricae.

    PubMed

    Liang, Xin-Li; Zhang, Jing; Zhao, Guo-Wei; Li, Zhe; Luo, Yun; Liao, Zheng-Gen; Yan, Dong-Mei

    2015-02-01

    Radix Angelicae Dahuricae is the dried root of Angelicae Dahurica (Fisch.ex Hoffm.)Benth.et Hook.f. var.formosana (Boiss.) Shan et Yuan (Fam.Umbelliferae). The total coumarins (Cou) and volatile oil (VO) were main active components that drived from Radix Angelicae Dahuricae. Our previous studies have shown that Cou and VO could increase intestinal absorption for transmucosal drug delivery with unknown mechanism. The aim of this study was to investigate the molecular mechanism of Radix Angelicae Dahuricae for improving drug intestinal transport. Caco-2 cell model was used to study the effect of Radix Angelicae Dahurica on transepithelial electrical resistance. Western blot was used to study its effect on the expression of the actin and ZO-1, tight junction proteins. The effect of Radix Angelicae Dahurica on the expression of P-gp protein was investigated using flow cytometry. VO (0.036-2.88 μL/mL) and Cou (0.027-0.54 mg/mL) caused a reversible, time- and dose-dependent decrease in transepithelial electrical resistance. VO and/or Cou could inhibit the expression of the tight junction protein, ZO-1 and actin. VO and/or Cou also could inhibit the expression of P-gp. These data suggested that Radix Angelicae Dahurica increased cell permeability by affecting the expression of actin, ZO-1 or P-gp, opening the tight junction or inhibiting the efflux induced by P-gp. PMID:25312586

  4. Interstitial Oxide Ion Distribution and Transport Mechanism in Aluminum-Doped Neodymium Silicate Apatite Electrolytes.

    PubMed

    An, Tao; Baikie, Tom; Orera, Alodia; Piltz, Ross O; Meven, Martin; Slater, Peter R; Wei, Jun; Sanjuán, María L; White, T J

    2016-04-01

    Rare earth silicate apatites are one-dimensional channel structures that show potential as electrolytes for solid oxide fuel cells (SOFC) due to their high ionic conductivity at intermediate temperatures (500-700 °C). This advantageous property can be attributed to the presence of both interstitial oxygen and cation vacancies, that create diffusion paths which computational studies suggest are less tortuous and have lower activation energies for migration than in stoichiometric compounds. In this work, neutron diffraction of Nd(28+x)/3AlxSi6-xO26 (0 ≤ x ≤ 1.5) single crystals identified the locations of oxygen interstitials, and allowed the deduction of a dual-path conduction mechanism that is a natural extension of the single-path sinusoidal channel trajectory arrived at through computation. This discovery provides the most thorough understanding of the O(2-) transport mechanism along the channels to date, clarifies the mode of interchannel motion, and presents a complete picture of O(2-) percolation through apatite. Previously reported crystallographic and conductivity measurements are re-examined in the light of these new findings. PMID:27015162

  5. Active transport and accumulation of bicarbonate by a unicellular cyanobacterium.

    PubMed

    Miller, A G; Colman, B

    1980-09-01

    The rates of inorganic carbon accumulation and carbon fixation in light by the unicellular cyanobacterim Coccohloris peniocystis have been determined. Cells incubated in the light in medium containing H14CO3- were rapidly separated from the medium by centrifugation through silicone oil into a strongly basic terminating solution. Samples of these inactivated cells were assayed to determine total 14C accumulation, and acid-treated samples were assayed to determine 14C fixation. The rate of transport of inorganic into illuminated cells was faster than the rate of CO2 production in the medium from HCO3- dehydration. This evidence for HCO3- transport in these cells is in agreement with our previous results based upon measurements of photosynthetic O2 evolution. A substantial pool of inorganic carbon was bulit up within the cells presumably as HCO3- before the onset of the maximum rate of photosynthesis. Large accumulation ratios were observed, greater than 1,000 times the external HCO3- concentration. Accumulation did not occur in the dark and was greatly suppressed by the photosynthesis inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl urea and 3-chloro-carbonylcyanide phenylhydrazone. These results indicate that the accumulation of inorganic carbon in these cells involves a light-dependent active transport process. PMID:6773925

  6. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  7. Adult Active Transport in the Netherlands: An Analysis of Its Contribution to Physical Activity Requirements

    PubMed Central

    Fishman, Elliot; Böcker, Lars; Helbich, Marco

    2015-01-01

    Introduction Modern, urban lifestyles have engineered physical activity out of everyday life and this presents a major threat to human health. The Netherlands is a world leader in active travel, particularly cycling, but little research has sought to quantify the cumulative amount of physical activity through everyday walking and cycling. Methods Using data collected as part of the Dutch National Travel Survey (2010 – 2012), this paper determines the degree to which Dutch walking and cycling contributes to meeting minimum level of physical activity of 150 minutes of moderate intensity aerobic activity throughout the week. The sample includes 74,465 individuals who recorded at least some travel on the day surveyed. As physical activity benefits are cumulative, all walking and cycling trips are analysed, including those to and from public transport. These trips are then converted into an established measure of physical activity intensity, known as metabolic equivalents of tasks. Multivariate Tobit regression models were performed on a range of socio-demographic, transport resources, urban form and meteorological characteristics. Results The results reveal that Dutch men and women participate in 24 and 28 minutes of daily physical activity through walking and cycling, which is 41% and 55% more than the minimum recommended level. It should be noted however that some 57% of the entire sample failed to record any walking or cycling, and an investigation of this particular group serves as an important topic of future research. Active transport was positively related with age, income, bicycle ownership, urban density and air temperature. Car ownership had a strong negative relationship with physically active travel. Conclusion The results of this analysis demonstrate the significance of active transport to counter the emerging issue of sedentary lifestyle disease. The Dutch experience provides other countries with a highly relevant case study in the creation of

  8. Active urea transport by the skin of Bufo viridis: Amiloride- and phloretin-sensitive transport sites

    SciTech Connect

    Rapoport, J.; Abuful, A.; Chaimovitz, C.; Noeh, Z.; Hays, R.M. Albert Einstein College of Medicine, New York, NY )

    1988-09-01

    Urea is actively transported inwardly (J{sub i}) across the skin of the green toad Bufo viridis. J{sub i} is markedly enhanced in toads adapted to hypertonic saline. The authors studied urea transport across the skin of Bufo viridis under a variety of experimental conditions, including treatment with amiloride and phloretin, agents that inhibit urea permeability in the bladder of Bufo marinus. Amiloride (10{sup {minus}4} M) significantly inhibited J{sub i} in both adapted and unadapted animals and was unaffected by removal of sodium from the external medium. Phloretin (10{sup {minus}4} M) significantly inhibited J{sub i} in adapted animals by 23-46%; there was also a reduction in J{sub i} in unadapted toads at 10{sup {minus}4} and 5 {times} 10{sup {minus}4} M phloretin. A dose-response study revealed that the concentration of phloretin causing half-maximal inhibition (K{sub {1/2}}) was 5 {times} 10{sup {minus}4} M for adapted animals. J{sub i} was unaffected by the substitution of sucrose for Ringer solution or by ouabain. They conclude (1) the process of adaptation appears to involve an increase in the number of amiloride- and phloretin-inhibitable urea transport sites in the skin, with a possible increase in the affinity of the sites for phloretin; (2) the adapted skin resembles the Bufo marinus urinary bladder with respect to amiloride and phloretin-inhibitable sites; (3) they confirm earlier observations that J{sub i} is independent of sodium transport.

  9. Pultonium Colloid-Facilitated Transport in the Environment - Experimental and Transport Modeling Evidence for Plutonium Migration Mechanisms

    SciTech Connect

    Zavarin, M; Maxwell, R M; Kersting, A B; Zhao, P; Sylwester, E R; Allen, P G; Williams, R W

    2003-02-19

    Natural inorganic colloids (< 1 micron particles) found in groundwater can sorb low-solubility actinides and may provide a pathway for transport in the subsurface. For example, Kerting et al found that Pu, associated with colloids fraction of the groundwater, was detected over 1 km away from the underground nuclear test at the Nevada Test Site (NTS) where it was originally deposited 28 years earlier. However, laboratory experiments have not identified the mechanisms by which Pu may sorb to colloids or exist as its own colloid and travel relatively unimpeded in the subsurface. Some data suggest that Pu sorption to colloids is a very fast process while desorption is very slow or simply does not occur. Slow desorption of Pu from colloids could allow Pu sorbed to a colloid to travel much farther than if sorption were an equilibrium process. However, PU sorption (and particularly desorption) data in the literature are scant and sometimes contradictory. In some cases, Pu desorption is rather fast, with rates dependent on colloid mineralogy. Moreover, the effect of sorption and desorption kinetics (as well as other mechanisms) on colloid-facilitated transport at the field scale has not been thoroughly evaluated. This is, in part, due to limitations in colloid transport as well as sorption/desorption models.

  10. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.

    PubMed

    Raveh, Barak; Karp, Jerome M; Sparks, Samuel; Dutta, Kaushik; Rout, Michael P; Sali, Andrej; Cowburn, David

    2016-05-01

    Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport. PMID:27091992

  11. Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing?

    PubMed

    Gu, Mian; Chen, Aiqun; Sun, Shubin; Xu, Guohua

    2016-03-01

    It has been almost 25 years since the first report of the gene encoding a high-affinity phosphate transporter (PT), PHO84, in yeast. Since then, an increasing number of yeast PHO84 homologs as well as other genes encoding proteins with phosphate (Pi) transport activities have been identified and functionally characterized in diverse plant species. Great progress has been made also in deciphering the molecular mechanism underlying the regulation of the abundance and/or activity of these genes and their products. The regulatory genes affect plant Pi homeostasis commonly through direct or indirect regulation of the abundance of PTs at different levels. However, little has been achieved in the use of PTs for developing genetically modified crops with high phosphorus use efficiency (PUE). This might be a consequence of overemphasizing Pi uptake from the rhizosphere and lack of knowledge about the roles of PTs in Pi transport and recycling within the plant that are required to optimize PUE. Here, we mainly focused on the genes encoding proteins with Pi transport activities and the emerging understanding of their regulation at the transcriptional, post-transcriptional, translational, and post-translational levels. In addition, we propose potential strategies for effective use of PTs in improving plant growth and development. PMID:26714050

  12. Qualification of active mechanical components for nuclear power plants

    SciTech Connect

    Allen, R.D.; Mollerus, F.J.

    1983-11-01

    The Electric Power Research Institute has undertaken a study of active safety related mechanical components in domestic nuclear plants to determine what qualification information exists and to establish a plan for qualification of those components. Active safety related mechanical components are those which undergo mechanical motion to perform a safety function. The overall objective of the study is to recommend appropriate methods and realistic criteria for the environmental, seismic and dynamic qualification of active mechanical components. This paper presents the results of progress in this project through May 1983.

  13. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2014-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  14. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  15. Active migration and passive transport of malaria parasites.

    PubMed

    Douglas, Ross G; Amino, Rogerio; Sinnis, Photini; Frischknecht, Freddy

    2015-08-01

    Malaria parasites undergo a complex life cycle between their hosts and vectors. During this cycle the parasites invade different types of cells, migrate across barriers, and transfer from one host to another. Recent literature hints at a misunderstanding of the difference between active, parasite-driven migration and passive, circulation-driven movement of the parasite or parasite-infected cells in the various bodily fluids of mosquito and mammalian hosts. Because both active migration and passive transport could be targeted in different ways to interfere with the parasite, a distinction between the two ways the parasite uses to get from one location to another is essential. We discuss the two types of motion needed for parasite dissemination and elaborate on how they could be targeted by future vaccines or drugs. PMID:26001482

  16. Directed transport of active particles over asymmetric energy barriers.

    PubMed

    Koumakis, N; Maggi, C; Di Leonardo, R

    2014-08-21

    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transition rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions. PMID:24978345

  17. Active transport of maltose in membrane vesicles obtained from Escherichia coli cells producing tethered maltose-binding protein.

    PubMed Central

    Dean, D A; Fikes, J D; Gehring, K; Bassford, P J; Nikaido, H

    1989-01-01

    Attempts to reconstitute periplasmic binding protein-dependent transport activity in membrane vesicles have often resulted in systems with poor and rather inconsistent activity, possibly because of the need to add a large excess of purified binding protein to the vesicles. We circumvented this difficulty by using a mutant which produces a precursor maltose-binding protein that is translocated across the cytoplasmic membrane but is not cleaved by the signal peptidase (J. D. Fikes and P. J. Bassford, Jr., J. Bacteriol. 169:2352-2359, 1987). The protein remains tethered to the cytoplasmic membrane, presumably through the hydrophobic signal sequence, and we show here that the spheroplasts and membrane vesicles prepared from this mutant catalyze active maltose transport without the addition of purified maltose-binding protein. In vesicles, the transport requires electron donors, such as ascorbate and phenazine methosulfate or D-lactate. However, inhibition by dicyclohexylcarbodiimide and stimulation of transport by the inculsion of ADP or ATP in the intravesicular space suggest that ATP (or compounds derived from it) is involved in the energization of the transport. The transport activity of intact cells can be recovered without much inactivation in the vesicles, and their high activity and ease of preparation will be useful in studies of the mechanism of the binding protein-dependent transport process. Images PMID:2644203

  18. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  19. A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces

    SciTech Connect

    Hou, Jiechang; Nonnenmann, Stephen S.; Qin, Wei; Bonnell, Dawn A.

    2013-12-16

    As device miniaturization approaches nanoscale dimensions, interfaces begin to dominate electrical properties. Here the system archetype Au/SrTiO{sub 3} is used to examine the origin of size dependent transport properties along metal-oxide interfaces. We demonstrate that a transition between two classes of size dependent electronic transport mechanisms exists, defined by a critical size ε. At sizes larger than ε an edge-related tunneling effect proportional to 1/D (the height of the supported Au nanoparticle) is observed; interfaces with sizes smaller than ε exhibit random fluctuations in current. The ability to distinguish between these mechanisms is important to future developments in nanoscale device design.

  20. The direction of water transport on Mars: A possible pumping mechanism

    NASA Technical Reports Server (NTRS)

    James, P. B.

    1987-01-01

    It is suggested that an atmospheric pumping mechanism might be at work in which water is preferentially transported into the north by a mass outflow wind (due to sublimation from polar cap) that is stronger during southern spring than it is during northern spring. The mechanism is provided by the asymmetric seasonal temperature distribution produced by the eccentric martial orbit and by the associated seasonal asymmetry in the carbon dioxide cycle. The alternating condensation and sublimation of CO2 at the poles produces condensation winds which, in turn, contribute to the meridional transport of water vapor.

  1. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  2. Methamphetamine-induced decrease in tryptophan hydroxylase activity: role of 5-hydroxytryptaminergic transporters.

    PubMed

    Fleckenstein, A E; Beyeler, M L; Jackson, J C; Wilkins, D G; Gibb, J W; Hanson, G R

    1997-04-18

    Methamphetamine-induced 5-hydroxytryptaminergic neuronal damage purportedly involves transport of newly released dopamine from extracellular spaces into 5-hydroxytryptaminergic terminals. This hypothesis is based primarily on findings that dopamine is required for, whereas 5-hydroxytryptamine (5-HT) uptake inhibitors prevent, methamphetamine-induced deficits in 5-hydroxytryptaminergic neuronal function. This hypothesis is not, however, supported by findings presented in this study that 5-hydroxytryptaminergic neuronal damage, induced by p-chloroamphetamine, does not decrease [3H]dopamine uptake into rat brain synaptosomes prepared from 5-HT-transporter-containing tissue. Moreover, despite having greater affinity for the 5-HT transporter, citalopram has an IC50 for [1H]dopamine transport into these synaptosomal preparations that is considerably greater than that of fluoxetine. These data suggest that 5-HT transporters may not effect dopamine uptake and thereby methamphetamine-induced 5-hydroxytryptaminergic neuronal damage. Other possible mechanisms related to 5-HT uptake inhibitor attenuation of methamphetamine-induced deficits were investigated. Fluoxetine pretreatment prevented the methamphetamine-induced decrease in tryptophan hydroxylase activity: this effect cannot be attributed to altered body temperatures or brain concentrations of methamphetamine which suggests that neither, per se, is sufficient to impair 5-hydroxytryptaminergic neuronal function. PMID:9145769

  3. A fully resolved fluid-structure-muscle-activation model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Bhalla, Amneet P. S.; Griffith, Boyce E.; Johnson, Mark; Patankar, Neelesh A.

    2013-11-01

    Esophageal transport is a mechanical and physiological process that transfers the ingested food bolus from the pharynx to the stomach through a multi-layered esophageal tube. The process involves interactions between the bolus, esophageal wall composed of mucosal, circular muscle (CM) and longitudinal muscle (LM) layers, and neurally coordinated muscle activation including CM contraction and LM shortening. In this work, we present a 3D fully-resolved model of esophageal transport based on the immersed boundary method. The model describes the bolus as a Newtonian fluid, the esophageal wall as a multi-layered elastic tube represented by springs and beams, and the muscle activation as a traveling wave of sequential actuation/relaxation of muscle fibers, represented by springs with dynamic rest lengths. Results on intraluminal pressure profile and bolus shape will be shown, which are qualitatively consistent with experimental observations. Effects of activating CM contraction only, LM shortening only or both, for the bolus transport, are studied. A comparison among them can help to identify the role of each type of muscle activation. The support of grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.

  4. AMPK activators: mechanisms of action and physiological activities

    PubMed Central

    Kim, Joungmok; Yang, Goowon; Kim, Yeji; Kim, Jin; Ha, Joohun

    2016-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease. PMID:27034026

  5. AMPK activators: mechanisms of action and physiological activities.

    PubMed

    Kim, Joungmok; Yang, Goowon; Kim, Yeji; Kim, Jin; Ha, Joohun

    2016-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease. PMID:27034026

  6. Structural insight in the toppling mechanism of an energy-coupling factor transporter

    PubMed Central

    Swier, Lotteke J. Y. M.; Guskov, Albert; Slotboom, Dirk J.

    2016-01-01

    Energy-coupling factor (ECF) transporters mediate uptake of micronutrients in prokaryotes. The transporters consist of an S-component that binds the transported substrate and an ECF module (EcfAA′T) that binds and hydrolyses ATP. The mechanism of transport is poorly understood but presumably involves an unusual step in which the membrane-embedded S-component topples over to carry the substrate across the membrane. In many ECF transporters, the S-component dissociates from the ECF module after transport. Subsequently, substrate-bound S-components out-compete the empty proteins for re-binding to the ECF module in a new round of transport. Here we present crystal structures of the folate-specific transporter ECF–FolT from Lactobacillus delbrueckii. Interaction of the ECF module with FolT stabilizes the toppled state, and simultaneously destroys the high-affinity folate-binding site, allowing substrate release into the cytosol. We hypothesize that differences in the kinetics of toppling can explain how substrate-loaded FolT out-competes apo-FolT for association with the ECF module. PMID:27026363

  7. Macromolecular Transport between the Nucleus and the Cytoplasm: Advances in Mechanism and Emerging Links to Disease

    PubMed Central

    Tran, Elizabeth J.; King, Megan C.; Corbett, Anita H.

    2014-01-01

    Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18-23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field. PMID:25116306

  8. A new work mechanism on neuronal activity.

    PubMed

    Wang, Rubin; Tsuda, Ichiro; Zhang, Zhikang

    2015-05-01

    By re-examining the neuronal activity energy model, we show the inadequacies in the current understanding of the energy consumption associated with neuron activity. Specifically, we show computationally that a neuron first absorbs and then consumes energy during firing action potential, and this result cannot be produced from any current neuron models or biological neural networks. Based on this finding, we provide an explanation for the observation that when neurons are excited in the brain, blood flow increases significantly while the incremental oxygen consumption is very small. We can also explain why external stimulation and perception emergence are synchronized. We also show that negative energy presence in neurons at the sub-threshold state is an essential reason that leads to blood flow incremental response time in the brain rather than neural excitation to delay. PMID:25640576

  9. Quantification of ionic transport within thermally-activated batteries using electron probe micro-analysis

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; Grant, Richard P.; Allen, Ashley N.; Wesolowski, Daniel E.; Roberts, Christine C.

    2016-07-01

    The transient transport of electrolytes in thermally-activated batteries is studied using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure of the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10-1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.

  10. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity.

    PubMed

    Aibara, Izumi; Miwa, Kyoko

    2014-12-01

    How do sessile plants cope with irregularities in soil nutrient availability? The uptake of essential minerals from the soil influences plant growth and development. However, most environments do not provide sufficient nutrients; rather nutrient distribution in the soil can be uneven and change temporally according to environmental factors. To maintain mineral nutrient homeostasis in their tissues, plants have evolved sophisticated systems for coping with spatial and temporal variability in soil nutrient concentrations. Among these are mechanisms for modulating root system architecture in response to nutrient availability. This review discusses recent advances in knowledge of the two important strategies for optimizing nutrient uptake and translocation in plants: root architecture modification and transporter expression control in response to nutrient availability. Recent studies have determined (i) nutrient-specific root patterns; (ii) their physiological consequences; and (iii) the molecular mechanisms underlying these modulation systems that operate to facilitate efficient nutrient acquisition. Another mechanism employed by plants in nutrient-heterogeneous soils involves modification of nutrient transport activities in a nutrient concentration-dependent manner. In recent years, considerable progress has been made in characterizing the diverse functions of transporters for specific nutrients; it is now clear that the expression and activities of nutrient transporters are finely regulated in multiple steps at both the transcriptional and post-transcriptional levels for adaptation to a wide range of nutrient conditions. PMID:25378690

  11. Complex transport behaviors of rectangular graphene quantum dots subject to mechanical vibrations

    NASA Astrophysics Data System (ADS)

    Xu, Mengke; Wang, Yisen; Bao, Rui; Huang, Liang; Lai, Ying-Cheng

    2016-05-01

    Graphene-based mechanical resonators have attracted much attention due to their superior elastic properties and extremely low mass density. We investigate the effects of mechanical vibrations on electronic transport through graphene quantum dots, under the physically reasonable assumption that the time scale associated with electronic transport is much shorter than that with mechanical vibration so that, at any given time, an electron “sees” a static but deformed graphene sheet. We find that, besides periodic oscillation in the quantum transmission at the same frequency as that of mechanical vibrations, structures at finer scales can emerge as an intermediate state, which may lead to spurious higher-frequency components in the current through the device.

  12. Mechanism for Clastogenic Activity of Naphthalene

    SciTech Connect

    Buchholz, Bruce A.

    2015-09-29

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  13. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun.

    PubMed

    Baganz, Nicole; Horton, Rebecca; Martin, Kathryn; Holmes, Andrew; Daws, Lynette C

    2010-11-10

    Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications. PMID:21068324

  14. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism.

    PubMed

    Mulligan, Christopher; Fenollar-Ferrer, Cristina; Fitzgerald, Gabriel A; Vergara-Jaque, Ariela; Kaufmann, Desirée; Li, Yan; Forrest, Lucy R; Mindell, Joseph A

    2016-03-01

    Secondary transporters use alternating-access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters use a 'rocking bundle' motion, wherein the protein moves around an immobile substrate-binding site. However, the glutamate-transporter homolog GltPh translocates its substrate-binding site vertically across the membrane, through an 'elevator' mechanism. Here, we used the 'repeat swap' approach to computationally predict the outward-facing state of the Na(+)/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial elevator-like movement of VcINDY's substrate-binding site, with a vertical translation of ~15 Å and a rotation of ~43°. Our observation that multiple disulfide cross-links completely inhibit transport provides experimental confirmation of the model and demonstrates that such movement is essential. In contrast, cross-links across the VcINDY dimer interface preserve transport, thus revealing an absence of large-scale coupling between protomers. PMID:26828963

  15. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti.

    PubMed

    Boudko, Dmitri Y; Tsujimoto, Hitoshi; Rodriguez, Stacy D; Meleshkevitch, Ella A; Price, David P; Drake, Lisa L; Hansen, Immo A

    2015-01-01

    Anautogenous mosquitoes depend on vertebrate blood as nutrient source for their eggs. A highly efficient set of membrane transporters mediates the massive movement of nutrient amino acids between mosquito tissues after a blood meal. Here we report the characterization of the amino-acid transporter Slimfast (Slif) from the yellow-fever mosquito Aedes aegypti using codon-optimized heterologous expression. Slif is a well-known component of the target-of-rapamycin signalling pathway and fat body nutrient sensor, but its substrate specificity and transport mechanism were unknown. We found that Slif transports essential cationic and neutral amino acids with preference for arginine. It has an unusual dual-affinity mechanism with only the high affinity being Na(+) dependent. Tissue-specific expression and blood meal-dependent regulation of Slif are consistent with conveyance of essential amino acids from gut to fat body. Slif represents a novel transport system and type of transceptor for sensing and transporting essential amino acids during mosquito reproduction. PMID:26449545

  16. Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti

    PubMed Central

    Boudko, Dmitri Y.; Tsujimoto, Hitoshi; Rodriguez, Stacy D.; Meleshkevitch, Ella A.; Price, David P.; Drake, Lisa L.; Hansen, Immo A.

    2015-01-01

    Anautogenous mosquitoes depend on vertebrate blood as nutrient source for their eggs. A highly efficient set of membrane transporters mediates the massive movement of nutrient amino acids between mosquito tissues after a blood meal. Here we report the characterization of the amino-acid transporter Slimfast (Slif) from the yellow-fever mosquito Aedes aegypti using codon-optimized heterologous expression. Slif is a well-known component of the target-of-rapamycin signalling pathway and fat body nutrient sensor, but its substrate specificity and transport mechanism were unknown. We found that Slif transports essential cationic and neutral amino acids with preference for arginine. It has an unusual dual-affinity mechanism with only the high affinity being Na+ dependent. Tissue-specific expression and blood meal-dependent regulation of Slif are consistent with conveyance of essential amino acids from gut to fat body. Slif represents a novel transport system and type of transceptor for sensing and transporting essential amino acids during mosquito reproduction. PMID:26449545

  17. Charge carrier transport mechanisms in perovskite CdTiO{sub 3} fibers

    SciTech Connect

    Imran, Z.; Rafiq, M. A. Hasan, M. M.

    2014-06-15

    Electrical transport properties of electrospun cadmium titanate (CdTiO{sub 3}) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behavior followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K – 420 K). Trap density in our fibers system is N{sub t} = 6.27 × 10{sup 17} /cm{sup 3}. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K – 300 K. The localized density of states were found to be N(E{sub F}) = 5.51 × 10{sup 21} eV{sup −1} cm{sup −3} at 2 V. Other VRH parameters such as hopping distance (R{sub hop}) and hopping energy (W{sub hop}) were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO{sub 3} fibers efficient material for capacitive energy storage devices.

  18. Mechanism of Linolenic Acid-induced Inhibition of Photosynthetic Electron Transport 12

    PubMed Central

    Golbeck, John H.; Martin, Iris F.; Fowler, Charles F.

    1980-01-01

    The effect of linolenic acid on photosynthetic electron transport reactions in chloroplasts has been localized at a site on the donor side of photosystem I and at two functionally distinct sites in photosystem II. In photosystem I, an increase in the electron transport rate occurs in the presence of 10 to 100 micromolar linolenic acid, followed by a decline in rate from 100 to 200 micromolar linolenic acid. The increase may result from an alteration of membrane structure that allows greater reactivity of the artificial donors 2,6-dichlorophenolindophenol (DPIP) and N,N,N′,N′-tetramethyl-p-phenylenediamine with plastocyanin. The decrease is due to loss of plastocyanin from the membrane since addition of purified plastocyanin to treated and washed chloroplasts leads to the reestablishment of photosystem I rates. In photosystem II, a reversible site and an irreversible site of inhibition have been located. At the irreversible site, there is a time-dependent loss of the loosely bound pool of Mn implicated in the water-splitting mechanism. At the reversible site, the photochemical charge separation is rapidly inhibited as evidenced by the high initial fluorescence yield upon illumination and the inhibition of artificial donor reactions in NH2OH-washed chloroplasts. When chloroplasts are washed after treatment with linolenic acid, the fluorescence returns to its original low value and there is a resumption of artificial donor activity from diphenylcarbazide → DPIP. This reversible inhibition of the photoact is a unique characteristic of linolenic acid and suggests evidence for a new mode of inhibition of photosystem II. PMID:16661266

  19. Modeling the coupled mechanics, transport, and growth processes in collagen tissues.

    SciTech Connect

    Holdych, David J.; Nguyen, Thao D.; Klein, Patrick A.; in't Veld, Pieter J.; Stevens, Mark Jackson

    2006-11-01

    The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

  20. Mechanism of antibacterial activity of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arijit Kumar; Chakraborty, Ruchira; Basu, Tarakdas

    2014-04-01

    In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu2+ ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously.

  1. Smooth muscle cell calcium activation mechanisms

    PubMed Central

    Berridge, Michael J

    2008-01-01

    Smooth muscle cell (SMC) contraction is controlled by the Ca2+ and Rho kinase signalling pathways. While the SMC Rho kinase system seems to be reasonably constant, there is enormous variation with regard to the mechanisms responsible for generating Ca2+ signals. One way of dealing with this diversity is to consider how this system has been adapted to control different SMC functions. Phasic SMCs (vas deferens, uterus and bladder) rely on membrane depolarization to drive Ca2+ influx across the plasma membrane. This depolarization can be induced by neurotransmitters or through the operation of a membrane oscillator. Many tonic SMCs (vascular, airway and corpus cavernosum) are driven by a cytosolic Ca2+ oscillator that generates periodic pulses of Ca2+. A similar oscillator is present in pacemaker cells such as the interstitial cells of Cajal (ICCs) and atypical SMCs that control other tonic SMCs (gastrointestinal, urethra, ureter). The changes in membrane potential induced by these cytosolic oscillators does not drive contraction directly but it functions to couple together individual oscillators to provide the synchronization that is a characteristic feature of many tonic SMCs. PMID:18787034

  2. Physical Activity Energy Expenditure in Dutch Adolescents: Contribution of Active Transport to School, Physical Education, and Leisure Time Activities

    ERIC Educational Resources Information Center

    Slingerland, Menno; Borghouts, Lars B.; Hesselink, Matthijs K. C.

    2012-01-01

    Background: Detailed knowledge about physical activity energy expenditure (PAEE) can guide the development of school interventions aimed at reducing overweight in adolescents. However, relevant components of PAEE have never been objectively quantified in this population. This study investigated the contribution of active transport to and from…

  3. MULTIDRUG RESISTANT TRANSPORT ACTIVITY PROTECTS OOCYTES FROM CHEMOTHERAPEUTIC AGENTS AND CHANGES DURING OOCYTE MATURATION

    PubMed Central

    Brayboy, Lynae M.; Oulhen, Nathalie; Witmyer, Jeannine; Robins, Jared; Carson, Sandra; Wessel, Gary M.

    2013-01-01

    Objective To determine the multidrug resistant (MDR) transporter activity in oocytes and their potential role in oocyte susceptibility to chemotherapy. Design Experimental laboratory study Setting University and Academic Center for reproductive medicine. Patients/Animals Women with eggs retrieved for ICSI cycles and adult female FVBN and B6C3F1 mouse strains. Intervention Inhibition of MDR activity in oocytes. Main Outcome measure(s) Efflux activity of MDRs using quantitative fluorescent dye efflux and oocyte cell death when exposed to chemotherapy. Results Oocytes effluxed fluorescent reporters and this activity was significantly reduced in the presence of the MDR inhibitor PSC 833. GV oocytes are more efficient at efflux compared to M2 oocytes. Human oocytes exposed to cyclophosphamide and PSC 833 showed cell death using two different viability assays compared to controls and those exposed to cyclophosphamide alone. Immunoblots detected MDR-1 in all oocytes with the greatest accumulation in the GV stage. Conclusions Oocytes have a vast repertoire of active MDRs. The implications of this study are that these protective mechanisms are important during oogenesis, and these activities change with maturation, increasing susceptibility to toxicants. Future directions may exploit the up regulation of these transporters during gonadotoxic therapy. PMID:23953328

  4. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes?

    PubMed

    Isoherranen, Nina; Thummel, Kenneth E

    2013-02-01

    There is increasing evidence that pregnancy alters the function of drug-metabolizing enzymes and drug transporters in a gestational-stage and tissue-specific manner. In vivo probe studies have shown that the activity of several hepatic cytochrome P450 enzymes, such as CYP2D6 and CYP3A4, is increased during pregnancy, whereas the activity of others, such as CYP1A2, is decreased. The activity of some renal transporters, including organic cation transporter and P-glycoprotein, also appears to be increased during pregnancy. Although much has been learned, significant gaps still exist in our understanding of the spectrum of drug metabolism and transport genes affected, gestational age-dependent changes in the activity of encoded drug metabolizing and transporting processes, and the mechanisms of pregnancy-induced alterations. In this issue of Drug Metabolism and Disposition, a series of articles is presented that address the predictability, mechanisms, and magnitude of changes in drug metabolism and transport processes during pregnancy. The articles highlight state-of-the-art approaches to studying mechanisms of changes in drug disposition during pregnancy, and illustrate the use and integration of data from in vitro models, animal studies, and human clinical studies. The findings presented show the complex inter-relationships between multiple regulators of drug metabolism and transport genes, such as estrogens, progesterone, and growth hormone, and their effects on enzyme and transporter expression in different tissues. The studies provide the impetus for a mechanism- and evidence-based approach to optimally managing drug therapies during pregnancy and improving treatment outcomes. PMID:23328895

  5. Mechanism of photodynamic activity of pheophorbides

    NASA Astrophysics Data System (ADS)

    Tanielian, Charles; Kobayashi, Masami; Wolff, Christian

    2001-04-01

    Plasmid DNA is efficiently photocleaved by sodium pheophorbides (Na-Phdes) a and b in the absence of oxygen as well as in the presence of oxygen. Fluorescence microscopic observation shows a rapid incorporation of Na-Phde a into nuclei, mitochondria, and lysosome of human oral mucosa cells. In contrast Na-Phde b is incorporated only into the plasma membrane. The photodynamic activity of these pigments in living tissues is probably determined by the monomeric pigment molecules formed in hydrophobic cellular structures and involves two types of reactions: (1) direct electron transfer between DNA bases (especially guanine) and pheophorbide singlet excited state, and (2) indirect reactions medicated by reactive oxygen species, including singlet oxygen whose production from molecular oxygen is sensitized by the Na-Phdes triplet state.

  6. SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms

    PubMed Central

    Bhutia, Yangzom D.; Babu, Ellappan; Ramachandran, Sabarish; Yang, Shengping; Thangaraju, Muthusamy; Ganapathy, Vadivel

    2016-01-01

    The role of plasma membrane transporters in cancer is receiving increasing attention in recent years. Several transporters for essential nutrients are up-regulated in cancer and serve as tumour promoters. Transporters could also function as tumour suppressors. To date, four transporters belonging to the SLC gene family have been identified as tumour suppressors. SLC5A8 is a Na+-coupled transporter for monocarboxylates. Among its substrates are the bacterial fermentation products butyrate and propionate and the ubiquitous metabolite pyruvate. The tumour-suppressive function of this transporter relates to the ability of butyrate, propionate and pyruvate to inhibit histone deacetylases (HDAC). SLC5A8 functions as a tumour suppressor in most tissues studied thus far, and provides a molecular link to Warburg effect, a characteristic feature in most cancers. It also links colonic bacteria and dietary fibre to the host. SLC26A3 as a tumour suppressor is restricted to colon; it is a Cl-/HCO3- exchanger, facilitating the efflux of HCO3-. The likely mechanism for the tumour-suppressive function of SLC26A3 is related to intracellular pH regulation. SLC39A1 is a Zn2+ transporter and its role in tumour suppression has been shown in prostate. Zn2+ is present at high concentrations in normal prostate where it elicits its tumour-suppressive function. SLC22A18 is possibly an organic cation transporter, but the identity of its physiological substrates is unknown. As such, there is no information on molecular pathways responsible for the tumour-suppressive function of this transporter. It is likely that additional SLC transporters will be discovered as tumour suppressors in the future. PMID:27118869

  7. Effects of temperature and electric field on the transport mechanisms in the porous microstructure

    NASA Astrophysics Data System (ADS)

    Koseoglu, K.; Karaduman, I.; Demir, M.; Ozer, M.; Acar, S.; Salamov, B. G.

    2015-05-01

    The electrical characterizations of nanoporous zeolite and transport mechanisms were studied for the first time in a wide operating temperature range (28-800 K) and electric field strength (60-200 kV/cm) at room temperature. The influence of temperature, electric field and cell types on the dc conductivity was described. The resistivity decreased from 2.34 × 1010 to 2.17 × 108 Ω m whiles the temperature increased from 28 to 800 K which is associated with the ionic mobility. The existence of water in the channels and pores is the decisive parameter in the ionic transport and it depends strongly on the electric field. When a high voltage was applied to gas discharge gap and porous structure, ionization phenomena increased. In this stage, electronic conduction also contributed to zeolite dc conduction. Therefore, the ionic and electronic transport mechanisms and their interactions are essential in enhancing applications in microdischarge devices with nanoporous zeolite cathodes.

  8. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism

    PubMed Central

    Craft, Julie M.; Harris, J. Aaron; Hyman, Sebastian; Kner, Peter

    2015-01-01

    The assembly of the axoneme, the structural scaffold of cilia and flagella, requires translocation of a vast quantity of tubulin into the growing cilium, but the mechanisms that regulate the targeting, quantity, and timing of tubulin transport are largely unknown. In Chlamydomonas, GFP-tagged α-tubulin enters cilia as an intraflagellar transport (IFT) cargo and by diffusion. IFT-based transport of GFP-tubulin is elevated in growing cilia and IFT trains carry more tubulin. Cells possessing both nongrowing and growing cilia selectively target GFP-tubulin into the latter. The preferential delivery of tubulin boosts the concentration of soluble tubulin in the matrix of growing versus steady-state cilia. Cilia length mutants show abnormal kinetics of tubulin transport. We propose that cells regulate the extent of occupancy of IFT trains by tubulin cargoes. During ciliary growth, IFT concentrates soluble tubulin in cilia and thereby promotes elongation of the axonemal microtubules. PMID:25583998

  9. Silver (Ag) Transport Mechanisms in TRISO Coated Particles: A Critical Review

    SciTech Connect

    IJ van Rooyen; ML Dunzik-Gougar; PM van Rooyen

    2014-05-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  10. Vibration-mediated Kondo transport in molecular junctions: conductance evolution during mechanical stretching

    PubMed Central

    Rakhmilevitch, David

    2015-01-01

    Summary The vibration-mediated Kondo effect attracted considerable theoretical interest during the last decade. However, due to lack of extensive experimental demonstrations, the fine details of the phenomenon were not addressed. Here, we analyze the evolution of vibration-mediated Kondo effect in molecular junctions during mechanical stretching. The described analysis reveals the different contributions of Kondo and inelastic transport. PMID:26734532

  11. Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review

    SciTech Connect

    I J van Rooyen; J H Neethling; J A A Engelbrecht; P M van Rooyen; G Strydom

    2012-10-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  12. Crystalline, Glassy and Polymeric Electrolytes:. Similarities and Differences in Ionic Transport Mechanisms

    NASA Astrophysics Data System (ADS)

    Souquet, Jean Louis

    2006-06-01

    Ionocovalent crystals or glasses as well as molten salts or salt polymer complexes are currently studied as electrolytes for high energy density batteries. Their large Red/Ox stability range results from their thermodynamic or kinetic characteristics. For all these electrolytes, charge carriers are the consequence of local deviations from electroneutrality, identified as point defects for ionic crystals or partial dissociation in disordered structures. The charge carriers formation derives from a similar activated process. The main difference comes from the migration process, which depends on the dynamic properties of the surrounding medium. When the structural relaxation time is large, an activated process, mainly enthalpic, prevails for charge carriers migration. It is the usual case for ionic crystals or glasses. In the liquid or overcooled liquid states, the structural relaxation time of the medium is shorter that the time required for the activated migration process to occur and a local reorganization of the medium vanishes the energy barrier and provides the free volume necessary to ionic migration. In that case, the migration is mainly an entropic process. The configurational entropy necessary to this process decreases with temperature and vanishes at the so called ideal glass transition temperature which can be estimated by extrapolation of the transport properties or of the thermodynamic characteristics of the medium. However, at the experiment time scale, this configurational entropy disappears at a somewhat higher temperature, the glass transition temperature at which the structural relaxation time corresponds to the measurement time. Some glass forming ionic melts studied in a large temperature scale, over and below the glass transition temperature, evidence the two, enthalpic and entropic, migration mechanisms, allowing the determination of the thermodynamic characteristics of the charge carriers formation and migration. Some recent results indicate

  13. Research Progress on the Role of ABC Transporters in the Drug Resistance Mechanism of Intractable Epilepsy

    PubMed Central

    Xiong, Jie; Mao, Ding-an; Liu, Li-qun

    2015-01-01

    The pathogenesis of intractable epilepsy is not fully clear. In recent years, both animal and clinical trials have shown that the expression of ATP-binding cassette (ABC) transporters is increased in patients with intractable epilepsy; additionally, epileptic seizures can lead to an increase in the number of sites that express ABC transporters. These findings suggest that ABC transporters play an important role in the drug resistance mechanism of epilepsy. ABC transporters can perform the funcions of a drug efflux pump, which can reduce the effective drug concentration at epilepsy lesions by reducing the permeability of the blood brain barrier to antiepileptic drugs, thus causing resistance to antiepileptic drugs. Given the important role of ABC transporters in refractory epilepsy drug resistance, antiepileptic drugs that are not substrates of ABC transporters were used to obtain ABC transporter inhibitors with strong specificity, high safety, and few side effects, making them suitable for long-term use; therefore, these drugs can be used for future clinical treatment of intractable epilepsy. PMID:26491660

  14. Receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid

    SciTech Connect

    Walsh, R.J.; Slaby, F.J.; Posner, B.I.

    1987-05-01

    Prolactin (PRL) interacts with areas of the central nervous system which reside behind the blood-brain barrier. While vascular PRL does not cross this barrier, it is readily accessible to the cerebrospinal fluid (CSF) from which it may gain access to the PRL-responsive areas of the brain. Studies were undertaken to characterize the mechanism responsible for the translocation of PRL from blood to CSF. Rats were given external jugular vein injections of (/sup 125/-I)iodo-PRL in the presence or absence of an excess of unlabeled ovine PRL (oPRL), human GH, bovine GH, or porcine insulin. CSF and choroid plexus were removed 60 min later. CSF samples were electrophoresed on sodium dodecyl sulfate-polyacrylamide slab gels and resultant autoradiographs were analyzed with quantitative microdensitometry. The data revealed that unlabeled lactogenic hormones, viz. oPRL and human GH, caused a statistically significant inhibition of (/sup 125/I)iodo-PRL transport from blood to CSF. In contrast, nonlactogenic hormones, viz bovine GH and insulin, had no effect on (/sup 125/I)iodo-PRL transport into the CSF. An identical pattern of competition was observed in the binding of hormone to the choroid plexus. Furthermore, vascular injections of (/sup 125/I)iodo-PRL administered with a range of concentrations of unlabeled oPRL revealed a dose-response inhibition in the transport of (/sup 125/I)iodo-PRL from blood to CSF. The study demonstrates that PRL enters the CSF by a specific, PRL receptor-mediated transport mechanism. The data is consistent with the hypothesis that the transport mechanism resides at the choroid plexus. The existence of this transport mechanism reflects the importance of the cerebroventricular system in PRL-brain interactions.

  15. Allosteric Regulation of Transport Activity by Heterotrimerization of Arabidopsis Ammonium Transporter Complexes in Vivo[C][W][OA

    PubMed Central

    Yuan, Lixing; Gu, Riliang; Xuan, Yuanhu; Smith-Valle, Erika; Loqué, Dominique; Frommer, Wolf B.; von Wirén, Nicolaus

    2013-01-01

    Ammonium acquisition by plant roots is mediated by AMMONIUM TRANSPORTERs (AMTs), ubiquitous membrane proteins with essential roles in nitrogen nutrition in all organisms. In microbial and plant cells, ammonium transport activity is controlled by ammonium-triggered feedback inhibition to prevent cellular ammonium toxicity. Data from heterologous expression in yeast indicate that oligomerization of plant AMTs is critical for allosteric regulation of transport activity, in which the conserved cytosolic C terminus functions as a trans-activator. Employing the coexpressed transporters AMT1;1 and AMT1;3 from Arabidopsis thaliana as a model, we show here that these two isoforms form functional homo- and heterotrimers in yeast and plant roots and that AMT1;3 carrying a phosphomimic residue in its C terminus regulates both homo- and heterotrimers in a dominant-negative fashion in vivo. 15NH4+ influx studies further indicate that allosteric inhibition represses ammonium transport activity in roots of transgenic Arabidopsis expressing a phosphomimic mutant together with functional AMT1;3 or AMT1;1. Our study demonstrates in planta a regulatory role in transport activity of heterooligomerization of transporter isoforms, which may enhance their versatility for signal exchange in response to environmental triggers. PMID:23463773

  16. Amino acid depletion activates TonEBP and sodium-coupled inositol transport.

    PubMed

    Franchi-Gazzola, R; Visigalli, R; Dall'Asta, V; Sala, R; Woo, S K; Kwon, H M; Gazzola, G C; Bussolati, O

    2001-06-01

    The expression of the osmosensitive sodium/myo-inositol cotransporter (SMIT) is regulated by multiple tonicity-responsive enhancers (TonEs) in the 5'-flanking region of the gene. In response to hypertonicity, the nuclear abundance of the transcription factor TonE-binding protein (TonEBP) is increased, and the transcription of the SMIT gene is induced. Transport system A for neutral amino acids, another osmosensitive mechanism, is progressively stimulated if amino acid substrates are not present in the extracellular compartment. Under this condition, as in hypertonicity, cells shrink and mitogen-activated protein kinases are activated. We demonstrate here that a clear-cut nuclear redistribution of TonEBP, followed by SMIT expression increase and inositol transport activation, is observed after incubation of cultured human fibroblasts in Earle's balanced salts (EBSS), an isotonic, amino acid-free saline. EBSS-induced SMIT stimulation is prevented by substrates of system A, although these compounds do not compete with inositol for transport through SMIT. We conclude that the incubation in isotonic, amino acid-free saline triggers an osmotic stimulus and elicits TonEBP-dependent responses like hypertonic treatment. PMID:11350742

  17. Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1.

    PubMed

    Hartmann, Anna-Maria; Blaesse, Peter; Kranz, Thorsten; Wenz, Meike; Schindler, Jens; Kaila, Kai; Friauf, Eckhard; Nothwang, Hans Gerd

    2009-10-01

    In the majority of neurons, the intracellular Cl(-) concentration is set by the activity of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and the K(+)-Cl(-) cotransporter (KCC2). Here, we investigated the cotransporters' functional dependence on membrane rafts. In the mature rat brain, NKCC1 was mainly insoluble in Brij 58 and co-distributed with the membrane raft marker flotillin-1 in sucrose density flotation experiments. In contrast, KCC2 was found in the insoluble fraction as well as in the soluble fraction, where it co-distributed with the non-raft marker transferrin receptor. Both KCC2 populations displayed a mature glycosylation pattern. Disrupting membrane rafts with methyl-beta-cyclodextrin (MbetaCD) increased the solubility of KCC2, yet had no effect on NKCC1. In human embryonic kidney-293 cells, KCC2 was strongly activated by a combined treatment with MbetaCD and sphingomyelinase, while NKCC1 was inhibited. These data indicate that membrane rafts render KCC2 inactive and NKCC1 active. In agreement with this, inactive KCC2 of the perinatal rat brainstem largely partitioned into membrane rafts. In addition, the exposure of the transporters to MbetaCD and sphingomyelinase showed that the two transporters differentially interact with the membrane rafts. Taken together, membrane raft association appears to represent a mechanism for co-ordinated regulation of chloride transporter function. PMID:19686239

  18. Active urea transport and an unusual basolateral membrane composition in the gills of a marine elasmobranch.

    PubMed

    Fines, G A; Ballantyne, J S; Wright, P A

    2001-01-01

    In elasmobranch fishes, urea occurs at high concentrations (350-600 mM) in the body fluids and tissues, where it plays an important role in osmoregulation. Retention of urea by the gill against this huge blood-to-water diffusion gradient requires specialized adaptations to the epithelial cell membranes. Experiments were performed to determine the mechanisms and structural features that facilitate urea retention by the gill of the spiny dogfish Squalus acanthias. Analysis of urea uptake by gill basolateral membrane vesicles revealed the presence of a phloretin-sensitive (half inhibition 0.09 mM), sodium-coupled, secondary active urea transporter (Michaelis constant = 10.1 mM, maximal velocity = 0.34 micromol. h(-1). mg protein(-1)). We propose that this system actively transports urea out of the gill epithelial cells back into the blood against the urea concentration gradient. Lipid analyses of the basolateral membrane revealed high levels of cholesterol contributing to the highest reported cholesterol-to-phospholipid molar ratio (3.68). This unique combination of active urea transport and modification of the phospholipid bilayer membrane is responsible for decreasing the gill permeability to urea and facilitating urea retention by the gill of Squalus acanthias. PMID:11124129

  19. Insights into gas transport mechanisms from measurements and modelling of quiescent and explosive degassing at Stromboli (Invited)

    NASA Astrophysics Data System (ADS)

    Burton, M. R.

    2010-12-01

    Over the past decade a step-change has occurred in our ability to measure volcanic gas fluxes and compositions using both remote sensing and in-situ techniques. These studies have allowed new insights into the processes which allow persistently active volcanoes such as Stromboli to maintain a continuous gas emission as well as regular explosive activity. They have also helped to address questions which have been recognised for some time, such as the frequently observed imbalance between the volumes of magma degassing and the volume of magma erupting at persistently active volcanoes. Here I review the major new insights which have arisen from novel measurements of gas emissions at Stromboli. Combining these with results from petrological and modelling studies allows specific characterisation of the gas transport mechanisms which play a fundamental role in controlling the volcanic activity. I conclude by highlighting outstanding questions that could be addressed by future measurement and modelling studies.

  20. Theory of activated transport in bilayer quantum Hall systems.

    PubMed

    Roostaei, B; Mullen, K J; Fertig, H A; Simon, S H

    2008-07-25

    We analyze the transport properties of bilayer quantum Hall systems at total filling factor nu=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment. PMID:18764355

  1. Theory of Activated Transport in Bilayer Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman; Fertig, Herbert; Mullen, Kieran; Simon, Steven

    2008-03-01

    We analyze the transport properties of bilayer quantum Hall systems at total filling factor ν= 1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern- Simons theory that in drag geometries, current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment. We conclude with predictions for future experiments.

  2. Theory of Activated Transport in Bilayer Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Roostaei, B.; Mullen, K. J.; Fertig, H. A.; Simon, S. H.

    2008-07-01

    We analyze the transport properties of bilayer quantum Hall systems at total filling factor ν=1 in drag geometries as a function of interlayer bias, in the limit where the disorder is sufficiently strong to unbind meron-antimeron pairs, the charged topological defects of the system. We compute the typical energy barrier for these objects to cross incompressible regions within the disordered system using a Hartree-Fock approach, and show how this leads to multiple activation energies when the system is biased. We then demonstrate using a bosonic Chern-Simons theory that in drag geometries current in a single layer directly leads to forces on only two of the four types of merons, inducing dissipation only in the drive layer. Dissipation in the drag layer results from interactions among the merons, resulting in very different temperature dependences for the drag and drive layers, in qualitative agreement with experiment.

  3. A Chemical Genetic Screen for Modulators of Exocytic Transport Identifies Inhibitors of a Transport Mechanism Linked to GTR2 Function▿

    PubMed Central

    Zhang, Lisha; Huang, Min; Harsay, Edina

    2010-01-01

    Membrane and protein traffic to the cell surface is mediated by partially redundant pathways that are difficult to perturb in ways that yield a strong phenotype. Such robustness is expected in a fine-tuned process, regulated by environmental cues, that is required for controlled cell surface growth and cell proliferation. Synthetic genetic interaction screens are especially valuable for investigating complex processes involving partially redundant pathways or mechanisms. In a previous study, we used a triple-synthetic-lethal yeast mutant screen to identify a novel component of the late exocytic transport machinery, Avl9. In a chemical-genetic version of the successful mutant screen, we have now identified small molecules that cause a rapid (within 15 min) accumulation of secretory cargo and abnormal Golgi compartment-like membranes at low concentration (<2 μM), indicating that the compounds likely target the exocytic transport machinery at the Golgi. We screened for genes that, when overexpressed, suppress the drug effects, and found that the Ras-like small GTPase, Gtr2, but not its homolog and binding partner, Gtr1, efficiently suppresses the toxic effects of the compounds. Furthermore, assays for suppression of the secretory defect caused by the compounds suggest that Gtr proteins can regulate a pathway that is perturbed by the compounds. Because avl9Δ and gtr mutants share some phenotypes, our results indicate that the small molecules identified by our chemical-genetic strategy are promising tools for understanding Avl9 function and the mechanisms that control late exocytic transport. PMID:19897736

  4. Gamma Band Activity in the RAS-intracellular mechanisms

    PubMed Central

    Garcia-Rill, E.; Kezunovic, N.; D’Onofrio, S.; Luster, B.; Hyde, J.; Bisagno, V.; Urbano, F.J.

    2014-01-01

    Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine Subcoeruleus nucleus dorsalis (SubCD) all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high threshold, voltage-dependent P/Q-type calcium channels or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries, an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking vs during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking vs REM sleep after sleep or REM sleep deprivation? PMID:24309750

  5. Active solute transport across frog skin and epithelial cell systems according to the association-induction hypothesis.

    PubMed

    Ling, G N

    1981-01-01

    The phenomenon of transport of ions, sugars, amino acids, etc. across frog skin and other epithelial systems has been commonly interpreted on the basis of the membrane-pump theory, according to which asymmetry in solute distribution as well as transport into and out of all living cells results from the permeability properties and "pump" activities of the membrane. In the present review, certain findings in the field of transepithelial transport of solutes are given new interpretation on the basis of molecular mechanisms introduced in the association-induction hypothesis, according to which "active transport" of solutes occurs only across bifacial cell systems like frog skin and intestinal epithelium but not in the maintenance of steady levels of solutes in unifacial cell systems such as muscle, nerve, and red blood cells. PMID:7330099

  6. Mass Transport Deposits in the Santaren Channel: Distribution, Characteristics, and Potential Triggering Mechanisms

    NASA Astrophysics Data System (ADS)

    Schnyder, J.

    2015-12-01

    Submarine slope failures are a likely cause for tsunami generation along the East U.S. coast. A possible source are the large slope failures along western Great Bahama Bank (GBB). Numerical models simulate tsunami generation and propagation through the Straits of Florida, caused by these Pleistocene mass wasting events. In order to estimate the likelihood and extent of future landslides, distribution, characteristics, and possible triggering mechanisms of previous failures and their associated mass transport deposits (MTD) have to be investigated. In 2013, the University of Hamburg acquired 2D high-resolution multichannel seismic data, multibeam data, and subbottom profiles inside the Santaren Channel, along the slopes of western GBB and Cay Sal Bank (CSB). The two platforms are different in two ways. CSB is part of the Cuban Fold and Thrust Belt while GBB is situated in a tectonically quiet zone. In addition, the slopes of western GBB are on the leeward side of the bank, while the eastern slopes of CSB are in a windward position. Differences in nature and size of mass wasting events between the Cay Sal side and the western GBB side of the dataset show how influential the tectonically active Cuban Fold and Thrust Belt is to the generation of large MTDs in this area. In the study area, the slope failures can be divided in two categories; small-scale in situ failures with high frequencies on the slopes, dominant on the western GBB side, and large landslides with a lower frequency, but higher volumes and transport distances on the toe of the slope and in the basin, dominant on the Cay Sal side. The distribution of in situ failures, such as slump and debris flow alternation, shows the interplay between high and low inner strength of the sediment, respectively. On the other hand, large MTDs caused by submarine landslides suggest movement in an unconfined manner. Internal sediment preconditions derived from sea level oscillations are suggested as triggering mechanisms

  7. Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls.

    PubMed

    Rapoport, E; Montana, D; Beach, G S D

    2012-11-01

    An integrated platform for the capture, transport, and detection of individual superparamagnetic microbeads is described for lab-on-a-chip biomedical applications. Magnetic domain walls in magnetic tracks have previously been shown to be capable of capturing and transporting individual beads through a fluid at high speeds. Here it is shown that the strong magnetostatic interaction between a bead and a domain wall leads to a distinct magneto-mechanical resonance that reflects the susceptibility and hydrodynamic size of the trapped bead. Numerical and analytical modeling is used to quantitatively explain this resonance, and the magneto-mechanical resonant response under sinusoidal drive is experimentally characterized both optically and electrically. The observed bead resonance presents a new mechanism for microbead sensing and metrology. The dual functionality of domain walls as both bead carriers and sensors is a promising platform for the development of lab-on-a-bead technologies. PMID:22955796

  8. Mechanism of electroinduced ionic species transport through a multilamellar lipid system.

    PubMed Central

    Chizmadzhev, Y A; Zarnitsin, V G; Weaver, J C; Potts, R O

    1995-01-01

    A theoretical model for electroporation of multilamellar lipid system due to a series of large electrical pulses is presented and then used to predict the functional dependence of the transport of charged molecules. Previously, electroporation has been considered only for single bilayer systems such as artificial planar bilayer membranes and cell membranes. The former have been extensively studied with respect to electrical and mechanical behavior, and the latter with respect to molecular transport. Recent experimental results for both molecular transport and electrical resistance changes in the stratum corneum (SC) suggest that electroporation also occurs in the multilamellar lipid membranes of the SC. In addition, there is the possibility that other skin structures (the "appendages") also experience electroporation. A compartment model is introduced to describe the transport of charged species across the SC, and the predicted dependence is compared with available data. In this model, the SC is assumed to contain many hydrophilic compartments in series separated by boundary bilayers, so that these compartments become connected only upon electroporation. Two limiting cases for the transport of charged molecules are considered: (1) transport along tortuous inter-bilayer pathways in each compartment, followed by transport across individual boundary bilayers due to electroporation, and (2) transport along straight-through pathways in the boundary bilayers with fast mixing in each compartment, which includes the interior space of corneocytes. Both models were fitted to the experimental data. The large electropore radius (rt approximately 200 A) and porated fractional area (ft approximately 10(-3) obtained from the fitting for the tortuous model relative to the more reasonable values obtained for the straight-through model (rs approximately 4 A, fs approximately 10(-6) suggest that the latter is a more realistic description of electroinduced transport of ionized species

  9. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    NASA Astrophysics Data System (ADS)

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic

  10. Mechanical Activation of Construction Binder Materials by Various Mills

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.

    2016-04-01

    The paper deals with the mechanical grinding down to the nano powder of construction materials. During mechanical activation a composite binder active molecules cement minerals occur in the destruction of the molecular defects in the areas of packaging and breaking metastable phase decompensation intermolecular forces. The process is accompanied by a change in the kinetics of hardening of portland cement. Mechanical processes during grinding mineral materials cause, along with the increase in their surface energy, increase the Gibbs energy of powders and, respectively, their chemical activity, which also contributes to the high adhesion strength when contacting them with binders. Thus, the set of measures for mechanical activation makes better use of the weight of components filled with cement systems and adjust their properties. At relatively low cost is possible to provide a spectacular and, importantly, easily repeatable results in a production environment.

  11. Atmospheric Compensation of Variations in Tropical Ocean Heat Transport: Understanding Mechanisms and Implications on Tectonic Timescales

    NASA Astrophysics Data System (ADS)

    Rencurrel, M. C.; Rose, B. E. J.

    2015-12-01

    The poleward transport of energy is a key aspect of the climate system, with surface ocean currents presently dominating the transport out of deep tropics. A classic study by Stone (1978) proposed that the total heat transport is determined by astronomical parameters and is highly insensitive to the detailed atmosphere-ocean dynamics. On the other hand, previous modeling work has shown that past continental configurations could have produced substantially different tropical ocean heat transport (OHT). How thoroughly does the atmosphere compensate for changes in ocean transport in terms of the top-of-atmosphere (TOA) radiative budget, what are the relevant mechanisms, and what are the consequences for surface temperature and climate on tectonic timescales? We examine these issues in a suite of aquaplanet GCM simulations subject to large prescribed variations in OHT. We find substantial but incomplete compensation, in which adjustment of the atmospheric Hadley circulation plays a key role. We then separate out the dynamical and thermodynamical components of the adjustment mechanism. Increased OHT tends to warm the mid- to high latitudes without cooling the tropics due asymmetries in radiative feedback processes. The warming is accompanied by hydrological cycle changes that are completely different from those driven by greenhouse gases, suggesting that drivers of past global change might be detectable from combinations of hydroclimate and temperature proxies.

  12. Drug Release Kinetics and Transport Mechanisms of Non-degradable and Degradable Polymeric Delivery Systems

    PubMed Central

    Fu, Yao; Kao, Weiyuan John

    2010-01-01

    Importance of the field The advancement in material design and engineering has led to the rapid development of novel materials with increasing complexity and functions. Both non-degradable and degradable polymers have found wide applications in the controlled delivery field. Studies on drug release kinetics provide important information into the function of material systems. To elucidate the detailed transport mechanism and the structure-function relationship of a material system, it is critical to bridge the gap between the macroscopic data and the transport behavior at the molecular level. Areas covered in this review The structure and function information of selected non-degradable and degradable polymers have been collected and summarized from literatures published after 1990s. The release kinetics of selected drug compounds from various material systems will be discussed in case studies. Recent progresses in the mathematical models based on different transport mechanisms will be highlighted. What the reader will gain This article aims to provide an overview of structure-function relationships of selected non-degradable and degradable polymers as drug delivery matrices. Take home message Understanding the structure-function relationship of the material system is key to the successful design of a delivery system for a particular application. Moreover, developing complex polymeric matrices requires more robust mathematical models to elucidate the solute transport mechanisms. PMID:20331353

  13. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  14. Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries

    NASA Astrophysics Data System (ADS)

    Agar, Ertan

    Vanadium redox flow batteries (VRFBs) are an emerging energy storage technology that offers unique advantages for grid-scale energy storage due to their flexible design and decoupled power/energy feature. Despite their popularity, a series of technical challenges hinder their widespread implementation. Among these, capacity loss (i.e., loss of energy storage capability) due to the undesired species crossover across the membrane has been identified as the key issue limiting the longevity of these systems. This issue is primarily governed by the properties of the membrane and can be mitigated by using proper membrane architectures with desired features. Presently, identifying proper membrane architectures for VRFB systems is hampered by the lack of a fundamental understanding of the nature of species transport mechanisms and how they are related to the membrane properties and key operating conditions. This Ph.D. study seeks to address this critical challenge by exploring the fundamental mechanisms responsible for species transport within the membrane. The overall objective of this dissertation study is to establish a fundamental understanding of the multi-ionic transport in VRFB membranes by investigating the ionic transport mechanisms responsible for crossover, and utilize this understanding to reveal the role of membrane properties and operating conditions on the capacity loss. To achieve these goals, a combined experimental and computational study was designed. An experimentally validated, 2-D, transient VRFB model that can track the vanadium crossover and capture the related capacity loss was developed. In addition to the model, several electrochemical techniques were used to characterize different types of membrane and study the effects of various operating conditions on the species crossover. Using these computational and experimental tools, an in-depth understanding of the species transport mechanisms within the membrane and how they are related to membrane

  15. The charge transport mechanism and electron trap nature in thermal oxide on silicon

    NASA Astrophysics Data System (ADS)

    Islamov, Damir R.; Gritsenko, Vladimir A.; Perevalov, Timofey V.; Orlov, Oleg M.; Krasnikov, Gennady Ya.

    2016-08-01

    The charge transport mechanism of electron via traps in amorphous SiO2 has been studied. Electron transport is limited by phonon-assisted tunneling between traps. Thermal and optical trap energies Wt=1.6 eV, Wopt=3.2 eV, respectively, were determined. Charge flowing leads to oxygen vacancies generation, and the leakage current increases due to the increase of charge trap density. Long-time annealing at high temperatures decreased the leakage current to initial values due to oxygen vacancies recombination with interstitial oxygen. It is found that the oxygen vacancies act as electron traps in SiO2.

  16. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  17. Impacts of transport mechanisms and plume history on tailing of sorbing plumes in heterogeneous porous formations

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mahdi; Jankovic, Igor; Allen-King, Richelle M.; Rabideau, Alan J.; Kalinovich, Indra; Weissmann, Gary S.

    2014-11-01

    This work investigated the impacts of permeability and sorption heterogeneity on contaminant transport in groundwater using simulation experiments designed to elucidate the causes of tailing. The effects of advection, diffusion and sorption mechanisms and plume history were explored. A simple conceptual model consisting of a single inclusion (heterogeneity) of uniform hydraulic conductivity K and sorption distribution coefficient Kd was adopted. The 3D inclusion, shaped as a horizontal oblate ellipsoid of variable thickness, was placed in a homogeneous anisotropic background of different hydraulic conductivity and sorption distribution coefficient. The background represents average K and Kd of a heterogeneous porous formation. A closed-form analytic flow solution for uniform flow past the inclusion was coupled with a numerical transport solution to simulate contaminant migration for a wide range of transport parameters and two distinct source conditions. Over 2600 numerical simulations were performed in parallel. Transport results were presented in terms of travel time distributions at a control plane downstream of the inclusion and used to quantify tailing for a wide range of transport parameters, in order to separate advection-dominated from diffusion-dominated transport regime and to investigate effects of inclusion shape, diffusion, sorption and plume history on tailing.

  18. Hydraulic mechanism to limit torsional loads between the IUS and space transportation system orbiter

    NASA Technical Reports Server (NTRS)

    Farmer, James R.

    1986-01-01

    The Inertial Upper Stage (IUS) is a two-stage booster used by NASA and the Defense Department to insert payloads into geosynchronous orbit from low-Earth orbit. The hydraulic mechanism discussed here was designed to perform a specific dynamic and static interface function within the Space Transportation System's Orbiter. Requirements, configuration, and application of the hydraulic mechanism with emphasis on performance and methods of achieving zero external hydraulic leakage are discussed. The hydraulic load-leveler mechanism meets the established design requirements for operation in a low-Earth orbit. Considerable testing was conducted to demonstrate system performance and verification that external leakage had been reduced to zero. Following each flight use of an ASE, all hydraulic mechanism components are carefully inspected for leakage. The ASE, including the hydraulic mechanism, has performed without any anomalies during all IUS flights.

  19. Sodium transport and mechanism(s) of sodium tolerance in Frankia strains.

    PubMed

    Srivastava, Amrita; Singh, Satya Shila; Mishra, Arun Kumar

    2013-02-01

    The mechanism(s) underlying differential salt sensitivity/tolerance were investigated in the terms of altered morphological and physiological responses against salinity such as growth, electrolyte leakage, Na⁺ uptake, efflux, accumulation and intracellular concentrations of macronutrients among the Frankia strains newly isolated from Hippöphae salicifolia D. Don. Growth was minimally reduced at 500 and 250 mM NaCl respectively in HsIi10 and rest of the strains (HsIi2, HsIi8, HsIi9) which proved that 500 and 250 mM NaCl are the critical concentrations for the respective strains. The differences in the sodium influx/efflux rate was responsible for the differential amount of remaining sodium among the frankial strains and might be one of the primary determinants for the reestablishment of macronutrients (Mg²⁺, Ca²⁺ and K⁺) during salinity. Secondly, the interactive effect of sodium influx/efflux rate, remaining sodium and intracellular macronutrients (Mg²⁺, Ca²⁺ and K⁺) concentration has been responsible for the extent of membrane damage and growth sustenance of the tolerant/sensitive frankial strains during salinity. HsIi10 showed better co-regulation of various factors and managed to tolerate salt stress up to considerable extent. Therefore, HsIi10 can serve as a potential biofertilizer in the saline soil. PMID:22733696

  20. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    SciTech Connect

    Halwachs, Sandra; Lakoma, Cathleen; Gebhardt, Rolf; Schaefer, Ingo; Seibel, Peter; Honscha, Walther

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  1. Serum- and glucocorticoid-inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter

    PubMed Central

    Xu, Da; Huang, Haozhe; Toh, May Fern; You, Guofeng

    2016-01-01

    Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney and brain. In the current study, we examined the regulation of hOAT1 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT1 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity V max without significant change in substrate-binding affinity K m. We further showed that stimulation of hOAT1 activity by sgk2 was achieved by preventing hOAT1 degradation. Our co-immunoprecipitation experiment revealed that the effect of sgk2 on hOAT1 was through a direct interaction between these two proteins. In conclusion, our study demonstrated that sgk2 stimulates hOAT1 transport activity by enhancing the stability of the transporter. This study provides the insights into sgk2 regulation of hOAT1-mediated transport in normal physiology and disease. PMID:27335683

  2. Serum- and glucocorticoid-inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter.

    PubMed

    Xu, Da; Huang, Haozhe; Toh, May Fern; You, Guofeng

    2016-01-01

    Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney and brain. In the current study, we examined the regulation of hOAT1 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT1 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity V max without significant change in substrate-binding affinity K m. We further showed that stimulation of hOAT1 activity by sgk2 was achieved by preventing hOAT1 degradation. Our co-immunoprecipitation experiment revealed that the effect of sgk2 on hOAT1 was through a direct interaction between these two proteins. In conclusion, our study demonstrated that sgk2 stimulates hOAT1 transport activity by enhancing the stability of the transporter. This study provides the insights into sgk2 regulation of hOAT1-mediated transport in normal physiology and disease. PMID:27335683

  3. Effect of Mechanical Agitation on Cationic Liposome Transport across an Unstirred Water Layer in Caco-2 Cells.

    PubMed

    Kono, Yusuke; Iwasaki, Ayu; Matsuoka, Kenta; Fujita, Takuya

    2016-01-01

    To develop an effective oral delivery system for plasmid DNA (pDNA) using cationic liposomes, it is necessary to clarify the characteristics of uptake and transport of cationic liposome/pDNA complexes into the intestinal epithelium. In particular, evaluation of the involvement of an unstirred water layer (UWL), which is a considerable permeability barrier, in cationic liposome transport is very important. Here, we investigated the effects of a UWL on the transfection efficiency of cationic liposome/pDNA complexes into a Caco-2 cell monolayer. When Caco-2 cells were transfected with cationic liposome/pDNA complexes in shaking cultures to reduce the thickness of the UWL, gene expression was significantly higher in Caco-2 cells compared with static cultures. We also found that this enhancement of gene expression by shaking was not attributable to activation of transcription factors such as activator protein-1 and nuclear factor-kappaB (NF-κB). In addition, the increase in gene expression by mechanical agitation was observed at all charge ratios (1.5, 2.3, 3.1, 4.5) of cationic liposome/pDNA complexes. Transport experiments using Transwells demonstrated that mechanical agitation increased the uptake of cationic liposome/pDNA complexes by Caco-2 cells, whereas transport of the complexes across a Caco-2 cell monolayer did not occurr. Moreover, the augmentation of the gene expression of cationic liposome/pDNA complexes by shaking was observed in Madin-Darby canine kidney cells. These results indicate that a UWL greatly affects the uptake and transfection efficiency of cationic liposome/pDNA complexes into an epithelial monolayer in vitro. PMID:27476939

  4. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland.

    PubMed

    McManaman, James L; Reyland, Mary E; Thrower, Edwin C

    2006-10-01

    Milk is a complex fluid composed of proteins, sugars, lipids and minerals, in addition to a wide variety of bioactive molecules including vitamins, trace elements and growth factors. The composition of these components reflects the integrated activities of distinct synthetic, secretion and transport processes found in mammary epithelial cells, and mirrors the differing nutritional and developmental requirements of mammalian neonates. Five general pathways have been described for secretion of milk components. With the exception of lipids, which are secreted a unique pathway, milk components are thought to be secreted by adaptations of pathways found in other secretory organs. However little is known about the molecular and cellular mechanisms that constitute these pathways or the physiological mechanisms by which they are regulated. Comparisons of current secretion and transport models in the mammary gland, exocrine pancreas and salivary gland indicate that significant differences exist between the mammary gland and other exocrine organs in how proteins and lipids are packaged and secreted, and how fluid is transported. PMID:17136613

  5. Adenosine monophosphate-activated protein kinase activation, substrate transporter translocation, and metabolism in the contracting hyperthyroid rat heart.

    PubMed

    Heather, Lisa C; Cole, Mark A; Atherton, Helen J; Coumans, Will A; Evans, Rhys D; Tyler, Damian J; Glatz, Jan F C; Luiken, Joost J F P; Clarke, Kieran

    2010-01-01

    Thyroid hormones can modify cardiac metabolism via multiple molecular mechanisms, yet their integrated effect on overall substrate metabolism is poorly understood. Here we determined the effect of hyperthyroidism on substrate metabolism in the isolated, perfused, contracting rat heart. Male Wistar rats were injected for 7 d with T(3) (0.2 mg/kg x d ip). Plasma free fatty acids increased by 97%, heart weights increased by 33%, and cardiac rate pressure product, an indicator of contractile function, increased by 33% in hyperthyroid rats. Insulin-stimulated glycolytic rates and lactate efflux rates were increased by 33% in hyperthyroid rat hearts, mediated by an increased insulin-stimulated translocation of the glucose transporter GLUT4 to the sarcolemma. This was accompanied by a 70% increase in phosphorylated AMP-activated protein kinase (AMPK) and a 100% increase in phosphorylated acetyl CoA carboxylase, confirming downstream signaling from AMPK. Fatty acid oxidation rates increased in direct proportion to the increased heart weight and rate pressure product in the hyperthyroid heart, mediated by synchronized changes in mitochondrial enzymes and respiration. Protein levels of the fatty acid transporter, fatty acid translocase (FAT/CD36), were reduced by 24% but were accompanied by a 19% increase in the sarcolemmal content of fatty acid transport protein 1 (FATP1). Thus, the relationship between fatty acid metabolism, cardiac mass, and contractile function was maintained in the hyperthyroid heart, associated with a sarcolemmal reorganization of fatty acid transporters. The combined effects of T(3)-induced AMPK activation and insulin stimulation were associated with increased sarcolemmal GLUT4 localization and glycolytic flux in the hyperthyroid heart. PMID:19940039

  6. Sex-dependent activity of the spinal excitatory amino acid transporter: Role of estrous cycle.

    PubMed

    Sajjad, Jahangir; Felice, Valeria D; Golubeva, Anna V; Cryan, John F; O'Mahony, Siobhain M

    2016-10-01

    Females are more likely to experience visceral pain than males, yet mechanisms underlying this sex bias are not fully elucidated. Moreover, pain sensitivity can change throughout the menstrual cycle. Alterations in the glutamatergic system have been implicated in several pain-disorders; however, whether these are sex-dependent is unclear. Thus, we aimed to investigate sex differences in the spinal cord glutamate uptake and how it varies across the estrous cycle. The activity of the glutamate transporters, excitatory amino acid transporters (EAATs) was assessed using an ex vivo aspartate radioactive uptake assay in the lumbosacral spinal cord in Sprague-Dawley male and female rats. The gene expression of EAATs, glutamate receptor subunits NR1 and NR2B and the estrogen receptors ERα & ERβ in the spinal cord were also analyzed. EAAT activity was lower in females, particularly during the estrus phase, and this was the only cycle stage that was responsive to the pharmacological effects of the EAATs activator riluzole. Interestingly, EAAT1 mRNA expression was lower in high-estrogen and high-ERα states compared to diestrus in females. We conclude that the Spinal EAAT activity in females is different to that in males, and varies across the estrous cycle. Furthermore, the expression levels of estrogen receptors also showed a cycle-dependent pattern that may affect EAATs function and expression. PMID:27471194

  7. Activity dependent internalization of the glutamate transporter GLT-1 mediated by β-arrestin 1 and ubiquitination.

    PubMed

    Ibáñez, Ignacio; Díez-Guerra, F Javier; Giménez, Cecilio; Zafra, Francisco

    2016-08-01

    GLT-1 is the main glutamate transporter in the brain and undergoes trafficking processes that control its concentration on the cell surface thereby shaping glutamatergic neurotransmission. We have investigated how the traffic of GLT-1 is regulated by transporter activity. We report that internalization of GLT-1 from the cell surface is accelerated by transportable substrates like glutamate or aspartate, as well as by the transportable inhibitor L-trans-2,4-PDC, but not by the non-substrate inhibitor WAY 213613 in primary mixed cultures and in transiently transfected HEK293 cells. Analysis of the mechanism of endocytosis in HEK293 cells revealed that glutamate promoted the association with the transporter of the adaptor protein β-arrestin and the ubiquitin ligase Nedd4-2. The addition of glutamate is accompanied by an increase in the transporter ubiquitination, and the internalization is suppressed by an ubiquitination inhibitor (PYR41), and in a mutant defective in C-terminal lysines. The glutamate triggered endocytosis was also suppressed by siRNA for β-arrestin. This regulatory mechanism might be relevant in controlling the amount of transporter on the cell surface in conditions such as ischemia or traumatic brain injury, where extracellular concentrations of glutamate are persistently elevated. PMID:27044663

  8. Comparative Localization and Functional Activity of the Main Hepatobiliary Transporters in HepaRG Cells and Primary Human Hepatocytes.

    PubMed

    Bachour-El Azzi, Pamela; Sharanek, Ahmad; Burban, Audrey; Li, Ruoya; Guével, Rémy Le; Abdel-Razzak, Ziad; Stieger, Bruno; Guguen-Guillouzo, Christiane; Guillouzo, André

    2015-05-01

    The role of hepatobiliary transporters in drug-induced liver injury remains poorly understood. Various in vivo and in vitro biological approaches are currently used for studying hepatic transporters; however, appropriate localization and functional activity of these transporters are essential for normal biliary flow and drug transport. Human hepatocytes (HHs) are considered as the most suitable in vitro cell model but erratic availability and inter-donor functional variations limit their use. In this work, we aimed to compare localization of influx and efflux transporters and their functional activity in differentiated human HepaRG hepatocytes with fresh HHs in conventional (CCHH) and sandwich (SCHH) cultures. All tested influx and efflux transporters were correctly localized to canalicular [bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance protein 1 (MDR1), and MDR3] or basolateral [Na(+)-taurocholate co-transporting polypeptide (NTCP) and MRP3] membrane domains and were functional in all models. Contrary to other transporters, NTCP and BSEP were less abundant and active in HepaRG cells, cellular uptake of taurocholate was 2.2- and 1.4-fold and bile excretion index 2.8- and 2.6-fold lower, than in SCHHs and CCHHs, respectively. However, when taurocholate canalicular efflux was evaluated in standard and divalent cation-free conditions in buffers or cell lysates, the difference between the three models did not exceed 9.3%. Interestingly, cell imaging showed higher bile canaliculi contraction/relaxation activity in HepaRG hepatocytes and larger bile canaliculi networks in SCHHs. Altogether, our results bring new insights in mechanisms involved in bile acids accumulation and excretion in HHs and suggest that HepaRG cells represent a suitable model for studying hepatobiliary transporters and drug-induced cholestasis. PMID:25690737

  9. Common mechanisms activate plant guard receptors and TLR4

    PubMed Central

    Kagan, Jonathan C.

    2014-01-01

    In metazoans, the innate immune system uses Pattern Recognition Receptors to detect conserved microbial products, whereas in plants Guard Receptors detect virulence factors or activities encoded by pathogens. In a recent study, Williams and colleagues report that plant Guard receptors can be activated by a mechanism remarkably similar to that of mammalian Toll-like Receptor 4. PMID:25224694

  10. Tractor Mechanics: Learning Activity Packages 1-19.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    Learning activity packages are presented for teaching tractor mechanics. The first of two sections deals with miscellaneous tasks and contains learning activity packages on cleaning the tractor and receiving new tractor parts. Section 2 is concerned with maintaining and servicing the electrical system, and it includes the following learning…

  11. Molecular Mechanism of Active Zone Organization at Vertebrate Neuromuscular Junctions

    PubMed Central

    Nishimune, Hiroshi

    2013-01-01

    Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses. PMID:22135013

  12. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype.

    PubMed

    Karniski, L P

    2001-07-01

    The diastrophic dysplasia sulfate transporter (DTDST) gene encodes a transmembrane protein that transports sulfate into chondrocytes to maintain adequate sulfation of proteoglycans. Mutations in this gene are responsible for four recessively inherited chondrodysplasias that include diastrophic dysplasia, multiple epiphyseal dysplasia, atelosteogenesis type 2 and achondrogenesis 1B (ACG-1B). To determine whether the DTDST mutations found in individuals with these chondrodysplasias differ functionally from each other, we compared the sulfate transport activity of 11 reported DTDST mutations. Five mutations, G255E, Delta a1751, L483P, R178X and N425D, had minimal sulfate transport function following expression in Xenopus laevis oocytes. Two mutations, Delta V340 and R279W, transported sulfate at rates of 17 and 32%, respectively, of wild-type DTDST. Four mutations, A715V, C653S, Q454P and G678V, had rates of sulfate transport nearly equal to that of wild-type DTDST. Transport kinetics were not different among the four mutations with near-normal sulfate transport function and wild-type DTDST. When the sulfate transport function of the different DTDST mutations are grouped according to the general phenotypes, individuals with the most severe form, ACG-1B, tend to be homozygous for null mutations, individuals with the moderately severe atelosteogenesis type 2 have at least one allele with a loss-of-function mutation, and individuals with the mildest forms are typically homozygous for mutations with residual sulfate transport function. However, in the X.laevis oocyte expression system, the correlation between residual transport function and the severity of phenotype was not absolute, suggesting that factors in addition to the intrinsic sulfate transport properties of the DTDST protein may influence the phenotype in individuals with DTDST mutations. PMID:11448940

  13. Effect of renal insufficiency on the active transport of calcium by the small intestine

    PubMed Central

    Baerg, Richard D.; Kimberg, Daniel V.; Gershon, Elaine

    1970-01-01

    The intestinal absorption of calcium is often depressed in patients with chronic renal insufficiency. Furthermore, the malabsorption of calcium and the osteodystrophy which occur in association with chronic renal disease are often “resistant” to vitamin D; the basis for this resistance remains uncertain however. Recent studies by others have emphasized the role of an abnormality in the metabolism of vitamin D in accounting for the alterations in the calcium absorption and the apparent vitamin D-resistance which accompany the uremic syndrome. The present studies with an experimentally uremic animal model demonstrate a defect in the active transport of calcium by duodenal gut sacs in vitro. This abnormality is not due to the semistarvation associated with renal insufficiency and cannot be corrected by the administration of physiologic amounts of vitamin D3: it is reversed by massive doses of the vitamin. Neither the metabolism of vitamin D3 nor the levels of calcium binding protein activity in the duodenal mucosa are affected by renal insufficiency under the conditions employed in the present studies. The results of the present studies strongly suggest that in addition to the recently proposed mechanism involving an interference with the metabolism of vitamin D renal insufficiency also affects the cellular mechanisms for calcium transport in a manner which, while opposite in direction to that of vitamin D, is independent of a direct interaction with the vitamin or its metabolites. PMID:5422027

  14. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications.

    PubMed

    Sun, Pengzhan; Wang, Kunlin; Zhu, Hongwei

    2016-03-01

    Significant achievements have been made on the development of next-generation filtration and separation membranes using graphene materials, as graphene-based membranes can afford numerous novel mass-transport properties that are not possible in state-of-art commercial membranes, making them promising in areas such as membrane separation, water desalination, proton conductors, energy storage and conversion, etc. The latest developments on understanding mass transport through graphene-based membranes, including perfect graphene lattice, nanoporous graphene and graphene oxide membranes are reviewed here in relation to their potential applications. A summary and outlook is further provided on the opportunities and challenges in this arising field. The aspects discussed may enable researchers to better understand the mass-transport mechanism and to optimize the synthesis of graphene-based membranes toward large-scale production for a wide range of applications. PMID:26797529

  15. Single-Molecule Imaging to Characterize the Transport Mechanism of the Nuclear Pore Complex.

    PubMed

    Jeremy, Grace; Stevens, James; Lowe, Alan R

    2016-01-01

    In the eukaryotic cell, a large macromolecular channel, known as the Nuclear Pore Complex (NPC), mediates all molecular transport between the nucleus and cytoplasm. In recent years, single-molecule fluorescence (SMF) imaging has emerged as a powerful tool to study the molecular mechanism of transport through the NPC. More recently, techniques such as single-molecule localization microscopy (SMLM) have enabled the spatial and temporal distribution of cargos, transport receptors and even structural components of the NPC to be determined with nanometre accuracy. In this protocol, we describe a method to study the position and/or motion of individual molecules transiting through the NPC with high spatial and temporal precision. PMID:27283299

  16. The association between access to public transportation and self-reported active commuting.

    PubMed

    Djurhuus, Sune; Hansen, Henning S; Aadahl, Mette; Glümer, Charlotte

    2014-12-01

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting. PMID:25489998

  17. The Association between Access to Public Transportation and Self-Reported Active Commuting

    PubMed Central

    Djurhuus, Sune; Hansen, Henning S.; Aadahl, Mette; Glümer, Charlotte

    2014-01-01

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting. PMID:25489998

  18. Evaluation of Proposed In Vivo Probe Substrates and Inhibitors for Phenotyping Transporter Activity in Humans.

    PubMed

    Momper, Jeremiah D; Tsunoda, Shirley M; Ma, Joseph D

    2016-07-01

    Drug transporters are present in various tissues and have a significant role in drug absorption, distribution, and elimination. The International Transporter Consortium has identified 7 transporters of increasing importance from evidence of clinically significant transporter-mediated drug-drug interactions. The transporters are P-glycoprotein, breast cancer resistance protein, organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2, organic anion transporters (OAT) 1, and OAT3. Decision trees were created based on in vitro experiments to determine whether an in vivo transporter-mediated drug-drug interaction study is needed. Phenotyping is a methodology that evaluates real-time in vivo transporter activity, whereby changes in a probe substrate or probe inhibitor reflect alternations in the activity of the specified transporter. In vivo probe substrates and/or probe inhibitors have been proposed for each aforementioned transporter. In vitro findings and animal models provide the strongest evidence regarding probe specificity. However, such findings have not conclusively correlated with human phenotyping studies. Furthermore, the extent of contribution from multiple transporters in probe disposition complicates the ability to discern if study findings are the result of a specific transporter and thus provide a recommendation for a preferred probe for a drug transporter. PMID:27385182

  19. School Travel Planning: Mobilizing School and Community Resources to Encourage Active School Transportation

    ERIC Educational Resources Information Center

    Buliung, Ron; Faulkner, Guy; Beesley, Theresa; Kennedy, Jacky

    2011-01-01

    Background: Active school transport (AST), school travel using an active mode like walking, may be important to children's overall physical activity. A "school travel plan" (STP) documents a school's transport characteristics and provides an action plan to address school and neighborhood barriers to AST. Methods: We conducted a pilot STP…

  20. Interaction of gatifloxacin with efflux transporters: a possible mechanism for drug resistance

    PubMed Central

    Kwatra, Deep; Vadlapatla, Ramya Krishna; Vadlapudi, Aswani Dutt; Pal, Dhananjay; Mitra, Ashim K.

    2010-01-01

    The purpose of the study is to screen the interactions of fourth generation fluoroquinolone-gatifloxacin with efflux pumps i.e. P-gp, MRP2 and BCRP. Mechanism of gatifloxacin interaction with efflux transporters may explain its acquired resistance. Such clarification may lead to the development of strategies to overcome efflux and enhance its bioavailability at target site. This process will aid in the reduction of dose volume, further eliminating the chances of systemic toxicity from topical gatifloxacin eye drops. MDCK cell lines transfected with the targeted efflux transporters were used for this study. [14C] Erythromycin was selected as a model substrate for P-gp and MRP2 whereas Hoechst 33342 was employed as a substrate for BCRP. Uptake and transport studies of these substrates were performed in the presence of gatifloxacin to delineate its interaction with efflux transporters. Further the efflux ratio in the presence of gatifloxacin was calculated from bidirectional transport studies. The concentration of [14C] erythromycin and Hoechst 33342 were measured using scintillation counter and fluorescence plate reader respectively. A concentration dependent inhibition effect in the presence of gatifloxacin was revealed on [14C] erythromycin uptake. The efflux ratio (BL-AP/AP-BL) of substrates was found to approach unity at higher gatifloxacin concentrations. Increased concentration of gatifloxacin did not elevate uptake of Hoechst 33342. All these studies were validated with known inhibitors as positive control. Uptake and transport studies support the hypothesis that gatifloxacin is a substrate for P-gp, MRP2 but not for BCRP. Possible interactions of gatifloxacin with P-gp and MRP2 may be a possible mechanism for acquired resistance of gatifloxacin. This information can be further extended to design prodrugs or formulations in order to prevent development of acquired resistance and improve therapeutic efficacy with its reduction in side effects. PMID:20573570

  1. Solitary waves: a possible mechanism for rapid fluid transport in low permeability porous media

    NASA Astrophysics Data System (ADS)

    Appold, Martin; Joshi, Ajit

    2014-05-01

    Elastic porous media in which the rate of fluid pressure generation is high relative to the rate of fluid pressure diffusion and whose permeabilities are a sensitive function of effective stress may generate solitary waves manifest as discrete pulses of elevated pore pressure and porosity that can travel at velocities that are orders of magnitude greater than the velocities of the pore fluids in the background Darcian flow regime. Solitary waves may thus be important vehicles for fluid transport through porous media whose permeabilities are otherwise too low to allow significant rates of flow. Solitary waves have been hypothesized for diverse geologic settings and processes, including magmatic hydrothermal ore formation, magma transport, fault slip in accretionary wedges and at transform plate boundaries, and primary hydrocarbon migration in sedimentary basins. The present study has focused on solitary waves as agents of oil and methane transport through numerical simulation of their origin and behavior. The results show solitary waves to have limited capacity for transporting oil for several reasons: (1) the rate of fluid pressure generation by typical mechanisms like compaction disequilibrium and hydrocarbon formation is too low to allow solitary waves to form unless permeability is exceptionally low (10-24 to 10-25 m2), (2) solitary waves are only able to ascend no more than 1-2 km before dissipating to ambient pressure and porosity values, (3) the waves are too small and the frequency of their formation is too low to account for the amount of oil observed in the reservoirs that they have been hypothesized to feed. Solitary waves have been found to be more effective at transporting methane because of its lower density and viscosity compared to oil, provided that a mechanism for rapid pressure generation exists and permeabilities are very low. If those conditions exist, then solitary waves can ascend over two kilometers at rates on the order of 100's of meters

  2. Modeling of Colloid Transport Mechanisms Facilitating Migration of Radionuclides in Fractured Media

    SciTech Connect

    Li Shihhai; Yang, H.-T.; Jen, C.-P.

    2004-12-15

    Performance assessments of high-level radioactive waste disposal have emphasized the role of colloids in the migration of radionuclides in the geosphere. The transport of colloids often brings them in contact with fracture surfaces or porous rock matrix. Colloids that attach to these surfaces are treated as being immobile and are called filtered colloids. The filtered colloids could be released into the fracture again; that is, the attachment of colloids may be reversible. Also, the colloids in the fracture could diffuse into the porous matrix rock. A methodology is proposed to evaluate a predictive model to assess transport within the fractured rock as well as various phenomenological coefficients employed in the different mechanisms, such as filtration, remobilization, and matrix diffusion of colloids. The governing equations of colloids considering mechanisms of the colloidal transport in the fractured media, including filtration, remobilization, and matrix diffusion, have been modeled and solved analytically in previous studies. In the present study, transport equations of colloids and radionuclides that consider the combination of the aforementioned transport mechanisms have also been solved numerically and investigated. The total concentration of mobile radionuclides in the fracture becomes lower because the concentration of mobile colloids in the fracture decreases when the filtration coefficient for colloids increases. Additionally, the concentration of mobile radionuclides was increased at any given time step due to the higher sorption partition coefficient of radionuclides associated with colloids. The results also show that the concentration of radionuclides in the fracture zone decreases when the remobilization coefficient of colloids or the percentages of the matrix diffusion flux of colloids increase.

  3. Cl- homeostasis in includer and excluder citrus rootstocks: transport mechanisms and identification of candidate genes.

    PubMed

    Brumós, Javier; Talón, Manuel; Bouhlal, Rym; Colmenero-Flores, José M

    2010-12-01

    To reveal specific Cl(-) transport activities in the symplastic pathway, uptake, long-distance transport and distribution of Cl(-) have been investigated in the citrus rootstocks Carrizo citrange (CC, Cl(-) includer) and Cleopatra mandarin (CM, Cl(-) excluder). Using an external concentration of 4.5 mm Cl(-) , both species actively transported Cl(-) to levels that exceeded the critical requirement concentration by one and two orders of magnitude in the excluder and the includer rootstocks, respectively. Both CC and CM modulated Cl(-) influx according to the availability of the nutrient as uptake capacity was induced by Cl(-) starvation, but inhibited after Cl(-) resupply. Net Cl(-) uptake was higher in the includer CC, an observation that correlated with a lower root-to-shoot transport capacity in the excluder CM. The patterns of tissue Cl(-) accumulation indicated that chloride exclusion in the salt-tolerant rootstock CM was caused by a reduced net Cl(-) loading into the root xylem. Genes CcCCC1, CcSLAH1 and CcICln1 putatively involved in the regulation of chloride transport were isolated and their expression analysed in response to both changes in the nutritional status of Cl(-) and salt stress. The previously uncharacterized ICln gene exhibited a strong repression to Cl(-) application in the excluder rootstock, suggesting a role in regulating Cl(-) homeostasis in plants. PMID:20573047

  4. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    SciTech Connect

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui; Xu, Ke Wang, Jianfeng; Ren, Guoqiang

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  5. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    NASA Astrophysics Data System (ADS)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  6. Characteristics of Mare Deposits on the Eastern Limb of the Moon: Implications for Magma Transport Mechanisms

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Head, J. W.

    1996-03-01

    Lunar volcanic history has been examined in light of geomorphological and stratigraphic constraints placed upon the surface features. Compositional and petrological analyses have provided models for the conditions of mare parent magma generation . The connection between lunar magma source regions and volcanic surface features remains unclear, however, both conceptually and quantitatively with respect to our understanding of transport mechanisms. It has been suggested that mare emplacement was controlled by propagation of dikes driven by the overpressurization of diapir-like source regions stalled below the cooling lunar highland crust. Recent analyses of the characteristics of lava ponds in the South Pole/Aitken and Orientale/Mendel-Rydberg basins based on Clementine, Lunar Orbiter and Zond data have provided evidence that supports this theory. In this contribution we report on an analysis of the areas, volumes, modes of occurrence and crustal thicknesses for mare deposits in the Marginis and Smythii basins, and investigate implications for magma transport mechanisms.

  7. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    PubMed Central

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-01-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops. PMID:26282243

  8. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain.

    PubMed

    Coloma, M; Schaffer, J D; Carare, R O; Chiarot, P R; Huang, P

    2016-08-01

    Beta-amyloid accumulation within arterial walls in cerebral amyloid angiopathy is associated with the onset of Alzheimer's disease. However, the mechanism of beta-amyloid clearance along peri-arterial pathways in the brain is not well understood. In this study, we investigate a transport mechanism in the arterial basement membrane consisting of forward-propagating waves and their reflections. The arterial basement membrane is modeled as a periodically deforming annulus filled with an incompressible single-phase Newtonian fluid. A reverse flow, which has been suggested in literature as a beta-amyloid clearance pathway, can be induced by the motion of reflected boundary waves along the annular walls. The wave amplitude and the volume of the annular region govern the flow magnitude and may have important implications for an aging brain. Magnitudes of transport obtained from control volume analysis and numerical solutions of the Navier-Stokes equations are presented. PMID:26729476

  9. Mechanism of ionophoric transport of indium-111 cations through a lipid bilayer membrane

    SciTech Connect

    Choi, H.O.; Hwang, K.J.

    1987-01-01

    The use of mobile ionophores to facilitate the transport of /sup 111/In through a lipid bilayer membrane has broad applications in liposome technology and cell labeling. However, the mechanism of such ionophore-mediated transport of /sup 111/In through a lipid bilayer membrane is not completely clear. The present report describes the correlations of the behaviors of ionophoric loading of /sup 111/In into liposomes with the lipophilicity and the indium-binding affinity of three ionophores, namely, 8-hydroxyquinoline, acetylacetone, and tropolone. Our results suggest that the mechanism of the ionophoric transport of /sup 111/In through a lipid bilayer membrane involves the rapid exchange of /sup 111/In cations among the ionophores in both the aqueous solution and the lipid bilayer. Furthermore, the effectiveness of an ionophore in facilitating the transport of /sup 111/In from the external aqueous compartment to the entrapped nitrilotriacetic acid depends not only on the lipophilicity of the (/sup 111/In)ionophore complex, but also on the lipophilicity of the free ionophore itself and the competition of /sup 111/In between nitrilotriacetic acid inside the inner aqueous compartment of the liposome and the ionophore imbedded in the lipid bilayer membrane of the liposome.

  10. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    PubMed

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. PMID:27176760

  11. Comparative study of key exchange and authentication methods in application, transport and network level security mechanisms

    NASA Astrophysics Data System (ADS)

    Fathirad, Iraj; Devlin, John; Jiang, Frank

    2012-09-01

    The key-exchange and authentication are two crucial elements of any network security mechanism. IPsec, SSL/TLS, PGP and S/MIME are well-known security approaches in providing security service to network, transport and application layers; these protocols use different methods (based on their requirements) to establish keying materials and authenticates key-negotiation and participated parties. This paper studies and compares the authenticated key negotiation methods in mentioned protocols.

  12. Mechanisms of cilia-driven transport in the airways in the absence of mucus.

    PubMed

    Bermbach, Saskia; Weinhold, Karina; Roeder, Thomas; Petersen, Frank; Kugler, Christian; Goldmann, Torsten; Rupp, Jan; König, Peter

    2014-07-01

    Airway mucus is thought to be required for the clearance of inhaled particles by mucociliary transport, but this view has recently been challenged. To test if mucus is necessary for cilia-driven particle transport, we removed mucus from murine and human ex vivo airway preparations by thorough rinsing with buffer with or without additional dithiothreitol washing. The transport of particles with diameters of 4.5 μm, 200 nm, and 40 nm and of bacteria was analyzed by video microscopy. Complete removal of mucus was verified by wheat germ agglutinin staining and by scanning electron microscopy. In the absence of mucus, we observed efficient transport of particles and bacteria by direct cilia-mediated propulsion or via fluid flow generated by ciliary beating. Virus-sized particles had the tendency to attach to cilia. Because direct contact of particles with ciliated cells occurs in the absence of mucus, we examined if this direct interaction changes epithelial function. Neither bacteria- nor LPS-induced nuclear translocation of NF-κB p65 in ciliated cells occurred, indicating that mere contact between ciliated cells and bacteria during transport does not activate the epithelium. Attachment of virus-sized particles to cilia could induce mucus release and/or increase the ciliary beat frequency. Our results indicate that cilia-driven transport of particles with various sizes is possible in murine and human airways without the presence of mucus. If mucus-free transport fails, the epithelium can react by releasing mucus or increasing the ciliary beat frequency to maintain particle transport. PMID:24467665

  13. Are the correlates of active school transport context-specific?

    PubMed Central

    Larouche, R; Sarmiento, O L; Broyles, S T; Denstel, K D; Church, T S; Barreira, T V; Chaput, J-P; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T

    2015-01-01

    OBJECTIVES: Previous research consistently indicates that children who engage in active school transport (AST) are more active than their peers who use motorized modes (car or bus). However, studies of the correlates of AST have been conducted predominantly in high-income countries and have yielded mixed findings. Using data from a heterogeneous sample of 12 country sites across the world, we investigated the correlates of AST in 9–11-year olds. METHODS: The analytical sample comprised 6555 children (53.8% girls), who reported their main travel mode to school and the duration of their school trip. Potential individual and neighborhood correlates of AST were assessed with a parent questionnaire adapted from previously validated instruments. Multilevel generalized linear mixed models (GLMM) were used to examine the associations between individual and neighborhood variables and the odds of engaging in AST while controlling for the child's school. Site moderated the relationship of seven of these variables with AST; therefore we present analyses stratified by site. RESULTS: The prevalence of AST varied from 5.2 to 79.4% across sites and the school-level intra-class correlation ranged from 0.00 to 0.56. For each site, the final GLMM included a different set of correlates of AST. Longer trip duration (that is, ⩾16 min versus ⩽15 min) was associated with lower odds of AST in eight sites. Other individual and neighborhood factors were associated with AST in three sites or less. CONCLUSIONS: Our results indicate wide variability in the prevalence and correlates of AST in a large sample of children from twelve geographically, economically and culturally diverse country sites. This suggests that AST interventions should not adopt a ‘one size fits all' approach. Future research should also explore the association between psychosocial factors and AST in different countries. PMID:27152191

  14. Charge-carrier transport mechanisms in composites containing carbon-nanotube inclusions

    SciTech Connect

    Usanov, D. A. Skripal’, A. V.; Romanov, A. V.

    2015-12-15

    From the microwave-radiation transmittance and reflectance spectra, the temperature dependence of the complex permittivity of carbon nanotubes, subjected to high-temperature annealing, and composite materials produced on their basis is determined. The electron transport mechanisms in composites with inclusions of unannealed carbon nanotubes and nanotubes subjected to high-temperature annealing are determined. The influence of the annealing temperature on the parameters that are characteristic of these mechanisms and control the temperature dependence of the conductivity of multiwall carbon nanotubes is established.

  15. The Bubble Transport Mechanism: Indications for a bubble-mediated transfer of microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Stolle, Christian; Schneider von Deimling, Jens; Leifer, Ira; Kießlich, Katrin; Krause, Stefan; Frahm, Andreas; Treude, Tina

    2015-04-01

    Gas releasing seep areas are known to impact the methane biogeochemistry in the surrounding sediment and water column. Due to microbial processes most of the methane is oxidized under anaerobic and aerobic conditions before the greenhouse gas can escape into the atmosphere. However, methane gas bubbles can largely bypass this microbial filter mechanism, enabling highly efficient transport of methane from the sediment towards the sea surface. Studies in the water column surrounding hydrocarbon seeps indicated an elevated abundance of methanotrophic microorganism in the near field of gas bubble plumes. The enhanced methane concentration in the seep-affected water column stimulates the activity of methane oxidizers and leads to a rapid rise in the abundance of methane-oxidizing microorganisms in the aging plume water. In our study we hypothesized that a bubble-mediated transport mechanisms between the benthic and pelagic habitats represents an exchange process, which transfers methanotrophic microorganisms from the sediment into the water column, a process we termed the "Bubble Transport Mechanism". This mechanism could eventually influence the pelagic methanotrophic community, thereby indirectly providing feedback mechanisms for dissolved methane concentrations in the water column and thus impacting the sea/atmosphere methane flux. To test our hypothesis, field studies were conducted at the "Rostocker Seep" site (Coal Oil Point seep area, California, USA). Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was a newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the

  16. A self-enhanced transport mechanism through long noncoding RNAs for X chromosome inactivation

    PubMed Central

    Li, Chunhe; Hong, Tian; Webb, Chiu-Ho; Karner, Heather; Sun, Sha; Nie, Qing

    2016-01-01

    X-chromosome inactivation (XCI) is the mammalian dosage compensation strategy for balancing sex chromosome content between females and males. While works exist on initiation of symmetric breaking, the underlying allelic choice mechanisms and dynamic regulation responsible for the asymmetric fate determination of XCI remain elusive. Here we combine mathematical modeling and experimental data to examine the mechanism of XCI fate decision by analyzing the signaling regulatory circuit associated with long noncoding RNAs (lncRNAs) involved in XCI. We describe three plausible gene network models that incorporate features of lncRNAs in their localized actions and rapid transcriptional turnovers. In particular, we show experimentally that Jpx (a lncRNA) is transcribed biallelically, escapes XCI, and is asymmetrically dispersed between two X’s. Subjecting Jpx to our test of model predictions against previous experimental observations, we identify that a self-enhanced transport feedback mechanism is critical to XCI fate decision. In addition, the analysis indicates that an ultrasensitive response of Jpx signal on CTCF is important in this mechanism. Overall, our combined modeling and experimental data suggest that the self-enhanced transport regulation based on allele-specific nature of lncRNAs and their temporal dynamics provides a robust and novel mechanism for bi-directional fate decisions in critical developmental processes. PMID:27527711

  17. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms

    PubMed Central

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  18. Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2015-01-01

    Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production. PMID:26657698

  19. Nicotine increases dopamine transporter function in rat striatum through a trafficking-independent mechanism

    PubMed Central

    Middleton, Lisa S.; Apparsundaram, Subbu; King-Pospisil, Kelley A.; Dwoskin, Linda P.

    2007-01-01

    In previous in vivo voltammetry studies, acute nicotine administration increased striatal dopamine clearance. The current study aimed to determine whether nicotine also increases [3H]dopamine uptake across the time course of the previous voltammetry studies and whether dopamine transporter trafficking to the cell surface mediates the nicotine-induced augmentation of dopamine clearance in striatum. Rats were administered nicotine (0.32 mg/kg, s.c.); striatal synaptosomes were obtained 5, 10, 40 or 60 min later. Nicotine increased (25%) the Vmax of [3H]dopamine uptake at 10 and 40 min. To determine whether the increase in Vmax was due to an increase in dopamine transporter density, [3H]GBR 12935 (1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride) binding was performed using rat striatal membranes; no differences were found between nicotine and saline control groups at 5, 10 or 40 min post-injection, indicating that nicotine did not increase striatal dopamine transporter density; however, [3H]GBR 12935 binding assays determine both cell surface and intracellular dopamine transporter. Changes in cellular dopamine transporter localization in striatum were determined using biotinylation and subfractionation approaches; no differences between nicotine and saline control groups were observed at 10 and 40 min post-injection. These results suggest that the nicotine-induced increase in dopamine uptake and clearance in striatum may occur via a trafficking-independent mechanism. PMID:17141211

  20. Mechanisms of vitamin K transport and metabolism in Swiss 3T3 mouse fibroblasts

    SciTech Connect

    Canfield, L.M.; Townsend, A.F.; Hibbs, D.B.

    1986-03-01

    Transport of vitamin K into isolated fibroblasts was followed using /sup 3/H vitamin K/sub 1/. The initial rate is saturable by 5 min. at 25..mu..M vitamin K with a Km(app) of 10..mu..M and V/sub max/ of 50 pmols/min/10/sup 6/ cells. Kinetics of uptake are biphasic with a second slower rate ensuing after 10 minutes. Insensitivity of the initial rate of uptake to FCCP or ouabain indicates an ATP-independent transport mechanism. Specificity of transport is shown by competition of uptake of /sup 3/H vitamin K by unlabelled vitamin and strong (>90%) inhibition of the initial rate by equimolar concentrations of the vitamin K analog, Chloro-K. In addition, following uptake, both vitamins K/sub 1/ and K/sub 2/ are metabolized to their respective epoxides. Vitamin K/sub 1/ epoxide is also transported into fibroblasts and metabolized to the parent quinone in a Warfarin-sensitive reaction. Following alkaline hydrolysis of isolated intracellular protein, the vitamin K-dependent amino acid, gamma carboxyglutamic acid (gla) was detected. It is concluded that vitamin K is specifically transported into fibroblasts and metabolized via the classical pathway described in liver with the concomitant production of vitamin K-dependent proteins.

  1. Structural basis of the alternating-access mechanism in a bile acid transporter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  2. Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport

    PubMed Central

    Rappoldt, Cornelis; Pieters, Gert-Jan J. M.; Adema, Erwin B.; Baaijens, Gerrit J.; Grootjans, Ab P.; van Duijn, Cornelis J.

    2003-01-01

    Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surface water, and the upward flow of warm water induced by nocturnal cooling. Mathematical stability analysis showed that buoyancy flow occurs in a cooling porous layer if the system's Rayleigh number (Ra) exceeds 25. For a temperature difference of 10 K between day and night, a typical Ra value for a peat moss layer is 80, which leads to quickly developing buoyancy cells. Numerical simulation demonstrated that fluid flow leads to a considerable mixing of water. Temperature measurements in a cylindrical peat sample of 50-cm height and 35-cm diameter were in agreement with the theoretical results. The nocturnal flow and the associated mixing of the water represent a mechanism for solute transport in water-saturated parts of peat land and in other types of terrestrializing vegetation. This mechanism may be particularly important in continental wetlands, where Ra values in summer are often much larger than the threshold for fluid flow. PMID:14657381

  3. Release of Entropic Spring Reveals Conformational Coupling Mechanism in the ABC Transporter BtuCD-F.

    PubMed

    Prieß, Marten; Schäfer, Lars V

    2016-06-01

    Substrate translocation by ATP-binding cassette (ABC) transporters involves coupling of ATP binding and hydrolysis in the nucleotide-binding domains (NBDs) to conformational changes in the transmembrane domains. We used molecular dynamics simulations to investigate the atomic-level mechanism of conformational coupling in the ABC transporter BtuCD-F, which imports vitamin B12 across the inner membrane of Escherichia coli. Our simulations show how an engineered disulfide bond across the NBD dimer interface reduces conformational fluctuations and hence configurational entropy. As a result, the disulfide bond is under substantial mechanical stress. Releasing this entropic spring, as is the case in the wild-type transporter, combined with analyzing the pairwise forces between individual residues, unravels the coupling mechanism. The identified pathways along which force is propagated from the NBDs via the coupling helix to the transmembrane domains are composed of highly conserved residues, underlining their functional relevance. This study not only reveals the details of conformational coupling in BtuCD-F, it also provides a promising approach to other long-range conformational couplings, e.g., in ABC exporters or other ATP-driven molecular machines. PMID:27276259

  4. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    PubMed

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. PMID:27449595

  5. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

    PubMed

    Xia, Tianjiao; Fortner, John D; Zhu, Dongqiang; Qi, Zhichong; Chen, Wei

    2015-10-01

    We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems. PMID:26348539

  6. Glucose transporter 2 expression is down regulated following P2X7 activation in enterocytes.

    PubMed

    Bourzac, Jean-François; L'Ériger, Karine; Larrivée, Jean-François; Arguin, Guillaume; Bilodeau, Maude S; Stankova, Jana; Gendron, Fernand-Pierre

    2013-01-01

    With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic β cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two-thirds of villi. These data suggest a different role for this receptor in IECs. Using the non-cancerous IEC-6 cells and differentiated Caco-2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7-induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7-dependent Glut2 internalization involved the calcium-independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption. PMID:22566162

  7. Application of flexure structures to active and adaptive opto-mechanical mechanisms

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Genequand, Pierre M.; Kjelberg, Ivar; Morschel, Joseph

    1997-03-01

    Active and adaptive structures, also commonly called 'smart' structures, combine in one integrated system various functions such as load carrying and structural function, mechanical (cinematic) functions, sensing, control and actuating. Originally developed for high accuracy opto-mechanical applications, CSEM's technology of flexure structures and flexible mechanisms is particularly suited to solve many structural and mechanical issues found in such active/adaptive mechanisms. The paper illustrates some recent flexure structures developments at CSEM and outlines the comprehensive know-how involved in this technology. This comprises in particular the elaboration of optimal design guidelines, related to the geometry, kinematics and dynamics issues (for instance, the minimization of spurious high frequency effects), the evaluation and predictability of all performance quantities relevant to the utilization of flexure structures in space (reliability, fatigue, static and dynamic modeling, etc.). material issues and manufacturing procedures.

  8. Structure-activity relationships of dibenzoylhydrazines for the inhibition of P-glycoprotein-mediated quinidine transport.

    PubMed

    Miyata, Ken-Ichi; Nakagawa, Yoshiaki; Kimura, Yasuhisa; Ueda, Kazumitsu; Akamatsu, Miki

    2016-07-15

    We previously demonstrated that dibenzoylhydrazines (DBHs) are not only P-glycoprotein (P-gp) substrates, but also inhibitors. In the present study, we evaluated the inhibition of P-gp-mediated quinidine transport by two series of DBHs and performed a classical QSAR analysis and docking simulation in order to investigate the mechanisms underlying P-gp substrate/inhibitor recognition. The results of the QSAR analysis identified the hydrophobic factor as the most important for inhibitory activities, while electronic and steric effects also influenced the activities. The different substituent effects observed in each series suggested the different binding modes of each series of DBHs, which was supported by the results of the docking simulation. PMID:27262425

  9. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  10. Active vibration control using mechanical and electrical analogies

    NASA Astrophysics Data System (ADS)

    Torres-Perez, A.; Hassan, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Mechanical-electrical analogous circuit models are widely used in electromechanical system design as they represent the function of a coupled electrical and mechanical system using an equivalent electrical system. This research uses electrical circuits to establish a discussion of simple active vibration control principles using two scenarios: an active vibration isolation system and an active dynamic vibration absorber (DVA) using a voice coil motor (VCM) actuator. Active control laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active vibration control approaches are typically constraint by electrical power requirements. The electrical analogous is a fast approach for specifying power requirements on the experimental test platform which is based on a vibration shaker that provides the based excitation required for the single Degree- of-Freedom (1DoF) vibration model under study.

  11. Delivery of marine larvae to shore requires multiple sequential transport mechanisms.

    PubMed

    Pfaff, Maya C; Branch, George M; Fisher, Jennifer L; Hoffmann, Vera; Ellis, Allan G; Largier, John L

    2015-05-01

    Most sedentary marine animals disperse from their place of origin during their initial life stages as larvae. The delivery of planktonic larvae back to coastal adult habitats after weeks or months of offshore development is commonly thought to be stochastic, resulting in large recruitment fluctuations and making predictive understanding of population dynamics difficult. Time series of invertebrate settlement on intertidal shores have been used to infer how various oceanographic processes deliver planktonic larvae ashore. However, the possibility that successful settlement may involve a series of different transport mechanisms, which are sequentially utilized by late-stage larvae, has received little attention. To address this, we monitored both the delivery of mussel and barnacle larvae to inner-shelf moorings positioned 200-1400 m from the shore, and larval settlement in the intertidal adult habitat, at two contrasting sites: a headland forming an upwelling center and a downstream bay. Model selection was employed to determine the most likely scenario(s) of larval onshore transport from four a priori transport mechanisms individually and in combination: (1) upwelling or relaxation/downwelling, (2) tidal motions, (3) diurnal sea breezes, and (4) surface waves. Mussel larvae were delivered to the inner shelf during upwelling in the bay, but during downwelling at the headland, and were further transported to the shore by surface waves at both locales. In contrast, the delivery of barnacle larvae to the inner shelf occurred during relaxation/downwelling events at both sites, and intertidal settlement coincided with spring tides, suggesting a role for internal tides in their onshore transport. Thus, sequential mechanisms appear to be utilized by larvae to get to the shore, involving interactions of regional-scale upwelling/downwelling processes and local-scale tidal and surface-wave processes, which differ among taxa and among sites with different topography. A

  12. Tissue Plasminogen Activator Alters Intracellular Sequestration of Zinc through Interaction with the Transporter ZIP4

    SciTech Connect

    Emmetsberger, Jaime; Mirrione, Martine M.; Zhou, Chun; Fernandez-Monreal, Monica; Siddiq, Mustafa M.; Ji, Kyungmin; Tsirka, Stella E.

    2010-09-17

    Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc trigger seizures and are neurotoxic if substantial amounts of zinc reenter the cells via ion channels and accumulate in the cytoplasm. Tissue plasminogen activator (tPA), a secreted serine protease, is also proepileptic and excitotoxic. However, tPA counters zinc toxicity by promoting zinc import back into the neurons in a sequestered form that is nontoxic. Here, we identify the zinc influx transporter, ZIP4, as the pathway through which tPA mediates the zinc uptake. We show that ZIP4 is upregulated after excitotoxin stimulation of the mouse, male and female, hippocampus. ZIP4 physically interacts with tPA, correlating with an increased intracellular zinc influx and lysosomal sequestration. Changes in prosurvival signals support the idea that this sequestration results in neuroprotection. These experiments identify a mechanism via which neurons use tPA to efficiently neutralize the toxic effects of excessive concentrations of free zinc.

  13. The role of penetrant structure in the transport and mechanical properties of a thermoset adhesive

    NASA Astrophysics Data System (ADS)

    Kwan, Kermit S.

    In this work the relationships between penetrant structure, its transport properties, and its effects on the mechanical properties of a polymer matrix were investigated. Although there is a vast amount of data on the diffusion of low molecular weight molecules into polymeric materials and on the mechanical properties of various polymer-penetrant systems, no attempts have been made to inter-relate the two properties with respect to the chemical structure of the diffusant. Therefore, two series of penetrants---n-alkanes and esters---were examined in this context, with the goal of correlating molecular size, shape, and chemical nature of the penetrant to its final transport and matrix mechanical properties. These correlations have been demonstrated to allow quantitative prediction of one property, given a reasonable set of data on the other parameters. A series of n-alkanes (C6--C17) and esters (C5--C17) have been used to separate the effects of penetrant size and shape, from those due to polymer-penetrant interactions, in the diffusion through a polyamide polymeric adhesive. These effects have been taken into account in order to yield a qualitative relationship that allows for prediction of diffusivity based upon penetrant structural information. Transport properties have been analyzed using mass uptake experiments as well as an in-situ FTIR-ATR technique to provide detailed kinetic as well as thermodynamic information on this process. The phenomenon of diffusion and its effects on the resulting dynamic mechanical response of a matrix polymeric adhesive have been studied in great detail using the method of reduced variables. The concept of a diffusion-time shift factor (log aDt) has been introduced to create doubly-reduced master curves, taking into account the effects of temperature and the variations in the polymer mechanical response due to the existence of a low molecular weight penetrant.

  14. Transport mechanisms of metastable and resonance atoms in a gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu; Gorchakov, S.; Uhrlandt, D.

    2013-04-01

    Atoms in electronically excited states are of significant importance in a large number of different gas discharges. The spatio-temporal distribution particularly of the lower excited states, the metastable and resonance ones, influences the overall behavior of the plasma because of their role in the ionization and energy budget. This article is a review of the theoretical and experimental studies on the spatial formation and temporal evolution of metastable and resonance atoms in weakly ionized low-temperature plasmas. Therefore, the transport mechanisms due to collisional diffusion and resonance radiation are compared step by step. The differences in formation of spatio-temporal structures of metastable and resonance atoms in plasmas are attributed to these different transport mechanisms. The analysis is performed by obtaining solutions of the diffusion and radiation transport equations. Solutions of stationary and non-stationary problems by decomposition over the eigenfunctions of the corresponding operators showed that there is, on the one hand, an effective suppression of the highest diffusion modes and, on the other hand, a survival of the highest radiation modes. The role of the highest modes is illustrated by examples. In addition, the differences in the Green functions for the diffusion and radiation transport operators are discussed. Numerical methods for the simultaneous solution of the balance equations for metastable and resonance atoms are proposed. The radiation transport calculations consider large absorption coefficients according to the Lorentz contour of a spectral line. Measurements of the distributions of metastable and resonance atoms are reviewed for a larger number of discharge conditions, i.e. in the positive column plasma, afterglow plasma, constricted pulsed discharge, stratified discharge, magnetron discharge, and in a discharge with a cathode spot.

  15. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  16. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  17. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    PubMed Central

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  18. Modulation of bone remodeling via mechanically activated ion channels

    NASA Technical Reports Server (NTRS)

    Duncan, Randall L. (Principal Investigator)

    1996-01-01

    A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the oste