Science.gov

Sample records for active transport process

  1. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  2. Community Vision and Interagency Alignment: A Community Planning Process to Promote Active Transportation.

    PubMed

    DeGregory, Sarah Timmins; Chaudhury, Nupur; Kennedy, Patrick; Noyes, Philip; Maybank, Aletha

    2016-04-01

    In 2010, the Brooklyn Active Transportation Community Planning Initiative launched in 2 New York City neighborhoods. Over a 2-year planning period, residents participated in surveys, school and community forums, neighborhood street assessments, and activation events-activities that highlighted the need for safer streets locally. Consensus among residents and key multisectoral stakeholders, including city agencies and community-based organizations, was garnered in support of a planned expansion of bicycling infrastructure. The process of building on community assets and applying a collective impact approach yielded changes in the built environment, attracted new partners and resources, and helped to restore a sense of power among residents.

  3. Community Vision and Interagency Alignment: A Community Planning Process to Promote Active Transportation.

    PubMed

    DeGregory, Sarah Timmins; Chaudhury, Nupur; Kennedy, Patrick; Noyes, Philip; Maybank, Aletha

    2016-04-01

    In 2010, the Brooklyn Active Transportation Community Planning Initiative launched in 2 New York City neighborhoods. Over a 2-year planning period, residents participated in surveys, school and community forums, neighborhood street assessments, and activation events-activities that highlighted the need for safer streets locally. Consensus among residents and key multisectoral stakeholders, including city agencies and community-based organizations, was garnered in support of a planned expansion of bicycling infrastructure. The process of building on community assets and applying a collective impact approach yielded changes in the built environment, attracted new partners and resources, and helped to restore a sense of power among residents. PMID:26959270

  4. Evaluation of active and passive transport processes in corneas extracted from preserved rabbit eyes.

    PubMed

    Majumdar, Soumyajit; Hingorani, Tushar; Srirangam, Ramesh

    2010-04-01

    In vitro transcorneal permeability studies are an important screening tool in drug development. The objective of this research is to examine the feasibility of using corneas isolated from preserved rabbit eyes as a model for permeability evaluation. Eyes from male New Zealand White rabbits were used immediately or were stored overnight in phosphate-buffered saline (PBS) or Hanks balanced salt solution (HBSS) over wet ice. Integrity of isolated corneas was evaluated by measuring the TEER and by determining the permeability of paracellular and transcellular markers. Active transport was assessed by measuring transcorneal permeability of selected amino acids. Esterase activity was estimated using p-nitrophenyl assay. In all cases, corneas from freshly enucleated eyes were compared to those isolated from the day-old preserved eyes. Transcellular and paracellular passive diffusion was not affected by the storage medium and observed to be similar in the fresh and preserved eye models. However, amino acid transporters demonstrated lower functional activity in corneas excised from eyes preserved in PBS. Moreover, preserved eyes displayed almost 1.5-fold lower esterase activity in the corneal tissue. Thus, corneas isolated from day-old eyes, preserved in HBSS, closely mimics freshly excised rabbit corneas in terms of both active and passive transport characteristics but possesses slightly reduced enzymatic activity.

  5. Activated transport in AMTEC electrodes

    NASA Astrophysics Data System (ADS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Oconnor, D.; Kikkert, S.

    1992-08-01

    Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of the diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and pre-exponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process.

  6. Anatomy of mass transport deposits in the Dead Sea: sedimentary processes in an active tectonic hypersaline basin

    NASA Astrophysics Data System (ADS)

    Waldmann, Nicolas; Hadzhiivanova, Elitsa; Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Frank, Ute; Dulski, Peter

    2014-05-01

    Continental archives such as interplate endorheic lacustrine sedimentary basins provide an excellent source of data for studying regional climate, seismicity and environmental changes through time. Such is the case for the sediments that were deposited in the Dead Sea basin, a tectonically active pull-apart structure along the Dead Sea fault (DSF). This elongated basin is characterized by steep slopes and a deep and flat basin-floor, which are constantly shaped by seismicity and climate. In this study, we present initial results on the sedimentology and internal structure of mass transport deposits in the Pleistocene Dead Sea. The database used for this study consists of a long core retrieved at ~300 m water depth in the deepest part of the Dead Sea as part of an international scientific effort under the auspice of the ICDP. Micro-facies analysis coupled by elemental scanning (µXRF), granulometry and petrophysical measurements (magnetic susceptibility) have been carried out on selected intervals in order to decipher and identify the source-to-sink processes and controlling mechanisms behind the formation of mass transport deposits. The findings of this study allowed defining and characterizing the mass transport deposits into separate sedimentary facies according to the lake level and limnological conditions. Investigating sediments from the deep Dead Sea basin allowed better understanding and deciphering the depositional processes in relation with the tectonic forces shaping this basin.

  7. EPAct Transportation Regulatory Activities

    SciTech Connect

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  8. Crew Transportation Technical Management Processes

    NASA Technical Reports Server (NTRS)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  9. Transport processes of the legume symbiosome membrane

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Day, David A.; Smith, Penelope M. C.

    2014-01-01

    The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome. PMID:25566274

  10. Laboratory Exercise on Active Transport.

    ERIC Educational Resources Information Center

    Stalheim-Smith, Ann; Fitch, Greg K.

    1985-01-01

    Describes a laboratory exercise which demonstrates qualitatively the specificity of the transport mechanism, including a consideration of the competitive inhibition, and the role of adenosine triphosphate (ATP) in active transport. The exercise, which can be completed in two to three hours by groups of four students, consistently produces reliable…

  11. MBAS (Methylene Blue Active Substances) and LAS (Linear Alkylbenzene Sulphonates) in Mediterranean coastal aerosols: Sources and transport processes

    NASA Astrophysics Data System (ADS)

    Becagli, S.; Ghedini, C.; Peeters, S.; Rottiers, A.; Traversi, R.; Udisti, R.; Chiari, M.; Jalba, A.; Despiau, S.; Dayan, U.; Temara, A.

    2011-12-01

    Methylene Blue Active Substances (MBAS) and Linear Alkylbenzene Sulphonates (LAS) concentrations, together with organic carbon and ions were measured in atmospheric coastal aerosols in the NW Mediterranean Basin. Previous studies have suggested that the presence of surfactants in coastal aerosols may result in vegetation damage without specifically detecting or quantifying these surfactants. Coastal aerosols were collected at a remote site (Porquerolles Island-Var, France) and at a more anthropised site (San Rossore National Park-Tuscany, Italy). The chemical data were interpreted according to a comprehensive local meteorological analysis aiming to decipher the airborne source and transport processes of these classes of compounds. The LAS concentration (anthropogenic surfactants) was measured in the samples using LC-MS/MS, a specific analytical method. The values were compared with the MBAS concentration, determined by a non-specific analytical method. At Porquerolles, the MBAS concentration (103 ± 93 ng m -3) in the summer samples was significantly higher than in the winter samples. In contrast, LAS concentrations were rarely greater than in the blank filters. At San Rossore, the mean annual MBAS concentration (887 ± 473 ng m -3 in PM10) contributed about 10% to the total atmospheric particulate organic matter. LAS mean concentration in these same aerosol samples was 11.5 ± 10.5 ng m -3. A similar MBAS (529 ± 454 ng m -3) - LAS (7.1 ± 4.1 ng m -3 LAS) ratio of ˜75 was measured in the fine (PM2.5) aerosol fraction. No linear correlation was found between MBAS and LAS concentrations. At San Rossore site the variation of LAS concentrations was studied on a daily basis over a year. The LAS concentrations in the coarse fraction (PM10-2.5) were higher during strong sea storm conditions, characterized by strong air flow coming from the sea sector. These events, occurring with more intensity in winter, promoted the formation of primary marine aerosols containing LAS

  12. Transport processes in space plasmas

    SciTech Connect

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-08-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth`s magnetosphere and associated waves, the Earth`s magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth`s magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior.

  13. Rotary kilns - transport phenomena and transport processes

    SciTech Connect

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  14. A Combined Impact-Process Evaluation of a Program Promoting Active Transport to School: Understanding the Factors That Shaped Program Effectiveness

    PubMed Central

    Crawford, S.; Garrard, J.

    2013-01-01

    This mixed methods study was a comprehensive impact-process evaluation of the Ride2School program in metropolitan and regional areas in Victoria, Australia. The program aimed to promote transport to school for primary school children. Qualitative and quantitative data were collected at baseline and followup from two primary schools involved in the pilot phase of the program and two matched comparison schools, and a further 13 primary schools that participated in the implementation phase of the program. Classroom surveys, structured and unstructured observations, and interviews with Ride2School program staff were used to evaluate the pilot program. For the 13 schools in the second phase of the program, parents and students completed questionnaires at baseline (N = 889) and followup (N = 761). Based on the quantitative data, there was little evidence of an overall increase in active transport to school across participating schools, although impacts varied among individual schools. Qualitative data in the form of observations, interviews, and focus group discussions with students, school staff, and program staff provided insight into the reasons for variable program impacts. This paper highlights the benefits of undertaking a mixed methods approach to evaluating active transport to school programs that enables both measurement and understanding of program impacts. PMID:23606865

  15. Nitrate transport in cucumber leaves is an inducible process involving an increase in plasma membrane H+-ATPase activity and abundance

    PubMed Central

    2012-01-01

    Background The mechanisms by which nitrate is transported into the roots have been characterized both at physiological and molecular levels. It has been demonstrated that nitrate is taken up in an energy-dependent way by a four-component uptake machinery involving high- and low- affinity transport systems. In contrast very little is known about the physiology of nitrate transport towards different plant tissues and in particular at the leaf level. Results The mechanism of nitrate uptake in leaves of cucumber (Cucumis sativus L. cv. Chinese long) plants was studied and compared with that of the root. Net nitrate uptake by roots of nitrate-depleted cucumber plants proved to be substrate-inducible and biphasic showing a saturable kinetics with a clear linear non saturable component at an anion concentration higher than 2 mM. Nitrate uptake by leaf discs of cucumber plants showed some similarities with that operating in the roots (e.g. electrogenic H+ dependence via involvement of proton pump, a certain degree of induction). However, it did not exhibit typical biphasic kinetics and was characterized by a higher Km with values out of the range usually recorded in roots of several different plant species. The quantity and activity of plasma membrane (PM) H+-ATPase of the vesicles isolated from leaf tissues of nitrate-treated plants for 12 h (peak of nitrate foliar uptake rate) increased with respect to that observed in the vesicles isolated from N-deprived control plants, thus suggesting an involvement of this enzyme in the leaf nitrate uptake process similar to that described in roots. Molecular analyses suggest the involvement of a specific isoform of PM H+-ATPase (CsHA1) and NRT2 transporter (CsNRT2) in root nitrate uptake. At the leaf level, nitrate treatment modulated the expression of CsHA2, highlighting a main putative role of this isogene in the process. Conclusions Obtained results provide for the first time evidence that a saturable and substrate

  16. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  17. Signal focusing through active transport.

    PubMed

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing-faster and more precise signaling-are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  18. Signal focusing through active transport

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2015-07-01

    The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing—faster and more precise signaling—are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.

  19. Regulators of Slc4 bicarbonate transporter activity

    PubMed Central

    Thornell, Ian M.; Bevensee, Mark O.

    2015-01-01

    The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family. PMID:26124722

  20. Saturn Plasma Sources and Associated Transport Processes

    NASA Astrophysics Data System (ADS)

    Blanc, M.; Andrews, D. J.; Coates, A. J.; Hamilton, D. C.; Jackman, C. M.; Jia, X.; Kotova, A.; Morooka, M.; Smith, H. T.; Westlake, J. H.

    2015-10-01

    This article reviews the different sources of plasma for Saturn's magnetosphere, as they are known essentially from the scientific results of the Cassini-Huygens mission to Saturn and Titan. At low and medium energies, the main plasma source is the H2O cloud produced by the "geyser" activity of the small satellite Enceladus. Impact ionization of this cloud occurs to produce on the order of 100 kg/s of fresh plasma, a source which dominates all the other ones: Titan (which produces much less plasma than anticipated before the Cassini mission), the rings, the solar wind (a poorly known source due to the lack of quantitative knowledge of the degree of coupling between the solar wind and Saturn's magnetosphere), and the ionosphere. At higher energies, energetic particles are produced by energy diffusion and acceleration of lower energy plasma produced by the interchange instabilities induced by the rapid rotation of Saturn, and possibly, for the highest energy range, by contributions from the CRAND process acting inside Saturn's magnetosphere. Discussion of the transport and acceleration processes acting on these plasma sources shows the importance of rotation-induced radial transport and energization of the plasma, and also shows how much the unexpected planetary modulation of essentially all plasma parameters of Saturn's magnetosphere remains an unexplained mystery.

  1. Transport processes in magnetically confined plasmas

    SciTech Connect

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much_lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  2. Transport processes in magnetically confined plasmas

    SciTech Connect

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  3. Lagrangian coherent structures and plasma transport processes

    NASA Astrophysics Data System (ADS)

    Falessi, M. V.; Pegoraro, F.; Schep, T. J.

    2015-10-01

    > A dynamical system framework is used to describe transport processes in plasmas embedded in a magnetic field. For periodic systems with one degree of freedom, the Poincaré map provides a splitting of the phase space into regions where particles have different kinds of motion: periodic, quasi-periodic or chaotic. The boundaries of these regions are transport barriers, i.e. a trajectory cannot cross such boundaries throughout the evolution of the system. Lagrangian coherent structures generalize this method to systems with the most general time dependence, splitting the phase space into regions with different qualitative behaviours. This leads to the definition of finite-time transport barriers, i.e. trajectories cannot cross the barrier for a finite amount of time. This methodology can be used to identify fast recirculating regions in the dynamical system and to characterize the transport between them.

  4. Transport aircraft flying qualities activities

    NASA Technical Reports Server (NTRS)

    Moul, M. T.

    1981-01-01

    The optimal control model for pilot vehicle systems was used to develop a methodology for predicting pilot ratings for commercial transports. The method was tested by applying it to a family of transport configurations for which subjective pilot ratings were obtained. Specific attention is given to the development of the simulator program and procedures so as to yield objective and subjective performance data useful for a critical evaluation of the analytical method.

  5. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-04-01

    A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced. 18 refs., 20 figs.

  6. Gravity-dependent transport in industrial processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1994-01-01

    Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.

  7. TQM brings collaboration to patient transport process.

    PubMed

    Houston, K L; Clute, C; Ryan-Crepin, K; Kimball, M; Matthews, R

    1994-10-01

    Total quality management (TQM) principles can be utilized to achieve successful outcomes of an interdepartmental problem-solving process prior to implementation of a TQM formal structure within an organization. Prior to implementation of the new process, patient transport time from nursing units to lab destination was calculated at 17.6 minutes; postimplementation, an institutional benchmark of 15.4 minutes has been set. The mechanisms utilized for development, implementation, and evaluation of a process improvement team is the focus of the article. The reader will be taken on a journey through an interdepartmental problem-solving process utilizing the TQM principles.

  8. Transport processes near coastal ocean outfalls

    USGS Publications Warehouse

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  9. Turbulent transport process in atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Awasaki, T.

    2012-04-01

    The organized motion or the coherent motion can be detected in wind tunnel and water channel experiments and those motions play an important role for the production of turbulent energy and transport of turbulent fluxes. Similar phenomena can be found in the atmospheric surface layer (Gao et al., 1989). The purpose of this study is to clarify the transport structure and process of turbulent fluxes, especially heat, water vapor and carbon dioxide. The organized motions are detected by using the wavelet transform analysis as well as the conventional statistical method such as Fourier spectral analysis. We consider the dependency of transport process by the organized motion to the atmospheric stability in the surface layer. The observation was carried out at the test field of Shionomisaki Wind Effect Laboratory, where two sets of the combination of sonic anemometer thermometer and open path H2O/CO2 analyzer were mounted at 2m and 20m height. The evident ramp and inverse ramp structures can be found in the time series of temperature, water vapor and CO2 in the unstable stability, using the Mexican hut wavelet transform analysis. The co-spectral density in wavelet analysis is considered as the flux at each time scale. The large amount of fluxes is transported at the sudden decrease in scalar ramp structure and the sudden increase in inverse ramp structure in several tens of seconds. The scalar and vertical wind velocity are completely either in phase or out of phase, which means that the turbulent transport by the organized motion occurs at time scales of several tens of seconds. The quadrant analysis of turbulent flux shows that the rate of the transport amount of scalar by ejection and sweep to the total transport flux increases according to the increase of the atmospheric stability. At 2m height, the transport by ejection is dominant in unstable condition, and that by sweep is larger in the stable condition. At 20m height, transport by ejection is larger than that by

  10. Gravity-Dependent Transport in Industrial Processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  11. Comment on "Generalized exclusion processes: Transport coefficients"

    NASA Astrophysics Data System (ADS)

    Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.

    2016-04-01

    In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014), 10.1103/PhysRevE.90.052108] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment, we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601].

  12. The Human Transporter Associated with Antigen Processing

    PubMed Central

    Corradi, Valentina; Singh, Gurpreet; Tieleman, D. Peter

    2012-01-01

    The human transporter associated with antigen processing (TAP) is a member of the ATP binding cassette (ABC) transporter superfamily. TAP plays an essential role in the antigen presentation pathway by translocating cytosolic peptides derived from proteasomal degradation into the endoplasmic reticulum lumen. Here, the peptides are loaded into major histocompatibility class I molecules to be in turn exposed at the cell surface for recognition by T-cells. TAP is a heterodimer formed by the association of two half-transporters, TAP1 and TAP2, with a typical ABC transporter core that consists of two nucleotide binding domains and two transmembrane domains. Despite the availability of biological data, a full understanding of the mechanism of action of TAP is limited by the absence of experimental structures of the full-length transporter. Here, we present homology models of TAP built on the crystal structures of P-glycoprotein, ABCB10, and Sav1866. The models represent the transporter in inward- and outward-facing conformations that could represent initial and final states of the transport cycle, respectively. We described conserved regions in the endoplasmic reticulum-facing loops with a role in the opening and closing of the cavity. We also identified conserved π-stacking interactions in the cytosolic part of the transmembrane domains that could explain the experimental data available for TAP1-Phe-265. Electrostatic potential calculations gave structural insights into the role of residues involved in peptide binding, such as TAP1-Val-288, TAP2-Cys-213, TAP2-Met-218. Moreover, these calculations identified additional residues potentially involved in peptide binding, in turn verified with replica exchange simulations performed on a peptide bound to the inward-facing models. PMID:22700967

  13. Mesoscopic Modeling of Reactive Transport Processes

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Chen, L.; Deng, H.

    2012-12-01

    Reactive transport processes involving precipitation and/or dissolution are pervasive in geochemical, biological and engineered systems. Typical examples include self-assembled patterns such as Liesegang rings or bands, cones of stalactites in limestones caves, biofilm growth in aqueous environment, formation of mineral deposits in boilers and heat exchangers, uptake of toxic metal ions from polluted water by calcium carbonate, and mineral trapping of CO2. Compared to experimental studies, a numerical approach enables a systematic study of the reaction kinetics, mass transport, and mechanisms of nucleation and crystal growth, and hence provides a detailed description of reactive transport processes. In this study, we enhance a previously developed lattice Boltzmann pore-scale model by taking into account the nucleation process, and develop a mesoscopic approach to simulate reactive transport processes involving precipitation and/or dissolution of solid phases. The model is then used to simulate the formation of Liesegang precipitation patterns and investigate the effects of gel on the morphology of the precipitates. It is shown that this model can capture the porous structures of the precipitates and can account for the effects of the gel concentration and material. A wide range of precipitation patterns is predicted under different gel concentrations, including regular bands, treelike patterns, and for the first time with numerical models, transition patterns from regular bands to treelike patterns. The model is also applied to study the effect of secondary precipitate on the dissolution of primary mineral. Several types of dissolution and precipitation processes are identified based on the morphology and structures of the precipitates and on the extent to which the precipitates affect the dissolution of the primary mineral. Finally the model is applied to study the formation of pseudomorph. It is demonstrated for the first time by numerical simulation that a

  14. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  15. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  16. Coupled transport processes in semipermeable media

    SciTech Connect

    Carnahan, C.L.; Jacobsen, J.S.

    1990-04-01

    The thermodynamics of irreversible processes (TTIP) is used to derive governing equations and phenomenological equations for transport processes and chemical reactions in water-saturated semipermeable media. TTIP is based on three fundamental postulates. The first postulate, the assumption of local equilibrium, allows the formulation of balance equations for entropy. These equations are the bases for the derivation of governing equations for the thermodynamic variables, temperature, pressure, and composition. The governing equations involve vector fluxes of heat and mass and scalar rates of chemical reactions; in accordance with the second postulate of TTIP, these fluxes and rates are related, respectively, to all scalar driving forces (gradients of thermodynamic variables) acting within the system. The third postulate of TTIP states equality (the Onsager reciprocal relations) between certain of the phenomenological coefficients relating forces and fluxes. The description by TTIP of a system undergoing irreversible processes allows consideration of coupled transport processes such as thermal osmosis, chemical osmosis, and ultrafiltration. The coupled processes can make significant contributions to flows of mass and energy in slightly permeable, permselective geological materials such as clays and shales.

  17. Structural perspectives on secondary active transporters

    PubMed Central

    Boudker, Olga; Verdon, Grégory

    2010-01-01

    Secondary active transporters catalyze concentrative transport of substrates across lipid membranes by harnessing the energy of electrochemical ion gradients. These transporters bind their ligands on one side of the membrane, and undergo a global conformational change to release them on the other side of the membrane. Over the last few years, crystal structures have captured several bacterial secondary transporters in different states along their transport cycle, providing insight into possible molecular mechanisms. In this review, we will summarize recent findings focusing on the emerging structural and mechanistic similarities between evolutionary diverse transporters. We will also discuss the structural basis of substrate binding, ion coupling and inhibition viewed from the perspective of these similarities. PMID:20655602

  18. Transcript profile analyses of maize silks reveal effective activation of genes involved in microtubule-based movement, ubiquitin-dependent protein degradation, and transport in the pollination process.

    PubMed

    Xu, Xiao Hui; Wang, Fang; Chen, Hao; Sun, Wei; Zhang, Xian Sheng

    2013-01-01

    Pollination is the first crucial step of sexual reproduction in flowering plants, and it requires communication and coordination between the pollen and the stigma. Maize (Zea mays) is a model monocot with extraordinarily long silks, and a fully sequenced genome, but little is known about the mechanism of its pollen-stigma interactions. In this study, the dynamic gene expression of silks at four different stages before and after pollination was analyzed. The expression profiles of immature silks (IMS), mature silks (MS), and silks at 20 minutes and 3 hours after pollination (20MAP and 3HAP, respectively) were compared. In total, we identified 6,337 differentially expressed genes in silks (SDEG) at the four stages. Among them, the expression of 172 genes were induced upon pollination, most of which participated in RNA binding, processing and transcription, signal transduction, and lipid metabolism processes. Genes in the SDEG dataset could be divided into 12 time-course clusters according to their expression patterns. Gene Ontology (GO) enrichment analysis revealed that many genes involved in microtubule-based movement, ubiquitin-mediated protein degradation, and transport were predominantly expressed at specific stages, indicating that they might play important roles in the pollination process of maize. These results add to current knowledge about the pollination process of grasses and provide a foundation for future studies on key genes involved in the pollen-silk interaction in maize.

  19. Biological transport processes and space dimension.

    PubMed

    Nadler, W; Stein, D L

    1991-08-01

    We discuss the generic time behavior of reaction-diffusion processes capable of modeling various types of biological transport processes, such as ligand migration in proteins and gating fluctuations in ion channel proteins. The main observable in these two cases, the fraction of unbound ligands and the probability of finding the channel in the closed state, respectively, exhibits an algebraic t-1/2 decay at intermediate times, followed by an exponential cutoff. We provide a simple framework for understanding these observations and explain their ubiquity by showing that these qualitative results are independent of space dimension. We also derive an experimental criterion to distinguish between a one-dimensional process and one whose effective dimension is higher.

  20. Ratchet transport powered by chiral active particles

    PubMed Central

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  1. Ratchet transport powered by chiral active particles.

    PubMed

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a 'sea' of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles.

  2. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  3. Chill Down Process of Hydrogen Transport Pipelines

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Klausner, James

    2006-01-01

    A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.

  4. Space transportation main engine cycle assessment process

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Lyles, G. M.

    1991-01-01

    The Advanced Launch System (ALS) program selection process for a space transportation main engine (STME) power cycle is described in terms of the methodology employed. Low cost, robustness, and high reliability are the primary parameters for engine choice, suggesting simplicity of design and efficient fabrication methods as the crucial characteristics. An evaluation methodology is developed based on the Pugh (1981) process and the King (1989) matrices. The cycle configurations considered are the gas generator (GG), the closed expander, and the open expander. The cycle assessment team determined that the GG cycle is favored by most cycle discriminators, based on an assessment of the characteristics in terms of ALS goals. The lower development risk of the GG-cycle STME is consistent with the goals of the ALS program in terms of reliability and cost efficiency.

  5. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  6. Development of novel active transport membrande devices

    SciTech Connect

    Laciak, D.V.

    1994-11-01

    Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

  7. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)*

    PubMed Central

    Schölz, Christian; Parcej, David; Ejsing, Christer S.; Robenek, Horst; Urbatsch, Ina L.; Tampé, Robert

    2011-01-01

    The transporter associated with antigen processing (TAP) plays a key role in adaptive immunity by translocating proteasomal degradation products from the cytosol into the endoplasmic reticulum lumen for subsequent loading onto major histocompatibility (MHC) class I molecules. For functional and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture. Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry. The antigen translocation activity is stimulated by phosphatidylinositol and -ethanolamine, whereas cholesterol has a negative effect on TAP activity. PMID:21357424

  8. Signal Processing Model for Radiation Transport

    SciTech Connect

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  9. Howard Brenner's Legacy for Biological Transport Processes

    NASA Astrophysics Data System (ADS)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  10. Health Impacts of Active Transportation in Europe

    PubMed Central

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J.; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S.; Tainio, Marko; Nieuwenhuijsen, Mark J.

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16–64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76–163) annual deaths avoided, Prague 61 (29–104), Barcelona 37 (24–56), Paris 37 (18–64) and Basel 5 (3–9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3–42) deaths avoided annually in Warsaw, 11(3–21) in Prague, 6 (4–9) in Basel, 3 (2–6) in Copenhagen and 3 (2–4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation. PMID:26930213

  11. Health Impacts of Active Transportation in Europe.

    PubMed

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S; Tainio, Marko; Nieuwenhuijsen, Mark J

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76-163) annual deaths avoided, Prague 61 (29-104), Barcelona 37 (24-56), Paris 37 (18-64) and Basel 5 (3-9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3-42) deaths avoided annually in Warsaw, 11(3-21) in Prague, 6 (4-9) in Basel, 3 (2-6) in Copenhagen and 3 (2-4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation.

  12. Health Impacts of Active Transportation in Europe.

    PubMed

    Rojas-Rueda, David; de Nazelle, Audrey; Andersen, Zorana J; Braun-Fahrländer, Charlotte; Bruha, Jan; Bruhova-Foltynova, Hana; Desqueyroux, Hélène; Praznoczy, Corinne; Ragettli, Martina S; Tainio, Marko; Nieuwenhuijsen, Mark J

    2016-01-01

    Policies that stimulate active transportation (walking and bicycling) have been related to heath benefits. This study aims to assess the potential health risks and benefits of promoting active transportation for commuting populations (age groups 16-64) in six European cities. We conducted a health impact assessment using two scenarios: increased cycling and increased walking. The primary outcome measure was all-cause mortality related to changes in physical activity level, exposure to fine particulate matter air pollution with a diameter <2.5 μm, as well as traffic fatalities in the cities of Barcelona, Basel, Copenhagen, Paris, Prague, and Warsaw. All scenarios produced health benefits in the six cities. An increase in bicycle trips to 35% of all trips (as in Copenhagen) produced the highest benefits among the different scenarios analysed in Warsaw 113 (76-163) annual deaths avoided, Prague 61 (29-104), Barcelona 37 (24-56), Paris 37 (18-64) and Basel 5 (3-9). An increase in walking trips to 50% of all trips (as in Paris) resulted in 19 (3-42) deaths avoided annually in Warsaw, 11(3-21) in Prague, 6 (4-9) in Basel, 3 (2-6) in Copenhagen and 3 (2-4) in Barcelona. The scenarios would also reduce carbon dioxide emissions in the six cities by 1,139 to 26,423 (metric tonnes per year). Policies to promote active transportation may produce health benefits, but these depend of the existing characteristics of the cities. Increased collaboration between health practitioners, transport specialists and urban planners will help to introduce the health perspective in transport policies and promote active transportation. PMID:26930213

  13. Fluid transport by active elastic membranes

    NASA Astrophysics Data System (ADS)

    Evans, Arthur A.; Lauga, Eric

    2011-09-01

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  14. The active transport of carbohydrates by Escherichia coli.

    PubMed

    Henderson, P J; Kornberg, H L

    1975-01-01

    The active transport of carbohydrates by Escherichia coli is discussed with particular reference to (1) identification of an uptake process as 'active transport', (2) nature and control of transport proteins, and (3) mechanisms of energy transduction. (1) The use of substrate analogues, of mutants blocked in metabolism and of subcellular vesicles in the isolation of the transport process from interference by subsequent metabolic reactions is described. Criteria are outlined for establishing that the solute is taken up against a concentration gradient and that this is energy-dependent. Three types of poisons for energy systems that act primarily on respiration, on ATP formation and as uncoupling ('proton conducting') agents are considered. (2) Methods are described for the selection of mutants impaired in the active uptake of specific carbohydrates. (3) Results show that the uptake of galactose, D-fucose and arabinose by appropriate strains of E. coli is inducible, specific and accompanied by proton uptake. Such and other data support a model based on a chemiosmotic theory of active transport.

  15. Thermally activated long range electron transport in living biofilms.

    PubMed

    Yates, Matthew D; Golden, Joel P; Roy, Jared; Strycharz-Glaven, Sarah M; Tsoi, Stanislav; Erickson, Jeffrey S; El-Naggar, Mohamed Y; Calabrese Barton, Scott; Tender, Leonard M

    2015-12-28

    Microbial biofilms grown utilizing electrodes as metabolic electron acceptors or donors are a new class of biomaterials with distinct electronic properties. Here we report that electron transport through living electrode-grown Geobacter sulfurreducens biofilms is a thermally activated process with incoherent redox conductivity. The temperature dependency of this process is consistent with electron-transfer reactions involving hemes of c-type cytochromes known to play important roles in G. sulfurreducens extracellular electron transport. While incoherent redox conductivity is ubiquitous in biological systems at molecular-length scales, it is unprecedented over distances it appears to occur through living G. sulfurreducens biofilms, which can exceed 100 microns in thickness. PMID:26611733

  16. Components and regulation of nuclear transport processes.

    PubMed

    Cautain, Bastien; Hill, Richard; de Pedro, Nuria; Link, Wolfgang

    2015-02-01

    The spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo-cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease-associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo-cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease-relevant molecular targets for potential therapeutic intervention.

  17. Prebiotic activation processes.

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.; Orgel, L. E.

    1973-01-01

    Questions regarding the combination of amino acids and ribonucleotides to polypeptides and polynucleotides are investigated. Each of the reactions considered occurs in the solid state in plausible prebiotic conditions. Together they provide the basis for a unified scheme of amino acid and nucleotide activation. Urea, imidazole and Mg(++) are essential catalytic components of the reaction mixtures. However, these compounds could probably be replaced by other organic molecules.

  18. Bursts of active transport in living cells.

    PubMed

    Wang, Bo; Kuo, James; Granick, Steve

    2013-11-15

    We show, using a large new data set, that the temporally resolved speed of active cargo transport in living cells follows a scaling law over several decades of time and length. The statistical regularities display a time-averaged shape that we interpret to reflect stress buildup, followed by rapid release. The scaling power law agrees quantitatively with those reported in inanimate systems (jammed colloids and granular media, and magnetic Barkhausen noise), suggesting a common origin in pushing through a crowded environment in a weak force regime. The implied regulation of the speed of active cellular transport due to environmental obstruction results in bursts of speed and acceleration. These findings extend the classical notion of molecular crowding.

  19. Use of boundary fluxes when simulating solute transport with the MODFLOW ground-water transport process

    USGS Publications Warehouse

    Konikow, L.F.; Hornberger, G.Z.

    2003-01-01

    This report describes modifications to a U.S. Geological Survey (USGS) threedimensional solute-transport model (MODFLOWGWT), which is incorporated into the USGS MODFLOW ground-water model as the Ground- Water Transport (GWT) Process. The modifications improve the capability of MODFLOW-GWT to accurately simulate solute transport in simulations that represent a nonzero flux across an aquifer boundary. In such situations, the new Boundary Flux Package (BFLX) will allow the user flexibility to assign the flux to specific cell faces, although that flexibility is limited for certain types of fluxes (such as recharge and evapotranspiration, which can only be assigned to the top face if either is to be represented as a boundary flux). The approach is consistent with that used in the MODPATH model. The application of the BFLX Package was illustrated using a test case in which the Lake Package was active. The results using the BFLX Package showed noticeably higher magnitudes of velocity in the cells adjacent to the lake than previous results without the BFLX Package. Consequently, solute was transported slightly faster through the lake-aquifer system when the BFLX Package is active. However, the overall solute distributions did not differ greatly from simulations made without using the BFLX Package.

  20. Active transport of vesicles in neurons is modulated by mechanical tension.

    PubMed

    Ahmed, Wylie W; Saif, Taher A

    2014-03-27

    Effective intracellular transport of proteins and organelles is critical in cells, and is especially important for ensuring proper neuron functionality. In neurons, most proteins are synthesized in the cell body and must be transported through thin structures over long distances where normal diffusion is insufficient. Neurons transport subcellular cargo along axons and neurites through a stochastic interplay of active and passive transport. Mechanical tension is critical in maintaining proper function in neurons, but its role in transport is not well understood. To this end, we investigate the active and passive transport of vesicles in Aplysia neurons while changing neurite tension via applied strain, and quantify the resulting dynamics. We found that tension in neurons modulates active transport of vesicles by increasing the probability of active motion, effective diffusivity, and induces a retrograde bias. We show that mechanical tension modulates active transport processes in neurons and that external forces can couple to internal (subcellular) forces and change the overall transport dynamics.

  1. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1990-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells. 10 figs., 2 tabs.

  2. Active and passive calcium transport systems in plant cells

    SciTech Connect

    Sze, H.

    1991-01-01

    The ability to change cytoplasmic Ca{sup 2+} levels ((Ca{sup 2+})) by cells has made this cation a key regulator of many biological processes. Cytoplasmic (Ca{sup 2+}) is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic (Ca{sup 2+}) and active Ca{sup 2+} transport systems that lower cytosolic (Ca{sup 2+}). The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  3. Monocarboxylate transporter 1 contributes to growth factor-induced tumor cell migration independent of transporter activity

    PubMed Central

    Gray, Alana L.; Coleman, David T.; Shi, Runhua; Cardelli, James A.

    2016-01-01

    Tumor progression to metastatic disease contributes to the vast majority of incurable cancer. Understanding the processes leading to advanced stage cancer is important for the development of future therapeutic strategies. Here, we establish a connection between tumor cell migration, a prerequisite to metastasis, and monocarboxylate transporter 1 (MCT1). MCT1 transporter activity is known to regulate aspects of tumor progression and, as such, is a clinically relevant target for treating cancer. Knockdown of MCT1 expression caused decreased hepatocyte growth factor (HGF)-induced as well as epidermal growth factor (EGF)-induced tumor cell scattering and wound healing. Western blot analysis suggested that MCT1 knockdown (KD) hinders signaling through the HGF receptor (c-Met) but not the EGF receptor. Exogenous, membrane-permeable MCT1 substrates were not able to rescue motility in MCT1 KD cells, nor was pharmacologic inhibition of MCT1 able to recapitulate decreased cell motility as seen with MCT1 KD cells, indicating transporter activity of MCT1 was dispensable for EGF- and HGF-induced motility. These results indicate MCT1 expression, independent of transporter activity, is required for growth factor-induced tumor cell motility. The findings presented herein suggest a novel function for MCT1 in tumor progression independent of its role as a monocarboxylate transporter. PMID:27127175

  4. Dual Transport Process for Targeted Delivery in Porous Media

    NASA Astrophysics Data System (ADS)

    Deng, W.; Fan, J.

    2015-12-01

    The targeted delivery in porous media is a promising technology to encapsulate the solute (i.e., the cargo) in colloid-like microcapsules (i.e., the carriers), transport the microcapsules in the targeted location in porous media, and then release the solute. While extensive literatures and applications about the drug delivery in human and animal bodies exist, the targeted delivery using similar delivery carriers in subsurface porous media is not well understood. The dual transport process study is an explorative study for the targeted delivery in porous media. While the colloid transport is dominated by the advection process and the solute transport is dominated by the advection-dispersion, the dual transport process is the process with the first step of carrier transport, which is dominated by advection, and then after the release of cargo, the transport of cargo is dominated by advection-dispersion. By applying the random walk particle tracking (RWPT) approach, we investigate how the carriers transport in porous media and how the cargo release mechanisms affect the cargo distribution for the targeted delivery in various patterns of porous media. The RWPT numerical model will be verified against the experimental results of dual transport process in packed-disk 2D micromodels. The understanding of the mechanism of dual transport process is crucial to achieve the potential applications of targeted delivery in improved oil and gas recovery, CO2 sequestration, environmental remediation, and soil biomediation.

  5. Large-Scale Stratospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2001-01-01

    The paper discusses the following: 1. The Brewer-Dobson circulation: tropical upwelling. 2. Mixing into polar vortices. 3. The latitudinal structure of "age" in the stratosphere. 4. The subtropical "tracer edges". 5. Transport in the lower troposphere. 6. Tracer modeling during SOLVE. 7. 3D modeling of "mean age". 8. Models and measurements II.

  6. Active transporters as enzymes: an energetic framework applied to major facilitator superfamily and ABC importer systems.

    PubMed

    Shilton, Brian H

    2015-04-15

    Active membrane transporters are dynamic molecular machines that catalyse transport across a membrane by coupling solute movement to a source of energy such as ATP or a secondary ion gradient. A central question for many active transporters concerns the mechanism by which transport is coupled to a source of energy. The transport process and associated energetic coupling involve conformational changes in the transporter. For efficient transport, the conformational changes must be tightly regulated and they must link energy use to movement of the substrate across the membrane. The present review discusses active transport using the well-established energetic framework for enzyme-mediated catalysis. In particular, membrane transport systems can be viewed as ensembles consisting of low-energy and high-energy conformations. The transport process involves binding interactions that selectively stabilize the higher energy conformations, and in this way promote conformational changes in the system that are coupled to decreases in free energy and substrate translocation. The major facilitator superfamily of secondary active transporters is used to illustrate these ideas, which are then be expanded to primary active transport mediated by ABC (ATP-binding cassette) import systems, with a focus on the well-studied maltose transporter.

  7. Coexistence of passive and carrier-mediated processes in drug transport.

    PubMed

    Sugano, Kiyohiko; Kansy, Manfred; Artursson, Per; Avdeef, Alex; Bendels, Stefanie; Di, Li; Ecker, Gerhard F; Faller, Bernard; Fischer, Holger; Gerebtzoff, Grégori; Lennernaes, Hans; Senner, Frank

    2010-08-01

    The permeability of biological membranes is one of the most important determinants of the pharmacokinetic processes of a drug. Although it is often accepted that many drug substances are transported across biological membranes by passive transcellular diffusion, a recent hypothesis speculated that carrier-mediated mechanisms might account for the majority of membrane drug transport processes in biological systems. Based on evidence of the physicochemical characteristics and of in vitro and in vivo findings for marketed drugs, as well as results from real-life discovery and development projects, we present the view that both passive transcellular processes and carrier-mediated processes coexist and contribute to drug transport activities across biological membranes.

  8. Parallel processing of numerical transport algorithms

    SciTech Connect

    Wienke, B.R.; Hiromoto, R.E.

    1984-01-01

    The multigroup, discrete ordinates representation for the linear transport equation enjoys widespread computational use and popularity. Serial solution schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, we investigate the parallel structure and extension of a number of standard S/sub n/ approaches. Concurrent inner sweeps, coupled acceleration techniques, synchronized inner-outer loops, and chaotic iteration are described, and results of computations are contrasted. The multigroup representation and serial iteration methods are also detailed. The basic iterative S/sub n/ method lends itself to parallel tasking, portably affording an effective medium for performing transport calculations on future architectures. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. We find basic inner-outer and chaotic iteration strategies both easily support comparably high degrees of parallelism. Both accommodate parallel rebalance and diffusion acceleration and appear as robust and viable parallel techniques for S/sub n/ production work.

  9. Large-scale Atmospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2004-01-01

    Continuing earlier work, we continued an investigation of the seasonal behavior of the edges of the stratospheric surf zone. These edges form a barrier between the rapidly mixed surf zone and the relatively isolated tropics. In collaboration with Dr Lynn Sparling at GSFC, we used a statistical analysis of HALOE and CLAES trace gas data from UARS to identify and locate these edges during each UARS observing period. We found that the edges on both sides of the equator are present all year (a fact that is important for conceptual models of stratospheric transport), though that on the summer side of the equator is much less sharp than the winter edge. The edges migrate seasonally into the summer hemisphere. Their location also shows influence of the QBO, together with the SAO at higher altitudes. Comparisons with effective diffusivities, and the edge locations, suggest that the edge is sustained by surf zone entrainment during winter, but by the residual circulation during summer.

  10. Modulation Effects of Curcumin on Erythrocyte Ion-Transporter Activity

    PubMed Central

    Singh, Prabhakar; Rizvi, Syed Ibrahim

    2015-01-01

    Curcumin ((1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the yellow biphenolic pigment isolated from turmeric (Curcuma longa), has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcumin in vitro (10−5 M to 10−8 M) and in vivo (340 and 170 mg/kg b.w., oral) on Na+/K+ ATPase (NKA), Na+/H+ exchanger (NHE) activity, and membrane lipid hydroperoxides (ROOH) in control and experimental oxidative stress erythrocytes of Wistar rats. As a result, we found that curcumin potently modulated the membrane transporters activity with protecting membrane lipids against hydro-peroxidation in control as well as oxidatively challenged erythrocytes evidenced by stimulation of NKA, downregulation of NHE, and reduction of ROOH in the membrane. The observed results corroborate membrane transporters activity with susceptibility of erythrocyte membrane towards oxidative damage. Results explain the protective mechanism of curcumin against oxidative stress mediated impairment in ions-transporters activity and health beneficial effects. PMID:26421014

  11. Processes of Salt Transport in Disturbed Streams

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Caffrey, P. A.; Stern, J.

    2013-12-01

    The extraction of coal bed methane natural gas involves removal of large amount of ground/Coal Bed Methane (CBM) water which is commonly discharged to surface-water drainages or constructed reservoirs. The extraction of large volume of water and its disposal on soil surface not only lowers the water table but also potentially accelerate soil erosions, contaminate surface water resources, and alter the natural flows. Due to the difference in quality and quantity between the surface discharge and disposed CBM water, this management strategy potentially poses threats to quality of surface water and soil. CBM discharge water typically contains high concentrations of sodium and low concentrations of calcium and magnesium, resulting in high sodium adsorption ratio (SAR). Similarly, it also contains high concentration of other ions which could results in increasing salt concentrations. Our study area is in the Atlantic Rim development area of the Muddy Creek, SE of Wyoming, a tributary to Colorado River, where significant development of CBM wells is ongoing. Since Muddy Creek is part of the Upper Colorado River, the greatest concern is its potential to contribute to surface water quality (primarily salinity) impairment downstream. However, very few studies have made efforts to assess the water quality in this particular region. The alteration of stream water quality in this region is still not fully understood if it due to CBM water discharge or via soil/water interactions, erosion, and sediment transport. Efforts are being made to identify crucial water quality parameters such as SAR and EC along with the quantification of solute/salt loadings at both CBM discharge fed streams and natural streams at different seasons to distinguish effect of CBM discharge on water quality. We have been continuously monitoring water quality on monthly basis and discharge measurement on daily basis at sampling sites that are placed to discriminate CBM fed streams and natural streams. The

  12. A Reactive Transport Simulator for Biogeochemical Processes in Subsurface System

    2003-04-01

    BIOGEOCHEM is a Fortran code that mumerically simulates the coupled processes of solute transport, microbial population dynamics, microbial metabolism, and geochemical reactions. The potential applications of the code include, but not limited to, (a) sensitivity and uncertainty analyses for assessing the impact of microbial activity on subsurface geochemical systems; (b) extraction of biogeochemical parameter values from field observations or laboratory measurements, (c) helping to design and optimize laboratory biogeochemical experiments, and (d) data integration. Methodmore » of Solution: A finite difference method and a Newton-Raphson technique are used to solve a set of coupled nonlinear partial differential equations and algebraic equations. Practical Application: Environmental analysis, bioremediation performance assessments of radioactive or non-radioactive wase disposal, and academic research.« less

  13. Nucleocytoplasmic transport of ribosomes in a eukaryotic system: Is there a facilitated transport process

    SciTech Connect

    Khanna-Gupta, A.; Ware, V.C. )

    1989-03-01

    The authors have examined the kinetics of the process by which ribosomes are exported from the nucleus to the cytoplasm using Xenopus laevis oocytes microinjected into the germinal vesicle with radiolabeled ribosomes or ribosomal subunits from X. laevis, Tetrahymena thermophila, or Escherichia coli. Microinjected eukaryotic mature ribosomes are redistributed into the oocyte cytoplasm by an apparent carrier-mediated transport process that exhibits saturation kinetics as increasing amounts of ribosomes are injected. T. thermophila ribosomes are competent to traverse the Xenopus nuclear envelope, suggesting that the basic mechanism underlying ribosome transport is evolutionarily conserved. Microinjected E. coli ribosomes are not transported in this system, indicating that prokaryotic ribosomes lack the signals required for transport. Surprisingly, coinjected small (40S) and large (60S) subunits from T. thermophila are transported significantly faster than individual subunits. These observations support a facilitated transport model for the translocation of ribosomal subunits as separate units across the nuclear envelope whereby the transport rate of 60S or 40S subunits is enhanced by the presence of the partner subunit. Although the basic features of the transport mechanism have been preserved through evolution, other aspects of the process may be mediated through species-specific interactions. They hypothesize that a species-specific nuclear 40S-60S subunit association may expedite the transport of individual subunits across the nuclear envelope.

  14. Transport processes in biological systems: Tumoral cells and human brain

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  15. Transport induced by mean-eddy interaction: II. Analysis of transport processes

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-03-01

    We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.

  16. Transport of biologically active material in laser cutting.

    PubMed

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  17. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  18. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  19. A Simple Laboratory Exercise Illustrating Active Transport in Yeast Cells.

    ERIC Educational Resources Information Center

    Stambuk, Boris U.

    2000-01-01

    Describes a simple laboratory activity illustrating the chemiosmotic principles of active transport in yeast cells. Demonstrates the energy coupling mechanism of active a-glucoside uptake by Saccaromyces cerevisiae cells with a colorimetric transport assay using very simple equipment. (Contains 22 references.) (Author/YDS)

  20. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  1. Linking stochastic sediment transport to physical processes (Invited)

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Martin, R.; Paola, C.; Reitz, M. D.; Schumer, R.

    2010-12-01

    Intermittent transport is the rule rather than the exception in sedimentary systems. Avalanching dynamics in granular flows is known to produce stochastic transport fluctuations over a wide range of scales - for example, the well known power-law distributions of landslide magnitudes. Similar stochastic dynamics can occur in multi-phase flows, e.g., bedload transport in rivers. A generalized theoretical framework for understanding stochastic transport is lacking. A pragmatic alternative is the stochastic processes approach: using (fractional) advection-diffusion equations, conditioned with measured statistics from a real system, to make future predictions about transport. Linking the macroscopic statistics described by such models to the microscopic physics of sediment transport will require a new statistical mechanics approach. We propose to begin by delineating generic categories of transport mechanics - universality classes - and determining their statistical signatures through theory and experiment. A first separation may be drawn between periodic and aperiodic transport fluctuations. Periodic transport fluctuations have been observed in both sand piles and river delta experiments, and appear to arise under conditions of a well-defined transport threshold (e.g., an angle of repose) and limited dissipation. Under these conditions, inertia overwhelms system heterogeneity and gives rise to periodic oscillations having a characteristic magnitude. Aperiodic transport fluctuations often imply a strong control of system heterogeneity, and/or significant dissipation or friction capable of “breaking up” sediment pulses. For example, varying soil properties give rise to a range of critical failure slopes for landslides. Transitions in the dominant transport process from small to large time or space scales are expected to result in transitions in scaling. Bedload transport is super-diffusive at short timescales because of correlated motion due to particle momentum. At

  2. The Effects of Bioturbation on Soil Processes and Sediment Transport

    NASA Astrophysics Data System (ADS)

    Gabet, Emmanuel J.

    Plants and animals exploit the soil for food and shelter and, in the process, affect it in many different ways. For example, uprooted trees may break up bedrock, transport soil downslope, increase the heterogeneity of soil respiration rates, and inhibit soil horizonation. In this contribution, we review previously published papers that provide insights into the process of bioturbation. We focus particularly on studies that allow us to place bioturbation within a quantitative framework that links the form of hillslopes with the processes of sediment transport and soil production. Using geometrical relationships and data from others' work, we derive simple sediment flux equations for tree throw and root growth and decay.

  3. Vortical ciliary flows actively enhance mass transport in reef corals.

    PubMed

    Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-09-16

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.

  4. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  5. Career management: an active process.

    PubMed

    Mackowiak, J; Eckel, F M

    1985-03-01

    The self-assessment, goal-setting, and career-planning techniques of career management are discussed, and the organization's role in career management is discussed. Career management is a planned process, initiated and carried out by an individual with the assistance of others. Because work and nonwork activities are so interrelated, career and life management planning can maximize a pharmacist's personal success. The career- and life-management process begins with the development of a personal definition of success. A self-assessment must be made of one's values, needs, interests, and activities. The next step of the process involves setting goals and establishing a plan or strategy to achieve them. Establishing a career path requires researching alternate career goals. Career competencies are identified that can increase an employee's chances of success. The employer shares the responsibility for career development through coaching, job structuring, and keeping the employee aware of constraints. Through the integration of the roles of the individual and the organization in the career-management process, employees can optimize their contribution to an organization. Pharmacists can successfully manage their careers by applying the techniques of self-assessment, goal setting, and career planning. PMID:3985018

  6. Laboratory and numerical investigation of transport processes occurring above and within a saltwater wedge.

    PubMed

    Chang, Sun Woo; Clement, T Prabhakar

    2013-04-01

    Salt wedges divide coastal groundwater flow regime into two distinct regions that include a freshwater region above the saltwater-freshwater interface and a saltwater region below the interface. Several recent studies have investigated saltwater transport in coastal aquifers and the associated flow and mixing processes. Most of these studies, however, have either focused on studying the movement of salt wedge itself or on studying contaminant transport processes occurring above the wedge. As per our knowledge, so far no one has completed laboratory experiments to study contaminant transport processes occurring within a saltwater wedge. In this study, we completed laboratory experiments to understand contaminant transport dynamics occurring within a saltwater wedge. We used a novel experimental approach that employed multiple neutral-density tracers to map and compare the mixing and transport processes occurring above and within a saltwater wedge. The experimental data were simulated using SEAWAT, and the model was used to further investigate the saltwater flow and transport dynamics within a wedge. The laboratory data show that the transport rates active within the wedge are almost two orders of magnitude slower than the transport rates active above the wedge for the small-scale experimental system which is characterized by very low level of mixing. The numerical results, however, postulate that for large-scale systems involving higher levels of mixing (or dispersion) the transport rate active within the wedge could be comparable or even higher than the rates active above the wedge. More field or laboratory studies completed under high dispersion conditions are needed to further test this hypothesis.

  7. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  8. Active transmembrane drug transport in microgravity: a validation study using an ABC transporter model

    PubMed Central

    Vaquer, Sergi; Cuyàs, Elisabet; Rabadán, Arnau; González, Albert; Fenollosa, Felip; de la Torre, Rafael

    2014-01-01

    Microgravity has been shown to influence the expression of ABC (ATP-Binding Cassette) transporters in bacteria, fungi and mammals, but also to modify the activity of certain cellular components with structural and functional similarities to ABC transporters. Changes in activity of ABC transporters could lead to important metabolic disorders and undesired pharmacological effects during spaceflights. However, no current means exist to study the functionality of these transporters in microgravity. To this end, a Vesicular Transport Assay ® (Solvo Biotechnology, Hungary) was adapted to evaluate multi-drug resistance-associated protein 2 (MRP2) trans-membrane estradiol-17-β-glucuronide (E17βG) transport activity, when activated by adenosine-tri-phosphate (ATP) during parabolic flights. Simple diffusion, ATP-independent transport and benzbromarone inhibition were also evaluated. A high accuracy engineering system was designed to perform, monitor and synchronize all procedures. Samples were analysed using a validated high sensitivity drug detection protocol. Experiments were performed in microgravity during parabolic flights, and compared to 1g on ground results using identical equipment and procedures in all cases. Our results revealed that sufficient equipment accuracy and analytical sensitivity were reached to detect transport activity in both gravitational conditions. Additionally, transport activity levels of on ground samples were within commercial transport standards, proving the validity of the methods and equipment used. MRP2 net transport activity was significantly reduced in microgravity, so was signal detected in simple diffusion samples. Ultra-structural changes induced by gravitational stress upon vesicle membranes or transporters could explain the current results, although alternative explanations are possible. Further research is needed to provide a conclusive answer in this regard. Nevertheless, the present validated technology opens new and

  9. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, J.F.

    1998-09-22

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

  10. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, John F.

    1998-01-01

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

  11. Kinetic and electromagnetic transport processes in toroidal devices

    SciTech Connect

    Moses, R.W.; Schoenberg, K.F.

    1990-01-01

    A brief review of transport processes in toroidal devices is presented. Particular attention is given to radial transport of power by the Poynting's vector and kinetic electron flow. This work is primarily focused on the Reversed Field Pinch (RFP) which holds the added complexity of a dynamo process that sustains poloidal current in the edge region, where the toroidal field is reversed. The experimental observation of superthermal unidirectional electrons in the plasma edge of ZT-40M and HBTX1C is noted, and the rapid, nonclassical ion heating in RFPs is taken account of. Radial transport parallel to fluctuating magnetic field lines is deemed a likely candidate for both electromagnetic and kinetic energy transport. Two models are discussed and compared. It is concluded that electromagnetic transport using a local Ohm's law best describes nonclassical ion heating, and the transport of kinetic energy by long mean free path electrons best represents the half-Maxwellian of electrons observed in the edge of several RFPs. A nonlocal Ohm's law is essential for the kinetic electron model. 18 refs.

  12. The Importance of Biophysicochemical Transport Processes in Hyporheic Exchange

    NASA Astrophysics Data System (ADS)

    Packman, A. I.

    2001-12-01

    Hyporheic exchange processes are generally analyzed in terms of hydrologic stream-subsurface interactions, biogeochemical reactions in the hyporheic zone, or nutrient and carbon uptake in the context of stream metabolism. Often, investigations are motivated primarily by applications in hydrology, contaminant transport, or stream ecology, and thus focus on only one of these aspects of hyporheic exchange. However, it is important to consider the interrelationships between biological, physical, and chemical processes, which are inevitably and inextricably linked because the hyporheic zone represents an extraordinary complex environmental system. The nature of biophysicochemical linkages in the hyporheic zone will be discussed in general terms and illustrated with two important examples. The transport of microorganisms such as the pathogen Cryptosporidium parvum in streams is dependent on both physical transport processes and physicochemical interactions in the hyporheic zone. The transport of labile particulate organic matter to the hyporheic zone is dependent on similar processes, but also induces biologically-mediated alteration of the subsurface environment. In these types of studies, insufficient characterization of either physical, chemical, or biological processes can lead to errors in interpretation of overall system behavior.

  13. Active transport and accumulation of bicarbonate by a unicellular cyanobacterium.

    PubMed

    Miller, A G; Colman, B

    1980-09-01

    The rates of inorganic carbon accumulation and carbon fixation in light by the unicellular cyanobacterim Coccohloris peniocystis have been determined. Cells incubated in the light in medium containing H14CO3- were rapidly separated from the medium by centrifugation through silicone oil into a strongly basic terminating solution. Samples of these inactivated cells were assayed to determine total 14C accumulation, and acid-treated samples were assayed to determine 14C fixation. The rate of transport of inorganic into illuminated cells was faster than the rate of CO2 production in the medium from HCO3- dehydration. This evidence for HCO3- transport in these cells is in agreement with our previous results based upon measurements of photosynthetic O2 evolution. A substantial pool of inorganic carbon was bulit up within the cells presumably as HCO3- before the onset of the maximum rate of photosynthesis. Large accumulation ratios were observed, greater than 1,000 times the external HCO3- concentration. Accumulation did not occur in the dark and was greatly suppressed by the photosynthesis inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl urea and 3-chloro-carbonylcyanide phenylhydrazone. These results indicate that the accumulation of inorganic carbon in these cells involves a light-dependent active transport process. PMID:6773925

  14. On non-local transport processes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Macneice, P.

    1992-01-01

    We review two mechanisms which can lend a non-local character to energy transport in the solar atmosphere, heat flux propagating in the form of collisionless electrons, and non-equilibrium ionization of hydrogen driven by ambipolar diffusion. Application of these processes to modelling of the lower transition region and upper chromosphere is considered.

  15. An Atomistic View on Fundamental Transport Processes on Metal Surfaces

    SciTech Connect

    Giesen, Margret

    2007-06-14

    In this lecture I present an introduction to the time-resolved observation of atomic transport processes on metal surfaces using scanning tunneling microscopy video sequences. The experimental data is analyzed using scaling law concepts known from statistical thermodynamics. I will present studies from metal surfaces in vacuum as well as in electrolyte.

  16. Reply to "Comment on `Generalized exclusion processes: Transport coefficients' "

    NASA Astrophysics Data System (ADS)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2016-07-01

    We reply to the Comment of Becker, Nelissen, Cleuren, Partoens, and Van den Broeck [Phys. Rev. E 93, 046101 (2016), 10.1103/PhysRevE.93.046101] on our article [Arita, Krapivsky, and Mallick, Phys. Rev. E 90, 052108 (2014), 10.1103/PhysRevE.90.052108] about the transport properties of a class of generalized exclusion processes.

  17. Transformation and Transport Processes of Nitrogen in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transformation and transport processes of nitrogen (N) in agricultural systems are discussed and information is provided on overall reservoir sizes for N. Nitrogen is ubiquitous in the environment and is required for the survival of all living things. It is also one of the most important essen...

  18. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.

    PubMed

    Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing

    2016-08-22

    Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs. PMID:27472561

  19. Features, Events, and Processes in UZ Flow and Transport

    SciTech Connect

    P. Persoff

    2004-11-06

    The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. These studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ({le} 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra.

  20. Active urea transport by the skin of Bufo viridis: Amiloride- and phloretin-sensitive transport sites

    SciTech Connect

    Rapoport, J.; Abuful, A.; Chaimovitz, C.; Noeh, Z.; Hays, R.M. Albert Einstein College of Medicine, New York, NY )

    1988-09-01

    Urea is actively transported inwardly (J{sub i}) across the skin of the green toad Bufo viridis. J{sub i} is markedly enhanced in toads adapted to hypertonic saline. The authors studied urea transport across the skin of Bufo viridis under a variety of experimental conditions, including treatment with amiloride and phloretin, agents that inhibit urea permeability in the bladder of Bufo marinus. Amiloride (10{sup {minus}4} M) significantly inhibited J{sub i} in both adapted and unadapted animals and was unaffected by removal of sodium from the external medium. Phloretin (10{sup {minus}4} M) significantly inhibited J{sub i} in adapted animals by 23-46%; there was also a reduction in J{sub i} in unadapted toads at 10{sup {minus}4} and 5 {times} 10{sup {minus}4} M phloretin. A dose-response study revealed that the concentration of phloretin causing half-maximal inhibition (K{sub {1/2}}) was 5 {times} 10{sup {minus}4} M for adapted animals. J{sub i} was unaffected by the substitution of sucrose for Ringer solution or by ouabain. They conclude (1) the process of adaptation appears to involve an increase in the number of amiloride- and phloretin-inhibitable urea transport sites in the skin, with a possible increase in the affinity of the sites for phloretin; (2) the adapted skin resembles the Bufo marinus urinary bladder with respect to amiloride and phloretin-inhibitable sites; (3) they confirm earlier observations that J{sub i} is independent of sodium transport.

  1. Forest Canopy Processes in a Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip

    2016-04-01

    Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model

  2. Features, Events, and Processes in UZ Flow and Transport

    SciTech Connect

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  3. Isotopic Tracers for Biogeochemical Processes and Contaminant Transport: Hanford, Washington

    SciTech Connect

    Donald J. DePaolo; John N. Christensen; Mark E. Conrad; and P. Evan Dresel

    2007-04-19

    Our goal is to use isotopic measurements to understand how contaminants are introduced to and stored in the vadose zone, and what processes control migration from the vadose zone to groundwater and then to surface water. We have been using the Hanford Site in south-central Washington as our field laboratory, and our investigations are often stimulated by observations made as part of the groundwater monitoring program and vadose zone characterization activities. Understanding the transport of contaminants at Hanford is difficult due to the presence of multiple potential sources within small areas, the long history of activities, the range of disposal methods, and the continuing evolution of the hydrological system. Observations often do not conform to simple models, and cannot be adequately understood with standard characterization approaches, even though the characterization activities are quite extensive. One of our objectives is to test the value of adding isotopic techniques to the characterization program, which has the immediate potential benefit of addressing specific remediation issues, but more importantly, it allows us to study fundamental processes at the scale and in the medium where they need to be understood. Here we focus on two recent studies at the waste management area (WMA) T-TX-TY, which relate to the sources and transport histories of vadose zone and groundwater contamination and contaminant fluid-sediment interaction. The WMA-T and WMA-TX-TY tank farms are located within the 200 West Area in the central portion of the Hanford Site (Fig. 2). They present a complicated picture of mixed groundwater plumes of nitrate, {sup 99}Tc, Cr{sup 6+}, carbon tetrachloride, etc. and multiple potential vadose zone sources such as tank leaks and disposal cribs (Fig. 3). To access potential vadose zone sources, we analyzed samples from cores C3832 near tank TX-104 and from C4104 near tank T-106. Tank T-106 was involved in a major event in 1973 in which 435,000 L

  4. Study of active cooling for supersonic transports

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  5. 1995 national heat transfer conference: Proceedings. Volume 4: Transport phenomena in manufacturing and materials processing; Transport phenomena in materials joining processes; Transport phenomena in net shape manufacturing; HTD-Volume 306

    SciTech Connect

    Mahajan, R.L.

    1995-12-31

    This book is divided into three sections: (1) transport phenomena in manufacturing and materials processing; (2) transport phenomena in net shape manufacturing: and (3) transport phenomena in materials joining processes. Separate abstracts were prepared for most papers in this volume.

  6. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  7. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  8. Modeling Multi-process Transport of Pathogens in Porous Media

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Brusseau, M. L.

    2004-12-01

    The transport behavior of microorganisms in porous media is of interest with regard to the fate of pathogens associated with wastewater recharge, riverbank filtration, and land application of biosolids. This interest has fomented research on the transport of pathogens in the subsurface environment. The factors influencing pathogen transport within the subsurface environment include advection, dispersion, filtration, and inactivation. The filtration process, which mediates the magnitude and rate of pathogen retention, comprises several mechanisms such as attachment to porous-medium surfaces, straining, and sedimentation. We present a mathematical model wherein individual filtration mechanisms are explicitly incorporated along with advection, dispersion, and inactivation. The performance of the model is evaluated by applying it to several data sets obtained from miscible-displacement experiments conducted using various pathogens. Input parameters are obtained to the extent possible from independent means.

  9. Parallel Activation in Bilingual Phonological Processing

    ERIC Educational Resources Information Center

    Lee, Su-Yeon

    2011-01-01

    In bilingual language processing, the parallel activation hypothesis suggests that bilinguals activate their two languages simultaneously during language processing. Support for the parallel activation mainly comes from studies of lexical (word-form) processing, with relatively less attention to phonological (sound) processing. According to…

  10. Scaling and predicting solute transport processes in riverine ecosystems

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinzon, R.; Haggerty, R.; Camacho Botero, L. A.

    2012-12-01

    In the last three decades, research on solute transport and nutrient processing has revealed complex interactions between landscapes and stream ecosystems, and numerous attempts to scale and predict these processes have been primarily limited by the difficulty of measuring and extrapolating hydrodynamic and geomorphic characteristics. We hypothesize that there should be predictable patterns in the way that streams interact with their landscapes, because those interactions are in the form of energy, mass and momentum, which are conservative and interrelated properties. Therefore, despite local hydrogeomorphic characteristics define the actual extent of solute transport processes in a given riverine ecosystem, the physical imprints marked-up in breakthrough curves (BTCs) should have scaling properties. To evaluate our hypothesis we created an extensive database that includes 133 BTCs from conservative tracer experiments conducted under different hydrologic conditions (1 lt/s to 1197 m3/s), different experimental conditions (10s of meters to 10s of kilometers), different geographic positions (South and North America, Europe, Australia, Antarctica), and different types of lotic environments, i.e., urban manmade channels, forested headwater streams, desert-like streams, hyporheic wells, and major rivers. We investigated the existence of patterns in conservative solute transport using a model-independent approach, i.e., temporal moments of the histories of tracer experiments. Our results show that the normalized first absolute moment is correlated with the second and third moments with R2>0.99 for all riverine ecosystems. Most importantly, the first central temporal moment of the distributions (mean travel time) is correlated with the second (variance) with an R2>0.93, and the correlation between the second central moment and the third central moment (skewness) takes the form of the coefficient of skewness (CSK) with an R2>0.98, defining a statistically averaged CSK= 1

  11. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    SciTech Connect

    Sonnino, Giorgio; Peeters, Philippe

    2008-06-15

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10{sup 2}. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10{sup 2} when the nonlinear contributions are duly taken into account but, there is still a factor of 10{sup 2} to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.

  12. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    PubMed Central

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-01-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms. PMID:26387743

  13. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    NASA Astrophysics Data System (ADS)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  14. Is the wash-off process of road-deposited sediment source limited or transport limited?

    PubMed

    Zhao, Hongtao; Chen, Xuefei; Hao, Shaonan; Jiang, Yan; Zhao, Jiang; Zou, Changliang; Xie, Wenxia

    2016-09-01

    An in-depth understanding of the road-deposited sediments (RDS) wash-off process is essential to estimation of urban surface runoff pollution load and to designing methods to minimize the adverse impacts on the receiving waters. There are two debatable RDS wash-off views: source limited and transport limited. The RDS build-up and wash-off process was characterized to explore what determines the wash-off process to be source limited or transport limited based on twelve RDS sampling activities on an urban road in Beijing. The results showed that two natural rain events (2.0mm and 23.2mm) reduced the total RDS mass by 30%-40%, and that finer particles (<105μm) contributed 60%-80% of the wash-off load. Both single- and multi-rain events caused the RDS particle grain size to become coarser, while dry days made the RDS particle grain size finer. These findings indicated that the bulk RDS particles wash-off tends to be transport limited, but that finer particles tend to be source limited. To further explore and confirm the results of the field experiment, a total of 40 simulated rain events were designed to observe the RDS wash-off with different particle size fractions. The finer particles have a higher wash-off percentage (Fw) than the coarser particles, and the Fw values provide a good view to characterize the wash-off process. The key conclusions drawn from the combined field and simulated experiments data are: (i) Finer and coarser particle wash-off processes tend to be source limited and transport limited, respectively. (ii) The source and transport limited processes occur during the initial period (the first flush) and later periods, respectively. (iii) The smaller and larger rain events tend to be transport limited and source limited, respectively. Overall, the wash-off process is generally a combination of source and transport limited processes.

  15. Is the wash-off process of road-deposited sediment source limited or transport limited?

    PubMed

    Zhao, Hongtao; Chen, Xuefei; Hao, Shaonan; Jiang, Yan; Zhao, Jiang; Zou, Changliang; Xie, Wenxia

    2016-09-01

    An in-depth understanding of the road-deposited sediments (RDS) wash-off process is essential to estimation of urban surface runoff pollution load and to designing methods to minimize the adverse impacts on the receiving waters. There are two debatable RDS wash-off views: source limited and transport limited. The RDS build-up and wash-off process was characterized to explore what determines the wash-off process to be source limited or transport limited based on twelve RDS sampling activities on an urban road in Beijing. The results showed that two natural rain events (2.0mm and 23.2mm) reduced the total RDS mass by 30%-40%, and that finer particles (<105μm) contributed 60%-80% of the wash-off load. Both single- and multi-rain events caused the RDS particle grain size to become coarser, while dry days made the RDS particle grain size finer. These findings indicated that the bulk RDS particles wash-off tends to be transport limited, but that finer particles tend to be source limited. To further explore and confirm the results of the field experiment, a total of 40 simulated rain events were designed to observe the RDS wash-off with different particle size fractions. The finer particles have a higher wash-off percentage (Fw) than the coarser particles, and the Fw values provide a good view to characterize the wash-off process. The key conclusions drawn from the combined field and simulated experiments data are: (i) Finer and coarser particle wash-off processes tend to be source limited and transport limited, respectively. (ii) The source and transport limited processes occur during the initial period (the first flush) and later periods, respectively. (iii) The smaller and larger rain events tend to be transport limited and source limited, respectively. Overall, the wash-off process is generally a combination of source and transport limited processes. PMID:27135567

  16. Mechanism of Formation of the Ozone Valley over the Tibetan Plateau in Summer— Transport and Chemical Process of Ozone

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Weiliang; Zhou, Xiuji; He, Jiahai

    2003-01-01

    With the 3D chemical transport model OSLO CTM2, the valley of total column ozone over the Tibetan Plateau in summer is reproduced. The results show that when the ozone valley occurs and develops, the transport process plays the main part in the ozone reduction, but the chemical process partly compensates for the transport process. In the dynamic transport process of ozone, the horizontal transport process plays the main part in the ozone reduction in May, but brings about the ozone increase in June and July. The vertical advective process gradually takes the main role in the ozone reduction in June and July. The effect of convective activities rises gradually so that this effect cannot be overlooked in July, as its magnitude is comparable to that of the net changes. The effect of the gaseous chemical process brings about ozone increases which are more than the net changes sometimes, so the chemical effect is also important.

  17. Process-based modeling of tsunami inundation and sediment transport

    USGS Publications Warehouse

    Apotsos, A.; Gelfenbaum, G.; Jaffe, B.

    2011-01-01

    The infrequent and unpredictable nature of tsunamis precludes the use of field experiments to measure the hydrodynamic and sediment transport processes that occur. Instead, these processes are often approximated from laboratory, numerical, and theoretical studies or inferred from observations of the resultant sediment deposits. Here Delft3D, a three-dimensional numerical model, is used to simulate the inundation and sediment transport of a tsunami similar in magnitude to the 26 December 2004 Indian Ocean tsunami over one measured and three idealized morphologies. The model is first shown to match well the observations taken at Kuala Meurisi, Sumatra, and then used to examine in detail the processes that occur during the tsunami. The model predicts that at a given cross-shore location the onshore flow accelerates rapidly to a maximum as the wavefront passes, and then gradually decelerates before reversing direction and flowing offshore. The onshore flow does not tend to zero everywhere at maximum inundation, but instead flow reversal occurs near the shoreline even as the wavefront continues to inundate landward. While some sediment is eroded by the passing wavefront, the suspension of sandy sediment is dominated by the long-duration, high-velocity backwash that occurs along the beach face and offshore of the shoreline. Some of the sediment suspended during backwash is advected shoreward by the subsequent wave, creating large spatial gradients in the suspended sediment concentrations, which may not be in equilibrium with the local hydrodynamics. The inundation and transport of sediment during a tsunami can be affected by complexities in the morphological profile and interactions between multiple waves, and many of the hydrodynamic and sediment transport processes predicted here are similar to analogous processes previously observed in the swash zone. Copyright 2011 by the American Geophysical Union.

  18. Space transportation activities in the United States

    NASA Technical Reports Server (NTRS)

    Gabris, Edward A.

    1994-01-01

    The status of the existing space transportation systems in the U.S. and options for increased capability is being examined in the context of mission requirements, options for new vehicles, cost to operate the existing vehicles, cost to develop new vehicles, and the capabilities and plans of other suppliers. This assessment is addressing the need to build and resupply the space station, to maintain necessary military assets in a rapidly changing world, and to continue a competitive commercial space transportation industry. The Department of Defense (DOD) and NASA each conducted an 'access to space' study using a common mission model but with the emphasis on their unique requirements. Both studies considered three options: maintain and improve the existing capability, build a new launch vehicle using contemporary technology, and build a new launch vehicle using advanced technology. While no decisions have been made on a course of action, it will be influenced by the availability of funds in the U.S. budget, the changing need for military space assets, the increasing competition among space launch suppliers, and the emerging opportunity for an advanced technology, low cost system and international partnerships to develop it.

  19. Entropic Ratchet transport of interacting active Brownian particles

    SciTech Connect

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  20. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures. PMID:23937169

  1. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  2. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  3. Collecting duct principal cell transport processes and their regulation.

    PubMed

    Pearce, David; Soundararajan, Rama; Trimpert, Christiane; Kashlan, Ossama B; Deen, Peter M T; Kohan, Donald E

    2015-01-01

    The principal cell of the kidney collecting duct is one of the most highly regulated epithelial cell types in vertebrates. The effects of hormonal, autocrine, and paracrine factors to regulate principal cell transport processes are central to the maintenance of fluid and electrolyte balance in the face of wide variations in food and water intake. In marked contrast with the epithelial cells lining the proximal tubule, the collecting duct is electrically tight, and ion and osmotic gradients can be very high. The central role of principal cells in salt and water transport is reflected by their defining transporters-the epithelial Na(+) channel (ENaC), the renal outer medullary K(+) channel, and the aquaporin 2 (AQP2) water channel. The coordinated regulation of ENaC by aldosterone, and AQP2 by arginine vasopressin (AVP) in principal cells is essential for the control of plasma Na(+) and K(+) concentrations, extracellular fluid volume, and BP. In addition to these essential hormones, additional neuronal, physical, and chemical factors influence Na(+), K(+), and water homeostasis. Notably, a variety of secreted paracrine and autocrine agents such as bradykinin, ATP, endothelin, nitric oxide, and prostaglandin E2 counterbalance and limit the natriferic effects of aldosterone and the water-retaining effects of AVP. Considerable recent progress has improved our understanding of the transporters, receptors, second messengers, and signaling events that mediate principal cell responses to changing environments in health and disease. This review primarily addresses the structure and function of the key transporters and the complex interplay of regulatory factors that modulate principal cell ion and water transport.

  4. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    USGS Publications Warehouse

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  5. Nitrite Transport Activity of the ABC-Type Cyanate Transporter of the Cyanobacterium Synechococcus elongatus▿

    PubMed Central

    Maeda, Shin-ichi; Omata, Tatsuo

    2009-01-01

    In addition to the ATP-binding cassette (ABC)-type nitrate/nitrite-bispecific transporter, which has a high affinity for both substrates (Km, ∼1 μM), Synechococcus elongatus has an active nitrite transport system with an apparent Km (NO2−) value of 20 μM. We found that this activity depends on the cynABD genes, which encode a putative cyanate (NCO−) ABC-type transporter. Accordingly, nitrite transport by CynABD was competitively inhibited by NCO− with a Ki value of 0.025 μM. The transporter was induced under conditions of nitrogen deficiency, and the induced cells showed a Vmax value of 11 to 13 μmol/mg of chlorophyll per h for cyanate or nitrite, which could supply ∼30% of the amount of nitrogen required for optimum growth. Its relative specificity for the substrates and regulation at transcriptional and posttranslational levels suggested that the physiological role of the bispecific cyanate/nitrite transporter in S. elongatus is to allow nitrogen-deficient cells to assimilate low concentrations of cyanate in the medium. Its contribution to nitrite assimilation was significant in a mutant lacking the ABC-type nitrate/nitrite transporter, suggesting a possible role for CynABD in nitrite assimilation by cyanobacterial species that lack another high-affinity mechanism(s) for nitrite transport. PMID:19286804

  6. 23 CFR 450.208 - Coordination of planning process activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CFR part 500. (e) States may apply asset management principles and techniques in establishing planning... 23 Highways 1 2010-04-01 2010-04-01 false Coordination of planning process activities. 450.208 Section 450.208 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PLANNING...

  7. Analytical model of reactive transport processes with spatially variable coefficients

    PubMed Central

    Simpson, Matthew J.; Morrow, Liam C.

    2015-01-01

    Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems. PMID:26064648

  8. Classroom Activities in Transportation: Technology Education.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison.

    This curriculum supplement was designed to correlate directly with "A Guide to Curriculum Planning in Technology Education," published by the Wisconsin Department of Public Instruction. It is also a companion book to three other classroom activity compilations, one in each of the other three major systems of technology--manufacturing,…

  9. Caulis Sinomenii extracts activate DA/NE transporter and inhibit 5HT transporter.

    PubMed

    Zhao, Gang; Bi, Cheng; Qin, Guo-Wei; Guo, Li-He

    2009-08-01

    Caulis Sinomenii (QFT) has analgesic, sedative, and anxiolytic-like actions, and is proven effective for improving drug dependence that is known to be associated with abnormal monoaminergic transmission. We assessed whether QFT would be biologically active in functionally regulating monoamine transporters using CHO cells expressing dopamine transporter (DAT), norepinephrine transporter (NET), or serotonin transporter (SERT) (i.e. D8, N1, or S6 cells, respectively). Here, we showed that its primary extracts, such as QA, QC, QE, QD, and QB (QFT ethanol, chloroform, ethyl acetate, alkaloid-free chloroform, and alkaloid-containing chloroform extract, respectively), and secondary extracts, such as QE-2, - 3, - 5, - 7, QD-1, - 2, - 3, - 4, - 5, and QB-1, - 2, - 3, - 4, - 5 (fractioned from QE, QD, and QB, respectively), in differing degrees, either increased DA/ NE uptake by corresponding D8/N1 cells or decreased 5HT uptake by S6 cells; wherein, QE-2, QD-3, and QE-7 were potent DA/NE uptake activators while both QE-7 and QB-5 were potent 5HT uptake inhibitors. Furthermore, the enhancement of DA/NE uptake was dependent of DAT/NET activity, and the inhibition of 5HT uptake was typical of competition. Thus, QFT extracts, especially QE-2 and QE-7 (both with stronger potencies), are novel monoamine transporter modulators functioning as DAT/ NET activators and/or SERT inhibitors, and would likely improve neuropsychological disorders through regulating monoamine transporters.

  10. UV Irradiation Accelerates Amyloid Precursor Protein (APP) Processing and Disrupts APP Axonal Transport

    PubMed Central

    Almenar-Queralt, Angels; Falzone, Tomas L.; Shen, Zhouxin; Lillo, Concepcion; Killian, Rhiannon L.; Arreola, Angela S.; Niederst, Emily D.; Ng, Kheng S.; Kim, Sonia N.; Briggs, Steven P.; Williams, David S.

    2014-01-01

    Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction. PMID:24573290

  11. Girls' perception of physical environmental factors and transportation: reliability and association with physical activity and active transport to school

    PubMed Central

    Evenson, Kelly R; Birnbaum, Amanda S; Bedimo-Rung, Ariane L; Sallis, James F; Voorhees, Carolyn C; Ring, Kimberly; Elder, John P

    2006-01-01

    Background Preliminary evidence suggests that the physical environment and transportation are associated with youth physical activity levels. Only a few studies have examined the association of physical environmental factors on walking and bicycling to school. Therefore, the purpose of this study was (1) to examine the test-retest reliability of a survey designed for youth to assess perceptions of physical environmental factors (e.g. safety, aesthetics, facilities near the home) and transportation, and (2) to describe the associations of these perceptions with both physical activity and active transport to school. Methods Test and retest surveys, administered a median of 12 days later, were conducted with 480 sixth- and eighth-grade girls in or near six U.S. communities. The instrument consisted of 24 questions on safety and aesthetics of the perceived environment and transportation and related facilities. Additionally, girls were asked if they were aware of 14 different recreational facilities offering structured and unstructured activities, and if so, whether they would visit these facilities and the ease with which they could access them. Test-retest reliability was determined using kappa coefficients, overall and separately by grade. Associations with physical activity and active transport to school were examined using mixed model logistic regression (n = 610), adjusting for grade, race/ethnicity, and site. Results Item-specific reliabilities for questions assessing perceived safety and aesthetics of the neighborhood ranged from 0.31 to 0.52. Reliabilities of items assessing awareness of and interest in going to the 14 recreational facilities ranged from 0.47 to 0.64. Reliabilities of items assessing transportation ranged from 0.34 to 0.58. Some items on girls' perceptions of perceived safety, aesthetics of the environment, facilities, and transportation were important correlates of physical activity and, in some cases, active transport to school. Conclusion

  12. Monitoring of sediment transport processes using tracer stones

    NASA Astrophysics Data System (ADS)

    Redtenbacher, Matthias; Harb, Gabriele; Barbas, Teresa; Schneider, Josef

    2014-05-01

    In the last decades the vulnerability of our civilization to geomorphological damaging events like debris flows and exceptional floods increased. The reasons are, on one side, that the global hydrological cycle became more intense during the recent past and on the other side that the material assets of the population increased. Risk prevention, risk analysis and forecast methods thus became more important. Geomorphological processes are often not easy to analyse. To get information about the probability and the consequences of these increasing events, it is necessary to analyse the availability of sediments in the catchment area, the erosion processes of the sediment and the transport of the sediments along torrents. The project ClimCatch, which started in April 2012, investigates the torrential sediment transport processes in a non-glaciated Alpine valley in Austria and the related natural hazards under the viewpoint of the on-going climate change. Due to an extreme precipitation event in 2011 debris flow-similar discharges occurred in this catchment and since that the sediment sources are highly erodible there. The aims of the project are to derive a quantitative sediment budget model, including geomorphic process domains, determining sediment transport in the river system and the measurement of bed load output, besides others. To quantify river sediment dynamics several different methodologies are applied within the project. Discharge and sediment transport measurement as well as hydrological stations are installed in the catchment area. Aggradation and erosion are analysed by means of laser scanning technology in the sediment storage basin which is located at the outlet of the catchment. The observation and measurement of the sediment transport is performed by the application of radio telemetry stones and colour tracer stones. Line pebble counting, automated grain size determination using photographs and sieving on-site is performed to get qualitative sediment

  13. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  14. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  15. Condensation and transport in the totally asymmetric inclusion process (TASIP)

    NASA Astrophysics Data System (ADS)

    Knebel, Johannes; Weber, Markus F.; Krueger, Torben; Frey, Erwin

    Transport phenomena are often modeled by the hopping of particles on regular lattices or networks. Such models describe, e.g., the exclusive movement of molecular motors along microtubules: no two motors may occupy the same site. In our work, we study inclusion processes that are the bosonic analogues of the fermionic exclusion processes. In inclusion processes, many particles may occupy a single site and hopping rates depend linearly on the occupation of departure and arrival sites. Particles thus attract other particles to their own site. Condensation occurs when particles collectively cluster in one or multiple sites, whereas other sites become depleted.We showed that inclusion processes describe both the selection of strategies in evolutionary zero-sum games and the condensation of non-interacting bosons into multiple quantum states in driven-dissipative systems. The condensation is captured by the antisymmetric Lotka-Volterra equation (ALVE), which constitutes a nonlinearly coupled dynamical system. We derived an algebraic method to analyze the ALVE and to determine the condensates. Our approach allows for the design of networks that result in condensates with oscillating occupations, and yields insight into the interplay between network topology and transport properties. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich.

  16. Cycles, randomness, and transport from chaotic dynamics to stochastic processes.

    PubMed

    Gaspard, Pierre

    2015-09-01

    An overview of advances at the frontier between dynamical systems theory and nonequilibrium statistical mechanics is given. Sensitivity to initial conditions is a mechanism at the origin of dynamical randomness-alias temporal disorder-in deterministic dynamical systems. In spatially extended systems, sustaining transport processes, such as diffusion, relationships can be established between the characteristic quantities of dynamical chaos and the transport coefficients, bringing new insight into the second law of thermodynamics. With methods from dynamical systems theory, the microscopic time-reversal symmetry can be shown to be broken at the statistical level of description in nonequilibrium systems. In this way, the thermodynamic entropy production turns out to be related to temporal disorder and its time asymmetry away from equilibrium. PMID:26428559

  17. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  18. Convection in the Physical Vapor Transport Process-I: Thermal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    The effects of convection on diffusive-convective physical vapor transport process are examined computationally. We analyze conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. This corresponds to thermal Rayleigh numbers Ra, ranging from 1.80 x 10 to 1.92 x 10(exp 6). Our results indicate that the effect of the sublimation and condensation fluxes at the boundaries is to increase the threshold of instability. For typical ground based conditions, time dependent oscillatory convection can occur. This results in unsteady transport, and non- uniform temperature and concentration gradients at the crystal interface. Spectral analysis of the flow field shows parametric regions exhibiting both an oscillatory approach to steady state and a chaotic transient to a periodic state. Low gravity conditions stabilize the flow field. Convective effects are effectively reduced, thus resulting in uniform temperature and concentration gradients at the interface, a desirable condition for crystal growth.

  19. Convection in the Physical Vapor Transport Process. 1; Thermal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    The effects of convection on diffusive-convective physical vapor transport process are examined computationally. We analyze conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. This corresponds to thermal Rayleigh numbers Ra(sub tau) ranging from 1.80 x 10 to 1.92 x 10(exp 6). Our results indicate that the effect of the sublimation and condensation fluxes at the boundaries is to increase the threshold of instability. For typical ground based conditions, time dependent oscillatory convection can occur. This results in unsteady transport, and non-uniform temperature and concentration gradients at the crystal interface. Spectral analysis of the flow field shows parametric regions exhibiting both an oscillatory approach to steady state and a chaotic transient to a periodic state. Low gravity conditions stabilize the flow field. Convective effects are effectively reduced, thus resulting in uniform temperature and concentration gradients at the interface, a desirable condition for crystal growth.

  20. Active Transportation to School: Findings from a National Survey

    ERIC Educational Resources Information Center

    Fulton, Janet E.; Shisler, Jessica L.; Yore, Michelle M.; Caspersen, Carl J.

    2005-01-01

    In the past, active transportation to school offered an important source of daily physical activity for youth; more recently, however, factors related to distance, safety, or physical or social environments may have contributed to the proportion of children who travel to school by motorized vehicle. The authors examine the characteristics of…

  1. Characterization of Transport and Solidification in the Metal Recycling Processes

    SciTech Connect

    M. A. Ebadian; R. C. Xin; Z. F. Dong

    1997-08-06

    The characterization of the transport and solidification of metal in the melting and casting processes is significant for the optimization of the radioactively contaminated metal recycling and refining processes. . In this research project, the transport process in the melting and solidification of metal was numerically predicted, and the microstructure and radionuclide distribution have been characterized by scanning electron microscope/electron diffractive X-ray (SEWEDX) analysis using cesium chloride (CSC1) as the radionuclide surrogate. In the melting and solidification process, a resistance furnace whose heating and cooling rates are program- controlled in the helium atmosphere was used. The characterization procedures included weighing, melting and solidification, weighing after solidification, sample preparation, and SEM/EDX analysis. This analytical methodology can be used to characterize metal recycling and refining products in order to evaluate the performance of the recycling process. The data obtained provide much valuable information that is necessary for the enhancement of radioactive contaminated metal decontamination and recycling technologies. The numerical method for the prediction of the melting and solidification process can be implemented in the control and monitoring system-of the melting and casting process in radioactive contaminated metal recycling. The use of radionuclide surrogates instead of real radionuclides enables the research to be performed without causing harmfid effects on people or the community. This characterization process has been conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University since October 1995. Tests have been conducted on aluminum (Al) and copper (Cu) using cesium chloride (CSCI) as a radionuclide surrogate, and information regarding the radionuclide transfer and distribution in melting and solidification process has been obtained. The numerical simulation of

  2. Coupling of active motion and advection shapes intracellular cargo transport.

    PubMed

    Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E

    2012-07-13

    Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.

  3. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  4. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  5. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes. PMID:16494340

  6. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  7. Elucidating the Role of Transport Processes in Leaf Glucosinolate Distribution1[C][W][OPEN

    PubMed Central

    Madsen, Svend Roesen; Olsen, Carl Erik; Nour-Eldin, Hussam Hassan; Halkier, Barbara Ann

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), a strategy to defend its leaves against herbivores is to accumulate glucosinolates along the midrib and at the margin. Although it is generally assumed that glucosinolates are synthesized along the vasculature in an Arabidopsis leaf, thereby suggesting that the margin accumulation is established through transport, little is known about these transport processes. Here, we show through leaf apoplastic fluid analysis and glucosinolate feeding experiments that two glucosinolate transporters, GTR1 and GTR2, essential for long-distance transport of glucosinolates in Arabidopsis, also play key roles in glucosinolate allocation within a mature leaf by effectively importing apoplastically localized glucosinolates into appropriate cells. Detection of glucosinolates in root xylem sap unambiguously shows that this transport route is involved in root-to-shoot glucosinolate allocation. Detailed leaf dissections show that in the absence of GTR1 and GTR2 transport activity, glucosinolates accumulate predominantly in leaf margins and leaf tips. Furthermore, we show that glucosinolates accumulate in the leaf abaxial epidermis in a GTR-independent manner. Based on our results, we propose a model for how glucosinolates accumulate in the leaf margin and epidermis, which includes symplasmic movement through plasmodesmata, coupled with the activity of putative vacuolar glucosinolate importers in these peripheral cell layers. PMID:25209984

  8. Direct evidence of transport processes in the thermospheric diurnal tide

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Spencer, N. W.; Mayr, H. G.; Harris, I.; Porter, H. S.

    1978-01-01

    Measurements of neutral composition and temperature obtained between December 6, 1975, and September 17, 1976, with instruments aboard the near-equatorial AE-E satellite are analyzed to determine the diurnal variations at altitudes from 145 to 295 km. The general trends, including the shift in oxygen phase from afternoon at high altitudes to morning at low altitudes, are reproduced by circulation theories. The oxygen and helium variations show small departures from diffusive equilibrium below 200 km that are consistent with wind-induced diffusion and provide the first direct evidence of transport processes in the diurnal tide of the thermosphere.

  9. Active water transport in unicellular algae: where, why, and how.

    PubMed

    Raven, John A; Doblin, Martina A

    2014-12-01

    The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole.

  10. Memoryless self-reinforcing directionality in endosomal active transport within living cells.

    PubMed

    Chen, Kejia; Wang, Bo; Granick, Steve

    2015-06-01

    In contrast to Brownian transport, the active motility of microbes, cells, animals and even humans often follows another random process known as truncated Lévy walk. These stochastic motions are characterized by clustered small steps and intermittent longer jumps that often extend towards the size of the entire system. As there are repeated suggestions, although disagreement, that Lévy walks have functional advantages over Brownian motion in random searching and transport kinetics, their intentional engineering into active materials could be useful. Here, we show experimentally in the classic active matter system of intracellular trafficking that Brownian-like steps self-organize into truncated Lévy walks through an apparent time-independent positive feedback such that directional persistence increases with the distance travelled persistently. A molecular model that allows the maximum output of the active propelling forces to fluctuate slowly fits the experiments quantitatively. Our findings offer design principles for programming efficient transport in active materials.

  11. Memoryless self-reinforcing directionality in endosomal active transport within living cells

    NASA Astrophysics Data System (ADS)

    Chen, Kejia; Wang, Bo; Granick, Steve

    2015-06-01

    In contrast to Brownian transport, the active motility of microbes, cells, animals and even humans often follows another random process known as truncated Lévy walk. These stochastic motions are characterized by clustered small steps and intermittent longer jumps that often extend towards the size of the entire system. As there are repeated suggestions, although disagreement, that Lévy walks have functional advantages over Brownian motion in random searching and transport kinetics, their intentional engineering into active materials could be useful. Here, we show experimentally in the classic active matter system of intracellular trafficking that Brownian-like steps self-organize into truncated Lévy walks through an apparent time-independent positive feedback such that directional persistence increases with the distance travelled persistently. A molecular model that allows the maximum output of the active propelling forces to fluctuate slowly fits the experiments quantitatively. Our findings offer design principles for programming efficient transport in active materials.

  12. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  13. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle

    PubMed Central

    Szodorai, A; Kuan, Y-H; Hunzelmann, S; Engel, U; Sakane, A; Sasaki, T; Takai, Y; Kirsch, J; Müller, U; Beyreuther, K; Brady, S; Morfini, G; Kins, S

    2010-01-01

    The amyloid precursor protein (APP) may be sequentially cleaved by β- and γ-secretases leading to accumulation of Aβ peptides in brains of Alzheimer’s Disease patients. Cleavage by α-secretase prevents Aβ generation. APP is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochemical composition of such a vesicle as well as the specific kinesin-1 motor responsible for transport are poorly defined. Here, we demonstrate by time-lapse analysis and immunoisolations that APP is a cargo of a vesicle containing the kinesin heavy chain isoform kinesin-1C, the small GTPase Rab3A and a specific subset of presynaptic protein components. Moreover, we report that assembly of kinesin-1C and APP in this vesicle type requires Rab3A GTPase activity. Finally, we show cleavage of APP in the analyzed transport vesicles by α-secretase activity, likely mediated by ADAM10. Together, these data indicate for the first time that maturation of transport vesicles, including coupling of conventional kinesin, requires Rab GTPase activity. PMID:19923287

  14. Features, Events, and Processes in UZ and Transport

    SciTech Connect

    P. Persoff

    2004-11-06

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  15. Features, Events and Processes in UZ Flow and Transport

    SciTech Connect

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  16. Analysis of suspended solids transport processes in primary settling tanks.

    PubMed

    Patziger, Miklós; Kiss, Katalin

    2015-01-01

    The paper shows the results of a long-term research comprising FLUENT-based numerical modeling, in situ measurements and laboratory tests to analyze suspended solids (SS) transport processes in primary settling tanks (PSTs). The investigated PST was one of the rectangular horizontal flow PSTs at a large municipal wastewater treatment plant (WWTP) of a capacity of 500,000 population equivalent. Many middle-sized and large WWTPs are equipped with such PSTs. The numerical PST model was calibrated and validated based on the results of comprehensive in situ flow and SS concentration measurements from low (5 m/h) up to quite high surface overflow rates of 9.5 and 13.0 m/h and on settling and other laboratory tests. The calibrated and validated PST model was also successfully used for evaluation of some slight modifications of the inlet geometry (removing lamellas, installing a flocculation 'box', shifting the inlet into a 'bottom-near' or into a 'high' position), which largely affect PST behavior and performance. The investigations provided detailed insight into the flow and SS transport processes within the investigated PST, which strongly contributes to hydrodynamically driven design and upgrading of PSTs.

  17. Dynamic model of active transport: application to sodium/potassium pump

    NASA Astrophysics Data System (ADS)

    Keating, Brian; Finkel, Robert

    2006-11-01

    Active transport is a process where some energetic agent, generally an enzyme powered by ATP, conveys ions across a membrane. Here we present a novel physical approach to modeling the dynamics of active transport. Specifically, we employ a general method whereby the non-equilibrium energetics of active transport derive simply from the chemical kinetic rate equations. The case treated here is an exchange of sodium and potassium ions across a cell membrane at the expenditure of one ATP---a process common to most life forms. The generic rate equations are readily formulated and only two well-established quantities are input, the ATP energy value and the membrane potential. The model uses this sparse information to generate several agreements with experimental values including the relative concentrations of Na and K on either side of the membrane and the celebrated 3:2 transfer ratio of sodium to potassium.

  18. Virtual laboratory for the study of transport processes in surface waterflows

    NASA Astrophysics Data System (ADS)

    Aguilar, C.; Egüen, M.; Contreras, E.; Polo, M. J.

    2012-04-01

    The equations involved in the study of transport processes depend on the spatial and temporal scale of the study and according to the required level of detail can become very difficult to solve analytically. Besides, experimentation of processes with any transport phenomena involved is complex due to their natural or forced occurrence in the environment (eg. Rainfall-runoff, sediment yield, controlled and uncontrolled pollutant loadings, etc.) and the great diversity of substances and components with an specific chemical behavior. However, due to the numerous fields of application of transport phenomena (basic and applied research, hydrology and associated fluxes, sediment transport, pollutant loadings to water flows, industrial processes, soil and water quality, atmospheric emissions, legislation, etc.), realistic studies of transport processes are required. In this context, case study application, an active methodology according to the structural implications of the European Higher Education Area (EHEA), with the aid of computer tools constitute an interactive, instantaneous and flexible method with a new interplay between students and lecturers. Case studies allow the lecturer to design significant activities that generate knowledge in the students and motivates them to look for information, discuss, and be autonomous. This work presents the development of a graphical interface for the solution of different case studies for the acquisition of capacities and abilities in the autonomous apprenticeship of courses related to transport processes in Environmental Hydraulics. The interactive tool helps to develop and improve abilities in mixing and transport in surface water related courses. Thus, students clarify theoretical concepts and visualize processes with negative effects for the environment and that therefore, can only be reproduced in the laboratory or in the field under very controlled conditions and commonly with tracers instead of the real substances. The

  19. Active transport and cluster formation on 2D networks.

    PubMed

    Greulich, P; Santen, L

    2010-06-01

    We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered. PMID:20556462

  20. Transport of active ellipsoidal particles in ratchet potentials

    SciTech Connect

    Ai, Bao-Quan Wu, Jian-Chun

    2014-03-07

    Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)

  1. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  2. Selective and Reversible Inhibition of Active CO2 Transport by Hydrogen Sulfide in a Cyanobacterium 1

    PubMed Central

    Espie, George S.; Miller, Anthony G.; Canvin, David T.

    1989-01-01

    The active transport of CO2 in the cyanobacterium Synechococcus UTEX 625 was inhibited by H2S. Treatment of the cells with up to 150 micromolar H2S + HS− at pH 8.0 had little effect on Na+-dependent HCO3− transport or photosynthetic O2 evolution, but CO2 transport was inhibited by more than 90%. CO2 transport was restored when H2S was removed by flushing with N2. At constant total H2S + HS− concentrations, inhibition of CO2 transport increased as the ratio of H2S to HS− increased, suggesting a direct role for H2S in the inhibitory process. Hydrogen sulfide does not appear to serve as a substrate for transport. In the presence of H2S and Na+ -dependent HCO3− transport, the extracellular CO2 concentration rose considerably above its equilibrium level, but was maintained far below its equilibrium level in the absence of H2S. The inhibition of CO2 transport, therefore, revealed an ongoing leakage from the cells of CO2 which was derived from the intracellular dehydration of HCO3− which itself had been recently transported into the cells. Normally, leaked CO2 is efficiently transported back into the cell by the CO2 transport system, thus maintaining the extracellular CO2 concentration near zero. It is suggested that CO2 transport not only serves as a primary means of inorganic carbon acquisition for photosynthesis but also serves as a means of recovering CO2 lost from the cell. A schematic model describing the relationship between the CO2 and HCO3− transport systems is presented. Images Figure 7 PMID:16667030

  3. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  4. Features, Events, and Processes in SZ Flow and Transport

    SciTech Connect

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  5. Features, Events, and Processes in SZ Flow and Transport

    SciTech Connect

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  6. Regional differences in rat conjunctival ion transport activities

    PubMed Central

    Yu, Dongfang; Thelin, William R.; Rogers, Troy D.; Stutts, M. Jackson; Randell, Scott H.; Grubb, Barbara R.

    2012-01-01

    Active ion transport and coupled osmotic water flow are essential to maintain ocular surface health. We investigated regional differences in the ion transport activities of the rat conjunctivas and compared these activities with those of cornea and lacrimal gland. The epithelial sodium channel (ENaC), sodium/glucose cotransporter 1 (Slc5a1), transmembrane protein 16 (Tmem16a, b, f, and g), cystic fibrosis transmembrane conductance regulator (Cftr), and mucin (Muc4, 5ac, and 5b) mRNA expression was characterized by RT-PCR. ENaC proteins were measured by Western blot. Prespecified regions (palpebral, fornical, and bulbar) of freshly isolated conjunctival tissues and cell cultures were studied electrophysiologically with Ussing chambers. The transepithelial electrical potential difference (PD) of the ocular surface was also measured in vivo. The effect of amiloride and UTP on the tear volume was evaluated in lacrimal gland excised rats. All selected genes were detected but with different expression patterns. We detected αENaC protein in all tissues, βENaC in palpebral and fornical conjunctiva, and γENaC in all tissues except lacrimal glands. Electrophysiological studies of conjunctival tissues and cell cultures identified functional ENaC, SLC5A1, CFTR, and TMEM16. Fornical conjunctiva exhibited the most active ion transport under basal conditions amongst conjunctival regions. PD measurements confirmed functional ENaC-mediated Na+ transport on the ocular surface. Amiloride and UTP increased tear volume in lacrimal gland excised rats. This study demonstrated that the different regions of the conjunctiva exhibited a spectrum of ion transport activities. Understanding the specific functions of distinct regions of the conjunctiva may foster a better understanding of the physiology maintaining hydration of the ocular surface. PMID:22814399

  7. Engineering intracellular active transport systems as in vivo biomolecular tools.

    SciTech Connect

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptional regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further

  8. Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters

    PubMed Central

    Jackson, Joshua G.; O'Donnell, John C.; Takano, Hajime; Coulter, Douglas A.

    2014-01-01

    Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na+/K+-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na+/Ca2+ exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake. PMID:24478345

  9. Geochemical constraints on magma formation and transport processes

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Antoshechkina, P. M.; Dasgupta, R.; Rudge, J. F.; Asimow, P. D.

    2015-12-01

    Primitive basalts provide an invaluable probe of the mantle's thermo-chemical structure. What these samples show is that the Earth's interior is widely variable in its trace element, isotopic and even major element composition, on the km to the hemispherical scale. This heterogeneity has profound implications for not only the history of the solid Earth, but the oceans and atmosphere as well, as it represents ~4 billions of years of elemental transport back into the mantle via subduction recycling of oceanic crustal to mantle sections. Reconstructing planetary evolution through the volcanic record of mantle composition is therefore a primary aim of igneous geochemistry. However, between the solid mantle and our chemical analyses lie a series of melt generation, aggregation and transport processes, themselves poorly understood, that are potentially critical in controlling the amplitude and style of chemical heterogeneity preserved in an erupted basalt. If these processes are also sensitive to mantle potential temperature, the degree of melting and the presence of lithological heterogeneity, then the geochemical record may not only be biased as a whole, but biased in a relative sense between different geodynamic settings: such a dichotomy may be represented by ocean islands and mid-ocean ridges. Here we combine observational and modelling approaches to understand how varying conditions of melt generation and transport affect basalt chemical variability. Focusing first on Iceland, we combine new and existing melt inclusion data to investigate how chemical variability may be controlled by tectonic parameters (on versus off rift) and source enrichment. We find that on Iceland the key parameter controlling variability is enrichment, with the most enriched basalts preserving diminished variability compared with more depleted eruptions. However, on a larger scale enriched sources preserve the greatest variability: we see this both in terms of the greater variability of

  10. The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity

    PubMed Central

    Hürlimann, Hans Caspar; Pinson, Benoît; Stadler-Waibel, Martha; Zeeman, Samuel C; Freimoser, Florian M

    2009-01-01

    Yeast has two phosphate-uptake systems that complement each other: the high-affinity transporters (Pho84 and Pho89) are active under phosphate starvation, whereas Pho87 and Pho90 are low-affinity transporters that function when phosphate is abundant. Here, we report new regulatory functions of the amino-terminal SPX domain of Pho87 and Pho90. By studying truncated versions of Pho87 and Pho90, we show that the SPX domain limits the phosphate-uptake velocity, suppresses phosphate efflux and affects the regulation of the phosphate signal transduction pathway. Furthermore, split-ubiquitin assays and co-immunoprecipitation suggest that the SPX domain of both Pho90 and Pho87 interacts physically with the regulatory protein Spl2. This work suggests that the SPX domain inhibits low-affinity phosphate transport through a physical interaction with Spl2. PMID:19590579

  11. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  12. Proton Gradients and Proton-Dependent Transport Processes in the Chloroplast

    PubMed Central

    Höhner, Ricarda; Aboukila, Ali; Kunz, Hans-Henning; Venema, Kees

    2016-01-01

    Proton gradients are fundamental to chloroplast function. Across thylakoid membranes, the light induced -proton gradient is essential for ATP synthesis. As a result of proton pumping into the thylakoid lumen, an alkaline stromal pH develops, which is required for full activation of pH-dependent Calvin Benson cycle enzymes. This implies that a pH gradient between the cytosol (pH 7) and the stroma (pH 8) is established upon illumination. To maintain this pH gradient chloroplasts actively extrude protons. More than 30 years ago it was already established that these proton fluxes are electrically counterbalanced by Mg2+, K+, or Cl- fluxes, but only recently the first transport systems that regulate the pH gradient were identified. Notably several (Na+,K+)/H+ antiporter systems where identified, that play a role in pH gradient regulation, ion homeostasis, osmoregulation, or coupling of secondary active transport. The established pH gradients are important to drive uptake of essential ions and solutes, but not many transporters involved have been identified to date. In this mini review we summarize the current status in the field and the open questions that need to be addressed in order to understand how pH gradients are maintained, how this is interconnected with other transport processes and what this means for chloroplast function. PMID:26973667

  13. Modeling the processing of mineral iron during dust transport

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Ulrike; Wolke, Ralf; Tilgner, Andreas; Tegen, Ina; Herrmann, Hartmut

    2014-05-01

    The Saharan desert and the Gobi desert are the main contributors to Aeolian desert dust, which is a major source of micronutrients to the remote ocean regions. Micronutrients, such as transition metals like iron or copper, are regarded essential for biological processes of different marine species. In this context recent studies have shown that soluble iron, since it is generally the most abundant transition metal in dust particles, has the ability to control marine productivity and thereby likely influence the CO2- budget. Nevertheless, the processing of desert dust leading to the release of soluble iron still lacks sufficient understanding since several factors control the solubilization process. Especially anthropogenic emissions are regarded to significantly add to the amount of soluble iron by acidification of dust particles or by the direct emission of soluble iron comprised, e.g. in coal fly ash. For the investigation of the dissolution process of iron that takes place during dust transportation the spectral air parcel model SPACCIM is used. A mechanism describing the precipitation and dissolution of mineral particles by heterogeneous surface reactions has been implemented. Trajectory properties were derived from COSMO-MUSCAT simulations or from re-analysis data by HYSPLIT. Differences in the chemical composition and the amount of anthropogenic and naturally emitted species on the North African continent and the highly industrialized region of South-East Asia have considerable impact on the acidification of the desert dust. Under this aspect, special cases of dust outbreaks of the Saharan desert and the Gobi desert are investigated and compared with focus on soluble iron produced.

  14. Measuring hydrodynamics and sediment transport processes in the Dee estuary

    NASA Astrophysics Data System (ADS)

    Bolaños, R.; Souza, A.

    2010-03-01

    The capability of monitoring and predicting the marine environment leads to a more sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes become an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The data aims to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data involves the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data covers flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, is being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  15. Measuring hydrodynamics and sediment transport processes in the Dee Estuary

    NASA Astrophysics Data System (ADS)

    Bolaños, R.; Souza, A.

    2010-06-01

    The capability of monitoring and prediction in the marine environment provides information that may allow sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes becomes an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The aim of the data collection is to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data includes information from the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data cover flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, are being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  16. Hydrologic processes controlling herbicide transport in a Missouri claypan watershed

    NASA Astrophysics Data System (ADS)

    Liu, F.; Lerch, R.; Baffaut, C.; Yang, J.; Sadler, J.

    2011-12-01

    Hydrologic processes controlling herbicide transport are still poorly understood for claypan watersheds in the US Midwest. The presence of a near-surface claypan, a restrictive soil layer of smectitic mineralogy, may play a critical role in controlling herbicide transport to stream water. Data from Goodwater Creek Experimental Watershed (GCEW) (area = 72.5 km2) in central Missouri indicate that atrazine concentrations in stream water peaked during spring storm events, but high concentrations persisted in the baseflow following these events for days to weeks. It is hypothesized that hydrologic pathways exert a major control on atrazine concentrations in stream water. The hypothesis is tested using a combination of a statistical hydrograph model developed by Washington University in Saint Louis using Darcy's law and the diffusion equation and orthogonal data such as electric conductivity (EC). The basin time constant, the single fitting parameter for the model, was approximately 600 minutes or 0.4 days for GCEW. This value is similar to those for other small, non-claypan watersheds in Missouri. Stream flows were simulated very well by the model during the rising limbs of hydrographs for GCEW. Unlike other Missouri watersheds without claypan soils, stream flows in this claypan watershed were always significantly over-predicted for the prolonged falling tails, indicating a possible strong evapotranspiration effect during baseflow. EC values in shallow subsurface water indeed became much higher during baseflow than during storm events, consistent with the evapotranspiration effect on shallow subsurface water. These results suggests that both hydrologic pathways and evapotranspiration exert a major control on stream water quality in Goodwater Creek Experimental Watershed.

  17. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  18. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  19. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  20. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  1. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  2. Modeling cytoskeletal traffic: an interplay between passive diffusion and active transport.

    PubMed

    Neri, Izaak; Kern, Norbert; Parmeggiani, Andrea

    2013-03-01

    We introduce the totally asymmetric simple exclusion process with Langmuir kinetics on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales: we find three regimes for steady state transport, corresponding to the scale of the network, of individual segments, or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.

  3. Transendothelial albumin flux: evidence against active transport of albumin

    SciTech Connect

    Siflinger-Birnboim, A.; Del Vecchio, P.J.; Cooper, J.A.; Malik, A.B.

    1986-03-01

    The authors studied whether albumin is actively transported across cultured pulmonary endothelium by comparing the transendothelial flux of /sup 125/I-albumin from the luminal-to-abluminal side to the flux from the abluminal-to-luminal side. Bovine pulmonary artery endothelial cells were grown to confluence on gelatinized polycarbonated filters separating abluminal from luminal compartments. Each compartment had an albumin concentration of 1 g/100 ml to equalize oncotic pressure gradients. The effect of hydrostatic pressure was eliminated by maintaining an equal level of fluid in both compartments. The transendothelial flux of albumin across the monolayer was measured by placing /sup 125/I-albumin tracer either on the luminal or the abluminal side. Equal fluxes of /sup 125/I-albumin from luminal-to-abluminal side and from abluminal-to-luminal side were observed. The results indicate that the pulmonary endothelium behaves symmetrically for albumin, indicating the absence of active transport of albumin.

  4. Application studies of RFID technology in the process of coal logistics transport

    NASA Astrophysics Data System (ADS)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  5. The Asymmetric Active Coupler: Stable Nonlinear Supermodes and Directed Transport

    PubMed Central

    Kominis, Yannis; Bountis, Tassos; Flach, Sergej

    2016-01-01

    We consider the asymmetric active coupler (AAC) consisting of two coupled dissimilar waveguides with gain and loss. We show that under generic conditions, not restricted by parity-time symmetry, there exist finite-power, constant-intensity nonlinear supermodes (NS), resulting from the balance between gain, loss, nonlinearity, coupling and dissimilarity. The system is shown to possess non-reciprocal dynamics enabling directed power transport functionality. PMID:27640818

  6. The Asymmetric Active Coupler: Stable Nonlinear Supermodes and Directed Transport.

    PubMed

    Kominis, Yannis; Bountis, Tassos; Flach, Sergej

    2016-01-01

    We consider the asymmetric active coupler (AAC) consisting of two coupled dissimilar waveguides with gain and loss. We show that under generic conditions, not restricted by parity-time symmetry, there exist finite-power, constant-intensity nonlinear supermodes (NS), resulting from the balance between gain, loss, nonlinearity, coupling and dissimilarity. The system is shown to possess non-reciprocal dynamics enabling directed power transport functionality. PMID:27640818

  7. The Asymmetric Active Coupler: Stable Nonlinear Supermodes and Directed Transport

    NASA Astrophysics Data System (ADS)

    Kominis, Yannis; Bountis, Tassos; Flach, Sergej

    2016-09-01

    We consider the asymmetric active coupler (AAC) consisting of two coupled dissimilar waveguides with gain and loss. We show that under generic conditions, not restricted by parity-time symmetry, there exist finite-power, constant-intensity nonlinear supermodes (NS), resulting from the balance between gain, loss, nonlinearity, coupling and dissimilarity. The system is shown to possess non-reciprocal dynamics enabling directed power transport functionality.

  8. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Krooss, B. M.; Littke, R.

    2012-12-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a subbituminous A coal from the Surat Basin, Queensland Australia (figure). From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg-corrected permeability depends on gas type. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa, with increasing mean pore pressure at lower confining pressure an increase in permeability is observed, which is attributed to a widening of cleat aperture. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane and CO2. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals was significantly lower (by 50%) than that of dry coals, no hysteresis was observed between sorption and desorption on dry and moisture-equilibrated samples and the

  9. Decision process involved in preparing the Shippingport reactor pressure vessel for transport

    SciTech Connect

    Murphie, W.E.

    1989-01-01

    The most significant part of the Shippingport Station Decommissioning Project was the one-piece removal and shipment of the reactor pressure vessel (RPV). Implicit in the RPV transport was the task of qualifying the RPV as a waste package acceptable for shipment. Soon after physical decommissioning began on September 1985, questions regarding the packaging certification and transport of the RPV from Shippingport, Pennsylvania to the US Department of Energy (DOE) Hanford Waste Burial Site necessitated reexamination of several planning assumptions. A complete reassessment of the regulatory requirements governing the RPV shipment resulted in a programmatic decision to obtain a type B(U) Certificate of Compliance and abandon the originally planned US Department of Transportation (DOT) low specific activity (LSA) shipment. The decision process resulting in this conclusion was extensive and involved many organizations and agencies. Incidental to this process, several subtle certification issues were identified that required resolution. Some of these issues involved the definition of LSA material for large packages; interpretation and compliance with DOE, DOT and US Nuclear Regulatory Commission (NRC) regulations for the transport of radioactive material; incorporation of the International Atomic Energy Agency (IAEA) regulations by the Panama Canal; and DOE policy requiring advance notification to states of radioactive waste shipments. 2 figs.

  10. The role of the soil-root interface for transport processes in soils.

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Schröder, N.; Garre, S.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Vereecken, H.

    2011-12-01

    Transport processes in soils are known to be strongly influenced by soil heterogeneity, which leads to a spatially variable flow field. Also plants, which take up water from the root zone, have an important impact on the flow field and therefore on solute transport processes. In order to describe the impact of plant water uptake on the flow field, water flow in the soil-plant system has to be simulated in an integrated way. The simulation models R-SWMS and PARTRACE (Javaux et al., 2008) couple 3-D water flow in the soil with flow in a plant root network and simulate solute transport using particle tracking. Using this model, the impact of root architecture, plant solute uptake mechanisms: passive, active and solute exclusion, and plant transpiration rate, on the water flow field in the soil and on solute dispersion was simulated. Root water uptake induces small-scale variations in the water flow field which increases solute dispersion. For the case that solutes are not taken up by plant roots but excluded, the simulations suggest that part of the applied solute mass is immobilized at the soil-root interface. This immobilisation results in lower effluent concentrations than would be expected from simulations with a 1-D transport model. Tracer experiments at two different scales: the small column scale with a single plant in packed sand and the lysimeter scale with a set of plants in an undisturbed large soil monolith, were conducted to validate the simulation studies. At the small column scale, transport of a Gd tracer and the root network were imaged using MRI. At the lysimeter scale, transport of a salt tracer was monitored by measuring tracer concentrations in the effluent of the lysimeter. Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken. 2008. Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J. 7:1079-1088.doi: 10.2136/vzj2007.0115.

  11. The contribution of an overlooked transport process to a wetland's methane emissions

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Baldocchi, Dennis D.; Matthes, Jaclyn Hatala; Knox, Sara Helen; Variano, Evan A.

    2016-06-01

    Wetland methane transport processes affect what portion of methane produced in wetlands reaches the atmosphere. We model what has been perceived to be the least important of these transport processes: hydrodynamic transport of methane through wetland surface water and show that its contribution to total methane emissions from a temperate freshwater marsh is surprisingly large. In our 1 year study, hydrodynamic transport comprised more than half of nighttime methane fluxes and was driven primarily by water column thermal convection occurring overnight as the water surface cooled. Overall, hydrodynamic transport was responsible for 32% of annual methane emissions. Many methane models have overlooked this process, but our results show that wetland methane fluxes cannot always be accurately described using only other transport processes (plant-mediated transport and ebullition). Modifying models to include hydrodynamic transport and the mechanisms that drive it, particularly convection, could help improve predictions of future wetland methane emissions.

  12. Processed sweet corn has higher antioxidant activity.

    PubMed

    Dewanto, Veronica; Wu, Xianzhong; Liu, Rui Hai

    2002-08-14

    Processed fruits and vegetables have been long considered to have lower nutritional value than the fresh produce due to the loss of vitamin C during processing. Vitamin C in apples has been found to contribute <0.4% of total antioxidant activity, indicating most of the activity comes from the natural combination of phytochemicals. This suggests that processed fruits and vegetables may retain their antioxidant activity despite the loss of vitamin C. Here it is shown that thermal processing at 115 degrees C for 25 min significantly elevated the total antioxidant activity of sweet corn by 44% and increased phytochemical content such as ferulic acid by 550% and total phenolics by 54%, although 25% vitamin C loss was observed. Processed sweet corn has increased antioxidant activity equivalent to 210 mg of vitamin C/100 g of corn compared to the remaining 3.2 mg of vitamin C in the sample that contributed only 1.5% of its total antioxidant activity. These findings do not support the notion that processed fruits and vegetables have lower nutritional value than fresh produce. This information may have a significant impact on consumers' food selection by increasing their consumption of fruits and vegetables to reduce the risk of chronic diseases. PMID:12166989

  13. A fully resolved active musculo-mechanical model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-10-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function.

  14. A fully resolved active musculo-mechanical model for esophageal transport

    PubMed Central

    Kou, Wenjun; Bhalla, Amneet Pal Singh; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2015-01-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multilayered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, and the esophagus is modeled as an actively contracting, fiber-reinforced tube. Before considering the full model of the esophagus, however, we first consider a standard benchmark problem of flow past a cylinder. Next a simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Finally, three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation into an integrated model. Consistent with experimental observations, our simulations capture the pressure peak generated by the muscle activation pulse that travels along the bolus tail. These fully resolved simulations provide new insights into roles of the mucosal layers during bolus transport. In addition, the information on pressure and the kinematics of the esophageal wall resulting from the coordination of muscle activation is provided, which may help relate clinical data from manometry and ultrasound images to the underlying esophageal motor function. PMID:26190859

  15. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. At left is G-648, an Canadian Space Agency-sponsored study of manufactured organic thin film by the physical vapor transport method, and the can on the right contains commemorative flags to be flown during the mission. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  16. Space Transportation System Liftoff Debris Mitigation Process Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  17. Convection in the Physical Vapor Transport Process. Part 2; Thermosolutal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    We consider the effect of an inert gas on the diffusive-convective physical vapor transport process. We investigate the case when the temperature gradient is stabilizing and the concentration gradient is destabilizing for a wide parametric range. When an inert gas is present, the thermal and solutal convection oppose each other. The solutal field is destabilizing while the thermal field and the advective-diffusive flux stabilize the flow field. When the pressure of the inert component is increased, the stabilizing effect of the advective-diffusive flux is decreased. The intensity of convection as well as the oscillatory transient time increases. Below, the critical Rayleigh number, the nonlinear dynamics of the flow field show an oscillatory approach to steady state. For parametric values in the neighborhood of the critical Rayleigh number, the flow field undergoes a chaotic transient which settles to a periodic state. The asymptotic state of the flow field shows that growth and amalgamation of cells yields an overturning motion which results in an asymmetric cellular structure. The low gravity environment yields the stabilizing advective-diffusive flow which results in uniform temperature and concentration gradients near the crystal interface.

  18. Energy loss in a partonic transport model including bremsstrahlung processes

    SciTech Connect

    Fochler, Oliver; Greiner, Carsten; Xu Zhe

    2010-08-15

    A detailed investigation of the energy loss of gluons that traverse a thermal gluonic medium simulated within the perturbative QCD-based transport model BAMPS (a Boltzmann approach to multiparton scatterings) is presented in the first part of this work. For simplicity the medium response is neglected in these calculations. The energy loss from purely elastic interactions is compared with the case where radiative processes are consistently included based on the matrix element by Gunion and Bertsch. From this comparison, gluon multiplication processes gg{yields}ggg are found to be the dominant source of energy loss within the approach employed here. The consequences for the quenching of gluons with high transverse momentum in fully dynamic simulations of Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energy of {radical}(s)=200A GeV are discussed in the second major part of this work. The results for central collisions as discussed in a previous publication are revisited, and first results on the nuclear modification factor R{sub AA} for noncentral Au+Au collisions are presented. They show a decreased quenching compared to central collisions while retaining the same shape. The investigation of the elliptic flow v{sub 2} is extended up to nonthermal transverse momenta of 10 GeV, exhibiting a maximum v{sub 2} at roughly 4 to 5 GeV and a subsequent decrease. Finally the sensitivity of the aforementioned results on the specific implementation of the effective modeling of the Landau-Pomeranchuk-Migdal (LPM) effect via a formation-time-based cutoff is explored.

  19. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces.

    PubMed

    van Heeswijck, Torbjorn; Paquet, Catherine; Kestens, Yan; Thierry, Benoit; Morency, Catherine; Daniel, Mark

    2015-05-01

    This study assessed relationships between built environmental exposures measured within components of individual activity spaces (i.e., travel origins, destinations and paths in-between), and use of active transportation in a metropolitan setting. Individuals (n=37,165) were categorised as using active or sedentary transportation based on travel survey data. Generalised Estimating Equations analysis was used to test relationships with active transportation. Strength and significance of relationships between exposures and active transportation varied for different components of the activity space. Associations were strongest when including travel paths in expression of the built environment. Land use mix and greenness were negatively related to active transportation.

  20. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  1. Deformational mass transport and invasive processes in soil evolution

    NASA Technical Reports Server (NTRS)

    Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James

    1992-01-01

    Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.

  2. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 6 through 9.

    ERIC Educational Resources Information Center

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 6-9. It contains forty-two learning activities grouped…

  3. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 9 through 12.

    ERIC Educational Resources Information Center

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 9-12. It contains forty-nine learning activities grouped…

  4. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    NASA Astrophysics Data System (ADS)

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-11-01

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the conserved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. Our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.

  5. Active and passive calcium transport systems in plant cells. Progress report, May 1986--January 1991

    SciTech Connect

    Sze, H.

    1991-12-31

    The ability to change cytoplasmic Ca{sup 2+} levels ([Ca{sup 2+}]) by cells has made this cation a key regulator of many biological processes. Cytoplasmic [Ca{sup 2+}] is determined by the coordination of passive Ca{sup 2+} fluxes which increase cytosolic [Ca{sup 2+}] and active Ca{sup 2+} transport systems that lower cytosolic [Ca{sup 2+}]. The mechanisms by which plant cells achieve this is poorly understood. We have initially used isolated vesicles from the plasma membrane or organellar membranes to study Ca{sup 2+} transport systems in oat roots (a monocot) and carrot suspension cells (a dicot). The objectives of the proposal were to identify and characterize active (energy-dependent) and passive calcium transport systems that work together to regulate calcium levels in the cytoplasm of plant cells.

  6. Hydrogen peroxide stimulates the active transport of serotonin into human platelets

    SciTech Connect

    Bosin, T.R. )

    1991-03-11

    The effect of hydrogen peroxide on the active transport of serotonin (5-HT) by human platelets was investigated. Platelets were exposed to either a single dose of H{sub 2}O{sub 2} or to H{sub 2}O{sub 2} generated by the glucose/glucose oxidase or xanthine/xanthine oxidase enzyme systems. H{sub 2}{sub 2} produced a rapid, dose-dependent and time-dependent increase in 5-HT transport which was maximal after a 2 min incubation and decreased with continued incubation. Catalase completely prevented H{sub 2}O{sub 2}-induced stimulation and fluoxetine totally blocked 5-HT uptake into stimulated platelets. The glucose/glucose oxidase and the xanthine/xanthine oxidase generating systems produced a similar response to that of H{sub 2}O{sub 2}. In the xanthine/xanthine oxidase system, superoxide dismutase failed to alter the stimulation, while catalase effectively prevented the response. The kinetics of 5-HT transport indicated that H{sub 2}O{sub 2} treatment did not alter the K{sub m} of 5-HT transport but significantly increased the maximal rate of 5-HT transport. These data demonstrated that exposure of human platelets to H{sub 2}O{sub 2} resulted in a stimulation of the active transport of 5-HT and suggested that H{sub 2}O{sub 2} may function to regulate this process.

  7. Studies of thunderstorm transport processes with aircraft using tracer techniques

    SciTech Connect

    Detwiler, A.G.; Smith, P.L.; Stith, J.L.

    1996-10-01

    Instrumented aircraft can provide in situ measurements of winds and turbulence useful for studying transport and dispersion in clouds. Using inert artificial gases as tracers, and fast response analyzers on aircraft, time-resolved observations of transport and dispersion have been obtained. Examples are shown of these types of observations in and around cumulus and cumulonimbus clouds. 23 refs., 6 figs.

  8. Cargo-towing synthetic nanomachines: towards active transport in microchip devices.

    PubMed

    Wang, Joseph

    2012-05-01

    This review article discusses the use of synthetic catalytic nano motors for cargo manipulations and for developing miniaturized lab-on-chip systems based on autonomous transport. The ability of using chemically-powered artificial nanomotors to capture, transport and release therapeutic payloads or nanostructured biomaterials represents one of the next major prospects for nanomotor development. The increased cargo-towing force of such self-propelled nanomotors, along with their precise motion control within microchannel networks, versatility and facile functionalization, pave the way to new integrated functional lab-on-a-chip powered by active transport and perform a series of tasks. Such use of cargo-towing artificial nanomotors has been inspired by on-chip kinesin molecular shuttles. Functionalized nano/microscale motors can thus be used to pick a selected nano/microscale chemical or biological payload target at the right place, transport and deliver them to a target location in a timely manner. Key challenges for using synthetic nanomachines for driving transport processes along microchannel networks are discussed, including loading and unloading of cargo and precise motion control, along with recent examples of related cargo manipulation processes and guided transport in lab-on-a-chip formats. The exciting research area of cargo-carrying catalytic man-made nanomachines is expected to grow rapidly, to lead to new lab-on-a-chip formats and to provide a wide range of future microchip opportunities.

  9. Theory and Simulation of Neoclassical Transport Processes, with Local Trapping

    SciTech Connect

    Dubin, Daniel H. E.

    2009-03-30

    Neoclassical transport is studied using idealized simulations that follow guiding centers in given fields, neglecting collective effects on the plasma evolution, but including collisions at rate {nu}. For simplicity the magnetic field is assumed to be uniform; transport is due to asymmetries in applied electrostatic fields. Also, the Fokker-Planck equation describing the particle distribution is solved, and the predicted transport is found to agree with the simulations. Banana, plateau, and fluid regimes are identified and observed in the simulations. When separate trapped particle populations are created by application of an axisymmetric squeeze potential, enhanced transport regimes are observed, scaling as {radical}({nu}) when {nu}<{omega}{sub 0}<{omega}{sub b} and as 1/{nu} when {omega}{sub 0}<{nu}<{omega}{sub b} where {omega}{sub 0} and {omega}{sub b} are the rotation and axial bounce frequencies, respectively. These regimes are similar to those predicted for neoclassical transport in stellarators.

  10. Laboratory studies of aeolian sediment transport processes on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Rasmussen, Keld R.; Valance, Alexandre; Merrison, Jonathan

    2015-09-01

    , but not all, older or recent wind tunnel observations. Similarly some measurements performed with uniform sand samples having grain diameters of the order of 0.25-0.40 mm indicate that ripple spacing depends on friction velocity in a similar way as particle jump length. The observations are thus in agreement with a recent ripple model that link the typical jump length to ripple spacing. A possible explanation for contradictory observations in some experiments may be that long observation sequences are required in order to assure that equilibrium exists between ripple geometry and wind flow. Quantitative understanding of saltation characteristics on Mars still lacks important elements. Based upon image analysis and numerical predictions, aeolian ripples have been thought to consist of relatively large grains (diameter > 0.6 mm) and that saltation occurs at high wind speeds (> 26 m/s) involving trajectories that are significantly longer than those on Earth (by a factor of 10-100). However, this is not supported by recent observations from the surface of Mars, which shows that active ripples in their geometry and composition have characteristics compatible with those of terrestrial ripples (Sullivan et al., 2008). Also the highest average wind speeds on Mars have been measured to be < 20 m/s, with even turbulent gusts not exceeding 25 m/s. Electrification is seen as a dominant factor in the transport dynamics of dust on Mars, affecting the structure, adhesive properties and detachment/entrainment mechanisms specifically through the formation of aggregates (Merrison et al., 2012). Conversely for terrestrial conditions electric fields typically observed are not intense enough to significantly affect sand transport rates while little is known in the case of extra-terrestrial environments.

  11. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    SciTech Connect

    Puls, R.W.

    1991-07-01

    Identification and understanding of the chemical, physical, and biological processes controlling subsurface contaminant migration is essential for making accurate predictions on the fate and transport of these constituents. Remediation assessment requires these predictions where pollution from municipal and industrial activities has occurred, and for the responsible siting of waste isolation and storage facilities. Geochemical processes include ion-exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport. Current approaches to quantify the effect of these processes on transport in a ground water system primarily involve laboratory techniques. These include the use of closed static systems (batch experiments) and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. The latter approach may be more representative of in situ conditions than the former, however, when compared to large-scale field experiments both are still constrained by: differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors, scaling factors for laboratory versus field data, corroboration or confirmation of batch and column results, and for validation of sampling techniques.

  12. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  13. Evaluation of the Physical Activity Biography: Sport and Transport

    PubMed Central

    Rogen, Sandra; Hofmann, Peter; Bauernhofer, Thomas; Müller, Wolfram

    2014-01-01

    Beside the genetic disposition, physical activity (PA) is one of the major health factors and can play a large role in the prevention and therapy of many diseases (cardiovascular diseases, cancer, obesity-related diseases etc.). In contrast to the genetic disposition, PA can be deliberately influenced by lifestyle. Therefore, it is of high importance to assess PA patterns. In order to assess PA reliably and validly, a new questionnaire (Physical Activity Biography, PAB) was created. The PAB assesses recreational PA (sport and transport) and enables to distinguish between endurance intensity levels and considers strength and high speed activity patterns throughout life. This study aims to evaluate the PAB by means of item analysis, retest-reliability and validity (criteria were physical fitness assessed by the questionnaire FFB-mot and by exercise tests). 141 participants answered the PAB. For deriving retest-reliability, 81 participants completed the PAB after a retest-interval of one month again. 55 participated in exercise tests and answered the FFB-mot to determine construct validity. Retest-reliability (ICC) above 0.7 was found for most items. For the items assessing recent PA, the criteria of convergent and discriminant validity were given. Despite the complexity of the question under study, the results fulfilled the expectations concerning reliability and validity. The PAB enables to assess the amount of sport and locomotion a person has accomplished during different life time frames and, because of the protective effects of PA on various diseases, may become an important tool for risk assessment. Key points The risk of chronic diseases depends largely on physical activity biography. A new questionnaire (PAB) assessing recent and lifetime physical activity was created. The PAB assesses physical activity during sports and transport. The results of the evaluation of the PAB fulfilled the expectations. The PAB enables to determine a person’s amount of

  14. Curcumin directly inhibits the transport activity of GLUT1

    PubMed Central

    Gunnink, Leesha K.; Alabi, Ola D.; Kuiper, Benjamin D.; Gunnink, Stephen M.; Schuiteman, Sam J.; Strohbehn, Lauren E.; Hamilton, Kathryn E.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    Curcumin, a major ingredient in turmeric, has a long history of medicinal applications in a wide array of maladies including treatment for diabetes and cancer. Seemingly counterintuitive to the documented hypoglycemic effects of curcumin, however, a recent report indicates that curcumin directly inhibits glucose uptake in adipocytes. The major glucose transporter in adipocytes is GLUT4. Therefore, this study investigates the effects of curcumin in cell lines where the major transporter is GLUT1. We report that curcumin has an immediate inhibitory effect on basal glucose uptake in L929 fibroblast cells with a maximum inhibition of 80% achieved at 75 μM curcumin. Curcumin also blocks activation of glucose uptake by azide, glucose deprivation, hydroxylamine, or phenylarsine oxide. Inhibition does not increase with exposure time and the inhibitory effects reverse within an hour. Inhibition does not appear to involve a reaction between curcumin and the thiol side chain of a cysteine residue since neither prior treatment of cells with iodoacetamide nor curcumin with cysteine alters curcumin’s inhibitory effects. Curcumin is a mixed inhibitor reducing the Vmax of 2DG transport by about half with little effect on the Km. The inhibitory effects of curcumin are not additive to the effects of cytochalasin B and 75 μM curcumin actually reduces specific cytochalasin B binding by 80%. Taken together, the data suggest that curcumin binds directly to GLUT1 at a site that overlaps with the cytochalasin B binding site and thereby inhibits glucose transport. A direct inhibition of GLUT proteins in intestinal epithelial cells would likely reduce absorption of dietary glucose and contribute to a hypoglycemic effect of curcumin. Also, inhibition of GLUT1 activity might compromise cancer cells that overexpress GLUT1 and be another possible mechanism for the documented anticancer effects of curcumin. PMID:27039889

  15. The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport

    PubMed Central

    Zheng, Qun; Ahlawat, Shikha; Schaefer, Anneliese; Mahoney, Tim; Koushika, Sandhya P.; Nonet, Michael L.

    2014-01-01

    Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport. PMID:25329901

  16. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  17. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Cumming, D.; Krooss, B. M.

    2012-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  18. Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Levin, Michael; Gallucci, V. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with…

  19. Interfacial phenomena and microscale transport processes in evaporating ultrathin menisci

    NASA Astrophysics Data System (ADS)

    Panchamgam, Sashidhar S.

    The study of interfacial phenomena in the three-phase contact line region, where a liquid-vapor interface intersects a solid surface, is of importance to many equilibrium and non-equilibrium processes. However, lack of experimental data on microscale transport processes controlled by interfacial phenomena has restricted progress. This thesis includes a high resolution image analyzing technique, based on reflectivity measurements, that accurately measures the thickness, contact angle and curvature profiles of ultrathin films, drops and curved menisci. In particular, the technique was used to emphasize measurements for thicknesses, delta < 100 nm, while studying delta < 2.5 mum. Using the "reflectivity technique", we studied fluid flow and heat transfer in a wickless, miniature heat pipe, a device which will be a very effective passive heat exchanger in a microgravity environment. The heat pipe is based on the Vertical Constrained Vapor Bubble (VCVB) concept. The broad objective was to increase the efficiency of the miniature heat pipe by enhancing the liquid flow towards the hotter region. This was achieved by understanding and manipulating the wetting and spreading characteristics of the liquid on the solid surface. By using a binary mixture (98% pentane and 2% octane by volume) instead of either pure pentane or octane, we were able to achieve a significant increase in the microscale phase change heat transfer. The experimental work was supported by numerical studies to understand the physics of the system at microscopic scale. In addition, using the reflectivity technique, we enhanced our understanding of interfacial phenomena in the contact line region. Experiments included flow instabilities in HFE-7000 meniscus on quartz (System S1), the spreading of a pentane (System S2 and S3), octane (System S4) and binary mixture menisci (System S5) during evaporation. The main objectives of the work are to present a new experimental technique, new observations, new data

  20. Kinetic theory of transport processes in partially ionized reactive plasma, I: General transport equations

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-03-01

    In this paper we derive the set of general transport equations for multicomponent partially ionized reactive plasma in the presence of electric and magnetic fields taking into account the internal degrees of freedom and electronic excitation of plasma particles. Our starting point is a generalized Boltzmann equation with the collision integral in the Wang-Chang and Uhlenbeck form and a reactive collision integral. We obtain a set of conservation equations for such plasma and employ a linearized variant of Grad's moment method to derive the system of moment (or transport) equations for the plasma species nonequilibrium parameters. Full and reduced transport equations, resulting from the linearized system of moment equations, are presented, which can be used to obtain transport relations and expressions for transport coefficients of electrons and heavy plasma particles (molecules, atoms and ions) in partially ionized reactive plasma.

  1. 23 CFR 450.306 - Scope of the metropolitan transportation planning process.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Scope of the metropolitan transportation planning... PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Metropolitan Transportation Planning and Programming § 450.306 Scope of the metropolitan transportation planning process. (a) The...

  2. Active patterning and asymmetric transport in a model actomyosin network

    SciTech Connect

    Wang, Shenshen; Wolynes, Peter G.

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  3. CFD Model of Water Droplet Transport for ISS Hygiene Activity

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2011-01-01

    The goal of the study is to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC). Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow made possible to identify the paths of water transport. The Node 3 airflow was computed for several ventilation scenarios. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 2-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain. The probability of the droplet transport to the adjacent rack surface with electronic equipment was predicted.

  4. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    SciTech Connect

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  5. Adult Active Transport in the Netherlands: An Analysis of Its Contribution to Physical Activity Requirements

    PubMed Central

    Fishman, Elliot; Böcker, Lars; Helbich, Marco

    2015-01-01

    Introduction Modern, urban lifestyles have engineered physical activity out of everyday life and this presents a major threat to human health. The Netherlands is a world leader in active travel, particularly cycling, but little research has sought to quantify the cumulative amount of physical activity through everyday walking and cycling. Methods Using data collected as part of the Dutch National Travel Survey (2010 – 2012), this paper determines the degree to which Dutch walking and cycling contributes to meeting minimum level of physical activity of 150 minutes of moderate intensity aerobic activity throughout the week. The sample includes 74,465 individuals who recorded at least some travel on the day surveyed. As physical activity benefits are cumulative, all walking and cycling trips are analysed, including those to and from public transport. These trips are then converted into an established measure of physical activity intensity, known as metabolic equivalents of tasks. Multivariate Tobit regression models were performed on a range of socio-demographic, transport resources, urban form and meteorological characteristics. Results The results reveal that Dutch men and women participate in 24 and 28 minutes of daily physical activity through walking and cycling, which is 41% and 55% more than the minimum recommended level. It should be noted however that some 57% of the entire sample failed to record any walking or cycling, and an investigation of this particular group serves as an important topic of future research. Active transport was positively related with age, income, bicycle ownership, urban density and air temperature. Car ownership had a strong negative relationship with physically active travel. Conclusion The results of this analysis demonstrate the significance of active transport to counter the emerging issue of sedentary lifestyle disease. The Dutch experience provides other countries with a highly relevant case study in the creation of

  6. Simulation of transport processes during Czochralski growth of YAG crystals

    NASA Astrophysics Data System (ADS)

    Banerjee, Jyotirmay; Muralidhar, K.

    2006-01-01

    Numerical simulation of transport phenomena in the solid, liquid and gaseous phases of a Czochralski process is reported. The Czochralski domain comprises a YAG melt, crystal and gas within the enclosure. The mathematical model is axisymmetric in space and unsteady in time. The governing equations are those of conservation of mass, momentum and energy. The simulation includes a bulk radiation model to account for the semi-transparency of the YAG melt and the growing crystal. Results have been obtained for thermal boundary conditions that do not change with time, a constant diameter growing crystal for which the pull velocity changes with time. Buoyant convection in the melt is seen to produce a melt-crystal interface that is convex into the melt. When the crystal is given rotation, centrifugal forces drive a clockwise roll that counteracts the thermally driven motion. At a specific rotation rate, the interface shape changes from convex to concave. The critical rotation rate for interface inversion has been obtained in the study as a function of the radius ratio and the aspect ratio. Marangoni convection has an effect of strengthening buoyancy-driven flow. Unsteadiness in the YAG melt is observed at high Grashof numbers. The introduction of crystal rotation at high Grashof numbers is found to change the periodic oscillations to aperiodic high amplitude fluctuations. Simulation that includes the crystal and the gas phases along with the melt reveals the possibility of superheating of the crystal beyond its melting point. Similarly, the possibility of subcooling of the melt near the crystal edge below the melting point of YAG is indicated for a certain range of parameters. The internal absorption of radiation in the crystal increases thermal losses from the melt, steepens temperature gradients and is found to create deeply convex melt-crystal interface towards the melt. Additionally, the bulk of the melt is found to become cooler. Scattering is found to have an

  7. Oscillations and multiple steady states in active membrane transport models.

    PubMed

    Vieira, F M; Bisch, P M

    1994-01-01

    The dynamic behavior of some non-linear extensions of the six-state alternating access model for active membrane transport is investigated. We use stoichio-metric network analysis to study the stability of steady states. The bifurcation analysis has been done through standard numerical methods. For the usual six-state model we have proved that there is only one steady state, which is globally asymptotically stable. When we added an autocatalytic step we found self-oscillations. For the competition between a monomer cycle and a dimer cycle, with steps of dimer formation, we have also found self-oscillations. We have also studied models involving the formation of a complex with other molecules. The addition of two steps for formation of a complex of the monomer with another molecule does not alter either the number or the stability of steady states of the basic six-state model. The model which combines the formation of a complex with an autocatalytic step shows both self-oscillations and multiple steady states. The results lead us to conclude that oscillations could be produced by active membrane transport systems if the transport cycle contains a sufficiently large number of steps (six in the present case) and is coupled to at least one autocatalytic reaction,. Oscillations are also predicted when the monomer cycle is coupled to a dimer cycle. In fact, the autocatalytic reaction can be seen as a simplification of the model involving competition between monomer and dimer cycles, which seems to be a more realistic description of biological systems. A self-regulation mechanism of the pumps, related to the multiple stationary states, is expected only for a combined effect of autocatalysis and formation of complexes with other molecules. Within the six-state model this model also leads to oscillation.

  8. Modeling preferential water flow and solute transport in unsaturated soil using the active region model

    SciTech Connect

    Sheng, F.; Wang, K.; Zhang, R.; Liu, H.H.

    2009-03-15

    Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the ARM successfully captured the macroscopic behavior of preferential flow and solute transport in the unsaturated soil.

  9. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport.

    PubMed

    Van der Horst, Dick J; Rodenburg, Kees W

    2010-08-01

    Flight activity of insects provides a fascinating yet relatively simple model system for studying the regulation of processes involved in energy metabolism. This is particularly highlighted during long-distance flight, for which the locust constitutes a long-standing favored model insect, which as one of the most infamous agricultural pests additionally has considerable economical importance. Remarkably many aspects and processes pivotal to our understanding of (neuro)hormonal regulation of lipid mobilization and transport during insect flight activity have been discovered in the locust; among which are the peptide adipokinetic hormones (AKHs), synthesized and stored by the neurosecretory cells of the corpus cardiacum, that regulate and integrate lipid (diacylglycerol) mobilization and transport, the functioning of the reversible conversions of lipoproteins (lipophorins) in the hemolymph during flight activity, revealing novel concepts for the transport of lipids in the circulatory system, and the structure and functioning of the exchangeable apolipopotein, apolipophorin III, which exhibits a dual capacity to exist in both lipid-bound and lipid-free states that is essential to these lipophorin conversions. Besides, the lipophorin receptor (LpR) was identified and characterized in the locust. In an integrative approach, this short review aims at highlighting the locust as an unrivalled model for studying (neuro)hormonal regulation of lipid mobilization and transport during insect flight activity, that additionally has offered a broad and profound research model for integrative physiology and biochemistry, and particularly focuses on recent developments in the concept of AKH-induced changes in the lipophorin system during locust flight, that deviates fundamentally from the lipoprotein-based transport of lipids in the circulation of mammals. Current studies in this field employing the locust as a model continue to attribute to its role as a favored model organism, but

  10. Socioeconomic and regional differences in active transportation in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Pereira, Rafael Henrique Moraes; Duran, Ana Clara; Monteiro, Carlos Augusto

    2016-01-01

    ABSTRACT OBJECTIVE To present national estimates regarding walking or cycling for commuting in Brazil and in 10 metropolitan regions. METHODS By using data from the Health section of 2008’s Pesquisa Nacional por Amostra de Domicílio (Brazil’s National Household Sample Survey), we estimated how often employed people walk or cycle to work, disaggregating our results by sex, age range, education level, household monthly income per capita, urban or rural address, metropolitan regions, and macro-regions in Brazil. Furthermore, we estimated the distribution of this same frequency according to quintiles of household monthly income per capita in each metropolitan region of the country. RESULTS A third of the employed men and women walk or cycle from home to work in Brazil. For both sexes, this share decreases as income and education levels rise, and it is higher among younger individuals, especially among those living in rural areas and in the Northeast region of the country. Depending on the metropolitan region, the practice of active transportation is two to five times more frequent among low-income individuals than among high-income individuals. CONCLUSIONS Walking or cycling to work in Brazil is most frequent among low-income individuals and the ones living in less economically developed areas. Active transportation evaluation in Brazil provides important information for public health and urban mobility policy-making PMID:27355465

  11. The influence of active transport systems on morphine -6-glucuronide transport in MDCKII and MDCK-PGP cells

    PubMed Central

    Sattari, M.; Routledge, PA.; Mashayekhi, SO.

    2011-01-01

    Background and the purpose of the study Morphine-6-glucuronide (M6G) is a potent metabolite of morphine which has high penetration into the brain despite its high polarity, which could be the result of an active transport system involved in M6G transport through blood brain barrier. Examples of such transporters are p-glycoprotein (PGP), probenecid-sensitive transport mechanism, multidrug resistance related protein 1-3, the organic anion transporter family, and the organic anion transporter polypeptide family. The aim of present study was to elucidate the mechanisms involved in transporting morphine's potent metabolite, M6G. Methods M6G permeability via two cell lines; MDCKII and MDCK-PGP, was compared with that of sucrose. M6G transport was examined in different concentrations and in the presence of inhibitors of different transport systems such as cyclosporine, digoxin and probenecid. M6G concentration was measured using ELISA assay. The method was sensitive, reliable and reproducible. Results The results confirmed that M6G could cross a layer of MDCK II or MDR-PGP cells more than sucrose could. It was also observed that M6G is a PGP transporter substrate. Its permeability was increased by the use of a PGP expressed cell line, and also in the presence of a strong PGP inhibitor. Digoxin related transporters such as Oatp2 may also involved in transport of M6G. M6G seemed to be a glucose transporter 1 substrate, but was not a substrate to probenecid sensitive transporters. Major conclusion It is concluded that different transporters are responsible for M6G transports via different membrane, which could have effects on its pharmacokinetics or pharmacodynamics. PMID:23008686

  12. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  13. A fully resolved fluid-structure-muscle-activation model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Bhalla, Amneet P. S.; Griffith, Boyce E.; Johnson, Mark; Patankar, Neelesh A.

    2013-11-01

    Esophageal transport is a mechanical and physiological process that transfers the ingested food bolus from the pharynx to the stomach through a multi-layered esophageal tube. The process involves interactions between the bolus, esophageal wall composed of mucosal, circular muscle (CM) and longitudinal muscle (LM) layers, and neurally coordinated muscle activation including CM contraction and LM shortening. In this work, we present a 3D fully-resolved model of esophageal transport based on the immersed boundary method. The model describes the bolus as a Newtonian fluid, the esophageal wall as a multi-layered elastic tube represented by springs and beams, and the muscle activation as a traveling wave of sequential actuation/relaxation of muscle fibers, represented by springs with dynamic rest lengths. Results on intraluminal pressure profile and bolus shape will be shown, which are qualitatively consistent with experimental observations. Effects of activating CM contraction only, LM shortening only or both, for the bolus transport, are studied. A comparison among them can help to identify the role of each type of muscle activation. The support of grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.

  14. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  15. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  16. The activated sludge process: Fundamentals of operation

    SciTech Connect

    Junkins, R.; Deeny, K.J.; Eckhoff, T.H.

    1983-01-01

    The procedures given here - based on extensive and intensive experience. Background information on process mechanics is followed by detailed consideration of control and troubleshooting practices. Contents: PREFACE AND INTRODUCTION; PROCESS MECHANICS; Basic Mechanism of Activated Sludge Systems; Formation of Activated Sludge; Growth of Microorganisms; Classifications of Microorganisms: Type, Environment, Age; Solids Separation and Return; FACTORS AFFECTING OPERATION; Raw Wastewater Strength; Dissolved Oxygen; pH; Temperature; Nutrients; Toxicity; Mixing; Detention Time; Hydraulics; PROCESS MODIFICATIONS; Conventional; Complete Mix; Contact-Stabilization; Extended Aeration; Others; PROCESS MONITORING; Visual; Analytical Indicators; OPERATIONAL CONTROL; Sludge Volume Index; Sludge Age; Mean Cell Residence Time; Food/Microorganism Ratio; Organic Loading Rate; Solids Loading Rate; Clarifier Overflow Rate; Weir Overflow Rate; Sludge Recycle Rate, Sludge Wastage Rate; Chemical Feed Rate; TROUBLESHOOTING; Low BOD Removal; Low D.O. in Aeration Baisn; Poor Settling; PLANT START-UP; Introduction; Pre Start-up Checkup; Wastewater Analysis; Seed Screening; Process Checklist; Mechanical Checklist; Familiarization and Training; Start-up; Seeding; Process Monitoring; Transition; Typical Start-up Problems; Foaming; Settling Problems; Low BOD Removal; INDEX.

  17. Scaling and predicting solute transport processes in streams

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Dentz, Marco

    2013-07-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in longitudinal scale (101 to 105 m), and sample different lotic environments—forested headwater streams, hyporheic zones, desert streams, major rivers, and an urban manmade channel. Our meta-analysis of these data reveals that the coefficient of skewness is constant over time (CSK =1.18±0.08, R2>0.98). In contrast, the CSK of all commonly used solute transport models decreases over time. This shows that current theory is inconsistent with experimental data and suggests that a revised theory of solute transport is needed. Our meta-analysis also shows that the variance (second normalized central moment) is correlated with the mean travel time (R2>0.86), and the third normalized central moment and the product of the first two are very strongly correlated (R2>0.96). These correlations were applied in four different streams to predict transport based on the transient storage and the aggregated dead zone models, and two probability distributions (Gumbel and log normal).

  18. Trailers transporting oranges to processing plants move Asian citrus psyllids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (citrus greening) is one of the most serious of citrus diseases. Movement of the disease occurs as a result of natural vector-borne infection and by movement of plant material. We demonstrate here that Diaphorina citri Kuwayama (vector of citrus greening pathogens) can be transported i...

  19. Speech perception as an active cognitive process

    PubMed Central

    Heald, Shannon L. M.; Nusbaum, Howard C.

    2014-01-01

    One view of speech perception is that acoustic signals are transformed into representations for pattern matching to determine linguistic structure. This process can be taken as a statistical pattern-matching problem, assuming realtively stable linguistic categories are characterized by neural representations related to auditory properties of speech that can be compared to speech input. This kind of pattern matching can be termed a passive process which implies rigidity of processing with few demands on cognitive processing. An alternative view is that speech recognition, even in early stages, is an active process in which speech analysis is attentionally guided. Note that this does not mean consciously guided but that information-contingent changes in early auditory encoding can occur as a function of context and experience. Active processing assumes that attention, plasticity, and listening goals are important in considering how listeners cope with adverse circumstances that impair hearing by masking noise in the environment or hearing loss. Although theories of speech perception have begun to incorporate some active processing, they seldom treat early speech encoding as plastic and attentionally guided. Recent research has suggested that speech perception is the product of both feedforward and feedback interactions between a number of brain regions that include descending projections perhaps as far downstream as the cochlea. It is important to understand how the ambiguity of the speech signal and constraints of context dynamically determine cognitive resources recruited during perception including focused attention, learning, and working memory. Theories of speech perception need to go beyond the current corticocentric approach in order to account for the intrinsic dynamics of the auditory encoding of speech. In doing so, this may provide new insights into ways in which hearing disorders and loss may be treated either through augementation or therapy. PMID

  20. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis

    PubMed Central

    Johnson, Meshell D.; Widdicombe, Jonathan H.; Allen, Lennell; Barbry, Pascal; Dobbs, Leland G.

    2002-01-01

    Transport of lung liquid is essential for both normal pulmonary physiologic processes and for resolution of pathologic processes. The large internal surface area of the lung is lined by alveolar epithelial type I (TI) and type II (TII) cells; TI cells line >95% of this surface, TII cells <5%. Fluid transport is regulated by ion transport, with water movement following passively. Current concepts are that TII cells are the main sites of ion transport in the lung. TI cells have been thought to provide only passive barrier, rather than active, functions. Because TI cells line most of the internal surface area of the lung, we hypothesized that TI cells could be important in the regulation of lung liquid homeostasis. We measured both Na+ and K+ (Rb+) transport in TI cells isolated from adult rat lungs and compared the results to those of concomitant experiments with isolated TII cells. TI cells take up Na+ in an amiloride-inhibitable fashion, suggesting the presence of Na+ channels; TI cell Na+ uptake, per microgram of protein, is ≈2.5 times that of TII cells. Rb+ uptake in TI cells was ≈3 times that in TII cells and was inhibited by 10−4 M ouabain, the latter observation suggesting that TI cells exhibit Na+-, K+-ATPase activity. By immunocytochemical methods, TI cells contain all three subunits (α, β, and γ) of the epithelial sodium channel ENaC and two subunits of Na+-, K+-ATPase. By Western blot analysis, TI cells contain ≈3 times the amount of αENaC/μg protein of TII cells. Taken together, these studies demonstrate that TI cells not only contain molecular machinery necessary for active ion transport, but also transport ions. These results modify some basic concepts about lung liquid transport, suggesting that TI cells may contribute significantly in maintaining alveolar fluid balance and in resolving airspace edema. PMID:11842214

  1. Modeling field scale unsaturated flow and transport processes

    SciTech Connect

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data.

  2. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  3. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  4. Reliability and Validity of the Transport and Physical Activity Questionnaire (TPAQ) for Assessing Physical Activity Behaviour

    PubMed Central

    Adams, Emma J.; Goad, Mary; Sahlqvist, Shannon; Bull, Fiona C.; Cooper, Ashley R.; Ogilvie, David

    2014-01-01

    Background No current validated survey instrument allows a comprehensive assessment of both physical activity and travel behaviours for use in interdisciplinary research on walking and cycling. This study reports on the test-retest reliability and validity of physical activity measures in the transport and physical activity questionnaire (TPAQ). Methods The TPAQ assesses time spent in different domains of physical activity and using different modes of transport for five journey purposes. Test-retest reliability of eight physical activity summary variables was assessed using intra-class correlation coefficients (ICC) and Kappa scores for continuous and categorical variables respectively. In a separate study, the validity of three survey-reported physical activity summary variables was assessed by computing Spearman correlation coefficients using accelerometer-derived reference measures. The Bland-Altman technique was used to determine the absolute validity of survey-reported time spent in moderate-to-vigorous physical activity (MVPA). Results In the reliability study, ICC for time spent in different domains of physical activity ranged from fair to substantial for walking for transport (ICC = 0.59), cycling for transport (ICC = 0.61), walking for recreation (ICC = 0.48), cycling for recreation (ICC = 0.35), moderate leisure-time physical activity (ICC = 0.47), vigorous leisure-time physical activity (ICC = 0.63), and total physical activity (ICC = 0.56). The proportion of participants estimated to meet physical activity guidelines showed acceptable reliability (k = 0.60). In the validity study, comparison of survey-reported and accelerometer-derived time spent in physical activity showed strong agreement for vigorous physical activity (r = 0.72, p<0.001), fair but non-significant agreement for moderate physical activity (r = 0.24, p = 0.09) and fair agreement for MVPA (r = 0.27, p = 0.05). Bland-Altman analysis

  5. Effect of water and heat transport processes on methane emissions from paddy soils: a process-based model analysis

    NASA Astrophysics Data System (ADS)

    Rizzo, Anacleto; Boano, Fulvio; Revelli, Roberto; Ridolfi, Luca

    2013-04-01

    High CH4 fluxes are emitted from paddy fields worldwide and represent a considerable issue for the rice production eco-sustainability. Water and heat transport fluxes are known to strongly influence biogeochemical cycles in wetland environments, and therefore also CH4 emissions from paddy soils. Water percolation affects the dynamics of many compounds (e.g. DOC, O2) influencing CH4 fate. On the other hand, heat fluxes strongly influence CH4 production in submerged rice crops, and lowering ponding water temperature (LPWT) can reduce microbial activities and consequently decrease CH4 emissions. Moreover, as long as the optimal temperature range for rice growth is maintained, LPWT can lower CH4 emissions without rice yield limitation. Hence, a process-based model is proposed and applied to investigate the role of water flow on CH4 emissions, and to analyse the efficiency of LPWT as mitigation strategy for CH4 production and release. The process-based model relies on a system of partial differential mass balance equations to describe the vertical dynamics of the chemical compounds leading to CH4 production. Many physico-chemical processes and features characteristic of paddy soil are included: paddy soil stratigraphy; spatio-temporal variations of plant-root compartment; water and heat transport; SOC decomposition; heterotrophic reactions in both aerobic and anaerobic conditions; root radial oxygen loss; root solute uptake; DOC root exudation; plant-mediated, ebullition, and diffusion gas exchange pathways. LPWT is included as a temperature shift subtracted directly to the ponding water temperature. Model results confirm the importance of water flow on CH4 emission, since simulations that do not include water fluxes show a considerable overestimation of CH4 emissions due to a different DOC spatio-temporal dynamics. Particularly, when water fluxes are not modeled the overestimation can reach 67 % of the total CH4 emission over the whole growing season. Moreover, model

  6. Phosphorylation of the adipose/muscle-type glucose transporter (GLUT4) and its relationship to glucose transport activity.

    PubMed Central

    Schürmann, A; Mieskes, G; Joost, H G

    1992-01-01

    The effects of protein phosphorylation and dephosphorylation on glucose transport activity reconstituted from adipocyte membrane fractions and its relationship to the phosphorylation state of the adipose/muscle-type glucose transporter (GLUT4) were studied. In vitro phosphorylation of membranes in the presence of ATP and protein kinase A produced a stimulation of the reconstituted glucose transport activity in plasma membranes and low-density microsomes (51% and 65% stimulation respectively), provided that the cells had been treated with insulin prior to isolation of the membranes. Conversely, treatment of membrane fractions with alkaline phosphatase produced an inhibition of reconstituted transport activity. However, in vitro phosphorylation catalysed by protein kinase C failed to alter reconstituted glucose transport activity in membrane fractions from both basal and insulin-treated cells. In experiments run under identical conditions, the phosphorylation state of GLUT4 was investigated by immunoprecipitation of glucose transporters from membrane fractions incubated with [32P]ATP and protein kinases A and C. Protein kinase C stimulated a marked phosphate incorporation into GLUT4 in both plasma membranes and low-density microsomes. Protein kinase A, in contrast to its effect on reconstituted glucose transport activity, produced a much smaller phosphorylation of the GLUT4 in plasma membranes than in low-density microsomes. The present data suggest that glucose transport activity can be modified by protein phosphorylation via an insulin-dependent mechanism. However, the phosphorylation of the GLUT4 itself was not correlated with changes in its reconstituted transport activity. Images Fig. 1. Fig. 2. Fig. 3. PMID:1637303

  7. Process for preparing active oxide powders

    DOEpatents

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  8. Allosteric Regulation of Transport Activity by Heterotrimerization of Arabidopsis Ammonium Transporter Complexes in Vivo[C][W][OA

    PubMed Central

    Yuan, Lixing; Gu, Riliang; Xuan, Yuanhu; Smith-Valle, Erika; Loqué, Dominique; Frommer, Wolf B.; von Wirén, Nicolaus

    2013-01-01

    Ammonium acquisition by plant roots is mediated by AMMONIUM TRANSPORTERs (AMTs), ubiquitous membrane proteins with essential roles in nitrogen nutrition in all organisms. In microbial and plant cells, ammonium transport activity is controlled by ammonium-triggered feedback inhibition to prevent cellular ammonium toxicity. Data from heterologous expression in yeast indicate that oligomerization of plant AMTs is critical for allosteric regulation of transport activity, in which the conserved cytosolic C terminus functions as a trans-activator. Employing the coexpressed transporters AMT1;1 and AMT1;3 from Arabidopsis thaliana as a model, we show here that these two isoforms form functional homo- and heterotrimers in yeast and plant roots and that AMT1;3 carrying a phosphomimic residue in its C terminus regulates both homo- and heterotrimers in a dominant-negative fashion in vivo. 15NH4+ influx studies further indicate that allosteric inhibition represses ammonium transport activity in roots of transgenic Arabidopsis expressing a phosphomimic mutant together with functional AMT1;3 or AMT1;1. Our study demonstrates in planta a regulatory role in transport activity of heterooligomerization of transporter isoforms, which may enhance their versatility for signal exchange in response to environmental triggers. PMID:23463773

  9. Thermally activated charge transport in microbial protein nanowires

    PubMed Central

    Lampa-Pastirk, Sanela; Veazey, Joshua P.; Walsh, Kathleen A.; Feliciano, Gustavo T.; Steidl, Rebecca J.; Tessmer, Stuart H.; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  10. Thermally activated charge transport in microbial protein nanowires.

    PubMed

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  11. Simple jumping process with memory: Transport equation and diffusion

    NASA Astrophysics Data System (ADS)

    Kamińska, A.; Srokowski, T.

    2004-06-01

    We present a stochastic jumping process, defined in terms of jump-size probability density and jumping rate, which is a generalization of the well-known kangaroo process. The definition takes into account two process values: after and before the jump. Therefore, the process is able to preserve memory about its previous values. It possesses a simple stationary limit. Its master equation is interpreted as the kinetic equation with variable collision rate. The process can be easily applied to model systems which relax to distributions other than Maxwellian. The case of a constant jumping rate corresponds to the diffusion process, either normal or ballistic.

  12. Transport processes in magnetically confined plasmas in the nonlinear regime

    SciTech Connect

    Sonnino, Giorgio

    2006-06-15

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schlueter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schlueter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  13. Enhanced multistatic active sonar signal processing.

    PubMed

    Zhao, Kexin; Liang, Junli; Karlsson, Johan; Li, Jian

    2013-07-01

    Multistatic active sonar systems involve the transmission and reception of multiple probing sequences and can achieve significantly enhanced performance of target detection and localization through exploiting spatial diversity. This paper mainly focuses on two signal processing aspects of such systems, namely, enhanced range-Doppler imaging and improved target parameter estimation. The main contributions of this paper are (1) a hybrid dense-sparse method is proposed to generate range-Doppler images with both low sidelobe levels and high accuracy; (2) a generalized K-Means clustering (GKC) method for target association is developed to associate the range measurements from different transmitter-receiver pairs, which is actually a range fitting procedure; (3) the extended invariance principle-based weighted least-squares method is developed for accurate target position and velocity estimation. The effectiveness of the proposed multistatic active sonar signal processing techniques is verified using numerical examples.

  14. Physical Activity Energy Expenditure in Dutch Adolescents: Contribution of Active Transport to School, Physical Education, and Leisure Time Activities

    ERIC Educational Resources Information Center

    Slingerland, Menno; Borghouts, Lars B.; Hesselink, Matthijs K. C.

    2012-01-01

    Background: Detailed knowledge about physical activity energy expenditure (PAEE) can guide the development of school interventions aimed at reducing overweight in adolescents. However, relevant components of PAEE have never been objectively quantified in this population. This study investigated the contribution of active transport to and from…

  15. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  16. Experimental thermal transport evolution of silane activated nano-clay reinforced styrene butadiene elastomeric nanocomposites

    NASA Astrophysics Data System (ADS)

    Iqbal, S. S.; Iqbal, N.; Jamil, T.; Bashir, A.; Shahid, M.

    2016-08-01

    In this study, silane activated nanoclay was reinforced in styrene butadiene rubber (SBR) to enhance the thermal resistance/stability and mechanical properties of SBR. silane activated nanoclay with variant concentrations was impregnated in the rubber matrix to fabricate polymer nanocomposites under control processing conditions. Experimental thermal transport, thermal oxidation, phase transition study, and mechanical properties of the nanocomposite specimens were carried out. Thermal insulation, thermal stability, and heat flow response were remarkably enhanced with the addition of nanokaolinite in the polymer matrix. Phase transition temperatures, their corresponding enthalpies, tensile strength, elastic modulus, elongation at break and hardness of the rubber composites were positively influenced with the filler incorporation into the host matrix. The Even dispersion of nanoreinforcements, morphological and compositional analyses of the thermal transport tested specimens were performed using scanning electron microscopy and energy dispersive spectroscopy, respectively.

  17. Serotonin transporter genotype modulates amygdala activity during mood regulation

    PubMed Central

    Rao, Hengyi; Wang, Jiongjiong; Detre, John A.; Breland, Jessica; Sankoorikal, Geena Mary V.; Brodkin, Edward S.; Farah, Martha J.

    2010-01-01

    Recent studies have implicated the short allele of the serotonin transporter-linked polymorphic region (5-HTTLPR) in depression vulnerability, particularly in the context of stress. Several neuroimaging studies have shown that 5-HTTLPR genotype predicts amygdala reactivity to negatively valenced stimuli, suggesting a mechanism whereby the short allele confers depression risk. The current study investigated whether 5-HTTLPR genotype similarly affects neural activity during an induced sad mood and during recovery from sad mood. Participants were 15 homozygous short (S) and 15 homozygous long (L) individuals. Regional cerebral blood flow was measured with perfusion functional magnetic resonance imaging during four scanning blocks: baseline, sad mood, mood recovery and following return to baseline. Comparing mood recovery to baseline, both whole brain analyses and template-based region-of-interest analyses revealed greater amygdala activity for the S vs the L-group. There were no significant amygdala differences found during the induced sad mood. These results demonstrate the effect of the S allele on amygdala activity during intentional mood regulation and suggest that amygdala hyperactivity during recovery from a sad mood may be one mechanism by which the S allele confers depression risk. PMID:19858108

  18. Erosion Processes, Sediment Transport and Hydrological Responses Due to Land Use Changes in Serbian Ski Resorts

    NASA Astrophysics Data System (ADS)

    Ristic, R.; Radic, B.; Vasiljevic, N.; Nikic, Z.; Malusevic, I.

    2012-04-01

    The construction or improvement of Serbian ski resorts provoked intensive erosion processes, sediment transport and hydrological responses due to land use changes, affecting the surrounding environment and even endangering the functionality of the built objects. The dominant disturbing activities (clear cuttings, trunk transport, machine grading of slopes, huge excavations, and access road construction) were followed by the activities during skiing and non skiing periods (skiing, usage of snow groomers, moving of vehicles and tourists, forestry activities and overgrazing). These activities put a lot of pressure on the environment, including the removal or compaction of the surface soil layer, the reduction of the infiltration capacity, the destruction or degradation of the vegetation cover, the intensifying of the surface runoff and the development of erosion processes. The most affected ski runs were surveyed (scale 1:1000) and all damages were mapped and classified during the summers of 2007-2010. The development of rills and gullies was measured at experimental plots (100x60 m), and the survey data were entered into a GIS application. The area sediment yield and the intensity of erosion processes were estimated on the basis of the "Erosion Potential Method"(EPM). The changes in hydrological conditions were estimated by comparing the computed values of maximal discharges in the conditions before and after massive activities in the ski resorts, as well as by using the local hydrological records. The determination of maximal discharges was achieved using a combined method: the synthetic unit hydrograph (maximum ordinate of unit runoff, qmax) and the Soil Conservation Service (SCS, 1979) methodology (deriving effective rainfall, Pe, from total precipitation, Pb). The determination was performed for AMC III (Antecedent Moisture Conditions III: high water content in the soil and significantly reduced infiltration capacity). The computations of maximal discharges were

  19. Inhibition of ABC transport proteins by oil sands process affected water.

    PubMed

    Alharbi, Hattan A; Saunders, David M V; Al-Mousa, Ahmed; Alcorn, Jane; Pereira, Alberto S; Martin, Jonathan W; Giesy, John P; Wiseman, Steve B

    2016-01-01

    The ATP-binding cassette (ABC) superfamily of transporter proteins is important for detoxification of xenobiotics. For example, ABC transporters from the multidrug-resistance protein (MRP) subfamily are important for excretion of polycyclic aromatic hydrocarbons (PAHs) and their metabolites. Effects of chemicals in the water soluble organic fraction of relatively fresh oil sands process affected water (OSPW) from Base Mine Lake (BML-OSPW) and aged OSPW from Pond 9 (P9-OSPW) on the activity of MRP transporters were investigated in vivo by use of Japanese medaka at the fry stage of development. Activities of MRPs were monitored by use of the lipophilic dye calcein, which is transported from cells by ABC proteins, including MRPs. To begin to identify chemicals that might inhibit activity of MRPs, BML-OSPW and P9-OSPW were fractionated into acidic, basic, and neutral fractions by use of mixed-mode sorbents. Chemical compositions of fractions were determined by use of ultrahigh resolution orbitrap mass spectrometry in ESI(+) and ESI(-) mode. Greater amounts of calcein were retained in fry exposed to BML-OSPW at concentration equivalents greater than 1× (i.e., full strength). The neutral and basic fractions of BML-OSPW, but not the acidic fraction, caused greater retention of calcein. Exposure to P9-OSPW did not affect the amount of calcein in fry. Neutral and basic fractions of BML-OSPW contained relatively greater amounts of several oxygen-, sulfur, and nitrogen-containing chemical species that might inhibit MRPs, such as O(+), SO(+), and NO(+) chemical species, although secondary fractionation will be required to conclusively identify the most potent inhibitors. Naphthenic acids (O2(-)), which were dominant in the acidic fraction, did not appear to be the cause of the inhibition. This is the first study to demonstrate that chemicals in the water soluble organic fraction of OSPW inhibit activity of this important class of proteins. However, aging of OSPW attenuates

  20. Inhibition of ABC transport proteins by oil sands process affected water.

    PubMed

    Alharbi, Hattan A; Saunders, David M V; Al-Mousa, Ahmed; Alcorn, Jane; Pereira, Alberto S; Martin, Jonathan W; Giesy, John P; Wiseman, Steve B

    2016-01-01

    The ATP-binding cassette (ABC) superfamily of transporter proteins is important for detoxification of xenobiotics. For example, ABC transporters from the multidrug-resistance protein (MRP) subfamily are important for excretion of polycyclic aromatic hydrocarbons (PAHs) and their metabolites. Effects of chemicals in the water soluble organic fraction of relatively fresh oil sands process affected water (OSPW) from Base Mine Lake (BML-OSPW) and aged OSPW from Pond 9 (P9-OSPW) on the activity of MRP transporters were investigated in vivo by use of Japanese medaka at the fry stage of development. Activities of MRPs were monitored by use of the lipophilic dye calcein, which is transported from cells by ABC proteins, including MRPs. To begin to identify chemicals that might inhibit activity of MRPs, BML-OSPW and P9-OSPW were fractionated into acidic, basic, and neutral fractions by use of mixed-mode sorbents. Chemical compositions of fractions were determined by use of ultrahigh resolution orbitrap mass spectrometry in ESI(+) and ESI(-) mode. Greater amounts of calcein were retained in fry exposed to BML-OSPW at concentration equivalents greater than 1× (i.e., full strength). The neutral and basic fractions of BML-OSPW, but not the acidic fraction, caused greater retention of calcein. Exposure to P9-OSPW did not affect the amount of calcein in fry. Neutral and basic fractions of BML-OSPW contained relatively greater amounts of several oxygen-, sulfur, and nitrogen-containing chemical species that might inhibit MRPs, such as O(+), SO(+), and NO(+) chemical species, although secondary fractionation will be required to conclusively identify the most potent inhibitors. Naphthenic acids (O2(-)), which were dominant in the acidic fraction, did not appear to be the cause of the inhibition. This is the first study to demonstrate that chemicals in the water soluble organic fraction of OSPW inhibit activity of this important class of proteins. However, aging of OSPW attenuates

  1. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  2. Symplasmic networks in secondary vascular tissues: parenchyma distribution and activity supporting long-distance transport.

    PubMed

    Spicer, Rachel

    2014-04-01

    Stems that develop secondary vascular tissue (i.e. xylem and phloem derived from the vascular cambium) have unique demands on transport owing to their mass and longevity. Transport of water and assimilates must occur over long distances, while the increasing physical separation of xylem and phloem requires radial transport. Developing secondary tissue is itself a strong sink positioned between xylem and phloem along the entire length of the stem, and the integrity of these transport tissues must be maintained and protected for years if not decades. Parenchyma cells form an interconnected three-dimensional lattice throughout secondary xylem and phloem and perform critical roles in all of these tasks, yet our understanding of their physiology, the nature of their symplasmic connections, and their activity at the symplast-apoplast interface is very limited. This review highlights key historical work as well as current research on the structure and function of parenchyma in secondary vascular tissue in the hopes of spurring renewed interest in this area, which has important implications for whole-plant transport processes and resource partitioning.

  3. Compromising KCC2 transporter activity enhances the development of continuous seizure activity.

    PubMed

    Kelley, Matthew R; Deeb, Tarek Z; Brandon, Nicholas J; Dunlop, John; Davies, Paul A; Moss, Stephen J

    2016-09-01

    Impaired neuronal inhibition has long been associated with the increased probability of seizure occurrence and heightened seizure severity. Fast synaptic inhibition in the brain is primarily mediated by the type A γ-aminobutyric acid receptors (GABAARs), ligand-gated ion channels that can mediate Cl(-) influx resulting in membrane hyperpolarization and the restriction of neuronal firing. In most adult brain neurons, the K(+)/Cl(-) co-transporter-2 (KCC2) establishes hyperpolarizing GABAergic inhibition by maintaining low [Cl(-)]i. In this study, we sought to understand how decreased KCC2 transport function affects seizure event severity. We impaired KCC2 transport in the 0-Mg(2+) ACSF and 4-aminopyridine in vitro models of epileptiform activity in acute mouse brain slices. Experiments with the selective KCC2 inhibitor VU0463271 demonstrated that reduced KCC2 transport increased the duration of SLEs, resulting in non-terminating discharges of clonic-like activity. We also investigated slices obtained from the KCC2-Ser940Ala (S940A) point-mutant mouse, which has a mutation at a known functional phosphorylation site causing behavioral and cellular deficits under hyperexcitable conditions. We recorded from the entorhinal cortex of S940A mouse brain slices in both 0-Mg(2+) ACSF and 4-aminopyridine, and demonstrated that loss of the S940 residue increased the susceptibility of continuous clonic-like discharges, an in vitro form of status epilepticus. Our experiments revealed KCC2 transport activity is a critical factor in seizure event duration and mechanisms of termination. Our results highlight the need for therapeutic strategies that potentiate KCC2 transport function in order to decrease seizure event severity and prevent the development of status epilepticus. PMID:27108931

  4. MODELING COUPLED HYDROLOGICAL AND CHEMICAL PROCESSES: LONG-TERM URANIUM TRANSPORT FOLLOWING PHOSPHOROUS-FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants in the vadose zone are affected by the physical processes of water flow, heat movement and multicomponent transport, as well as generally by a range of interacting biogeochemical processes. Coupling these various processes within one integrated numerical simulator provides a process-ba...

  5. Simulating Sediment Transport Processes in San Francisco Bay Using Coupled Hydrodynamic, Wave, and Sediment Transport Models

    NASA Astrophysics Data System (ADS)

    Bever, A. J.; MacWilliams, M.

    2012-12-01

    Under the conceptual model of sediment transport in San Pablo Bay, a sub-embayment of San Francisco Bay, proposed by Krone (1979), sediment typically enters San Pablo Bay during large winter and spring flows and is redistributed during summer conditions through wind wave resuspension and transport by tidal currents. A detailed understanding of how the waves and tides redistribute sediment within San Francisco Bay is critical for predicting how future sea level rise and a reduction in the sediment supply to the Bay will impact existing marsh and mudflat habitat, tidal marsh restoration projects, and ongoing maintenance dredging of the navigation channels. The three-dimensional UnTRIM San Francisco Bay-Delta Model was coupled with the Simulating WAves Nearshore (SWAN) wave model and the SediMorph morphological model, to develop a three-dimensional hydrodynamic, wind wave, and sediment transport model of the San Francisco Bay and the Sacramento-San Joaquin Delta. Numerical simulations of sediment resuspension due to tidal currents and wind waves and the subsequent transport of this sediment by tidal currents are used to quantify the spatial and temporal variability of sediment fluxes on the extensive shoals in San Pablo Bay under a range of tidal and wind conditions. The results demonstrate that suspended sediment concentration and sediment fluxes within San Pablo Bay are a complex product of tides and waves interacting spatially throughout the Bay, with concentrations responding to local resuspension and sediment advection. Sediment fluxes between the San Pablo Bay shoals and the deeper channel are highest during spring tides, and are elevated for up to a week following wave events, even though the greatest influence of the wave event occurs abruptly.

  6. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    SciTech Connect

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  7. Serum- and glucocorticoid-inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter.

    PubMed

    Xu, Da; Huang, Haozhe; Toh, May Fern; You, Guofeng

    2016-01-01

    Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney and brain. In the current study, we examined the regulation of hOAT1 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT1 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity V max without significant change in substrate-binding affinity K m. We further showed that stimulation of hOAT1 activity by sgk2 was achieved by preventing hOAT1 degradation. Our co-immunoprecipitation experiment revealed that the effect of sgk2 on hOAT1 was through a direct interaction between these two proteins. In conclusion, our study demonstrated that sgk2 stimulates hOAT1 transport activity by enhancing the stability of the transporter. This study provides the insights into sgk2 regulation of hOAT1-mediated transport in normal physiology and disease. PMID:27335683

  8. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. The payload bay of Space Shuttle Discovery is relatively empty as installation of the Get Away Special (GAS) canisters begins. Two GAS canisters can be seen in the center of the photograph. On the left is G-648, a Canadian Space Agency-sponsored study on manufactured organic thin film by the physical vapor transport method, and on the right is a can with hundreds of commemorative flags to be flown on the mission. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  9. Evidence of active transport involvement in morphine transport via MDCKII and MDCK-PGP cell lines.

    PubMed

    Mashayekhi, S O; Sattari, M R; Routledge, P A

    2010-07-01

    Several transporters appear to be important in transporting various drugs. Many patients, who receive morphine as analgesic medication, also receive other medications with potency of changing morphine transport by affecting P-glycoprotein (P-GP) and oatp2 transport system. This could influence morphine pharmacokinetics and pharmacodynamics. The aim of present study was to elucidate the transport mechanisms involved in transporting morphine via MDCKII and MDCK-PGP cells. Morphine permeability was examined in the presence of various compounds with ability in inhibiting different transport systems including: digoxin, probenecid and d- glucose. The effect of morphine concentration changes on its transport was also examined. Morphine concentration was measured using HPLC with electrochemical detector. Morphine permeability via a MDCK II cells was greater than sucrose permeability, and reduced when a P-GP expressed cell line was used. Its permeability was increased significantly in the presence of a strong P-GP inhibitor. Morphine permeability decreased significantly in the presence of digoxin but not in the presence of d-glucose or probenecid. These results showed that morphine was a P-GP substrate, and digoxin related transporters such as oatp2 were involved in its transport. Morphine was not substrate for glucose or probenecid-sensitive transporters. PMID:21589798

  10. Evidence of active transport involvement in morphine transport via MDCKII and MDCK-PGP cell lines

    PubMed Central

    Mashayekhi, S.O.; Sattari, M.R.; Routledge, P.A.

    2010-01-01

    Several transporters appear to be important in transporting various drugs. Many patients, who receive morphine as analgesic medication, also receive other medications with potency of changing morphine transport by affecting P-glycoprotein (P-GP) and oatp2 transport system. This could influence morphine pharmacokinetics and pharmacodynamics. The aim of present study was to elucidate the transport mechanisms involved in transporting morphine via MDCKII and MDCK-PGP cells. Morphine permeability was examined in the presence of various compounds with ability in inhibiting different transport systems including: digoxin, probenecid and d- glucose. The effect of morphine concentration changes on its transport was also examined. Morphine concentration was measured using HPLC with electrochemical detector. Morphine permeability via a MDCK II cells was greater than sucrose permeability, and reduced when a P-GP expressed cell line was used. Its permeability was increased significantly in the presence of a strong P-GP inhibitor. Morphine permeability decreased significantly in the presence of digoxin but not in the presence of d-glucose or probenecid. These results showed that morphine was a P-GP substrate, and digoxin related transporters such as oatp2 were involved in its transport. Morphine was not substrate for glucose or probenecid-sensitive transporters. PMID:21589798

  11. The mechanism of biliary secretion of reduced glutathione. Analysis of transport process in isolated rat-liver canalicular membrane vesicles.

    PubMed

    Inoue, M; Kinne, R; Tran, T; Arias, I M

    1983-08-15

    Transport of reduced glutathione (GSH) was studied in isolated rat liver canalicular membrane vesicles by a rapid filtration technique. The membrane vesicles exhibit uptake of [2-3H]glycine--labeled GSH into an osmotically reactive intravesicular space. Although the canalicular membrane vesicles possess gamma-glutamyltransferase and aminopeptidase M, enzymes that hydrolyze glutathione into component amino acids, inactivation of the vesicle-associated transferase by affinity labeling with L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125) had no effect on the initial rate of GSH transport. Chemical analysis revealed that intact GSH accounted for most of vesicle-associated radioactivity. The initial rate of transport followed saturation kinetics with respect to GSH concentration; an apparent Km of 0.33 mM and V of 1.47 nmol/mg protein in 20 s were calculated. These results indicate that transport of GSH across the canalicular membranes is a carrier-mediated process. Replacement of NaCl in the transport medium by KCl, LiCl or choline chloride had no effect on the transport activity of the vesicles. The rate of GSH uptake by the vesicles was enhanced by valinomycin-induced K+-diffusion potential (vesicle inside-positive) and was inhibited by probenecid, indicating that GSH transport across the canalicular membranes is electrogenic and involves the transfer of negative charge. The transport of GSH was inhibited by oxidized glutathione or S-benzyl-glutathione. This transport system in canalicular plasma membranes may function in biliary secretion of GSH and its derivatives which are synthesized in hepatocytes by oxidative processes or glutathione S-transferase.

  12. Complete solids retention activated sludge process.

    PubMed

    Amanatidou, E; Samiotis, G; Trikoilidou, E; Pekridis, G; Tsikritzis, L

    2016-01-01

    In a slaughterhouse's full-scale extended aeration activated sludge wastewater treatment plant (WWTP), operating under complete solids retention time, the evolution of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS) concentration, food to micro-organisms ratio (F/M) and substrate utilization rate (SUR) were studied for over a year. Biomass growth phases in correlation to sludge biological and morphological characteristics were studied. Three distinguished growth phases were observed during the 425 days of monitoring. The imposed operational conditions led the process to extended biomass starvation conditions, minimum F/M, minimum SUR and predator species growth. MLSS and MLVSS reached a stabilization phase (plateau phase) where almost zero sludge accumulation was observed. The concept of degradation of the considered non-biodegradable particulate compounds in influent and in biomass (cell debris) was also studied. Comparison of evolution of observed sludge yields (Yobs) in the WWTP with Yobs predictions by activated sludge models verified the degradation concept for the considered non-biodegradable compounds. Control of the sedimentation process was achieved, by predicting the solids loading rate critical point using state point analysis and stirred/unstirred settling velocity tests and by applying a high return activated sludge rate. The nitrogen gas related sedimentation problems were taken into consideration.

  13. Active PZT fibers: a commercial production process

    NASA Astrophysics Data System (ADS)

    Strock, Harold B.; Pascucci, Marina R.; Parish, Mark V.; Bent, Aaron A.; Shrout, Thomas R.

    1999-07-01

    Lead Zirconate Titanate (PZT) active fibers, from 80 to 250 micrometers in diameter, are produced for the AFOSR/DARPA funded Active Fiber Composites Consortium (AFCC) Program and commercial customers. CeraNova has developed a proprietary ceramics-based technology to produce PZT mono-filaments of the required purity, composition, straightness, and piezoelectric properties for use in active fiber composite structures. CeraNova's process begins with the extrusion of continuous lengths of mono-filament precursor fiber from a plasticized mix of PZT-5A powder. The care that must be taken to avoid mix contamination is described using illustrations form problems experiences with extruder wear and metallic contamination. Corrective actions are described and example microstructures are shown. The consequences of inadequate lead control are also shown. Sintered mono- filament mechanical strength and piezoelectric properties data approach bulk values but the validity of such a benchmark is questioned based on variable correlation with composite performance measures. Comb-like ceramic preform structures are shown that are being developed to minimize process and handling costs while maintaining the required mono-filament straightness necessary for composite fabrication. Lastly, actuation performance data are presented for composite structures fabricated and tested by Continuum Control Corporation. Free strain actuation in excess of 2000 microstrain are observed.

  14. Brain activation during facial emotion processing.

    PubMed

    Gur, Ruben C; Schroeder, Lee; Turner, Travis; McGrath, Claire; Chan, Robin M; Turetsky, Bruce I; Alsop, David; Maldjian, Joseph; Gur, Raquel E

    2002-07-01

    Functional neuroimaging studies have helped identify neural systems involved in cognitive processing and more recently have indicated limbic activation to emotional stimuli. Some functional magnetic resonance imaging (fMRI) studies have reported increased amygdala response during exposure to emotional stimuli while others have not shown such activation. The present study was designed to test the hypothesis that activation of the amygdala is related to the relevance of the emotional valence of stimuli. Healthy young participants (7 men, 7 women) were studied in a high-field (4 tesla) scanner using blood oxygenation-level dependent (BOLD) signal changes in a blocked "box car" design. They viewed facial displays of happiness, sadness, anger, fear, and disgust as well as neutral faces obtained from professional actors and actresses of diverse ethnicity and age. Their task alternated between emotion discrimination (indicating whether the emotion was positive or negative) and age discrimination (indicating whether the poser was older or younger than 30). Blocks contained the same proportion of emotional and neutral faces. Limbic response was greater during the emotion than during the age discrimination conditions. The response was most pronounced in the amygdala, but was also present in the hippocampus and circumscribed voxels in other limbic regions. These results support the central role of the amygdala in emotion processing, and indicate its sensitivity to the task relevance of the emotional display.

  15. Water activated doping and transport in multilayered germanane crystals.

    PubMed

    Young, Justin R; Chitara, Basant; Cultrara, Nicholas D; Arguilla, Maxx Q; Jiang, Shishi; Fan, Fan; Johnston-Halperin, Ezekiel; Goldberger, Joshua E

    2016-01-27

    The synthesis of germanane (GeH) has opened the door for covalently functionalizable 2D materials in electronics. Herein, we demonstrate that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe2 precursor. The electronic properties of these doped materials show significant atmospheric sensitivity, and we observe a reduction in resistance by up to three orders of magnitude when doped samples are measured in water-containing atmospheres. This variation in resistance is a result of water activation of the phosphorus dopants. Transport measurements in different contact geometries show a significant anisotropy between in-plane and out-of-plane resistances, with a much larger out-of-plane resistance. These measurements along with finite element modeling results predict that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers. Taken together, these results pave the way for future electronic and optoelectronic applications utilizing group IV graphane analogues.

  16. Active Transport Can Greatly Enhance Cdc20:Mad2 Formation

    PubMed Central

    Ibrahim, Bashar; Henze, Richard

    2014-01-01

    To guarantee genomic integrity and viability, the cell must ensure proper distribution of the replicated chromosomes among the two daughter cells in mitosis. The mitotic spindle assembly checkpoint (SAC) is a central regulatory mechanism to achieve this goal. A dysfunction of this checkpoint may lead to aneuploidy and likely contributes to the development of cancer. Kinetochores of unattached or misaligned chromosomes are thought to generate a diffusible “wait-anaphase” signal, which is the basis for downstream events to inhibit the anaphase promoting complex/cyclosome (APC/C). The rate of Cdc20:C-Mad2 complex formation at the kinetochore is a key regulatory factor in the context of APC/C inhibition. Computer simulations of a quantitative SAC model show that the formation of Cdc20:C-Mad2 is too slow for checkpoint maintenance when cytosolic O-Mad2 has to encounter kinetochores by diffusion alone. Here, we show that an active transport of O-Mad2 towards the spindle mid-zone increases the efficiency of Mad2-activation. Our in-silico data indicate that this mechanism can greatly enhance the formation of Cdc20:Mad2 and furthermore gives an explanation on how the “wait-anaphase” signal can dissolve abruptly within a short time. Our results help to understand parts of the SAC mechanism that remain unclear. PMID:25338047

  17. Active transport can greatly enhance Cdc20:Mad2 formation.

    PubMed

    Ibrahim, Bashar; Henze, Richard

    2014-01-01

    To guarantee genomic integrity and viability, the cell must ensure proper distribution of the replicated chromosomes among the two daughter cells in mitosis.The mitotic spindle assembly checkpoint (SAC) is a central regulatory mechanism to achieve this goal. A dysfunction of this checkpoint may lead to aneuploidy and likely contributes to the development of cancer. Kinetochores of unattached or misaligned chromosomes are thought to generate a diffusible ''wait-anaphase'' signal, which is the basis for downstream events to inhibit the anaphase promoting complex/cyclosome (APC/C). The rate of Cdc20:C-Mad2 complex formation at the kinetochore is a key regulatory factor in the context of APC/C inhibition. Computer simulations of a quantitative SAC model show that the formation of Cdc20:C-Mad2 is too slow for checkpoint maintenance when cytosolic O-Mad2 has to encounter kinetochores by diffusion alone. Here, we show that an active transport of O-Mad2 towards the spindle mid-zone increases the efficiency of Mad2-activation. Our data indicate that this mechanism can greatly enhance the formation of Cdc20:Mad2 and furthermore gives an explanation on how the ''wait-anaphase'' signal can dissolve abruptly within a short time. Our results help to understand parts of the SAC mechanism that remain unclear.

  18. Active transport in dense diffusive single-file systems.

    PubMed

    Illien, P; Bénichou, O; Mejía-Monasterio, C; Oshanin, G; Voituriez, R

    2013-07-19

    We study a minimal model of active transport in crowded single-file environments which generalizes the emblematic model of single-file diffusion to the case when the tracer particle (TP) performs either an autonomous directed motion or is biased by an external force, while all other particles of the environment (bath) perform unbiased diffusions. We derive explicit expressions, valid in the limit of high density of bath particles, of the full distribution P((n))(X) of the TP position and of all its cumulants, for arbitrary values of the bias f and for any time n. Our analysis reveals striking features, such as the anomalous scaling [proportionality] √[n] of all cumulants, the equality of cumulants of the same parity characteristic of a Skellam distribution and a convergence to a Gaussian distribution in spite of asymmetric density profiles of bath particles. Altogether, our results provide the full statistics of the TP position and set the basis for a refined analysis of real trajectories of active particles in crowded single-file environments.

  19. Processes and Patterns of Fluvial Sediment Transport and Accumulation on Continental Shelves

    NASA Astrophysics Data System (ADS)

    Nittrouer, C. A.; Figueideo, A. G.; Ogston, A. S.

    2007-05-01

    Wet-tropical settings produce much weathering and sediment supply to the coastal ocean. The processes that control the fate of the sediment have some distinctions from those operating in other latitudinal settings. For example, river hydrographs are sufficiently constant that sediment is delivered throughout the year, as opposed to temperate latitudes where there is a dramatic seasonal variability. In tropical locations, fluctuations in trade-wind conditions (speed, direction) dominate the physical forcing that drives sediment transport. Sedimentation active on the Amazon shelf and in the Gulf of Papua (Papua New Guinea) can be contrasted with that active in temperate settings off North American (Eel, Columbia), European (Po, Rhone) and Asian (Yangtze, Huanghe) rivers. Among the differences are the mechanisms that lead to high-concentration gravity flows (fluid muds). Because much sediment is transported across shelf by these mechanisms, they have a dominant control on the fate of particles and the patterns of sediment accumulation (e.g., clinoform deposits). The continuous discharge of sediment in wet-tropical settings allows tidal currents to intensely rework the seabed. Coupled with other processes (e.g., estuarine trapping, intensified trade-winds) this leads to very turbid boundary layers (>10 g/l) and extensive physical mixing of surficial seabed sediments. Interdisciplinary impacts are to remineralize geochemical components and to inhibit benthic habitation. In contrast, temperate settings have some of the same processes operating, but in a different fashion. In particular, episodic river discharge and/or storm activity can create different results (e.g., wave-generated fluid muds) and sedimentary products (e.g., flood and storm deposits). Integrated over time scales of centuries, evidence for operational processes in tropical and temperate coastal settings are preserved in high-resolution stratigraphic records. Among the fluctuations recorded are impacts of

  20. XTP as a transport protocol for distributed parallel processing

    SciTech Connect

    Strayer, W.T.; Lewis, M.J.; Cline, R.E. Jr.

    1994-12-31

    The Xpress Transfer Protocol (XTP) is a flexible transport layer protocol designed to provide efficient service without dictating the communication paradigm or the delivery characteristics that quality the paradigm. XTP provides the tools to build communication services appropriate to the application. Current data delivery solutions for many popular cluster computing environments use TCP and UDP. We examine TCP, UDP, and XTP with respect to the communication characteristics typical of parallel applications. We perform measurements of end-to-end latency for several paradigms important to cluster computing. An implementation of XTP is shown to be comparable to TCP in end-to-end latency on preestablished connections, and does better for paradigms where connections must be constructed on the fly.

  1. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene: correlation between sulfate transport activity and chondrodysplasia phenotype.

    PubMed

    Karniski, L P

    2001-07-01

    The diastrophic dysplasia sulfate transporter (DTDST) gene encodes a transmembrane protein that transports sulfate into chondrocytes to maintain adequate sulfation of proteoglycans. Mutations in this gene are responsible for four recessively inherited chondrodysplasias that include diastrophic dysplasia, multiple epiphyseal dysplasia, atelosteogenesis type 2 and achondrogenesis 1B (ACG-1B). To determine whether the DTDST mutations found in individuals with these chondrodysplasias differ functionally from each other, we compared the sulfate transport activity of 11 reported DTDST mutations. Five mutations, G255E, Delta a1751, L483P, R178X and N425D, had minimal sulfate transport function following expression in Xenopus laevis oocytes. Two mutations, Delta V340 and R279W, transported sulfate at rates of 17 and 32%, respectively, of wild-type DTDST. Four mutations, A715V, C653S, Q454P and G678V, had rates of sulfate transport nearly equal to that of wild-type DTDST. Transport kinetics were not different among the four mutations with near-normal sulfate transport function and wild-type DTDST. When the sulfate transport function of the different DTDST mutations are grouped according to the general phenotypes, individuals with the most severe form, ACG-1B, tend to be homozygous for null mutations, individuals with the moderately severe atelosteogenesis type 2 have at least one allele with a loss-of-function mutation, and individuals with the mildest forms are typically homozygous for mutations with residual sulfate transport function. However, in the X.laevis oocyte expression system, the correlation between residual transport function and the severity of phenotype was not absolute, suggesting that factors in addition to the intrinsic sulfate transport properties of the DTDST protein may influence the phenotype in individuals with DTDST mutations. PMID:11448940

  2. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  3. Molecular shuttles based on motor proteins: active transport in synthetic environments.

    PubMed

    Hess, H; Vogel, V

    2001-11-01

    Active transport in cells, utilizing molecular motors like kinesin and myosin, provides the inspiration for the integration of active transport into synthetic devices. Hybrid devices, employing motor proteins in a synthetic environment, are the first prototypes of molecular shuttles. Here the basic characteristics of motor proteins are discussed from an engineering point of view, and the experiments aimed at incorporating motor proteins, such as myosins and kinesins, into devices are reviewed. The key problems for the construction of a molecular shuttle are: guiding the direction of motion, controlling the speed, and loading and unloading of cargo. Various techniques, relying on surface topography and chemistry as well as flow fields and electric fields, have been developed to guide the movement of molecular shuttles on surfaces. The control of ATP concentration, acting as a fuel supply, can serve as a means to control the speed of movement. The loading process requires the coupling of cargo to the shuttle, ideally by a strong and specific link. Applications of molecular shuttles can be envisioned, e.g. in the field of nano-electro-mechanical systems (NEMS), where scaling laws favor active transport over fluid flow, and in the bottom-up assembly of novel materials.

  4. Evaluation of Proposed In Vivo Probe Substrates and Inhibitors for Phenotyping Transporter Activity in Humans.

    PubMed

    Momper, Jeremiah D; Tsunoda, Shirley M; Ma, Joseph D

    2016-07-01

    Drug transporters are present in various tissues and have a significant role in drug absorption, distribution, and elimination. The International Transporter Consortium has identified 7 transporters of increasing importance from evidence of clinically significant transporter-mediated drug-drug interactions. The transporters are P-glycoprotein, breast cancer resistance protein, organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2, organic anion transporters (OAT) 1, and OAT3. Decision trees were created based on in vitro experiments to determine whether an in vivo transporter-mediated drug-drug interaction study is needed. Phenotyping is a methodology that evaluates real-time in vivo transporter activity, whereby changes in a probe substrate or probe inhibitor reflect alternations in the activity of the specified transporter. In vivo probe substrates and/or probe inhibitors have been proposed for each aforementioned transporter. In vitro findings and animal models provide the strongest evidence regarding probe specificity. However, such findings have not conclusively correlated with human phenotyping studies. Furthermore, the extent of contribution from multiple transporters in probe disposition complicates the ability to discern if study findings are the result of a specific transporter and thus provide a recommendation for a preferred probe for a drug transporter. PMID:27385182

  5. The association between access to public transportation and self-reported active commuting.

    PubMed

    Djurhuus, Sune; Hansen, Henning S; Aadahl, Mette; Glümer, Charlotte

    2014-12-05

    Active commuting provides routine-based regular physical activity which can reduce the risk of chronic diseases. Using public transportation involves some walking or cycling to a transit stop, transfers and a walk to the end location and users of public transportation have been found to accumulate more moderate physical activity than non-users. Understanding how public transportation characteristics are associated with active transportation is thus important from a public health perspective. This study examines the associations between objective measures of access to public transportation and self-reported active commuting. Self-reported time spent either walking or cycling commuting each day and the distance to workplace were obtained for adults aged 16 to 65 in the Danish National Health Survey 2010 (n = 28,928). Access to public transportation measures were computed by combining GIS-based road network distances from home address to public transit stops an integrating their service level. Multilevel logistic regression was used to examine the association between access to public transportation measures and active commuting. Distance to bus stop, density of bus stops, and number of transport modes were all positively associated with being an active commuter and with meeting recommendations of physical activity. No significant association was found between bus services at the nearest stop and active commuting. The results highlight the importance of including detailed measurements of access to public transit in order to identify the characteristics that facilitate the use of public transportation and active commuting.

  6. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    For nanoparticle transport through soil, the pore-scale (i.e., tens to hundreds of grains and pores) is a crucial intermediate scale which links nanoparticle-surface interactions with field-scale transport behaviour. However, very little information exists on how nanoparticles behave within real three-dimensional pore spaces. As a result, pore-scale processes are poorly characterized for nanoparticle systems and, subsequently, continuum-scale transport models struggle to describe commonly observed 'anomalous' behaviour such as extended tailing. This knowledge gap is due to two primary factors: an inability to experimentally observe nanoparticles within real pore spaces, and the computationally expensive models required to simulate nanoparticle movement. However, due to recent advances in Synchrotron X-Ray Computed Microtomography (SXCMT), it is now possible to quantify in-situ pore-scale nanoparticle concentrations during transport through real 3-dimensional porous media [1]. Employing this SXCMT quantification method to examine real nanoparticle/soil transport experiments has yielded new insights into the pore-scale processes governing nanoparticle transport. By coupling SXCMT nanoparticle quantification method with Computational Fluid Dynamics (CFD) simulations we are able to construct a better picture of how nanoparticles flow through real pore spaces. This talk presents SXCMT/CFD analyses of three silver nanoparticle transport experiments. Silver nanoparticles were flushed through three different sands to characterize the influence of grain distribution and retention rates on pore-scale flow and transport processes. These CFD/SXCMT analyses illuminate how processes such as temporary hydraulic retention govern nanoparticle transport. In addition, the observed distributions of pore water velocities and nanoparticle mass flow rates challenge the standard conceptual model of nanoparticle transport, suggesting that pore-scale processes require explicit consideration

  7. Magnetic Processing of Structural Components for Transportation Vehicles

    SciTech Connect

    Mackiewicz-Ludtka, G.; Ludtka, G. M.; Fleming, S.; del Prado Villasana, J.

    2011-09-30

    The specific goal of this project was to develop and evaluate the effect of magnetic processing as a viable and new technology to manufacture side‐rails for heavy trucks; and to demonstrate the applicability of this technology for an industrial truck/automotive process. The targeted performance enhancements for this project were to increase the hardness or strength of two families of alloys (comparable carbon contents but one alloy system incorporating hardenability improving additions of titanium and boron) by 15 to 20%. Thermomagnetic processing has been shown to make significant and unprecedented, simultaneous improvements in yield strength and ultimate tensile strength with no loss of ductility for the truck rail application investigated in this project. Improvements in the ultimate tensile strength and yield strength in the range 20 to 30% have been measured even for the lower hardenability alloy samples that only received a very low magnetic field tempering treatment at a tempering temperature that was 67% lower than the current non-magnetic field enhanced commercial process and for a brief tempering time of 20% of the time required in their current process at the higher temperature. These significant developments, that require further demonstration and investigation on current commercial and other alloy systems, promise the evolution of a much more energy efficient and lower-carbon footprint process to be used in the future to produce stronger, tougher, and lighter weight truck rails. The property increases in the truck rails themselves will enable lighter weight truck side-rails to be produced which will reduce the overall weight of heavy duty trucks which will reduce fuel consumption and be an enabler of the goals of the DOE EERE SuperTruck Program where fuel consumption reductions of 50% are targeted for the future generation of trucks.

  8. The Use of Transportable Processing Systems for the Treatment of Radioactive Nuclear Wastes

    SciTech Connect

    Phillips, Ch.; Houghton, D.; Crawford, G.

    2008-07-01

    EnergySolutions has developed two major types of radioactive processing plants based on its experience in the USA and UK, and its exclusive North American access to the intellectual property and know-how developed over 50 years at the Sellafield nuclear site in the UK. Passive Secure Cells are a type of hot cell used in place of the Canyons typically used in US-designed radioactive facilities. They are used in permanent, large scale plants suitable for long term processing of large amounts of radioactive material. The more recently developed Transportable Processing Systems, which are the subject of this paper, are used for nuclear waste processing and clean-up when processing is expected to be complete within shorter timescales and when it is advantageous to be able to move the processing equipment amongst a series of geographically spread-out waste treatment sites. Such transportable systems avoid the construction of a monolithic waste processing plant which itself would require extensive decommissioning and clean-up when its mission is complete. This paper describes a range of transportable radioactive waste processing equipment that EnergySolutions and its partners have developed including: the portable MOSS drum-based waste grouting system, the skid mounted MILWPP large container waste grouting system, the IPAN skid-mounted waste fissile content non-destructive assay system, the Wiped Film Evaporator low liquid hold-up transportable evaporator system, the CCPU transportable solvent extraction cesium separation system, and the SEP mobile shielded cells for emptying radioactive debris from water-filled silos. Maximum use is made of proven, robust, and compact processing equipment such as centrifugal contactors, remote sampling systems, and cement grout feed and metering devices. Flexible, elastomer-based Hose-in-Hose assemblies and container-based transportable pump booster stations are used in conjunction with these transportable waste processing units for

  9. School Travel Planning: Mobilizing School and Community Resources to Encourage Active School Transportation

    ERIC Educational Resources Information Center

    Buliung, Ron; Faulkner, Guy; Beesley, Theresa; Kennedy, Jacky

    2011-01-01

    Background: Active school transport (AST), school travel using an active mode like walking, may be important to children's overall physical activity. A "school travel plan" (STP) documents a school's transport characteristics and provides an action plan to address school and neighborhood barriers to AST. Methods: We conducted a pilot STP…

  10. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  11. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  12. Field and theoretical aspects of explosive volcanic transport processes

    SciTech Connect

    Valentine, G.A.

    1988-12-01

    Chapter 1 presents results of a study of deposits at the base of the large-volume Peach Springs Tuff ignimbrite (referred to as layer 1). The layer 1 deposits are interpreted to record initial blasting and pyroclastic surge events at the beginning of the eruption. Changes in bedding structures with increasing flow distance are related to the decreasing sediment load of the surges and possibly to shocks in the surges. In Chapter 2 stratified glow theory is applied to pyroclastic surges. Particle transport is assumed to be turbulent suspension. The discussion centers on the Rouse, Froude, and Richardson numbers, and the Brunt-Vaisala frequency. Chapter 3 presents results of simulations Plinian eruption columns based upon numerical solution of the time-dependent, two-phase, compressible Navier-Stokes equations. Consideration of dimensionless groups define conditions leading to column collapse. Collapsing fountains form pyroclastic flows that consist of low-concentration fronts, relatively thick heads, vortex development along the top surfaces, and rising clouds of buoyant ash. The presence of coarse-grained proximal deposits primarily reflects tephra sorting within the eruption column before collapse. 154 refs., 32 figs., 2 tabs.

  13. Partial ages: diagnosing transport processes by means of multiple clocks

    NASA Astrophysics Data System (ADS)

    Mouchet, Anne; Cornaton, Fabien; Deleersnijder, Éric; Delhez, Éric J. M.

    2016-03-01

    The concept of age is widely used to quantify the transport rate of tracers - or pollutants - in the environment. The age focuses only on the time taken to reach a given location and disregards other aspects of the path followed by the tracer parcel. To keep track of the subregions visited by the tracer parcel along this path, partial ages are defined as the time spent in the different subregions. Partial ages can be computed in an Eulerian framework in much the same way as the usual age by extending the Constituent oriented Age and Residence Time theory (CART, www.climate.be/CART

  14. Study of salt transport processes in Delaware Bay

    USGS Publications Warehouse

    Walters, Roy

    1992-01-01

    The study described here is a subset of a broader climate-related study, and is focused primarily on salinity intrusion into Delaware Bay and River. Given changes in freshwater discharge into the Delaware River as determined from the larger study, and given probable sea level rise estimates, the purpose here is to calculate the distribution of salinity within Delaware Bay and River. The approach adopted for this study is composed of two parts: an analysis of existing physical data in order to derive a basic understanding of the salt dynamics, and numerical simulation of future conditions based on this analysis. There are two important constraints in the model used: it must resolve the spatial scales important to the salt dynamics, and it must be sufficiently efficient to allow extensive sensitivity studies. This has led to the development of a 3D model that uses harmonic decomposition in time and irregular finite elements in space. All nonlinear terms are retained in the governing equations, including quadratic bottom stress, advection, and wave transport (continuity nonlinearity). These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. Although this study is still in progress, the model has reproduced sea level variations and the 3D structure of tidal and residual currents very well. In addition, the study has addressed the effects of a 1-meter rise in mean sea level on hydrodynamics of the study area. Current work is focused on salt dynamics.

  15. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  16. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  17. 15 CFR 400.31 - Manufacturing and processing activity; criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Manufacturing and processing activity... ZONES BOARD Manufacturing and Processing Activity-Reviews § 400.31 Manufacturing and processing activity....” When evaluating zone and subzone manufacturing and processing activity, either as proposed in...

  18. Quasi-Three-Dimensional Mathematical Modeling of Morphological Processes Based on Equilibrium Sediment Transport

    NASA Astrophysics Data System (ADS)

    Charafi, My. M.; Sadok, A.; Kamal, A.; Menai, A.

    A quasi-three-dimensional mathematical model has been developed to study the morphological processes based on equilibrium sediment transport method. The flow velocities are computed by a two-dimensional horizontal depth-averaged flow model (H2D) in combination with logarithmic velocity profiles. The transport of sediment particles by a flow water has been considered in the form of bed load and suspended load. The bed load transport rate is defined as the transport of particles by rolling and saltating along the bed surface and is given by the Van Rijn relationship (1987). The equilibrium suspended load transport is described in terms of an equilibrium sediment concentration profile (ce) and a logarithmic velocity (u). Based on the equilibrium transport, the bed change rate is given by integration of the sediment mass-balance equation. The model results have been compared with a Van Rijn results (equilibrium approach) and good agreement has been found.

  19. Evaluation of Transportation Vibration Associated with Relocation of Work in Process As Part of KCRIMS

    SciTech Connect

    Hartwig, Troy

    2013-04-01

    During relocation of the Kansas City Plant (KCP) from the site at Bannister Road to the site at Botts Road, work in process (WIP) within a production department must be transported. This report recommends packaging to mitigate vibration levels experienced by products during between-facility transportation. Measurements and analysis demonstrate that this mitigation results in vibration levels less than those experienced by the product during routine production processes within potentially damaging frequency ranges.

  20. Are the correlates of active school transport context-specific?

    PubMed Central

    Larouche, R; Sarmiento, O L; Broyles, S T; Denstel, K D; Church, T S; Barreira, T V; Chaput, J-P; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T

    2015-01-01

    OBJECTIVES: Previous research consistently indicates that children who engage in active school transport (AST) are more active than their peers who use motorized modes (car or bus). However, studies of the correlates of AST have been conducted predominantly in high-income countries and have yielded mixed findings. Using data from a heterogeneous sample of 12 country sites across the world, we investigated the correlates of AST in 9–11-year olds. METHODS: The analytical sample comprised 6555 children (53.8% girls), who reported their main travel mode to school and the duration of their school trip. Potential individual and neighborhood correlates of AST were assessed with a parent questionnaire adapted from previously validated instruments. Multilevel generalized linear mixed models (GLMM) were used to examine the associations between individual and neighborhood variables and the odds of engaging in AST while controlling for the child's school. Site moderated the relationship of seven of these variables with AST; therefore we present analyses stratified by site. RESULTS: The prevalence of AST varied from 5.2 to 79.4% across sites and the school-level intra-class correlation ranged from 0.00 to 0.56. For each site, the final GLMM included a different set of correlates of AST. Longer trip duration (that is, ⩾16 min versus ⩽15 min) was associated with lower odds of AST in eight sites. Other individual and neighborhood factors were associated with AST in three sites or less. CONCLUSIONS: Our results indicate wide variability in the prevalence and correlates of AST in a large sample of children from twelve geographically, economically and culturally diverse country sites. This suggests that AST interventions should not adopt a ‘one size fits all' approach. Future research should also explore the association between psychosocial factors and AST in different countries. PMID:27152191

  1. Grout pump selection process for the Transportable Grout Facility

    SciTech Connect

    McCarthy, D.; Treat, R.L.

    1985-01-01

    Selected low-level radioactive liquid wastes at Hanford will be disposed by grouting. Grout is formed by mixing the liquid wastes with solid materials, including Portland cement, fly ash, and clay. The mixed grouts will be pumped to disposal sites (e.g., trenches and buried structures) where the grout will be allowed to harden and, thereby, immobilize the wastes. A Transportable Grout Facility (TGF) will be constructed and operated by Rockwell Hanford Operations to perform the grouting function. A critical component of the TGF is the grout pump. A preliminary review of pumping requirements identified reciprocating pumps and progressive cavity pumps as the two classes of pumps best suited for the application. The advantages and disadvantages of specific types of pumps within these two classes were subsequently investigated. As a result of this study, the single-screw, rotary positive displacement pump was identified as the best choice for the TGF application. This pump has a simple design, is easy to operate, is rugged, and is suitable for a radioactive environment. It produces a steady, uniform flow that simplifies suction and discharge piping requirements. This pump will likely require less maintenance than reciprocating pumps and can be disassembled rapidly and decontaminated easily. If the TGF should eventually require discharge pressures in excess of 500 psi, a double-acting duplex piston pump is recommended because it can operate at low speed, with only moderate flow rate fluctuations. However, the check valves, stuffing box, piston, suction, and discharge piping must be designed carefully to allow trouble-free operations.

  2. Fluid transport processes within sea ice: towards physically derived models

    NASA Astrophysics Data System (ADS)

    Wells, A. J.; Wettlaufer, J. S.; Orszag, S.

    2012-12-01

    Rather than being an impermeable solid barrier, young sea ice forms a porous matrix of ice crystals through which the interstitial brine can flow. Gravity drainage of dense brine is of particular importance in young sea ice, with the resulting fluid flow redistributing heat, salt, and passive tracers through the ice and controlling exchanges with the ocean. Hence, an understanding of this buoyancy-driven flow is critical for quantifying ice-ocean tracer fluxes, biogeochemical cycles, and evolution of the salinity-dependent material properties of ice that influence growth and decay. We use mushy layer theory, which describes the thermodynamics of the relevant multiphase flow, simulations and analogue experiments to provide insight into these processes. The approach provides a structure to evaluate ad-hoc parameterizations of brine drainage for consistency with the underlying physics. The resulting theoretical framework points towards a bottom-up approach to deriving models via a homogenization of the underlying physical processes.

  3. [Transport processes of Fukushima derived radioactivity in the Pacific Ocean].

    PubMed

    Aoyama, Michio

    2014-01-01

    Before the Fukushima Nuclear Power Plant 1 (FNPP1) accident, environmental (137)Cs was already detectable originating from nuclear weapon tests conducted in the late 1950s and early 1960s. In the western North Pacific Ocean, (90)Sr and (137)Cs activities in surface water were 10-100 Bqm(-3) in the late 1950s and early 1960s, then this parameter decreased gradually; (137)Cs activity in surface water subsequently decreased to around a few Bq m(-3). After the FNPP1 accident, (137)Cs and (134)Cs were released into the North Pacific Ocean by two pathways, direct discharge from the Fukushima NPP1 accident site and atmospheric deposition off Honshu Islands of Japan, east and northeast of the site. High-density observations of (137)Cs and (134)Cs in the surface water were carried out by 17 VOS cruises and several research vessel cruises between April 2011 and March 2012. The main body of radioactive surface plume of which activity exceeded 10 Bqm(-3) traveled along 40°N, and reached the International Date Line in March 2012, 1 year after the accident. The radioactive plume was confined along 40°N when the plume reached the International Date Line. Zonal speed of the radioactive plume was estimated to be about 8 cm s(-1), which is consistent with zonal speeds derived by Argo floats at the region.

  4. Identification of sorption processes and parameters for radionuclide transport in fractured rock

    NASA Astrophysics Data System (ADS)

    Dai, Zhenxue; Wolfsberg, Andrew; Reimus, Paul; Deng, Hailin; Kwicklis, Edward; Ding, Mei; Ware, Doug; Ye, Ming

    2012-01-01

    SummaryIdentification of chemical reaction processes in subsurface environments is a key issue for reactive transport modeling because simulating different processes requires developing different chemical-mathematical models. In this paper, two sorption processes (equilibrium and kinetics) are considered for modeling neptunium and uranium sorption in fractured rock. Based on different conceptualizations of the two processes occurring in fracture and/or matrix media, seven dual-porosity, multi-component reactive transport models are developed. The process models are identified with a stepwise strategy by using multi-tracer concentration data obtained from a series of transport experiments. In the first step, breakthrough data of a conservative tracer (tritium) obtained from four experiments are used to estimate the flow and non-reactive transport parameters (i.e., mean fluid residence time in fracture, fracture aperture, and matrix tortuosity) common to all the reactive transport models. In the second and third steps, by fixing the common non-reactive flow and transport parameters, the sorption parameters (retardation factor, sorption coefficient, and kinetic rate constant) of each model are estimated using the breakthrough data of reactive tracers, neptunium and uranium, respectively. Based on the inverse modeling results, the seven sorption-process models are discriminated using four model discrimination (or selection) criteria, Akaike information criterion ( AIC), modified Akaike information criterion ( AICc), Bayesian information criterion ( BIC) and Kashyap information criterion ( KIC). These criteria suggest the kinetic sorption process for modeling reactive transport of neptunium and uranium transport in both fracture and matrix. This conclusion is confirmed by two chemical criteria, the half reaction time and Damköhler number criterion.

  5. Structural and transport studies on nanostructured SnS synthesized by solvothermal process

    NASA Astrophysics Data System (ADS)

    Agarwal, Pratima; Paul, Gouri S.

    2009-03-01

    Nanostructured SnS has a lot of interest due to its potential application in optoelectronic devices such as solar absorber, near-infrared detector and as a holographic recording medium. SnS usually exhibits p-type conduction and reported to have a direct band gap of about 1.32-1.5 eV and an indirect band gap of 1-1.3 eV dependent of the condition of preparation. In this work we report structural and transport studies on nanostructured SnS synthesized by solvothermal process for different reaction time (RT). Structural and morphological analyses are carried out by XRD, SEM and TEM. It is observed that structure of the as-prepared SnS powder samples vary with RT. SAED patterns reveal that as synthesized SnS are single crystals. Transport measurements done on thin films prepared by Doctor's blade techniques show that films are thermally stable and uniform through out the surface. The conductivity of the SnS thin films is measured in coplanar geometry in the temperature range (303--463) K. The films show thermally activated conduction and the curves are identical for both heating and cooling cycle.

  6. Correlated activity supports efficient cortical processing

    PubMed Central

    Hung, Chou P.; Cui, Ding; Chen, Yueh-peng; Lin, Chia-pei; Levine, Matthew R.

    2015-01-01

    Visual recognition is a computational challenge that is thought to occur via efficient coding. An important concept is sparseness, a measure of coding efficiency. The prevailing view is that sparseness supports efficiency by minimizing redundancy and correlations in spiking populations. Yet, we recently reported that “choristers”, neurons that behave more similarly (have correlated stimulus preferences and spontaneous coincident spiking), carry more generalizable object information than uncorrelated neurons (“soloists”) in macaque inferior temporal (IT) cortex. The rarity of choristers (as low as 6% of IT neurons) indicates that they were likely missed in previous studies. Here, we report that correlation strength is distinct from sparseness (choristers are not simply broadly tuned neurons), that choristers are located in non-granular output layers, and that correlated activity predicts human visual search efficiency. These counterintuitive results suggest that a redundant correlational structure supports efficient processing and behavior. PMID:25610392

  7. Nitrite-Specific Active Transport System of the Cyanobacterium Synechococcus sp. Strain PCC 7942

    PubMed Central

    Maeda, Shin-ichi; Okamura, Masato; Kobayashi, Masaki; Omata, Tatsuo

    1998-01-01

    Studies on the nitrite uptake capability of a mutant of Synechococcus sp. strain PCC 7942 lacking the ATP-binding cassette-type nitrate-nitrite-bispecific transporter revealed the occurrence of a nitrite-specific active transport system with an apparent Km (NO2−) of about 20 μM. Similar to the nitrate-nitrite-bispecific transporter, the nitrite-specific transporter was reversibly inhibited by ammonium in the medium. PMID:9852027

  8. Transport processes investigation: A necessary first step in site scale characterization plans

    SciTech Connect

    Roepke, C.; Glass, R.J.; Brainard, J.; Mann, M.; Kriel, K.; Holt, R.; Schwing, J.

    1995-03-01

    We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media.

  9. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    PubMed Central

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-01-01

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the conserved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. Our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate. PMID:25377891

  10. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    SciTech Connect

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-11-07

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, which coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.

  11. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter

    DOE PAGES

    Grossmann, Nina; Vakkasoglu, Ahmet S.; Hulpke, Sabine; Abele, Rupert; Gaudet, Rachelle; Tampé, Robert

    2014-11-07

    The ATP-binding cassette (ABC) transporter associated with antigen processing (TAP) participates in immune surveillance by moving proteasomal products into the endoplasmic reticulum (ER) lumen for major histocompatibility complex class I loading and cell surface presentation to cytotoxic T cells. Here we delineate the mechanistic basis for antigen translocation. Notably, TAP works as a molecular diode, translocating peptide substrates against the gradient in a strict unidirectional way. We reveal the importance of the D-loop at the dimer interface of the two nucleotide-binding domains (NBDs) in coupling substrate translocation with ATP hydrolysis and defining transport vectoriality. Substitution of the converved aspartate, whichmore » coordinates the ATP-binding site, decreases NBD dimerization affinity and turns the unidirectional primary active pump into a passive bidirectional nucleotide-gated facilitator. Thus, ATP hydrolysis is not required for translocation per se, but is essential for both active and unidirectional transport. As a result, our data provide detailed mechanistic insight into how heterodimeric ABC exporters operate.« less

  12. Environmental impact assessment in urban transport planning: Exploring process-related barriers in Spanish practice

    SciTech Connect

    Soria-Lara, Julio A. Bertolini, Luca Brömmelstroet, Marco te

    2015-01-15

    The effectiveness of EIA for evaluating transport planning projects is increasingly being questioned by practitioners, institutions and scholars. The academic literature has traditionally focused more on solving content-related problems with EIA (i.e. the measurement of environmental effects) than on process-related issues (i.e. the role of EIA in the planning process and the interaction between key actors). Focusing only on technical improvements is not sufficient for rectifying the effectiveness problems of EIA. In order to address this knowledge gap, the paper explores how EIA is experienced in the Spanish planning context and offers in-depth insight into EIA process-related issues in the field of urban transport planning. From the multitude of involved actors, the research focuses on exploring the perceptions of the two main professional groups: EIA developers and transport planners. Through a web-based survey we assess the importance of process-related barriers to the effective use of EIA in urban transport planning. The analyses revealed process issues based fundamentally on unstructured stakeholders involvement and an inefficient public participation - Highlights: • Qualitative research on perceptions of EIA participants on EIA processes. • Web-based survey with different participants (EIA-developers; transport planners). • It was seen an inefficient participation of stakeholders during the EIA processes.

  13. [GABA(A)-Coupled Cl-/HCO3(-)-ATPase: Candidate for an Novel Primary Active Transporter in Neuronal Membranes].

    PubMed

    Menzikov, S A

    2015-01-01

    Cl(-)-transport systems in cell membranes from various origins (including neurons) play an important role in different processes of their vital functions. Various transport mechanisms involved in the maintenance of intracellular concentration of Cl- that differs from concentration equilibrium have been considered. This review provides the biochemical properties of the GABA(A)-coupled Cl-/HCO3(-)-ATPase which is a candidate for an novel primary active system in neuronal membranes. Special emphasis has been placed on a review of the prerequisites for the existence of the GABA(A)-coupled ATPase. This work provides data for the benefit not only functional but also the alleged structural coupling of the enzyme with GABA(A)-receptors. It is concluded on the importance of the found ATPase in primary active transport processes across the plasma membrane of neuronal cells with different level of the organization.

  14. Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen-activated protein kinase activation and transporter phosphorylation.

    PubMed

    Schwamborn, Robert; Brown, Eric; Haase, Jana

    2016-05-01

    The serotonin transporter (SERT) is responsible for high-affinity serotonin (5-HT) uptake from extracellular fluid and is a prominent pharmacological target in the treatment of depression. In recent years, depression has also been linked to immune system activation. Inflammatory conditions can cause sickness behaviour and depression-like symptoms in both animals and humans. Since SERT has been proposed as one of the molecular targets in inflammation-induced depression, we applied the widely used lipopolysaccharides (LPS) model to study the effects of peripheral inflammation on SERT activity in the brain. We show that 24 h after intraperitoneal LPS administration, SERT-mediated 5-HT uptake is significantly enhanced in the frontal cortex. Analysis of uptake kinetics revealed that the transport capacity (Vmax ) of cortical SERT was increased in LPS-injected animals, while the Km value remained unchanged. The increase in Vmax was neither due to increased SERT protein expression nor increased synaptic surface exposure. The suppression of SERT activity upon inhibition of p38 MAPK was not selective for LPS-induced enhancement of SERT function. In addition, SERT activity changes in LPS-treated rats are unaffected by nitric oxide synthase and protein kinase G inhibitors. Using the Phos-Tag method, we identified five SERT-specific protein bands representing distinct phosphorylation states of SERT. However, the enhancement of SERT activity in LPS-treated rats was not correlated with altered transporter phosphorylation. Together with previous studies by others, our results suggest that SERT is regulated by multiple mechanisms in response to peripheral immune system activation. Peripheral injection of lipopolysaccharide (LPS) induces characteristic sickness and depression-like behaviour in rats over a period of at least 24 h. We show here that the activity of the serotonin transporter (SERT), a prominent antidepressant target, is up-regulated 24 h following LPS

  15. Elevation of cortical serotonin transporter activity upon peripheral immune challenge is regulated independently of p38 mitogen-activated protein kinase activation and transporter phosphorylation.

    PubMed

    Schwamborn, Robert; Brown, Eric; Haase, Jana

    2016-05-01

    The serotonin transporter (SERT) is responsible for high-affinity serotonin (5-HT) uptake from extracellular fluid and is a prominent pharmacological target in the treatment of depression. In recent years, depression has also been linked to immune system activation. Inflammatory conditions can cause sickness behaviour and depression-like symptoms in both animals and humans. Since SERT has been proposed as one of the molecular targets in inflammation-induced depression, we applied the widely used lipopolysaccharides (LPS) model to study the effects of peripheral inflammation on SERT activity in the brain. We show that 24 h after intraperitoneal LPS administration, SERT-mediated 5-HT uptake is significantly enhanced in the frontal cortex. Analysis of uptake kinetics revealed that the transport capacity (Vmax ) of cortical SERT was increased in LPS-injected animals, while the Km value remained unchanged. The increase in Vmax was neither due to increased SERT protein expression nor increased synaptic surface exposure. The suppression of SERT activity upon inhibition of p38 MAPK was not selective for LPS-induced enhancement of SERT function. In addition, SERT activity changes in LPS-treated rats are unaffected by nitric oxide synthase and protein kinase G inhibitors. Using the Phos-Tag method, we identified five SERT-specific protein bands representing distinct phosphorylation states of SERT. However, the enhancement of SERT activity in LPS-treated rats was not correlated with altered transporter phosphorylation. Together with previous studies by others, our results suggest that SERT is regulated by multiple mechanisms in response to peripheral immune system activation. Peripheral injection of lipopolysaccharide (LPS) induces characteristic sickness and depression-like behaviour in rats over a period of at least 24 h. We show here that the activity of the serotonin transporter (SERT), a prominent antidepressant target, is up-regulated 24 h following LPS

  16. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    SciTech Connect

    Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

  17. Transport phenomena of reactive fluid flow in heterogeneous combustion processes.

    NASA Technical Reports Server (NTRS)

    Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.

    1972-01-01

    A previously developed computer program was used to model two transient hybrid combustion processes involving tubes of solid Plexiglas. In the first study, representing combustion of a hybrid rocket, the oxidizing gas was oxygen, and calculations were continued sufficiently long to obtain steady-state values. Systematic variations were made in reaction rate constant, mass flow rate, and pressure, alternatively using constant and temperature dependent regression rate models for the fuel surface. Consistent results were obtained, as is evidenced by the values for the mass function of the reaction product and the flame temperature, for which plots are supplied. In the second study, fire initiation in a duct was studied, with an air mixture as the oxidizing gas. It was demonstrated that a satisfactory flame spread mechanism could be reproduced on the computer. In both of the above applications, the general, transient, two-dimensional conservation equations were represented, together with chemical reactions, solid-fuel interface conditions, and heat conduction in the solid fuel.

  18. Neoclassical plasma viscosity and transport processes in non-axisymmetric tori

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Ida, K.; Sabbagh, S. A.

    2015-11-01

    Neoclassical transport processes are important to the understanding of plasma confinement physics in doubly periodic magnetized toroidal plasmas, especially, after the impact of the momentum confinement on the particle and energy confinement is recognized. Real doubly periodic tori in general are non-axisymmetric, with symmetric tori as a special case. An eight-moment approach to transport theory with plasma density N, plasma pressure p, mass flow velocity V and heat flow q as independent variables is adopted. Transport processes are dictated by the solutions of the momentum and heat flux balance equations. For toroidal plasma confinement devices, the first order (in the gyro-radius ordering) plasma flows are on the magnetic surface to guarantee good plasma confinement and are thus two-dimensional. Two linearly independent components of the momentum equation are required to determine the flows completely. Once this two-dimensional flow is relaxed, i.e. the momentum equation reaches a steady state, plasmas become ambipolar, and all the transport fluxes are determined through the flux-force relation. The flux-force relation is derived both from the kinetic definitions for the transport fluxes and from the manipulation of the momentum and heat flux balance equations to illustrate the nature of the transport fluxes by examining their corresponding driven forces and their roles in the momentum and heat flux balance equations. Steady-state plasma flows are determined by the components of the stress and heat stress tensors in the momentum and heat flux balance equations. This approach emphasizes the pivotal role of the momentum equation in the transport processes and is particularly useful in modelling plasma flows in experiments. The methodology for neoclassical transport theory is applied to fluctuation-driven transport fluxes in the quasilinear theory to unify these two theories. Experimental observations in tokamaks and stellarators for the physics discussed are

  19. Imaging on a Shoestring: Cost-Effective Technologies for Probing Vadose Zone Transport Processes

    NASA Astrophysics Data System (ADS)

    Corkhill, C.; Bridge, J. W.; Barns, G.; Fraser, R.; Romero-Gonzalez, M.; Wilson, R.; Banwart, S.

    2010-12-01

    Key barriers to the widespread uptake of imaging technology for high spatial resolution monitoring of porous media systems are cost and accessibility. X-ray tomography, magnetic resonance imaging (MRI), gamma and neutron radiography require highly specialised equipment, controlled laboratory environments and/or access to large synchrotron facilities. Here we present results from visible light, fluorescence and autoradiographic imaging techniques developed at low cost and applied in standard analytical laboratories, adapted where necessary at minimal capital expense. UV-visible time lapse fluorescence imaging (UV-vis TLFI) in a transparent thin bed chamber enabled microspheres labelled with fluorescent dye and a conservative fluorophore solute (disodium fluorescein) to be measured simultaneously in saturated, partially-saturated and actively draining quartz sand to elucidate empirical values for colloid transport and deposition parameters distributed throughout the flow field, independently of theoretical approximations. Key results include the first experimental quantification of the effects of ionic strength and air-water interfacial area on colloid deposition above a capillary fringe, and the first direct observations of particle mobilisation and redeposition by moving saturation gradients during drainage. UV-vis imaging was also used to study biodegradation and reactive transport in a variety of saturated conditions, applying fluorescence as a probe for oxygen and nitrate concentration gradients, pH, solute transport parameters, reduction of uranium, and mapping of two-dimensional flow fields around a model dipole flow borehole system to validate numerical models. Costs are low: LED excitation sources (< US 50), flow chambers (US 200) and detectors (although a complete scientific-grade CCD set-up costs around US$ 8000, robust datasets can be obtained using a commercial digital SLR camera) mean that set-ups can be flexible to meet changing experimental

  20. Causes and Consequences of Variability in Drug Transporter Activity in Pediatric Drug Therapy.

    PubMed

    Rodieux, Frédérique; Gotta, Verena; Pfister, Marc; van den Anker, Johannes N

    2016-07-01

    Drug transporters play a key role in mediating the uptake of endo- and exogenous substances into cells as well as their efflux. Therefore, variability in drug transporter activity can influence pharmaco- and toxicokinetics and be a determinant of drug safety and efficacy. In children, particularly in neonates and young infants, the contribution of tissue-specific drug transporters to drug absorption, distribution, and excretion may differ from that in adults. In this review 5 major factors and their interdependence that may influence drug transporter activity in children are discussed: developmental differences, genetic polymorphisms, pediatric comorbidities, interacting comedication, and environmental factors. Even if data are sparse, altered drug transporter activity due to those factors have been associated with clinically relevant differences in drug disposition, efficacy, and safety in pediatric patients. Single nucleotide polymorphisms in drug transporter-encoding genes were the most studied source of drug transporter variability in children. However, in the age group where drug transporter activity has been reported to differ from that in adults, namely neonates and young infants, hardly any studies have been performed. Longitudinal studies in this young population are required to investigate the age- and disease-dependent genotype-phenotype relationships and relevance of drug transporter drug-drug interactions. Physiologically based pharmacokinetic modeling approaches can integrate drug- and patient-specific parameters, including drug transporter ontogeny, and may further improve in silico predictions of pediatric-specific pharmacokinetics. PMID:27385174

  1. Transport processes and mutual interactions of three bacterial strains in saturated porous media

    NASA Astrophysics Data System (ADS)

    Stumpp, Christine; Lawrence, John R.; Hendry, M. Jim; Maloszewski, Pitor

    2010-05-01

    Transport processes of the bacterial strains Klebsiella oxytoca, Burkholderia cepacia G4PR-1 and Pseudomonas sp #5 were investigated in saturated column experiments to study the differences in transport characteristics and the mutual interactions of these strains during transport. Soil column experiments (114 mm long x 33 mm in diameter) were conducted with constant water velocities (3.9-5.7 cm/h) through a medium to coarse grained silica sand. All experiments were performed in freshly packed columns in quadruplicate. Chloride was used as tracer to determine the mean transit time, dispersivity and flow rate. It was injected as a pulse into the columns together with the bacterial strains suspended in artificial groundwater medium. In the first setup, each strain was investigated alone. In the second setup, transport processes were performed injecting two strains simultaneously. Finally, the transport characteristics were studied in successive experiments when one bacterium was resident on the sand grains prior to the introduction of the second strain. In all experiments the peak C/Co bacterial concentrations were attenuated with respect to the conservative tracer chloride and a well defined tailing was observed. A one dimensional mathematical model for advective-dispersive transport that accounts for irreversible and reversible sorption was used to analyze the bacterial breakthrough curves and tailing patterns. It was shown that the sorption parameters were different for the three strains that can be explained by the properties of the bacteria. For the species Klebsiella oxytoca and Burkholderia cepacia G4PR-the transport parameters were mostly in the same range independent of the experimental setup. However, Pseudomonas sp #5, which is a motile bacterium, showed differences in the breakthrough curves and sorption parameters during the experiments. The simultaneous and successive experiments indicated an influence on the reversible sorption processes when another

  2. p-process nucleosynthesis: Activation experiments

    NASA Astrophysics Data System (ADS)

    Glorius, J.; Knörzer, M.; Müller, S.; Pietralla, N.; Sauerwein, A.; Sonnabend, K.; Wälzlein, C.; Wiescher, M.

    2011-04-01

    For the astrophysical p process a complex reaction network has to be solved. In the order of 10,000 theoretically predicted reaction rates are needed for simulations of this network. For reactions involving α particles or protons, the predictions in the framework of the Hauser-Feshbach (HF) model were found to deviate from experimental results partially by a factor of 5 or even more. To optimize the predictive power of the applied HF codes, the nuclear physics input has to be improved. For this purpose, the reactions 166ErTm(p,n) as well as the reaction 170Yb(γ,n) have been measured with the activation method at low energies. The data can provide a further test of HF predictions but can also be used to optimize input parameters of the afore mentioned codes. Preliminary results of the experiments are presented and compared to theoretical predictions using the standard settings of the HF codes NON-SMOKER and TALYS.

  3. Littoral transport rates in the Santa Barbara Littoral Cell: a process-based model analysis

    USGS Publications Warehouse

    Elias, E. P. L.; Barnard, Patrick L.; Brocatus, John

    2009-01-01

    Identification of the sediment transport patterns and pathways is essential for sustainable coastal zone management of the heavily modified coastline of Santa Barbara and Ventura County (California, USA). A process-based model application, based on Delft3D Online Morphology, is used to investigate the littoral transport potential along the Santa Barbara Littoral Cell (between Point Conception and Mugu Canyon). An advanced optimalization procedure is applied to enable annual sediment transport computations by reducing the ocean wave climate in 10 wave height - direction classes. Modeled littoral transport rates compare well with observed dredging volumes, and erosion or sedimentation hotspots coincide with the modeled divergence and convergence of the transport gradients. Sediment transport rates are strongly dependent on the alongshore variation in wave height due to wave sheltering, diffraction and focusing by the Northern Channel Islands, and the local orientation of the geologically-controlled coastline. Local transport gradients exceed the net eastward littoral transport, and are considered a primary driver for hot-spot erosion.

  4. Modeling the coupled mechanics, transport, and growth processes in collagen tissues.

    SciTech Connect

    Holdych, David J.; Nguyen, Thao D.; Klein, Patrick A.; in't Veld, Pieter J.; Stevens, Mark Jackson

    2006-11-01

    The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

  5. Increase in multidrug transport activity is associated with oocyte maturation in sea stars.

    PubMed

    Roepke, Troy A; Hamdoun, Amro M; Cherr, Gary N

    2006-12-01

    In this study, we report on the presence of efflux transporter activity before oocyte maturation in sea stars and its upregulation after maturation. This activity is similar to the multidrug resistance (MDR) activity mediated by ATP binding cassette (ABC) efflux transporters. In sea star oocytes the efflux activity, as measured by exclusion of calcein-am, increased two-fold 3 h post-maturation. Experiments using specific and non-specific dyes and inhibitors demonstrated that the increase in transporter activity involves an ABCB protein, P-glycoprotein (P-gp), and an ABCC protein similar to the MDR-associated protein (MRP)-like transporters. Western blots using an antibody directed against mammalian P-gp recognized a 45 kDa protein in sea star oocytes that increased in abundance during maturation. An antibody directed against sea urchin ABCC proteins (MRP) recognized three proteins in immature oocytes and two in mature oocytes. Experiments using inhibitors suggest that translation and microtubule function are both required for post-maturation increases in transporter activity. Immunolabeling revealed translocation of stored ABCB proteins to the plasma cell membrane during maturation, and this translocation coincided with increased transport activity. These MDR transporters serve protective roles in oocytes and eggs, as demonstrated by sensitization of the oocytes to the maturation inhibitor, vinblastine, by MRP and PGP-specific transporter inhibitors.

  6. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  7. Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes.

    PubMed

    Sarrazin, Stéphane; Wilson, Beth; Sly, William S; Tor, Yitzhak; Esko, Jeffrey D

    2010-07-01

    Guanidinylated neomycin (GNeo) can transport bioactive, high molecular weight cargo into the interior of cells in a process that depends on cell surface heparan sulfate proteoglycans. In this report, we show that GNeo-modified quantum dots bind to cell surface heparan sulfate, undergo endocytosis and eventually reach the lysosomal compartment. An N-hydroxysuccinimide activated ester of GNeo (GNeo-NHS) was prepared and conjugated to two lysosomal enzymes, beta-D-glucuronidase (GUS) and alpha-L-iduronidase. Conjugation did not interfere with enzyme activity and enabled binding of the enzymes to heparin-Sepharose and heparan sulfate on primary human fibroblasts. Cells lacking the corresponding lysosomal enzyme took up sufficient amounts of the conjugated enzymes to restore normal turnover of glycosaminoglycans. The high capacity of proteoglycan-mediated uptake suggests that this method of delivery might be used for enzyme replacement or introduction of foreign enzymes into cells.

  8. Assessment of transport processes using a combined pyrolysis-combustion model for the retorting of oil shale

    SciTech Connect

    Crowl, D.A.; Piccirelli, R.A.

    1982-09-01

    A mathematical model is developed to represent the coupled mass and energy transport effects of simultaneous pyrolysis and combustion processes occurring within a single piece of consolidated oil shale. Major emphasis is placed on assessing the relative importance of the coupled transport processes. Numerical solution of the resulting equations using Antrim oil shale parameters show a number of important effects. First, it is possible for the combustion oxygen to diffuse against the outgoing stream of pyrolysis products. Thus, simultaneous pyrolysis and combustion fronts can occur within the same localized region of shale. Second, the heat generated at the combustion front can conduct through the solid shale to the pyrolysis zone. This leads to a substantial increase in pyrolysis activity.

  9. RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants

    SciTech Connect

    Chilakapati, A

    1995-07-01

    This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

  10. The mesoscale sediment transport due to technical activities in the deep sea

    NASA Astrophysics Data System (ADS)

    Jankowski, Jacek A.; Zielke, Werner

    This paper presents a mesoscale model for sediment transport in the deep sea resulting from technical activities such as manganese nodule mining. The model includes the temporal variability of ambient currents, the modification of the water density due to suspended sediments (density driven flow), bottom boundary-layer effects, and the influence of flocculation on the sediment settling velocity. It yields the three-dimensional sediment concentration and the bottom blanketing for time periods of up to a few weeks in areas of up to a few hundred square kilometers. The model also allows simulation of the mobilization, sorption and the transport of heavy metals. Two applications are presented. One treats the sediment transport during the NOAA Benthic Impact Experiment. The other is concerned with dispersion of heavy metals, including the interaction with suspended sediment in the Disturbance and Recolonization Experiment Experimental Area. The model is highly sophisticated with regard to the processes and numerical methods. Nevertheless, a final conclusion concerning the quantification of its prognostic capability for industrial scale operations cannot presently be drawn because of the lack of complete and coherent data sets.

  11. Transforming growth factor β signaling upregulates the expression of human GDP-fucose transporter by activating transcription factor Sp1.

    PubMed

    Xu, Yu-Xin; Ma, Anna; Liu, Li

    2013-01-01

    GDP-fucose transporter plays a crucial role in fucosylation of glycoproteins by providing activated fucose donor, GDP-fucose, for fucosyltransferases in the lumen of the Golgi apparatus. Fucose-containing glycans are involved in many biological processes, which are essential for growth and development. Mutations in the GDP-fucose transporter gene cause leukocyte adhesion deficiency syndrome II, a disease characterized by slow growth, mental retardation and immunodeficiency. However, no information is available regarding its transcriptional regulation. Here, by using human cells, we show that TGF-β1 specifically induces the GDP-fucose transporter expression, but not other transporters tested such as CMP-sialic acid transporter, suggesting a diversity of regulatory pathways for the expression of these transporters. The regulatory elements that are responsive to the TGF-β1 stimulation are present in the region between bp -330 and -268 in the GDP-fucose transporter promoter. We found that this region contains two identical octamer GC-rich motifs (GGGGCGTG) that were demonstrated to be essential for the transporter expression. We also show that the transcription factor Sp1 specifically binds to the GC-rich motifs in vitro and Sp1 coupled with phospho-Smad2 is associated with the promoter region covering the Sp1-binding motifs in vivo using chromatin immunoprecipitation (ChIP) assays. In addition, we further confirmed that Sp1 is essential for the GDP-fucose transporter expression stimulated by TGF-β1 using a luciferase reporter system. These results highlight the role of TGF-β signaling in regulation of the GDP-fucose transporter expression via activating Sp1. This is the first transcriptional study for any nucleotide sugar transporters that have been identified so far. Notably, TGF-β1 receptor itself is known to be modified by fucosylation. Given the essential role of GDP-fucose transporter in fucosylation, the finding that TGF-β1 stimulates the expression of

  12. A vadose zone Transport Processes Investigation within the glacial till at the Fernald Environmental Management Project.

    SciTech Connect

    Schwing, J.; Roepke, Craig Senninger; Brainard, James Robert; Glass, Robert John, Jr.; Mann, Michael J. A.; Holt, Robert M.; Kriel, Kelly

    2007-08-01

    This report describes a model Transport Processes Investigation (TPI) where field-scale vadose zone flow and transport processes are identified and verified through a systematic field investigation at a contaminated DOE site. The objective of the TPI is to help with formulating accurate conceptual models and aid in implementing rational and cost effective site specific characterization strategies at contaminated sites with diverse hydrogeologic settings. Central to the TPI are Transport Processes Characterization (TPC) tests that incorporate field surveys and large-scale infiltration experiments. Hypotheses are formulated based on observed pedogenic and hydrogeologic features as well as information provided by literature searches. The field and literature information is then used to optimize the design of one or more infiltration experiments to field test the hypothesis. Findings from the field surveys and infiltration experiments are then synthesized to formulate accurate flow and transport conceptual models. Here we document a TPI implemented in the glacial till vadose zone at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio, a US Department of Energy (DOE) uranium processing site. As a result of this TPI, the flow and transport mechanisms were identified through visualization of dye stain within extensive macro pore and fracture networks which provided the means for the infiltrate to bypass potential aquatards. Such mechanisms are not addressed in current vadose zone modeling and are generally missed by classical characterization methods.

  13. Borreliacidal activity of Borrelia metal transporter A (BmtA) binding small molecules by manganese transport inhibition

    PubMed Central

    Wagh, Dhananjay; Pothineni, Venkata Raveendra; Inayathullah, Mohammed; Liu, Song; Kim, Kwang-Min; Rajadas, Jayakumar

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, utilizes manganese (Mn) for its various metabolic needs. We hypothesized that blocking Mn transporter could be a possible approach to inhibit metabolic activity of this pathogen and eliminate the infection. We used a combination of in silico protein structure prediction together with molecular docking to target the Borrelia metal transporter A (BmtA), a single known Mn transporter in Borrelia and screened libraries of FDA approved compounds that could potentially bind to the predicted BmtA structure with high affinity. Tricyclic antihistamines such as loratadine, desloratadine, and 3-hydroxydesloratadine as well as yohimbine and tadalafil demonstrated a tight binding to the in silico folded BmtA transporter. We, then, tested borreliacidal activity and dose response of the shortlisted compounds from this screen using a series of in vitro assays. Amongst the probed compounds, desloratadine exhibited potent borreliacidal activity in vitro at and above 78 μg/mL (250 μM). Borrelia treated with lethal doses of desloratadine exhibited a significant loss of intracellular Mn specifically and a severe structural damage to the bacterial cell wall. Our results support the possibility of developing a novel, targeted therapy to treat Lyme disease by targeting specific metabolic needs of Borrelia. PMID:25709405

  14. Implementation of polarization processes in a charge transport model applied on poly(ethylene naphthalate) films

    NASA Astrophysics Data System (ADS)

    Hoang, M.-Q.; Le Roy, S.; Boudou, L.; Teyssedre, G.

    2016-06-01

    One of the difficulties in unravelling transport processes in electrically insulating materials is the fact that the response, notably charging current transients, can have mixed contributions from orientation polarization and from space charge processes. This work aims at identifying and characterizing the polarization processes in a polar polymer in the time and frequency-domains and to implement the contribution of the polarization into a charge transport model. To do so, Alternate Polarization Current (APC) and Dielectric Spectroscopy measurements have been performed on poly(ethylene naphthalene 2,6-dicarboxylate) (PEN), an aromatic polar polymer, providing information on polarization mechanisms in the time- and frequency-domain, respectively. In the frequency-domain, PEN exhibits 3 relaxation processes termed β, β* (sub-glass transitions), and α relaxations (glass transition) in increasing order of temperature. Conduction was also detected at high temperatures. Dielectric responses were treated using a simplified version of the Havriliak-Negami model (Cole-Cole (CC) model), using 3 parameters per relaxation process, these parameters being temperature dependent. The time dependent polarization obtained from the CC model is then added to a charge transport model. Simulated currents issued from the transport model implemented with the polarization are compared with the measured APCs, showing a good consistency between experiments and simulations in a situation where the response comes essentially from dipolar processes.

  15. Perfluoroalkyl Acid Concentrations in Blood Samples Subjected to Transportation and Processing Delay

    PubMed Central

    Bach, Cathrine Carlsen; Henriksen, Tine Brink; Bossi, Rossana; Bech, Bodil Hammer; Fuglsang, Jens; Olsen, Jørn; Nohr, Ellen Aagaard

    2015-01-01

    Background In studies of perfluoroalkyl acids, the validity and comparability of measured concentrations may be affected by differences in the handling of biospecimens. We aimed to investigate whether measured plasma levels of perfluoroalkyl acids differed between blood samples subjected to delay and transportation prior to processing and samples with immediate processing and freezing. Methods Pregnant women recruited at Aarhus University Hospital, Denmark, (n = 88) provided paired blood samples. For each pair of samples, one was immediately processed and plasma was frozen, and the other was delayed and transported as whole blood before processing and freezing of plasma (similar to the Danish National Birth Cohort). We measured 12 perfluoroalkyl acids and present results for compounds with more than 50% of samples above the lower limit of quantification. Results For samples taken in the winter, relative differences between the paired samples ranged between -77 and +38% for individual perfluoroalkyl acids. In most cases concentrations were lower in the delayed and transported samples, e.g. the relative difference was -29% (95% confidence interval -30; -27) for perfluorooctane sulfonate. For perfluorooctanoate there was no difference between the two setups [corresponding estimate 1% (0, 3)]. Differences were negligible in the summer for all compounds. Conclusions Transport of blood samples and processing delay, similar to conditions applied in some large, population-based studies, may affect measured perfluoroalkyl acid concentrations, mainly when outdoor temperatures are low. Attention to processing conditions is needed in studies of perfluoroalkyl acid exposure in humans. PMID:26356420

  16. Applications of Electro-Osmotic Transport in the Processing of Textiles

    SciTech Connect

    Cooper, J.F.; Krueger, R.; Hopper, R.; Cherepy, N.

    1999-11-29

    We report development of a pilot process for the industrial rinsing of fabrics. This process combines hydraulic (pressure-driven) transport with electro-osmotic transport. It reduces the total amount of water required in certain rinsing operations by a factor of about five. Cotton exhibits an electro-osmotic transport coefficient of about 6 x 10{sup -9} m{sup 2}/s-V resulting from a partial ionization of hydroxyl groups on the cellulose polymer substrate. This process applies a field transverse to the fabric to effect the movement of water in the spaces between the 10 {micro}m cotton fibers which constitute the yam. The field strength is adjusted so that the induced electro-osmotic flux is comparable to a pressure-driven flux, which moves preferentially in the more open channels between the yams. For a fixed current density, solution conductivity and electro-osmotic transport vary inversely. The process is most practical for removal of liquids of relatively low conductivity (<500 {micro}S/cm). For removal of solutions of conductivity greater than 1200 {micro}S/cm, the rate of electro-osmotic flow may be too low to benefit the rinsing process if current densities are restricted to practical levels of about 30 mA/cm{sup 2}. Electra-osmotic transport may have important applications in wet processing of extremely fine textiles, such as micro fiber fabrics. In addition to rinsing, electro-osmotic transport may also be used to speed the penetration of chemicals and dyestuffs that are applied to the surface of wet textiles.

  17. Processes and controls of ditch erosion and suspended sediment transport in drained peatland forests

    NASA Astrophysics Data System (ADS)

    Tuukkanen, Tapio; Stenberg, Leena; Marttila, Hannu; Finér, Leena; Piirainen, Sirpa; Koivusalo, Harri; Kløve, Bjørn

    2016-04-01

    Drainage and periodic ditch cleaning are needed in peatland forests to allow adequate tree growth. The downside is that these practices usually increase erosion and transport of organic and inorganic matter to downstream waterbodies. In this study, our aim was to assess the role of hydrological factors and ditch-level bed and bank erosion processes in controlling suspended sediment (SS) transport in peatland forests after ditch cleaning. To do this, a 113 ha catchment and a nested sub-catchment (5.2 ha) in eastern Finland were instrumented for continuous hydrological and SS concentration (turbidity) measurements and for the detection of ditch bed and bank erosion with erosion pins. The impacts of ditch cleaning on instantaneous unit hydrographs were also assessed against two reference catchments. The results suggested that, in small intensively drained catchments, SS transport is likely to be limited by the availability of easily erodible sediment in the ditch network, and that ditch cleaning operations as well as preparatory bank erosion processes such as peat desiccation and frost action can be important in producing erodible sediment for transport. Detachment of soil particle from ditch banks by raindrop impact can also be an important factor explaining variations in SS concentrations in small catchments. In larger drainage areas, peak runoff characteristics may play a more dominant role in SS transport. The results give new insights into the dynamics of sediment transport in drained peatland catchments, which can be useful, for example, for planning and implementation of water conservation measures.

  18. Role of transportation in the persuasion process: cognitive and affective responses to antidrug narratives.

    PubMed

    Banerjee, Smita C; Greene, Kathryn

    2012-01-01

    This study examined transportation effects of first- and third-person narratives as well as the role of transportation in the persuasion process. In particular, the authors evaluated the role of transportation in affecting cognitive and affective responses. Last, they addressed the relation between (a) cognitive and affective responses and (b) antidrug expectancies. Participants were 500 undergraduate students at a large northern university in the United Kingdom who were randomly assigned to 1 of 2 conditions: first- or third-person narratives on cocaine use. The results demonstrated that there was no difference between first- and third-person narratives in terms of transportation. However, overall, greater transportation was associated with more favorable cognitive responses, and more favorable cognitive response was associated with stronger anticocaine expectancies. In terms of affective responses, results indicated the mediating role of sadness and contentment in the association between transportation and anticocaine expectancies. In particular, increased transportation was associated with greater sadness and lower contentment. Lower sadness and contentment were associated with stronger anticocaine expectancies. Important theoretical and empirical implications are discussed.

  19. Investigation of hydrogeologic processes in a dipping layer structure - 2. Transport and biodegradation of organics

    NASA Astrophysics Data System (ADS)

    Alfnes, E.; Breedveld, G. D.; Kinzelbach, W.; Aagaard, P.

    2004-04-01

    Numerical simulation tools have been used to study the dominating processes during transport of aromatic hydrocarbons in the unsaturated soil zone. Simulations were based on field observations at an experimental site located on a glacial delta plain with pronounced layered sedimentary structures. A numerical model for transport in the unsaturated zone, SWMS-3D, has been extended to incorporate coupled multispecies transport, microbial degradation following Monod kinetics and gas diffusive transport of oxygen and hydrocarbons. The flow field parameters were derived from previous work using nonreactive tracers. Breakthrough curves (BTC) from the hydrocarbon field experiment were used to determine sorption parameters and Monod kinetic parameters using a fitting procedure. The numerical simulations revealed that the assumption of homogeneous layers resulted in deviations from the field observations. The deviations were more pronounced with incorporation of reactive transport, compared with earlier work on nonreactive transport. To be able to model reasonable BTC, sorption had to be reduced compared to laboratory experiments. The initial biomass and the maximum utilisation rate could be adjusted to capture both the initial lag phase and the overall degradation rate. Nevertheless, local oxygen limitation is predicted by the model, which was not observed in the field experiment. Incorporation of evaporation and diffusive gas transport of the hydrocarbons did not significantly change the local oxygen demand. The main cause of the observed discrepancies between model and field are attributed to channelling as a result of small-scale heterogeneities such as biopores.

  20. Trace and major element pollution originating from coal ash suspension and transport processes.

    PubMed

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  1. Trace and major element pollution originating from coal ash suspension and transport processes.

    PubMed

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport. PMID:11341293

  2. Intracellular and Extracellular Carbonic Anhydrases Cooperate Non-enzymatically to Enhance Activity of Monocarboxylate Transporters*

    PubMed Central

    Klier, Michael; Andes, Fabian T.; Deitmer, Joachim W.; Becker, Holger M.

    2014-01-01

    Proton-coupled monocarboxylate transporters (MCTs) are carriers of high-energy metabolites such as lactate, pyruvate, and ketone bodies and are expressed in most tissues. It has previously been shown that transport activity of MCT1 and MCT4 is enhanced by the cytosolic carbonic anhydrase II (CAII) independent of its catalytic activity. We have now studied the influence of the extracellular, membrane-bound CAIV on transport activity of MCT1/4, heterologously expressed in Xenopus oocytes. Coexpression of CAIV with MCT1 and MCT4 resulted in a significant increase in MCT transport activity, even in the nominal absence of CO2/HCO3−. CAIV-mediated augmentation of MCT activity was independent of the CAIV catalytic function, since application of the CA-inhibitor ethoxyzolamide or coexpression of the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT transport activity. The interaction required CAIV at the extracellular surface, since injection of CAIV protein into the oocyte cytosol did not augment MCT transport function. The effects of cytosolic CAII (injected as protein) and extracellular CAIV (expressed) on MCT transport activity, were additive. Our results suggest that intra- and extracellular carbonic anhydrases can work in concert to ensure rapid shuttling of metabolites across the cell membrane. PMID:24338019

  3. Healthy places, active transport and path dependence: a review of the literature.

    PubMed

    Hensley, Melissa; Mateo-Babiano, Derlie; Minnery, John

    2014-12-01

    Children walking to school, people cycling to the shops or work and neighbours chatting in the street, these are some of the gauges of an active and healthy community that can be achieved through utilising good design principles. But are these principles being applied in urban developments or are policy-makers following a 'path dependent' trajectory that severely limits the best practice outcomes sought? This review examines current research on path dependence to determine how this concept advances our understanding of barriers to change in the built environment, active transport and healthy communities. An online database search of scholarly bibliographic records identified 22 relevant articles for a critical review of studies that evaluated path dependence in the urban and built environment literature with a focus on transport, urban planning and health. A thematic analysis of the articles showed that different types of path dependence have contributed to the dominance of policies and designs supporting car-based transport to the detriment of public transport and active transport modes, leading to sub-optimal development patterns becoming 'locked-in'. However, the outcomes for active transport and physical activity are not all dire, and path dependence theory does provide some guidance on changing policy to achieve better outcomes. This review suggests that path dependence is one of the best theoretical frameworks to help health promoters understand barriers to change and can provide insights into developing future successful public health interventions. Future studies could focus further on active transport, local neighbourhood development and physical activity.

  4. Physical Activity Associated with Public Transport Use—A Review and Modelling of Potential Benefits

    PubMed Central

    Rissel, Chris; Curac, Nada; Greenaway, Mark; Bauman, Adrian

    2012-01-01

    Active travel, particularly walking and cycling, has been recommended because of the health benefits associated with increased physical activity. Use of public transport generally involves some walking to bus stops or train stations. This paper is a systematic review of how much time is spent in physical activity among adults using public transport. It also explores the potential effect on the population level of physical activity if inactive adults in NSW, Australia, increased their walking through increased use of public transport. Of 1,733 articles, 27 met the search criteria, and nine reported on absolute measures of physical activity associated with public transport. A further 18 papers reported on factors associated with physical activity as part of public transport use. A range of 8–33 additional minutes of walking was identified from this systematic search as being attributable to public transport use. Using “bootstrapping” statistical modelling, if 20% of all inactive adults increased their walking by only 16 minutes a day for five days a week, we predict there would be a substantial 6.97% increase in the proportion of the adult population considered “sufficiently active”. More minutes walked per day, or a greater uptake of public transport by inactive adults would likely lead to significantly greater increases in the adult population considered sufficiently active. PMID:22851954

  5. Quantification of chemical transport processes from the soil to surface runoff.

    PubMed

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. PMID:23673742

  6. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOEpatents

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  7. Policies related to active transport to and from school: a multisite case study.

    PubMed

    Eyler, Amy A; Brownson, Ross C; Doescher, Mark P; Evenson, Kelly R; Fesperman, Carrie E; Litt, Jill S; Pluto, Delores; Steinman, Lesley E; Terpstra, Jennifer L; Troped, Philip J; Schmid, Thomas L

    2008-12-01

    Active transportation to and from school (ATS) is a viable strategy to help increase physical activity among youth. ATS can be challenging because initiatives require transdisciplinary collaboration, are influenced by the built environment and are affected by numerous policies. The purpose of this study is to identify policies and factors that influence ATS initiatives. Nine elementary schools in seven states participated in this case study. Sixty-nine stakeholders were interviewed. The interviews were transcribed, coded and analyzed using a master thematic codebook. This study identified two distinct aspects of policies: 'influential factors' which are factors that might impact policies related to ATS and 'policy actions' which are policies reported by people involved in ATS initiatives that directly affected their success. Influential factors included sidewalks, crosswalks/crossing guards, funding, personal safety concerns, advocacy group involvement and others. Policy actions included policies on school speed zone, drop-off, no-transport zones, school siting, school start/dismissal time and school choice. Despite the diversity of the schools studied, similarities included influence of built environment, safety concerns, funding and transdisciplinary collaboration. Stakeholders need to work together to stimulate action and ensure successful initiatives. Influential factors appear to be important to this process.

  8. The Green Revolution in Transportation. Resource Recovery. Technology Learning Activities.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    These two learning activities provide context, objectives, list of materials, student activity, and evaluation criteria. The first involves an automotive class in developing a model alternative fueled vehicle, and the second involves the design of a useful recyclable product. (JOW)

  9. Protease-activated receptor-2-mediated inhibition of ion transport in human bronchial epithelial cells.

    PubMed

    Danahay, H; Withey, L; Poll, C T; van de Graaf, S F; Bridges, R J

    2001-06-01

    A cytoprotective role for protease-activated receptor-2 (PAR2) has been suggested in a number of systems including the airway, and to this end, we have studied the role that PARs play in the regulation of airway ion transport, using cultures of normal human bronchial epithelial cells. PAR2 activators, added to the basolateral membrane, caused a transient, Ca2+-dependent increase in short-circuit current (I(sc)), followed by a sustained inhibition of amiloride-sensitive I(sc). These phases corresponded with a transient increase in intracellular Ca2+ concentration and then a transient increase, followed by decrease, in basolateral K+ permeability. After PAR2 activation and the addition of amiloride, the forskolin-stimulated increase in I(sc) was also attenuated. By contrast, PAR2 activators added to the apical surface of the epithelia or PAR1 activators added to both the apical and basolateral surfaces were without effect. PAR2 may, therefore, play a role in the airway, regulating Na+ absorption and anion secretion, processes that are central to the control of airway surface liquid volume and composition.

  10. Gamma radiation affects active electrolyte transport by rabbit ileum. II. Correlation of alanine and theophylline response with morphology

    SciTech Connect

    Gunter-Smith, P.J.

    1989-03-01

    The response of ileal segments isolated from rabbits to an actively transported amino acid and a secretagogue was evaluated following exposure to 10 Gy whole-body gamma irradiation. The ability of ileal segments to respond to the actively transported amino acid, alanine, was not significantly diminished until 96 h postexposure. Decreased responsiveness to the secretagogue, theophylline, occurred earlier at 72 h. These effects did not appear to be accounted for by decreased food intake of irradiated animals alone. Examination of intestinal morphological changes with respect to these changes in electrolyte transport revealed that decreased amino acid transport coincides with loss of intestinal villi. Although a morphological correlate of decreased secretory response was not as striking as that for absorption, the theophylline response appeared to decline concomitant with the appearance of increased mitotic activity in the intestinal crypts. The results of this study indicate that, following a dose of 10 Gy, the inability of these tissues to respond to amino acids is due to a loss of mature villus absorptive cells subsequent to denudation of the intestinal mucosa. There appeared to be little impairment of cell membrane transport processes for alanine. In contrast, the decreased secretory response could not be correlated with the disappearance of any one cell type and perhaps results from increased proliferation in the crypts at the expense of differentiation.

  11. Gamma-radiation affects active electrolyte transport by rabbit ileum. 2. Correlation of alanine and theophylline response with morphology

    SciTech Connect

    Gunter-Smith, P.J.

    1989-01-01

    The response of ileal segments isolated from rabbits to an actively transported amino acid and a secretagogue was evaluated following exposure to 10-Gy whole-body gamma irradiation. The ability of ileal segments to respond to the actively transported amino acid, alanine, was not significantly diminished until 96 h postexposure. Decreased responsiveness to the secretagogue, theophylline, occurred earlier at 72 h. These effects did not appear to be accounted for by decreased food intake of irradiated animals alone. Examination of intestinal morphological changes with respect to these changes in electrolyte transport revealed that decreased amino acid transport coincides with loss of intestinal villi. Although a morphological correlate of decreased secretory response was not as striking as that for absorption, the theophylline response appeared to decline concomitant with the appearance of increased mitotic activity in the intestinal crypts. The result of this study indicate that, following a dose of 10 Gy, the inability of these tissues to respond to amino acids is due to a loss of mature villus absorptive cells subsequent to denudation of the intestinal mucosa. There appeared to be little impairment of cell membrane transport processes for alanine. In contrast, the decreased secretory response could not be correlated with the disappearance of any one cell type and perhaps results from increased proliferation in the crypts at the expense of differentiation.

  12. A systematic review of interventions for promoting active transportation to school

    PubMed Central

    2011-01-01

    Background Active transportation to school is an important contributor to the total physical activity of children and adolescents. However, active school travel has declined over time, and interventions are needed to reverse this trend. The purpose of this paper is to review intervention studies related to active school transportation to guide future intervention research. Methods A systematic review was conducted to identify intervention studies of active transportation to school published in the scientific literature through January 2010. Five electronic databases and a manual search were conducted. Detailed information was extracted, including a quantitative assessment comparing the effect sizes, and a qualitative assessment using an established evaluation tool. Results We identified 14 interventions that focused on active transportation to school. These interventions mainly focused on primary school children in the United States, Australia, and the United Kingdom. Almost all the interventions used quasi-experimental designs (10/14), and most of the interventions reported a small effect size on active transportation (6/14). Conclusion More research with higher quality study designs and measures should be conducted to further evaluate interventions and to determine the most successful strategies for increasing active transportation to school. PMID:21320322

  13. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  14. Multimotor transport in a system of active and inactive kinesin-1 motors.

    PubMed

    Scharrel, Lara; Ma, Rui; Schneider, René; Jülicher, Frank; Diez, Stefan

    2014-07-15

    Long-range directional transport in cells is facilitated by microtubule-based motor proteins. One example is transport in a nerve cell, where small groups of motor proteins, such as kinesins and cytoplasmic dynein, work together to ensure the supply and clearance of cellular material along the axon. Defects in axonal transport have been linked to Alzheimer's and other neurodegenerative diseases. However, it is not known in detail how multimotor-based cargo transport is impaired if a fraction of the motors are defective. To mimic impaired multimotor transport in vitro, we performed gliding motility assays with varying fractions of active kinesin-1 motors and inactive kinesin-1 motor mutants. We found that impaired transport manifests in multiple motility regimes: 1), a fast-motility regime characterized by gliding at velocities close to the single-molecule velocity of the active motors; 2), a slow-motility regime characterized by gliding at close-to zero velocity or full stopping; and 3), a regime in which fast and slow motilities coexist. Notably, the transition from the fast to the slow regime occurred sharply at a threshold fraction of active motors. Based on single-motor parameters, we developed a stochastic model and a mean-field theoretical description that explain our experimental findings. Our results demonstrate that impaired multimotor transport mostly occurs in an either/or fashion: depending on the ratio of active to inactive motors, transport is either performed at close to full speed or is out of action.

  15. Asymmetrical hemisphere activation enhances global-local processing.

    PubMed

    Gable, Philip A; Poole, Bryan D; Cook, Mary S

    2013-12-01

    Decades of research focusing on the neurophysiological underpinnings related to global-local processing of hierarchical stimuli have associated global processing with the right hemisphere and local processing with the left hemisphere. The current experiment sought to expand this research by testing the causal contributions of hemisphere activation to global-local processing. To manipulate hemisphere activation, participants engaged in contralateral hand contractions. Then, EEG activity and attentional scope were measured. Right-hand contractions caused greater relative left-cortical activity than left-hand contractions. Participants were more narrowly focused after left-hemisphere activation than after right-hemisphere activation. Moreover, N1 amplitudes to local targets in the left hemisphere were larger after left-hemisphere activation than after right-hemisphere activation. Consistent with past research investigating hemispheric asymmetry and attentional scope, the current results suggest that manipulating left (right) hemisphere activity enhanced local (global) attentional processing.

  16. Canine amino acid transport system Xc(-): cDNA sequence, distribution and cystine transport activity in lens epithelial cells.

    PubMed

    Maruo, Takuya; Kanemaki, Nobuyuki; Onda, Ken; Sato, Reiichiro; Ichihara, Nobuteru; Ochiai, Hideharu

    2014-04-01

    The cystine transport activity of a lens epithelial cell line originated from a canine mature cataract was investigated. The distinct cystine transport activity was observed, which was inhibited to 28% by extracellular 1 mM glutamate. The cDNA sequences of canine cysteine/glutamate exchanger (xCT) and 4F2hc were determined. The predicted amino acid sequences were 527 and 533 amino acid polypeptides, respectively. The amino acid sequences of canine xCT and 4F2hc showed high similarities (>80%) to those of humans. The expression of xCT in lens epithelial cell line was confirmed by western blot analysis. RT-PCR analysis revealed high level expression only in the brain, and it was below the detectable level in other tissues.

  17. 40 CFR 93.107 - Relationship of transportation plan and TIP conformity with the NEPA process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DETERMINING CONFORMITY OF FEDERAL ACTIONS... Transportation Plans, Programs, and Projects Developed, Funded or Approved Under Title 23 U.S.C. or the Federal... quality modeling do not preclude the consideration of alternatives in the NEPA process or other...

  18. 40 CFR 93.107 - Relationship of transportation plan and TIP conformity with the NEPA process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DETERMINING CONFORMITY OF FEDERAL ACTIONS... Transportation Plans, Programs, and Projects Developed, Funded or Approved Under Title 23 U.S.C. or the Federal... quality modeling do not preclude the consideration of alternatives in the NEPA process or other...

  19. 23 CFR Appendix A to Part 450 - Linking the Transportation Planning and NEPA Processes

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... environmental reviews for project decision-making. For example, the term “lead agency” collectively means the U... integrated decision-making. 4. What is the procedure for using decisions or analyses from the transportation... the planning study process, alternatives considered, and resulting decisions have a rational...

  20. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants

    PubMed Central

    Jonsson, Erik; Yamada, Moé; Vale, Ronald D.; Goshima, Gohta

    2015-01-01

    The molecular motors kinesin and dynein drive bidirectional motility along microtubules (MTs) in most eukaryotic cells. Land plants, however, are a notable exception, because they contain a large number of kinesins but lack cytoplasmic dynein, the foremost processive retrograde transporter. It remains unclear how plants achieve retrograde cargo transport without dynein. Here, we have analysed the motility of the six members of minus-end-directed kinesin-14 motors in the moss Physcomitrella patens and found that none are processive as native dimers. However, when artificially clustered into as little as dimer of dimers, the type-VI kinesin-14 (a homologue of Arabidopsis KCBP (kinesin-like calmodulin binding protein)) exhibited highly processive and fast motility (up to 0.6 μm s−1). Multiple kin14-VI dimers attached to liposomes also induced transport of this membrane cargo over several microns. Consistent with these results, in vivo observations of green fluorescent protein-tagged kin14-VI in moss cells revealed fluorescent punctae that moved processively towards the minus-ends of the cytoplasmic MTs. These data suggest that clustering of a kinesin-14 motor serves as a dynein-independent mechanism for retrograde transport in plants. PMID:26322239

  1. Symposium on intermediate-range atmospheric-transport processes and technology assessment. [Lead Abstract

    SciTech Connect

    Not Available

    1981-10-01

    Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution. (KRM)

  2. Insight into sediment transport processes on saline rangeland hillslopes using three-dimensional soil microtoprgraphy changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hillslope runoff and soil erosion processes play a vital role on rangeland ecosystem sustainability due to their control on resource mobility but they also have significant implications in off-site resource transport. In general, physically-based soil erosion models such as RHEM divide erosion and ...

  3. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    NASA Astrophysics Data System (ADS)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  4. Turbulence and Fluid Flow: Perspectives. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    This module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems. The materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process.…

  5. Entropy production and Onsager symmetry in neoclassical transport processes of toroidal plasmas

    SciTech Connect

    Sugama, H.; Horton, W.

    1996-01-01

    Entropy production and Onsager symmetry in neoclassical transport processes of magnetically confined plasmas are studied in detail for general toroidal systems, including nonaxisymmetric configurations. It is found that the flux surface average of the entropy production defined from the linearized collision operator and the gyroangle-averaged distribution function coincides with the sum of the inner products of the thermodynamic forces and the conjugate fluxes consisting of the Pfirsch-Schlueter, banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the parallel current. It is proved from the self-adjointness of the linearized collision operator that the Onsager symmetry is robustly valid for the neoclassical transport equations in the cases of general toroidal plasmas consisting of electrons and multi-species ions with arbitrary collision frequencies. It is shown that the Onsager symmetry holds whether or not the ambipolarity condition is used to reduce the number of the conjugate pairs of the transport fluxes and the thermodynamic forces. The full transport coefficients for the banana-plateau and nonaxisymmetric parts are separately derived, and their symmetry properties are investigated. The nonaxisymmetric transport equations are obtained for arbitrary collision frequencies in the Pfirsch{endash}Schlueter and plateau regimes, and it is directly confirmed that the total banana-plateau and nonaxisymmetric transport equations satisfy the Onsager symmetry. {copyright} {ital 1996 American Institute of Physics.}

  6. Vesicles on strings: morphological evidence for processive transport within the Golgi stack.

    PubMed

    Orci, L; Perrelet, A; Rothman, J E

    1998-03-01

    Cis-Golgi cisternae have a higher freeze-fracture particle density than trans-cisternae. Transport vesicles neighboring cis or trans positions of the Golgi stack have a particle concentration comparable to that of the adjacent cisterna and the buds emerging from it. This implies that transport vesicles remain locally within the stack during their lifetime, near their origin, favoring a processive pattern of transport in which vesicle transfers occur preferentially between adjacent cisternae in the stack. A "string theory" is proposed to account for processive transport, in which a carpet of fibrous attachment proteins located at the surface of cisternae (the strings) prevent budded vesicles from diffusing away but still allow them to diffuse laterally, effectively limiting transfers to adjoining cisternae in the stack. Fibrous elements that multivalently connect otherwise free COPI-coated vesicles and uncoated transport vesicles to one or two cisternae simultaneously are discerned readily by electron microscopy. It is suggested that long, coiled coil, motif-rich, Golgi-specific proteins including p115, GM130, and possibly giantin, among others, function as the proposed strings.

  7. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  8. 78 FR 68908 - Proposed Information Collection (Veterans Transportation Service Data Collection); Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... AFFAIRS Proposed Information Collection (Veterans Transportation Service Data Collection); Activity... Service Data Collection). Type of Review: New collection. Abstract: The information collection is to... opportunity for public comment on the proposed collection of certain information by the agency. Under...

  9. Dopamine Transporter Genotype Conveys Familial Risk of Attention-Deficit/Hyperactivity Disorder through Striatal Activation

    ERIC Educational Resources Information Center

    Durston, Sarah; Fossella, John A.; Mulder, Martijn J.; Casey B. J.; Ziermans, Tim B.; Vessaz, M. Nathalie; Van Engeland, Herman

    2008-01-01

    The study examines the effect of the dopamine transporter (DAT1) genotype in attention-deficit/hyperactivity disorder (ADHD). The results confirm that DAT1 translates the genetic risk of ADHD through striatal activation.

  10. RESEARCH ACTIVITIES AT U.S. GOVERNMENT AGENCIES IN SUBSURFACE REACTIVE TRANSPORT MODELING

    EPA Science Inventory

    The fate of contaminants in the environment is controlled by both chemical reactions and transport phenomena in the subsurface. Our ability to understand the significance of these processes over time requires an accurate conceptual model that incorporates the various mechanisms ...

  11. Statistics of active transport in Xenopus melanophores cells.

    SciTech Connect

    Snezhko, A.; Barlan, K.; Aranson, I. S.; Gelfand, V. I.; Materials Science Division; Northwestern Univ.

    2010-11-01

    The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of {approx} 1 {micro}m. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of {approx} 4 {micro}m and pair lifetime {approx} 5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm.

  12. Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria

    PubMed Central

    Kranzler, Chana; Lis, Hagar; Finkel, Omri M; Schmetterer, Georg; Shaked, Yeala; Keren, Nir

    2014-01-01

    Iron bioavailability limits biological activity in many aquatic and terrestrial environments. Broad scale genomic meta-analyses indicated that within a single organism, multiple iron transporters may contribute to iron acquisition. Here, we present a functional characterization of a cyanobacterial iron transport pathway that utilizes concerted transporter activities. Cyanobacteria are significant contributors to global primary productivity with high iron demands. Certain cyanobacterial species employ a siderophore-mediated uptake strategy; however, many strains possess neither siderophore biosynthesis nor siderophore transport genes. The unicellular, planktonic, freshwater cyanobacterium, Synechocystis sp. PCC 6803, employs an alternative to siderophore-based uptake-reduction of Fe(III) species before transport through the plasma membrane. In this study, we combine short-term radioactive iron uptake and reduction assays with a range of disruption mutants to generate a working model for iron reduction and uptake in Synechocystis sp. PCC 6803. We found that the Fe(II) transporter, FeoB, is the major iron transporter in this organism. In addition, we uncovered a link between a respiratory terminal oxidase (Alternate Respiratory Terminal Oxidase) and iron reduction - suggesting a coupling between these two electron transfer reactions. Furthermore, quantitative RNA transcript analysis identified a function for subunits of the Fe(III) transporter, FutABC, in modulating reductive iron uptake. Collectively, our results provide a molecular basis for a tightly coordinated, high-affinity iron transport system. PMID:24088625

  13. Modeling watershed-scale solute transport using an integrated, process-based hydrologic model with applications to bacterial fate and transport

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Phanikumar, Mantha S.

    2015-10-01

    Distributed hydrologic models that simulate fate and transport processes at sub-daily timescales are useful tools for estimating pollutant loads exported from watersheds to lakes and oceans downstream. There has been considerable interest in the application of integrated process-based hydrologic models in recent years. While the models have been applied to address questions of water quantity and to better understand linkages between hydrology and land surface processes, routine applications of these models to address water quality issues are currently limited. In this paper, we first describe a general process-based watershed-scale solute transport modeling framework, based on an operator splitting strategy and a Lagrangian particle transport method combined with dispersion and reactions. The transport and the hydrologic modules are tightly coupled and the interactions among different hydrologic components are explicitly modeled. We test transport modules using data from plot-scale experiments and available analytical solutions for different hydrologic domains. The numerical solutions are also compared with an analytical solution for groundwater transit times with interactions between surface and subsurface flows. Finally, we demonstrate the application of the model to simulate bacterial fate and transport in the Red Cedar River watershed in Michigan and test hypotheses about sources and transport pathways. The watershed bacterial fate and transport model is expected to be useful for making near real-time predictions at marine and freshwater beaches.

  14. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  15. Parental Involvement in Active Transport to School Initiatives: A Multi-Site Case Study

    ERIC Educational Resources Information Center

    Eyler, Amy; Baldwin, Julie; Carnoske, Cheryl; Nickelson, Jan; Troped, Philip; Steinman, Lesley; Pluto, Delores; Litt, Jill; Evenson, Kelly; Terpstra, Jennifer; Brownson, Ross; Schmid, Thomas

    2008-01-01

    Background: Increasing physical activity in youth is a recommended approach to curbing the childhood obesity epidemic. One way to help increase children's daily activity is to promote active transportation to and from school (ATS). Purpose: The purpose of this case study was to explore parental perception of, and participation in, ATS initiatives.…

  16. Active geologic processes in Barrow Canyon, northeast Chukchi Sea

    USGS Publications Warehouse

    Eittreim, S.; Grantz, A.; Greenberg, J.

    1982-01-01

    Circulation patterns on the shelf and at the shelf break appear to dominate the Barrow Canyon system. The canyon's shelf portion underlies and is maintained by the Alaska Coastal Current (A.C.C.), which flows northeastward along the coast toward the northeast corner of the broad Chukchi Sea. Offshelf and onshelf advective processes are indicated by oceanographic measurements of other workers. These advective processes may play an important role in the production of bedforms that are found near the canyon head as well as in processes of erosion or non-deposition in the deeper canyon itself. Coarse sediments recovered from the canyon axis at 400 to 570 m indicate that there is presently significant flow along the canyon. The canyon hooks left at a point north of Point Barrow where the A.C.C. loses its coastal constriction. The left hook, as well as preferential west-wall erosion, continues down to the abyssal plain of the Canada Basin at 3800 m. A possible explanation for the preferential west-wall erosion along the canyon, at least for the upper few hundred meters, is that the occasional upwelling events, which cause nutrient-rich water to flow along the west wall would in turn cause larger populations of burrowing organisms to live there than on the east wall, and that these organisms cause high rates of bioerosion. This hypothesis assumes that the dominant factor in the canyon's erosion is biological activity, not current velocity. Sedimentary bedforms consisting of waves and furrows are formed in soft mud in a region on the shelf west of the canyon head; their presence there perhaps reflects: (a) the supply of fine suspended sediments delivered by the A.C.C. from sources to the south, probably the Yukon and other rivers draining northwestern Alaska; and (b) the westward transport of these suspended sediments by the prevailing Beaufort Gyre which flows along the outer shelf. ?? 1982.

  17. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome.

    PubMed

    Nieto-Torres, Jose L; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Torres, Jaume; Aguilella, Vicente M; Enjuanes, Luis

    2015-11-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a viroporin involved in virulence. E protein ion channel (IC) activity is specifically correlated with enhanced pulmonary damage, edema accumulation and death. IL-1β driven proinflammation is associated with those pathological signatures, however its link to IC activity remains unknown. In this report, we demonstrate that SARS-CoV E protein forms protein-lipid channels in ERGIC/Golgi membranes that are permeable to calcium ions, a highly relevant feature never reported before. Calcium ions together with pH modulated E protein pore charge and selectivity. Interestingly, E protein IC activity boosted the activation of the NLRP3 inflammasome, leading to IL-1β overproduction. Calcium transport through the E protein IC was the main trigger of this process. These findings strikingly link SARS-CoV E protein IC induced ionic disturbances at the cell level to immunopathological consequences and disease worsening in the infected organism.

  18. The PP-motif in luminal loop 2 of ZnT transporters plays a pivotal role in TNAP activation.

    PubMed

    Fujimoto, Shigeyuki; Tsuji, Tokuji; Fujiwara, Takashi; Takeda, Taka-Aki; Merriman, Chengfeng; Fukunaka, Ayako; Nishito, Yukina; Fu, Dax; Hoch, Eitan; Sekler, Israel; Fukue, Kazuhisa; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Kambe, Taiho

    2016-09-01

    Secretory and membrane-bound zinc-requiring enzymes are thought to be activated by binding zinc in the early secretory pathway. One such enzyme, tissue-non-specific alkaline phosphatase (TNAP), is activated through a two-step mechanism, via protein stabilization and subsequent enzyme activation through metalation, by ZnT5-ZnT6 heterodimers or ZnT7 homodimers. However, little is known about the molecular basis underlying the activation process. In the present study, we found that the di-proline motif (PP-motif) in luminal loop 2 of ZnT5 and ZnT7 is important for TNAP activation. TNAP activity was significantly reduced in cells lacking ZnT5-ZnT6 heterodimers and ZnT7 homodimers [triple knockout (TKO) cells]. The decreased TNAP activity was restored by expressing hZnT5 with hZnT6 or hZnT7, but significantly less so (almost 90% less) by expressing mutants thereof in which the PP-motif was mutated to alanine (PP-AA). In TKO cells, overexpressed hTNAP was not completely activated, and it was converted less efficiently into the holo form by expressing a PP-AA mutant of hZnT5 with hZnT6, whose defects were not restored by zinc supplementation. The zinc transport activity of hZnT7 was not significantly impaired by the PP-AA mutation, indicating that the PP-motif is involved in the TNAP maturation process, although it does not control zinc transport activity. The PP-motif is highly conserved in ZnT5 and ZnT7 orthologues, and its importance for TNAP activation is conserved in the Caenorhabditis elegans hZnT5 orthologue CDF5. These results provide novel molecular insights into the TNAP activation process in the early secretory pathway. PMID:27303047

  19. Calculation tool for transported geothermal energy using two-step absorption process

    DOE Data Explorer

    Kyle Gluesenkamp

    2016-02-01

    This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"

  20. Percolation and anomalous transport as tools in analyzing parallel processing interconnection networks

    SciTech Connect

    McLeod, R.D.; Schellenberg, J.J. ); Hortensius, P.D. )

    1990-04-01

    It is quite apparent that much of the future advances in computation will be derived through the exploitation of parallel processing. Although a wide variety of topologies have been studied and proposed for both general-purpose and algorithm specific applications, there is still considerable discussion over which architectures are better and why. In this paper the authors discuss the application of percolation theory and anomalous transport to the issues of defective computer arrays. Percolation theory is used to discuss the static properties of the defective arrays and anomalous transport theory is used to discuss the dynamics of message passing on the defective array.

  1. Beyond affect: A role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task

    PubMed Central

    Canli, Turhan; Omura, Kazufumi; Haas, Brian W.; Fallgatter, Andreas; Constable, R. Todd; Lesch, Klaus Peter

    2005-01-01

    Prior work has highlighted the role of genetic variation within the repetitive sequence in the transcriptional control region of the serotonin (5-HT) transporter gene (5-HTT, SLC6A4) in modulating amygdala and prefrontal activation to negative emotional stimuli. However, these studies have not explicitly tested the assumption that the control condition (neutral baseline) does not itself produce changes in activation as a function of 5-HTT genotype. Using a fixation baseline condition, we show that variation in 5-HTT genotype is associated with differential activation to negative, positive, and neutral stimuli in limbic, striatal, and cortical regions. We replicate earlier reports of increased amygdala activation to negative, relative to neutral, stimuli, but then show that these differences are driven by decreased activation to neutral stimuli, rather than increased activation to negative stimuli, in carriers of the 5-HTT short allele. Using high-resolution structural images and automated processes to test for brain volume and gray matter density, we further report significant differences, as a function of 5-HTT genotype, in frontal cortical regions, anterior cingulate, and cerebellum. These functional and structural differences suggest a much broader role for 5-HT transport efficiency in brain processes than previously thought. 5-HTT genotype affects neural systems controlling affective, cognitive, and motor processes. PMID:16093315

  2. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  3. Ciprofloxacin Is Actively Transported across Bronchial Lung Epithelial Cells Using a Calu-3 Air Interface Cell Model

    PubMed Central

    Ong, Hui Xin; Traini, Daniela; Bebawy, Mary

    2013-01-01

    Ciprofloxacin is a well-established broad-spectrum fluoroquinolone antibiotic that penetrates well into the lung tissues; still, the mechanisms of its transepithelial transport are unknown. The contributions of specific transporters, including multidrug efflux transporters, organic cation transporters, and organic anion-transporting polypeptide transporters, to the uptake of ciprofloxacin were investigated in vitro using an air interface bronchial epithelial model. Our results demonstrate that ciprofloxacin is subject to predominantly active influx and a slight efflux component. PMID:23507281

  4. Experimental observations and numerical modeling of coupled microbial and transport processes in variably saturated sand.

    SciTech Connect

    Rockhold, Mark L.; Yarwood, R R.; Niemet, M R.; Bottomley, Peter J.; Selker, John S.

    2005-05-13

    An experimental and numerical investigation was conducted to study interactions between microbial dynamics and transport processes in variably saturated porous media. Experiments were conducted with constant, surface-applied water fluxes in duplicate, variably saturated, sand-filled columns that were uniformly inoculated with the bacterium Pseudomonas fluorescens HK44. The permeability of the sand in the columns was reduced by a factor of 45 during one week of growth on glucose. Pressure heads increased (became less negative) at all measured depths, but significant increases in the apparent volumetric water contents were only observed in the upper 5 cm of the columns, corresponding to the areas with the highest concentrations of attached bacteria. A numerical model was used to simulate the experiments. The model accounted for the processes of water flow, solute and bacterial transport, cell growth and accumulation, glucose and oxygen consumption, and gas diffusion and exchange. Observed changes in water content and pressure head were reproduced approximately using fluid-media scaling to account for an apparent surface-tension lowering effect. Reasonable correspondence was obtained between observed and simulated effluent data and final attached biomass concentration distributions using first-order reversible cell attachment and detachment kinetics with attachment rate coefficients based on particle-filtration theory, and time-dependent detachment rate coefficients. The results of this study illustrate the potential importance of using fully coupled multi-fluid flow and multi-component reactive transport equations to model coupled biogeochemical and transport processes in soils.

  5. Barrier Crossing and Transport Activated by Kangaroo Fluctuations

    NASA Astrophysics Data System (ADS)

    Kostur, M.; Luczka, J.

    1999-01-01

    We study barrier crossing of Brownian particles in a bistable symmetric potential and transport of Brownian particles in spatially periodic structures, driven by both kangaroo fluctuations and thermal equilibrium noise of zero mean values. We consider exponentially and algebraically correlated kangaroo fluctuations. Starting with the full Newton--Langevin equation for the Brownian particle and by introducing scaling as well as dimensionless variables, we show that the equation is very well approximated by overdamped dynamics in which inertial effects can be neglected. We analyze properties of selected macroscopic characteristics of the system such as the mean first passage time (MFPT) of particles from one minimum of the bistable potential to the other and mean stationary velocity of particles moving in a spatially periodic potential. In dependence upon statistics of kangaroo fluctuations and temperature of the system, macroscopic characteristics exhibit distinctive non-monotonic behavior. Accordingly, there exist optimal statistics of fluctuations optimizing macroscopic characteristics.

  6. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  7. Modelling the Active Hearing Process in Mosquitoes

    NASA Astrophysics Data System (ADS)

    Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan

    2011-11-01

    A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.

  8. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  9. Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance

    SciTech Connect

    Gu, Wenbin

    2014-08-29

    This report documents the work performed by General Motors (GM) under the Cooperative agreement No. DE-EE0000470, “Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance,” in collaboration with the Penn State University (PSU), University of Tennessee Knoxville (UTK), Rochester Institute of Technology (RIT), and University of Rochester (UR) via subcontracts. The overall objectives of the project are to investigate and synthesize fundamental understanding of transport phenomena at both the macro- and micro-scales for the development of a down-the-channel model that accounts for all transport domains in a broad operating space. GM as a prime contractor focused on cell level experiments and modeling, and the Universities as subcontractors worked toward fundamental understanding of each component and associated interface.

  10. Bedload Transport Processes in Armored, Gravel-bed Channels: Impacts of Hydrograph Form

    NASA Astrophysics Data System (ADS)

    Kenworthy, M.; Yager, E.; Yarnell, S. M.

    2014-12-01

    Accurately predicting bed load transport rates remains challenging, with many influential factors still poorly understood, including unsteady flows and stream bed armoring. Nearly all natural channels experience unsteady flows, and hydrograph form varies significantly from gradually (i.e. snowmelt) to rapidly changing flows (i.e. rain driven or many regulated flows). However, most predictive methods neglect hydrograph impacts, and nearly all bedload transport experiments use steady flows. Stream bed armoring likely influences bedload transport rates as well, with the coarser surface limiting the availability of the finer, more mobile grain sizes in the subsurface. It remains uncertain whether armor persists, breaks up, or exchanges particles with bedload during high flow events. Coupled effects of hydrograph form and armor may also be significant, and previous work indicates that more gradual changes in flow promote more significant armoring compared to rapid changes in flow. To better understand the impacts of hydrograph form and armoring on bedload transport processes in gravel-bed rivers, flume experiments were conducted at the University of Idaho's Stream Lab. An armored, equilibrium bed was established as the initial condition for all experiments, which included steady-state discharges and a variety of hydrograph forms from gradually to rapidly changing. Steady-state runs allowed for comparison of bedload transport for a given discharge run singularly and in the context of various hydrographs. Though hydrograph form varied, minimum and peak flow rates and the total estimated transport capacity were held constant between runs. Armor ratios were estimated before and after runs by sampling the surface and subsurface separately. Armor behavior during runs was tracked by spray-painting the bed surface in three cross-sections that were repeatedly photographed then excavated after runs. Additional data collection during runs included photos for bed grain size

  11. Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process.

    PubMed

    Tanaka, Nobuhiro; Uraguchi, Shimpei; Saito, Akihiro; Kajikawa, Masataka; Kasai, Koji; Sato, Yutaka; Nagamura, Yoshiaki; Fujiwara, Toru

    2013-12-01

    Arabidopsis thaliana BOR1 was the first boron (B) transporter identified in living systems. There are four AtBOR1-like genes, OsBOR1, 2, 3 and 4, present in the rice genome. We characterized the activity, expression and physiological function of OsBOR4. OsBOR4 is an active efflux transporter of B. Quantitative PCR analysis and OsBOR4 promoter-green fluorescent protein (GFP) fusion revealed that OsBOR4 was both highly and specifically expressed in pollen. We obtained five Tos17 insertion mutants of osbor4. The pollen grains were viable and development of floral organs was normal in the homozygous osbor4 mutants. We observed that in all Tos17 insertion lines tested, the frequency of osbor4 homozygous plants was lower than expected in the progeny of self-fertilized heterozygous plants. These results establish that OsBOR4 is essential for normal reproductive processes. Pollen from osbor4 homozygous plants elongated fewer tubes on wild-type stigmas, and tube elongation of mutant pollen was less efficient compared with the wild-type pollen, suggesting reduced competence of osbor4 mutant pollen. The reduced competence of mutant pollen was further supported by the crosses of independent Tos17-inserted alleles of OsBOR4. Our results suggest that OsBOR4, a boron efflux transporter, is required for normal pollen germination and/or tube elongation.

  12. Influence of karst evolution on solute transport evaluated by process-based numerical modelling

    NASA Astrophysics Data System (ADS)

    Hubinger, Bernhard; Birk, Steffen

    2010-05-01

    Karst waters are of major interest in water resources management. Because of their inherent properties karst systems show great vulnerability with regard to contaminants. Karst systems include highly permeable solution conduit networks formed by chemical aggressive water embedded in a fissured matrix. Small initial voids are widened and thus act as preferential passages, where flow is rapid and often turbulent. Water discharging at karst spring originates from different pathways with different residence times. Contaminant transport through conduit pathways is very rapid, whereas flow through the fissured porous matrix is much slower. Thus, on the one hand, pollutants may be rapidly transported and reach high concentrations at the karst spring shortly after their release; on the other hand, the existence of slow flow components may cause the pollution to last for long times. In this work, solute transport properties of karst aquifers are investigated using generic conduit networks of hydraulically connected proto-conduits with initially log-normally distributed apertures in the millimetre range and below. Conduit evolution is modelled by coupling flow, transport, and dissolution processes, whereby single conduits are widened up to the metre range. Thus, different stages of karst evolution can be distinguished. The resulting flow systems provide the basis for modelling advective-dispersive transport of non-reactive solutes through the network of more or less widened (proto-)conduits. The general transport characteristics in karst systems as well as the influence of heterogeneities and structures on solute transport are illustrated for cases of direct injection into the conduit systems at different evolutionary stages. The resulting breakthrough curves typically show several distinct, chronologically shifted peaks with long tailings, which appears to be similar to data from field tracer experiments.

  13. Processes governing phytoplankton blooms in estuaries. II: The role of horizontal transport

    USGS Publications Warehouse

    Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Cloern, J.E.; Thompson, J.K.

    1999-01-01

    The development and distribution of phytoplankton blooms in estuaries are functions of both local conditions (i.e. the production-loss balance for a water column at a particular spatial location) and large-scale horizontal transport. In this study, the second of a 2-paper series, we use a depth-averaged hydrodynamic-biological model to identify transport-related mechanisms impacting phytoplankton biomass accumulation and distribution on a system level. We chose South San Francisco Bay as a model domain, since its combination of a deep channel surrounded by broad shoals is typical of drowned-river estuaries. Five general mechanisms involving interaction of horizontal transport with variability in local conditions are discussed. Residual (on the order of days to weeks) transport mechanisms affecting bloom development and location include residence time/export, import, and the role of deep channel regions as conduits for mass transport. Interactions occurring on tidal time scales, i.e. on the order of hours) include the phasing of lateral oscillatory tidal flow relative to temporal changes in local net phytoplankton growth rates, as well as lateral sloshing of shoal-derived biomass into deep channel regions during ebb and back into shallow regions during flood tide. Based on these results, we conclude that: (1) while local conditions control whether a bloom is possible, the combination of transport and spatial-temporal variability in local conditions determines if and where a bloom will actually occur; (2) tidal-time-scale physical-biological interactions provide important mechanisms for bloom development and evolution. As a result of both subtidal and tidal-time-scale transport processes, peak biomass may not be observed where local conditions are most favorable to phytoplankton production, and inherently unproductive areas may be regions of high biomass accumulation.

  14. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.

    PubMed

    Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert

    2016-01-01

    Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different

  15. Fluid Dynamics Applied to Streams. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…

  16. Pressure and Buoyancy in Aquatic Ecosystems. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module explores some of the characteristics of aquatic organisms which can be…

  17. Transpiration and Leaf Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Gates, David M.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report introduces two models of the thermal energy budget of a leaf. Typical values for…

  18. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  19. Light and Sound: Evolutionary Aspects. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Roseman, Leonard D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module is concerned with the exchange of energy between an organism and its environment in…

  20. Role of thyroxine on postnatal development of ileal active bile salt transport

    SciTech Connect

    Heubi, J.E.

    1986-08-01

    The role of thyroid hormone on the postnatal development of ileal active taurocholate transport uptake was measured by an in vitro incubation technique in Sprague-Dawley rats. In 16-day-old rats treated with pharmacological doses of L-thyroxine ileal active transport appeared precociously whose K/sub m/ was 1.60 +/- 0.48 mM and V/sub app/ was 8.09 +/- 1.14 nmol min mg dry wt , while age-matched shams had only passive diffusion of taurocholate. To determine whether enhanced endogenous secretion of thyroxine was capable of stimulating development of ileal active taurocholate transport, thyrotrophic stimulating hormone (TSH) was given on days 10-13, with uptake measured on day 16. Following TSH treatment, only passive transport for taurocholate was observed in the ileum; uptake rates were consistently higher than those for untreated controls at each study concentration. Thyroidectomy performed at age 14 days with uptake measured at age 21 days did not ablate development of ileal active transport but resulted in a significant reduction in the V/sub app/ and a significant increase in K/sub m/ compared with age-matched controls. Thyroid hormone does not appear to be obligatory for the postnatal development of ileal active taurocholate transport.

  1. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    SciTech Connect

    Sode, Olaseni; Voth, Gregory A.

    2014-12-14

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A{sup 2−}, a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A{sup 2-} by closing a cavity that could otherwise fill with water near the proximal Fe of the active site.

  2. Activation of tubulo-glomerular feedback by chloride transport.

    PubMed

    Schnermann, J; Ploth, D W; Hermle, M

    1976-04-01

    To define the luminal agent(s) responsible for the reduction of nephron filtration rate following increases of loop of Henle flow rate early proximal flow rate (EPFR) during loop perfusion with 17 different salt solutions were compared to the non-perfused tubules. During orthograde microperfusions a reduction of EPFR as indication of a feedback response was noted with a number of monovalent Cl- and Br- salts (LiCl, KCl, NaCl, RbCl, CsCl, NH4Cl, choline Cl, NaBr, KBr), with Na+ salts except Na acetate (NaHCO3, NaNO3, NaF, NaI, NaSCN), and with CaCl2 and MgCl2. These latter 2 solutions where used in a concentration of 70 mM while all other solutions had a concentration of 140 mM. During retrograde perfusion from the distal to the proximal end of the loop of Henle EPFR fell significantly with Cl- and Br- salts with percentage changes of EPFR ranging from -8.0 to -44.3%. In contrast, Cl- free salts and Cl- salts of divalent cations were associated with percentage changes of EPFR ranging from +7.1 to -6.2%, significance being reached only during perfusion with NaSCN. When furosemide (5 x 10(-4) M) was added to NaBr or KBr a feedback response was not observed. During orthograde perfusion with NaNO3 distal Cl- concentrations were 44.2 +/- 5.08, mM (mean +/- S.E.) at a perfusion rate of 10 nl/min and 59.1 +/- 3.93 mM at a rate of 40 nl/min. CaCl2 perfusion induced a marked elevation of distal Cl- concentrations to levels higher than 140 mM. Loop chloride handling was normal during RbCl perfusion. The magnitude of the feedback response during retrograde perfusion was not changed by lowering NaCl concentration from 140 to 60 mM, but fell when NaCl concentration was further reduced. In contrast to orthograde perfusions it was insensitive to changes in flow rate. Our results are compatible with the thesis that feedback responses depend critically upon the rate of Cl- transport probably across the macula densa cells. Br- ions can replace Cl- because they appear to share a

  3. Changes In The Characteristics of Basaltic Particles During Different Transport Processes

    NASA Astrophysics Data System (ADS)

    Craddock, R. A.; Rose, T. R.

    2014-12-01

    The physical and chemical characteristics of the grains in sedimentary deposits can provide valuable clues about transport processes, distance traveled, and provenance. A fundamental physical characteristic is particle shape, which is diagnostic of transport process as well as the distance traveled. For example, it is possible to distinguish the emplacement process of sediments based entirely on the shape of the quartz grains in the deposit [e.g., Folk, 1980]. Such basic sedimentological concepts have been applied to our interpretation of surface materials on the terrestrial planets [e.g. Cabrol et al., 2014]. However, what we know about the nature of sedimentary materials is based primarily on sediments that have weathered from felsic rocks—granite. This is true because felsic materials compose most of the landmass on the Earth. Yet, the surface of Mars is composed predominately of mafic materials—basalt—and sedimentary particles derived from basalt are much different than those derived from granite. Instead of quartz, feldspar, and heavy minerals commonly found in most terrestrial sedimentary deposits, basaltic sediments are typically composed of varying amounts of olivine, pyroxene, plagioclase, and vitric and lithic fragments. Both the persistence of basaltic particles and their specific gravities are different than particles derived from granite. These differences are important because they will affect the characteristics of basaltic sediment as it is transported by wind, water, and ice, and currently we have little to no understanding as to how basaltic sediment will weather as a function of the transport mechanism and distance. We will present preliminary analyses of typical basaltic sediments that have been transported by a variety of geologic processes in Hawaii, including details about surface texture, componentry, and the influence different sedimentary processes may have on remote sensing data. The figure below shows examples of A) sediment

  4. Uav Data Processing for Rapid Mapping Activities

    NASA Astrophysics Data System (ADS)

    Tampubolon, W.; Reinhardt, W.

    2015-08-01

    During disaster and emergency situations, geospatial data plays an important role to serve as a framework for decision support system. As one component of basic geospatial data, large scale topographical maps are mandatory in order to enable geospatial analysis within quite a number of societal challenges. The increasing role of geo-information in disaster management nowadays consequently needs to include geospatial aspects on its analysis. Therefore different geospatial datasets can be combined in order to produce reliable geospatial analysis especially in the context of disaster preparedness and emergency response. A very well-known issue in this context is the fast delivery of geospatial relevant data which is expressed by the term "Rapid Mapping". Unmanned Aerial Vehicle (UAV) is the rising geospatial data platform nowadays that can be attractive for modelling and monitoring the disaster area with a low cost and timely acquisition in such critical period of time. Disaster-related object extraction is of special interest for many applications. In this paper, UAV-borne data has been used for supporting rapid mapping activities in combination with high resolution airborne Interferometric Synthetic Aperture Radar (IFSAR) data. A real disaster instance from 2013 in conjunction with Mount Sinabung eruption, Northern Sumatra, Indonesia, is used as the benchmark test for the rapid mapping activities presented in this paper. On this context, the reliable IFSAR dataset from airborne data acquisition in 2011 has been used as a comparable dataset for accuracy investigation and assessment purpose in 3 D reconstructions. After all, this paper presents a proper geo-referencing and feature extraction method of UAV data to support rapid mapping activities.

  5. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect

    Farnsworth, R.K.; Mishima, J.

    1988-12-01

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  6. Active transportation to school in Canadian youth: should injury be a concern?

    PubMed

    Gropp, Kathleen; Janssen, Ian; Pickett, William

    2013-02-01

    Active transportation to school provides a means for youth to incorporate physical activity into their daily routines, and this has obvious benefits for child health. Studies of active transportation have rarely focused on the negative health effects in terms of injury. This cross-sectional study is based on the 2009/10 Canadian Health Behaviour in School-Aged Children survey. A sample of children aged 11-15 years (n=20 076) was studied. Multi-level logistic regression was used to examine associations between walking or bicycling to school and related injury. Regular active transportation to school at larger distances (approximately >1.6 km; 1.0 miles) was associated with higher relative odds of active transportation injury (OR: 1.52; 95% CI 1.08 to 2.15), with a suggestion of a dose-response relationship between longer travel distances and injury (p=0.02). Physical activity interventions for youth should encourage participation in active transportation to school, while also recognising the potential for unintentional injury.

  7. Processing abstract language modulates motor system activity.

    PubMed

    Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni

    2008-06-01

    Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system. PMID:18470821

  8. Identification of transport processes in column experiments using a frequency domain approach

    NASA Astrophysics Data System (ADS)

    Shuai, Xiufu; Yost, Russell S.

    2007-10-01

    When a solute transport process is viewed as a dynamic system with input and output, a system identification technique can be used to study it from input-output data. According to the design of excitation signals in the system identification approach, the commonly used rectangular pulse as input signal for column experiments is not optimum because it does not simultaneously meet the requirements for exciting the studied transport process, i.e., possessing frequency components with high enough amplitude and wide enough passband. In this article, stepped sine signals were proposed to replace the rectangular pulse because their amplitude and passband can be independently chosen. The stepped sine signals of concentration were generated by a High Performance Liquid Chromatography (HPLC) and used as the input for the column experiments to identify parameters of the convection-dispersion equation (CDE) and mobile-immobile model (MIM). In order to test the effect of noise on the identification of transport process, numerical experiments were carried out to identify the CDE under white noise when the input was designed as stepped sine functions and rectangular pulse. The results of the numerical experiments showed that the input signal of a sine function was more robust and accurate in process identification than that of a rectangular pulse.

  9. A biophysical analysis of mitochondrial movement: differences between transport in neuronal cell bodies versus processes

    PubMed Central

    Narayanareddy, Babu Reddy Janakaloti; Vartiainen, Suvi; Hariri, Neema; O’Dowd, Diane K.; Gross, Steven P.

    2014-01-01

    There is increasing interest in factors that can impede cargo transport by molecular motors inside the cell. While potentially relevant (1), the importance of cargo size and sub-cellular location have received relatively little attention. Here we address these questions taking advantage of the fact that mitochondria—a common cargo—in Drosophila neurons exhibit a wide distribution of sizes. In addition, the mitochondria can be genetically marked with GFP making it possible to visualize and compare their movement in the cell bodies and processes of living cells. Using total internal reflection (TIRF) microscopy coupled with particle tracking and analysis, we quantified transport properties of GFP positive mitochondria as a function of their size and location. In neuronal cell bodies we find little evidence for significant opposition to motion, consistent with a previous study on lipid droplets (2). However, in the processes we observe an inverse relationship between mitochondrial size and velocity and run distances. This can be ameliorated via hypotonic treatment to increase process size, suggesting that motor mediated movement is impeded in this more confined environment. Interestingly, we also observe local mitochondrial accumulations in processes but not in cell bodies. Such accumulations do not completely block transport, but do increase the probability of mitochondria-mitochondria interactions. They are thus particularly interesting in relation to mitochondrial exchange of elements. PMID:24673933

  10. Multi-process herbicide transport in structured soil columns: experiments and model analysis.

    PubMed

    Köhne, J Maximilian; Köhne, Sigrid; Simůnek, Jirka

    2006-05-01

    Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils

  11. Function and repair of dental enamel - Potential role of epithelial transport processes of ameloblasts.

    PubMed

    Varga, Gábor; Kerémi, Beáta; Bori, Erzsébet; Földes, Anna

    2015-07-01

    The hardest mammalian tissue, dental enamel is produced by ameloblasts, which are electrolyte-transporting epithelial cells. Although the end product is very different, they show many similarities to transporting epithelia of the pancreas, salivary glands and kidney. Enamel is produced in a multi-step epithelial secretory process that features biomineralization which is an interplay of secreted ameloblast specific proteins and the time-specific transport of minerals, protons and bicarbonate. First, "secretory" ameloblasts form the entire thickness of the enamel layer, but with low mineral content. Then they differentiate into "maturation" ameloblasts, which remove organic matrix from the enamel and in turn further build up hydroxyapatite crystals. The protons generated by hydroxyapatite formation need to be buffered, otherwise enamel will not attain full mineralization. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. The whole process has been the focus of many immunohistochemical and gene knock-out studies, but, perhaps surprisingly, no functional data existed for mineral ion transport by ameloblasts. However, recent studies including ours provided a better insight for molecular mechanism of mineral formation. The secretory regulation is not completely known as yet, but its significance is crucial. Impairing regulation retards or prevents completion of enamel mineralization and results in the development of hypomineralized enamel that easily erodes after dental eruption. Factors that impair this function are fluoride and disruption of pH regulators. Revealing these factors may eventually lead to the treatment of enamel hypomineralization related to genetic or environmentally induced malformation.

  12. Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia.

    PubMed

    Cui, H; Hense, B A; Müller, J; Schröder, P

    2015-09-01

    Metformin (MET) as an emerging contaminant has been detected in surface water and wastewater in numerous countries, due to insufficient retention in classical waste water treatment plants. In order to characterize the uptake of the compound during phytotreatment of waste water, a short term Pitman chamber experiment was carried out to assess the characteristics of MET uptake and transport by roots. Three different concentrations (0.5, 1.0 and 2.0 mmol L(-)(1)) were applied to cattail (Typha latifolia) and reed (Phragmites australis) roots which were used to investigate the uptake mechanism because they are frequently utilized in phytoremediation. In addition, quinidine was used as an inhibitor to assess the role of organic cation transporters (OCTs) in the uptake of MET by T. latifolia. The transport process of MET is different from carbamazepine (CBZ) and caffeine (CFN). In both T. latifolia and P. australis, the uptake processes were independent of initial concentrations. Quinidine, a known inhibitor of organic cation transporters, can significantly affect MET uptake by T. latifolia roots with inhibition ratios of 70-74%. Uptake into the root could be characterized by a linear model with R(2) values in the range of 0.881-0.999. Overall, the present study provides evidence that MET is taken up by plant roots and has the potential for subsequent translocation. OCTs could be one of the important pathways for MET uptake into the plant.

  13. Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain

    SciTech Connect

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-07-15

    This paper presents a field modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository for storing high-level radioactive waste. The 500 to 700 meter thick unsaturated zone of Yucca Mountain consists of highly heterogeneous layers of anisotropic, fractured ash flow and air fall tuffs. Characterization of fluid flow and heat transfer through such a system has been a challenge due to the heterogeneities prevalent on various scales. Quantitative evaluation of water, gas, and heat flow by means of numerical simulation is essential for design and performance assessment of the repository. A three-dimensional numerical flow and transport model will be discussed. The model has been calibrated against field-measured data and takes into account the coupled processes of unsaturated flow and tracer transport in the highly heterogeneous, unsaturated fractured porous rock. The modeling approach of the model is based on a dual-continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. As application examples, effects of current and future climates on the unsaturated zone processes are evaluated to aid in the assessment of the proposed repository's system performance.

  14. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    NASA Astrophysics Data System (ADS)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A.

    2016-02-01

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  15. Identification of critical residues for transport activity of Acr3p, the Saccharomyces cerevisiae As(III)/H+ antiporter.

    PubMed

    Markowska, Katarzyna; Maciaszczyk-Dziubinska, Ewa; Migocka, Magdalena; Wawrzycka, Donata; Wysocki, Robert

    2015-10-01

    Acr3p is an As(III)/H(+) antiporter from Saccharomyces cerevisiae belonging to the bile/arsenite/riboflavin transporter superfamily. We have previously found that Cys151 located in the middle of the fourth transmembrane segment (TM4) is critical for antiport activity, suggesting that As(III) might interact with a thiol group during the translocation process. In order to identify functionally important residues involved in As(III)/H(+) exchange, we performed a systematic alanine-replacement analysis of charged/polar and aromatic residues that are conserved in the Acr3 family and located in putative transmembrane segments. Nine residues (Asn117, Trp130, Arg150, Trp158, Asn176, Arg230, Tyr290, Phe345, Asn351) were found to be critical for proper folding and trafficking of Acr3p to the plasma membrane. In addition, we found that replacement of highly conserved Phe266 (TM7), Phe352 (TM9), Glu353 (TM9) and Glu380 (TM10) with Ala abolished transport activity of Acr3p, while mutation of Ser349 (TM9) to Ala significantly reduced the As(III)/H(+) exchange, suggesting an important role of these residues in the transport mechanism. Detailed mutational analysis of Glu353 and Glu380 revealed that the negatively charged residues located in the middle of transmembrane segments TM9 and TM10 are crucial for antiport activity. We also discuss a hypothetical model of the Acr3p transport mechanism.

  16. Neuronal activity mediated regulation of glutamate transporter GLT‐1 surface diffusion in rat astrocytes in dissociated and slice cultures

    PubMed Central

    Al Awabdh, Sana; Gupta‐Agarwal, Swati; Sheehan, David F.; Muir, James; Norkett, Rosalind; Twelvetrees, Alison E.; Griffin, Lewis D.

    2016-01-01

    The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264 PMID:27189737

  17. The association between green neighborhood environments and active transportation

    EPA Science Inventory

    Background: Urban nature is an important aspect of health-promoting environments. In particular, street trees and green space can provide a low cost approach to improving public health by promoting physical activity, improving mental health, and facilitating social cohesion. Acti...

  18. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  19. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-10-07

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  20. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  1. Pore scale to flood plain scale modeling of reactive transport processes

    NASA Astrophysics Data System (ADS)

    Steefel, C.; Molins, S.; Andre, B.; Trebotich, D.; Shen, C.; Landrot, G.; Maxwell, R. M.

    2012-12-01

    Reactive transport processes operate at a wide variety of scales in the subsurface, although modeling these across the scales remains a challenge. The need to treat reactive transport processes across scales is necessary because of the hierarchical nature of porous media in the subsurface, with physical, chemical, and potentially microbial heterogeneities present all the way from the pore to flood plain (watershed) or reservoir scale. The need to address the hierarchical nature of subsurface porous media is particularly important for resolving the long-standing "discrepancy" between laboratory and field rates, which are likely due at least in part to the development of gradients in concentration and thus reaction rate at all scales of heterogeneity. The huge range in modeling scales (microns to kilometers) are a computational challenge, but so is the need to consider differing constitutive equations, for example Navier-Stokes versus Darcy flow equations, or explicitly resolved mineral-microbe-fluid interfaces versus volume-averaged reactive surface areas, at the differing scales. Pore scale processes focusing on carbonate dissolution and precipitation are addressed by solving the Navier-Stokes or Stokes equation for flow at the pore scale coupled to reactive transport calculations in which the interfacial area for mineral dissolution and precipitation is taken directly from the pore geometry. Partial or complete diffusion control of reaction rates is accounted for directly by resolving velocity gradients in the vicinity of reactive mineral grains. Hydrologic accessibility of reactive surface area is also accounted for in this approach, although in general this is an additional factor that needs to be factored into simulations of reactive transport in volume-averaged porous media. At a scale above the pore scale, we use volume-averaged micro-continuum models to address reactivity and transport at the centimeter scale using a sample from the Cranfield formation in

  2. Regulation of Human Hepatic Drug Transporter Activity and Expression by Diesel Exhaust Particle Extract

    PubMed Central

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  3. Nutritional impact of elevated calcium transport activity in carrots.

    PubMed

    Morris, Jay; Hawthorne, Keli M; Hotze, Tim; Abrams, Steven A; Hirschi, Kendal D

    2008-02-01

    Nutrition recommendations worldwide emphasize ingestion of plant-based diets rather than diets that rely primarily on animal products. However, this plant-based diet could limit the intake of essential nutrients such as calcium. Osteoporosis is one of the world's most prevalent nutritional disorders, and inadequate dietary calcium is a known contributor to the pathophysiology of this condition. Previously, we have modified carrots to express increased levels of a plant calcium transporter (sCAX1), and these plants contain approximately 2-fold-higher calcium content in the edible portions of the carrots. However, it was unproven whether this change would increase the total amount of bioavailable calcium. In randomized trials, we labeled these modified carrots with isotopic calcium and fed them to mice and humans to assess calcium bioavailability. In mice feeding regimes (n = 120), we measured (45)Ca incorporation into bones and determined that mice required twice the serving size of control carrots to obtain the calcium found in sCAX1 carrots. We used a dual-stable isotope method with (42)Ca-labeled carrots and i.v. (46)Ca to determine the absorption of calcium from these carrots in humans. In a cross-over study of 15 male and 15 female adults, we found that when people were fed sCAX1 and control carrots, total calcium absorption per 100 g of carrots was 41% +/- 2% higher in sCAX1 carrots. Both the mice and human feeding studies demonstrate increased calcium absorption from sCAX1-expressing carrots compared with controls. These results demonstrate an alternative means of fortifying vegetables with bioavailable calcium.

  4. Thermodynamics of Irreversible Processes Applied to Solute Transport in Non Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Mathieu-Balster, I.; Sicard, J.

    1999-09-01

    Modeling of solute transport in non-saturated and non-isothermal porous media is dealt with by thermodynamics of irreversible processes. This rigorous approach enables us to consider the different kinds of transfer and the coupling. Every physical phenomenon as water phase transition and solute adsorption by the solid matrix can be taken into account. The final model may be applied to several fields such as civil engineering, agronomy, pollution and the assessment of radioactive waste repositories. A numerical modeling taking into account the effect of temperature gradient on solute transport (“Soret effect”) is in the process of implementation in the French software “CESAR-LCPC” of the “Laboratoire Central des Ponts et Chaussées”.

  5. Joint source coding, transport processing, and error concealment for H.323-based packet video

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-Fan; Kerofsky, Louis

    1998-12-01

    In this paper, we investigate how to adapt different parameters in H.263 source coding, transport processing and error concealment to optimize end-to-end video quality at different bitrates and packet loss rates for H.323-based packet video. First different intra coding patterns are compared and we show that the contiguous rectangle or square block pattern offers the best performance in terms of video quality in the presence of packet loss. Second, the optimal intra coding frequency is found for different bitrates and packet loss rates. The optimal number of GOB headers to be inserted in the source coding is then determined. The effect of transport processing strategies such as packetization and retransmission is also examined. For packetization, the impact of packet size and the effect of macroblock segmentation to picture quality are investigated. Finally, we show that the dejitter buffering delay can be used to the advantage for packet loss recovery with video retransmission without incurring any extra delay.

  6. Multiscale Modeling of Transport Phenomena and Dendritic Growth in Laser Cladding Processes

    NASA Astrophysics Data System (ADS)

    Tan, Wenda; Wen, Shaoyi; Bailey, Neil; Shin, Yung C.

    2011-12-01

    A multiscale model is developed in this article to investigate the transport phenomena and dendrite growth in the diode-laser-cladding process. A transient model with an improved level-set method is built to simulate the heat/mass transport and the dynamic evolution of the molten pool surface on the macroscale. A novel model integrating the cellular automata (CA) and phase field (PF) methods is used to simulate the dendritic growth of multicomponent alloys in the mushy zone. The multiscale model is validated against the experiments, and the predicted geometry of clad tracks and the predicted dendrite arm spacing of microstructure match reasonably well with the experimental results. The effects of the processing parameters on the track geometry and microstructure are also investigated.

  7. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  8. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function.

    PubMed

    Haycraft, Courtney J; Banizs, Boglarka; Aydin-Son, Yesim; Zhang, Qihong; Michaud, Edward J; Yoder, Bradley K

    2005-10-01

    Intraflagellar transport (IFT) proteins are essential for cilia assembly and have recently been associated with a number of developmental processes, such as left-right axis specification and limb and neural tube patterning. Genetic studies indicate that IFT proteins are required for Sonic hedgehog (Shh) signaling downstream of the Smoothened and Patched membrane proteins but upstream of the Glioma (Gli) transcription factors. However, the role that IFT proteins play in transduction of Shh signaling and the importance of cilia in this process remain unknown. Here we provide insights into the mechanism by which defects in an IFT protein, Tg737/Polaris, affect Shh signaling in the murine limb bud. Our data show that loss of Tg737 results in altered Gli3 processing that abrogates Gli3-mediated repression of Gli1 transcriptional activity. In contrast to the conclusions drawn from genetic analysis, the activity of Gli1 and truncated forms of Gli3 (Gli3R) are unaffected in Tg737 mutants at the molecular level, indicating that Tg737/Polaris is differentially involved in specific activities of the Gli proteins. Most important, a negative regulator of Shh signaling, Suppressor of fused, and the three full-length Gli transcription factors localize to the distal tip of cilia in addition to the nucleus. Thus, our data support a model where cilia have a direct role in Gli processing and Shh signal transduction. PMID:16254602

  9. Gli2 and Gli3 Localize to Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function

    SciTech Connect

    Michaud III, Edward J; Haycraft, Courtney J; Aydin Son, Yesim; Zhang, Qihong; Yoder, Bradley

    2005-01-01

    Intraflagellar transport (IFT) proteins are essential for cilia assembly and have recently been associated with a number of developmental processes, such as left-right axis specification and limb and neural tube patterning. Genetic studies indicate that IFT proteins are required for Sonic hedgehog (Shh)signaling downstream of the Smoothened and Patched membrane proteins but upstream of the Glioma (Gli) transcription factors. However, the role that IFT proteins play in transduction of Shh signaling and the importance of cilia in this process remain unknown. Here we provide insights into the mechanism by which defects in an IFT protein, Tg737/Polaris, affect Shh signaling in the murine limb bud. Our data show that loss of Tg737 results in altered Gli3 processing that abrogates Gli3-mediated repression of Gli1 transcriptional activity. In contrast to the conclusions drawn from genetic analysis, the activity of Gli1 and truncated forms of Gli3 (Gli3R) are unaffected in Tg737 mutants at the molecular level, indicating that Tg737/Polaris is differentially involved in specific activities of the Gli proteins. Most important, a negative regulator of Shh signaling, Suppressor of fused, and the three full-length Gli transcription factors localize to the distal tip of cilia in addition to the nucleus. Thus, our data support a model where cilia have a direct role in Gli processing and Shh signal transduction.

  10. Development of an activity assay for discovery of inhibitors of lipopolysaccharide transport.

    PubMed

    Gronenberg, Luisa S; Kahne, Daniel

    2010-03-01

    The outer membrane of gram-negative bacteria contains an outer leaflet composed of lipopolysaccharide (LPS) that is transported to this location by a pathway that is essential for viability. It has been suggested that inhibitors of this pathway could be useful antibiotics. Herein we reconstitute the activity of the ATPase component (LptB) of the ABC transporter that initiates LPS transport and assembly. We developed a high-throughput assay and screened a library of kinase inhibitors against LptB. We identified two classes of ATP-competitive inhibitors. These are the first inhibitors of the ATPase component of any bacterial ABC transporter. The small-molecule inhibitors will be very useful tools for further biochemical studies of the proteins involved in LPS transport and assembly.

  11. Heat Transfer Processes for the Thermal Energy Balance of Organisms. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Stevenson, R. D.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes heat transfer processes involved in the exchange of heat…

  12. Hydrologic Processes Controlling the Transport of Radionuclides Through the Hanford Vadose Zone

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Jardine, P. M.; Pace, M. N.; Fendorf, S. E.; Mehlhorn, T. L.; Roh, Y.; Ladd, J. L.; Bjornstad, B. N.

    2001-12-01

    At the U.S. Department of Energy's Hanford Reservation in south central Washington, accelerated migration of radionuclides has been observed in the vadose zone beneath the Hanford Tank Farms. The goal of this research was to provide an improved understanding and predictive capability of the coupled hydrological and geochemical mechanisms that are responsible for contaminant mobility in the vadose zone. The research strategy consisted of collecting undisturbed sediment cores (0.3 m diameter x 0.3 m length) in order to perform laboratory-scale, multiple nonreactive and reactive transport experiments at a variety of different water contents. Cores were collected from the Miocene-Pliocene age Upper Ringold Formation, which consists of fine sand, silt and clay. Cores were acquired both parallel and perpendicular to bedding. Two units within the U. Ringold were sampled, a horizontally-bedded, laminated Upper Silt and a cross-bedded Lower Silty Sand. Unsaturated transport experiments were performed using the nonreactive tracers Br-, PFBA, and PIPES, which differ in their free-water molecular diffusion coefficients. Unsaturated transport experiments through cores with discontinuous layering resulted in the formation of an unstable wetting front characterized by preferential finger flow and the development of zones of perched water. Media bypass is inferred by early breakthrough of tracers relative to saturated flow, while the presence of perched water is suggested by decreasing core matric potential. Further, observed separation of tracers (Br-> PFBA > PIPES) suggests that diffusional processes can contribute to contaminant transport. Conversely, transport through cores composed of laterally continuous beds did not result in preferential flow, the development of perched water, or tracer separation regardless of saturation. This suggests a propensity for lateral flow beneath the tank farms. Preferential vertical finger flow may be initiated by intersection with lithologic

  13. Transport processes of nitrogen, phosphorus, and pesticides in five agricultural watersheds in the United States

    NASA Astrophysics Data System (ADS)

    Domagalski, J.; Phillips, S. P.

    2007-12-01

    Transport processes affecting agricultural chemicals in the hydrological cycle were investigated at five watersheds in major agricultural settings, representing both different agricultural practices and climatic settings of the United States. Watersheds were chosen in two semi-arid regions of California and Washington that utilized irrigation; in Nebraska (typical of mid-west corn and soybean rotation); in an Indiana basin with tile drainage; and in a Maryland watershed where ground-water discharge supplied a substantial portion of the annual streamflow. The study design was to provide a mass-balance of water and agricultural chemicals originating from the atmosphere or irrigation water, through the unsaturated zone, along a ground-water flow path, and discharge of the ground water to a stream. Although overland flow associated with storms transported the bulk of nutrient and pesticide compounds to streams in most of these watersheds, ground-water transport, as indicated by flow separation analysis, was also important for annual loads of nitrate and pesticide degradates. Total nitrogen, mainly in the form of nitrate, was the most important nutrient with respect to mass loading in these streams, and pesticide transport was usually greatest during the first few rainfall events following application. In contrast, ground-water transport of pesticide degradates contributed to their mass loading throughout the year in base-flow dominated streams. Although subsurface transport of phosphorus has not been given much attention in previous studies of agricultural chemicals, concentrations were elevated in the unsaturated zone and along ground-water flow paths to streams in some of the watersheds, and contributed to the annual stream load. This was particularly true in the basins of the western United States. For instance, in the Washington basin, discharging ground water accounted for up to 30 percent of the annual phosphorus stream load.

  14. The Effect of an Active Transport to School Intervention at a Suburban Elementary School

    ERIC Educational Resources Information Center

    Bungum, Timothy J.; Clark, Sheila; Aguilar, Brenda

    2014-01-01

    Background: Many children do not meet physical activity (PA) guidelines. One strategy that may enhance PA is to increase active transport to school (ATS) rates. Purpose: To assess the effects of an ATS intervention. Methods: A quasi-experimental design was used to compare ATS and vehicle traffic rates at a school that participated in a statewide…

  15. Policies Related to Active Transport to and from School: A Multisite Case Study

    ERIC Educational Resources Information Center

    Eyler, Amy A.; Brownson, Ross C.; Doescher, Mark P.; Evenson, Kelly R.; Fesperman, Carrie E.; Litt, Jill S.; Pluto, Delores; Steinman, Lesley E.; Terpstra, Jennifer L.; Troped, Philip J.; Schmid, Thomas L.

    2008-01-01

    Active transportation to and from school (ATS) is a viable strategy to help increase physical activity among youth. ATS can be challenging because initiatives require transdisciplinary collaboration, are influenced by the built environment and are affected by numerous policies. The purpose of this study is to identify policies and factors that…

  16. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  17. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    NASA Astrophysics Data System (ADS)

    Smettem, Keith; Harris, Nick; Cranny, Andy; Klaus, Julian; Pfister, Laurent

    2016-04-01

    Quantifying the travel times, pathways and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor) potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for three stream reaches in Luxembourg. Sensor results are comparable to data obtained from more expensive electrical conductivity meters and allow spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  18. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Data processing activities. 211.604 Section...

  19. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Data processing activities. 211.604 Section...

  20. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Data processing activities. 211.604 Section...

  1. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Data processing activities. 211.604 Section...

  2. 12 CFR 211.604 - Data processing activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... processing activities under Regulation K (12 CFR part 211). This question has arisen as a result of the fact... (12 CFR part 225) at that time, as the Regulation K authority permitted limited non-financial data... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Data processing activities. 211.604 Section...

  3. Identification of transport processes in Southern Indian fractured crystalline rock using forced-gradient tracer experiments

    NASA Astrophysics Data System (ADS)

    Guihéneuf, Nicolas; Bour, Olivier; Boisson, Alexandre; Le Borgne, Tanguy; Becker, Matthew R.; Nigon, Benoit; Wajiduddin, Mohammed; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2015-04-01

    Understanding dominant transport processes is essential to improve prediction of contaminants transfer in fractured crystalline rocks. In such fractured media, solute transport is characterized by fast advection within open and connected fractures and sometimes by matrix diffusion that may be enhanced by chemical weathering. To investigate this phenomenon, we carried out radially convergent and push-pull tracer experiments in the fractured granite of the Experimental Hydrogeological Park of Choutuppal (Southern India). Tracer tests were performed in the same permeable fracture from few meters to several ten meters and from few hours to two weeks to check the consistency of the results at different spatial and temporal scales. These different types of forced gradient tracer experiments allow separation of the effects of advection and diffusion on transport. Breakthrough curves from radially convergent tracer tests display systematically a -2 power law slope on the late time behavior. This tailing can be adequately represented by a transport model that only takes into account heterogeneous advection caused by fluid flow channeling. The negligible impact of matrix diffusion was confirmed by the push-pull tracer tests, at least for the duration of experiments. A push-pull experiment carried out with a cocktail of two conservative tracers having different diffusion coefficients displayed similar breakthrough curves. Increasing the resting phase during the experiments did not lead to a significant decline of peak concentration. All these results suggest a negligible impact of matrix diffusion. However, increasing the scales of investigation during push-pull tracer tests led to a decrease of the power law slope on the late time behavior. This behavior that cannot be modeled with a transport model based on independent flow paths and indicate non-reversible heterogeneous advection. This process could be explained by the convergence of streamlines after a certain distance

  4. Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum.

    PubMed Central

    Ganguly, T C; Liu, Y; Hyde, J F; Hagenbuch, B; Meier, P J; Vore, M

    1994-01-01

    We have shown that Na+/taurocholate co-transport activity is decreased in pregnancy, but rebounds post partum relative to non-pregnant controls, and that activity can be increased by treatment with ovine prolactin [Ganguly, Hyde and Vore (1993) J. Pharmacol. Exp. Ther. 267, 82-87]. To determine the basis for these effects, Na+/taurocholate co-transport was determined in purified basolateral liver plasma-membrane (bLPM) vesicles and compared with steady-state mRNA levels encoding the Na+/taurocholate-co-transporting polypeptide (Ntcp) in non-pregnant controls, pregnant rats (19-20 days pregnant), rats post partum (48 h post partum) and rats post partum treated with bromocriptine to inhibit prolactin secretion. Na+/taurocholate co-transport activity (nmol/5 s per mg of protein) in bLPM was decreased from 10.4 +/- 1.8 in non-pregnant controls to 7.9 +/- 0.6 in bLPM in pregnant rats, but rebounded to 17.5 +/- 1.3 post partum; treatment of rats post partum with bromocriptine to inhibit prolactin secretion decreased activity to 14.1 +/- 0.9. Northern and slot-blot analyses revealed similar changes in mRNA for Ntcp, so that a positive correlation was observed between Na+/taurocholate co-transport activity and Ntcp mRNA. Furthermore, treatment of ovariectomized rats with ovine prolactin increased Ntcp mRNA 10-fold compared with solvent-treated controls, consistent with the 2-fold increase in Vmax, for Na+/taurocholate co-transport in isolated hepatocytes. These data are the first to demonstrate endogenous physiological regulation by prolactin of Ntcp mRNA in parallel with Na+/taurocholate co-transport activity. Images Figure 2 PMID:7945260

  5. Built Environment and Active Transport to School (BEATS) Study: protocol for a cross-sectional study

    PubMed Central

    Mandic, Sandra; Williams, John; Moore, Antoni; Hopkins, Debbie; Flaherty, Charlotte; Wilson, Gordon; García Bengoechea, Enrique; Spence, John C

    2016-01-01

    Introduction Active transport to school (ATS) is a convenient way to increase physical activity and undertake an environmentally sustainable travel practice. The Built Environment and Active Transport to School (BEATS) Study examines ATS in adolescents in Dunedin, New Zealand, using ecological models for active transport that account for individual, social, environmental and policy factors. The study objectives are to: (1) understand the reasons behind adolescents and their parents' choice of transport mode to school; (2) examine the interaction between the transport choices, built environment, physical activity and weight status in adolescents; and (3) identify policies that promote or hinder ATS in adolescents. Methods and analysis The study will use a mixed-method approach incorporating both quantitative (surveys, anthropometry, accelerometers, Geographic Information System (GIS) analysis, mapping) and qualitative methods (focus groups, interviews) to gather data from students, parents, teachers and school principals. The core data will include accelerometer-measured physical activity, anthropometry, GIS measures of the built environment and the use of maps indicating route to school (students)/work (parents) and perceived safe/unsafe areas along the route. To provide comprehensive data for understanding how to change the infrastructure to support ATS, the study will also examine complementary variables such as individual, family and social factors, including student and parental perceptions of walking and cycling to school, parental perceptions of different modes of transport to school, perceptions of the neighbourhood environment, route to school (students)/work (parents), perceptions of driving, use of information communication technology, reasons for choosing a particular school and student and parental physical activity habits, screen time and weight status. The study has achieved a 100% school recruitment rate (12 secondary schools). Ethics and

  6. Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK3β

    PubMed Central

    Xu, Jordan C.; Fomenko, Vira; Miyamoto, Takashi; Suberbielle, Elsa; Knox, Joseph A.; Ho, Kaitlyn; Kim, Daniel H.; Yu, Gui-Qiu

    2015-01-01

    Axonal transport deficits in Alzheimer’s disease (AD) are attributed to amyloid β (Aβ) peptides and pathological forms of the microtubule-associated protein tau. Genetic ablation of tau prevents neuronal overexcitation and axonal transport deficits caused by recombinant Aβ oligomers. Relevance of these findings to naturally secreted Aβ and mechanisms underlying tau’s enabling effect are unknown. Here we demonstrate deficits in anterograde axonal transport of mitochondria in primary neurons from transgenic mice expressing familial AD-linked forms of human amyloid precursor protein. We show that these deficits depend on Aβ1–42 production and are prevented by tau reduction. The copathogenic effect of tau did not depend on its microtubule binding, interactions with Fyn, or potential role in neuronal development. Inhibition of neuronal activity, N-methyl-d-aspartate receptor function, or glycogen synthase kinase 3β (GSK3β) activity or expression also abolished Aβ-induced transport deficits. Tau ablation prevented Aβ-induced GSK3β activation. Thus, tau allows Aβ oligomers to inhibit axonal transport through activation of GSK3β, possibly by facilitating aberrant neuronal activity. PMID:25963821

  7. Decoupling catalytic activity from biological function of the ATPase that powers lipopolysaccharide transport.

    PubMed

    Sherman, David J; Lazarus, Michael B; Murphy, Lea; Liu, Charles; Walker, Suzanne; Ruiz, Natividad; Kahne, Daniel

    2014-04-01

    The cell surface of Gram-negative bacteria contains lipopolysaccharides (LPS), which provide a barrier against the entry of many antibiotics. LPS assembly involves a multiprotein LPS transport (Lpt) complex that spans from the cytoplasm to the outer membrane. In this complex, an unusual ATP-binding cassette transporter is thought to power the extraction of LPS from the outer leaflet of the cytoplasmic membrane and its transport across the cell envelope. We introduce changes into the nucleotide-binding domain, LptB, that inactivate transporter function in vivo. We characterize these residues using biochemical experiments combined with high-resolution crystal structures of LptB pre- and post-ATP hydrolysis and suggest a role for an active site residue in phosphate exit. We also identify a conserved residue that is not required for ATPase activity but is essential for interaction with the transmembrane components. Our studies establish the essentiality of ATP hydrolysis by LptB to power LPS transport in cells and suggest strategies to inhibit transporter function away from the LptB active site.

  8. Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process.

    PubMed

    Li, Yi; Wang, Hongqi; Hua, Fei; Su, Mengyuan; Zhao, Yicun

    2014-03-01

    The mechanism of transport of (14)C-fluoranthene by Rhodococcus sp. BAP-1, a Gram-positive bacterium isolated from crude oil-polluted soil, was examined. Our finding demonstrated that the mechanism for fluoranthene travel across the cell membrane in Rhodococcus sp. BAP-1 requires energy. Meanwhile, the transport of fluoranthene involves concurrent catabolism of (14)C, that leading to the generation of significant amount of (14)CO2. Combined with trans-membrane transport dynamic and response surface methodology, a significant influence of temperature, pH and salinity on cellular uptake rate was screened by Plackett-Burman design. Then, Box-Behnken design was employed to optimize and enhanced the trans-membrane transport process. The results predicted by Box-Behnken design indicated that the maximum cellular uptake rate of fluoranthene could be achieve to 0.308μmolmin(-1)mg(-1)·protein (observed) and 0.304μmolmin(-1)mg(-1)·protein (predicted) when the initial temperature, pH and salinity were set at 20°C, 9% and 1%, respectively.

  9. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers.

    PubMed

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang Michael; Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  10. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

    NASA Astrophysics Data System (ADS)

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang (Michael); Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  11. Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells

    NASA Astrophysics Data System (ADS)

    Hawkins, R. J.; Bénichou, O.; Piel, M.; Voituriez, R.

    2009-10-01

    Many cellular processes require a polarization axis which generally initially emerges as an inhomogeneous distribution of molecular markers in the cell. We present a simple analytical model of a general mechanism of cell polarization taking into account the positive feedback due to the coupled dynamics of molecular markers and cytoskeleton filaments. We find that the geometry of the organization of cytoskeleton filaments, nucleated on the membrane (e.g., cortical actin) or from a center in the cytoplasm (e.g., microtubule asters), dictates whether the system is capable of spontaneous polarization or polarizes only in response to external asymmetric signals. Our model also captures the main features of recent experiments of cell polarization in two considerably different biological systems, namely, mating budding yeast and neuron growth cones.

  12. Transport processes and distribution of plasma in the ionosphere during total solar eclipses

    NASA Astrophysics Data System (ADS)

    Chukwuma, Victor

    2016-07-01

    The effect of solar eclipse on the ionospheric F2 layer does not appear to depend only on the changes in the electron density. In this regards therefore, we have investigated the transport term process and the distribution F2 plasma during three total solar eclipses (TSE) at low- and mid-latitude. Particularly, the diurnal changes in the NmF2 and hmF2 during these spectacular events, as recorded by the ionosondes situated along the path of solar eclipses, which are within the obscuration percentage of 59-90% were investigated. Presently, our results show that NmF2 decreased during the eclipse window, as a consequence of the variation in the local solar radiation in regions under investigation. However, at mid-latitude, the distribution of F2 plasma was dominated by diffusion mechanisms which determined the height at which the F2 peak formed and were related to the changes in thermospheric composition. While at low-latitude the plasma distribution during TSE appeared to depend on combined effect of solar ionizing radiation (SIR) and the background nighttime ionospheric instabilities/irregularities mechanism. The downward/upward transport processes of the plasma appear to correspond with the drifting of the diffusion mechanisms and suffered a comparable variation with the SIR. Furthermore, at low-latitude ionosphere the transport process is controlled by the equatorial electric field. It is also observed that the eastward/westward movement of the equatorial electric field during the eclipse phase was connected to the upward/downward movement of the vertical transport. In conclusion, our results appear to indicate that eclipse effects increased with increase in latitude and the time lag decreases with increase in latitude.

  13. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    NASA Astrophysics Data System (ADS)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (<1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector. To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel. To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to

  14. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned.

  15. Activated Sludge and other Aerobic Suspended Culture Processes.

    PubMed

    Li, Chunying; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    This is a literature review for the year 2015 and contains information specifically associated with suspended growth processes including activated sludge, upflow anaerobic sludge blanket, and sequencing batch reactors. The review encompasses modeling and kinetics, nutrient removal, system design and operation. Compared to past reviews, many topics show increase in activity in 2015. These include, fate and effect of xenobiotics, industrial wastes treatment with sludge, and pretreatment for the activated sludge. These topics are referred to the degradation of constituents in activated sludge. Other sections include population dynamics, process microbiology give an insight into the activated sludge. The subsection in industrial wastes: converting sewage sludge into biogases was also mentioned. PMID:27620082

  16. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-06

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly

  17. [Relationships between H2O2 metabolism and Ca2+ transport in dormancy-breaking process of nectarine floral buds].

    PubMed

    Tan, Yue; Gao, Dong-sheng; Li, Ling; Wei, Hai-rong; Wang, Jia-wei; Liu, Qing-zhong

    2015-02-01

    In order to explore regulatory function of H2O2 in bud dormancy release, main effects of three dormancy-breaking treatments (high temperature, hydrogen cyanamide and TDZ) on H2O2 metabolism were determined, and impacts of H2O2 on Ca2+ transport were tested using non-invasive micro-test technique. The results showed that both high temperature and hydrogen cyanamide induced H2O2 accumulation and CAT inhibition were efficient in breaking dormancy during deep dormancy period. However, TDZ showed little impacts on H2O2 metabolism and was much less effective in breaking dormancy. Dormant floral primordium was absorbing state to exogenous Ca2+ due to active calcium channels. The Ca2+ transport could be changed by exogenous H2O2. H2O2 of low concentration reduced the absorption rate of Ca2+, and at high concentration, it changed the Ca2+ transport direction from absorption to release. The results indicated that H2O2 signals were related with Ca2+ signals in dormant buds. Ca2+ signal regulated by H2O2 accumulation might be important in the dormancy-breaking signal transduction process induced by high temperature and hydrogen cyanamide.

  18. Revealing the flux: Using processed Husimi maps to visualize dynamics of bound systems and mesoscopic transport

    NASA Astrophysics Data System (ADS)

    Mason, Douglas J.; Borunda, Mario F.; Heller, Eric J.

    2015-04-01

    We elaborate upon the "processed Husimi map" representation for visualizing quantum wave functions using coherent states as a measurement of the local phase space to produce a vector field related to the probability flux. Adapted from the Husimi projection, the processed Husimi map is mathematically related to the flux operator under certain limits but offers a robust and flexible alternative since it can operate away from these limits and in systems that exhibit zero flux. The processed Husimi map is further capable of revealing the full classical dynamics underlying a quantum wave function since it reverse engineers the wave function to yield the underlying classical ray structure. We demonstrate the capabilities of processed Husimi maps on bound systems with and without electromagnetic fields, as well as on open systems on and off resonance, to examine the relationship between closed system eigenstates and mesoscopic transport.

  19. Exposure of Campylobacter jejuni to 6 degrees C: effects on heat resistance and electron transport activity.

    PubMed

    Hughes, Rebecca-Ayme; Cogan, Tristan; Humphrey, Tom

    2010-04-01

    Human infection with Campylobacter jejuni is frequently associated with the consumption of foods, especially chicken meat, which have been exposed to a range of temperatures during processing, storage, and cooking. Despite the public health importance of C. jejuni, little is known about the effects of cold exposure (refrigeration) on the subsequent ability of this pathogen to survive heat challenge. This work examined the effect of rapid exposure to 6 degrees C for 24 h on the heat resistance at 52 degrees C of 19 C. jejuni strains originally isolated from various sources. The resulting death curves were analyzed with the Weibull model. Unlike cold-exposed cells of Escherichia coli and Salmonella, which have been reported to show significant increased sensitivity to heat, such exposure had only a marginal effect on heat resistance of the C. jejuni strains in this study. A possible explanation for this effect is that rapid chilling renders C. jejuni cells unable to adapt to reduced temperatures in an active manner. This hypothesis is supported by the observation that exposure to 6 degrees C for 24 h resulted in a significant and marked reduction in electron transport system activity when compared with controls at 37 degrees C.

  20. Liver X Receptor β and Peroxisome Proliferator-Activated Receptor δ regulate cholesterol transport in cholangiocytes

    PubMed Central

    Xia, Xuefeng; Jung, Dongju; Webb, Paul; Zhang, Aijun; Zhang, Bin; Li, Lifei; Ayers, Stephen D.; Gabbi, Chiara; Ueno, Yoshiyuki; Gustafsson, Jan-Åke; Alpini, Gianfranco; Moore, David D.; LeSage, Gene D.

    2012-01-01

    Nuclear receptors (NRs) play crucial roles in regulation of hepatic cholesterol synthesis, metabolism and conversion to bile acids, but their actions in cholangiocytes have not been examined. In this study, we investigated the roles of NRs in cholangiocyte physiology and cholesterol metabolism and flux. We examined the expression of NRs and other genes involved in cholesterol homeostasis in freshly isolated and cultured rodent cholangiocytes and found that these cells express a specific subset of NRs which includes Liver X Receptor β (LXRβ) and Peroxisome Proliferator-Activated Receptor δ (PPARδ). Activation of LXRβ and/or PPARδ in cholangiocytes induces ATP-binding cassette cholesterol transporter A1 (ABCA1) and increases cholesterol export at the basolateral compartment in polarized cultured cholangiocytes. In addition, PPARδ induces Niemann Pick C1 Like L1 (NPC1L1), which imports cholesterol into cholangiocytes and is expressed on the apical cholangiocyte membrane, via specific interaction with a PPRE within the NPC1L1 promoter. Based on these studies, we propose that (i) LXRβ and PPARδ coordinate NPC1L1/ABCA1 dependent vectorial cholesterol flux from bile through cholangiocytes and (ii) manipulation of these processes may influence bile composition with important applications in cholestatic liver disease and gallstone disease, serious health concerns for humans. PMID:22729460

  1. Coupled turbulent flow, heat, and solute transport in continuous casting processes

    NASA Astrophysics Data System (ADS)

    Aboutalebi, M. Reza; Hasan, M.; Guthrie, R. I. L.

    1995-08-01

    A fully coupled fluid flow, heat, and solute transport model was developed to analyze turbulent flow, solidification, and evolution of macrosegregation in a continuous billet caster. Transport equations of total mass, momentum, energy, and species for a binary iron-carbon alloy system were solved using a continuum model, wherein the equations are valid for the solid, liquid, and mushy zones in the casting. A modified version of the low-Reynolds number k-ɛ model was adopted to incorporate turbulence effects on transport processes in the system. A control-volume-based finite-difference procedure was employed to solve the conservation equations associated with appropriate boundary conditions. Because of high nonlinearity in the system of equations, a number of techniques were used to accelerate the convergence process. The effects of the parameters such as casting speed, steel grade, nozzle configuration on flow pattern, solidification profile, and carbon segregation were investigated. From the computed flow pattern, the trajectory of inclusion particles, as well as the density distribution of the particles, was calculated. Some of the computed results were compared with available experimental measurements, and reasonable agreements were obtained.

  2. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  3. Aerobic and anaerobic metabolism of bovine ciliary process: effects of metabolic and transport inhibitors.

    PubMed

    Braunagel, S C; Yorio, T

    1987-01-01

    In the present study we have measured the oxygen consumption and lactic acid production, under aerobic and anaerobic conditions, in the bovine ciliary process epithelium (CPE) in the presence and absence of transport modifiers. Basal oxygen consumption was 8-15 microliters O2 consumed/mg protein/hr and decreased by 35% when sodium was removed or ouabain was added to the media. Anaerobic metabolism as measured by lactate production was also attenuated by sodium-free or ouabain treatment. When O2 consumption was severely limited by cyanide, lactic acid production increased significantly ("Pasteur effect"), whereas 2-deoxyglucose reduced lactate formation. Both chloride-free and acetazolamide treated CPE increased their dependency on aerobic glycolysis, and this response was also observed under anaerobic conditions, suggesting the presence of an anion transport mechanism. A net lactate production was also found to occur across the aqueous epithelium under aerobic and anaerobic conditions. These results are consistent with the presence of a bicarbonate-sensitive anion transport system located in the ciliary process epithelium.

  4. Modeling groundwater transport of dissolved gasoline and using the results to evaluate aquifer restoration processes

    SciTech Connect

    Yin, S.C.L.; Chiu, Shen-yann

    1987-01-01

    Solute transport models can be used to simulate aquifer restoration processes for groundwater contaminated by dissolved gasoline. Generic aquifer restoration problems, representing a generalized contamination case for a typical range of aquifer characteristics, were formulated by a selected solute transport model. The results of the simulations were used to evaluate the feasibility and effectiveness of aquifer restoration by pumping out the contaminted water. The aquifer restoration process consists of a single well located at the center of the contaminated area to pump the groundwater at constant rates of 400, 50, and 5 gpm for three selected aquifer cases, respectively. The pumping rates were selected such that the maximum well drawdown in all three cases is about 10 feet after 20 years of pumping. The modeling results indicate that the time of pumping required to reduce hydrocarbon concentrations down to acceptable levels is quite sensitive to hydraulic conductivity of the aquifer and retardation factors of the hydrocarbons. The aquifer cases considered in the restoration problem had hydraulic conductivities, respectively, of 5000, 500, and 50 gpd/ft/sup 2/. Each aquifer was assumed to be unconfined and to be 20 ft thick. The gasoline-contaminated area in each case was assumed to be 100 ft by 200 ft, with a uniform concentration of hydrocarbons. The removal of two hydrocarbons (benzene and xylene) was simulated by the transport model.

  5. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    PubMed Central

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  6. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids*

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Quigley, Andrew; Carpenter, Elisabeth P.; Hruz, Paul W.

    2016-01-01

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  7. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids.

    PubMed

    Hresko, Richard C; Kraft, Thomas E; Quigley, Andrew; Carpenter, Elisabeth P; Hruz, Paul W

    2016-08-12

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  8. Investigation of the sediment transport processes using tracer stones in in alpine torrents

    NASA Astrophysics Data System (ADS)

    Spreitzer, Gabriel; Harb, Gabriele; Schneider, Josef

    2015-04-01

    Worldwide, every year numerous people die as a result of extreme weather conditions. Not only in less developed countries, also in Austria are we continuously facing the severe danger resulting from torrents. Therefore, risk prevention, risk analysis and forecast methods thus became more important. Geomorphological processes are often not easy to analyse. It is thus necessary to investigate the availability of sediments in the catchment area, the erosion processes of the sediment and the transport of the sediments along torrents. A domestic example concerning extreme events constitutes the Schöttlbach in the Upper Styrian town Oberwölz, which turned in the year 2011 into a dangerous torrent after heavy rainfall with up to 140 l/s in 2.5 hours and caused enormous damage, which runs into the millions. Due to this event the project ClimCatch has been started in 2012 in order to investigate the behavior of mountain creeks in the alpine catchment area considering the aspect of the advancing climate change. The main goal of the project is to analyse the geomorphic processes determining sediment transport in the river system and the measurement of bed load output. Several different methodologies are applied within the project to quantify river sediment dynamics. Discharge and sediment transport measurement equipment as well as hydrological stations are installed in the catchment area. For the observation and measurement of the sediment transport Large- and Small-Helley-Smith-Sampler and colour tracer stones are carried out. The measurements with the Small-Helley-Smith-Sampler determined a daily bed load of 1.5 t at the double mean discharge of about 900 l/s. The colour tracer stones, which are prepared as well characterized in the laboratory and exposed again in the river bed, gave information about the movement behaviour of these stones in case of flood events. Therefore, the position of the tracer stones were checked at regular intervals or after major rainfall in the

  9. Active transport improves the precision of linear long distance molecular signalling

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2016-09-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

  10. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    NASA Astrophysics Data System (ADS)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  11. Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography

    PubMed Central

    Hendabadi, Sahar; Bermejo, Javier; Benito, Yolanda; Yotti, Raquel; Fernández-Avilés, Francisco; del Álamo, Juan C.; Shadden, Shawn C.

    2013-01-01

    Novel processing of Doppler-echocardiography data was used to study blood transport in the left ventricle (LV) of 6 patients with dilated cardiomyopathy and 6 healthy volunteers. Bi-directional velocity field maps in the apical long axis of the LV were reconstructed from color-Doppler echocardiography. Resulting velocity field data were used to perform trajectory-based computation of Lagrangian coherent structures (LCS). LCS were shown to reveal the boundaries of blood injected and ejected from the heart over multiple beats. This enabled qualitative and quantitive assessments of blood transport patterns and residence times in the LV. Quantitative assessments of stasis in the LV are reported, as well as characterization of LV vortex formations from E-wave and A-wave filling. PMID:23817765

  12. Numerical simulation of fracture permeability evolution due to reactive transport and pressure solution processes

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Sun, Y.; Taron, J.; Shao, H.; Kolditz, O.

    2013-12-01

    Modeling fracture permeability evolution is of great interest in various geotechnical applications including underground waste repositories, carbon capture and storage, and engineered geothermal systems where fractures dominate transport behaviors. In this study, a numerical model is presented to simulate fracture permeability evolution due to reactive transport and pressure solution processes in single fractures. The model was developed within the international benchmarking project for radioactive waste disposals, DECOVALEX 2015 (Task C1). The model combines bulk behavior in pore spaces with intergranular process at asperity contacts. Hydraulic flow and reactive transport including mineral dissolution and precipitation in fracture pore space are simulated using the Galerkin finite element method. A pressure solution model developed by Taron and Elsworth (2010 JGR) is applied to simulating stress-enhanced dissolution, solute exchange with pore space, and volume removal at grain contacts. Fracture aperture and contact area ratio are updated as a result of the pore-space reaction and intergranular dissolution. In order to increase robustness and time step size, relevant processes are monolithically coupled with the simulations. The model is implemented in a scientific open-source project OpenGeoSys (www.opengeosys.org) for numerical simulation of thermo-hydro-mechanical/chemical processes in porous and fractured media. Numerical results are compared to previous experiment performed by Yasuhara et al. (2006) on flow through fractures in the Arkansas novaculite sample. The novaculite is approximated as pure quartz aggregates. Only with fitted quartz dissolution rate constants and solubility is the current model capable of reproducing observed hydraulic aperture reduction and aqueous silicate concentrations. Future work will examine reaction parameters and further validate the model against experimental results.

  13. Longshore transport gradients and erosion processes along the Ilha Comprida (Brazil) beach system

    NASA Astrophysics Data System (ADS)

    Silva, Filipe Galiforni; de Oliveira Sousa, Paulo Henrique Gomes; Siegle, Eduardo

    2016-07-01

    The aim of this study is to assess the longshore transport gradients and wave power distribution along the Ilha Comprida beach system and relate it to the distribution of the current erosion process along this barrier island. The study is based on quantitative analysis of the potential longshore drift and the wave power distribution, as well as on the morpho-sedimentary seasonal variations in the beach system. Therefore, the 30-year wave reanalysis database from the global wave generation model WAVEWATCH III (NOAA/NCEP) has been extracted and analyzed for the region, as well as field surveys with topographic measurements and sediment samples. The numerical model MIKE 21 SW has been applied to propagate waves onshore and recognize the longshore transport tendencies and the nearshore wave power distribution. Results show an overall transport trend to the NE, being larger in the southern sector than in the northern sector of the island. Varying transport magnitudes prove to generate gradients in longshore drift. Two positive gradients in the longshore drift, resulting in local sediment losses, are observed. One is found in the central-southern area and another in the northern part of the island. Both areas coincide with erosive spots, as observed through field surveys. The central-southern positive gradient becomes larger and migrates to the south during the most energetic months, while the northern gradient presents only variations in magnitude, being relatively stable in position throughout the year. Nearshore wave power results show two main areas with higher values that coincide with the positive longshore transport gradients. Sediment data presents low temporal variability, although spatial variations have been found reflecting the local hydrodynamic conditions, while the volumetric data shows largest values in the central-northern sector, being smaller in the central-southern and northern regions. Moreover, the central portions are more stable than the extreme

  14. Importance of 3D Processes Near the Ocean's Surface for Material Transport

    NASA Astrophysics Data System (ADS)

    Ozgokmen, T. M.

    2014-12-01

    There are a number of practical problems that demand an accurate knowledge of ocean currents near the surface of the ocean. It is known that oceanic coherent features transport heat and carry out vertical exchange of biogeochemical tracers. Ocean currents can affect biological primary production, air-sea gas exchanges and global tracer budgets. Ocean currents are also important for the dispersion of substances that pose a danger to society, economy and human health. Examples of such events include algal blooms, the Fukushima nuclear plant incident in the Pacific Ocean in 2011, and repeated large oil spills in the Gulf of Mexico, namely the IXTOC in 1978 and the Deepwater Horizon event in 2010. Such incidents demand accurate answers to questions such as ``where will the pollutant go?", ``how fast will it get there?" and ``how much pollutant will arrive there?", and in some instances ``where did the pollutant come from?". The answers to these questions are critical to the allocation of limited response resources, and in determining the overall impact of the events. We will summarize the efforts by the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE). One of the primary objectives of CARTHE is to improve predictive modeling capability for flows near the air-sea interface. In particular, two large experiments, Grand Lagrangian Deployment (GLAD) and Surf-zone and Coastal Oil Pathways Experiment (SCOPE), coordinated with real-time modeling were instructive on processes influencing near-surface material transport. Findings on submesoscale flows as well as model deficiencies to capture processes relevant to transport will be discussed. Insight into future modeling and observational plans will be provided.

  15. Impact of travel mode shift and trip distance on active and non-active transportation in the São Paulo Metropolitan Area in Brazil

    PubMed Central

    de Sá, Thiago Hérick; Parra, Diana C.; Monteiro, Carlos Augusto

    2015-01-01

    Background Changes in urban mobility play a major role in transforming metropolitan areas into healthier places. This study quantified the impact of changes in travel mode shift and trip distance on active and non-active transportation of working age adult population of São Paulo. Methods and findings Through different scenarios, we estimated the daily time spent in transportation per inhabitant (divided in active and non-active transportation time) and the proportion of inhabitants accumulating 30 min or more of daily active transportation. The replacement of individual for collective motorized modes in long distance trips (> 1000 m) in combination with the substitution of long for short trips positively impacted all outcomes. Compared to the current situation, there was an increase in the active transportation time (from 19.4 to 26.7 min/inhabitant), which also increased the proportion of adults active for transportation (from 27.6% to 35.4%). Additionally, the non-active transportation time decreased (from 67.0 to 26.2 min/inhabitant), which helped to reduce the total time spent in transportation (from 86.4 to 52.9 min/inhabitant). Conclusion Transport and urban planning policies to reduce individual motorized trips and the number of long trips might produce important health benefits, both by increasing population levels of active transportation and reducing the non-active and the total time of daily trips. PMID:26844071

  16. Oxygen consumption and active sodium and chloride transport in bovine tracheal epithelium.

    PubMed Central

    Durand, J; Durand-Arczynska, W; Schoenenweid, F

    1986-01-01

    The O2 consumption (Jr) and the short-circuit current (Ji) were measured simultaneously in bovine tracheal epithelium in vitro. In this tissue, Ji is the sum of two active transport processes, Cl- secretion and Na+ absorption. Jr was determined from the decrease of PO2 in the incubation solution, at 37 +/- 0.05 degrees C and at a PO2 around 600 torr. Microbial contamination and leaks of dissolved O2 from the solution never exceeded 4% of the rate of PO2 decrease due to the O2 consumption of the tissue. Ji and Jr were stable over 5 h of incubation under standard conditions. Ji was 106 +/- 4 nequiv min-1 cm-2 and Jr was 39.8 +/- 1.1 nmol O2 min-1 cm-2 (mean +/- S.E., n = 46). Ji was varied with several agents known to affect ion transport across the tracheal epithelium. Na+ absorption was inhibited partly with amiloride or completely following Na+ substitution with choline. Cl- secretion was selectively suppressed by furosemide. Ji was also reduced to a very low level, using ouabain or K+ suppression to inhibit the Na+-K+-ATPase. All these manoeuvres resulted in significant reductions of both Ji and Jr. Basal Jr was not affected when Ji was modified. A plot of the relative change in suprabasal Jr versus the relative change of Ji gave a straight line (r = 0.98, n = 60). A plot using absolute values yielded a stoichiometric ratio of 13.9 ions per O2 molecule, for Na+ as well as for Cl-. The stoichiometric ratio was also calculated for each experiment. Its mean value was 14.9 ions per O2 molecule. The population of the ratios was widely dispersed, but this was explained as a predictable statistical phenomenon. PMID:3723416

  17. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors. PMID:23736740

  18. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  19. Fluid transport processes in the passive margins of the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bertoni, Claudia; Foschi, Martino; Cartwright, Joe; Levell, Bruce

    2015-04-01

    We analyse and produce a synoptic model of the different styles of fluid transport occurring in the various passive margin settings in the Eastern Mediterranean. The common tectonic-stratigraphic setting is dominated, from the Mesozoic, by the interaction of the Tethyan platforms with Cenozoic to recent, mainly clastic, deposits interacting with the ubiquitous thick late Miocene (Messinian) evaporitic sediments. This created different specific modes of fluid-lithology coupling behaviours, and generated an extraordinary suite of seismically resolvable fluid flow phenomena, including mud volcanoes, pockmarks, dissolution/collapse structures, chimneys and pipes. We integrate this evidence with the analysis of the regional pressure/temperature gradient, and with published hydrocarbon generation models, to propose a regional synthesis of all fluid transport processes in a specific basinal context. We place the fluid flow evidence observed in the Eastern Mediterranean in the framework of the three main fluid flow settings, which are typically defined in sedimentary basins, in terms of depth: 1) A thermobaric fluid regime, where fluid transport is limited and convection can be the dominant transport mechanism, 2) A thermogenic regime, where fluids supplied by hydrocarbon generation can migrate by hydraulic fracturing and advection (along open faults/conduits), by matrix flow and in the longer term, by diffusion processes, 3) A shallow compactional regime, where the fluids are generated by sediment dewatering and shallow diagenesis, and the main transport mechanism is characterised by vertical fluid flow, either through advection and hydrofracturing along faults, or matrix flow. In the Eastern Mediterranean passive margins, this depth-related subdivision needs to be modified in order to accommodate the influence of the laterally and vertically extensive evaporitic series, which acts as a regional aquitard/aquiclude to water or a seal to hydrocarbon flow. The presence of

  20. Process of activation of a palladium catalyst system

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  1. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.

    PubMed

    Bredeston, Luis M; González Flecha, F Luis

    2016-07-01

    Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP. PMID:27086711

  2. Removal of scattering centers in CBO crystals by the vapor transport equilibration process

    NASA Astrophysics Data System (ADS)

    Rajesh, D.; Eiro, T.; Yoshimura, M.; Mori, Y.; Jayavel, R.; Sasaki, T.

    2008-04-01

    Large-size cesium triborate (CsB 3O 5:CBO) crystals were grown from self-flux solutions by top-seeded solution growth. The crystals have numerous scattering centers that were found to depend on the temperature from which the crystals were grown. The weight loss measurements revealed that more weight loss occurred at the growth temperature of 74 mol% B 2O 3. During the cooling process (after growth) there is a possibility of the crystal being shifted to the off-stoichiometric composition because of cesium out-diffusion. To bring the crystals to near stoichiometric solutions, the vapor transport equilibration (VTE) process (post-growth heat treatment) was carried out and the scattering centers were reduced. The cesium atmosphere used in VTE processing was very important for the diffusion of cesium into the crystal and to bring the crystals to near stoichiometric composition.

  3. Study of relaxation and transport processes by means of AFM based dielectric spectroscopy

    SciTech Connect

    Miccio, Luis A.

    2014-05-15

    Since its birth a few years ago, dielectric spectroscopy studies based on atomic force microscopy (AFM) have gained a growing interest. Not only the frequency and temperature ranges have become broader since then but also the kind of processes that can be studied by means of this approach. In this work we analyze the most adequate experimental setup for the study of several dielectric processes with a spatial resolution of a few nanometers by using force mode AFM based dielectric spectroscopy. Proof of concept experiments were performed on PS/PVAc blends and PMMA homopolymer films, for temperatures ranging from 300 to 400 K. Charge transport processes were also studied by this approach. The obtained results were analyzed in terms of cantilever stray contribution, film thickness and relaxation strength. We found that the method sensitivity is strongly coupled with the film thickness and the relaxation strength, and that it is possible to control it by using an adequate experimental setup.

  4. Students' Learning Activities While Studying Biological Process Diagrams

    NASA Astrophysics Data System (ADS)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-08-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal data and eye-tracking data were collected as indications of students' learning activities. For the verbal data, we applied a fine-grained coding scheme to optimally describe students' learning activities. For the eye-tracking data, we used fixation time and transitions between areas of interest in the process diagrams as indices of learning activities. Various learning activities while studying process diagrams were found that distinguished between more and less successful students. Results showed that between-student variance in comprehension score was highly predicted by meaning making of the process arrows (80%) and fixation time in the main area (65%). Students employed successful learning activities consistently across learning tasks. Furthermore, compared to unsuccessful students, successful students used a more coherent approach of interrelated learning activities for comprehending process diagrams.

  5. Regulation of taurine transporter activity in LLC-PK1 cells: role of protein synthesis and protein kinase C activation.

    PubMed

    Jones, D P; Miller, L A; Dowling, C; Chesney, R W

    1991-11-01

    Taurine transporter activity increases after exposure of cultured renal epithelial cells to taurine-free medium for 24 h and decreases after incubation in high (500 microM) taurine. This adaptive response mimics that observed in rat kidney after manipulation of dietary taurine. In order to elucidate potential mechanisms involved in the regulation of beta-amino acid transporter activity, the role of RNA transcription, protein synthesis, and protein import (trafficking), as well as protein kinase C activation, on the control of taurine transport was examined in the continuous proximally derived LLC-PK1 renal cell line. Inhibition of RNA transcription with actinomycin D did not alter the up-regulatory and down-regulatory adaptive responses. Inhibition of protein synthesis with cycloheximide prevented the increased taurine transport in response to taurine-free medium as well as the decrease in taurine transport after exposure to high taurine. Colchicine prevented the response to taurine-free medium but had no effect on the response to high-taurine medium. Exposure of confluent cell monolayers to the active phorbol esters, phorbol 12-myristate 13-acetate and phorbol 12,13 dibutyrate, resulted in a reduction in taurine uptake. The effect was seen within minutes of exposure but was not observed in the presence of the inactive phorbol 4-alpha. This inhibitory action was blocked by staurosporin, an inhibitor of protein kinase C (PKC). Treatment of cells with the diacylglycerol kinase inhibitor R59022, which results in increased intracellular diacylglycerol, a natural stimulant of PKC, also inhibited taurine uptake, providing further evidence for a specific effect of PKC activation.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Characterizing active transportation behavior among college students using the theory of planned behavior.

    PubMed

    Chaney, Robert A; Bernard, Amy L; Wilson, Bradley R A

    2013-01-01

    Physical inactivity poses concern for health risks among all groups in the United States. Active transportation (AT) (e.g., bicycling) is one way of being physically active and may be helpful in promoting physical activity. This study characterized active transportation behavior among college students using the Theory of Planned Behavior. This study sought to describe predictors, including Theory of Planned Behavior (TPB) constructs, of AT behavior among college students at a large Midwest university. Students were recruited through the university registrar's office and e-mailed an electronic survey. Differences among AT users were determined using t-tests, and predictors of AT were identified using regression analysis. Significant differences between AT users for all TPB constructs were observed. Regression analysis using only TPB constructs accounted for 11.58% explained variation in AT use. Other variables added to the model resulted in 44.44% explained variation in AT use. The final model included subjective norms, age, perceived behavioral control, and transportation type and destination. The results of this research are insightful in explaining AT behavior. Perceived norms and the level of control students had regarding their method of transportation were important contributions to AT use. These results may be applied to promoting physical activity in community health.

  7. Active intracellular transport in metastatic cells studied by spatial light interference microscopy

    NASA Astrophysics Data System (ADS)

    Ceballos, Silvia; Kandel, Mikhail; Sridharan, Shamira; Majeed, Hassaan; Monroy, Freddy; Popescu, Gabriel

    2015-11-01

    Spatiotemporal patterns of intracellular transport are very difficult to quantify and, consequently, continue to be insufficiently understood. While it is well documented that mass trafficking inside living cells consists of both random and deterministic motions, quantitative data over broad spatiotemporal scales are lacking. We studied the intracellular transport in live cells using spatial light interference microscopy, a high spatiotemporal resolution quantitative phase imaging tool. The results indicate that in the cytoplasm, the intracellular transport is mainly active (directed, deterministic), while inside the nucleus it is both active and passive (diffusive, random). Furthermore, we studied the behavior of the two-dimensional mass density over 30 h in HeLa cells and focused on the active component. We determined the standard deviation of the velocity distribution at the point of cell division for each cell and compared the standard deviation velocity inside the cytoplasm and the nucleus. We found that the velocity distribution in the cytoplasm is consistently broader than in the nucleus, suggesting mechanisms for faster transport in the cytosol versus the nucleus. Future studies will focus on improving phase measurements by applying a fluorescent tag to understand how particular proteins are transported inside the cell.

  8. Active intracellular transport in metastatic cells studied by spatial light interference microscopy.

    PubMed

    Ceballos, Silvia; Kandel, Mikhail; Sridharan, Shamira; Majeed, Hassaan; Monroy, Freddy; Popescu, Gabriel

    2015-01-01

    Spatiotemporal patterns of intracellular transport are very difficult to quantify and, consequently, continue to be insufficiently understood. While it is well documented that mass trafficking inside living cells consists of both random and deterministic motions, quantitative data over broad spatiotemporal scales are lacking. We studied the intracellular transport in live cells using spatial light interference microscopy, a high spatiotemporal resolution quantitative phase imaging tool. The results indicate that in the cytoplasm, the intracellular transport is mainly active (directed, deterministic), while inside the nucleus it is both active and passive (diffusive, random). Furthermore, we studied the behavior of the two-dimensional mass density over 30 h in HeLa cells and focused on the active component. We determined the standard deviation of the velocity distribution at the point of cell division for each cell and compared the standard deviation velocity inside the cytoplasm and the nucleus. We found that the velocity distribution in the cytoplasm is consistently broader than in the nucleus, suggesting mechanisms for faster transport in the cytosol versus the nucleus. Future studies will focus on improving phase measurements by applying a fluorescent tag to understand how particular proteins are transported inside the cell.

  9. One-dimensional potential of mean force underestimates activation barrier for transport across flexible lipid membranes

    NASA Astrophysics Data System (ADS)

    Kopelevich, Dmitry I.

    2013-10-01

    Transport of a fullerene-like nanoparticle across a lipid bilayer is investigated by coarse-grained molecular dynamics (MD) simulations. Potentials of mean force (PMF) acting on the nanoparticle in a flexible bilayer suspended in water and a bilayer restrained to a flat surface are computed by constrained MD simulations. The rate of the nanoparticle transport into the bilayer interior is predicted using one-dimensional Langevin models based on these PMFs. The predictions are compared with the transport rates obtained from a series of direct (unconstrained) MD simulations of the solute transport into the flexible bilayer. It is observed that the PMF acting on the solute in the flexible membrane underestimates the transport rate by more than an order of magnitude while the PMF acting on the solute in the restrained membrane yields an accurate estimate of the activation energy for transport into the flexible membrane. This paradox is explained by a coexistence of metastable membrane configurations for a range of the solute positions inside and near the flexible membrane. This leads to a significant reduction of the contribution of the transition state to the mean force acting on the solute. Restraining the membrane shape ensures that there is only one stable membrane configuration corresponding to each solute position and thus the transition state is adequately represented in the PMF. This mechanism is quite general and thus this phenomenon is expected to occur in a wide range of interfacial systems. A simple model for the free energy landscape of the coupled solute-membrane system is proposed and validated. This model explicitly accounts for effects of the membrane deformations on the solute transport and yields an accurate prediction of the activation energy for the solute transport.

  10. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  11. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    PubMed

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field.

  12. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.

    PubMed

    Konings, W N; Lolkema, J S; Bolhuis, H; van Veen, H W; Poolman, B; Driessen, A J

    1997-02-01

    Lactic acid bacteria play an essential role in many food fermentation processes. They are anaerobic organisms which obtain their metabolic energy by substrate phosphorylation. In addition three secondary energy transducing processes can contribute to the generation of a proton motive force: proton/substrate symport as in lactic acid excretion, electrogenic precursor/product exchange as in malolactic and citrolactic fermentation and histidine/histamine exchange, and electrogenic uniport as in malate and citrate uptake in Leuconostoc oenos. In several of these processes additional H+ consumption occurs during metabolism leading to the generation of a pH gradient, internally alkaline. Lactic acid bacteria have also developed multidrug resistance systems. In Lactococcus lactis three toxin excretion systems have been characterized: cationic toxins can be excreted by a toxin/proton antiport system and by an ABC-transporter. This cationic ABC-transporter has surprisingly high structural and functional analogy with the human MDR1-(P-glycoprotein). For anions an ATP-driven ABC-like excretion systems exist.

  13. Understanding Particle Defect Transport in an Ultra-Clean Sputter Coating Process

    SciTech Connect

    Walton, C; Kearney, P; Folta, J; Sweeney, D; Mirkarimi, P

    2003-03-24

    Low-defect mask blanks remain a key technical challenge to Extreme Ultraviolet Lithography (EUVL). The mask blank is ion-beam sputter-coated with an 81-layer Mo/Si multilayer stack for high reflectance at {lambda} = 13.4nm. The current mask coating process can achieve a median added defect level of 0.05 defects/cm{sup 2} (12 added defects 90nm or larger on a 200mm Si-wafer test substrate), but this must be reduced by about a factor of 10 to meet mask cost requirements for EUVL. To further reduce the particle defect level, we have studied pathwa