Science.gov

Sample records for active transposable element

  1. Evolutionary active transposable elements in the genome of the coelacanth.

    PubMed

    Chalopin, Domitille; Fan, Shaohua; Simakov, Oleg; Meyer, Axel; Schartl, Manfred; Volff, Jean-Nicolas

    2014-09-01

    The apparent morphological stasis in the lineage of the coelacanth, which has been called a "living fossil" by many, has been suggested to be causally related to a slow evolution of its genome, with strongly reduced activity of transposable elements (TEs). Analysis of the African coelacanth showed that at least 25% of its genome is constituted of transposable elements including retrotransposons, endogenous retroviruses and DNA transposons, with a strong predominance of non-Long Terminal Repeat (non-LTR) retrotransposons. The coelacanth genome has been shaped by four major general bursts of transposition during evolution, with major contributions of LINE1, LINE2, CR1, and Deu non-LTR retrotransposons. Many transposable elements are expressed in different tissues and might be active. The number of TE families in coelacanth, but also in lungfish, is lower than in teleost fish, but is higher than in chicken and human. This observation is in agreement with the hypothesis of a sequential elimination of many TE families in the sarcopterygian lineage during evolution. Taken together, our analysis indicates that the coelacanth contains more TE families than birds and mammals, and that these elements have been active during the evolution of the coelacanth lineage. Hence, at the level of transposable element activity, the coelacanth genome does not appear to evolve particularly slowly. PMID:23908136

  2. Tempo and Mode of Transposable Element Activity in Drosophila

    PubMed Central

    Kofler, Robert; Nolte, Viola; Schlötterer, Christian

    2015-01-01

    The evolutionary dynamics of transposable element (TE) insertions have been of continued interest since TE activity has important implications for genome evolution and adaptation. Here, we infer the transposition dynamics of TEs by comparing their abundance in natural D. melanogaster and D. simulans populations. Sequencing pools of more than 550 South African flies to at least 320-fold coverage, we determined the genome wide TE insertion frequencies in both species. We suggest that the predominance of low frequency insertions in the two species (>80% of the insertions have a frequency <0.2) is probably due to a high activity of more than 58 families in both species. We provide evidence for 50% of the TE families having temporally heterogenous transposition rates with different TE families being affected in the two species. While in D. melanogaster retrotransposons were more active, DNA transposons showed higher activity levels in D. simulans. Moreover, we suggest that LTR insertions are mostly of recent origin in both species, while DNA and non-LTR insertions are older and more frequently vertically transmitted since the split of D. melanogaster and D. simulans. We propose that the high TE activity is of recent origin in both species and a consequence of the demographic history, with habitat expansion triggering a period of rapid evolution. PMID:26186437

  3. Real-time transposable element activity in individual live cells

    PubMed Central

    Lee, Gloria; Martini, K. Michael

    2016-01-01

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE’s orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  4. Real-time transposable element activity in individual live cells.

    PubMed

    Kim, Neil H; Lee, Gloria; Sherer, Nicholas A; Martini, K Michael; Goldenfeld, Nigel; Kuhlman, Thomas E

    2016-06-28

    The excision and reintegration of transposable elements (TEs) restructure their host genomes, generating cellular diversity involved in evolution, development, and the etiology of human diseases. Our current knowledge of TE behavior primarily results from bulk techniques that generate time and cell ensemble averages, but cannot capture cell-to-cell variation or local environmental and temporal variability. We have developed an experimental system based on the bacterial TE IS608 that uses fluorescent reporters to directly observe single TE excision events in individual cells in real time. We find that TE activity depends upon the TE's orientation in the genome and the amount of transposase protein in the cell. We also find that TE activity is highly variable throughout the lifetime of the cell. Upon entering stationary phase, TE activity increases in cells hereditarily predisposed to TE activity. These direct observations demonstrate that real-time live-cell imaging of evolution at the molecular and individual event level is a powerful tool for the exploration of genome plasticity in stressed cells. PMID:27298350

  5. A Hyperactive Transposase of the Maize Transposable Element Activator (Ac)

    PubMed Central

    Lazarow, Katina; Du, My-Linh; Weimer, Ruth; Kunze, Reinhard

    2012-01-01

    Activator/Dissociation (Ac/Ds) transposable elements from maize are widely used as insertional mutagenesis and gene isolation tools in plants and more recently also in medaka and zebrafish. They are particularly valuable for plant species that are transformation-recalcitrant and have long generation cycles or large genomes with low gene densities. Ac/Ds transposition frequencies vary widely, however, and in some species they are too low for large-scale mutagenesis. We discovered a hyperactive Ac transposase derivative, AcTPase4x, that catalyzes in the yeast Saccharomyces cerevisiae 100-fold more frequent Ds excisions than the wild-type transposase, whereas the reintegration frequency of excised Ds elements is unchanged (57%). Comparable to the wild-type transposase in plants, AcTPase4x catalyzes Ds insertion preferentially into coding regions and to genetically linked sites, but the mutant protein apparently has lost the weak bias of the wild-type protein for insertion sites with elevated guanine–cytosine content and nonrandom protein-DNA twist. AcTPase4x exhibits hyperactivity also in Arabidopsis thaliana where it effects a more than sixfold increase in Ds excision relative to wild-type AcTPase and thus may be useful to facilitate Ac/Ds-based insertion mutagenesis approaches. PMID:22562933

  6. The coelacanth: Can a “living fossil” have active transposable elements in its genome?

    PubMed Central

    Naville, Magali; Chalopin, Domitille; Casane, Didier; Laurenti, Patrick; Volff, Jean-Nicolas

    2015-01-01

    The coelacanth has long been regarded as a “living fossil,” with extant specimens looking very similar to fossils dating back to the Cretaceous period. The hypothesis of a slowly or even not evolving genome has been proposed to account for this apparent morphological stasis. While this assumption seems to be sustained by different evolutionary analyses on protein-coding genes, recent studies on transposable elements have provided more conflicting results. Indeed, the coelacanth genome contains many transposable elements and has been shaped by several major bursts of transposition during evolution. In addition, comparison of orthologous genomic regions from the genomes of the 2 extant coelacanth species L. chalumnae and L. menadoensis revealed multiple species-specific insertions, indicating transposable element recent activity and contribution to post-speciation genome divergence. These observations, which do not support the genome stasis hypothesis, challenge either the impact of transposable elements on organismal evolution or the status of the coelacanth as a “living fossil.” Closer inspection of fossil and molecular data indicate that, even if coelacanths might evolve more slowly than some other lineages due to demographic and/or ecological factors, this variation is still in the range of a “non-fossil” vertebrate species. PMID:26442185

  7. The Holozoan Capsaspora owczarzaki Possesses a Diverse Complement of Active Transposable Element Families

    PubMed Central

    Carr, Martin; Suga, Hiroshi

    2014-01-01

    Capsaspora owczarzaki, a protistan symbiont of the pulmonate snail Biomphalaria glabrata, is the centre of much interest in evolutionary biology due to its close relationship to Metazoa. The whole genome sequence of this protist has revealed new insights into the ancestral genome composition of Metazoa, in particular with regard to gene families involved in the evolution of multicellularity. The draft genome revealed the presence of 23 families of transposable element, made up from DNA transposon as well as long terminal repeat (LTR) and non-LTR retrotransposon families. The phylogenetic analyses presented here show that all of the transposable elements identified in the C. owczarzaki genome have orthologous families in Metazoa, indicating that the ancestral metazoan also had a rich diversity of elements. Molecular evolutionary analyses also show that the majority of families has recently been active within the Capsaspora genome. One family now appears to be inactive and a further five families show no evidence of current transposition. Most individual element copies are evolutionarily young; however, a small proportion of inserts appear to have persisted for longer in the genome. The families present in the genome show contrasting population histories and appear to be in different stages of their life cycles. Transcriptome data have been analyzed from multiple stages in the C. owczarzaki life cycle. Expression levels vary greatly both between families and between different stages of the life cycle, suggesting an unexpectedly complex level of transposable element regulation in a single celled organism. PMID:24696401

  8. Eukaryotic transposable elements as mutagenic agents

    SciTech Connect

    Lambert, M.E. . Banbury Center); McDonald, J.F. ); Weinstein, I.B. )

    1988-01-01

    This book contains the proceedings on eukaryotic transposable elements as mutagenic agents. Topics covered include: overview of prokaryotic transposable elements, mutational effects of transposable element insertions, inducers/regulators of transposable element expression and transposition, genomic stress and environmental effects, and inducers/regulators of retroviral element expression.

  9. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues.

    PubMed

    De Cecco, Marco; Criscione, Steven W; Peterson, Abigail L; Neretti, Nicola; Sedivy, John M; Kreiling, Jill A

    2013-12-01

    Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells. PMID:24323947

  10. Transposable elements for insect transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germ-line of more than 35 species from five orders of insects have been genetically transformed, using vectors derived from Class II transposable elements. Initially the P and hobo vector systems developed for D. melanogaster were not applicable to other species, but four transposons found in ot...

  11. Identification and characterization of the first active endogenous transposable element in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In soybean [Glycine max (L.) Merr.], W4 is one of the loci that control anthocyanin biosynthesis in flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable T322 line resulting in the w4-m allele. We have shown that the W4 locu...

  12. The hobo transposable element has transposase-dependent and -independent excision activity in drosophilid species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mobility of the hobo transposable element was determined for several strains of Drosophila melanogaster and several Drosophila species. Mobility was assessed by use of an in vivo transient assay in the soma of developing embryos, which monitored hobo excision from injected indicator plasmids. Excisi...

  13. Active transposable elements recover species boundaries and geographic structure in Madagascan coffee species.

    PubMed

    Roncal, Julissa; Guyot, Romain; Hamon, Perla; Crouzillat, Dominique; Rigoreau, Michel; Konan, Olivier N'Guessan; Rakotomalala, Jean-Jacques; Nowak, Michael D; Davis, Aaron P; de Kochko, Alexandre

    2016-02-01

    The completion of the genome assembly for the economically important coffee plant Coffea canephora (Rubiaceae) has allowed the use of bioinformatic tools to identify and characterize a diverse array of transposable elements (TEs), which can be used in evolutionary studies of the genus. An overview of the copy number and location within the C. canephora genome of four TEs is presented. These are tested for their use as molecular markers to unravel the evolutionary history of the Millotii Complex, a group of six wild coffee (Coffea) species native to Madagascar. Two TEs from the Gypsy superfamily successfully recovered some species boundaries and geographic structure among samples, whereas a TE from the Copia superfamily did not. Notably, species occurring in evergreen moist forests of eastern and southeastern Madagascar were divergent with respect to species in other habitats and regions. Our results suggest that the peak of transpositional activity of the Gypsy and Copia TEs occurred, respectively, before and after the speciation events of the tested Madagascan species. We conclude that the utilization of active TEs has considerable potential to unravel the evolutionary history and delimitation of closely related Coffea species. However, the selection of TE needs to be experimentally tested, since each element has its own evolutionary history. Different TEs with similar copy number in a given species can render different dendrograms; thus copy number is not a good selection criterion to attain phylogenetic resolution. PMID:26231981

  14. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  15. Characterization of active miniature inverted-repeat transposable elements in the peanut genome.

    PubMed

    Shirasawa, Kenta; Hirakawa, Hideki; Tabata, Satoshi; Hasegawa, Makoto; Kiyoshima, Hiroyuki; Suzuki, Sigeru; Sasamoto, Sigemi; Watanabe, Akiko; Fujishiro, Tsunakazu; Isobe, Sachiko

    2012-05-01

    Miniature inverted-repeat transposable elements (MITEs), some of which are known as active nonautonomous DNA transposons, are found in the genomes of plants and animals. In peanut (Arachis hypogaea), Ah-MITE1 has been identified in a gene for fatty-acid desaturase, and possessed excision activity. However, the AhMITE1 distribution and frequency of excision have not been determined for the peanut genome. In order to characterize AhMITE1s, their genomic diversity and transposition ability was investigated. Southern blot analysis indicated high AhMITE1 copy number in the genomes of A. hypogaea, A. magna and A. monticola, but not in A. duranensis. A total of 504 AhMITE1s were identified from the MITE-enriched genomic libraries of A. hypogaea. The representative AhMITE1s exhibited a mean length of 205.5 bp and a GC content of 30.1%, with AT-rich, 9 bp target site duplications and 25 bp terminal inverted repeats. PCR analyses were performed using primer pairs designed against both flanking sequences of each AhMITE1. These analyses detected polymorphisms at 169 out of 411 insertional loci in the four peanut lines. In subsequent analyses of 60 gamma-irradiated mutant lines, four Ah-MITE1 excisions showed footprint mutations at the 109 loci tested. This study characterizes AhMITE1s in peanut and discusses their use as DNA markers and mutagens for the genetics, genomics and breeding of peanut and its relatives. PMID:22294450

  16. Transcriptional Activity, Chromosomal Distribution and Expression Effects of Transposable Elements in Coffea Genomes

    PubMed Central

    da Silva, Carlos R. M.; Andrade, Alan C.; Marraccini, Pierre; Teixeira, João B.; Carazzolle, Marcelo F.; Pereira, Gonçalo A. G.; Pereira, Luiz Filipe P.; Vanzela, André L. L.; Wang, Lu; Jordan, I. King; Carareto, Claudia M. A.

    2013-01-01

    Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences. PMID:24244387

  17. Nezha, a novel active miniature inverted-repeat transposable element in cyanobacteria

    SciTech Connect

    Zhou Fengfeng; Tran Thao; Xu Ying

    2008-01-25

    Miniature inverted-repeat transposable elements (MITEs) were first identified in plants and exerted extensive proliferations throughout eukaryotic and archaeal genomes. But very few MITEs have been characterized in bacteria. We identified a novel MITE, called Nezha, in cyanobacteria Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120. Nezha, like most previously known MITEs in other organisms, is small in size, non-coding, carrying TIR and DR signals, and of potential to form a stable RNA secondary structure, and it tends to insert into A+T-rich regions. Recent transpositions of Nezha were observed in A. variabilis ATCC 29413 and Nostoc sp. PCC 7120, respectively. Nezha might have proliferated recently with aid from the transposase encoded by ISNpu3-like elements. A possible horizontal transfer event of Nezha from cyanobacteria to Polaromonas JS666 is also observed.

  18. Chromosome rearrangements and transposable elements.

    PubMed

    Lonnig, Wolf-Ekkehard; Saedler, Heinz

    2002-01-01

    There has been limited corroboration to date for McClintock's vision of gene regulation by transposable elements (TEs), although her proposition on the origin of species by TE-induced complex chromosome reorganizations in combination with gene mutations, i.e., the involvement of both factors in relatively sudden formations of species in many plant and animal genera, has been more promising. Moreover, resolution is in sight for several seemingly contradictory phenomena such as the endless reshuffling of chromosome structures and gene sequences versus synteny and the constancy of living fossils (or stasis in general). Recent wide-ranging investigations have confirmed and enlarged the number of earlier cases of TE target site selection (hot spots for TE integration), implying preestablished rather than accidental chromosome rearrangements for nonhomologous recombination of host DNA. The possibility of a partly predetermined generation of biodiversity and new species is discussed. The views of several leading transposon experts on the rather abrupt origin of new species have not been synthesized into the macroevolutionary theory of the punctuated equilibrium school of paleontology inferred from thoroughly consistent features of the fossil record. PMID:12429698

  19. Jordan, an active Volvox transposable element similar to higher plant transposons.

    PubMed Central

    Miller, S M; Schmitt, R; Kirk, D L

    1993-01-01

    We have isolated a 1595-bp transposable element from the multicellular green alga Volvox carteri following its insertion into the nitrate reductase (nitA) locus. This element, which we have named Jordan, has short (12-bp) terminal inverted repeats and creates a 3-bp target site duplication, like some higher plant transposons of the classic type. Contained within the first 200 bp of one end of the element are 55-bp inverted repeats, one of which begins with the terminal inverted repeat. Revertants of the transposon insertion into the nitA locus were obtained at a rate of approximately 10(-4) per Volvox embryo per generation. In each revertant examined, all transposon sequences were completely excised, but footprints containing both sets of duplicated bases, in addition to three to nine extra bases, were left behind. Jordan contains no significant open reading frames and so appears to be nonautonomous. DNA gel blot analysis indicates that Jordan is a member of a large family of homologous elements in the Volvox genome. We have isolated and characterized several of these homologs and found that they contain terminal very similar to those of Jordan. Efforts to utilize Jordan and its homologs as tools to tag and clone developmentally interesting genes of Volvox are discussed. PMID:8400878

  20. Transposable Element Proliferation and Genome Expansion Are Rare in Contemporary Sunflower Hybrid Populations Despite Widespread Transcriptional Activity of LTR Retrotransposons

    PubMed Central

    Kawakami, Takeshi; Dhakal, Preeti; Katterhenry, Angela N.; Heatherington, Chelsea A.; Ungerer, Mark C.

    2011-01-01

    Hybridization is a natural phenomenon that has been linked in several organismal groups to transposable element derepression and copy number amplification. A noteworthy example involves three diploid annual sunflower species from North America that have arisen via ancient hybridization between the same two parental taxa, Helianthus annuus and H. petiolaris. The genomes of the hybrid species have undergone large-scale increases in genome size attributable to long terminal repeat (LTR) retrotransposon proliferation. The parental species that gave rise to the hybrid taxa are widely distributed, often sympatric, and contemporary hybridization between them is common. Natural H. annuus × H. petiolaris hybrid populations likely served as source populations from which the hybrid species arose and, as such, represent excellent natural experiments for examining the potential role of hybridization in transposable element derepression and proliferation in this group. In the current report, we examine multiple H. annuus × H. petiolaris hybrid populations for evidence of genome expansion, LTR retrotransposon copy number increases, and LTR retrotransposon transcriptional activity. We demonstrate that genome expansion and LTR retrotransposon proliferation are rare in contemporary hybrid populations, despite independent proliferation events that took place in the genomes of the ancient hybrid species. Interestingly, LTR retrotransposon lineages that proliferated in the hybrid species genomes remain transcriptionally active in hybrid and nonhybrid genotypes across the entire sampling area. The finding of transcriptional activity but not copy number increases in hybrid genotypes suggests that proliferation and genome expansion in contemporary hybrid populations may be mitigated by posttranscriptional mechanisms of repression. PMID:21282712

  1. Transposable elements as catalysts for chromosome rearrangements.

    PubMed

    Zhang, Jianbo; Yu, Chuanhe; Krishnaswamy, Lakshminarasimhan; Peterson, Thomas

    2011-01-01

    Barbara McClintock first showed that transposable elements in maize can induce major chromosomal rearrangements, including duplications, deletions, inversions, and translocations. More recently, researchers have made significant progress in elucidating the mechanisms by which transposons can induce genome rearrangements. For the Ac/Ds transposable element system, rearrangements are generated when the termini of different elements are used as substrates for transposition. The resulting alternative transposition reaction directly generates a variety of rearrangements. The size and type of rearrangements produced depend on the location and orientation of transposon insertion. A single locus containing a pair of alternative transposition-competent elements can produce a virtually unlimited number of genome rearrangements. With a basic understanding of the mechanisms involved, researchers are beginning to utilize both naturally occurring and in vitro-generated configurations of transposable elements in order to manipulate chromosome structure. PMID:21181539

  2. Activation of Tag1 transposable elements in Arabidopsis dedifferentiating cells and their regulation by CHROMOMETHYLASE 3-mediated CHG methylation.

    PubMed

    Khan, Asif; Yadav, Narendra Singh; Morgenstern, Yaakov; Zemach, Assaf; Grafi, Gideon

    2016-10-01

    Dedifferentiation, that is, the acquisition of stem cell-like state, commonly induced by stress (e.g., protoplasting), is characterized by open chromatin conformation, a chromatin state that could lead to activation of transposable elements (TEs). Here, we studied the activation of the Arabidopsis class II TE Tag1, in which two copies, situated close to each other (near genes) on chromosome 1 are found in Landsberg erecta (Ler) but not in Columbia (Col). We first transformed protoplasts with a construct in which a truncated Tag1 (ΔTag1 non-autonomous) blocks the expression of a reporter gene AtMBD5-GFP and found a relatively high ectopic excision of ΔTag1 accompanied by expression of AtMBD5-GFP in protoplasts derived from Ler compared to Col; further increase was observed in ddm1 (decrease in DNA methylation1) protoplasts (Ler background). Ectopic excision was associated with transcription of the endogenous Tag1 and changes in histone H3 methylation at the promoter region. Focusing on the endogenous Tag1 elements we found low level of excision in Ler protoplasts, which was slightly and strongly enhanced in ddm1 and cmt3 (chromomethylase3) protoplasts, respectively, concomitantly with reduction in Tag1 gene body (GB) CHG methylation and increased Tag1 transcription; strong activation of Tag1 was also observed in cmt3 leaves. Notably, in cmt3, but not in ddm1, Tag1 elements were excised out from their original sites and transposed elsewhere in the genome. Our results suggest that dedifferentiation is associated with Tag1 activation and that CMT3 rather than DDM1 plays a central role in restraining Tag1 activation via inducing GB CHG methylation. PMID:27475038

  3. Revised Nomenclature for Transposable Genetic Elements

    PubMed Central

    Roberts, Adam P.; Chandler, Michael; Courvalin, Patrice; Guédon, Gérard; Mullany, Peter; Pembroke, Tony; Rood, Julian I.; Smith, C. Jeffery; Summers, Anne O.; Tsuda, Masataka; Berg, Douglas E.

    2013-01-01

    Transposable DNA elements occur naturally in the genomes of nearly all species of prokaryotes. A proposal for a uniform transposable element nomenclature was published prominently in the 1970s but is not, at present, available online even in abstract form, and many of the newly discovered elements have been named without reference to it. We propose here an updated version of the original nomenclature system for all of the various types of prokaryotic, autonomous, transposable elements excluding insertion sequences, for which a nomenclature system already exists. The use of this inclusive and sequential Tn numbering system for transposable elements described here recognizes the ease of interspecies spread of individual elements, and allows for the naming of mosaic elements containing segments from two or more previously described types of transposons or plasmids. It will guard against a future necessity to rename elements following changes in bacterial nomenclature which occurs constantly with our increased understanding of bacterial phylogenies and taxonomic groupings. It also takes into account the increasing importance of metagenomic sequencing projects and the continued identification of new mobile elements from unknown hosts. PMID:18778731

  4. Transposable Elements and Genetic Instabilities in Crop Plants

    DOE R&D Accomplishments Database

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  5. Transposable elements and genetic instabilities in crop plants

    SciTech Connect

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  6. Transposable elements as a molecular evolutionary force

    NASA Technical Reports Server (NTRS)

    Fedoroff, N. V.

    1999-01-01

    This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.

  7. Transposable elements: powerful facilitators of evolution.

    PubMed

    Oliver, Keith R; Greene, Wayne K

    2009-07-01

    Transposable elements (TEs) are powerful facilitators of genome evolution, and hence of phenotypic diversity as they can cause genetic changes of great magnitude and variety. TEs are ubiquitous and extremely ancient, and although harmful to some individuals, they can be very beneficial to lineages. TEs can build, sculpt, and reformat genomes by both active and passive means. Lineages with active TEs or with abundant homogeneous inactive populations of TEs that can act passively by causing ectopic recombination are potentially fecund, adaptable, and taxonate readily. Conversely, taxa deficient in TEs or possessing heterogeneous populations of inactive TEs may be well adapted in their niche, but tend to prolonged stasis and may risk extinction by lacking the capacity to adapt to change, or diversify. Because of recurring intermittent waves of TE infestation, available data indicate a compatibility with punctuated equilibrium, in keeping with widely accepted interpretations of evidence from the fossil record. We propose a general and holistic synthesis on how the presence of TEs within genomes makes them flexible and dynamic, so that genomes themselves are powerful facilitators of their own evolution. PMID:19415638

  8. Transcriptional activity of the transposable element Tn10 in the Salmonella typhimurium ilvGEDA operon.

    PubMed

    Blazey, D L; Burns, R O

    1982-08-01

    Polarity of Tn10 insertion mutations in the Salmonella typhimurium ilvGEDA operon depends on both the location and the orientation of the Tn10 element. One orientation of Tn10 insertions in ilvG and ilvE permits low-level expression of the downstream ilvEDA and ilvDA genes, respectively. Our analysis of Salmonella ilv recombinant plasmids shows that this residual ilv expression must result from Tn10-directed transcription and does not reflect the presence of internal promoters in the ilvGEDA operon, as was previously suggested. The opposite orientation of Tn10 insertion in ilvE prevents ilvDA expression, indicating that only one end of Tn10 is normally active in transcribing adjacent genes. Both orientations of Tn10 insertion in ilvD exert absolute polarity on ilvA expression. Expression of ilvA is known to be dependent on effective translation of ilvD, perhaps reflecting the lack of a ribosome binding site proximal to the ilvA sequence. Therefore, recognition of the ability of Tn10 to promote transcription of contiguous genes in the ilvGEDA operon apparently requires the presence of associated ribosome binding sites. PMID:6289328

  9. Transposable element origins of epigenetic gene regulation.

    PubMed

    Lisch, Damon; Bennetzen, Jeffrey L

    2011-04-01

    Transposable elements (TEs) are massively abundant and unstable in all plant genomes, but are mostly silent because of epigenetic suppression. Because all known epigenetic pathways act on all TEs, it is likely that the specialized epigenetic regulation of regular host genes (RHGs) was co-opted from this ubiquitous need for the silencing of TEs and viruses. With their internally repetitive and rearranging structures, and the acquisition of fragments of RHGs, the expression of TEs commonly makes antisense RNAs for both TE genes and RHGs. These antisense RNAs, particularly from heterochromatic reservoirs of 'zombie' TEs that are rearranged to form variously internally repetitive structures, may be advantageous because their induction will help rapidly suppress active TEs of the same family. RHG fragments within rapidly rearranging TEs may also provide the raw material for the ongoing generation of miRNA genes. TE gene expression is regulated by both environmental and developmental signals, and insertions can place nearby RHGs under the regulation (both standard and epigenetic) of the TE. The ubiquity of TEs, their frequent preferential association with RHGs, and their ability to be programmed by epigenetic signals all indicate that RGHs have nearly unlimited access to novel regulatory cassettes to assist plant adaptation. PMID:21444239

  10. Insertional mutagenesis by transposable elements in the mammalian genome.

    PubMed

    Amariglio, N; Rechavi, G

    1993-01-01

    Several mammalian repetitive transposable genetic elements were characterized in recent years, and their role in mutagenesis is delineated in this review. Two main groups have been described: elements with symmetrical termini such as the murine IAP sequences and the human THE 1 elements and elements characterized by a poly-A rich tail at the 3' end such as the SINE and LINE sequences. The characteristic property of such mobile elements to spread and integrate in the host genome leads to insertional mutagenesis. Both germline and somatic mutations have been documented resulting from the insertion of the various types of mammalian repetitive transposable genetic elements. As foreseen by Barbara McClintock, such genetic events can cause either the activation or the inactivation of specific genes, resulting in their identification via an altered phenotype. Several disease states, such as hemophilia and cancer, are the result of this apparent aspect of genome instability. PMID:8385004

  11. Transposable elements in response to environmental stressors&

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cecile G.; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G.; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as “junk DNA,” TEs are now well-accepted driving forces of evolution and critical regulators the of expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets

  12. Response of transposable elements to environmental stressors.

    PubMed

    Miousse, Isabelle R; Chalbot, Marie-Cecile G; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for

  13. P transposable elements in Drosophila and other eukaryotic organisms

    PubMed Central

    Majumdar, Sharmistha; Rio, Donald C.

    2015-01-01

    P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3’ extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element “transposase” proteins. PMID:25893144

  14. P Transposable Elements in Drosophila and other Eukaryotic Organisms.

    PubMed

    Majumdar, Sharmistha; Rio, Donald C

    2015-04-01

    P transposable elements were discovered in Drosophila as the causative agents of a syndrome of genetic traits called hybrid dysgenesis. Hybrid dysgenesis exhibits a unique pattern of maternal inheritance linked to the germline-specific small RNA piwi-interacting (piRNA) pathway. The use of P transposable elements as vectors for gene transfer and as genetic tools revolutionized the field of Drosophila molecular genetics. P element transposons have served as a useful model to investigate mechanisms of cut-and-paste transposition in eukaryotes. Biochemical studies have revealed new and unexpected insights into how eukaryotic DNA-based transposons are mobilized. For example, the P element transposase makes unusual 17nt-3' extended double-strand DNA breaks at the transposon termini and uses guanosine triphosphate (GTP) as a cofactor to promote synapsis of the two transposon ends early in the transposition pathway. The N-terminal DNA binding domain of the P element transposase, called a THAP domain, contains a C2CH zinc-coordinating motif and is the founding member of a large family of animal-specific site-specific DNA binding proteins. Over the past decade genome sequencing efforts have revealed the presence of P element-like transposable elements or P element transposase-like genes (called THAP9) in many eukaryotic genomes, including vertebrates, such as primates including humans, zebrafish and Xenopus, as well as the human parasite Trichomonas vaginalis, the sea squirt Ciona, sea urchin and hydra. Surprisingly, the human and zebrafish P element transposase-related THAP9 genes promote transposition of the Drosophila P element transposon DNA in human and Drosophila cells, indicating that the THAP9 genes encode active P element "transposase" proteins. PMID:26104714

  15. Characterization of Transposable Elements in Laccaria bicolor

    SciTech Connect

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle; Tuskan, Gerald A; Le Tacon, F; Martin, Francis

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copies elements distributed within 172 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs are ancient except some terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TEs expansion in L. bicolor; the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 500,000 years ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis represents an initial characterization of TEs in the L. bicolor genome, contributes to genome assembly and to a greater understanding of the role TEs played in genome organization and evolution, and provides a valuable resource for the ongoing Laccaria Pan-Genome project supported by the U.S.-DOE Joint Genome Institute.

  16. Transposable elements and G-quadruplexes.

    PubMed

    Kejnovsky, Eduard; Tokan, Viktor; Lexa, Matej

    2015-09-01

    A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes. PMID:26403244

  17. Transposable elements in fish functional genomics: technical challenges and perspectives

    PubMed Central

    Parinov, Serguei; Emelyanov, Alexander

    2007-01-01

    The recent introduction of several transposable elements in zebrafish opens new frontiers for genetic manipulation in this important vertebrate model. This review discusses transposable elements as mutagenesis tools for fish functional genomics. We review various mutagenesis strategies that were previously applied in other genetic models, such as Drosophila, Arabidopsis, and mouse, that may be beneficial if applied in fish. We also discuss the forthcoming challenges of high-throughput functional genomics in fish. PMID:18047698

  18. Transposable Elements and Genome Size Variations in Plants

    PubMed Central

    Lee, Sung-Il

    2014-01-01

    Although the number of protein-coding genes is not highly variable between plant taxa, the DNA content in their genomes is highly variable, by as much as 2,056-fold from a 1C amount of 0.0648 pg to 132.5 pg. The mean 1C-value in plants is 2.4 pg, and genome size expansion/contraction is lineage-specific in plant taxonomy. Transposable element fractions in plant genomes are also variable, as low as ~3% in small genomes and as high as ~85% in large genomes, indicating that genome size is a linear function of transposable element content. Of the 2 classes of transposable elements, the dynamics of class 1 long terminal repeat (LTR) retrotransposons is a major contributor to the 1C value differences among plants. The activity of LTR retrotransposons is under the control of epigenetic suppressing mechanisms. Also, genome-purging mechanisms have been adopted to counter-balance the genome size amplification. With a wealth of information on whole-genome sequences in plant genomes, it was revealed that several genome-purging mechanisms have been employed, depending on plant taxa. Two genera, Lilium and Fritillaria, are known to have large genomes in angiosperms. There were twice times of concerted genome size evolutions in the family Liliaceae during the divergence of the current genera in Liliaceae. In addition to the LTR retrotransposons, non-LTR retrotransposons and satellite DNAs contributed to the huge genomes in the two genera by possible failure of genome counter-balancing mechanisms. PMID:25317107

  19. Transposable element interactions in insects: crossmobilization of hobo and Hermes.

    PubMed

    Sundararajan, P; Atkinson, P W; O'Brochta, D A

    1999-08-01

    There are four non-drosophilid insect gene vector systems available that have been constructed from the short inverted repeat-type transposable elements Minos, piggyBac, mariner and Hermes. These elements (with the possible exception of piggyBac) are members of transposable element families that appear to be widespread in nature. Because these transposable element families are large it is possible that an insect species targeted for transformation will contain related transposable elements. The data presented here begin to address directly the question of interaction between diverged but related members of transposable element families. We tested the ability of the hAT elements hobo and Hermes to interact and cause crossmobilization. Using plasmid-based and chromosome-based element mobility assays we found that the terminal sequences of hobo and Hermes were almost equally good substrates for hobo transposase. However, this ability to crossmobilize was not reciprocal. Hermes transposase was only rarely able to cause the excision of hobo elements from plasmids and was never observed from germline chromosomes. These results have important implications for transgenic insect studies in the future. PMID:10469253

  20. Increased Variation in Adh Enzyme Activity in Drosophila Mutation-Accumulation Experiment Is Not Due to Transposable Elements at the Adh Structural Gene

    PubMed Central

    Aquadro, C. F.; Tachida, H.; Langley, C. H.; Harada, K.; Mukai, T.

    1990-01-01

    We present here a molecular analysis of the region surrounding the structural gene encoding alcohol dehydrogenase (Adh) in 47 lines of Drosophila melanogaster that have each accumulated mutations for 300 generations. While these lines show a significant increase in variation of alcohol dehydrogenase enzyme activity compared to control lines, we found no restriction map variation in a 13-kb region including the complete Adh structural gene and roughly 5 kb of both 5' and 3' sequences. Thus, the rapid accumulation of ADH activity variation after 28,200 allele generations does not appear to have been due to the mobilization of transposable elements into or out of the Adh structural gene region. PMID:1963870

  1. Excision of an Active CACTA-Like Transposable Element from DFR2 Causes Variegated Flowers in Soybean [Glycine max (L.) Merr.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In soybean, the W4 locus is one of the loci that control anthocyanin biosynthesis of soybean flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable line T322 (w4-m). In present study, the immature flower petals of six samples ...

  2. [The influence of transposable elements on genome size].

    PubMed

    Biémont, Christian; Vieira, Cristina

    2004-01-01

    Genome size displays an important variability between species without any direct link to complexity. This paradox, so-called "C value paradox", now becomes understood as resulting from a differential abundance of numerous repeated sequences, among which transposable elements. Genomes indeed contain a important proportion of such sequences (95 % of DNA in man, about 45 % of which are transposable elements, up to 99 % of DNA in some plants). While most investigations until now are focalized on genes or coding sequences, which thus represent a small part of the genome, more attention now is dedicated on so-called non-coding sequences. Transposable elements, which are capable of moving around in genomes, inducing mutations, chromosomal rearrangements, gene expression regulations, thus appear as major actors in diversity and evolution. We present here a brief review of the most prominent acquisition in this expanding domain. PMID:15969348

  3. Tc1-like transposable elements in plant genomes

    PubMed Central

    2014-01-01

    Background The Tc1/mariner superfamily of transposable elements (TEs) is widespread in animal genomes. Mariner-like elements, which bear a DDD triad catalytic motif, have been identified in a wide range of flowering plant species. However, as the founding member of the superfamily, Tc1-like elements that bear a DD34E triad catalytic motif are only known to unikonts (animals, fungi, and Entamoeba). Results Here we report the identification of Tc1-like elements (TLEs) in plant genomes. These elements bear the four terminal nucleotides and the characteristic DD34E triad motif of Tc1 element. The two TLE families (PpTc1, PpTc2) identified in the moss (Physcomitrella patens) genome contain highly similar copies. Multiple copies of PpTc1 are actively transcribed and the transcripts encode intact full length transposase coding sequences. TLEs are also found in angiosperm genome sequence databases of rice (Oryza sativa), dwarf birch (Betula nana), cabbage (Brassica rapa), hemp (Cannabis sativa), barley (Hordium valgare), lettuce (Lactuta sativa), poplar (Populus trichocarpa), pear (Pyrus x bretschneideri), and wheat (Triticum urartu). Conclusions This study extends the occurrence of TLEs to the plant phylum. The elements in the moss genome have amplified recently and may still be capable of transposition. The TLEs are also present in angiosperm genomes, but apparently much less abundant than in moss. PMID:24926322

  4. Rapid inactivation of the maize transposable element En/Spm in Medicago truncatula.

    PubMed

    d'Erfurth, I; Cosson, V; Eschstruth, A; Rippa, S; Messinese, E; Durand, P; Trinh, H; Kondorosi, A; Ratet, P

    2003-09-01

    Transposable elements have been widely used as mutagens in many organisms. Among them, the maize transposable element En/Spm has been shown to transpose efficiently in several plant species including the model plant Arabidopsis, where it has been used for large-scale mutagenesis. To determine whether we could use this transposon as a mutagen in the model legume plant Medicago truncatula, we tested the activity of the autonomous element, as well as two defective elements, in this plant, and in Arabidopsis as a positive control. In agreement with previous reports, we observed efficient excision of the autonomous En/Spm element in A. thaliana. This element was also active in M. truncatula, but the transposition activity was low and was apparently restricted to the tissue culture step necessary for the production of transgenic plants. The activity of one of the defective transposable elements, dSpm, was very low in A. thaliana and even lower in M. truncatula. The use of different sources of transposases suggested that this defect in transposition was associated with the dSpm element itself. Transposition of the other defective element, I6078, was also detected in M. truncatula, but, as observed with the autonomous element, transposition events were very rare and occurred during tissue culture. These results suggest that the En/Spm element is rapidly inactivated in the regenerated plants and their progeny, and therefore is not suitable for routine insertion mutagenesis in M. truncatula. PMID:12905070

  5. Transposable Elements in TDP-43-Mediated Neurodegenerative Disorders

    PubMed Central

    Hammell, Molly; Dubnau, Josh

    2012-01-01

    Elevated expression of specific transposable elements (TEs) has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases. PMID:22957047

  6. ModuleOrganizer: detecting modules in families of transposable elements

    PubMed Central

    2010-01-01

    Background Most known eukaryotic genomes contain mobile copied elements called transposable elements. In some species, these elements account for the majority of the genome sequence. They have been subject to many mutations and other genomic events (copies, deletions, captures) during transposition. The identification of these transformations remains a difficult issue. The study of families of transposable elements is generally founded on a multiple alignment of their sequences, a critical step that is adapted to transposons containing mostly localized nucleotide mutations. Many transposons that have lost their protein-coding capacity have undergone more complex rearrangements, needing the development of more complex methods in order to characterize the architecture of sequence variations. Results In this study, we introduce the concept of a transposable element module, a flexible motif present in at least two sequences of a family of transposable elements and built on a succession of maximal repeats. The paper proposes an assembly method working on a set of exact maximal repeats of a set of sequences to create such modules. It results in a graphical view of sequences segmented into modules, a representation that allows a flexible analysis of the transformations that have occurred between them. We have chosen as a demonstration data set in depth analysis of the transposable element Foldback in Drosophila melanogaster. Comparison with multiple alignment methods shows that our method is more sensitive for highly variable sequences. The study of this family and the two other families AtREP21 and SIDER2 reveals new copies of very different sizes and various combinations of modules which show the potential of our method. Conclusions ModuleOrganizer is available on the Genouest bioinformatics center at http://moduleorganizer.genouest.org PMID:20860790

  7. Repeat-Induced Point Mutation and the Population Structure of Transposable Elements in Microbotryum violaceum

    PubMed Central

    Hood, Michael E.; Katawczik, Melanie; Giraud, Tatiana

    2005-01-01

    Repeat-induced point mutation (RIP) is a genome defense in fungi that hypermutates repetitive DNA and is suggested to limit the accumulation of transposable elements. The genome of Microbotryum violaceum has a high density of transposable elements compared to other fungi, but there is also evidence of RIP activity. This is the first report of RIP in a basidiomycete and was obtained by sequencing multiple copies of the integrase gene of a copia-type transposable element and the helicase gene of a Helitron-type element. In M. violaceum, the targets for RIP mutations are the cytosine residues of TCG trinucleotide combinations. Although RIP is a linkage-dependent process that tends to increase the variation among repetitive sequences, a chromosome-specific substructuring was observed in the transposable element population. The observed chromosome-specific patterns are not consistent with RIP, but rather suggest an effect of gene conversion, which is also a linkage-dependent process but results in a homogenization of repeated sequences. Particular sequences were found more widely distributed within the genome than expected by chance and may reflect the recently active variants. Therefore, sequence variation of transposable elements in M. violaceum appears to be driven by selection for transposition ability in combination with the context-specific forces of the RIP and gene conversion.

  8. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories.

    PubMed

    Vandewege, Michael W; Platt, Roy N; Ray, David A; Hoffmann, Federico G

    2016-01-01

    PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest "ping-pong" response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation. PMID:27060702

  9. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories

    PubMed Central

    Vandewege, Michael W.; Platt, Roy N.; Ray, David A.; Hoffmann, Federico G.

    2016-01-01

    PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest “ping-pong” response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation. PMID:27060702

  10. Transposable genetic elements in Spirulina and potential applications for genetic engineering

    NASA Astrophysics Data System (ADS)

    Hiroyuki, Kojima; Qin, Song; Thankappan, Ajith Kumar; Yoshikazu, Kawata; Shin-Ichi, Yano

    1998-03-01

    Transposable elements in cyanobacteria are briefly reviewed. Evidence is presented to show that transposable elements in Spirulina platensis is actually reflected on the phenotype change, i e., helical to straight filaments. Transposition intermediates of DNA were isolated from the extrachromosome and the transposition was related to helical variations in Spirulina. Uses of transposable elements for microalgal recombination are discussed based on the transposition mechanism.

  11. Structural similarities between viroids and transposable genetic elements.

    PubMed Central

    Kiefer, M C; Owens, R A; Diener, T O

    1983-01-01

    The primary structures of the tomato planta macho and tomato apical stunt viroids have been determined, and probable secondary structures are proposed. Both viroids can assume the rodlike conformation with extensive base-pairing characteristic of all known viroids. Sequence homologies between the two viroids (75%) and with members of the potato spindle tuber viroid group (73-83%) indicate that they both belong to this group. Comparative sequence analysis of all members of the group reveals striking similarities with the ends of transposable genetic elements. These similarities, the presence of inverted repeats often ending with the dinucleotides U-G and C-A, and flanking imperfect direct repeats suggest that viroids may have originated from transposable elements or retroviral proviruses by deletion of interior portions of the viral (or element) DNA. PMID:6312450

  12. Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi.

    PubMed

    Hess, Jaqueline; Skrede, Inger; Wolfe, Benjamin E; LaButti, Kurt; Ohm, Robin A; Grigoriev, Igor V; Pringle, Anne

    2014-07-01

    Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanita fungi. Using methods developed to interrogate both assembled and unassembled sequences, we characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species' natural histories may have in shaping genome architecture. PMID:24923322

  13. Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi

    PubMed Central

    Hess, Jaqueline; Skrede, Inger; Wolfe, Benjamin E.; LaButti, Kurt; Ohm, Robin A.; Grigoriev, Igor V.; Pringle, Anne

    2014-01-01

    Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanita fungi. Using methods developed to interrogate both assembled and unassembled sequences, we characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species’ natural histories may have in shaping genome architecture. PMID:24923322

  14. BLAT-based comparative analysis for transposable elements: BLATCAT.

    PubMed

    Lee, Sangbum; Oh, Sumin; Kang, Keunsoo; Han, Kyudong

    2014-01-01

    The availability of several whole genome sequences makes comparative analyses possible. In primate genomes, the priority of transposable elements (TEs) is significantly increased because they account for ~45% of the primate genomes, they can regulate the gene expression level, and they are associated with genomic fluidity in their host genomes. Here, we developed the BLAST-like alignment tool (BLAT) based comparative analysis for transposable elements (BLATCAT) program. The BLATCAT program can compare specific regions of six representative primate genome sequences (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque) on the basis of BLAT and simultaneously carry out RepeatMasker and/or Censor functions, which are widely used Windows-based web-server functions to detect TEs. All results can be stored as a HTML file for manual inspection of a specific locus. BLATCAT will be very convenient and efficient for comparative analyses of TEs in various primate genomes. PMID:24959585

  15. No Accumulation of Transposable Elements in Asexual Arthropods.

    PubMed

    Bast, Jens; Schaefer, Ina; Schwander, Tanja; Maraun, Mark; Scheu, Stefan; Kraaijeveld, Ken

    2016-03-01

    Transposable elements (TEs) and other repetitive DNA can accumulate in the absence of recombination, a process contributing to the degeneration of Y-chromosomes and other nonrecombining genome portions. A similar accumulation of repetitive DNA is expected for asexually reproducing species, given their entire genome is effectively nonrecombining. We tested this expectation by comparing the whole-genome TE loads of five asexual arthropod lineages and their sexual relatives, including asexual and sexual lineages of crustaceans (Daphnia water fleas), insects (Leptopilina wasps), and mites (Oribatida). Surprisingly, there was no evidence for increased TE load in genomes of asexual as compared to sexual lineages, neither for all classes of repetitive elements combined nor for specific TE families. Our study therefore suggests that nonrecombining genomes do not accumulate TEs like nonrecombining genomic regions of sexual lineages. Even if a slight but undetected increase of TEs were caused by asexual reproduction, it appears to be negligible compared to variance between species caused by processes unrelated to reproductive mode. It remains to be determined if molecular mechanisms underlying genome regulation in asexuals hamper TE activity. Alternatively, the differences in TE dynamics between nonrecombining genomes in asexual lineages versus nonrecombining genome portions in sexual species might stem from selection for benign TEs in asexual lineages because of the lack of genetic conflict between TEs and their hosts and/or because asexual lineages may only arise from sexual ancestors with particularly low TE loads. PMID:26560353

  16. No Accumulation of Transposable Elements in Asexual Arthropods

    PubMed Central

    Bast, Jens; Schaefer, Ina; Schwander, Tanja; Maraun, Mark; Scheu, Stefan; Kraaijeveld, Ken

    2016-01-01

    Transposable elements (TEs) and other repetitive DNA can accumulate in the absence of recombination, a process contributing to the degeneration of Y-chromosomes and other nonrecombining genome portions. A similar accumulation of repetitive DNA is expected for asexually reproducing species, given their entire genome is effectively nonrecombining. We tested this expectation by comparing the whole-genome TE loads of five asexual arthropod lineages and their sexual relatives, including asexual and sexual lineages of crustaceans (Daphnia water fleas), insects (Leptopilina wasps), and mites (Oribatida). Surprisingly, there was no evidence for increased TE load in genomes of asexual as compared to sexual lineages, neither for all classes of repetitive elements combined nor for specific TE families. Our study therefore suggests that nonrecombining genomes do not accumulate TEs like nonrecombining genomic regions of sexual lineages. Even if a slight but undetected increase of TEs were caused by asexual reproduction, it appears to be negligible compared to variance between species caused by processes unrelated to reproductive mode. It remains to be determined if molecular mechanisms underlying genome regulation in asexuals hamper TE activity. Alternatively, the differences in TE dynamics between nonrecombining genomes in asexual lineages versus nonrecombining genome portions in sexual species might stem from selection for benign TEs in asexual lineages because of the lack of genetic conflict between TEs and their hosts and/or because asexual lineages may only arise from sexual ancestors with particularly low TE loads. PMID:26560353

  17. DNA sequence of the maize transposable element Dissociation.

    PubMed

    Döring, H P; Tillmann, E; Starlinger, P

    The DNA sequence of the terminal 4.2 kilobases (kb) of the 30-kb insertion in the endosperm sucrose synthase gene of maize mutant sh-m5933 shows that it comprises two identical 2,040-base pair (bp) segments, one inserted in the reverse direction into the other. We suggest that the 2,040-bp sequence is an example of the transposable element Dissociation described by Barbara McClintock. PMID:6318121

  18. Transposable element insertions have strongly affected human evolution

    PubMed Central

    Britten, Roy J.

    2010-01-01

    Comparison of a full collection of the transposable element (TE) sequences of vertebrates with genome sequences shows that the human genome makes 655 perfect full-length matches. The cause is that the human genome contains many active TEs that have caused TE inserts in relatively recent times. These TE inserts in the human genome are several types of young Alus (AluYa5, AluYb8, AluYc1, etc.). Work in many laboratories has shown that such inserts have many effects including changes in gene expression, increases in recombination, and unequal crossover. The time of these very effective changes in the human lineage genome extends back about 4 million years according to these data and very likely much earlier. Rapid human lineage-specific evolution, including brain size is known to have also occurred in the last few million years. Alu insertions likely underlie rapid human lineage evolution. They are known to have many effects. Examples are listed in which TE sequences have influenced human-specific genes. The proposed model is that the many TE insertions created many potentially effective changes and those selected were responsible for a part of the striking human lineage evolution. The combination of the results of these events that were selected during human lineage evolution was apparently effective in producing a successful and rapidly evolving species. PMID:21041622

  19. Transposable Elements: Powerful Contributors to Angiosperm Evolution and Diversity

    PubMed Central

    Oliver, Keith R.; McComb, Jen A.; Greene, Wayne K.

    2013-01-01

    Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin’s “abominable mystery”: the spectacular success of the angiosperms. PMID:24065734

  20. Horizontal Transfer and Evolution of Prokaryote Transposable Elements in Eukaryotes

    PubMed Central

    Gilbert, Clément; Cordaux, Richard

    2013-01-01

    Horizontal transfer (HT) of transposable elements (TEs) plays a key role in prokaryotic evolution, and mounting evidence suggests that it has also had an important impact on eukaryotic evolution. Although many prokaryote-to-prokaryote and eukaryote-to-eukaryote HTs of TEs have been characterized, only few cases have been reported between prokaryotes and eukaryotes. Here, we carried out a comprehensive search for all major groups of prokaryotic insertion sequences (ISs) in 430 eukaryote genomes. We uncovered a total of 80 sequences, all deriving from the IS607 family, integrated in the genomes of 14 eukaryote species belonging to four distinct phyla (Amoebozoa, Ascomycetes, Basidiomycetes, and Stramenopiles). Given that eukaryote IS607-like sequences are most closely related to cyanobacterial IS607 and that their phylogeny is incongruent with that of their hosts, we conclude that the presence of IS607-like sequences in eukaryotic genomes is the result of several HT events. Selection analyses further suggest that our ability to detect these prokaryote TEs today in eukaryotes is because HT of these sequences occurred recently and/or some IS607 elements were domesticated after HT, giving rise to new eukaryote genes. Supporting the recent age of some of these HTs, we uncovered intact full-length, potentially active IS607 copies in the amoeba Acanthamoeba castellani. Overall, our study shows that prokaryote-to-eukaryote HT of TEs occurred at relatively low frequency during recent eukaryote evolution and it sets IS607 as the most widespread TE (being present in prokaryotes, eukaryotes, and viruses). PMID:23563966

  1. Epigenetic regulation of transposable element derived human gene promoters.

    PubMed

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome. PMID:21215797

  2. Sequence of retrovirus provirus resembles that of bacterial transposable elements

    NASA Astrophysics Data System (ADS)

    Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.

    1980-06-01

    The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.

  3. Transposable elements domesticated and neofunctionalized by eukaryotic genomes.

    PubMed

    Alzohairy, Ahmed M; Gyulai, Gábor; Jansen, Robert K; Bahieldin, Ahmed

    2013-01-01

    Whole genome sequencing has provided a massive amount of information about the origin, diversity and genomic impact of repetitive DNA sequences (repDNA). Among the many classes of repDNA, prokaryotic transposable elements (TEs) replicate, move, amplify and accumulate in invaded genomes and thus represent the major force in restructuring host genes and genomes during evolution. Similar to retroviruses, autonomous TEs became part of the host genomes, and after their molecular domestication, they became functional genes (genomic fossils) in eukaryotic genomes. In this review, examples of the domestication events are discussed, some of which are known to be induced by biotic and abiotic stressors. PMID:22960324

  4. DPTEdb, an integrative database of transposable elements in dioecious plants

    PubMed Central

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gu, Lian-Feng; Gao, Wu-Jun

    2016-01-01

    Dioecious plants usually harbor ‘young’ sex chromosomes, providing an opportunity to study the early stages of sex chromosome evolution. Transposable elements (TEs) are mobile DNA elements frequently found in plants and are suggested to play important roles in plant sex chromosome evolution. The genomes of several dioecious plants have been sequenced, offering an opportunity to annotate and mine the TE data. However, comprehensive and unified annotation of TEs in these dioecious plants is still lacking. In this study, we constructed a dioecious plant transposable element database (DPTEdb). DPTEdb is a specific, comprehensive and unified relational database and web interface. We used a combination of de novo, structure-based and homology-based approaches to identify TEs from the genome assemblies of previously published data, as well as our own. The database currently integrates eight dioecious plant species and a total of 31 340 TEs along with classification information. DPTEdb provides user-friendly web interfaces to browse, search and download the TE sequences in the database. Users can also use tools, including BLAST, GetORF, HMMER, Cut sequence and JBrowse, to analyze TE data. Given the role of TEs in plant sex chromosome evolution, the database will contribute to the investigation of TEs in structural, functional and evolutionary dynamics of the genome of dioecious plants. In addition, the database will supplement the research of sex diversification and sex chromosome evolution of dioecious plants. Database URL: http://genedenovoweb.ticp.net:81/DPTEdb/index.php PMID:27173524

  5. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group. PMID:24088337

  6. DPTEdb, an integrative database of transposable elements in dioecious plants.

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gu, Lian-Feng; Gao, Wu-Jun

    2016-01-01

    Dioecious plants usually harbor 'young' sex chromosomes, providing an opportunity to study the early stages of sex chromosome evolution. Transposable elements (TEs) are mobile DNA elements frequently found in plants and are suggested to play important roles in plant sex chromosome evolution. The genomes of several dioecious plants have been sequenced, offering an opportunity to annotate and mine the TE data. However, comprehensive and unified annotation of TEs in these dioecious plants is still lacking. In this study, we constructed a dioecious plant transposable element database (DPTEdb). DPTEdb is a specific, comprehensive and unified relational database and web interface. We used a combination of de novo, structure-based and homology-based approaches to identify TEs from the genome assemblies of previously published data, as well as our own. The database currently integrates eight dioecious plant species and a total of 31 340 TEs along with classification information. DPTEdb provides user-friendly web interfaces to browse, search and download the TE sequences in the database. Users can also use tools, including BLAST, GetORF, HMMER, Cut sequence and JBrowse, to analyze TE data. Given the role of TEs in plant sex chromosome evolution, the database will contribute to the investigation of TEs in structural, functional and evolutionary dynamics of the genome of dioecious plants. In addition, the database will supplement the research of sex diversification and sex chromosome evolution of dioecious plants.Database URL: http://genedenovoweb.ticp.net:81/DPTEdb/index.php. PMID:27173524

  7. Evolutionary interaction between W/Y chromosome and transposable elements.

    PubMed

    Śliwińska, Ewa B; Martyka, Rafał; Tryjanowski, Piotr

    2016-06-01

    The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation. PMID:27000053

  8. Prediction of transposable element derived enhancers using chromatin modification profiles.

    PubMed

    Huda, Ahsan; Tyagi, Eishita; Mariño-Ramírez, Leonardo; Bowen, Nathan J; Jjingo, Daudi; Jordan, I King

    2011-01-01

    Experimentally characterized enhancer regions have previously been shown to display specific patterns of enrichment for several different histone modifications. We modelled these enhancer chromatin profiles in the human genome and used them to guide the search for novel enhancers derived from transposable element (TE) sequences. To do this, a computational approach was taken to analyze the genome-wide histone modification landscape characterized by the ENCODE project in two human hematopoietic cell types, GM12878 and K562. We predicted the locations of 2,107 and 1,448 TE-derived enhancers in the GM12878 and K562 cell lines respectively. A vast majority of these putative enhancers are unique to each cell line; only 3.5% of the TE-derived enhancers are shared between the two. We evaluated the functional effect of TE-derived enhancers by associating them with the cell-type specific expression of nearby genes, and found that the number of TE-derived enhancers is strongly positively correlated with the expression of nearby genes in each cell line. Furthermore, genes that are differentially expressed between the two cell lines also possess a divergent number of TE-derived enhancers in their vicinity. As such, genes that are up-regulated in the GM12878 cell line and down-regulated in K562 have significantly more TE-derived enhancers in their vicinity in the GM12878 cell line and vice versa. These data indicate that human TE-derived sequences are likely to be involved in regulating cell-type specific gene expression on a broad scale and suggest that the enhancer activity of TE-derived sequences is mediated by epigenetic regulatory mechanisms. PMID:22087331

  9. Adaptation to Global Change: A Transposable Element-Epigenetics Perspective.

    PubMed

    Rey, Olivier; Danchin, Etienne; Mirouze, Marie; Loot, Céline; Blanchet, Simon

    2016-07-01

    Understanding how organisms cope with global change is a major scientific challenge. The molecular pathways underlying rapid adaptive phenotypic responses to global change remain poorly understood. Here, we highlight the relevance of two environment-sensitive molecular elements: transposable elements (TEs) and epigenetic components (ECs). We first outline the sensitivity of these elements to global change stressors and review how they interact with each other. We then propose an integrative molecular engine coupling TEs and ECs and allowing organisms to fine-tune phenotypes in a real-time fashion, adjust the production of phenotypic and genetic variation, and produce heritable phenotypes with different levels of transmission fidelity. We finally discuss the implications of this molecular engine in the context of global change. PMID:27080578

  10. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex

    PubMed Central

    Notwell, James H.; Chung, Tisha; Heavner, Whitney; Bejerano, Gill

    2015-01-01

    The neocortex is a mammalian-specific structure that is responsible for higher functions such as cognition, emotion, and perception. To gain insight into its evolution and the gene regulatory codes that pattern it, we studied the overlap of its active developmental enhancers with transposable element families and compared this overlap to uniformly shuffled enhancers. Here we show a striking enrichment of the MER130 repeat family among active enhancers in the mouse dorsal cerebral wall, which gives rise to the neocortex, at embryonic day 14.5 (E14.5). We show that MER130 instances preserve a common code of transcriptional regulatory logic, function as enhancers, and are adjacent to critical neocortical genes. MER130, a nonautonomous interspersed transposable element, originates in the tetrapod or possibly Sarcopterygii ancestor, which far predates the appearance of the neocortex. Our results show that MER130 elements were recruited, likely through their common regulatory logic, as neocortical enhancers. PMID:25806706

  11. C-GATE - catalogue of genes affected by transposable elements

    PubMed Central

    2012-01-01

    Background Functional regulatory sequences are present in many transposable element (TE) copies, resulting in TEs being frequently exapted by host genes. Today, many examples of TEs impacting host gene expression can be found in the literature and we believe a new catalogue of such exaptations would be useful for the field. Findings We have established the catalogue of genes affected by transposable elements (C-GATE), which can be found at https://sites.google.com/site/tecatalog/. To date, it holds 221 cases of biologically verified TE exaptations and more than 10,000 in silico TE-gene partnerships. C-GATE is interactive and allows users to include missed or new TE exaptation data. C-GATE provides a graphic representation of the entire library, which may be used for future statistical analysis of TE impact on host gene expression. Conclusions We hope C-GATE will be valuable for the TE community but also for others who have realized the role that TEs may have in their research. PMID:22621612

  12. Transposable elements as a factor in the aging of Drosophila melanogaster.

    PubMed

    Driver, C J; McKechnie, S W

    1992-12-26

    We have considered the hypothesis that transposable elements may contribute to the aging process through somatic mutation. We have presented evidence to suggest that at least two elements, Copia and 412, are capable of somatic activity in adult Drosophila tissue. A strain harboring a third transposable element, P, was produced that showed eye color mosaicism and reversion to wild phenotype (red eyes) as a result of somatic and germ line transposition. A high-fat diet, known to accelerate aging, increased the frequency of eye color mosaicism and red eyes. We induced life span shortening by artificially activating somatic transposition of P elements, and the extent of reduction in life span was similar in both sexes. These data are consistent with the notion that some aspects of the age phenotype may be caused by mutational activity of transposable elements in somatic tissues. The hypothesis is readily tested in other organisms, including humans. It offers new dimensions in the understanding and management of age-associated changes. PMID:1336649

  13. Transposable Elements: From DNA Parasites to Architects of Metazoan Evolution

    PubMed Central

    Piskurek, Oliver; Jackson, Daniel J.

    2012-01-01

    One of the most unexpected insights that followed from the completion of the human genome a decade ago was that more than half of our DNA is derived from transposable elements (TEs). Due to advances in high throughput sequencing technologies it is now clear that TEs comprise the largest molecular class within most metazoan genomes. TEs, once categorised as "junk DNA", are now known to influence genomic structure and function by increasing the coding and non-coding genetic repertoire of the host. In this way TEs are key elements that stimulate the evolution of metazoan genomes. This review highlights several lines of TE research including the horizontal transfer of TEs through host-parasite interactions, the vertical maintenance of TEs over long periods of evolutionary time, and the direct role that TEs have played in generating morphological novelty. PMID:24704977

  14. Transposable elements in sexual and ancient asexual taxa

    PubMed Central

    Arkhipova, Irina; Meselson, Matthew

    2000-01-01

    Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519–531]. We tested this expectation by screening representatives of a majority of animal phyla for LINE-like and gypsy-like reverse transcriptases and mariner/Tc1-like transposases. All species tested positive for reverse transcriptases except rotifers of the class Bdelloidea, the largest eukaryotic taxon in which males, hermaphrodites, and meiosis are unknown and for which ancient asexuality is supported by molecular genetic evidence. Mariner-like transposases are distributed sporadically among species and are present in bdelloid rotifers. The remarkable lack of LINE-like and gypsy-like retrotransposons in bdelloids and their ubiquitous presence in other taxa support the view that eukaryotic retrotransposons are sexually transmitted nuclear parasites and that bdelloid rotifers evolved asexually. PMID:11121049

  15. Study of Transposable Elements and Their Genomic Impact.

    PubMed

    Muñoz-Lopez, Martin; Vilar-Astasio, Raquel; Tristan-Ramos, Pablo; Lopez-Ruiz, Cesar; Garcia-Pérez, Jose L

    2016-01-01

    Transposable elements (TEs) have been considered traditionally as junk DNA, i.e., DNA sequences that despite representing a high proportion of genomes had no evident cellular functions. However, over the last decades, it has become undeniable that not only TE-derived DNA sequences have (and had) a fundamental role during genome evolution, but also TEs have important implications in the origin and evolution of many genomic disorders. This concise review provides a brief overview of the different types of TEs that can be found in genomes, as well as a list of techniques and methods used to study their impact and mobilization. Some of these techniques will be covered in detail in this Method Book. PMID:26895043

  16. Chromatin structure and transposable elements in organismal aging

    PubMed Central

    Wood, Jason G.; Helfand, Stephen L.

    2013-01-01

    Epigenetic regulatory mechanisms are increasingly appreciated as central to a diverse array of biological processes, including aging. An association between heterochromatic silencing and longevity has long been recognized in yeast, and in more recent years evidence has accumulated of age-related chromatin changes in Caenorhabditis elegans, Drosophila, and mouse model systems, as well as in the tissue culture-based replicative senescence model of cell aging. In addition, a number of studies have linked expression of transposable elements (TEs), as well as changes in the RNAi pathways that cells use to combat TEs, to the aging process. This review summarizes the recent evidence linking chromatin structure and function to aging, with a particular focus on the relationship of heterochromatin structure to organismal aging. PMID:24363663

  17. Transposable elements as artisans of the heterochromatic genome in Drosophila melanogaster.

    PubMed

    Dimitri, P; Corradini, N; Rossi, F; Mei, E; Zhimulev, I F; Vernì, F

    2005-01-01

    Over 50 years ago Barbara McClintock discovered that maize contains mobile genetic elements, but her findings were at first considered nothing more than anomalies. Today it is widely recognized that transposable elements have colonized all eukaryotic genomes and represent a major force driving evolution of organisms. Our contribution to this special issue deals with the theme of transposable element-host genome interactions. We bring together published and unpublished work to provide a picture of the contribution of transposable elements to the evolution of the heterochromatic genome in Drosophila melanogaster. In particular, we discuss data on 1) colonization of constitutive heterochromatin by transposable elements, 2) instability of constitutive heterochromatin induced by the I factor, and 3) evolution of constitutive heterochromatin and heterochromatic genes driven by transposable elements. Drawing attention to these topics may have direct implications on important aspects of genome organization and gene expression. PMID:16093669

  18. Characterization of Transposable Elements in the Ectomycorrhizal Fungus Laccaria bicolor

    SciTech Connect

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle; Tuskan, Gerald A; Le Tacon, F; Martin, Francis

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TEspecific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.

  19. Massive contribution of transposable elements to mammalian regulatory sequences.

    PubMed

    Rayan, Nirmala Arul; Del Rosario, Ricardo C H; Prabhakar, Shyam

    2016-09-01

    Barbara McClintock discovered the existence of transposable elements (TEs) in the late 1940s and initially proposed that they contributed to the gene regulatory program of higher organisms. This controversial idea gained acceptance only much later in the 1990s, when the first examples of TE-derived promoter sequences were uncovered. It is now known that half of the human genome is recognizably derived from TEs. It is thus important to understand the scope and nature of their contribution to gene regulation. Here, we provide a timeline of major discoveries in this area and discuss how transposons have revolutionized our understanding of mammalian genomes, with a special emphasis on the massive contribution of TEs to primate evolution. Our analysis of primate-specific functional elements supports a simple model for the rate at which new functional elements arise in unique and TE-derived DNA. Finally, we discuss some of the challenges and unresolved questions in the field, which need to be addressed in order to fully characterize the impact of TEs on gene regulation, evolution and disease processes. PMID:27174439

  20. Distributions of transposable elements reveal hazardous zones in mammalian introns.

    PubMed

    Zhang, Ying; Romanish, Mark T; Mager, Dixie L

    2011-05-01

    Comprising nearly half of the human and mouse genomes, transposable elements (TEs) are found within most genes. Although the vast majority of TEs in introns are fixed in the species and presumably exert no significant effects on the enclosing gene, some markedly perturb transcription and result in disease or a mutated phenotype. Factors determining the likelihood that an intronic TE will affect transcription are not clear. In this study, we examined intronic TE distributions in both human and mouse and found several factors that likely contribute to whether a particular TE can influence gene transcription. Specifically, we observed that TEs near exons are greatly underrepresented compared to random distributions, but the size of these "underrepresentation zones" differs between TE classes. Compared to elsewhere in introns, TEs within these zones are shorter on average and show stronger orientation biases. Moreover, TEs in extremely close proximity (<20 bp) to exons show a strong bias to be near splice-donor sites. Interestingly, disease-causing intronic TE insertions show the opposite distributional trends, and by examining expressed sequence tag (EST) databases, we found that the proportion of TEs contributing to chimeric TE-gene transcripts is significantly higher within their underrepresentation zones. In addition, an analysis of predicted splice sites within human long terminal repeat (LTR) elements showed a significantly lower total number and weaker strength for intronic LTRs near exons. Based on these factors, we selectively examined a list of polymorphic mouse LTR elements in introns and showed clear evidence of transcriptional disruption by LTR element insertions in the Trpc6 and Kcnh6 genes. Taken together, these studies lend insight into the potential selective forces that have shaped intronic TE distributions and enable identification of TEs most likely to exert transcriptional effects on genes. PMID:21573203

  1. Considering Transposable Element Diversification in De Novo Annotation Approaches

    PubMed Central

    Flutre, Timothée; Duprat, Elodie; Feuillet, Catherine; Quesneville, Hadi

    2011-01-01

    Transposable elements (TEs) are mobile, repetitive DNA sequences that are almost ubiquitous in prokaryotic and eukaryotic genomes. They have a large impact on genome structure, function and evolution. With the recent development of high-throughput sequencing methods, many genome sequences have become available, making possible comparative studies of TE dynamics at an unprecedented scale. Several methods have been proposed for the de novo identification of TEs in sequenced genomes. Most begin with the detection of genomic repeats, but the subsequent steps for defining TE families differ. High-quality TE annotations are available for the Drosophila melanogaster and Arabidopsis thaliana genome sequences, providing a solid basis for the benchmarking of such methods. We compared the performance of specific algorithms for the clustering of interspersed repeats and found that only a particular combination of algorithms detected TE families with good recovery of the reference sequences. We then applied a new procedure for reconciling the different clustering results and classifying TE sequences. The whole approach was implemented in a pipeline using the REPET package. Finally, we show that our combined approach highlights the dynamics of well defined TE families by making it possible to identify structural variations among their copies. This approach makes it possible to annotate TE families and to study their diversification in a single analysis, improving our understanding of TE dynamics at the whole-genome scale and for diverse species. PMID:21304975

  2. MnTEdb, a collective resource for mulberry transposable elements.

    PubMed

    Ma, Bi; Li, Tian; Xiang, Zhonghuai; He, Ningjia

    2015-01-01

    Mulberry has been used as an economically important food crop for the domesticated silkworm for thousands of years, resulting in one of the oldest and well-known plant-herbivore interactions. The genome of Morus notabilis has now been sequenced and there is an opportunity to mine the transposable element (TE) data. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the mulberry genome, a specific, comprehensive and user-friendly web-based database, MnTEdb, was constructed. It was built based on a detailed and accurate identification of all TEs in mulberry. A total of 5925 TEs belonging to 13 superfamilies and 1062 families were deposited in this database. MnTEdb enables users to search, browse and download the mulberry TE sequences. Meanwhile, data mining tools, including BLAST, GetORF, HMMER, Sequence Extractor and JBrowse were also integrated into MnTEdb. MnTEdb will assist researchers to efficiently take advantage of our newly annotated TEs, which facilitate their studies in the origin, amplification and evolution of TEs, as well as the comparative analysis among the different species. Database URL: http://morus.swu.edu.cn/mntedb/ PMID:25725060

  3. Differential detection of transposable elements between Saccharum species

    PubMed Central

    de Souza, Marislane Carvalho Paz; Silva, Jéssica Naiana; Almeida, Cícero

    2013-01-01

    Cultivars of sugarcane (Saccharum) are hybrids between species S. officinarum (x = 10, 2n = 8x = 80) and S. spontaneum (x = 8, 2n = 5 – 16x = 40 – 128). These accessions have 100 to 130 chromosomes, 80–85% of which are derived from S. officinarum, 10–15% from S. spontaneum, and 5–10% are possible recombinants between the two genomes. The aim of this study was to analyze the repetition of DNA sequences in S. officinarum and S. spontaneum. For this purpose, genomic DNA from S. officinarum was digested with restriction enzymes and the fragments cloned. Sixty-eight fragments, approximately 500 bp, were cloned, sequenced and had their identity analyzed in NCBI, and in the rice, maize, and sorghum genome databases using BLAST. Twelve clones containing partial transposable elements, one single-copy control, one DNA repetitive clone control and two genome controls were analyzed by DNA hybridization on membrane, using genomic probes from S. officinarum and S. spontaneum. The hybridization experiment revealed that six TEs had a similar repetitive DNA pattern in the genomes of S. officinarum and S. spontaneum, while six TEs were more abundant in the genome of S. officinarum. We concluded that the species S. officinarum and S. spontaneum have differential accumulation LTR retrotransposon families, suggesting distinct insertion or modification patterns. PMID:24130449

  4. Widespread and frequent horizontal transfers of transposable elements in plants.

    PubMed

    El Baidouri, Moaine; Carpentier, Marie-Christine; Cooke, Richard; Gao, Dongying; Lasserre, Eric; Llauro, Christel; Mirouze, Marie; Picault, Nathalie; Jackson, Scott A; Panaud, Olivier

    2014-05-01

    Vertical, transgenerational transmission of genetic material occurs through reproduction of living organisms. In addition to vertical inheritance, horizontal gene transfer between reproductively isolated species has recently been shown to be an important, if not dominant, mechanism in the evolution of prokaryotic genomes. In contrast, only a few horizontal transfer (HT) events have been characterized so far in eukaryotes and mainly concern transposable elements (TEs). Whether these are frequent and have a significant impact on genome evolution remains largely unknown. We performed a computational search for highly conserved LTR retrotransposons among 40 sequenced eukaryotic genomes representing the major plant families. We found that 26 genomes (65%) harbor at least one case of horizontal TE transfer (HTT). These transfers concern species as distantly related as palm and grapevine, tomato and bean, or poplar and peach. In total, we identified 32 cases of HTTs, which could translate into more than 2 million among the 13,551 monocot and dicot genera. Moreover, we show that these TEs have remained functional after their transfer, occasionally causing a transpositional burst. This suggests that plants can frequently exchange genetic material through horizontal transfers and that this mechanism may be important in TE-driven genome evolution. PMID:24518071

  5. Multilevel Selection Theory and the Evolutionary Functions of Transposable Elements

    PubMed Central

    Brunet, Tyler D.P.; Doolittle, W. Ford

    2015-01-01

    One of several issues at play in the renewed debate over “junk DNA” is the organizational level at which genomic features might be seen as selected, and thus to exhibit function, as etiologically defined. The intuition frequently expressed by molecular geneticists that junk DNA is functional because it serves to “speed evolution” or as an “evolutionary repository” could be recast as a claim about selection between species (or clades) rather than within them, but this is not often done. Here, we review general arguments for the importance of selection at levels above that of organisms in evolution, and develop them further for a common genomic feature: the carriage of transposable elements (TEs). In many species, not least our own, TEs comprise a large fraction of all nuclear DNA, and whether they individually or collectively contribute to fitness—or are instead junk— is a subject of ongoing contestation. Even if TEs generally owe their origin to selfish selection at the lowest level (that of genomes), their prevalence in extant organisms and the prevalence of extant organisms bearing them must also respond to selection within species (on organismal fitness) and between species (on rates of speciation and extinction). At an even higher level, the persistence of clades may be affected (positively or negatively) by TE carriage. If indeed TEs speed evolution, it is at these higher levels of selection that such a function might best be attributed to them as a class. PMID:26253318

  6. MnTEdb, a collective resource for mulberry transposable elements

    PubMed Central

    Ma, Bi; Li, Tian; Xiang, Zhonghuai; He, Ningjia

    2015-01-01

    Mulberry has been used as an economically important food crop for the domesticated silkworm for thousands of years, resulting in one of the oldest and well-known plant-herbivore interactions. The genome of Morus notabilis has now been sequenced and there is an opportunity to mine the transposable element (TE) data. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the mulberry genome, a specific, comprehensive and user-friendly web-based database, MnTEdb, was constructed. It was built based on a detailed and accurate identification of all TEs in mulberry. A total of 5925 TEs belonging to 13 superfamilies and 1062 families were deposited in this database. MnTEdb enables users to search, browse and download the mulberry TE sequences. Meanwhile, data mining tools, including BLAST, GetORF, HMMER, Sequence Extractor and JBrowse were also integrated into MnTEdb. MnTEdb will assist researchers to efficiently take advantage of our newly annotated TEs, which facilitate their studies in the origin, amplification and evolution of TEs, as well as the comparative analysis among the different species. Database URL: http://morus.swu.edu.cn/mntedb/ PMID:25725060

  7. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    PubMed

    Linheiro, Raquel S; Bergman, Casey M

    2012-01-01

    Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes. PMID:22347367

  8. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.).

    PubMed

    Kim, Sunggil; Park, Jee Young; Yang, Tae-Jin

    2015-06-01

    Intact retrotransposon and DNA transposons inserted in a single gene were characterized in onions (Allium cepa) and their transcription and copy numbers were estimated in this study. While analyzing diverse onion germplasm, large insertions in the DFR-A gene encoding dihydroflavonol 4-reductase (DFR) involved in the anthocyanin biosynthesis pathway were found in two accessions. A 5,070-bp long terminal repeat (LTR) retrotransposon inserted in the active DFR-A (R4) allele was identified from one of the large insertions and designated AcCOPIA1. An intact ORF encoded typical domains of copia-like LTR retrotransposons. However, AcCOPIA1 contained atypical 'TG' and 'TA' dinucleotides at the ends of the LTRs. A 4,615-bp DNA transposon was identified in the other large insertion. This DNA transposon, designated AcCACTA1, contained an ORF coding for a transposase showing homology with the CACTA superfamily transposable elements (TEs). Another 5,073-bp DNA transposon was identified from the DFR-A (TRN) allele. This DNA transposon, designated AchAT1, belonged to the hAT superfamily with short 4-bp terminal inverted repeats (TIRs). Finally, a 6,258-bp non-autonomous DNA transposon, designated AcPINK, was identified in the ANS-p allele encoding anthocyanidin synthase, the next downstream enzyme to DFR in the anthocyanin biosynthesis pathway. AcPINK also possessed very short 3-bp TIRs. Active transcription of AcCOPIA1, AcCACTA1, and AchAT1 was observed through RNA-Seq analysis and RT-PCR. The copy numbers of AcPINK estimated by mapping the genomic DNA reads produced by NextSeq 500 were predominantly high compared with the other TEs. A series of evidence indicated that these TEs might have transposed in these onion genes very recently, providing a stepping stone for elucidation of enormously large-sized onion genome structure. PMID:25515665

  9. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles

    PubMed Central

    Castanera, Raúl; López-Varas, Leticia; Borgognone, Alessandra; LaButti, Kurt; Lapidus, Alla; Schmutz, Jeremy; Grimwood, Jane; Pisabarro, Antonio G.; Grigoriev, Igor V.; Ramírez, Lucía

    2016-01-01

    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation. PMID:27294409

  10. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles.

    PubMed

    Castanera, Raúl; López-Varas, Leticia; Borgognone, Alessandra; LaButti, Kurt; Lapidus, Alla; Schmutz, Jeremy; Grimwood, Jane; Pérez, Gúmer; Pisabarro, Antonio G; Grigoriev, Igor V; Stajich, Jason E; Ramírez, Lucía

    2016-06-01

    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation. PMID:27294409

  11. Genomic patterns associated with paternal/maternal distribution of transposable elements

    NASA Astrophysics Data System (ADS)

    Jurka, Jerzy

    2003-03-01

    Transposable elements (TEs) are specialized DNA or RNA fragments capable of surviving in intragenomic niches. They are commonly, perhaps unjustifiably referred to as "selfish" or "parasitic" elements. TEs can be divided in two major classes: retroelements and DNA transposons. The former include non-LTR retrotransposons and retrovirus-like elements, using reverse transriptase for their reproduction prior to integration into host DNA. The latter depend mostly on host DNA replication, with possible exception of rolling-circle transposons recently discovered by our team. I will review basic information on TEs, with emphasis on human Alu and L1 retroelements discussed in the context of genomic organization. TEs are non-randomly distributed in chromosomal DNA. In particular, human Alu elements tend to prefer GC-rich regions, whereas L1 accumulate in AT-rich regions. Current explanations of this phenomenon focus on the so called "target effects" and post-insertional selection. However, the proposed models appear to be unsatisfactory and alternative explanations invoking "channeling" to different chromosomal regions will be a major focus of my presentation. Transposable elements (TEs) can be expressed and integrated into host DNA in the male or female germlines, or both. Different models of expression and integration imply different proportions of TEs on sex chromosomes and autosomes. The density of recently retroposed human Alu elements is around three times higher on chromosome Y than on chromosome X, and over two times higher than the average density for all human autosomes. This implies Alu activity in paternal germlines. Analogous inter-chromosomal proportions for other repeat families should determine their compatibility with one of the three basic models describing the inheritance of TEs. Published evidence indicates that maternally and paternally imprinted genes roughly correspond to GC-rich and AT-rich DNA. This may explain the observed chromosomal distribution of

  12. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    PubMed

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. PMID:25611725

  13. Transposable elements in cancer as a by-product of stress-induced evolvability

    PubMed Central

    Mourier, Tobias; Nielsen, Lars P.; Hansen, Anders J.; Willerslev, Eske

    2014-01-01

    Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock’s famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This requires the TE activity response to possess an element of specificity and be targeted toward certain parts of the genome. We propose that a similar TE response is present in human cells, and that this stress response may drive the onset of human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product of organisms’ abilities to genetically adapt to environmental stress. PMID:24910642

  14. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex.

    PubMed

    Notwell, James H; Chung, Tisha; Heavner, Whitney; Bejerano, Gill

    2015-01-01

    The neocortex is a mammalian-specific structure that is responsible for higher functions such as cognition, emotion and perception. To gain insight into its evolution and the gene regulatory codes that pattern it, we studied the overlap of its active developmental enhancers with transposable element (TE) families and compared this overlap to uniformly shuffled enhancers. Here we show a striking enrichment of the MER130 repeat family among active enhancers in the mouse dorsal cerebral wall, which gives rise to the neocortex, at embryonic day 14.5. We show that MER130 instances preserve a common code of transcriptional regulatory logic, function as enhancers and are adjacent to critical neocortical genes. MER130, a nonautonomous interspersed TE, originates in the tetrapod or possibly Sarcopterygii ancestor, which far predates the appearance of the neocortex. Our results show that MER130 elements were recruited, likely through their common regulatory logic, as neocortical enhancers. PMID:25806706

  15. What do we still need to know about transposable element Ac?

    PubMed

    Starlinger, P

    1993-12-15

    Transposable elements, originally discovered by Barbara McClintock, have been shown to occur in many if not all organisms. Their roles as selfish DNA (probable), as a major agent in evolution (unlikely) and as agents for the response to genomic stress (unclear) are discussed. Among the problems presently addressed are the mechanism of transposition and the regulation of transposition rate. The latter seems to differ in the Ac element of Zea mays compared to other transposable elements. The tendency of Ac transposase to form large aggregates is described, and the possible involvement of these aggregates in the control of the transposition rate is discussed. PMID:8276265

  16. Altering genomic integrity: heavy metal exposure promotes trans-posable element-mediated damage

    PubMed Central

    Morales, Maria E.; Servant, Geraldine; Ade, Catherine; Roy-Enge, Astrid M.

    2015-01-01

    Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past two decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease and an overview of the current knowledge on how heavy metals influence TE-mediated damage. PMID:25774044

  17. Mutational analysis of the N terminus of the protein of maize transposable element Ac.

    PubMed Central

    Li, M G; Starlinger, P

    1990-01-01

    Mutations of transposable element Ac were tested for their capability to excise themselves from their location autonomously, to be excised by an active Ac, or to act in trans in the excision of an Ac delta element. Removal of 101 amino acids from the N terminus of the Ac protein does not decrease excision. A cis-acting site between base pairs 186 and 207 is important for excision by the wild-type protein but is not necessary for excision by the truncated protein. Improvement of the sequence context of the first AUG does not have a significant effect. Mutations in a small open reading frame of Ac encoding a 102-amino acid protein do not visibly alter excision frequency. Images PMID:2166942

  18. Transposed firing activation of motor units

    PubMed Central

    Kline, Joshua C.; Contessa, Paola

    2014-01-01

    Muscles are composed of groups of muscle fibers, called motor units, each innervated by a single motoneuron originating in the spinal cord. During constant or linearly varying voluntary force contractions, motor units are activated in a hierarchical order, with the earlier-recruited motor units having greater firing rates than the later-recruited ones. We found that this normal pattern of firing activation can be altered during oscillatory contractions where the force oscillates at frequencies ≥2 Hz. During these high-frequency oscillations, the activation of the lower-threshold motor units effectively decreases and that of the higher-threshold motor units effectively increases. This transposition of firing activation provides means to activate higher-threshold motor units preferentially. Our results demonstrate that the hierarchical regulation of motor unit activation can be manipulated to activate specific motoneuron populations preferentially. This finding can be exploited to develop new forms of physical therapies and exercise programs that enhance muscle performance or that target the preferential atrophy of high-threshold motor units as a result of aging or motor disorders such as stroke and amyotrophic lateral sclerosis. PMID:24899671

  19. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution.

    PubMed

    Schaack, Sarah; Gilbert, Clément; Feschotte, Cédric

    2010-09-01

    Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation. PMID:20591532

  20. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution

    PubMed Central

    Schaack, Sarah; Gilbert, Clément; Feschotte, Cédric

    2010-01-01

    Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation. PMID:20591532

  1. TEnest: Automated Chronological Annotation and Visualization of Nested Plant Transposable Elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organisms with a high density of transposable elements (TEs) exhibit nesting, with subsequent repeats found inside previously inserted elements. Nesting splits the sequence structure of TEs and makes annotation of repetitive areas challenging. We present TEnest, a repeat identification and display...

  2. The role of transposable elements in health and diseases of the central nervous system.

    PubMed

    Reilly, Matthew T; Faulkner, Geoffrey J; Dubnau, Joshua; Ponomarev, Igor; Gage, Fred H

    2013-11-01

    First discovered in maize by Barbara McClintock in the 1940s, transposable elements (TEs) are DNA sequences that in some cases have the ability to move along chromosomes or "transpose" in the genome. This revolutionary finding was initially met with resistance by the scientific community and viewed by some as heretical. A large body of knowledge has accumulated over the last 60 years on the biology of TEs. Indeed, it is now known that TEs can generate genomic instability and reconfigure gene expression networks both in the germline and somatic cells. This review highlights recent findings on the role of TEs in health and diseases of the CNS, which were presented at the 2013 Society for Neuroscience meeting. The work of the speakers in this symposium shows that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings on TE expression and function in the CNS have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in shaping individual behavior and contribute to vulnerability to disease. PMID:24198348

  3. Control of excision frequency of maize transposable element Ds in Petunia protoplasts.

    PubMed Central

    Becker, D; Lütticke, R; Li, M; Starlinger, P

    1992-01-01

    The complete coding region of maize transposable element Ac and truncated but active derivatives of it were placed under the control of promoters of different strength and tested for the ability to excise transposable element Ds from a beta-glucuronidase reporter gene in a cotransfection assay in Petunia protoplasts. The highest excision values (5% of the protoplasts able to express the beta-glucuronidase gene in a control experiment) were observed with a truncated version of the Ac coding region under the control of the 2' promoter. The weak Ac promoter is sufficient to give rise to excision values not much lower than those found with much stronger promoters such as the 2' and nos promoters. A decrease in excision frequency was observed when translation of the Ac coding region was hindered by out-of-frame ATG codons in addition to the use of weak promoters. Increasing the level of Ac transposase thus does not seem to be sufficient to raise the level of Ds excision observed in this system and possibly also in maize. Therefore another factor limits the excision of Ds elements. Previously, it was reported that in tobacco cells the deletion of Ds sequence between base pairs 186 and 245 led to a decrease of the Ds excision frequency by the full-length but not by the truncated Ac product. In the Petunia assay system, however, deletion of these sequences decreased the excision rate with both the full length and the truncated Ac coding region. A cDNA construct was found similarly active as the corresponding genomic DNA. PMID:11607300

  4. Enhancer/Suppressor mutator (En/Spm)-like transposable elements of cassava (Manihot esculenta) are transcriptionally inactive.

    PubMed

    Gbadegesin, M A; Beeching, J R

    2010-01-01

    Transposable elements contribute to the size, structure, variation, and diversity of the genome and have major effects on gene function. Sequencing projects have revealed the diversity of transposable elements in many organisms and have shown that they constitute a high percentage of the genome. PCR-based techniques using degenerate primers designed from conserved enzyme domains of transposable elements can provide quick and extensive surveys, making study of diversity and abundance and their applications possible in species where full genome sequence data are not yet available. We studied cassava (Manihot esculenta) En/Spm-like transposons (Meens) with regard to genomic distribution, sequence diversity and methylation status. Cassava transposase fragments characteristic of En/Spm-like transposons were isolated, cloned and characterized. Sequence analysis showed that cassava En/Spm-like elements are highly conserved, with overall identity in the range of 68-98%. Southern hybridization supports the presence of multiple copies of En/Spm-like transposons integrated in the genome of all cassava cultivars that we tested. Hybridization patterns of HpaII- and MspI-digested cassava genomic DNA revealed highly methylated sequences. There were no clear differences in hybridization pattern between the cultivars. We did not detect RNA transcripts of Meens by Northern procedures. We examined the possibility of recent transposition activities of the cassava En/Spm-like elements. PMID:20449796

  5. Abundant Degenerate Miniature Inverted-Repeat Transposable Elements in Genomes of Epichloid Fungal Endophytes of Grasses

    PubMed Central

    Fleetwood, Damien J.; Khan, Anar K.; Johnson, Richard D.; Young, Carolyn A.; Mittal, Shipra; Wrenn, Ruth E.; Hesse, Uljana; Foster, Simon J.; Schardl, Christopher L.; Scott, Barry

    2011-01-01

    Miniature inverted-repeat transposable elements (MITEs) are abundant repeat elements in plant and animal genomes; however, there are few analyses of these elements in fungal genomes. Analysis of the draft genome sequence of the fungal endophyte Epichloë festucae revealed 13 MITE families that make up almost 1% of the E. festucae genome, and relics of putative autonomous parent elements were identified for three families. Sequence and DNA hybridization analyses suggest that at least some of the MITEs identified in the study were active early in the evolution of Epichloë but are not found in closely related genera. Analysis of MITE integration sites showed that these elements have a moderate integration site preference for 5′ genic regions of the E. festucae genome and are particularly enriched near genes for secondary metabolism. Copies of the EFT-3m/Toru element appear to have mediated recombination events that may have abolished synthesis of two fungal alkaloids in different epichloae. This work provides insight into the potential impact of MITEs on epichloae evolution and provides a foundation for analysis in other fungal genomes. PMID:21948396

  6. RJPrimers: unique transposable element insertion junction discovery and PCR primer design for marker development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transposable elements (TE) exist in the genomes of nearly all eukaryotes. TE mobilization through “cut-and-paste” or “copy-and-paste” mechanisms causes their insertions into other repetitive sequences, gene loci, and other DNA. An insertion of a TE produces a junction consisting of the TE-end sequen...

  7. Detection and characterization of miniature inverted-repeat transposable elements in “Candidatus Liberibacter asiaticus”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Miniature inverted-repeat transposable elements (MITEs) are non-autonomous transposons (devoid a transposase gene, tps) involving insertion/deletion of genomic DNA in bacterial genomes influencing gene functions. No transposon has yet been reported in “Candidatus Liberibacter asiaticus”, an alpha-pr...

  8. TEnest 2.0: Computational annotation and visualization of nested transposable elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass genomes are highly repetitive, for example, Oryza sativa (rice) contains 35% repeat sequences, Zea mays (maize) comprise 75%, and Triticum aestivum (wheat) includes approximately 80%. Most of these repeats occur as abundant transposable elements (TE), which present unique challenges to sequen...

  9. Excision of the piggyBac transposable element in maize cells is a precise event

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The piggyBac transposable element (TE) from the moth Trichoplusia ni encodes a ‘cut and paste’ DNA transposase that has been used to transform a number of insects, as well as planaria, mammalian cells, and mice. The wild type and a mutated piggyBac TE excised from a DNA vector in transient assays u...

  10. Population dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis.

    PubMed Central

    Wright, S I; Le, Q H; Schoen, D J; Bureau, T E

    2001-01-01

    Theoretical models predict that the mating system should be an important factor driving the dynamics of transposable elements in natural populations due to differences in selective pressure on both element and host. We used a PCR-based approach to examine the abundance and levels of insertion polymorphism of Ac-III, a recently identified Ac-like transposon family, in natural populations of the selfing plant Arabidopsis thaliana and its close outcrossing relative, Arabidopsis lyrata. Although several insertions appeared to be ancient and shared between species, there is strong evidence for recent activity of this element family in both species. Sequences of the regions flanking insertions indicate that all Ac-III transposons segregating in natural populations are in noncoding regions and provide no evidence for local transposition events. Transposon display analysis suggests the presence of slightly higher numbers of insertion sites per individual but fewer total polymorphic insertions in the self-pollinating A. thaliana than A. lyrata. Element insertions appear to be segregating at significantly lower frequencies in A. lyrata than A. thaliana, which is consistent with a reduction in transposition rate, reduction in effective population size, or reduced efficacy of natural selection against element insertions in selfing populations. PMID:11454774

  11. Introduction of the Transposable Element Mariner into the Germline of Drosophila Melanogaster

    PubMed Central

    Garza, D.; Medhora, M.; Koga, A.; Hartl, D. L.

    1991-01-01

    A chimeric white gene (w(pch)) and other constructs containing the transposable element mariner from Drosophila mauritiana were introduced into the germline of Drosophila melanogaster using transformation mediated by the P element. In the absence of other mariner elements, the w(pch) allele is genetically stable in both germ cells and somatic cells, indicating that the peach element (i.e., the particular copy of mariner inserted in the w(pch) allele) is inactive. However, in the presence of the active element Mos1, the w(pch) allele reverts, owing to excision of the peach element, yielding eye-color mosaics and a high rate of germline reversion. In strains containing Mos1 virtually every fly is an eye-color mosaic, and the rate of w(pch) germline reversion ranges from 10 to 25%, depending on temperature. The overall rates of mariner excision and transposition are approximately sixfold greater than the rates in comparable strains of Drosophila simulans. The activity of the Mos1 element is markedly affected by position effects at the site of Mos1 insertion. In low level mosaic lines, dosage effects of Mos1 are apparent in the heavier level of eye-color mosaicism in Mos1 homozygotes than in heterozygotes. However, saturation occurs in high level mosaic lines, and then dosage effects are not observed. A pBluescribe M13+ plasmid containing Mos1 was injected into the pole plasm of D. melanogaster embryos, and the Mos1 element spontaneously integrated into the germline at high efficiency. These transformed strains of D. melanogaster presently contain numerous copies of mariner and may be useful in transposon tagging and other applications. PMID:1649067

  12. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the br...

  13. Analysis of extrachromosomal Ac/Ds transposable elements.

    PubMed Central

    Gorbunova, V; Levy, A A

    2000-01-01

    The mechanism of transposition of the maize Ac/Ds elements is not well understood. The true transposition intermediates are not known and it has not been possible to distinguish between excision models involving 8-bp staggered cuts or 1-bp staggered cuts followed by hairpin formation. In this work, we have analyzed extrachromosomal excision products to gain insight into the excision mechanism. Plasmid rescue was used to demonstrate that Ds excision is associated with the formation of circular molecules. In addition, we present evidence for the formation of linear extrachromosomal species during Ds excision. Sequences found at the termini of circular and linear elements showed a broad range of nucleotide additions or deletions, suggesting that these species are not true intermediates. Additional nucleotides adjacent to the termini in extrachromosomal elements were compared to the sequence of the original donor site. This analysis showed that: (1) the first nucleotide adjacent to the transposon end was significantly more similar to the first nucleotide flanking the element in the donor site than to a random sequence and (2) the second and farther nucleotides did not resemble the donor site. The implications of these findings for excision models are discussed. PMID:10790408

  14. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi.

    PubMed

    Tycowski, Kazimierz T; Shu, Mei-Di; Steitz, Joan A

    2016-05-10

    The ENE (element for nuclear expression) is a cis-acting RNA structure that protects viral or cellular noncoding RNAs (ncRNAs) from nuclear decay through triple-helix formation with the poly(A) tail or 3'-terminal A-rich tract. We expanded the roster of nine known ENEs by bioinformatic identification of ∼200 distinct ENEs that reside in transposable elements (TEs) of numerous non-metazoan and one fish species and in four Dicistrovirus genomes. Despite variation within the ENE core, none of the predicted triple-helical stacks exceeds five base triples. Increased accumulation of reporter transcripts in human cells demonstrated functionality for representative ENEs. Location close to the poly(A) tail argues that ENEs are active in TE transcripts. Their presence in intronless, but not intron-containing, hAT transposase genes supports the idea that TEs acquired ENEs to counteract the RNA-destabilizing effects of intron loss, a potential evolutionary consequence of TE horizontal transfer in organisms that couple RNA silencing to splicing deficits. PMID:27134163

  15. Myriad Triple-Helix-Forming Structures in the Transposable Element RNAs of Plants and Fungi

    PubMed Central

    Tycowski, Kazimierz T.; Shu, Mei-Di; Steitz, Joan A.

    2016-01-01

    SUMMARY The ENE (element for nuclear expression) is a cis-acting RNA structure that protects viral or cellular noncoding (nc)RNAs from nuclear decay through triple-helix formation with the poly(A) tail or 3′-terminal A-rich tract. We expanded the roster of 9 known ENEs by bioinformatic identification of ~200 distinct ENEs that reside in transposable elements (TEs) of numerous non-metazoan and one fish species, and in four Dicistrovirus genomes. Despite variation within the ENE core, none of the predicted triple-helical stacks exceeds five base triples. Increased accumulation of reporter transcripts in human cells demonstrated functionality for representative ENEs. Location close to the poly(A) tail argues that ENEs are active in TE transcripts. Their presence in intronless but not intron-containing hAT transposase genes supports the idea that TEs acquired ENEs to counteract the RNA-destabilizing effects of intron loss, a potential evolutionary consequence of TE horizontal transfer in organisms that couple RNA silencing to splicing deficits. PMID:27134163

  16. The industrial melanism mutation in British peppered moths is a transposable element.

    PubMed

    Van't Hof, Arjen E; Campagne, Pascal; Rigden, Daniel J; Yung, Carl J; Lingley, Jessica; Quail, Michael A; Hall, Neil; Darby, Alistair C; Saccheri, Ilik J

    2016-06-01

    Discovering the mutational events that fuel adaptation to environmental change remains an important challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction between bird predation and coal pollution. The carbonaria locus has been coarsely localized to a 200-kilobase region, but the specific identity and nature of the sequence difference controlling the carbonaria-typica polymorphism, and the gene it influences, are unknown. Here we show that the mutation event giving rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element into the first intron of the gene cortex. Statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the historical record. We have begun to dissect the mode of action of the carbonaria transposable element by showing that it increases the abundance of a cortex transcript, the protein product of which plays an important role in cell-cycle regulation, during early wing disc development. Our findings fill a substantial knowledge gap in the iconic example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in response to natural selection. The discovery that the mutation itself is a transposable element will stimulate further debate about the importance of 'jumping genes' as a source of major phenotypic novelty. PMID:27251284

  17. The Hermes element from Musca domestica can transpose in four families of cyclorrhaphan flies.

    PubMed

    Sarkar, A; Coates, C J; Whyard, S; Willhoeft, U; Atkinson, P W; O'Brochta, D A

    1997-01-01

    Transgenic insect technology will provide opportunities to explore the basic biology of a broad range of insect species in ways that will prove insightful and important. It is also a technology that will provide opportunities to manipulate the genotypes of insects of practical significance to the health and welfare of humans. The Hermes transposable element from the housefly, Musca domestica, is a short inverted repeat-type element related to hobo from Drosophila melanogaster, Ac from Zea mays, and Tam3 from Antirrhinum majus. It has potential to become a versatile and efficient broad host-range insect transformation vector. The ability of Hermes to transpose when introduced into five species of diptera from four divergent families was tested using an in vivo, interplasmid transpositional recombination assay. Hermes was capable of transposing in all species tested, demonstrating that Hermes has a broad host-range. In addition, the rates of transposition were sufficiently high in all species tested to suggest that Hermes will be an efficient gene transfer vector in a wide range of insect species. The Hermes element also revealed a pattern of integration into the target substrate that permitted factors determining integration site selection to be identified. Primary nucleotide sequence of the integration site played a role as did proximity to preferred integration sites and the nucleosomal organization of the target. PMID:9226434

  18. Exaptation of Transposable Elements into Novel Cis-Regulatory Elements: Is the Evidence Always Strong?

    PubMed Central

    de Souza, Flávio S.J.; Franchini, Lucía F.; Rubinstein, Marcelo

    2013-01-01

    Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to have been co-opted—or exapted—by providing transcription factor binding sites (TFBSs) that serve as promoters and enhancers, leading to the hypothesis that TE exaptation is a major factor in the evolution of gene regulation. Here, we critically review the evidence for exaptation of TE-derived sequences as TFBSs, promoters, enhancers, and silencers/insulators both at the gene and genome levels. We classify the functional impact attributed to TE insertions into four categories of increasing complexity and argue that so far very few studies have conclusively demonstrated exaptation of TEs as transcriptional regulatory regions. We also contend that many genome-wide studies dealing with TE exaptation in recent lineages of mammals are still inconclusive and that the hypothesis of rapid transcriptional regulatory rewiring mediated by TE mobilization must be taken with caution. Finally, we suggest experimental approaches that may help attributing higher-order functions to candidate exapted TEs. PMID:23486611

  19. Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi.

    PubMed

    Horns, Felix; Petit, Elsa; Yockteng, Roxana; Hood, Michael E

    2012-01-01

    Transposable elements (TEs) are ubiquitous genomic parasites that have prompted the evolution of genome defense systems that restrict their activity. Repeat-induced point mutation (RIP) is a homology-dependent genome defense that introduces C-to-T transition mutations in duplicated DNA sequences and is thought to control the proliferation of selfish repetitive DNA. Here, we determine the taxonomic distribution of hypermutation patterns indicative of RIP among basidiomycetes. We quantify C-to-T transition mutations in particular di- and trinucleotide target sites for TE-like sequences from nine fungal genomes. We find evidence of RIP-like patterns of hypermutation at TpCpG trinucleotide sites in repetitive sequences from all species of the Pucciniomycotina subphylum of the Basidiomycota, Microbotryum lychnidis-dioicae, Puccinia graminis, Melampsora laricis-populina, and Rhodotorula graminis. In contrast, we do not find evidence for RIP-like hypermutation in four species of the Agaricomycotina and Ustilaginomycotina subphyla of the Basidiomycota. Our results suggest that a RIP-like process and the specific nucleotide context for mutations are conserved within the Pucciniomycotina subphylum. These findings imply that coevolutionary interactions between TEs and a hypermutating genome defense are stable over long evolutionary timescales. PMID:22250128

  20. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana

    PubMed Central

    Le, Tu N.; Miyazaki, Yuji; Takuno, Shohei; Saze, Hidetoshi

    2015-01-01

    Genomes of higher eukaryotes, including plants, contain numerous transposable elements (TEs), that are often silenced by epigenetic mechanisms, such as histone modifications and DNA methylation. Although TE silencing adversely affects expression of nearby genes, recent studies reveal the presence of intragenic TEs marked by repressive heterochromatic epigenetic marks within transcribed genes. However, even for the well-studied plant model Arabidopsis thaliana, the abundance of intragenic TEs, how they are epigenetically regulated, and their potential impacts on host gene expression, remain unexplored. In this study, we comprehensively analyzed genome-wide distribution and epigenetic regulation of intragenic TEs in A. thaliana. Our analysis revealed that about 3% of TEs are located within gene bodies, dominantly at intronic regions. Most of them are shorter and less methylated than intergenic TEs, but they are still targeted by RNA-directed DNA methylation-dependent and independent pathways. Surprisingly, the heterochromatic epigenetic marks at TEs are maintained within actively transcribed genes. Moreover, the heterochromatic state of intronic TEs is critical for proper transcription of associated genes. Our study provides the first insight into how intragenic TEs affect the transcriptional landscape of the A. thaliana genome, and suggests the importance of epigenetic mechanisms for regulation of TEs within transcriptional gene units. PMID:25813042

  1. The Role of Transposable Elements in Health and Diseases of the Central Nervous System

    PubMed Central

    Faulkner, Geoffrey J.; Dubnau, Joshua; Ponomarev, Igor

    2013-01-01

    First discovered in maize by Barbara McClintock in the 1940s, transposable elements (TEs) are DNA sequences that in some cases have the ability to move along chromosomes or “transpose” in the genome. This revolutionary finding was initially met with resistance by the scientific community and viewed by some as heretical. A large body of knowledge has accumulated over the last 60 years on the biology of TEs. Indeed, it is now known that TEs can generate genomic instability and reconfigure gene expression networks both in the germline and somatic cells. This review highlights recent findings on the role of TEs in health and diseases of the CNS, which were presented at the 2013 Society for Neuroscience meeting. The work of the speakers in this symposium shows that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings on TE expression and function in the CNS have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in shaping individual behavior and contribute to vulnerability to disease. PMID:24198348

  2. A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads.

    PubMed

    Kang, Houxiang; Zhu, Dan; Lin, Runmao; Opiyo, Stephen Obol; Jiang, Ning; Shiu, Shin-Han; Wang, Guo-Liang

    2016-06-01

    Identification of polymorphic transposable elements (TEs) is important because TE polymorphism creates genetic diversity and influences the function of genes in the host genome. However, de novo scanning of polymorphic TEs remains a challenge. Here, we report a novel computational method, called PTEMD (polymorphic TEs and their movement detection), for de novo discovery of genome-wide polymorphic TEs. PTEMD searches highly identical sequences using reads supported breakpoint evidences. Using PTEMD, we identified 14 polymorphic TE families (905 sequences) in rice blast fungus Magnaporthe oryzae, and 68 (10,618 sequences) in maize. We validated one polymorphic TE family experimentally, MoTE-1; all MoTE-1 family members are located in different genomic loci in the three tested isolates. We found that 57.1% (8 of 14) of the PTEMD-detected polymorphic TE families in M. oryzae are active. Furthermore, our data indicate that there are more polymorphic DNA transposons in maize than their counterparts of retrotransposons despite the fact that retrotransposons occupy largest fraction of genomic mass. We demonstrated that PTEMD is an effective tool for identifying polymorphic TEs in M. oryzae and maize genomes. PTEMD and the genome-wide polymorphic TEs in M. oryzae and maize are publically available at http://www.kanglab.cn/blast/PTEMD_V1.02.htm. PMID:27098848

  3. A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads

    PubMed Central

    Kang, Houxiang; Zhu, Dan; Lin, Runmao; Opiyo, Stephen Obol; Jiang, Ning; Shiu, Shin-Han; Wang, Guo-Liang

    2016-01-01

    Identification of polymorphic transposable elements (TEs) is important because TE polymorphism creates genetic diversity and influences the function of genes in the host genome. However, de novo scanning of polymorphic TEs remains a challenge. Here, we report a novel computational method, called PTEMD (polymorphic TEs and their movement detection), for de novo discovery of genome-wide polymorphic TEs. PTEMD searches highly identical sequences using reads supported breakpoint evidences. Using PTEMD, we identified 14 polymorphic TE families (905 sequences) in rice blast fungus Magnaporthe oryzae, and 68 (10,618 sequences) in maize. We validated one polymorphic TE family experimentally, MoTE-1; all MoTE-1 family members are located in different genomic loci in the three tested isolates. We found that 57.1% (8 of 14) of the PTEMD-detected polymorphic TE families in M. oryzae are active. Furthermore, our data indicate that there are more polymorphic DNA transposons in maize than their counterparts of retrotransposons despite the fact that retrotransposons occupy largest fraction of genomic mass. We demonstrated that PTEMD is an effective tool for identifying polymorphic TEs in M. oryzae and maize genomes. PTEMD and the genome-wide polymorphic TEs in M. oryzae and maize are publically available at http://www.kanglab.cn/blast/PTEMD_V1.02.htm. PMID:27098848

  4. Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa.

    PubMed

    Jia, Jia; Xue, Qingzhong

    2009-12-01

    Transposable elements (TEs) are mobile genetic entities ubiquitously distributed in nearly all genomes. High frequency of codons ending in A/T in TEs has been previously observed in some species. In this study, the biases in nucleotide composition and codon usage of TE transposases and host nuclear genes were investigated in the AT-rich genome of Arabidopsis thaliana and the GC-rich genome of Oryza sativa. Codons ending in A/T are more frequently used by TEs compared with their host nuclear genes. A remarkable positive correlation between highly expressed nuclear genes and C/G-ending codons were detected in O. sativa (r=0.944 and 0.839, respectively, P<0.0001) but not in A. thaliana, indicating a close association between the GC content and gene expression level in monocot species. In both species, TE codon usage biases are similar to that of weakly expressed genes. The expression and activity of TEs may be strictly controlled in plant genomes. Mutation bias and selection pressure have simultaneously acted on the TE evolution in A. thaliana and O. sativa. The consistently observed biases of nucleotide composition and codon usage of TEs may also provide a useful clue to accurately detect TE sequences in different species. PMID:20172490

  5. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.

    PubMed

    Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S

    2015-12-01

    Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers. PMID:26129767

  6. Transcriptionally active MuDR, the regulatory element of the mutator transposable element family of Zea mays, is present in some accessions of the Mexican land race Zapalote chico.

    PubMed Central

    de la Luz Gutiérrez-Nava, M; Warren, C A; León, P; Walbot, V

    1998-01-01

    To date, mobile Mu transposons and their autonomous regulator MuDR have been found only in the two known Mutator lines of maize and their immediate descendants. To gain insight into the origin, organization, and regulation of Mutator elements, we surveyed exotic maize and related species for cross-hybridization to MuDR. Some accessions of the mexican land race Zapalote chico contain one to several copies of full-length, unmethylated, and transcriptionally active MuDR-like elements plus non-autonomous Mu elements. The sequenced 5.0-kb MuDR-Zc element is 94.6% identical to MuDR, with only 20 amino acid changes in the 93-kD predicted protein encoded by mudrA and ten amino acid changes in the 23-kD predicted protein of mudrB. The terminal inverted repeat (TIR) A of MuDR-Zc is identical to standard MuDR; TIRB is 11.2% divergent from TIRA. In Zapalote chico, mudrA transcripts are very rare, while mudrB transcripts are as abundant as in Mutator lines with a few copies of MuDR. Zapalote chico lines with MuDR-like elements can trans-activate reporter alleles in inactive Mutator backgrounds; they match the characteristic increased forward mutation frequency of standard Mutator lines, but only after outcrossing to another line. Zapalote chico accessions that lack MuDR-like elements and the single copy MuDR a1-mum2 line produce few mutations. New mutants recovered from Zapalote chico are somatically stable. PMID:9584107

  7. Transposable elements in the mammalian embryo: pioneers surviving through stealth and service.

    PubMed

    Gerdes, Patricia; Richardson, Sandra R; Mager, Dixie L; Faulkner, Geoffrey J

    2016-01-01

    Transposable elements (TEs) are notable drivers of genetic innovation. Over evolutionary time, TE insertions can supply new promoter, enhancer, and insulator elements to protein-coding genes and establish novel, species-specific gene regulatory networks. Conversely, ongoing TE-driven insertional mutagenesis, nonhomologous recombination, and other potentially deleterious processes can cause sporadic disease by disrupting genome integrity or inducing abrupt gene expression changes. Here, we discuss recent evidence suggesting that TEs may contribute regulatory innovation to mammalian embryonic and pluripotent states as a means to ward off complete repression by their host genome. PMID:27161170

  8. The effect of transposable elements on phenotypic variation: insights from plants to humans.

    PubMed

    Wei, Liya; Cao, Xiaofeng

    2016-01-01

    Transposable elements (TEs), originally discovered in maize as controlling elements, are the main components of most eukaryotic genomes. TEs have been regarded as deleterious genomic parasites due to their ability to undergo massive amplification. However, TEs can regulate gene expression and alter phenotypes. Also, emerging findings demonstrate that TEs can establish and rewire gene regulatory networks by genetic and epigenetic mechanisms. In this review, we summarize the key roles of TEs in fine-tuning the regulation of gene expression leading to phenotypic plasticity in plants and humans, and the implications for adaption and natural selection. PMID:26753674

  9. Strong phylogenetic inertia on genome size and transposable element content among 26 species of flies

    PubMed Central

    Burlet, Nelly

    2016-01-01

    While the evolutionary mechanisms driving eukaryote genome size evolution are still debated, repeated element content appears to be crucial. Here, we reconstructed the phylogeny and identified repeats in the genome of 26 Drosophila exhibiting a twofold variation in genome size. The content in transposable elements (TEs) is highly correlated to genome size evolution among these closely related species. We detected a strong phylogenetic signal on the evolution of both genome size and TE content, and a genome contraction in the Drosophila melanogaster subgroup. PMID:27576524

  10. Strong phylogenetic inertia on genome size and transposable element content among 26 species of flies.

    PubMed

    Sessegolo, Camille; Burlet, Nelly; Haudry, Annabelle

    2016-08-01

    While the evolutionary mechanisms driving eukaryote genome size evolution are still debated, repeated element content appears to be crucial. Here, we reconstructed the phylogeny and identified repeats in the genome of 26 Drosophila exhibiting a twofold variation in genome size. The content in transposable elements (TEs) is highly correlated to genome size evolution among these closely related species. We detected a strong phylogenetic signal on the evolution of both genome size and TE content, and a genome contraction in the Drosophila melanogaster subgroup. PMID:27576524

  11. Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends.

    PubMed Central

    Biessmann, H; Champion, L E; O'Hair, M; Ikenaga, K; Kasravi, B; Mason, J M

    1992-01-01

    HeT-A elements are a new family of transposable elements in Drosophila that are found exclusively in telomeric regions and in the pericentric heterochromatin. Transposition of these elements onto broken chromosome ends has been implicated in chromosome healing. To monitor the fate of HeT-A elements that had attached to broken ends of the X chromosome, we examined individual X chromosomes from a defined population over a period of 17 generations. The ends of the X chromosomes with new HeT-A additions receded at the same rate as the broken ends before the HeT-A elements attached. In addition, some chromosomes, approximately 1% per generation, had acquired new HeT-A sequences of an average of 6 kb at their ends with oligo(A) tails at the junctions. Thus, the rate of addition of new material per generation matches the observed rate of terminal loss (70-75 bp) caused by incomplete replication at the end of the DNA molecule. One such recently transposed HeT-A element which is at least 12 kb in length has been examined in detail. It contains a single open reading frame of 2.8 kb which codes for a gag-like protein. Images PMID:1330538

  12. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family.

    PubMed

    Warren, W D; Atkinson, P W; O'Brochta, D A

    1994-10-01

    The genome of the house fly, Musca domestica, contains an active transposable element system, called Hermes. Using PCR and inverse PCR we amplified and sequenced overlapping segments of several Hermes elements and from these data we have constructed a 2749 bp consensus Hermes DNA sequence. Hermes termini are composed of 17 bp imperfect inverted repeats that are almost identical to the inverted terminal repeats of the hobo element of Drosophila melanogaster. Full length Hermes elements contain a single long ORF capable of encoding a protein of 612 amino acids which is 55% identical to the amino acid sequence of the hobo transposase. Comparison of the ends of the Hermes and hobo elements to those of the Ac element of Zea mays, and the Tam3 element of Antirrhinum majus, as well as several other plant and insect elements, revealed a conserved terminal sequence motif. Thus Hermes is clearly a member of the hobo, Ac and Tam3 (hAT) transposable element family, other members of which include the Tag1 element from Arabidopsis thaliana and the Bg element from Zea mays. The evolution of this class of transposable elements and the potential utility of Hermes as a genetic tool in M. domestica and related species are discussed. PMID:7813905

  13. Association of a Drosophila transposable element of the roo family with chromosomal deletion breakpoints.

    PubMed Central

    McGinnis, W; Beckendorf, S K

    1983-01-01

    A 9.3 kb transposable element of the roo family has been found inserted 3' to the Sgs-4 glue protein gene of Drosophila. The X chromosome which carries this insert also carries wDZL, a dominant, unstable allele of the white locus caused by the insertion of the 13 kb wDZL element. Three deletions isolated from the wDZL strain have molecular breakpoints 3' to Sgs-4 that are associated with the roo element. Though the deletions eliminate much of the DNA between white and Sgs-4, none of the distal breakpoints fall at or near the wDZL element. The results suggest that this copia-like element, which is structurally similar to an integrated retrovirus, is capable of promoting chromosomal deletions. Images PMID:6300765

  14. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome

    PubMed Central

    2012-01-01

    Background Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Results Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. Conclusions The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in

  15. Widespread contribution of transposable elements to the innovation of gene regulatory networks.

    PubMed

    Sundaram, Vasavi; Cheng, Yong; Ma, Zhihai; Li, Daofeng; Xing, Xiaoyun; Edge, Peter; Snyder, Michael P; Wang, Ting

    2014-12-01

    Transposable elements (TEs) have been shown to contain functional binding sites for certain transcription factors (TFs). However, the extent to which TEs contribute to the evolution of TF binding sites is not well known. We comprehensively mapped binding sites for 26 pairs of orthologous TFs in two pairs of human and mouse cell lines (representing two cell lineages), along with epigenomic profiles, including DNA methylation and six histone modifications. Overall, we found that 20% of binding sites were embedded within TEs. This number varied across different TFs, ranging from 2% to 40%. We further identified 710 TF-TE relationships in which genomic copies of a TE subfamily contributed a significant number of binding peaks for a TF, and we found that LTR elements dominated these relationships in human. Importantly, TE-derived binding peaks were strongly associated with open and active chromatin signatures, including reduced DNA methylation and increased enhancer-associated histone marks. On average, 66% of TE-derived binding events were cell type-specific with a cell type-specific epigenetic landscape. Most of the binding sites contributed by TEs were species-specific, but we also identified binding sites conserved between human and mouse, the functional relevance of which was supported by a signature of purifying selection on DNA sequences of these TEs. Interestingly, several TFs had significantly expanded binding site landscapes only in one species, which were linked to species-specific gene functions, suggesting that TEs are an important driving force for regulatory innovation. Taken together, our data suggest that TEs have significantly and continuously shaped gene regulatory networks during mammalian evolution. PMID:25319995

  16. Widespread contribution of transposable elements to the innovation of gene regulatory networks

    PubMed Central

    Sundaram, Vasavi; Cheng, Yong; Ma, Zhihai; Li, Daofeng; Xing, Xiaoyun; Edge, Peter

    2014-01-01

    Transposable elements (TEs) have been shown to contain functional binding sites for certain transcription factors (TFs). However, the extent to which TEs contribute to the evolution of TF binding sites is not well known. We comprehensively mapped binding sites for 26 pairs of orthologous TFs in two pairs of human and mouse cell lines (representing two cell lineages), along with epigenomic profiles, including DNA methylation and six histone modifications. Overall, we found that 20% of binding sites were embedded within TEs. This number varied across different TFs, ranging from 2% to 40%. We further identified 710 TF–TE relationships in which genomic copies of a TE subfamily contributed a significant number of binding peaks for a TF, and we found that LTR elements dominated these relationships in human. Importantly, TE-derived binding peaks were strongly associated with open and active chromatin signatures, including reduced DNA methylation and increased enhancer-associated histone marks. On average, 66% of TE-derived binding events were cell type-specific with a cell type-specific epigenetic landscape. Most of the binding sites contributed by TEs were species-specific, but we also identified binding sites conserved between human and mouse, the functional relevance of which was supported by a signature of purifying selection on DNA sequences of these TEs. Interestingly, several TFs had significantly expanded binding site landscapes only in one species, which were linked to species-specific gene functions, suggesting that TEs are an important driving force for regulatory innovation. Taken together, our data suggest that TEs have significantly and continuously shaped gene regulatory networks during mammalian evolution. PMID:25319995

  17. Comparative Analysis of Transposable Elements Highlights Mobilome Diversity and Evolution in Vertebrates

    PubMed Central

    Chalopin, Domitille; Naville, Magali; Plard, Floriane; Galiana, Delphine; Volff, Jean-Nicolas

    2015-01-01

    Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages. PMID:25577199

  18. Germline transformation of Aedes fluviatilis (Diptera:Culicidae) with the piggyBac transposable element.

    PubMed

    Rodrigues, Flávia Guimarães; Oliveira, Sabrina Barbosa; Rocha, Bruno Coelho; Moreira, Luciano Andrade

    2006-11-01

    The technique to generate transgenic mosquitoes requires adaptation for each target species because of aspects related to species biology, sensitivity to manipulation and rearing conditions. Here we tested different parameters on the microinjection procedure in order to obtain a transgenic Neotropical mosquito species. By using a transposon-based strategy we were able to successfully transform Aedes fluviatilis (Lutz), which can be used as an avian malaria model. These results demonstrate the usefulness of the piggyBac transposable element as a transformation vector for Neotropical mosquito species and opens up new research frontiers for South American mosquito vectors. PMID:17160283

  19. A brief history of the status of transposable elements: from junk DNA to major players in evolution.

    PubMed

    Biémont, Christian

    2010-12-01

    The idea that some genetic factors are able to move around chromosomes emerged more than 60 years ago when Barbara McClintock first suggested that such elements existed and had a major role in controlling gene expression and that they also have had a major influence in reshaping genomes in evolution. It was many years, however, before the accumulation of data and theories showed that this latter revolutionary idea was correct although, understandably, it fell far short of our present view of the significant influence of what are now known as "transposable elements" in evolution. In this article, I summarize the main events that influenced my thinking about transposable elements as a young scientist and the influence and role of these specific genomic elements in evolution over subsequent years. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. PMID:21156958

  20. Large-scale discovery of insertion hotspots and preferential integration sites of human transposed elements

    PubMed Central

    Levy, Asaf; Schwartz, Schraga; Ast, Gil

    2010-01-01

    Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition. PMID:20008508

  1. Similarity of the Cin1 repetitive family of Zea mays to eukaryotic transposable elements.

    PubMed

    Shepherd, N S; Schwarz-Sommer, Z; Blumberg vel Spalve, J; Gupta, M; Wienand, U; Saedler, H

    It has been suggested that the middle repetitive class of sequences that make up a large proportion of the eukaryotic genome have been amplified and dispersed by DNA transposition. Transposition is a phenomenon first postulated by Barbara McClintock on the basis of her genetic analysis of mutants in Zea mays. Since then, DNA transposition has been studied genetically in various plant systems and is well documented on the molecular level in both prokaryotes and eukaryotes. This has included the isolation of DNA inserts at various loci in several plants; however, the prevalence of transposition in plants is not established. We report here DNA nucleotide sequence data which show that some members of the Cin1 middle repetitive family of maize have features characteristic of known transposable elements. One cloned Cin1 repeat has a 6-base pair (bp) perfect inverted repeat sequence at its ends. The terminal five base pairs (5' TGTTG . . . CAACA 3') are identical to the termini of Drosophila copia transposable elements. Two other Cin1 alleles are flanked by 5-bp direct repeats. A comparison is made with the long terminal repeat (LTR) of the copia-Ty1-retrovirus families of moveable genetic elements. PMID:6318125

  2. Evolutionary Histories of Transposable Elements in the Genome of the Largest Living Marsupial Carnivore, the Tasmanian Devil

    PubMed Central

    Gallus, Susanne; Hallström, Björn M; Kumar, Vikas; Dodt, William G; Janke, Axel; Schumann, Gerald G; Nilsson, Maria A

    2015-01-01

    The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions. PMID:25633377

  3. Evolutionary histories of transposable elements in the genome of the largest living marsupial carnivore, the Tasmanian devil.

    PubMed

    Gallus, Susanne; Hallström, Björn M; Kumar, Vikas; Dodt, William G; Janke, Axel; Schumann, Gerald G; Nilsson, Maria A

    2015-05-01

    The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions. PMID:25633377

  4. The piRNA Pathway Guards the Germline Genome Against Transposable Elements

    PubMed Central

    Pezic, Dubravka; Stuwe, Evelyn; Webster, Alexandre

    2016-01-01

    Transposable elements (TEs) have the capacity to replicate and insert into new genomic locations. This contributed significantly to evolution of genomes, but can also result in DNA breaks and illegitimate recombination, and therefore posing a significant threat to genomic integrity. Excess damage to the germ cell genome results in sterility. A specific RNA silencing pathway, termed the piRNA pathway operates in germ cells of animals to control TE activity. At the core of the piRNA pathway is a ribonucleo-protein complex consisting of a small RNA, called piRNA, and a protein from the PIWI subfamily of Argonaute nucleases. The piRNA pathway relies on the specificity provided by the piRNAs to recognize TEs targets, while effector functions are provided by the PIWI protein. PIWI-piRNA complexes silence TEs both at the transcriptional level – by attracting repressive chromatin modifications to genomic targets – and at the post-transcriptional level – by cleaving TE transcripts in the cytoplasm. Impairment of the piRNA pathway leads to overexpression of TEs, significantly compromised genome structure and, invariably, germ cells death and sterility. The piRNA pathway is best understood in the fruit fly, Drosophila melanogaster, and in mouse. This Chapter gives an overview of current knowledge on piRNA biogenesis, and mechanistic details of both transcriptional and posttranscriptional TE silencing by the piRNA pathway. It further focuses on the importance of post-translational modifications and subcellular localization of the piRNA machinery. Finally, it provides a brief description of analogous pathways in other systems. PMID:26659487

  5. Transposable elements play an important role during cotton genome evolution and fiber cell development.

    PubMed

    Wang, Kun; Huang, Gai; Zhu, Yuxian

    2016-02-01

    Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities. PMID:26687725

  6. Scanning of Transposable Elements and Analyzing Expression of Transposase Genes of Sweet Potato [Ipomoea batatas

    PubMed Central

    Tao, Xiang; Lai, Xian-Jun; Zhang, Yi-Zheng; Tan, Xue-Mei; Wang, Haiyan

    2014-01-01

    Background Transposable elements (TEs) are the most abundant genomic components in eukaryotes and affect the genome by their replications and movements to generate genetic plasticity. Sweet potato performs asexual reproduction generally and the TEs may be an important genetic factor for genome reorganization. Complete identification of TEs is essential for the study of genome evolution. However, the TEs of sweet potato are still poorly understood because of its complex hexaploid genome and difficulty in genome sequencing. The recent availability of the sweet potato transcriptome databases provides an opportunity for discovering and characterizing the expressed TEs. Methodology/Principal Findings We first established the integrated-transcriptome database by de novo assembling four published sweet potato transcriptome databases from three cultivars in China. Using sequence-similarity search and analysis, a total of 1,405 TEs including 883 retrotransposons and 522 DNA transposons were predicted and categorized. Depending on mapping sets of RNA-Seq raw short reads to the predicted TEs, we compared the quantities, classifications and expression activities of TEs inter- and intra-cultivars. Moreover, the differential expressions of TEs in seven tissues of Xushu 18 cultivar were analyzed by using Illumina digital gene expression (DGE) tag profiling. It was found that 417 TEs were expressed in one or more tissues and 107 in all seven tissues. Furthermore, the copy number of 11 transposase genes was determined to be 1–3 copies in the genome of sweet potato by Real-time PCR-based absolute quantification. Conclusions/Significance Our result provides a new method for TE searching on species with transcriptome sequences while lacking genome information. The searching, identification and expression analysis of TEs will provide useful TE information in sweet potato, which are valuable for the further studies of TE-mediated gene mutation and optimization in asexual reproduction

  7. MUST: a system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi.

    PubMed

    Chen, Yong; Zhou, Fengfeng; Li, Guojun; Xu, Ying

    2009-05-01

    Transposable elements (TE) are functionally important genetic elements that can move within a genome. Miniature inverted-repeat transposable elements (MITEs) constitute a class of transposable elements that are usually small in size and have high numbers of conserved copies. Identifying all the MITEs in a genome could provide new insights about gene evolution and genome dynamics of the organism. We present a web-based MITE Uncovering SysTem (MUST) for prediction and analyses of MITEs at a genome level. MUST reliably found both the previously known and novel MITEs in the two bacterial genomes, Anabaena variabilis ATCC 29413 and Haloquadratum walsbyi DSM 16790. MUST is available at http://csbl1.bmb.uga.edu/ffzhou/MUST/ (the standalone version is available upon request). Supplementary data associated with this article are available in the online version or at: http://csbl1.bmb.uga.edu/ffzhou/MUST/supp/. PMID:19393167

  8. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates.

    PubMed

    Lee, Hee-Eun; Ayarpadikannan, Selvam; Kim, Heui-Soo

    2016-03-23

    The Human Genome Project revealed that almost half of the human genome consists of transposable elements (TEs), which are also abundant in non-human primates. Various studies have confirmed the roles of different TE families in primate evolution. TEs such as endogenous retroviruses (ERVs), long terminal repeats (LTRs), long interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) all have numerous effects on the primate genome, including genomic rearrangement, regulatory functions and epigenetic mechanisms. This review offers an overview of research on TEs, including our current understanding of their presence in modern primate lineages, their evolutionary origins, and their regulatory and modifying effects on primate as well as human genomes. The information provided here should be useful for the study of primate genomics. PMID:26781081

  9. detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes.

    PubMed

    Ye, Congting; Ji, Guoli; Liang, Chun

    2016-01-01

    Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes, including plants and animals. Classified as a type of non-autonomous DNA transposable elements, they play important roles in genome organization and evolution. Comprehensive and accurate genome-wide detection of MITEs in various eukaryotic genomes can improve our understanding of their origins, transposition processes, regulatory mechanisms, and biological relevance with regard to gene structures, expression, and regulation. In this paper, we present a new MATLAB-based program called detectMITE that employs a novel numeric calculation algorithm to replace conventional string matching algorithms in MITE detection, adopts the Lempel-Ziv complexity algorithm to filter out MITE candidates with low complexity, and utilizes the powerful clustering program CD-HIT to cluster similar MITEs into MITE families. Using the rice genome as test data, we found that detectMITE can more accurately, comprehensively, and efficiently detect MITEs on a genome-wide scale than other popular MITE detection tools. Through comparison with the potential MITEs annotated in Repbase, the widely used eukaryotic repeat database, detectMITE has been shown to find known and novel MITEs with a complete structure and full-length copies in the genome. detectMITE is an open source tool (https://sourceforge.net/projects/detectmite). PMID:26795595

  10. detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes

    PubMed Central

    Ye, Congting; Ji, Guoli; Liang, Chun

    2016-01-01

    Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes, including plants and animals. Classified as a type of non-autonomous DNA transposable elements, they play important roles in genome organization and evolution. Comprehensive and accurate genome-wide detection of MITEs in various eukaryotic genomes can improve our understanding of their origins, transposition processes, regulatory mechanisms, and biological relevance with regard to gene structures, expression, and regulation. In this paper, we present a new MATLAB-based program called detectMITE that employs a novel numeric calculation algorithm to replace conventional string matching algorithms in MITE detection, adopts the Lempel-Ziv complexity algorithm to filter out MITE candidates with low complexity, and utilizes the powerful clustering program CD-HIT to cluster similar MITEs into MITE families. Using the rice genome as test data, we found that detectMITE can more accurately, comprehensively, and efficiently detect MITEs on a genome-wide scale than other popular MITE detection tools. Through comparison with the potential MITEs annotated in Repbase, the widely used eukaryotic repeat database, detectMITE has been shown to find known and novel MITEs with a complete structure and full-length copies in the genome. detectMITE is an open source tool (https://sourceforge.net/projects/detectmite). PMID:26795595

  11. Inhibition of RNA interference and modulation of transposable element expression by cell death in Drosophila.

    PubMed

    Xie, Weiwu; Liang, Chengzhi; Birchler, James A

    2011-08-01

    RNA interference (RNAi) regulates gene expression by sequence-specific destruction of RNA. It acts as a defense mechanism against viruses and represses the expression of transposable elements (TEs) and some endogenous genes. We report that mutations and transgene constructs that condition cell death suppress RNA interference in adjacent cells in Drosophila melanogaster. The reversal of RNAi is effective for both the white (w) eye color gene and green fluorescent protein (GFP), indicating the generality of the inhibition. Antiapoptotic transgenes that reverse cell death will also reverse the inhibition of RNAi. Using GFP and a low level of cell death produced by a heat shock-head involution defective (hs-hid) transgene, the inhibition appears to occur by blocking the conversion of double-stranded RNA (dsRNA) to short interfering RNA (siRNA). We also demonstrate that the mus308 gene and endogenous transposable elements, which are both regularly silenced by RNAi, are increased in expression and accompanied by a reduced level of siRNA, when cell death occurs. The finding that chronic ectopic cell death affects RNAi is critical for an understanding of the application of the technique in basic and applied studies. These results also suggest that developmental perturbations, disease states, or environmental insults that cause ectopic cell death would alter transposon and gene expression patterns in the organism by the inhibition of small RNA silencing processes. PMID:21596898

  12. Genomic distribution of copia-like transposable elements in somatic tissues and during development of Drosophila melanogaster.

    PubMed

    Di Franco, C; Pisano, C; Dimitri, P; Gigliotti, S; Junakovic, N

    1989-12-01

    The genomic distribution of elements of the copia, 412, B 104, mdg 1, mdg 4 and 1731 transposon families was compared by the Southern technique in DNA preparations extracted from brains, salivary glands and adult flies of two related Drosophila lines. The copia, 412 and mdg 1 sequences were also probed in DNA from sperm, embryos, and 1st and 2nd instar larvae. The homogeneity of the patterns observed shows that somatic transposition is unlikely to occur frequently. A correlation between mobility and the euchromatic or heterochromatic location of transposable elements is discussed. In addition, an explanation of the variable band intensities of transposable elements in Southern autoradiographs is proposed. PMID:2560696

  13. Efficient transposition of the youngest miniature inverted repeat transposable element family of yellow fever mosquito in yeast.

    PubMed

    Fattash, Isam; Lee, Chia-Ni; Mo, Kaiguo; Yang, Guojun

    2015-05-01

    Miniature inverted repeat transposable elements (MITEs) are often the most numerous DNA transposons in plant and animal genomes. The dramatic amplification of MITE families during evolution is puzzling, because the transposase sources for the vast majority of MITE families are unknown. The yellow fever mosquito genome contains > 220-Mb MITE sequences; however, transposition activity has not been demonstrated for any of the MITE families. The Gnome elements are the youngest MITE family in this genome, with at least 116 identical copies. To test whether the putative autonomous element Ozma is capable of mobilizing Gnome and its two sibling MITEs, analyses were performed in a yeast transposition assay system. Whereas the wild-type transposase resulted in very low transposition activity, mutations in the region containing a putative nuclear export signal motif resulted in a dramatic (at least 4160-fold) increase in transposition frequency. We have also demonstrated that each residue of the novel DD37E motif is required for the activity of the Ozma transposase. Footprint sequences left at the donor sites suggest that the transposase may cleave between the second and the third nucleotides from the 5' ends of the elements. The excised elements reinsert specifically at dinucleotide 'TA', ~ 55% of them in yeast genes. The elements described in this article could potentially be useful as genetic tools for genetic manipulation of mosquitoes. PMID:25754725

  14. The developmental control of transposable elements and the evolution of higher species.

    PubMed

    Friedli, Marc; Trono, Didier

    2015-01-01

    Transposable elements (TEs) account for at least 50% of the human genome. They constitute essential motors of evolution through their ability to modify genomic architecture, mutate genes and regulate gene expression. Accordingly, TEs are subject to tight epigenetic control during the earliest phases of embryonic development via histone and DNA methylation. Key to this process is recognition by sequence-specific RNA- and protein-based repressors. Collectively, these mediators are responsible for silencing a very broad range of TEs in an evolutionarily dynamic fashion. As a consequence, mobile elements and their controllers exert a marked influence on transcriptional networks in embryonic stem cells and a variety of adult tissues. The emerging picture is not that of a simple arms race but rather of a massive and sophisticated enterprise of TE domestication for the evolutionary benefit of the host. PMID:26393776

  15. Transposable Element ISHp608 of Helicobacter pylori: Nonrandom Geographic Distribution, Functional Organization, and Insertion Specificity

    PubMed Central

    Kersulyte, Dangeruta; Velapatiño, Billie; Dailide, Giedrius; Mukhopadhyay, Asish K.; Ito, Yoshiyuki; Cahuayme, Lizbeth; Parkinson, Alan J.; Gilman, Robert H.; Berg, Douglas E.

    2002-01-01

    A new member of the IS605 transposable element family, designated ISHp608, was found by subtractive hybridization in Helicobacter pylori. Like the three other insertion sequences (ISs) known in this gastric pathogen, it contains two open reading frames (orfA and orfB), each related to putative transposase genes of simpler (one-gene) elements in other prokaryotes; orfB is also related to the Salmonella virulence gene gipA. PCR and hybridization tests showed that ISHp608 is nonrandomly distributed geographically: it was found in 21% of 194 European and African strains, 14% of 175 Bengali strains, 43% of 131 strains from native Peruvians and Alaska natives, but just 1% of 223 East Asian strains. ISHp608 also seemed more abundant in Peruvian gastric cancer strains than gastritis strains (9 of 14 versus 15 of 45, respectively; P = 0.04). Two ISHp608 types differing by ∼11% in DNA sequence were identified: one was widely distributed geographically, and the other was found only in Peruvian and Alaskan strains. Isolates of a given type differed by ≤2% in DNA sequence, but several recombinant elements were also found. ISHp608 marked with a resistance gene was found to (i) transpose in Escherichia coli; (ii) generate simple insertions during transposition, not cointegrates; (iii) insert downstream of the motif 5"-TTAC without duplicating target sequences; and (iv) require orfA but not orfB for its transposition. ISHp608 represents a widespread family of novel chimeric mobile DNA elements whose further analysis should provide new insights into transposition mechanisms and into microbial population genetic structure and genome evolution. PMID:11807059

  16. Genome-Wide Comparative Analysis of 20 Miniature Inverted-Repeat Transposable Element Families in Brassica rapa and B. oleracea

    PubMed Central

    Sampath, Perumal; Murukarthick, Jayakodi; Izzah, Nur Kholilatul; Lee, Jonghoon; Choi, Hong-Il; Shirasawa, Kenta; Choi, Beom-Soon; Liu, Shengyi; Nou, Ill-Sup; Yang, Tae-Jin

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion. PMID:24747717

  17. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    PubMed

    Sampath, Perumal; Murukarthick, Jayakodi; Izzah, Nur Kholilatul; Lee, Jonghoon; Choi, Hong-Il; Shirasawa, Kenta; Choi, Beom-Soon; Liu, Shengyi; Nou, Ill-Sup; Yang, Tae-Jin

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion. PMID:24747717

  18. Cloning of the Mutator Transposable Element Mua2, a Putative Regulator of Somatic Mutability of the A1-Mum2 Allele in Maize

    PubMed Central

    Qin, M.; Robertson, D. S.; Ellingboe, A. H.

    1991-01-01

    The identification of the autonomous or transposase-encoding element of the Mutator (Mu) transposable element system of maize is necessary to the characterization of the system. We reported previously that a transcript homologous to the internal region of the MuA element is associated with activity of the Mutator system. We describe here the cloning of another Mu element, designated MuA2, that cosegregates with Mutator activity as assayed by somatic instability of the a1-Mum2 allele. The MuA2 element has features typical of the transposable elements of the Mutator family, including the 210-bp terminal inverted repeats. Several lines of evidence suggest that MuA2 is an autonomous or transposase-encoding element of the Mu family: (1) MuA2 cosegregates with a genetically defined element that regulates somatic mutability of the a1-Mum2 allele; (2) MuA2 is hypomethylated while most other MuA2-hybridizing sequences in the genome are extensively methylated; (3) the increase of the copy number of MuA2 is concomitant with the increase of regulator elements; (4) MuA2-like elements are found in Mutator lines but not in non-Mutator inbreds. We propose that autonomous or transposase-encoding elements of the Mu family may be structurally conserved and MuA2-like. PMID:1661256

  19. Transposable element islands facilitate adaptation to novel environments in an invasive species

    PubMed Central

    Schrader, Lukas; Kim, Jay W.; Ence, Daniel; Zimin, Aleksey; Klein, Antonia; Wyschetzki, Katharina; Weichselgartner, Tobias; Kemena, Carsten; Stökl, Johannes; Schultner, Eva; Wurm, Yannick; Smith, Christopher D.; Yandell, Mark; Heinze, Jürgen; Gadau, Jürgen; Oettler, Jan

    2014-01-01

    Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species. PMID:25510865

  20. Maize genetic diversity and association mapping using transposable element insertion polymorphisms.

    PubMed

    Zerjal, Tatiana; Rousselet, Agnès; Mhiri, Corinne; Combes, Valérie; Madur, Delphine; Grandbastien, Marie-Angèle; Charcosset, Alain; Tenaillon, Maud I

    2012-05-01

    Transposable elements are the major component of the maize genome and presumably highly polymorphic yet they have not been used in population genetics and association analyses. Using the Transposon Display method, we isolated and converted into PCR-based markers 33 Miniature Inverted Repeat Transposable Elements (MITE) polymorphic insertions. These polymorphisms were genotyped on a population-based sample of 26 American landraces for a total of 322 plants. Genetic diversity was high and partitioned within and among landraces. The genetic groups identified using Bayesian clustering were in agreement with published data based on SNPs and SSRs, indicating that MITE polymorphisms reflect maize genetic history. To explore the contribution of MITEs to phenotypic variation, we undertook an association mapping approach in a panel of 367 maize lines phenotyped for 26 traits. We found a highly significant association between the marker ZmV1-9, on chromosome 1, and male flowering time. The variance explained by this association is consistent with a flowering delay of +123 degree-days. This MITE insertion is located at only 289 nucleotides from the 3' end of a Cytochrome P450-like gene, a region that was never identified in previous association mapping or QTL surveys. Interestingly, we found (i) a non-synonymous mutation located in the exon 2 of the gene in strong linkage disequilibrium with the MITE polymorphism, and (ii) a perfect sequence homology between the MITE sequence and a maize siRNA that could therefore potentially interfere with the expression of the Cytochrome P450-like gene. Those two observations among others offer exciting perspectives to validate functionally the role of this region on phenotypic variation. PMID:22350086

  1. The ant genomes have been invaded by several types of mariner transposable elements

    NASA Astrophysics Data System (ADS)

    Lorite, Pedro; Maside, Xulio; Sanllorente, Olivia; Torres, María I.; Periquet, Georges; Palomeque, Teresa

    2012-12-01

    To date, only three types of full-length mariner elements have been described in ants, each one in a different genus of the Myrmicinae subfamily: Sinvmar was isolated from various Solenopsis species, Myrmar from Myrmica ruginodis, and Mboumar from Messor bouvieri. In this study, we report the coexistence of three mariner elements ( Tnigmar- Si, Tnigmar- Mr, and Tnigmar- Mb) in the genome of a single species, Tapinoma nigerrimum (subfamily Dolichoderinae). Molecular evolutionary analyses of the nucleotide sequence data revealed a general agreement between the evolutionary history of most the elements and the ant species that harbour them, and suggest that they are at the vertical inactivation stage of the so-called Mariner Life Cycle. In contrast, significantly reduced levels of synonymous divergence between Mboumar and Tnigmar- Mb and between Myrmar and Botmar (a mariner element isolated from Bombus terrestris), relative to those observed between their hosts, suggest that these elements arrived to the species that host them by horizontal transfer, long after the species' split. The horizontal transfer events for the two pairs of elements could be roughly dated within the last 2 million years and about 14 million years, respectively. As would be expected under this scenario, the coding sequences of the youngest elements, Tnigmar- Mb and Mboumar, are intact and, thus, potentially functional. Each mariner element has a different chromosomal distribution pattern according to their stage within the Mariner Life Cycle. Finally, a new defective transposable element ( Azteca) has also been found inserted into the Tnigmar- Mr sequences showing that the ant genomes have been invaded by at least four different types of mariner elements.

  2. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells

    PubMed Central

    Mugat, Bruno; Akkouche, Abdou; Serrano, Vincent; Armenise, Claudia; Li, Blaise; Brun, Christine; Fulga, Tudor A.; Van Vactor, David; Pélisson, Alain; Chambeyron, Séverine

    2015-01-01

    RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression. PMID

  3. Genotype dependent burst of transposable element expression in crowns of hexaploid wheat (Triticum aestivum L.) during cold acclimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The expression of 1,613 transposable elements (TEs) represented in the Affymetix Wheat Genome Chip was examined during cold treatment in crowns of 4 hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throug...

  4. A new hobo, Ac, Tam3 transposable element, hopper, from Bactrocera dorsalis is distantly related to hobo and Ac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new transposable element from the hobo, Ac, TamJ transposon family was isolated as a genomic clone from the oriental fruit fly, BactrOCi!ro dorsalis. It is approximately 3.1 kb in length with 19-bp inverted terminal repeat sequences having a single mismatch.Though sharing several amino acid sequen...

  5. The Role of Vertical and Horizontal Transfer in the Evolutionary Dynamics of PIF-Like Transposable Elements in Triticeae

    PubMed Central

    Markova, Dragomira N.; Mason-Gamer, Roberta J.

    2015-01-01

    PIF-like transposable elements are members of the PIF/Harbinger superfamily of DNA transposons found in the genomes of many plants, animals, and fungi. The evolution of the gene that encodes the transposase responsible for mobilizing PIF-like elements has been studied in both plants and animals, but the elements' history in flowering plants remains poorly known. In this work, we describe the phylogenetic distribution and evolution of PIF-like elements in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of PIF elements in plant genomes. A phylogenetic analysis of 240 PIF sequences based on the conserved region of the transposase domain revealed at least four main transposase lineages. Their complex evolutionary history can be best explained by a combination of vertical transmission with differential evolutionary success among lineages, and occasional horizontal transfer between phylogenetically distant Triticeae genera. In addition, we identified 127 potentially functional transposase sequences indicating possible recent activity of PIF. PMID:26355747

  6. The Role of Vertical and Horizontal Transfer in the Evolutionary Dynamics of PIF-Like Transposable Elements in Triticeae.

    PubMed

    Markova, Dragomira N; Mason-Gamer, Roberta J

    2015-01-01

    PIF-like transposable elements are members of the PIF/Harbinger superfamily of DNA transposons found in the genomes of many plants, animals, and fungi. The evolution of the gene that encodes the transposase responsible for mobilizing PIF-like elements has been studied in both plants and animals, but the elements' history in flowering plants remains poorly known. In this work, we describe the phylogenetic distribution and evolution of PIF-like elements in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of PIF elements in plant genomes. A phylogenetic analysis of 240 PIF sequences based on the conserved region of the transposase domain revealed at least four main transposase lineages. Their complex evolutionary history can be best explained by a combination of vertical transmission with differential evolutionary success among lineages, and occasional horizontal transfer between phylogenetically distant Triticeae genera. In addition, we identified 127 potentially functional transposase sequences indicating possible recent activity of PIF. PMID:26355747

  7. Somatic variegation and germinal mutability reflect the position of transposable element dissociation within the maize R gene

    SciTech Connect

    Alleman, M.; Kermicle, J.L. )

    1993-09-01

    The R gene regulates the timing and tissue-specificity of anthocyanin deposition during maize development. The Ac/Ds system of transposable elements was used to induce insertional mutants of the R-sc:124 allele during two cycles of mutagenesis. Of 43 unstable, spotted-aleurone mutants generated, 42 contain inserts of the Ds6 transposable element differing only in the position and orientation of the element. The remaining mutant, r-sc;ml, contained an insert of a Ds element of the approximate size of the Ds1 transposable element. The patterns of somatic variegation of these mutants, resulting from excision of Ds, define a spectrum of phenotypes ranging from sparse to dense variegation. The sparsely variegated mutants produce many germinal revertants and few stable null derivatives. Molecular analysis shows that the sparsely variegated alleles are caused by Ds6 insertions in protein coding regions of R-sc:124 whereas the densely variegated mutants result from insertions in introns or in flanking regions of the gene. The excision rate of Ds6 from R, estimated as the proportion of R genomic DNA restriction fragments lacking the element, was uniform regardless of position, orientation or whether the element was inserted in R-sc:124 or another R allele. The excision rate was greater, however, for the mutable alleles involving the Ds element from r-sc:m1. These data indicate that, although the excision rates are uniform for a given Ds element, the somatic and germinal mutability patterns of alleles associated with that element vary widely and depend primarily on the position of the transposable element within coding or noncoding regions of the gene.

  8. Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L.

    PubMed

    Menzel, Gerhard; Dechyeva, Daryna; Keller, Heiko; Lange, Cornelia; Himmelbauer, Heinz; Schmidt, Thomas

    2006-01-01

    We have identified three families of miniature inverted-repeat transposable elements (VulMITEs) in the genome of sugar beet (Beta vulgaris L.), evidently derived from a member of the Vulmar family of mariner transposons. While VulMITEs I are typical stowaway-like MITEs, VulMITEs II and VulMITEs III are rearranged stowaway elements of increased size. The integration of divergent moderately and highly repetitive sequences into VulMITEs II and, in particular in VulMITEs III, respectively, shows that amplification of repetitive DNA by MITEs contribute to the increase of genome size with possible implications for plant genome evolution. Fluorescent in-situ hybridization (FISH), for the first time visualizing stowaway MITE distribution on plant chromosomes, revealed a dispersed localization of VulMITEs along all B. vulgaris chromosomes. Analysis of the flanking sequences identified a dispersed repeat as target site for the integration of the stowaway element VulMITE I. Recent transposition of VulMITE I, which most likely occurred during the domestication of cultivated beets, was concluded from insertional polymorphisms between different B. vulgaris cultivars and species. PMID:17171577

  9. Characterization of transposable element-associated mutations that alter yeast alcohol dehydrogenase II expression.

    PubMed Central

    Williamson, V M; Cox, D; Young, E T; Russell, D W; Smith, M

    1983-01-01

    Seven cis-dominant, constitutively expressed mutations of the normally glucose-repressible isozyme of alcohol dehydrogenase (ADHII) from the yeast Saccharomyces cerevisiae are caused by insertion of transposable elements from the Ty1 family in front of the ADHII structural gene (ADR2) (V. M. Williamson, E. T. Young, and M. Ciriacy, Cell 23:605-614, 1981). We cloned ADR2 with its associated Ty1 element from five S. cerevisiae strains carrying these mutations. Comparison of the Ty1 elements by heteroduplex studies and restriction enzyme analyses indicated that four were very similar; the fifth, although the same size as the others (about 5.6 kilobases), differed by the presence of two large substitutions of approximately 1 and 2 kilobases. The DNA sequences of the terminal direct repeats (deltas) were very homologous but not identical and were similar to previously reported Ty1 element direct repeats. We determined the 5'-flanking sequences of the ADR2 gene isolated from a wild-type strain and from five Ty1-associated mutations. The 5-base pair target sequence at the site of Ty1 insertion was present at both ends of each Ty1 element. The sites of insertion of the elements were all different and occurred from 125 to 210 base pairs in front of the coding region of ADR2. The 5' end of the major transcript as determined by S1 mapping was the same in wild-type cells and in Ty1-associated constitutive mutants and was approximately 54 base pairs upstream from the coding region. ADR2 transcripts were not detected when a solo delta sequence was present in the 5'-flanking region of this gene. Images PMID:6298605

  10. Malazy, a degenerate, species-specific transposable element in Cercospora zeae-maydis.

    PubMed

    Shim, Won-Bo; Dunkle, Larry D

    2005-01-01

    Two fungal pathogens, Cercospora zeae-maydis Groups I and II, cause gray leaf spot of maize. During the sequencing of a cosmid library from C. zeae-maydis Group I, we discovered a sequence with high similarity to Maggy, a transposable element from Magnaporthe grisea. The element from C. zeae-maydis, named Malazy, contained 194-base-pair terminal repeats and sequences with high similarity to reverse transcriptase and integrase, components of the POL gene in the gypsy-like retrotransposons in fungi. Sequences with similarity to other POL gene components, protease and ribonuclease, were not detected in Malazy. A single copy of the element was detected by PCR and Southern analyses in all six North American isolates of C. zeae-maydis Group I but was not detected in the four isolates of C. zeae-maydis Group II from three continents or in phylogenetically related species. Fragments of the core domains of reverse transcriptase and integrase contained a high frequency of stop codons that were conserved in all six isolates of Group I. Additional C:G to T:A transitions in occasional isolates usually were silent mutations, while two resulted in isolate-specific stop codons. The absence of Malazy from related species suggests that it was acquired after the divergence of C. zeae-maydis Groups I and II. The high frequency of stop codons and the presence of a single copy of the element suggest that it was inactivated soon after it was acquired. Because the element is inactive and because reading frames for other genes were not found in sequences flanking the element, Malazy does not appear to be the cause of differences leading to speciation or genetic diversity between C. zeae-maydis Groups I and II. PMID:16396343

  11. Molecular characterization of a nonautonomous transposable element (dTph1) of petunia.

    PubMed Central

    Gerats, A G; Huits, H; Vrijlandt, E; Maraña, C; Souer, E; Beld, M

    1990-01-01

    An insertion sequence of 283 base pairs has been isolated from the DFR-C gene (dihydroflavonol-4-reductase) of petunia. This insert was found only in a line unstable for the An1 locus (anthocyanin 1, located on chromosome VI) and not in fully pigmented progenitor and revertant lines or in stable white derivative lines. This implies that the An1 locus encodes the DFR-C gene. The unstable An1 system in the line W138 is known to be a two-element system, the autonomous element being located on chromosome I. In the presence of the autonomous element, W138 flowers exhibit a characteristic pattern of red revertant spots and sectors on a white background. In the absence of the autonomous element, the W138 allele gives rise to a stable recessive (white) phenotype. Sequence analysis of progenitor, unstable, and revertant alleles revealed dTph1 to contain perfect terminal inverted repeats of 12 base pairs. In DFR-C, it is flanked by an 8-base pair target site duplication. Sequences homologous to dTph1 are present in at least 50 copies in the line W138. Sequence analysis of An1 revertant alleles indicated that excision, including removal of the target site duplication, is required for reversion to the wild-type phenotype. Derivative stable recessive alleles showed excision of dTph1 and a rearrangement of the target site duplication. dTph1 is the smallest transposable element described to date that is still capable of transposition. The use of dTph1 in tagging experiments and subsequent gene isolation is discussed. PMID:1967052

  12. Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication

    PubMed Central

    Johnson, Rory; Gamblin, Richard J.; Ooi, Lezanne; Bruce, Alexander W.; Donaldson, Ian J.; Westhead, David R.; Wood, Ian C.; Jackson, Richard M.; Buckley, Noel J.

    2006-01-01

    The genome-wide mapping of gene-regulatory motifs remains a major goal that will facilitate the modelling of gene-regulatory networks and their evolution. The repressor element 1 is a long, conserved transcription factor-binding site which recruits the transcriptional repressor REST to numerous neuron-specific target genes. REST plays important roles in multiple biological processes and disease states. To map RE1 sites and target genes, we created a position specific scoring matrix representing the RE1 and used it to search the human and mouse genomes. We identified 1301 and 997 RE1s inhuman and mouse genomes, respectively, of which >40% are novel. By employing an ontological analysis we show that REST target genes are significantly enriched in a number of functional classes. Taking the novel REST target gene CACNA1A as an experimental model, we show that it can be regulated by multiple RE1s of different binding affinities, which are only partially conserved between human and mouse. A novel BLAST methodology indicated that many RE1s belong to closely related families. Most of these sequences are associated with transposable elements, leading us to propose that transposon-mediated duplication and insertion of RE1s has led to the acquisition of novel target genes by REST during evolution. PMID:16899447

  13. Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies

    PubMed Central

    Platt, Roy N.; Blanco-Berdugo, Laura; Ray, David A.

    2016-01-01

    Transposable elements (TEs) are mobile genetic elements with the ability to replicate themselves throughout the host genome. In some taxa TEs reach copy numbers in hundreds of thousands and can occupy more than half of the genome. The increasing number of reference genomes from nonmodel species has begun to outpace efforts to identify and annotate TE content and methods that are used vary significantly between projects. Here, we demonstrate variation that arises in TE annotations when less than optimal methods are used. We found that across a variety of taxa, the ability to accurately identify TEs based solely on homology decreased as the phylogenetic distance between the queried genome and a reference increased. Next we annotated repeats using homology alone, as is often the case in new genome analyses, and a combination of homology and de novo methods as well as an additional manual curation step. Reannotation using these methods identified a substantial number of new TE subfamilies in previously characterized genomes, recognized a higher proportion of the genome as repetitive, and decreased the average genetic distance within TE families, implying recent TE accumulation. Finally, these finding—increased recognition of younger TEs—were confirmed via an analysis of the postman butterfly (Heliconius melpomene). These observations imply that complete TE annotation relies on a combination of homology and de novo–based repeat identification, manual curation, and classification and that relying on simple, homology-based methods is insufficient to accurately describe the TE landscape of a newly sequenced genome. PMID:26802115

  14. Biogeography revealed by mariner-like transposable element sequences via a Bayesian coalescent approach.

    PubMed

    Nakagome, Shigeki; Nakajima, Yumiko; Mano, Shuhei

    2013-09-01

    Genetic diversity of natural populations is useful in biogeographical studies. Here, we apply a Bayesian method based on the coalescent model to dating biogeographical events by using published DNA sequences of wild silkworms, Bombyx mandarina, and the domesticated model organisms B. mori, both of which categorized into the order of Lepidoptera, sampled from China, Korea, and Japan. The sequences consist of the BmTNML locus and the flanking intergenic regions. The BmTNML locus is composed of cecropia-type mariner-like element (MLE) with inverted terminal repeats, and three different transposable elements (TE), including L1BM, BMC1 retrotransposons, and BmamaT1, are inserted into the MLE. Based on the genealogy defined by TE insertions/deletions (indels), we estimated times to the most recent common ancestor and these indels events using the flanking, MLE, and indels sequences, respectively. These estimates by using MLE sequences strongly correlated with those by using flanking sequences, implying that cecropia-type MLEs can be used as a molecular clock. MLEs are thought to have transmitted horizontally among different species. By using a pair of published cecropia-type MLE sequences from lepidopteran insect, an emperor moth, and a coral in Ryukyu Islands, we demonstrated dating of horizontal transmission between species which are distantly related but inhabiting geographically close region. PMID:23989494

  15. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data.

    PubMed

    Li, Shu-Fen; Gao, Wu-Jun; Zhao, Xin-Peng; Dong, Tian-Yu; Deng, Chuan-Liang; Lu, Long-Dou

    2014-01-01

    Asparagus officinalis is an economically and nutritionally important vegetable crop that is widely cultivated and is used as a model dioecious species to study plant sex determination and sex chromosome evolution. To improve our understanding of its genome composition, especially with respect to transposable elements (TEs), which make up the majority of the genome, we performed Illumina HiSeq2000 sequencing of both male and female asparagus genomes followed by bioinformatics analysis. We generated 17 Gb of sequence (12×coverage) and assembled them into 163,406 scaffolds with a total cumulated length of 400 Mbp, which represent about 30% of asparagus genome. Overall, TEs masked about 53% of the A. officinalis assembly. Majority of the identified TEs belonged to LTR retrotransposons, which constitute about 28% of genomic DNA, with Ty1/copia elements being more diverse and accumulated to higher copy numbers than Ty3/gypsy. Compared with LTR retrotransposons, non-LTR retrotransposons and DNA transposons were relatively rare. In addition, comparison of the abundance of the TE groups between male and female genomes showed that the overall TE composition was highly similar, with only slight differences in the abundance of several TE groups, which is consistent with the relatively recent origin of asparagus sex chromosomes. This study greatly improves our knowledge of the repetitive sequence construction of asparagus, which facilitates the identification of TEs responsible for the early evolution of plant sex chromosomes and is helpful for further studies on this dioecious plant. PMID:24810432

  16. P-MITE: a database for plant miniature inverted-repeat transposable elements.

    PubMed

    Chen, Jiongjiong; Hu, Qun; Zhang, Yu; Lu, Chen; Kuang, Hanhui

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are prevalent in eukaryotic species including plants. MITE families vary dramatically and usually cannot be identified based on homology. In this study, we de novo identified MITEs from 41 plant species, using computer programs MITE Digger, MITE-Hunter and/or Repetitive Sequence with Precise Boundaries (RSPB). MITEs were found in all, but one (Cyanidioschyzon merolae), species. Combined with the MITEs identified previously from the rice genome, >2.3 million sequences from 3527 MITE families were obtained from 41 plant species. In general, higher plants contain more MITEs than lower plants, with a few exceptions such as papaya, with only 538 elements. The largest number of MITEs is found in apple, with 237 302 MITE sequences. The number of MITE sequences in a genome is significantly correlated with genome size. A series of databases (plant MITE databases, P-MITE), available online at http://pmite.hzau.edu.cn/django/mite/, was constructed to host all MITE sequences from the 41 plant genomes. The databases are available for sequence similarity searches (BLASTN), and MITE sequences can be downloaded by family or by genome. The databases can be used to study the origin and amplification of MITEs, MITE-derived small RNAs and roles of MITEs on gene and genome evolution. PMID:24174541

  17. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans.

    PubMed Central

    van Luenen, H G; Plasterk, R H

    1994-01-01

    We have investigated the target choice of the related transposable elements Tc1 and Tc3 of the nematode C. elegans. The exact locations of 204 independent Tc1 insertions and 166 Tc3 insertions in an 1 kbp region of the genome were determined. There was no phenotypic selection for the insertions. All insertions were into the sequence TA. Both elements have a strong preference for certain positions in the 1 kbp region. Hot sites for integration are not clustered or regularly spaced. The orientation of the integrated transposon has no effect on the distribution pattern. We tested several explanations for the target site preference. If simple structural features of the DNA (e.g. bends) would mark hot sites, we would expect the patterns of the two related transposons Tc1 and Tc3 to be similar; however we found them to be completely different. Furthermore we found that the sequence at the donor site has no effect on the choice of the new insertion site, because the insertion pattern of a transposon that jumps from a transgenic donor site is identical to the insertion pattern of transposons jumping from endogenous genomic donor sites. The most likely explanation for the target choice is therefore that the primary sequence of the target site is recognized by the transposase. However, alignment of the Tc1 and Tc3 integration sites does not reveal a strong consensus sequence for either transposon. PMID:8127662

  18. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues

    PubMed Central

    Ecco, Gabriela; Cassano, Marco; Kauzlaric, Annamaria; Duc, Julien; Coluccio, Andrea; Offner, Sandra; Imbeault, Michaël; Rowe, Helen M.; Turelli, Priscilla; Trono, Didier

    2016-01-01

    Summary KRAB-containing zinc finger proteins (KRAB-ZFPs) are early embryonic controllers of transposable elements (TEs), which they repress with their cofactor KAP1 through histone and DNA methylation, a process thought to result in irreversible silencing. Using a target-centered functional screen, we matched murine TEs with their cognate KRAB-ZFP. We found the paralogs ZFP932 and Gm15446 to bind overlapping but distinguishable subsets of ERVK (endogenous retrovirus K), to repress these elements in embryonic stem cells, and to regulate secondarily the expression of neighboring genes. Most importantly, we uncovered that these KRAB-ZFPs and KAP1 control TEs in adult tissues, in cell culture and in vivo, where they partner up to modulate cellular genes. Therefore, TEs and KRAB-ZFPs establish transcriptional networks that regulate not only development but probably many physiological events. Given the high degree of species-specificity of TEs and KRAB-ZFPs, these results have important implications for understanding the biology of higher vertebrates, including humans. PMID:27003935

  19. Integrated cytogenetics and genomics analysis of transposable elements in the Nile tilapia, Oreochromis niloticus.

    PubMed

    Valente, Guilherme; Kocher, Thomas; Eickbush, Thomas; Simões, Rafael P; Martins, Cesar

    2016-06-01

    Integration of cytogenetics and genomics has become essential to a better view of architecture and function of genomes. Although the advances on genomic sequencing have contributed to study genes and genomes, the repetitive DNA fraction of the genome is still enigmatic and poorly understood. Among repeated DNAs, transposable elements (TEs) are major components of eukaryotic chromatin and their investigation has been hindered even after the availability of whole sequenced genomes. The cytogenetic mapping of TEs in chromosomes has proved to be of high value to integrate information from the micro level of nucleotide sequence to a cytological view of chromosomes. Different TEs have been cytogenetically mapped in cichlids; however, neither details about their genomic arrangement nor appropriated copy number are well defined by these approaches. The current study integrates TEs distribution in Nile tilapia Oreochromis niloticus genome based on cytogenetic and genomics/bioinformatics approach. The results showed that some elements are not randomly distributed and that some are genomic dependent on each other. Moreover, we found extensive overlap between genomics and cytogenetics data and that tandem duplication may be the major mechanism responsible for the genomic dynamics of TEs here analyzed. This paper provides insights in the genomic organization of TEs under an integrated view based on cytogenetics and genomics. PMID:26860923

  20. Evolution of P transposable elements: sequences of Drosophila nebulosa P elements.

    PubMed Central

    Lansman, R A; Shade, R O; Grigliatti, T A; Brock, H W

    1987-01-01

    P elements have been cloned and sequenced from Drosophila nebulosa. Their sequences have diverged less than 6% from P elements of Drosophila melanogaster. However D. nebulosa P elements have nucleotide changes that close all four open reading frames found in the D. melanogaster P element. Microinjection experiments show that D. nebulosa P elements cannot provide transposase function for D. melanogaster P elements, nor are D. nebulosa P elements mobilized by the transposase provided by a D. melanogaster P factor. Three D. nebulosa P elements appear to have integrated into the same position of a complex, centromeric repeated sequence. Comparison of nucleotide sequences suggests that D. nebulosa P elements have diverged upon different pathways from a common ancestor that was 99% homologous to the P elements of D. melanogaster. PMID:2819880

  1. terMITEs: miniature inverted-repeat transposable elements (MITEs) in the termite genome (Blattodea: Termitoidae).

    PubMed

    Luchetti, Andrea

    2015-08-01

    Transposable elements (TEs) are discrete DNA sequences which are able to replicate and jump into different genomic locations. Miniature inverted-repeats TEs (MITEs) are non-autonomous DNA elements whose origin is still poorly understood. Recently, some MITEs were found to contain core repeats that can be arranged in tandem arrays; in some instances, these arrays have even given rise to satellite DNAs in the (peri)centromeric region of the host chromosomes. I report the discovery and analysis of three new MITEs found in the genome of several termite species (hence the name terMITEs) in two different families. For two of the MITEs (terMITE1-Tc1/mariner superfamily; terMITE2-piggyBac superfamily), evidence of past mobility was retrieved. Moreover, these two MITEs contained core repeats, 16 bp and 114 bp long respectively, exhibiting copy number variation. In terMITE2, the tandem duplication appeared associated with element degeneration, in line with a recently proposed evolutionary model on MITEs and the origin of tandem arrays. Concerning their genomic distribution, terMITE1 and terMITE3 appeared more frequently inserted close to coding regions while terMITE2 was mostly associated with TEs. Although MITEs are commonly distributed in coding regions, terMITE2 distribution is in line with that of other insects' piggyBac-related elements and of other small TEs found in termite genomes. This has been explained through insertional preference rather than through selective processes. Data presented here add to the knowledge on the poorly exploited polyneopteran genomes and will provide an interesting framework in which to study TEs' evolution and host's life history traits. PMID:25711308

  2. Capture of flanking DNA by a P element in Drosophila melanogaster: Creation of a transposable element

    SciTech Connect

    Tsubota, Stuart, I.; Huong Dangvu )

    1991-02-01

    A 6.1-kilobase nsertion into the rudimentary (r) gene was cloned and partially sequenced. The insertion consists of a 703-base-pair (bp) P element next to a 5.4-kilobase single-copy sequence. The normal positon of the single-copy sequence is near the tip of the X chromosome. Upon insertion into the r gene, this chimeric element generated an 8-bp target-site duplication, characteristic of P elements. At the non-P-element end of the insertion, the first 8 bp are identical to the first 8 bp of the inverted terminal repeats of the P element. Thus, this element has inverted terminal repeats of 8 bp. This large element can excise from the r gene under conditions of hybrid dysgenesis, which indicates that it behaves like a normal P element. These data support the conclusion that a normally stable single-copy sequence has now become unstable and duplicated within the genome.

  3. Transposable Phage Mu.

    PubMed

    Harshey, Rasika M

    2014-10-01

    Transposable phage Mu has played a major role in elucidating the mechanism of movement of mobile DNA elements. The high efficiency of Mu transposition has facilitated a detailed biochemical dissection of the reaction mechanism, as well as of protein and DNA elements that regulate transpososome assembly and function. The deduced phosphotransfer mechanism involves in-line orientation of metal ion-activated hydroxyl groups for nucleophilic attack on reactive diester bonds, a mechanism that appears to be used by all transposable elements examined to date. A crystal structure of the Mu transpososome is available. Mu differs from all other transposable elements in encoding unique adaptations that promote its viral lifestyle. These adaptations include multiple DNA (enhancer, SGS) and protein (MuB, HU, IHF) elements that enable efficient Mu end synapsis, efficient target capture, low target specificity, immunity to transposition near or into itself, and efficient mechanisms for recruiting host repair and replication machineries to resolve transposition intermediates. MuB has multiple functions, including target capture and immunity. The SGS element promotes gyrase-mediated Mu end synapsis, and the enhancer, aided by HU and IHF, participates in directing a unique topological architecture of the Mu synapse. The function of these DNA and protein elements is important during both lysogenic and lytic phases. Enhancer properties have been exploited in the design of mini-Mu vectors for genetic engineering. Mu ends assembled into active transpososomes have been delivered directly into bacterial, yeast, and human genomes, where they integrate efficiently, and may prove useful for gene therapy. PMID:26104374

  4. A Recent Adaptive Transposable Element Insertion Near Highly Conserved Developmental Loci in Drosophila melanogaster

    PubMed Central

    González, Josefa; Macpherson, J. Michael; Petrov, Dmitri A.

    2009-01-01

    A recent genomewide screen identified 13 transposable elements that are likely to have been adaptive during or after the spread of Drosophila melanogaster out of Africa. One of these insertions, Bari-Juvenile hormone epoxy hydrolase (Bari-Jheh), was associated with the selective sweep of its flanking neutral variation and with reduction of expression of one of its neighboring genes: Jheh3. Here, we provide further evidence that Bari-Jheh insertion is adaptive. We delimit the extent of the selective sweep and show that Bari-Jheh is the only mutation linked to the sweep. Bari-Jheh also lowers the expression of its other flanking gene, Jheh2. Subtle consequences of Bari-Jheh insertion on life-history traits are consistent with the effects of reduced expression of the Jheh genes. Finally, we analyze molecular evolution of Jheh genes in both the long- and the short-term and conclude that Bari-Jheh appears to be a very rare adaptive event in the history of these genes. We discuss the implications of these findings for the detection and understanding of adaptation. PMID:19458110

  5. Transposable elements, polydactyl proteins and the genesis of human-specific transcription networks

    PubMed Central

    Trono, Didier

    2016-01-01

    Transposable elements (TEs) may account for up to two-thirds of the human genome, and as genomic threats they are subjected to epigenetic control mechanisms engaged from the earliest stages of embryonic development. We previously determined that an important component of this process is the sequence-specific recognition of TEs by KRAB-containing zinc finger proteins (KRAB-ZFPs), a large family of tetrapod-restricted transcription factors that act by recruiting inducers of heterochromatin formation and DNA methylation. We further demonstrated that KRAB-ZFPs and their cofactor KAP1 exert a marked influence on the transcription dynamics of embryonic stem cells via their docking of repressor complexes at TE-contained regulatory sequences. It is generally held that, beyond this early embryonic period, TEs become permanently silenced, and that the evolutionary selection of KRAB-ZFPs and other TE controllers is the result of a simple evolutionary arms race between the host and these genetics invaders. Here, I discuss recent evidence that invalidates this dual assumption, and instead suggests that KRAB-ZFPs are the instruments of a massive enterprise of TE domestication, whereby transposon-based regulatory sequences and their cellular ligands establish species-specific transcription regulation networks that influence multiple aspects of human development and physiology. PMID:26763983

  6. Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from Transposable Elements

    PubMed Central

    Joly-Lopez, Zoé; Hoen, Douglas R.; Blanchette, Mathieu; Bureau, Thomas E.

    2016-01-01

    Once perceived as merely selfish, transposable elements (TEs) are now recognized as potent agents of adaptation. One way TEs contribute to evolution is through TE exaptation, a process whereby TEs, which persist by replicating in the genome, transform into novel host genes, which persist by conferring phenotypic benefits. Known exapted TEs (ETEs) contribute diverse and vital functions, and may facilitate punctuated equilibrium, yet little is known about this process. To better understand TE exaptation, we designed an approach to resolve the phylogenetic context and timing of exaptation events and subsequent patterns of ETE diversification. Starting with known ETEs, we search in diverse genomes for basal ETEs and closely related TEs, carefully curate the numerous candidate sequences, and infer detailed phylogenies. To distinguish TEs from ETEs, we also weigh several key genomic characteristics including repetitiveness, terminal repeats, pseudogenic features, and conserved domains. Applying this approach to the well-characterized plant ETEs MUG and FHY3, we show that each group is paraphyletic and we argue that this pattern demonstrates that each originated in not one but multiple exaptation events. These exaptations and subsequent ETE diversification occurred throughout angiosperm evolution including the crown group expansion, the angiosperm radiation, and the primitive evolution of angiosperms. In addition, we detect evidence of several putative novel ETE families. Our findings support the hypothesis that TE exaptation generates novel genes more frequently than is currently thought, often coinciding with key periods of evolution. PMID:27189548

  7. A Snapshot of Histone Modifications within Transposable Elements in Drosophila Wild Type Strains

    PubMed Central

    Rebollo, Rita; Horard, Béatrice; Begeot, Flora; Delattre, Marion; Gilson, Eric; Vieira, Cristina

    2012-01-01

    Transposable elements (TEs) are a major source of genetic variability in genomes, creating genetic novelty and driving genome evolution. Analysis of sequenced genomes has revealed considerable diversity in TE families, copy number, and localization between different, closely related species. For instance, although the twin species Drosophila melanogaster and D. simulans share the same TE families, they display different amounts of TEs. Furthermore, previous analyses of wild type derived strains of D. simulans have revealed high polymorphism regarding TE copy number within this species. Several factors may influence the diversity and abundance of TEs in a genome, including molecular mechanisms such as epigenetic factors, which could be a source of variation in TE success. In this paper, we present the first analysis of the epigenetic status of four TE families (roo, tirant, 412 and F) in seven wild type strains of D. melanogaster and D. simulans. Our data shows intra- and inter-specific variations in the histone marks that adorn TE copies. Our results demonstrate that the chromatin state of common TEs varies among TE families, between closely related species and also between wild type strains. PMID:22962605

  8. Transposable Element Insertions in Long Intergenic Non-Coding RNA Genes

    PubMed Central

    Kannan, Sivakumar; Chernikova, Diana; Rogozin, Igor B.; Poliakov, Eugenia; Managadze, David; Koonin, Eugene V.; Milanesi, Luciano

    2015-01-01

    Transposable elements (TEs) are abundant in mammalian genomes and appear to have contributed to the evolution of their hosts by providing novel regulatory or coding sequences. We analyzed different regions of long intergenic non-coding RNA (lincRNA) genes in human and mouse genomes to systematically assess the potential contribution of TEs to the evolution of the structure and regulation of expression of lincRNA genes. Introns of lincRNA genes contain the highest percentage of TE-derived sequences (TES), followed by exons and then promoter regions although the density of TEs is not significantly different between exons and promoters. Higher frequencies of ancient TEs in promoters and exons compared to introns implies that many lincRNA genes emerged before the split of primates and rodents. The content of TES in lincRNA genes is substantially higher than that in protein-coding genes, especially in exons and promoter regions. A significant positive correlation was detected between the content of TEs and evolutionary rate of lincRNAs indicating that inserted TEs are preferentially fixed in fast-evolving lincRNA genes. These results are consistent with the repeat insertion domains of LncRNAs hypothesis under which TEs have substantially contributed to the origin, evolution, and, in particular, fast functional diversification, of lincRNA genes. PMID:26106594

  9. The mechanism of ageing: primary role of transposable elements in genome disintegration.

    PubMed

    Sturm, Ádám; Ivics, Zoltán; Vellai, Tibor

    2015-05-01

    Understanding the molecular basis of ageing remains a fundamental problem in biology. In multicellular organisms, while the soma undergoes a progressive deterioration over the lifespan, the germ line is essentially immortal as it interconnects the subsequent generations. Genomic instability in somatic cells increases with age, and accumulating evidence indicates that the disintegration of somatic genomes is accompanied by the mobilisation of transposable elements (TEs) that, when mobilised, can be mutagenic by disrupting coding or regulatory sequences. In contrast, TEs are effectively silenced in the germ line by the Piwi-piRNA system. Here, we propose that TE repression transmits the persistent proliferation capacity and the non-ageing phenotype (e.g., preservation of genomic integrity) of the germ line. The Piwi-piRNA pathway also operates in tumorous cells and in somatic cells of certain organisms, including hydras, which likewise exhibit immortality. However, in somatic cells lacking the Piwi-piRNA pathway, gradual chromatin decondensation increasingly allows the mobilisation of TEs as the organism ages. This can explain why the mortality rate rises exponentially throughout the adult life in most animal species, including humans. PMID:25837999

  10. No evidence that sex and transposable elements drive genome size variation in evening primroses.

    PubMed

    Ågren, J Arvid; Greiner, Stephan; Johnson, Marc T J; Wright, Stephen I

    2015-04-01

    Genome size varies dramatically across species, but despite an abundance of attention there is little agreement on the relative contributions of selective and neutral processes in governing this variation. The rate of sex can potentially play an important role in genome size evolution because of its effect on the efficacy of selection and transmission of transposable elements (TEs). Here, we used a phylogenetic comparative approach and whole genome sequencing to investigate the contribution of sex and TE content to genome size variation in the evening primrose (Oenothera) genus. We determined genome size using flow cytometry for 30 species that vary in genetic system and find that variation in sexual/asexual reproduction cannot explain the almost twofold variation in genome size. Moreover, using whole genome sequences of three species of varying genome sizes and reproductive system, we found that genome size was not associated with TE abundance; instead the larger genomes had a higher abundance of simple sequence repeats. Although it has long been clear that sexual reproduction may affect various aspects of genome evolution in general and TE evolution in particular, it does not appear to have played a major role in genome size evolution in the evening primroses. PMID:25690700

  11. Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti.

    PubMed

    Smith, Ryan C; Atkinson, Peter W

    2011-01-01

    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti. PMID:20596755

  12. Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti

    PubMed Central

    Smith, Ryan C.

    2010-01-01

    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti. PMID:20596755

  13. New insights into helitron transposable elements in the mesopolyploid species Brassica rapa.

    PubMed

    Fu, Donghui; Wei, Lijuan; Xiao, Meili; Hayward, Alice

    2013-12-15

    Helitrons are DNA transposable elements that are widely present in the genomes of diverse eukaryotic taxa. Helitrons are distinct from other transposons in their ability to capture gene fragments and their rolling-replication mechanism. Brassica rapa is a mesopolyploid species and one of the most important vegetable and oil crops globally. A total of 787 helitrons were identified in the B. rapa genome and were assigned to 662 families and 700 subfamilies. More than 21,806 repetitive sequences were found within the helitrons, whose G+C content correlated negatively to that of the host helitron. Each helitron contained an average of 2.9 gene fragments and 1.9 intact genes, of which the majority were annotated with binding functions in metabolic processes. In addition, a set of 114 nonredundant microRNAs were detected within 174 helitrons and predicted to regulate a set of 787 nonredundant target genes. These results suggest that helitrons contribute to genomic structural and transcriptional variation by capturing gene fragments and generating microRNAs. PMID:24055723

  14. Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from Transposable Elements.

    PubMed

    Joly-Lopez, Zoé; Hoen, Douglas R; Blanchette, Mathieu; Bureau, Thomas E

    2016-08-01

    Once perceived as merely selfish, transposable elements (TEs) are now recognized as potent agents of adaptation. One way TEs contribute to evolution is through TE exaptation, a process whereby TEs, which persist by replicating in the genome, transform into novel host genes, which persist by conferring phenotypic benefits. Known exapted TEs (ETEs) contribute diverse and vital functions, and may facilitate punctuated equilibrium, yet little is known about this process. To better understand TE exaptation, we designed an approach to resolve the phylogenetic context and timing of exaptation events and subsequent patterns of ETE diversification. Starting with known ETEs, we search in diverse genomes for basal ETEs and closely related TEs, carefully curate the numerous candidate sequences, and infer detailed phylogenies. To distinguish TEs from ETEs, we also weigh several key genomic characteristics including repetitiveness, terminal repeats, pseudogenic features, and conserved domains. Applying this approach to the well-characterized plant ETEs MUG and FHY3, we show that each group is paraphyletic and we argue that this pattern demonstrates that each originated in not one but multiple exaptation events. These exaptations and subsequent ETE diversification occurred throughout angiosperm evolution including the crown group expansion, the angiosperm radiation, and the primitive evolution of angiosperms. In addition, we detect evidence of several putative novel ETE families. Our findings support the hypothesis that TE exaptation generates novel genes more frequently than is currently thought, often coinciding with key periods of evolution. PMID:27189548

  15. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings.

    PubMed

    Mao, Hude; Wang, Hongwei; Liu, Shengxue; Li, Zhigang; Yang, Xiaohong; Yan, Jianbing; Li, Jiansheng; Tran, Lam-Son Phan; Qin, Feng

    2015-01-01

    Drought represents a major constraint on maize production worldwide. Understanding the genetic basis for natural variation in drought tolerance of maize may facilitate efforts to improve this trait in cultivated germplasm. Here, using a genome-wide association study, we show that a miniature inverted-repeat transposable element (MITE) inserted in the promoter of a NAC gene (ZmNAC111) is significantly associated with natural variation in maize drought tolerance. The 82-bp MITE represses ZmNAC111 expression via RNA-directed DNA methylation and H3K9 dimethylation when heterologously expressed in Arabidopsis. Increasing ZmNAC111 expression in transgenic maize enhances drought tolerance at the seedling stage, improves water-use efficiency and induces upregulation of drought-responsive genes under water stress. The MITE insertion in the ZmNAC111 promoter appears to have occurred after maize domestication and spread among temperate germplasm. The identification of this MITE insertion provides insight into the genetic basis for natural variation in maize drought tolerance. PMID:26387805

  16. Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes.

    PubMed

    Mirouze, Marie; Vitte, Clémentine

    2014-06-01

    In the past decade, plant biologists and breeders have developed a growing interest in the field of epigenetics, which is defined as the study of heritable changes in gene expression that cannot be explained by changes in the DNA sequence. Epigenetic marks can be responsive to the environment, and evolve faster than genetic changes. Therefore, epigenetic diversity may represent an unexplored resource of natural variation that could be used in plant breeding programmes. On the other hand, crop genomes are largely populated with transposable elements (TEs) that are efficiently targeted by epigenetic marks, and part of the epigenetic diversity observed might be explained by TE polymorphisms. Characterizing the degree to which TEs influence epigenetic variation in crops is therefore a major goal to better use epigenetic variation. To date, epigenetic analyses have been mainly focused on the model plant Arabidopsis thaliana, and have provided clues on epigenome features, components that silence pathways, and effects of silencing impairment. But to what extent can Arabidopsis be used as a model for the epigenomics of crops? In this review, we discuss the similarities and differences between the epigenomes of Arabidopsis and crops. We explore the relationship between TEs and epigenomes, focusing on TE silencing control and escape, and the impact of TE mobility on epigenomic variation. Finally, we provide insights into challenges to tackle, and future directions to take in the route towards using epigenetic diversity in plant breeding programmes. PMID:24744427

  17. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings

    PubMed Central

    Mao, Hude; Wang, Hongwei; Liu, Shengxue; Li, Zhigang; Yang, Xiaohong; Yan, Jianbing; Li, Jiansheng; Tran, Lam-Son Phan; Qin, Feng

    2015-01-01

    Drought represents a major constraint on maize production worldwide. Understanding the genetic basis for natural variation in drought tolerance of maize may facilitate efforts to improve this trait in cultivated germplasm. Here, using a genome-wide association study, we show that a miniature inverted-repeat transposable element (MITE) inserted in the promoter of a NAC gene (ZmNAC111) is significantly associated with natural variation in maize drought tolerance. The 82-bp MITE represses ZmNAC111 expression via RNA-directed DNA methylation and H3K9 dimethylation when heterologously expressed in Arabidopsis. Increasing ZmNAC111 expression in transgenic maize enhances drought tolerance at the seedling stage, improves water-use efficiency and induces upregulation of drought-responsive genes under water stress. The MITE insertion in the ZmNAC111 promoter appears to have occurred after maize domestication and spread among temperate germplasm. The identification of this MITE insertion provides insight into the genetic basis for natural variation in maize drought tolerance. PMID:26387805

  18. Gross deletions involving IGHM, BTK, or Artemis: a model for genomic lesions mediated by transposable elements.

    PubMed

    van Zelm, Menno C; Geertsema, Corinne; Nieuwenhuis, Nicole; de Ridder, Dick; Conley, Mary Ellen; Schiff, Claudine; Tezcan, Ilhan; Bernatowska, Ewa; Hartwig, Nico G; Sanders, Elisabeth A M; Litzman, Jiri; Kondratenko, Irina; van Dongen, Jacques J M; van der Burg, Mirjam

    2008-02-01

    Most genetic disruptions underlying human disease are microlesions, whereas gross lesions are rare with gross deletions being most frequently found (6%). Similar observations have been made in primary immunodeficiency genes, such as BTK, but for unknown reasons the IGHM and DCLRE1C (Artemis) gene defects frequently represent gross deletions ( approximately 60%). We characterized the gross deletion breakpoints in IGHM-, BTK-, and Artemis-deficient patients. The IGHM deletion breakpoints did not show involvement of recombination signal sequences or immunoglobulin switch regions. Instead, five IGHM, eight BTK, and five unique Artemis breakpoints were located in or near sequences derived from transposable elements (TE). The breakpoints of four out of five disrupted Artemis alleles were located in highly homologous regions, similar to Ig subclass deficiencies and Vh deletion polymorphisms. Nevertheless, these observations suggest a role for TEs in mediating gross deletions. The identified gross deletion breakpoints were mostly located in TE subclasses that were specifically overrepresented in the involved gene as compared to the average in the human genome. This concerned both long (LINE1) and short (Alu, MIR) interspersed elements, as well as LTR retrotransposons (ERV). Furthermore, a high total TE content (>40%) was associated with an increased frequency of gross deletions. Both findings were further investigated and confirmed in a total set of 20 genes disrupted in human disease. Thus, to our knowledge for the first time, we provide evidence that a high TE content, irrespective of the type of element, results in the increased incidence of gross deletions as gene disruption underlying human disease. PMID:18252213

  19. Gross Deletions Involving IGHM, BTK, or Artemis: A Model for Genomic Lesions Mediated by Transposable Elements

    PubMed Central

    van Zelm, Menno C.; Geertsema, Corinne; Nieuwenhuis, Nicole; de Ridder, Dick; Conley, Mary Ellen; Schiff, Claudine; Tezcan, Ilhan; Bernatowska, Ewa; Hartwig, Nico G.; Sanders, Elisabeth A.M.; Litzman, Jiri; Kondratenko, Irina; van Dongen, Jacques J.M.; van der Burg, Mirjam

    2008-01-01

    Most genetic disruptions underlying human disease are microlesions, whereas gross lesions are rare with gross deletions being most frequently found (6%). Similar observations have been made in primary immunodeficiency genes, such as BTK, but for unknown reasons the IGHM and DCLRE1C (Artemis) gene defects frequently represent gross deletions (∼60%). We characterized the gross deletion breakpoints in IGHM-, BTK-, and Artemis-deficient patients. The IGHM deletion breakpoints did not show involvement of recombination signal sequences or immunoglobulin switch regions. Instead, five IGHM, eight BTK, and five unique Artemis breakpoints were located in or near sequences derived from transposable elements (TE). The breakpoints of four out of five disrupted Artemis alleles were located in highly homologous regions, similar to Ig subclass deficiencies and Vh deletion polymorphisms. Nevertheless, these observations suggest a role for TEs in mediating gross deletions. The identified gross deletion breakpoints were mostly located in TE subclasses that were specifically overrepresented in the involved gene as compared to the average in the human genome. This concerned both long (LINE1) and short (Alu, MIR) interspersed elements, as well as LTR retrotransposons (ERV). Furthermore, a high total TE content (>40%) was associated with an increased frequency of gross deletions. Both findings were further investigated and confirmed in a total set of 20 genes disrupted in human disease. Thus, to our knowledge for the first time, we provide evidence that a high TE content, irrespective of the type of element, results in the increased incidence of gross deletions as gene disruption underlying human disease. PMID:18252213

  20. The Arabidopsis transposable element Tag1 is widely distributed among Arabidopsis ecotypes.

    PubMed

    Frank, M J; Preuss, D; Mack, A; Kuhlmann, T C; Crawford, N M

    1998-02-01

    Tag1 is an autonomous transposable element (3.3 kb in length) first identified as an insertion in the CHL1 (NRT1) gene of Arabidopsis thaliana. Tag1 has been found in the Landsberg erecta ecotype of A. thaliana but not in Columbia or WS. In this paper, 41 additional ecotypes were examined for the presence of Tag1. Using an internal Tag1 fragment as probe, we found that DNA form 19 of the 41 ecotypes strongly hybridized to Tag1. Almost all of the Tag1-containing ecotypes had only one or two copies of Tag1 per haploid genome, as determined by Southern blot analysis. The only exception, Bf-1 from Bretagny-sur-Orge, France, had four copies. Two ecotypes, Di-G and S96, gave identical Southern blot patterns to that of Landsberg erecta and were subsequently shown to contain Tag1 at the same two positions found in Landsberg erecta (loci designated as Tag1-2 and Tag1-3). Two other ecotypes, Ag-0 and Lo-1, had a Tag1 element located at Tag1-2 but not at Tag1-3. The distance between these two loci was determined to be 0.37 cM. Analysis of DNA from two related species, A. griffithiana and A. pumila, showed that both species contain sequences that hybridize to Tag1 and that could be amplified with an oligonucleotide specific to the terminal inverted repeats of Tag1. These results show that Tag1 and related elements are present, and may be useful for insertional mutagenesis, in many A. thaliana ecotypes and several Arabidopsis species. PMID:9529529

  1. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures

    PubMed Central

    Sytnikova, Yuliya A.; Rahman, Reazur; Chirn, Gung-wei; Clark, Josef P.

    2014-01-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity. PMID:25267525

  2. International Congress on Transposable Elements (ICTE) 2012 in Saint Malo and the sea of TE stories

    PubMed Central

    2012-01-01

    An international conference on Transposable Elements (TEs) was held 21–24 April 2012 in Saint Malo, France. Organized by the French Transposition Community (GDR Elements Génétiques Mobiles et Génomes, CNRS) and the French Society of Genetics (SFG), the conference’s goal was to bring together researchers from around the world who study transposition in diverse organisms using multiple experimental approaches. The meeting drew more than 217 attendees and most contributed through poster presentations (117), invited talks and short talks selected from poster abstracts (48 in total). The talks were organized into four scientific sessions, focused on: impact of TEs on genomes, control of transposition, evolution of TEs and mechanisms of transposition. Here, we present highlights from the talks given during the platform sessions. The conference was sponsored by Alliance pour les sciences de la vie et de la santé (Aviesan), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Institut de recherche pour le développement (IRD), Institut national de la recherche agronomique (INRA), Université de Perpignan, Université de Rennes 1, Région Bretagne and Mobile DNA. Chair of the organization committee Jean-Marc Deragon Organizers Abdelkader Ainouche, Mireille Bétermier, Mick Chandler, Richard Cordaux, Gaël Cristofari, Jean-Marc Deragon, Pascale Lesage, Didier Mazel, Olivier Panaud, Hadi Quesneville, Chantal Vaury, Cristina Vieira and Clémentine Vitte PMID:23110759

  3. A Transposable Element within the Non-canonical Telomerase RNA of Arabidopsis thaliana Modulates Telomerase in Response to DNA Damage

    PubMed Central

    Xu, Hengyi; Nelson, Andrew D. L.; Shippen, Dorothy E.

    2015-01-01

    Long noncoding RNAs (lncRNAs) have emerged as critical factors in many biological processes, but little is known about how their regulatory functions evolved. One of the best-studied lncRNAs is TER, the essential RNA template for telomerase reverse transcriptase. We previously showed that Arabidopsis thaliana harbors three TER isoforms: TER1, TER2 and TER2S. TER1 serves as a canonical telomere template, while TER2 is a novel negative regulator of telomerase activity, induced in response to double-strand breaks (DSBs). TER2 contains a 529 nt intervening sequence that is removed along with 36 nt at the RNA 3’ terminus to generate TER2S, an RNA of unknown function. Here we investigate how A. thaliana TER2 acquired its regulatory function. Using data from the 1,001 Arabidopsis genomes project, we report that the intervening sequence within TER2 is derived from a transposable element termed DSB responsive element (DRE). DRE is found in the TER2 loci of most but not all A. thaliana accessions. By analyzing accessions with (TER2) and without DRE (TER2Δ) we demonstrate that this element is responsible for many of the unique properties of TER2, including its enhanced binding to TERT and telomerase inhibitory function. We show that DRE destabilizes TER2, and further that TER2 induction by DNA damage reflects increased RNA stability and not increased transcription. DRE-mediated changes in TER2 stability thus provide a rapid and sensitive switch to fine-tune telomerase enzyme activity. Altogether, our data shows that invasion of the TER2 locus by a small transposon converted this lncRNA into a DNA damage sensor that modulates telomerase enzyme activity in response to genome assault. PMID:26075395

  4. Genome-Wide Patterns of Adaptation to Temperate Environments Associated with Transposable Elements in Drosophila

    PubMed Central

    González, Josefa; Karasov, Talia L.; Messer, Philipp W.; Petrov, Dmitri A.

    2010-01-01

    Investigating spatial patterns of loci under selection can give insight into how populations evolved in response to selective pressures and can provide monitoring tools for detecting the impact of environmental changes on populations. Drosophila is a particularly good model to study adaptation to environmental heterogeneity since it is a tropical species that originated in sub-Saharan Africa and has only recently colonized the rest of the world. There is strong evidence for the adaptive role of Transposable Elements (TEs) in the evolution of Drosophila, and TEs might play an important role specifically in adaptation to temperate climates. In this work, we analyzed the frequency of a set of putatively adaptive and putatively neutral TEs in populations with contrasting climates that were collected near the endpoints of two known latitudinal clines in Australia and North America. The contrasting results obtained for putatively adaptive and putatively neutral TEs and the consistency of the patterns between continents strongly suggest that putatively adaptive TEs are involved in adaptation to temperate climates. We integrated information on population behavior, possible environmental selective agents, and both molecular and functional information of the TEs and their nearby genes to infer the plausible phenotypic consequences of these insertions. We conclude that adaptation to temperate environments is widespread in Drosophila and that TEs play a significant role in this adaptation. It is remarkable that such a diverse set of TEs located next to a diverse set of genes are consistently adaptive to temperate climate-related factors. We argue that reverse population genomic analyses, as the one described in this work, are necessary to arrive at a comprehensive picture of adaptation. PMID:20386746

  5. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression

    PubMed Central

    Zhang, Jie; Liu, Yuan; Xia, En-Hua; Yao, Qiu-Yang; Liu, Xiang-Dong; Gao, Li-Zhi

    2015-01-01

    Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a “genome shock” response factor to help neoautopolyploids adapt to genome-dosage effects. PMID:26621743

  6. Detection and Characterization of Miniature Inverted-Repeat Transposable Elements in “Candidatus Liberibacter asiaticus”

    PubMed Central

    Wang, Xuefeng; Tan, Jin; Bai, Ziqin; Su, Huanan; Deng, Xiaoling; Li, Zhongan

    2013-01-01

    Miniature inverted-repeat transposable elements (MITEs) are nonautonomous transposons (devoid of the transposase gene tps) that affect gene functions through insertion/deletion events. No transposon has yet been reported to occur in “Candidatus Liberibacter asiaticus,” an alphaproteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease). In this study, two MITEs, MCLas-A and MCLas-B, in “Ca. Liberibacter asiaticus” were detected, and the genome was characterized using 326 isolates collected in China and Florida. MCLas-A had three variants, ranging from 237 to 325 bp, and was inserted into a TTTAGG site of a prophage region. MCLas-A had a pair of 54-bp terminal inverted repeats (TIRs), which contained three tandem repeats of TGGTAACCAC. Both “filled” (with MITE) and “empty” (without MITE) states were detected, suggesting the MITE mobility. The empty sites of all bacterial isolates had TIR tandem repeat remnants (TRR). Frequencies of TRR types varied according to geographical origins. MCLas-B had four variants, ranging from 238 to 250 bp, and was inserted into a TA site of another “Ca. Liberibacter” prophage. The MITE, MCLas-B, had a pair of 23-bp TIRs containing no tandem repeats. No evidence of MCLas-B mobility was found. An identical open reading frame was found upstream of MCLas-A (229 bp) and MCLas-B (232 bp) and was predicted to be a putative tps, suggesting an in cis tps-MITE configuration. MCLas-A and MCLas-B were predominantly copresent in Florida isolates, whereas MCLas-A alone or MCLas-B alone was found in Chinese isolates. PMID:23813735

  7. A transposable element insertion in APOB causes cholesterol deficiency in Holstein cattle.

    PubMed

    Menzi, F; Besuchet-Schmutz, N; Fragnière, M; Hofstetter, S; Jagannathan, V; Mock, T; Raemy, A; Studer, E; Mehinagic, K; Regenscheit, N; Meylan, M; Schmitz-Hsu, F; Drögemüller, C

    2016-04-01

    Cholesterol deficiency, a new autosomal recessive inherited genetic defect in Holstein cattle, has been recently reported to have an influence on the rearing success of calves. The affected animals show unresponsive diarrhea accompanied by hypocholesterolemia and usually die within the first weeks or months of life. Here, we show that whole genome sequencing combined with the knowledge about the pedigree and inbreeding status of a livestock population facilitates the identification of the causative mutation. We resequenced the entire genomes of an affected calf and a healthy partially inbred male carrying one copy of the critical 2.24-Mb chromosome 11 segment in its ancestral state and one copy of the same segment with the cholesterol deficiency mutation. We detected a single structural variant, homozygous in the affected case and heterozygous in the non-affected carrier male. The genetic makeup of this key animal provides extremely strong support for the causality of this mutation. The mutation represents a 1.3kb insertion of a transposable LTR element (ERV2-1) in the coding sequence of the APOB gene, which leads to truncated transcripts and aberrant splicing. This finding was further supported by RNA sequencing of the liver transcriptome of an affected calf. The encoded apolipoprotein B is an essential apolipoprotein on chylomicrons and low-density lipoproteins, and therefore, the mutation represents a loss of function mutation similar to autosomal recessive inherited familial hypobetalipoproteinemia-1 (FHBL1) in humans. Our findings provide a direct gene test to improve selection against this deleterious mutation in Holstein cattle. PMID:26763170

  8. The Hobo Transposable Element Excises and Has Related Elements in Tephritid Species

    PubMed Central

    Handler, A. M.; Gomez, S. P.

    1996-01-01

    Function of the Drosophila melanogaster hobo transposon in tephritid species was tested in transient embryonic excision assays. Wild-type and mutant strains of Anastrepha suspensa, Bactrocera dorsalis, B. cucurbitae, Ceratitis capitata, and Toxotrypana curvicauda all supported hobo excision or deletion both in the presence and absence of co-injected hobo transposase, indicating a permissive state for hobo mobility and the existence of endogenous systems capable of mobilizing hobo. In several strains hobo helper reduced excision. Excision depended on hobo sequences in the indicator plasmid, though almost all excisions were imprecise and the mobilizing systems appear mechanistically different from hobo. hobo-related sequences were identified in all species except T. curvicauda. Parsimony analysis yielded a subgroup including the B. cucurbitae and C. capitata sequences along with hobo and Hermes, and a separate, more divergent subgroup including the A. suspensa and B. dorsalis sequences. All of the sequences exist as multiple genomic elements, and a deleted form of the B. cucurbitae element exists in B. dorsalis. The hobo-related sequences are probably members of the hAT transposon family with some evolving from distant ancestor elements, while others may have originated from more recent horizontal transfers. PMID:8807305

  9. A comparative analysis of the amounts and dynamics of transposable elements in natural populations of Drosophila melanogaster and Drosophila simulans.

    PubMed

    Vieira, Cristina; Fablet, Marie; Lerat, Emmanuelle; Boulesteix, Matthieu; Rebollo, Rita; Burlet, Nelly; Akkouche, Abdou; Hubert, Benjamin; Mortada, Hussein; Biémont, Christian

    2012-11-01

    Genes are important in defining genetic variability, but they do not constitute the largest component of genomes, which in most organisms contain large amounts of various repeated sequences including transposable elements (TEs), which have been shown to account for most of the genome size. TEs contribute to genetic diversity by their mutational potential as a result of their ability to insert into genes or gene regulator regions, to promote chromosomal rearrangements, and to interfere with gene networks. Also, TEs may be activated by environmental stresses (such as temperature or radiation) that interfere with epigenetic regulation systems, and makes them powerful mutation agents in nature. To understand the relationship between genotype and phenotype, we need to analyze the portions of the genome corresponding to TEs in great detail, and to decipher their relationships with the genes. For this purpose, we carried out comparative analyses of various natural populations of the closely-related species Drosophila melanogaster and Drosophila simulans, which differ with regard to their TE amounts as well as their ecology and population size. PMID:22659421

  10. Families of transposable elements, population structure and the origin of species

    PubMed Central

    2011-01-01

    Background Eukaryotic genomes harbor diverse families of repetitive DNA derived from transposable elements (TEs) that are able to replicate and insert into genomic DNA. The biological role of TEs remains unclear, although they have profound mutagenic impact on eukaryotic genomes and the origin of repetitive families often correlates with speciation events. We present a new hypothesis to explain the observed correlations based on classical concepts of population genetics. Presentation of the hypothesis The main thesis presented in this paper is that the TE-derived repetitive families originate primarily by genetic drift in small populations derived mostly by subdivisions of large populations into subpopulations. We outline the potential impact of the emerging repetitive families on genetic diversification of different subpopulations, and discuss implications of such diversification for the origin of new species. Testing the hypothesis Several testable predictions of the hypothesis are examined. First, we focus on the prediction that the number of diverse families of TEs fixed in a representative genome of a particular species positively correlates with the cumulative number of subpopulations (demes) in the historical metapopulation from which the species has emerged. Furthermore, we present evidence indicating that human AluYa5 and AluYb8 families might have originated in separate proto-human subpopulations. We also revisit prior evidence linking the origin of repetitive families to mammalian phylogeny and present additional evidence linking repetitive families to speciation based on mammalian taxonomy. Finally, we discuss evidence that mammalian orders represented by the largest numbers of species may be subject to relatively recent population subdivisions and speciation events. Implications of the hypothesis The hypothesis implies that subdivision of a population into small subpopulations is the major step in the origin of new families of TEs as well as of new

  11. Accommodating the load: The transposable element content of very large genomes.

    PubMed

    Metcalfe, Cushla J; Casane, Didier

    2013-03-01

    Very large genomes, that is, those above 20 Gb, are rare but widely distributed throughout the eukaryotes. They are found within the diatoms, dinoflagellates, metazoans and green plants, but so far have not been found in the excavates. There is a known positive correlation between genome size and the proportion of the genome composed of transposable elements (TEs). Very large genomes may therefore be expected to be almost entirely composed of TEs. Of the large genomes examined, in the angiosperms, gymnosperms and the dinoflagellates only a small portion of the genome was identified as TEs, most of these genomes were unidentified and may be novel or diverse TEs. In the salamanders and lungfish, 25 to 47% of the genome were identifiable retrotransposons, that is, TEs that copy themselves before insertion. However, the predominant class of TEs found in the lungfish was not the same as that found in the salamanders. The little data we have at the moment suggests therefore that the diversity and abundance of TEs is variable between taxa with large genomes, similar to patterns found in taxa with smaller genomes. Based on results from the human genome, we suggest that the 'missing' portion of the lungfish and salamander genomes are old, highly divergent, and therefore inactive copies of TEs. The data available indicate that, unlike plants with large genomes, neither the lungfish nor the salamanders show an increased risk of extinction. Based on a slow rate of DNA loss in salamanders it has been suggested that the large salamander genome is the result of run-away genome expansion involving genome size increases via TE proliferation associated with reduced recombination rate. We know of no studies on DNA loss or recombination rates in lungfish genomes, however a similar scenario could describe the process of genome expansion in the lungfish. A series of waves of TE transposition and sequence decay would describe the pattern of TE content seen in both the lungfish and the

  12. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species

    PubMed Central

    2014-01-01

    Background MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. Findings We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. Conclusions BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a

  13. Tropical Africa as a cradle for horizontal transfers of transposable elements between species of the genera Drosophila and Zaprionus

    PubMed Central

    2011-01-01

    We have recently reported numerous cases of horizontal transfers of transposable elements between species of drosophilids. These studies revealed a substantial number of horizontal transfers between species of the subgroup melanogaster of the genus Drosophila and between these species and species of the genus Zaprionus. In this review, these transfers and similar, previously reported events are discussed and reanalysed to portray the interrelationships between the species that allowed the occurrence of so many horizontal transfers. The paper also addresses problems that may arise in drawing inferences about the time period during which the horizontal transfers occurred and the factors that may be associated with these transfers are discussed. PMID:22312591

  14. MuTAnT: a family of Mutator-like transposable elements targeting TA microsatellites in Medicago truncatula.

    PubMed

    Stawujak, Krzysztof; Startek, Michał; Gambin, Anna; Grzebelus, Dariusz

    2015-08-01

    Transposable elements (TEs) are mobile DNA segments, abundant and dynamic in plant genomes. Because their mobility can be potentially deleterious to the host, a variety of mechanisms evolved limiting that negative impact, one of them being preference for a specific target insertion site. Here, we describe a family of Mutator-like DNA transposons in Medicago truncatula targeting TA microsatellites. We identified 218 copies of MuTAnTs and an element carrying a complete ORF encoding a mudrA-like transposase. Most insertion sites are flanked by a variable number of TA tandem repeats, indicating that MuTAnTs are specifically targeting TA microsatellites. Other TE families flanked by TA repeats (e.g. TAFT elements in maize) were described previously, however we identified the first putative autonomous element sharing that characteristics with a related group of short non-autonomous transposons. PMID:25981486

  15. DcSto, stowaway-like miniature inverted-repeat transposable elements (MITEs), are abundant and polymorphic in the carrot genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transposable elements constitute a large fraction of plant genomes and strongly influence gene and genome evolution. Stowaway elements, a group of MITEs present in high copy number, are preferentially located in the vicinity of coding regions. Stowaway elements are characterized by short length, sim...

  16. Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories.

    PubMed

    Guyot, Romain; Darré, Thibaud; Dupeyron, Mathilde; de Kochko, Alexandre; Hamon, Serge; Couturon, Emmanuel; Crouzillat, Dominique; Rigoreau, Michel; Rakotomalala, Jean-Jacques; Raharimalala, Nathalie E; Akaffou, Sélastique Doffou; Hamon, Perla

    2016-10-01

    The Coffea genus, 124 described species, has a natural distribution spreading from inter-tropical Africa, to Western Indian Ocean Islands, India, Asia and up to Australasia. Two cultivated species, C. arabica and C. canephora, are intensively studied while, the breeding potential and the genome composition of all the wild species remained poorly uncharacterized. Here, we report the characterization and comparison of the highly repeated transposable elements content of 11 Coffea species representatives of the natural biogeographic distribution. A total of 994 Mb from 454 reads were produced with a genome coverage ranging between 3.2 and 15.7 %. The analyses showed that highly repeated transposable elements, mainly LTR retrotransposons (LTR-RT), represent between 32 and 53 % of Coffea genomes depending on their biogeographic location and genome size. Species from West and Central Africa (Eucoffea) contained the highest LTR-RT content but with no strong variation relative to their genome size. At the opposite, for the insular species (Mascarocoffea), a strong variation of LTR-RT was observed suggesting differential dynamics of these elements in this group. Two LTR-RT lineages, SIRE and Del were clearly differentially accumulated between African and insular species, suggesting these lineages were associated to the genome divergence of Coffea species in Africa. Altogether, the information obtained in this study improves our knowledge and brings new data on the composition, the evolution and the divergence of wild Coffea genomes. PMID:27469896

  17. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice.

    PubMed

    Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C; Cao, Xiaofeng

    2014-03-11

    Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078

  18. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation.

    PubMed Central

    Margolin, B S; Garrett-Engele, P W; Stevens, J N; Fritz, D Y; Garrett-Engele, C; Metzenberg, R L; Selker, E U

    1998-01-01

    In an analysis of 22 of the roughly 100 dispersed 5S rRNA genes in Neurospora crassa, a methylated 5S rRNA pseudogene, Psi63, was identified. We characterized the Psi63 region to better understand the control and function of DNA methylation. The 120-bp 5S rRNA-like region of Psi63 is interrupted by a 1.9-kb insertion that has characteristics of sequences that have been modified by repeat-induced point mutation (RIP). We found sequences related to this insertion in wild-type strains of N. crassa and other Neurospora species. Most showed evidence of RIP; but one, isolated from the N. crassa host of Psi63, showed no evidence of RIP. A deletion from near the center of this sequence apparently rendered it incapable of participating in RIP with the related full-length copies. The Psi63 insertion and the related sequences have features of transposons and are related to the Fot1 class of fungal transposable elements. Apparently Psi63 was generated by insertion of a previously unrecognized Neurospora transposable element into a 5S rRNA gene, followed by RIP. We name the resulting inactivated Neurospora transposon PuntRIP1 and the related sequence showing no evidence of RIP, but harboring a deletion that presumably rendered it defective for transposition, dPunt. PMID:9691037

  19. Microsporidian Genomes Harbor a Diverse Array of Transposable Elements that Demonstrate an Ancestry of Horizontal Exchange with Metazoans

    PubMed Central

    Gasc, Cyrielle; Polonais, Valérie; Belkorchia, Abdel; Panek, Johan; El Alaoui, Hicham; Biron, David G.; Brasset, Émilie; Vaury, Chantal; Peyret, Pierre; Corradi, Nicolas; Peyretaillade, Éric; Lerat, Emmanuelle

    2014-01-01

    Microsporidian genomes are the leading models to understand the streamlining in response to a pathogenic lifestyle; they are gene-poor and often possess small genomes. In this study, we show a feature of microsporidian genomes that contrasts this pattern of genome reduction. Specifically, genome investigations targeted at Anncaliia algerae, a human pathogen with a genome size of 23 Mb, revealed the presence of a hitherto undetected diversity in transposable elements (TEs). A total of 240 TE families per genome were identified, exceeding that found in many free-living fungi, and searches of microsporidian species revealed that these mobile elements represent a significant portion of their coding repertoire. Their phylogenetic analysis revealed that many cases of ancestry involve recent and bidirectional horizontal transfers with metazoans. The abundance and horizontal transfer origin of microsporidian TEs highlight a novel dimension of genome evolution in these intracellular pathogens, demonstrating that factors beyond reduction are at play in their diversification. PMID:25172905

  20. Microsporidian genomes harbor a diverse array of transposable elements that demonstrate an ancestry of horizontal exchange with metazoans.

    PubMed

    Parisot, Nicolas; Pelin, Adrian; Gasc, Cyrielle; Polonais, Valérie; Belkorchia, Abdel; Panek, Johan; El Alaoui, Hicham; Biron, David G; Brasset, Emilie; Vaury, Chantal; Peyret, Pierre; Corradi, Nicolas; Peyretaillade, Éric; Lerat, Emmanuelle

    2014-09-01

    Microsporidian genomes are the leading models to understand the streamlining in response to a pathogenic lifestyle; they are gene-poor and often possess small genomes. In this study, we show a feature of microsporidian genomes that contrasts this pattern of genome reduction. Specifically, genome investigations targeted at Anncaliia algerae, a human pathogen with a genome size of 23 Mb, revealed the presence of a hitherto undetected diversity in transposable elements (TEs). A total of 240 TE families per genome were identified, exceeding that found in many free-living fungi, and searches of microsporidian species revealed that these mobile elements represent a significant portion of their coding repertoire. Their phylogenetic analysis revealed that many cases of ancestry involve recent and bidirectional horizontal transfers with metazoans. The abundance and horizontal transfer origin of microsporidian TEs highlight a novel dimension of genome evolution in these intracellular pathogens, demonstrating that factors beyond reduction are at play in their diversification. PMID:25172905

  1. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize

    PubMed Central

    Yang, Qin; Li, Zhi; Li, Wenqiang; Ku, Lixia; Wang, Chao; Ye, Jianrong; Li, Kun; Yang, Ning; Li, Yipu; Zhong, Tao; Li, Jiansheng; Chen, Yanhui; Yan, Jianbing; Yang, Xiaohong; Xu, Mingliang

    2013-01-01

    The postdomestication adaptation of maize to longer days required reduced photoperiod sensitivity to optimize flowering time. We performed a genome-wide association study and confirmed that ZmCCT, encoding a CCT domain-containing protein, is associated with the photoperiod response. In early-flowering maize we detected a CACTA-like transposable element (TE) within the ZmCCT promoter that dramatically reduced flowering time. TE insertion likely occurred after domestication and was selected as maize adapted to temperate zones. This process resulted in a strong selective sweep within the TE-related block of linkage disequilibrium. Functional validations indicated that the TE represses ZmCCT expression to reduce photoperiod sensitivity, thus accelerating maize spread to long-day environments. PMID:24089449

  2. Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea.

    PubMed

    Zhang, Xiaoyu; Wessler, Susan R

    2004-04-13

    Transposable elements (TEs) are the major component of plant genomes where they contribute significantly to the >1,000-fold genome size variation. To understand the dynamics of TE-mediated genome expansion, we have undertaken a comparative analysis of the TEs in two related organisms: the weed Arabidopsis thaliana (125 megabases) and Brassica oleracea ( approximately 600 megabases), a species with many crop plants. Comparison of the whole genome sequence of A. thaliana with a partial draft of B. oleracea has permitted an estimation of the patterns of TE amplification, diversification, and loss that has occurred in related species since their divergence from a common ancestor. Although we find that nearly all TE lineages are shared, the number of elements in each lineage is almost always greater in B. oleracea. Class 1 (retro) elements are the most abundant TE class in both species with LTR and non-LTR elements comprising the largest fraction of each genome. However, several families of class 2 (DNA) elements have amplified to very high copy number in B. oleracea where they have contributed significantly to genome expansion. Taken together, the results of this analysis indicate that amplification of both class 1 and class 2 TEs is responsible, in part, for B. oleracea genome expansion since divergence from a common ancestor with A. thaliana. In addition, the observation that B. oleracea and A. thaliana share virtually all TE lineages makes it unlikely that wholesale removal of TEs is responsible for the compact genome of A. thaliana. PMID:15064405

  3. Transposable B2 SINE elements can provide mobile RNA polymerase II promoters.

    PubMed

    Ferrigno, O; Virolle, T; Djabari, Z; Ortonne, J P; White, R J; Aberdam, D

    2001-05-01

    Short interspersed elements (SINEs) are highly abundant components of mammalian genomes that are propagated by retrotransposition. SINEs are recognized as a causal agent of human disease and must also have had a profound influence in shaping eukaryotic genomes. The B2 SINE family constitutes approximately 0.7% of total mouse genomic DNA (ref. 2) and is also found at low abundance in humans. It resembles the Alu family in several respects, such as its mechanism of propagation. B2 SINEs are derived from tRNA and are transcribed by RNA polymerase (pol) III to generate short transcripts that are not translated. We find here, however, that one B2 SINE also carries an active pol II promoter located outside the tRNA region. Indeed, a B2 element is responsible for the production of a mouse Lama3 transcript. The B2 pol II promoters can be bound and stimulated by the transcription factor USF (for upstream stimulatory factor), as shown by transient transfection experiments. Moreover, this pol II activity does not preclude the pol III transcription necessary for retrotransposition. Dispersal of B2 SINEs by retrotransposition may therefore have provided numerous opportunities for creating regulated pol II transcription at novel genomic sites. This mechanism may have allowed the evolution of new transcription units and new genes. PMID:11326281

  4. Large-scale genomic analysis suggests a neutral punctuated dynamics of transposable elements in bacterial genomes.

    PubMed

    Iranzo, Jaime; Gómez, Manuel J; López de Saro, Francisco J; Manrubia, Susanna

    2014-06-01

    Insertion sequences (IS) are the simplest and most abundant form of transposable DNA found in bacterial genomes. When present in multiple copies, it is thought that they can promote genomic plasticity and genetic exchange, thus being a major force of evolutionary change. The main processes that determine IS content in genomes are, though, a matter of debate. In this work, we take advantage of the large amount of genomic data currently available and study the abundance distributions of 33 IS families in 1811 bacterial chromosomes. This allows us to test simple models of IS dynamics and estimate their key parameters by means of a maximum likelihood approach. We evaluate the roles played by duplication, lateral gene transfer, deletion and purifying selection. We find that the observed IS abundances are compatible with a neutral scenario where IS proliferation is controlled by deletions instead of purifying selection. Even if there may be some cases driven by selection, neutral behavior dominates over large evolutionary scales. According to this view, IS and hosts tend to coexist in a dynamic equilibrium state for most of the time. Our approach also allows for a detection of recent IS expansions, and supports the hypothesis that rapid expansions constitute transient events-punctuations-during which the state of coexistence of IS and host becomes perturbated. PMID:24967627

  5. Isolation and characterization of a novel family (Mild-4) of miniature subterminal inverted repeat transposable element from the Colorado potato beetle, Leptinotarsa decemlineata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the genomic structure of DAT-2 and -3 led to the isolation of four novel families of miniature subterminal inverted repeat transposable elements (MSITE): Mild-1, -2, -3 and -4. Mild-1a is inserted within the first intron of diapause protein-1. Mild-1a is 284 bp in length, has a 14 bp tar...

  6. Analysis of copy-number variation, insertional polymorphism, and methylation status of the tiniest class I (TRIM) and class II (MITE) transposable element families in various rice strains.

    PubMed

    Baruch, Omer; Kashkush, Khalil

    2012-05-01

    Transposable elements (TEs) dominate the genetic capacity of most eukaryotes, especially plants, where they may compose up to 90% of the genome. Many studies, both in plants and animals reported that in fact non-autonomous elements that have lost their protein-coding sequences and became miniature elements were highly associated with genes, and showed a high level of transpositional activity such as mPing family in rice. In this study, we have investigated in detail the copy number, insertional polymorphism and the methylation status of the tiniest LTR retrotransposon family, termed TRIM, in nine rice strains, in comparison with mPing. While TRIM showed similar copy numbers (average of 79 insertions) in all the nine rice strains, the copy number of mPing varied dramatically (ranging from 6 to 203 insertions) in the same strains. Site-specific PCR analysis revealed that ~58% of the TRIM elements have identical insertion sites among the nine rice strains, while none of the mPing elements (100% polymorphism) have identical insertion sites in the same strains. Finally, over 65% of the TRIM insertion sites were cytosine methylated in all nine rice strains, while the level of the methylated mPing insertion sites ranged between 43 and 81.5%. The findings of this study indicate that unlike mPing, TRIM is most probably a fossil TE family in rice. In addition, the data shows that there might be a strong correlation between TE methylation and copy number. PMID:22183295

  7. Expression of the Arabidopsis transposable element Tag1 is targeted to developing gametophytes.

    PubMed

    Galli, Mary; Theriault, Angie; Liu, Dong; Crawford, Nigel M

    2003-12-01

    The Arabidopsis transposon Tag1 undergoes late excision during vegetative and germinal development in plants containing 35S-Tag1-GUS constructs. To determine if transcriptional regulation can account for the developmental control of Tag1 excision, the transcriptional activity of Tag1 promoter-GUS fusion constructs of various lengths was examined in transgenic plants. All constructs showed expression in the reproductive organs of developing flowers but no expression in leaves. Expression was restricted to developing gametophytes in both male and female lineages. Quantitative RT-PCR analysis confirmed that Tag1 expression predominates in the reproductive organs of flower buds. These results are consistent with late germinal excision of Tag1, but they cannot explain the vegetative excision activity of Tag1 observed with 35S-Tag1-GUS constructs. To resolve this issue, Tag1 excision was reexamined using elements with no adjacent 35S promoter sequences. Tag1 excision in this context is restricted to germinal events with no detectable vegetative excision. If a 35S enhancer sequence is placed next to Tag1, vegetative excision is restored. These results indicate that the intrinsic activity of Tag1 is restricted to germinal excision due to targeted expression of the Tag1 transposase to developing gametophytes and that this activity is altered by the presence of adjacent enhancers or promoters. PMID:14704189

  8. Identification and purification of a Drosophila protein that binds to the terminal 31-base-pair inverted repeats of the P transposable element

    SciTech Connect

    Rio, D.C.; Rubin, G.M.

    1988-12-01

    We have used DNase I footprinting and partially fractionated nuclear extracts from Drosophila Kc tissue culture cells to identify DNA-binding proteins that interact with the terminal repeats of P transposable elements. We have identified a binding activity that interacts specifically with a region of the 31-base-pair terminal inverted repeats that is directly adjacent to the duplication of target site DNA. Binding occurs to both the 5' and 3' inverted terminal repeats irrespective of the sequence of the duplicated target DNA. UV photochemical crosslinking studies suggest that the binding activity resides in a polypeptide of 65-70 kDa. Biochemical fractionation and oligonucleotide affinity chromatography have been used to purify the binding activity to near homogeneity and identify a polypeptide of 66 kDa in the highly purified preparations. The site to which binding occurs is included in a region absolutely required for P element transposition, suggesting that this binding protein may be a cellular factor involved in P element transposition.

  9. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds.

    PubMed

    Yan, Fan; Di, Shaokang; Takahashi, Ryoji

    2015-08-01

    The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family. PMID:26360633

  10. The Origin and Evolution of Six Miniature Inverted-Repeat Transposable Elements in Bombyx mori and Rhodnius prolixus

    PubMed Central

    Zhang, Hua-Hao; Xu, Hong-En; Shen, Yi-Hong; Han, Min-Jin; Zhang, Ze

    2013-01-01

    Miniature inverted-repeat transposable elements (MITEs) are a specific group of nonautonomous DNA transposons, and they are distributed in a wide range of hosts. However, the origin and evolutionary history of MITEs in eukaryotic genomes remain unclear. In this study, six MITEs were identified in the silkworm (Bombyx mori). Five elements are grouped into four known superfamilies of DNA transposons, and one represents a novel class of MITEs. Unexpectedly, six similar MITEs are also present in the triatomine bug (Rhodnius prolixus) that diverged from the common ancestor with the silkworm about 370 Ma. However, they show different lengths in two species, suggesting that they are different derivatives of progenitor transposons. Three direct progenitor transposons (Sola1, hobo/Ac/Tam [hAT], and Ginger2) are also identified in some other organisms, and several lines of evidence suggested that these autonomous elements might have been independently and horizontally transferred into their hosts. Furthermore, it is speculated that the twisted-wing parasites may be the candidate vectors for these horizontal transfers. The data presented in this study provide some new insights into the origin and evolutionary history of MITEs in the silkworm and triatomine bug. PMID:24115603

  11. PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes.

    PubMed

    R Lorenzetti, Alan P; A de Antonio, Gabriel Y; Paschoal, Alexandre R; Domingues, Douglas S

    2016-05-01

    Transposable elements (TEs) comprise a major fraction of many plant genomes and are known to drive their organization and evolution. Several studies show that these repetitive elements have a prominent role in shaping noncoding regions of the genome such as microRNA (miRNA) loci, which are components of post-transcriptional regulation mechanisms. Although some studies have reported initial formation of miRNA loci from TE sequences, especially in model plants, the approaches that were used did not employ systems that would allow results to be delivered by a user-friendly database. In this study, we identified 152 precursor miRNAs overlapping TEs in 10 plant species. PlanTE-MIR DB was designed to assemble this data and deliver it to the scientific community interested in miRNA origin, evolution, and regulation pathways. Users can browse the database through a web interface and search for entries using various parameters. This resource is cross-referenced with repetitive element (Repbase Update) and miRNA (miRBase) repositories, where sequences can be checked for further analysis. All data in PlanTE-MIR DB are publicly available for download in several file formats to facilitate their understanding and use. The database is hosted at http://bioinfo-tool.cp.utfpr.edu.br/plantemirdb/ . PMID:26887375

  12. Isolation of the transposable element hupfer from the entomopathogenic fungus Beauveria bassiana by insertion mutagenesis of the nitrate reductase structural gene.

    PubMed

    Maurer, P; Réjasse, A; Capy, P; Langin, T; Riba, G

    1997-09-01

    A transposable element has been isolated from the entomopathogenic fungus Beauveria bassiana by trapping it in the nitrate reductase structural gene, which has been cloned from this species. The element had inserted in the first exon of the nia gene and appeared to have duplicated the sequence TA at the site of insertion. It was 3336 bp long with 30-bp imperfect, inverted, terminal repeats. The element, called hupfer, contained an open reading frame encoding a 321-amino acid protein similar to the IS630- or mariner-Tcl-like transposases, and a residual sequence of about 2 kb which was not significantly similar to any published sequence. There are fewer than five copies of this transposable element present per genome in the fungus. PMID:9349711

  13. A role for palindromic structures in the cis-region of maize Sirevirus LTRs in transposable element evolution and host epigenetic response

    PubMed Central

    Bousios, Alexandros; Diez, Concepcion M.; Takuno, Shohei; Bystry, Vojtech; Darzentas, Nikos; Gaut, Brandon S.

    2016-01-01

    Transposable elements (TEs) proliferate within the genome of their host, which responds by silencing them epigenetically. Much is known about the mechanisms of silencing in plants, particularly the role of siRNAs in guiding DNA methylation. In contrast, little is known about siRNA targeting patterns along the length of TEs, yet this information may provide crucial insights into the dynamics between hosts and TEs. By focusing on 6456 carefully annotated, full-length Sirevirus LTR retrotransposons in maize, we show that their silencing associates with underlying characteristics of the TE sequence and also uncover three features of the host–TE interaction. First, siRNA mapping varies among families and among elements, but particularly along the length of elements. Within the cis-regulatory portion of the LTRs, a complex palindrome-rich region acts as a hotspot of both siRNA matching and sequence evolution. These patterns are consistent across leaf, tassel, and immature ear libraries, but particularly emphasized for floral tissues and 21- to 22-nt siRNAs. Second, this region has the ability to form hairpins, making it a potential template for the production of miRNA-like, hairpin-derived small RNAs. Third, Sireviruses are targeted by siRNAs as a decreasing function of their age, but the oldest elements remain highly targeted, partially by siRNAs that cross-map to the youngest elements. We show that the targeting of older Sireviruses reflects their conserved palindromes. Altogether, we hypothesize that the palindromes aid the silencing of active elements and influence transposition potential, siRNA targeting levels, and ultimately the fate of an element within the genome. PMID:26631490

  14. A role for palindromic structures in the cis-region of maize Sirevirus LTRs in transposable element evolution and host epigenetic response.

    PubMed

    Bousios, Alexandros; Diez, Concepcion M; Takuno, Shohei; Bystry, Vojtech; Darzentas, Nikos; Gaut, Brandon S

    2016-02-01

    Transposable elements (TEs) proliferate within the genome of their host, which responds by silencing them epigenetically. Much is known about the mechanisms of silencing in plants, particularly the role of siRNAs in guiding DNA methylation. In contrast, little is known about siRNA targeting patterns along the length of TEs, yet this information may provide crucial insights into the dynamics between hosts and TEs. By focusing on 6456 carefully annotated, full-length Sirevirus LTR retrotransposons in maize, we show that their silencing associates with underlying characteristics of the TE sequence and also uncover three features of the host-TE interaction. First, siRNA mapping varies among families and among elements, but particularly along the length of elements. Within the cis-regulatory portion of the LTRs, a complex palindrome-rich region acts as a hotspot of both siRNA matching and sequence evolution. These patterns are consistent across leaf, tassel, and immature ear libraries, but particularly emphasized for floral tissues and 21- to 22-nt siRNAs. Second, this region has the ability to form hairpins, making it a potential template for the production of miRNA-like, hairpin-derived small RNAs. Third, Sireviruses are targeted by siRNAs as a decreasing function of their age, but the oldest elements remain highly targeted, partially by siRNAs that cross-map to the youngest elements. We show that the targeting of older Sireviruses reflects their conserved palindromes. Altogether, we hypothesize that the palindromes aid the silencing of active elements and influence transposition potential, siRNA targeting levels, and ultimately the fate of an element within the genome. PMID:26631490

  15. Sequence Assembly of Yarrowia lipolytica Strain W29/CLIB89 Shows Transposable Element Diversity.

    PubMed

    Magnan, Christophe; Yu, James; Chang, Ivan; Jahn, Ethan; Kanomata, Yuzo; Wu, Jenny; Zeller, Michael; Oakes, Melanie; Baldi, Pierre; Sandmeyer, Suzanne

    2016-01-01

    Yarrowia lipolytica, an oleaginous yeast, is capable of accumulating significant cellular mass in lipid making it an important source of biosustainable hydrocarbon-based chemicals. In spite of a similar number of protein-coding genes to that in other Hemiascomycetes, the Y. lipolytica genome is almost double that of model yeasts. Despite its economic importance and several distinct strains in common use, an independent genome assembly exists for only one strain. We report here a de novo annotated assembly of the chromosomal genome of an industrially-relevant strain, W29/CLIB89, determined by hybrid next-generation sequencing. For the first time, each Y. lipolytica chromosome is represented by a single contig. The telomeric rDNA repeats were localized by Irys long-range genome mapping and one complete copy of the rDNA sequence is reported. Two large structural variants and retroelement differences with reference strain CLIB122 including a full-length, novel Ty3/Gypsy long terminal repeat (LTR) retrotransposon and multiple LTR-like sequences are described. Strikingly, several of these are adjacent to RNA polymerase III-transcribed genes, which are almost double in number in Y. lipolytica compared to other Hemiascomycetes. In addition to previously-reported dimeric RNA polymerase III-transcribed genes, tRNA pseudogenes were identified. Multiple full-length and truncated LINE elements are also present. Therefore, although identified transposons do not constitute a significant fraction of the Y. lipolytica genome, they could have played an active role in its evolution. Differences between the sequence of this strain and of the existing reference strain underscore the utility of an additional independent genome assembly for this economically important organism. PMID:27603307

  16. Diversity, abundance, and evolutionary dynamics of Pong-like transposable elements in Triticeae.

    PubMed

    Markova, Dragomira N; Mason-Gamer, Roberta J

    2015-12-01

    Pong-like elements are members of the PIF/Harbinger superfamily of DNA transposons that has been described in many plants, animals, and fungi. Most Pong elements contain two open reading frames (ORFs). One encodes a transposase (ORF2) that catalyzes transposition of Pong and related non-autonomous elements, while the function of the second is unknown. Little is known about the evolutionary history of Pong elements in flowering plants. In this work, we present the first comprehensive analysis of the diversity, abundance, and evolution of the Pong-like transposase gene in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of nuclear-encoded Pong elements in any organism. A phylogenetic analysis of nearly 300 Pong sequences based on a conserved region of the transposase domain revealed a complex evolutionary history of Pong elements that can be best explained by ancestral polymorphism, followed by differential evolutionary success of some transposase lineages, and by occasional horizontal transfer between phylogenetically distant genera. In addition, we used transposon display to estimate the abundance of the transposase gene within Triticeae genomes, and our results revealed varying levels of Pong proliferation, with numbers of transposase copies ranging from 22 to 92. Comparisons of Pong transposase abundance to flow cytometry estimates of genome size revealed that larger Triticeae genome size was not correlated with transposase abundance. PMID:26206730

  17. The Complex Genetic Context of blaPER-1 Flanked by Miniature Inverted-Repeat Transposable Elements in Acinetobacter johnsonii

    PubMed Central

    Zong, Zhiyong

    2014-01-01

    On a large plasmid of Acinetobacter johnsonii strain XBB1 from hospital sewage, blaPER-1 and ISCR1 were found in a complex Tn402-like integron carrying an arr3-aacA4 cassette array. The integron was truncated by the same 439-bp miniature inverted-repeat transposable element (MITE) at both ends. blaPER-1 and its complex surroundings might have been mobilized by the MITEst into an orf of unknown function, evidenced by the presence of the characteristic 5-bp direct target repeats. The same 439-bp MITEs have also been found flanking class 1 integrons carrying metallo-β-lactamases genes blaIMP-1, blaIMP-5 and blaVIM-2 before but without ISCR1. Although the cassette arrays are different, integrons have always been truncated by the 439-bp MITEs at the exact same locations. The results suggested that MITEs might be able to mobilize class 1 integrons via transposition or homologous recombination and therefore represent a possible common mechanism for mobilizing antimicrobial resistance determinants. PMID:24587208

  18. Chromosomal Distribution of Transposable Elements in Drosophila Melanogaster: Test of the Ectopic Recombination Model for Maintenance of Insertion Site Number

    PubMed Central

    Hoogland, C.; Biemont, C.

    1996-01-01

    Data of insertion site localization and site occupancy frequency of P, hobo, I, copia, mdg1, mdg3, 412, 297, and roo transposable elements (TEs) on the polytene chromosomes of Drosophila melanogaster were extracted from the literature. We show that TE insertion site number per chromosomal division was significantly correlated with the amount of DNA. The insertion site number weighted by DNA content was not correlated with recombination rate for all TEs except hobo, for which a positive correlation was detected. No global tendency emerged in the relationship between TE site occupancy frequency, weighted by DNA content, and recombination rate; a strong negative correlation was, however, found for the 3L arm. A possible dominant deleterious effect of chromosomal rearrangements due to recombination between TE insertions is thus not the main factor explaining the dynamics of TEs, since this hypothesis implies a negative relationship between recombination rate and both TE insertion site number and site occupancy frequency. The alternative hypothesis of selection against deleterious effects of insertional mutations is discussed. PMID:8878685

  19. HDA6 Directly Interacts with DNA Methyltransferase MET1 and Maintains Transposable Element Silencing in Arabidopsis1[W][OA

    PubMed Central

    Liu, Xuncheng; Yu, Chun-Wei; Duan, Jun; Luo, Ming; Wang, Koching; Tian, Gang; Cui, Yuhai; Wu, Keqiang

    2012-01-01

    The molecular mechanism of how the histone deacetylase HDA6 participates in maintaining transposable element (TE) silencing in Arabidopsis (Arabidopsis thaliana) is not yet defined. In this study, we show that a subset of TEs was transcriptionally reactivated and that TE reactivation was associated with elevated histone H3 and H4 acetylation as well as increased H3K4Me3 and H3K4Me2 in hda6 mutants. Decreased DNA methylation of the TEs was also detected in hda6 mutants, suggesting that HDA6 silences the TEs by regulating histone acetylation and methylation as well as the DNA methylation status of the TEs. Similarly, transcripts of some of these TEs were also increased in the methyltransferase1 (met1) mutant, with decreased DNA methylation. Furthermore, H4 acetylation, H3K4Me3, H3K4Me2, and H3K36Me2 were enriched at the coregulated TEs in the met1 and hda6 met1 mutants. Protein-protein interaction analysis indicated that HDA6 physically interacts with MET1 in vitro and in vivo, and further deletion analysis demonstrated that the carboxyl-terminal region of HDA6 and the bromo-adjacent homology domain of MET1 were responsible for the interaction. These results suggested that HDA6 and MET1 interact directly and act together to silence TEs by modulating DNA methylation, histone acetylation, and histone methylation status. PMID:21994348

  20. [Patterns of transposable elements distribution on the Drosophila melanogaster polytene chromosomes before and after selection for a quantitative trait].

    PubMed

    Zakharenko, L P; Perepelkina, M P; Antonenko, O V; Vykhristiuk, O V; Efimov, V M; Vasil'eva, L A

    2011-01-01

    The effect of selection for radius vein length on the distribution of hybridization sites of the P and hobo transposons and the mdgl and mdg2 retrotransposons on polytene chromosomes of Drosophila melanogaster salivary glands was studied. The patterns of these transposable elements (TEs) distribution were polymorphic in both the parental strain and selected strains. The similarity in mdg1 and mdg2 patterns between strains selected in one direction was closer than between strains selected in opposite directions, but the selected strains were closer to each other than to the parental strain regardless of selection direction. No mdg2 hybridization sites that would be absent in the control were found in the selected strains. There were more mdg2 and hobo hybridization sites in the strains selected in the (+) direction than in the (-) direction. The mobility of hobo copies in the strains studied correlated with the presence of its full-sized copy in the genome. The polymorphism of all TEs studied except for mdgl was greater for strains selected in the (+) direction that in the (-) direction. These facts suggest that some TEs migrate over the genome independently of selection, and others are markers of evolutionary events rather than their causes. PMID:21870509

  1. The Inheritance Pattern of 24 nt siRNA Clusters in Arabidopsis Hybrids Is Influenced by Proximity to Transposable Elements

    PubMed Central

    Li, Ying; Varala, Kranthi; Moose, Stephen P.; Hudson, Matthew E.

    2012-01-01

    Hybrids often display increased size and growth, and thus are widely cultivated in agriculture and horticulture. Recent discoveries demonstrating the important regulatory roles of small RNAs have greatly improved our understanding of many basic biological questions, and could illuminate the molecular basis for the enhanced growth and size of hybrid plants. We profiled small RNAs by deep sequencing to characterize the inheritance patterns of small RNA levels in reciprocal hybrids of two Arabidopsis thaliana accessions, Columbia and Landsberg erecta. We find 24-nt siRNAs predominate among those small RNAs that are differentially expressed between the parents. Following hybridization, the transposable element (TE)-derived siRNAs are often inherited in an additive manner, whereas siRNAs associated with protein-coding genes are often down-regulated in hybrids to the levels observed for the parent with lower relative siRNA levels. Among the protein-coding genes that exhibit this pattern, genes that function in pathogen defense, abiotic stress tolerance, and secondary metabolism are significantly enriched. Small RNA clusters from protein-coding genes where a TE is present within one kilobase show a different predominant inheritance pattern (additive) from those that do not (low-parent dominance). Thus, down-regulation in the form of low-parent dominance is likely the default pattern of inheritance for genic siRNA, and a different inheritance mechanism for TE siRNA is suggested. PMID:23118865

  2. The 5' termini of RNAs encoded by the transposable element copia.

    PubMed Central

    Flavell, A J; Levis, R; Simon, M A; Rubin, G M

    1981-01-01

    The 5' termini of copia-specific RNAs in Drosophila melanogaster tissue culture cells were determined by S1 nuclease mapping and cap analysis. Both major copia RNAs share an identical set of heterogeneous 5' ends. Three major cap 1 structures M7GpppCmpUp, M7GpppCmpCp and M7GpppGmpUp together with several other minor caps were found. Almost all the 5' termini, as judged by S-1 nuclease mapping, were located either in a pyrimidine-rich part of the terminal direct repeat or apparently outside of the copia element, suggesting that a proportion of copia transcripts derive from promoters external to the genetic element. Images PMID:6275356

  3. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica

    PubMed Central

    Gentles, Andrew J.; Wakefield, Matthew J.; Kohany, Oleksiy; Gu, Wanjun; Batzer, Mark A.; Pollock, David D.; Jurka, Jerzy

    2007-01-01

    The genome of the gray short-tailed opossum Monodelphis domestica is notable for its large size (∼3.6 Gb). We characterized nearly 500 families of interspersed repeats from the Monodelphis. They cover ∼52% of the genome, higher than in any other amniotic lineage studied to date, and may account for the unusually large genome size. In comparison to other mammals, Monodelphis is significantly rich in non-LTR retrotransposons from the LINE-1, CR1, and RTE families, with >29% of the genome sequence comprised of copies of these elements. Monodelphis has at least four families of RTE, and we report support for horizontal transfer of this non-LTR retrotransposon. In addition to short interspersed elements (SINEs) mobilized by L1, we found several families of SINEs that appear to use RTE elements for mobilization. In contrast to L1-mobilized SINEs, the RTE-mobilized SINEs in Monodelphis appear to shift from G+C-rich to G+C-low regions with time. Endogenous retroviruses have colonized ∼10% of the opossum genome. We found that their density is enhanced in centromeric and/or telomeric regions of most Monodelphis chromosomes. We identified 83 new families of ancient repeats that are highly conserved across amniotic lineages, including 14 LINE-derived repeats; and a novel SINE element, MER131, that may have been exapted as a highly conserved functional noncoding RNA, and whose emergence dates back to ∼300 million years ago. Many of these conserved repeats are also present in human, and are highly over-represented in predicted cis-regulatory modules. Seventy-six of the 83 families are present in chicken in addition to mammals. PMID:17495012

  4. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses.

    PubMed

    Pritham, Ellen J; Putliwala, Tasneem; Feschotte, Cédric

    2007-04-01

    We previously identified a group of atypical mobile elements designated Mavericks from the nematodes Caenorhabditis elegans and C. briggsae and the zebrafish Danio rerio. Here we present the results of comprehensive database searches of the genome sequences available, which reveal that Mavericks are widespread in invertebrates and non-mammalian vertebrates but show a patchy distribution in non-animal species, being present in the fungi Glomus intraradices and Phakopsora pachyrhizi and in several single-celled eukaryotes such as the ciliate Tetrahymena thermophila, the stramenopile Phytophthora infestans and the trichomonad Trichomonas vaginalis, but not detectable in plants. This distribution, together with comparative and phylogenetic analyses of Maverick-encoded proteins, is suggestive of an ancient origin of these elements in eukaryotes followed by lineage-specific losses and/or recurrent episodes of horizontal transmission. In addition, we report that Maverick elements have amplified recently to high copy numbers in T. vaginalis where they now occupy as much as 30% of the genome. Sequence analysis confirms that most Mavericks encode a retroviral-like integrase, but lack other open reading frames typically found in retroelements. Nevertheless, the length and conservation of the target site duplication created upon Maverick insertion (5- or 6-bp) is consistent with a role of the integrase-like protein in the integration of a double-stranded DNA transposition intermediate. Mavericks also display long terminal-inverted repeats but do not contain ORFs similar to proteins encoded by DNA transposons. Instead, Mavericks encode a conserved set of 5 to 9 genes (in addition to the integrase) that are predicted to encode proteins with homology to replication and packaging proteins of some bacteriophages and diverse eukaryotic double-stranded DNA viruses, including a DNA polymerase B homolog and putative capsid proteins. Based on these and other structural similarities, we

  5. DNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent.

    PubMed

    Wang, Zhenxing; Schwacke, Rainer; Kunze, Reinhard

    2016-08-01

    Induction and mobilization of transposable elements (TEs) following DNA damage or other stresses has been reported in prokaryotes and eukaryotes. Recently it was discovered that eukaryotic TEs are frequently associated with long non-coding RNAs (lncRNAs), many of which are also upregulated by stress. Yet, it is unknown whether DNA damage-induced transcriptional activation of TEs and lncRNAs occurs sporadically or is a synchronized, genome-wide response. Here we investigated the transcriptome of Arabidopsis wild-type (WT) and ataxia telangiectasia mutated (atm) mutant plants 3 h after induction of DNA damage. In WT, expression of 5.2% of the protein-coding genes is ≥2-fold changed, whereas in atm plants, only 2.6% of these genes are regulated, and the response of genes associated with DNA repair, replication, and cell cycle is largely lost. In contrast, only less than 0.6% of TEs and lncRNAs respond to DNA damage in WT plants, and the regulation of ≥95% of them is ATM-dependent. The ATM-downstream factors BRCA1, DRM1, JMJ30, AGO2, and the ATM-independent AGO4 participate in the regulation of individual TEs and lncRNAs. Remarkably, protein-coding genes located adjacent to DNA damage-responsive TEs and lncRNAs are frequently coexpressed, which is consistent with the hypothesis that TEs and lncRNAs located close to genes commonly function as controlling elements. PMID:27150037

  6. Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe.

    PubMed

    Bowen, Nathan J; Jordan, I King; Epstein, Jonathan A; Wood, Valerie; Levin, Henry L

    2003-09-01

    The complete DNA sequence of the genome of Schizosaccharomyces pombe provides the opportunity to investigate the entire complement of transposable elements (TEs), their association with specific sequences, their chromosomal distribution, and their evolution. Using homology-based sequence identification, we found that the sequenced strain of S. pombe contained only one family of full-length transposons. This family, Tf2, consisted of 13 full-length copies of a long terminal repeat (LTR) retrotransposon. We found that LTR-LTR recombination of previously existing transposons had resulted in extensive populations of solo LTRs. These included 35 solo LTRs of Tf2, as well as 139 solo LTRs from other Tf families. Phylogenetic analysis of solo Tf LTRs reveals that Tf1 and Tf2 were the most recently active elements within the genome. The solo LTRs also served as footprints for previous insertion events by the Tf retrotransposons. Analysis of 186 genomic insertion events revealed a close association with RNA polymerase II promoters. These insertions clustered in the promoter-proximal regions of genes, upstream of protein coding regions by 100 to 400 nucleotides. The association of Tf insertions with pol II promoters was very similar to the preference previously observed for Tf1 integration. We found that the recently active Tf elements were absent from centromeres and pericentromeric regions of the genome containing tandem tRNA gene clusters. In addition, our analysis revealed that chromosome III has twice the density of insertion events compared to the other two chromosomes. Finally we describe a novel repetitive sequence, wtf, which was also preferentially located on chromosome III, and was often located near solo LTRs of Tf elements. PMID:12952871

  7. Analysis by transposable element mutagenesis of tissue-specific R alleles in maize

    SciTech Connect

    Not Available

    1984-04-01

    Transposition of the mobile sequence Dissociation to an R allele which confers seed but not plant color (Sc) destabilizes expression giving spotted kernels. Removal of the corresponding regulator from the genome immobilizes Ds at R. The resulting (Sc)Ds derivatives are colorless or pale seeded and stable as homozygotes. Strong seed color is rescued through recombination in heterozygotes of (Sc)Ds with an allele which confers only plant color, (P). Such crossovers provide a means of (1) mapping the position of Ds insertions within (Sc) relative to the site which distinguishes (Sc) from (P) action, and (2) systematically mutagenizing (P) and other such R elements by transferring Ds from (Sc) to homologous sites by recombination.

  8. Tissue-specific accumulation of MURB, a protein encoded by MuDR, the autonomous regulator of the Mutator transposable element family.

    PubMed Central

    Donlin, M J; Lisch, D; Freeling, M

    1995-01-01

    The Mutator (Mu) system of transposable elements is highly mutagenic and can maintain high levels of activity through multiple generations due to frequent transpositions of both its autonomous and nonautonomous components. This family also shows pronounced developmental regulation. Most notable is the very low frequency of germinal reversions, despite the high levels of somatic transpositions and excisions, and the high frequency of germinally transmitted duplication events. Here, we report the production of antibodies raised against MURB, one of two proteins encoded by MuDR, the autonomous regulator of the Mu family. Immunolocalizations performed using anti-MURB antibodies reveal that this protein is present in specific tissues during male inflorescence development. Throughout much of development, MURB is detected at the highest levels in cell lineages that may find themselves in the germ line, but no MURB is detected in microspore mother cells. These cells are the direct precursors to pollen. Based on these observations as well as previous data, we discuss the relationship between the expression of MURB and developmental regulation of Mu activity. PMID:8718617

  9. Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays ssp. mays) genome.

    PubMed

    Diez, Concepcion M; Meca, Esteban; Tenaillon, Maud I; Gaut, Brandon S

    2014-04-01

    Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24:22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome. PMID:24743518

  10. Multitasking of the piRNA Silencing Machinery: Targeting Transposable Elements and Foreign Genes in the Bdelloid Rotifer Adineta vaga.

    PubMed

    Rodriguez, Fernando; Arkhipova, Irina R

    2016-05-01

    RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piwi-interacting RNAs (piRNAs) are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome of Adineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), is characterized by massive levels of horizontal gene transfer, by unusually low transposon content, and by highly diversified RNA-mediated silencing machinery. Here, we investigate genome-wide distribution of pi-like small RNAs, which in A. vaga are 25-31 nucleotides in length and have a strong 5'-uridine bias, while lacking ping-pong amplification signatures. In agreement with expectations, 71% of mapped reads corresponded to annotated transposons, with 93% of these reads being in the antisense orientation. Unexpectedly, a significant fraction of piRNAs originate from predicted coding regions corresponding to genes of putatively foreign origin. The distribution of piRNAs across foreign genes is not biased toward 3'-UTRs, instead resembling transposons in uniform distribution pattern throughout the gene body, and in predominantly antisense orientation. We also find that genes with small RNA coverage, including a number of genes of metazoan origin, are characterized by higher occurrence of telomeric repeats in the surrounding genomic regions, and by higher density of transposons in the vicinity, which have the potential to promote antisense transcription. Our findings highlight the complex interplay between RNA-based silencing processes and acquisition of genes at the genome periphery, which can result either in their loss or eventual domestication and integration into the host genome. PMID:27017627

  11. Phytophthora infestans Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements.

    PubMed

    Åsman, Anna K M; Fogelqvist, Johan; Vetukuri, Ramesh R; Dixelius, Christina

    2016-08-01

    Phytophthora spp. encode large sets of effector proteins and distinct populations of small RNAs (sRNAs). Recent evidence has suggested that pathogen-derived sRNAs can modulate the expression of plant defense genes. Here, we studied the sRNA classes and functions associated with Phytophthora infestans Argonaute (Ago) proteins. sRNAs were co-immunoprecipitated with three PiAgo proteins and deep sequenced. Twenty- to twenty-two-nucleotide (nt) sRNAs were identified as the main interaction partners of PiAgo1 and high enrichment of 24-26-nt sRNAs was seen in the PiAgo4-bound sample. The frequencies and sizes of transposable element (TE)-derived sRNAs in the different PiAgo libraries suggested diversified roles of the PiAgo proteins in the control of different TE classes. We further provide evidence for the involvement of PiAgo1 in the P. infestans microRNA (miRNA) pathway. Protein-coding genes are probably regulated by the shared action of PiAgo1 and PiAgo5, as demonstrated by analysis of differential expression. An abundance of sRNAs from genes encoding host cell death-inducing Crinkler (CRN) effectors was bound to PiAgo1, implicating this protein in the regulation of the expanded CRN gene family. The data suggest that PiAgo1 plays an essential role in gene regulation and that at least two RNA silencing pathways regulate TEs in the plant-pathogenic oomycete P. infestans. PMID:27010746

  12. Parafoveal Processing of Transposed-Letter Words and Nonwords: Evidence against Parafoveal Lexical Activation

    ERIC Educational Resources Information Center

    Johnson, Rebecca L.; Dunne, Maxine D.

    2012-01-01

    The current experiments explored the parafoveal processing of transposed-letter (TL) neighbors by using an eye-movement-contingent boundary change paradigm. In Experiment 1 readers received a parafoveal preview of a target word (e.g., "calm") that was either (1) identical to the target word ("calm"), (2) a TL-neighbor ("clam"), or (3) a…

  13. Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element.

    PubMed Central

    Schartl, M; Hornung, U; Gutbrod, H; Volff, J N; Wittbrodt, J

    1999-01-01

    The overexpression of the Xmrk oncogene (ONC-Xmrk) in pigment cells of certain Xiphophorus hybrids has been found to be the primary change that results in the formation of malignant melanoma. Spontaneous mutant stocks have been isolated that have lost the ability to induce tumor formation when crossed with Xiphophorus helleri. Two of these loss-of-function mutants were analyzed for genetic defects in ONC-Xmrk's. In the lof-1 mutant a novel transposable element, TX-1, has jumped into ONC-Xmrk, leading to a disruption of the gene and a truncated protein product lacking the carboxyterminal domain of the receptor tyrosine kinase. TX-1 is obviously an active LTR-containing retrotransposon in Xiphophorus that was not found in other fish species outside the family Poeciliidae. Surprisingly, it does not encode any protein, suggesting the existence of a helper function for this retroelement. In the lof-2 mutant the entire ONC-Xmrk gene was found to be deleted. These data show that ONC-Xmrk is indeed the tumor-inducing gene of Xiphophorus and thus the critical constituent of the tumor (Tu) locus. PMID:10545466

  14. The Tc1/mariner transposable element family shapes genetic variation and gene expression in the protist Trichomonas vaginalis

    PubMed Central

    2014-01-01

    Background Trichomonas vaginalis is the most prevalent non-viral sexually transmitted parasite. Although the protist is presumed to reproduce asexually, 60% of its haploid genome contains transposable elements (TEs), known contributors to genome variability. The availability of a draft genome sequence and our collection of >200 global isolates of T. vaginalis facilitate the study and analysis of TE population dynamics and their contribution to genomic variability in this protist. Results We present here a pilot study of a subset of class II Tc1/mariner TEs that belong to the T. vaginalis Tvmar1 family. We report the genetic structure of 19 Tvmar1 loci, their ability to encode a full-length transposase protein, and their insertion frequencies in 94 global isolates from seven regions of the world. While most of the Tvmar1 elements studied exhibited low insertion frequencies, two of the 19 loci (locus 1 and locus 9) show high insertion frequencies of 1.00 and 0.96, respectively. The genetic structuring of the global populations identified by principal component analysis (PCA) of the Tvmar1 loci is in general agreement with published data based on genotyping, showing that Tvmar1 polymorphisms are a robust indicator of T. vaginalis genetic history. Analysis of expression of 22 genes flanking 13 Tvmar1 loci indicated significantly altered expression of six of the genes next to five Tvmar1 insertions, suggesting that the insertions have functional implications for T. vaginalis gene expression. Conclusions Our study is the first in T. vaginalis to describe Tvmar1 population dynamics and its contribution to genetic variability of the parasite. We show that a majority of our studied Tvmar1 insertion loci exist at very low frequencies in the global population, and insertions are variable between geographical isolates. In addition, we observe that low frequency insertion is related to reduced or abolished expression of flanking genes. While low insertion frequencies might be

  15. The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene.

    PubMed Central

    Menssen, A; Höhmann, S; Martin, W; Schnable, P S; Peterson, P A; Saedler, H; Gierl, A

    1990-01-01

    The A2 locus of Zea mays, identified as one of the genes affecting anthocyanin biosynthesis, was cloned using the transposable elements rcy and dSpm as gene tags. The A2 gene encodes a putative protein of 395 amino acids and is devoid of introns. Two a2-m1 alleles, containing dSpm insertions of different sizes, were characterized. The dSpm element from the original state allele has perfect termini and undergoes frequent transposition. The element from the class II state allele is no longer competent to transpose. It has retained the 13 bp terminal inverted repeat but has lost all subterminal sites at the 5' end, which are recognized by tnpA protein, the most abundant product of the En/Spm transposable element system. The relatively high A2 gene expression of one a2-m1 allele is due to removal of almost all dSpm sequences by splicing. The slightly altered A2 enzyme is still functional as shown by complementation of an a2 mutant with the corresponding cDNA. The 5' and 3' splice sites are constituted by the termini of the dSpm element; it therefore represents a novel intron of the A2 gene. Images Fig. 3. Fig. 4. Fig. 6. Fig. 8. PMID:2170105

  16. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs

    PubMed Central

    Kuang, Hanhui; Padmanabhan, Chellappan; Li, Feng; Kamei, Ayako; Bhaskar, Pudota B.; Ouyang, Shu; Jiang, Jiming; Buell, C. Robin; Baker, Barbara

    2009-01-01

    Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the broader functional impact of these short TE insertions in genes is largely unknown. We identified 22 families of MITEs in the Solanaceae (MiS1–MiS22) and found abundant MiS insertions in Solanaceae genomic DNA and expressed sequence tags (EST). Several Solanaceae MITEs generate genome changes that potentially affect gene function and regulation, most notably, a MiS insertion that provides a functionally indispensable alternative exon in the tobacco mosaic virus N resistance gene. We show that MITEs generate small RNAs that are primarily 24 nt in length, as detected by Northern blot hybridization and by sequencing small RNAs of Solanum demissum, Nicotiana glutinosa, and Nicotiana benthamiana. Additionally, we show that stable RNAi lines silencing DICER-LIKE3 (DCL3) in tobacco and RNA-dependent RNA polymerase 2 (RDR2) in potato cause a reduction in 24-nt MITE siRNAs, suggesting that, as in Arabidopsis, TE-derived siRNA biogenesis is DCL3 and RDR2 dependent. We provide evidence that DICER-LIKE4 (DCL4) may also play a role in MITE siRNA generation in the Solanaceae. PMID:19037014

  17. Alternative splicing and co-option of transposable elements: the case of TMPO/LAP2α and ZNF451 in mammals.

    PubMed

    Abascal, Federico; Tress, Michael L; Valencia, Alfonso

    2015-07-15

    Transposable elements constitute a large fraction of vertebrate genomes and, during evolution, may be co-opted for new functions. Exonization of transposable elements inserted within or close to host genes is one possible way to generate new genes, and alternative splicing of the new exons may represent an intermediate step in this process. The genes TMPO and ZNF451 are present in all vertebrate lineages. Although they are not evolutionarily related, mammalian TMPO and ZNF451 do have something in common-they both code for splice isoforms that contain LAP2alpha domains. We found that these LAP2alpha domains have sequence similarity to repetitive sequences in non-mammalian genomes, which are in turn related to the first ORF from a DIRS1-like retrotransposon. This retrotransposon domestication happened separately and resulted in proteins that combine retrotransposon and host protein domains. The alternative splicing of the retrotransposed sequence allowed the production of both the new and the untouched original isoforms, which may have contributed to the success of the colonization process. The LAP2alpha-specific isoform of TMPO (LAP2α) has been co-opted for important roles in the cell, whereas the ZNF451 LAP2alpha isoform is evolving under strong purifying selection but remains uncharacterized. PMID:25735770

  18. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs.

    PubMed

    Glinsky, Gennadi V

    2015-06-01

    Despite significant progress in the structural and functional characterization of the human genome, understanding of the mechanisms underlying the genetic basis of human phenotypic uniqueness remains limited. Here, I report that transposable element-derived sequences, most notably LTR7/HERV-H, LTR5_Hs, and L1HS, harbor 99.8% of the candidate human-specific regulatory loci (HSRL) with putative transcription factor-binding sites in the genome of human embryonic stem cells (hESC). A total of 4,094 candidate HSRL display selective and site-specific binding of critical regulators (NANOG [Nanog homeobox], POU5F1 [POU class 5 homeobox 1], CCCTC-binding factor [CTCF], Lamin B1), and are preferentially located within the matrix of transcriptionally active DNA segments that are hypermethylated in hESC. hESC-specific NANOG-binding sites are enriched near the protein-coding genes regulating brain size, pluripotency long noncoding RNAs, hESC enhancers, and 5-hydroxymethylcytosine-harboring regions immediately adjacent to binding sites. Sequences of only 4.3% of hESC-specific NANOG-binding sites are present in Neanderthals' genome, suggesting that a majority of these regulatory elements emerged in Modern Humans. Comparisons of estimated creation rates of novel TF-binding sites revealed that there was 49.7-fold acceleration of creation rates of NANOG-binding sites in genomes of Chimpanzees compared with the mouse genomes and further 5.7-fold acceleration in genomes of Modern Humans compared with the Chimpanzees genomes. Preliminary estimates suggest that emergence of one novel NANOG-binding site detectable in hESC required 466 years of evolution. Pathway analysis of coding genes that have hESC-specific NANOG-binding sites within gene bodies or near gene boundaries revealed their association with physiological development and functions of nervous and cardiovascular systems, embryonic development, behavior, as well as development of a diverse spectrum of pathological conditions

  19. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs

    PubMed Central

    Glinsky, Gennadi V.

    2015-01-01

    Despite significant progress in the structural and functional characterization of the human genome, understanding of the mechanisms underlying the genetic basis of human phenotypic uniqueness remains limited. Here, I report that transposable element-derived sequences, most notably LTR7/HERV-H, LTR5_Hs, and L1HS, harbor 99.8% of the candidate human-specific regulatory loci (HSRL) with putative transcription factor-binding sites in the genome of human embryonic stem cells (hESC). A total of 4,094 candidate HSRL display selective and site-specific binding of critical regulators (NANOG [Nanog homeobox], POU5F1 [POU class 5 homeobox 1], CCCTC-binding factor [CTCF], Lamin B1), and are preferentially located within the matrix of transcriptionally active DNA segments that are hypermethylated in hESC. hESC-specific NANOG-binding sites are enriched near the protein-coding genes regulating brain size, pluripotency long noncoding RNAs, hESC enhancers, and 5-hydroxymethylcytosine-harboring regions immediately adjacent to binding sites. Sequences of only 4.3% of hESC-specific NANOG-binding sites are present in Neanderthals’ genome, suggesting that a majority of these regulatory elements emerged in Modern Humans. Comparisons of estimated creation rates of novel TF-binding sites revealed that there was 49.7-fold acceleration of creation rates of NANOG-binding sites in genomes of Chimpanzees compared with the mouse genomes and further 5.7-fold acceleration in genomes of Modern Humans compared with the Chimpanzees genomes. Preliminary estimates suggest that emergence of one novel NANOG-binding site detectable in hESC required 466 years of evolution. Pathway analysis of coding genes that have hESC-specific NANOG-binding sites within gene bodies or near gene boundaries revealed their association with physiological development and functions of nervous and cardiovascular systems, embryonic development, behavior, as well as development of a diverse spectrum of pathological conditions

  20. Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize

    PubMed Central

    Zhang, Qiang; Arbuckle, John; Wessler, Susan R.

    2000-01-01

    A 314-bp DNA element called Heartbreaker-hm1 (Hbr-hm1) was previously identified in the 3′ untranslated region of a mutant allele of the maize disease resistance gene HM1. This element has structural features of miniature inverted-repeat transposable elements (MITEs) and is a member of a large family of approximately 4,000 copies in the maize genome. Unlike previously described MITEs, most members of the Hbr family display over 90% sequence identity. This, coupled with the insertion of an Hbr element into an allele of the HM1 gene, suggested that this family might have spread recently throughout the genome. Consistent with this view is the finding that Hbr insertion sites are remarkably polymorphic. Ten of ten loci containing Hbr elements were found to be polymorphic for the presence or absence of Hbr among a collection of maize inbred lines and teosinte strains. Despite the fact that over 80% of the maize genome contain moderate to highly repetitive DNA, we find that randomly chosen Hbr elements are predominantly in single or low copy regions. Furthermore, when used to query both the public and private databases of plant genes, over 50% of the sequences flanking these Hbr elements resulted in significant “hits.” Taken together, these data indicate that the presence or absence of Hbr elements is a significant contributory factor to the high level of polymorphism associated with maize genic regions. PMID:10655501

  1. Terminal-Repeat Retrotransposons with GAG Domain in Plant Genomes: A New Testimony on the Complex World of Transposable Elements

    PubMed Central

    Chaparro, Cristian; Gayraud, Thomas; de Souza, Rogerio Fernandes; Domingues, Douglas Silva; Akaffou, Sélastique; Laforga Vanzela, Andre Luis; de Kochko, Alexandre; Rigoreau, Michel; Crouzillat, Dominique; Hamon, Serge; Hamon, Perla; Guyot, Romain

    2015-01-01

    A novel structure of nonautonomous long terminal repeat (LTR) retrotransposons called terminal repeat with GAG domain (TR-GAG) has been described in plants, both in monocotyledonous, dicotyledonous and basal angiosperm genomes. TR-GAGs are relatively short elements in length (<4 kb) showing the typical features of LTR-retrotransposons. However, they carry only one open reading frame coding for the GAG precursor protein involved for instance in transposition, the assembly, and the packaging of the element into the virus-like particle. GAG precursors show similarities with both Copia and Gypsy GAG proteins, suggesting evolutionary relationships of TR-GAG elements with both families. Despite the lack of the enzymatic machinery required for their mobility, strong evidences suggest that TR-GAGs are still active. TR-GAGs represent ubiquitous nonautonomous structures that could be involved in the molecular diversities of plant genomes. PMID:25573958

  2. Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing) by the Topoisomerase II inhibitor, Etoposide, in rice

    PubMed Central

    2012-01-01

    Background Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. Results To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. Conclusions Our results demonstrate that etoposide imposes a similar genotoxic stress on

  3. Early transposable element insertion in intron 9 of the Hsf4 gene results in autosomal recessive cataracts in lop11 and ldis1 mice.

    PubMed

    Talamas, Elijah; Jackson, Lavinia; Koeberl, Matthew; Jackson, Todd; McElwee, John L; Hawes, Norman L; Chang, Bo; Jablonski, Monica M; Sidjanin, D J

    2006-07-01

    Lens opacity 11 (lop11) is an autosomal recessive mouse cataract mutation that arose spontaneously in the RIIIS/J strain. At 3 weeks of age mice exhibit total cataracts with vacuoles. The lop11 locus was mapped to mouse chromosome 8. Analysis of the mouse genome for the lop11 critical region identified Hsf4 as a candidate gene. Molecular evaluation of Hsf4 revealed an early transposable element (ETn) in intron 9 inserted 61 bp upstream of the intron/exon junction. The same mutation was also identified in a previously mapped cataract mutant, ldis1. The ETn insertion altered splicing and expression of the Hsf4 gene, resulting in the truncated Hsf4 protein. In humans, mutations in HSF4 have been associated with both autosomal dominant and recessive cataracts. The lop11 mouse is an excellent resource for evaluating the role of Hsf4 in transparency of the lens. PMID:16595169

  4. Early transposable element insertion in intron 9 of the Hsf4 gene results in autosomal recessive cataracts in lop11 and ldis1 mice

    PubMed Central

    Talamas, Elijah; Jackson, Lavinia; Koeberl, Matthew; Jackson, Todd; McElwee, John L.; Hawes, Norman L.; Chang, Bo; Jablonski, Monica M.; Sidjanin, D.J.

    2006-01-01

    Lens opacity 11 (lop11) is an autosomal recessive mouse cataract mutation that arose spontaneously in the RIIIS/J strain. At 3 weeks of age mice exhibit total cataracts with vacuoles. The lop11 locus was mapped to mouse chromosome 8. Analysis of the mouse genome for the lop11 critical region identified Hsf4 as a candidate gene. Molecular evaluation of Hsf4 revealed an early transposable element (ETn) in intron 9 inserted 61 bp upstream of the intron/exon junction. The same mutation was also identified in a previously mapped cataract mutant, ldis1. The ETn insertion altered splicing and expression of the Hsf4 gene, resulting in the truncated Hsf4 protein. In humans, mutations in HSF4 have been associated with both autosomal dominant and recessive cataracts. The lop11 mouse is an excellent resource for evaluating the role of Hsf4 in transparency of the lens. PMID:16595169

  5. Molecular characterization of a rice mutator-phenotype derived from an incompatible cross-pollination reveals transgenerational mobilization of multiple transposable elements and extensive epigenetic instability

    PubMed Central

    Wang, Hongyan; Chai, Yang; Chu, Xiucheng; Zhao, Yunyang; Wu, Ying; Zhao, Jihong; Ngezahayo, Frédéric; Xu, Chunming; Liu, Bao

    2009-01-01

    Background Inter-specific hybridization occurs frequently in plants, which may induce genetic and epigenetic instabilities in the resultant hybrids, allopolyploids and introgressants. It remains unclear however whether pollination by alien pollens of an incompatible species may impose a "biological stress" even in the absence of genome-merger or genetic introgression, whereby genetic and/or epigenetic instability of the maternal recipient genome might be provoked. Results We report here the identification of a rice mutator-phenotype from a set of rice plants derived from a crossing experiment involving two remote and apparently incompatible species, Oryza sativa L. and Oenothera biennis L. The mutator-phenotype (named Tong211-LP) showed distinct alteration in several traits, with the most striking being substantially enlarged panicles. Expectably, gel-blotting by total genomic DNA of the pollen-donor showed no evidence for introgression. Characterization of Tong211-LP (S0) and its selfed progenies (S1) ruled out contamination (via seed or pollen) or polyploidy as a cause for its dramatic phenotypic changes, but revealed transgenerational mobilization of several previously characterized transposable elements (TEs), including a MITE (mPing), and three LTR retrotransposons (Osr7, Osr23 and Tos17). AFLP and MSAP fingerprinting revealed extensive, transgenerational alterations in cytosine methylation and to a less extent also genetic variation in Tong211-LP and its immediate progenies. mPing mobility was found to correlate with cytosine methylation alteration detected by MSAP but not with genetic variation detected by AFLP. Assay by q-RT-PCR of the steady-state transcript abundance of a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, and small interference RNA (siRNA) pathway-related proteins showed that, relative to the rice parental line, heritable perturbation in expression of 12 out of the 13 genes occurred

  6. An Immunity-Triggering Effector from the Barley Smut Fungus Ustilago hordei Resides in an Ustilaginaceae-Specific Cluster Bearing Signs of Transposable Element-Assisted Evolution

    PubMed Central

    Ali, Shawkat; Laurie, John D.; Linning, Rob; Cervantes-Chávez, José Antonio; Gaudet, Denis; Bakkeren, Guus

    2014-01-01

    The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host

  7. Quantum states with strong positive partial transpose

    SciTech Connect

    Chruscinski, Dariusz; Jurkowski, Jacek; Kossakowski, Andrzej

    2008-02-15

    We construct a large class of bipartite M x N quantum states which defines a proper subset of states with positive partial transposes (PPTs). Any state from this class has PPT but the positivity of its partial transposition is recognized with respect to canonical factorization of the original density operator. We propose to call elements from this class states with strong positive partial transposes (SPPTs). We conjecture that all SPPT states are separable.

  8. Epigenetic mechanisms and associated brain circuits in the regulation of positive emotions: A role for transposable elements.

    PubMed

    Gaudi, Simona; Guffanti, Guia; Fallon, James; Macciardi, Fabio

    2016-10-15

    Epigenetic programming and reprogramming are at the heart of cellular differentiation and represent developmental and evolutionary mechanisms in both germline and somatic cell lines. Only about 2% of our genome is composed of protein-coding genes, while the remaining 98%, once considered "junk" DNA, codes for regulatory/epigenetic elements that control how genes are expressed in different tissues and across time from conception to death. While we already know that epigenetic mechanisms are at play in cancer development and in regulating metabolism (cellular and whole body), the role of epigenetics in the developing prenatal and postnatal brain, and in maintaining a proper brain activity throughout the various stages of life, in addition to having played a critical role in human evolution, is a relatively new domain of knowledge. Here we present the current state-of-the-art techniques and results of these studies within the domain of emotions, and then speculate on how genomic and epigenetic mechanisms can modify and potentially alter our emotional (limbic) brain and affect our social interactions. J. Comp. Neurol. 524:2944-2954, 2016. © 2016 Wiley Periodicals, Inc. PMID:27224878

  9. DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons)

    PubMed Central

    2014-01-01

    Background The Drosophila INterspersed Elements-1 (DINE-1/INE1) transposable elements (TEs) are the most abundant component of the Drosophila melanogaster genome and have been associated with functional gene duplications. DINE-1 TEs do not encode any proteins (non-autonomous) thus are moved by autonomous partners. The identity of the autonomous partners has been a mystery. They have been allied to Helitrons (rolling-circle transposons), MITEs (DNA transposons), and non-LTR retrotransposons by different authors. Results We report multiple lines of bioinformatic evidence that illustrate the relationship of DINE-1 like TEs to endonuclease-encoding rolling-circle TEs (Helentrons). The structural features of Helentrons are described, which resemble the organization of the non-autonomous partners, but differ significantly from canonical Helitrons. In addition to the presence of an endonuclease domain fused to the Rep/Helicase protein, Helentrons have distinct structural features. Evidence is presented that illustrates that Helentrons are widely distributed in invertebrate, fish, and fungal genomes. We describe an intermediate family from the Phytophthora infestans genome that phylogenetically groups with Helentrons but that displays Helitron structure. In addition, evidence is presented that Helentrons can capture gene fragments in a pattern reminiscent of canonical Helitrons. Conclusions We illustrate the relationship of DINE-1 and related TE families to autonomous partners, the Helentrons. These findings will allow their proper classification and enable a more accurate understanding of the contribution of rolling-circle transposition to the birth of new genes, gene networks, and genome composition. PMID:24959209

  10. A LINE-like transposable element in Drosophila, the I factor, encodes a protein with properties similar to those of retroviral nucleocapsids.

    PubMed

    Dawson, A; Hartswood, E; Paterson, T; Finnegan, D J

    1997-07-16

    I factors are members of the LINE-like family of transposable elements and move by reverse transcription of an RNA intermediate. Complete I factors contain two open reading frames. The amino acid sequence encoded by the first of these, ORF1, includes the motif CX2CX4HX4C that is characteristic of the nucleocapsid domain of retroviral gag polypeptides followed by a copy of the slightly different sequences CX2CX4HX6C and CX2CX9HX6C. The function of this protein is unknown. We have expressed this protein in Escherichia coli and Spodoptera frugiperda cells and have shown that it binds both DNA and RNA but without any evidence for sequence specificity. The properties of deletion derivatives of the protein indicate that more than one region is responsible for DNA binding and that the CCHC motif is not essential for this. The ORF1 protein expressed in either E. coli or Spodoptera cells forms high molecular weight structures that require the region of the protein including the CCHC motif for their formation. This protein can also accelerate the annealing of complementary single-stranded oligonucleotides. These results suggest that this protein may associate with the RNA transposition intermediates of the I factor to form particles that enter the nucleus during transposition and that it may stimulate both the priming of reverse transcription and integration. This may be generally true for the product of the first open reading frame of LINE-like elements. PMID:9250689

  11. The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element.

    PubMed Central

    Haynes, S R; Toomey, T P; Leinwand, L; Jelinek, W R

    1981-01-01

    A consensus sequence has been determined for a major interspersed deoxyribonucleic acid repeat in the genome of Chinese hamster ovary cells (CHO cells). This sequence is extensively homologous to (i) the human Alu sequence (P. L. Deininger et al., J. Mol. Biol., in press), (ii) the mouse B1 interspersed repetitious sequence (Krayev et al., Nucleic Acids Res. 8:1201-1215, 1980) (iii) an interspersed repetitious sequence from African green monkey deoxyribonucleic acid (Dhruva et al., Proc. Natl. Acad. Sci. U.S.A. 77:4514-4518, 1980) and (iv) the CHO and mouse 4.5S ribonucleic acid (this report; F. Harada and N. Kato, Nucleic Acids Res. 8:1273-1285, 1980). Because the CHO consensus sequence shows significant homology to the human Alu sequence it is termed the CHO Alu-equivalent sequence. A conserved structure surrounding CHO Alu-equivalent family members can be recognized. It is similar to that surrounding the human Alu and the mouse B1 sequences, and is represented as follows: direct repeat-CHO-Alu-A-rich sequence-direct repeat. A composite interspersed repetitious sequence has been identified. Its structure is represented as follows: direct repeat-residue 47 to 107 of CHO-Alu-non-Alu repetitious sequence-A-rich sequence-direct repeat. Because the Alu flanking sequences resemble those that flank known transposable elements, we think it likely that the Alu sequence dispersed throughout the mammalian genome by transposition. Images PMID:9279371

  12. Genome-wide mapping of 5-hydroxymethylcytosine in three rice cultivars reveals its preferential localization in transcriptionally silent transposable element genes.

    PubMed

    Wang, Xi-liang; Song, Shu-hui; Wu, Yong-Sheng; Li, Yu-Li; Chen, Ting-ting; Huang, Zhi-yuan; Liu, Shuo; Dunwell, Thomas L; Pfeifer, Gerd P; Dunwell, Jim M; Wamaedeesa, Raheema; Ullah, Ihsan; Wang, Yinsheng; Hu, Song-nian

    2015-11-01

    5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions, and mainly located in transposable elements (TEs), especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification. PMID:26272901

  13. Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish.

    PubMed

    Prieto, J L; Pouilly, N; Jenczewski, E; Deragon, J M; Chèvre, A M

    2005-08-01

    The screening of wild populations for evidence of gene flow from a crop to a wild related species requires the unambiguous detection of crop genes within the genome of the wild species, taking into account the intraspecific variability of each species. If the crop and wild relatives share a common ancestor, as is the case for the Brassica crops and their wild relatives (subtribe Brassiceae), the species-specific markers needed to make this unambiguous detection are difficult to identify. In the model oilseed rape (Brassica napus, AACC, 2n = 38)-wild radish (Raphanus raphanistrum, RrRr, 2n = 18) system, we utilized the presence or absence of a short-interspersed element (SINE) at a given locus to develop oilseed rape-specific markers, as SINE insertions are irreversible. By means of sequence-specific amplified polymorphism (SINE-SSAP) reactions, we identified and cloned 67 bands specific to the oilseed rape genome and absent from that of wild radish. Forty-seven PCR-specific markers were developed from three combinations of primers anchored either in (1) the 5'- and 3'-genomic sequences flanking the SINE, (2) the 5'-flanking and SINE internal sequences or (3) the SINE internal and flanking 3'-sequences. Seventeen markers were monomorphic whatever the oilseed rape varieties tested, whereas 30 revealed polymorphism and behaved either as dominant (17) or co-dominant (13) markers. Polymorphic markers were mapped on 19 genomic regions assigned to ten linkage groups. The markers developed will be efficient tools to trace the occurrence and frequency of introgressions of oilseed rape genomic region within wild radish populations. PMID:15942756

  14. The Evolutionary Dynamics of Ribosomal Genes, Histone H3, and Transposable Rex Elements in the Genome of Atlantic Snappers.

    PubMed

    Costa, Gideão Wagner Werneck Félix da; Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Molina, Wagner Franco

    2016-03-01

    Lutjanidae is a family of primarily marine and carnivorous fishes distributed in the Atlantic, Indian, and Pacific oceans, with enormous economic and ecological importance. In order to better clarify the conservative chromosomal evolution of Lutjanidae, we analyzed the evolutionary dynamics of 5 repetitive DNA classes in 5 Lutjanus and in 1 Ocyurus species from the Western Atlantic. The ribosomal 18S sites were generally located in a single chromosome pair, except for L. jocu and L. alexandrei where they are found in 2 pairs. In turn, the 5S rDNA sites are unique, terminal and nonsyntenic with the 18S rDNA sites. In 3 species analyzed, H3 hisDNA genes were found in 1 chromosomal pair. However, while L. jocu presented 2 H3 sites, O. chrysurus showed a noteworthy dispersion of this gene in almost all chromosomes of the karyotype. Retrotransposons Rex1 and Rex3 do not exhibit any association with the explosive distribution of H3 sequences in O. chrysurus. The low compartmentalization of Rex elements, in addition to the general nondynamic distribution of ribosomal and H3 genes, corroborate the karyotype conservatism in Lutjanidae species, also at the microstructural level. However, some "disturbing evolutionary waves" can break down this conservative scenario, as evidenced by the massive random dispersion of H3 hisDNA in the genome of O. chrysurus. The implication of the genomic expansion of H3 histone genes and their functionality remain unknown, although suggesting that they have higher evolutionary dynamics than previously thought. PMID:26792596

  15. Miniature Inverted–Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa

    PubMed Central

    Lu, Chen; Chen, Jiongjiong; Zhang, Yu; Hu, Qun; Su, Wenqing; Kuang, Hanhui

    2012-01-01

    Miniature inverted–repeat transposable elements (MITEs) are predicted to play important roles on genome evolution. We developed a BLASTN-based approach for de novo identification of MITEs and systematically analyzed MITEs in rice genome. The genome of rice cultivar Nipponbare (Oryza sativa ssp. japonica) harbors 178,533 MITE-related sequences classified into 338 families. Pairwise nucleotide diversity and phylogenetic tree analysis indicated that individual MITE families were resulted from one or multiple rounds of amplification bursts. The timing of amplification burst varied considerably between different MITE families or subfamilies. MITEs are associated with 23,623 (58.2%) genes in rice genome. At least 7,887 MITEs are transcribed and more than 3,463 were transcribed with rice genes. The MITE sequences transcribed with rice coding genes form 1,130 pairs of potential natural sense/antisense transcripts. MITEs generate 23.5% (183,837 of 781,885) of all small RNAs identified from rice. Some MITE families generated small RNAs mainly from the terminals, while other families generated small RNAs predominantly from the central region. More than half (51.8%) of the MITE-derived small RNAs were generated exclusively by MITEs located away from genes. Genome-wide analysis showed that genes associated with MITEs have significantly lower expression than genes away from MITEs. Approximately 14.8% of loci with full-length MITEs have presence/absence polymorphism between rice cultivars 93-11 (O. sativa ssp. indica) and Nipponbare. Considering that different sets of genes may be regulated by MITE-derived small RNAs in different genotypes, MITEs provide considerable diversity for O. sativa. PMID:22096216

  16. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila.

    PubMed Central

    Waters, L C; Zelhof, A C; Shaw, B J; Ch'ang, L Y

    1992-01-01

    P450-A and P450-B are electrophoretically defined subsets of cytochrome P450 enzymes in Drosophila melanogaster. P450-A is present among all strains tested, whereas expression of P450-B is associated with resistance to insecticides. Monoclonal antibodies were used to obtain cDNA clones for an enzyme from each P450 subset (i.e., P450-A1 and P450-B1). The P450-B1 cDNA was sequenced and shown to code for a P450 of 507 amino acids. Its gene has been named CYP6A2. Comparative molecular analyses of a pair of susceptible, 91-C, and resistant, 91-R, Drosophila strains were made. There was 20-30 times more P450-B1 mRNA in 91-R than in 91-C, and the small amount of P450-B1 mRNA in 91-C was significantly larger in size than that in 91-R. The P450-B1 gene in 91-R was structurally different from that in 91-C but was not amplified. The P450-B1 gene in 91-C contained a solitary long terminal repeat of transposable element 17.6 in its 3' untranslated region. It was absent in the P450-B1 gene of 91-R. On the basis of features of the long terminal repeat and its location in the gene of the susceptible fly, we propose that a posttranscriptional mechanism involving mRNA stability could be involved in regulating P450-B1 gene expression. Images PMID:1317576

  17. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis

    PubMed Central

    Oliver, Keith R; Greene, Wayne K

    2012-01-01

    In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra-genomic potential” due to TE-Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity. PMID:23170223

  18. Jumping Genes: The Transposable DNAs of Bacteria.

    ERIC Educational Resources Information Center

    Berg, Claire M.; Berg, Douglas E.

    1984-01-01

    Transposons are transposable elements that carry genes for antibiotic resistance. Provides background information on the structure and organization of these "jumping genes" in bacteria. Also describes the use of transposons in tagging genes and lists pertinent references and resource materials. (DH)

  19. Activation and inactivation of Pseudomonas stutzeri methylbenzene catabolism pathways mediated by a transposable element

    SciTech Connect

    Bolognese, F.; Di Lecce, C.; Galli, E.; Barbieri, P.

    1999-05-01

    The arrangement of the genes involved in o-xylene, m-xylene, and p-xylene catabolism was investigated in three Pseudomonas stutzeri strains: the wild-type strain OX1, which is able to grow on o-xylene but not on the meta and para isomers; the mutant M1, which grows on m-xylene and p-xylene but is unable to utilize the ortho isomer; and the revertant R1, which can utilize all the three isomers of xylene. A 3-kb insertion sequence (IS) termed ISPs1, which inactivates the m-xylene and p-xylene catabolic pathway in P. stutzeri OX1 and the o-xylene catabolic genes in P. stutzeri M1, was detected. No IS was detected in the corresponding catabolic regions of the P. stutzeri R1 genome. ISPs1 is present in several copies in the genomes of the three strains. It is flanked by 24-bp imperfect inverted repeats, causes the direct duplication of 8 bp in the target DNA, and seems to be related to the ISL3 family.

  20. The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript

    PubMed Central

    Malone, Colin D.; Mestdagh, Claire; Akhtar, Junaid; Kreim, Nastasja; Deinhard, Pia; Sachidanandam, Ravi; Treisman, Jessica

    2014-01-01

    The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing. PMID:25104425

  1. Sparse Biclustering of Transposable Data

    PubMed Central

    Tan, Kean Ming

    2013-01-01

    We consider the task of simultaneously clustering the rows and columns of a large transposable data matrix. We assume that the matrix elements are normally distributed with a bicluster-specific mean term and a common variance, and perform biclustering by maximizing the corresponding log likelihood. We apply an ℓ1 penalty to the means of the biclusters in order to obtain sparse and interpretable biclusters. Our proposal amounts to a sparse, symmetrized version of k-means clustering. We show that k-means clustering of the rows and of the columns of a data matrix can be seen as special cases of our proposal, and that a relaxation of our proposal yields the singular value decomposition. In addition, we propose a framework for bi-clustering based on the matrix-variate normal distribution. The performances of our proposals are demonstrated in a simulation study and on a gene expression data set. This article has supplementary material online. PMID:25364221

  2. Sparse Biclustering of Transposable Data.

    PubMed

    Tan, Kean Ming; Witten, Daniela M

    2014-01-01

    We consider the task of simultaneously clustering the rows and columns of a large transposable data matrix. We assume that the matrix elements are normally distributed with a bicluster-specific mean term and a common variance, and perform biclustering by maximizing the corresponding log likelihood. We apply an ℓ1 penalty to the means of the biclusters in order to obtain sparse and interpretable biclusters. Our proposal amounts to a sparse, symmetrized version of k-means clustering. We show that k-means clustering of the rows and of the columns of a data matrix can be seen as special cases of our proposal, and that a relaxation of our proposal yields the singular value decomposition. In addition, we propose a framework for bi-clustering based on the matrix-variate normal distribution. The performances of our proposals are demonstrated in a simulation study and on a gene expression data set. This article has supplementary material online. PMID:25364221

  3. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota.

    PubMed Central

    Van Sluys, M A; Tempé, J; Fedoroff, N

    1987-01-01

    We have co-transformed carrot (Daucus carota) and Arabidopsis thaliana with an Agrobacterium tumefaciens non-tumorigenic T-DNA carrying the maize transposable element Activator (Ac) and an Agrobacterium rhizogenes Ri T-DNA. We present evidence that the Ac element transposes in transformed root or root-derived callus cultures of both species. We show that fertile plants can be regenerated from transformed, root-derived callus cultures of Arabidopsis, demonstrating the utility of the Ri plasmid for introducing the maize Ac element into plants. We also present evidence that Ac elements that excise from the transforming T-DNA early after transformation continue to be mobile in carrot root cultures. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2832144

  4. Transposing from the laboratory to the classroom to generate authentic research experiences for undergraduates.

    PubMed

    Burnette, James M; Wessler, Susan R

    2013-02-01

    Large lecture classes and standardized laboratory exercises are characteristic of introductory biology courses. Previous research has found that these courses do not adequately convey the process of scientific research and the excitement of discovery. Here we propose a model that provides beginning biology students with an inquiry-based, active learning laboratory experience. The Dynamic Genome course replicates a modern research laboratory focused on eukaryotic transposable elements where beginning undergraduates learn key genetics concepts, experimental design, and molecular biological skills. Here we report on two key features of the course, a didactic module and the capstone original research project. The module is a modified version of a published experiment where students experience how virtual transposable elements from rice (Oryza sativa) are assayed for function in transgenic Arabidopsis thaliana. As part of the module, students analyze the phenotypes and genotypes of transgenic plants to determine the requirements for transposition. After mastering the skills and concepts, students participate in an authentic research project where they use computational analysis and PCR to detect transposable element insertion site polymorphism in a panel of diverse maize strains. As a consequence of their engagement in this course, students report large gains in their ability to understand the nature of research and demonstrate that they can apply that knowledge to independent research projects. PMID:23172853

  5. Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice.

    PubMed

    Kim, Chul Min; Piao, Hai Long; Park, Soon Ju; Chon, Nam Soo; Je, Byoung Il; Sun, Bingyao; Park, Sung Han; Park, Jin Young; Lee, Eun Jin; Kim, Min Jung; Chung, Woo Sik; Lee, Kon Ho; Lee, Young Suk; Lee, Jeung Joo; Won, Yong Jae; Yi, GiHwan; Nam, Min Hee; Cha, Young Soon; Yun, Doh Won; Eun, Moo Young; Han, Chang-deok

    2004-07-01

    Rapid, large-scale generation of a Ds transposant population was achieved using a regeneration procedure involving tissue culture of seed-derived calli carrying Ac and inactive Ds elements. In the F(2) progeny from genetic crosses between the same Ds and Ac starter lines, most of the crosses produced an independent germinal transposition frequency of 10-20%. Also, many Ds elements underwent immobilization even though Ac was expressed. By comparison, in a callus-derived regenerated population, over 70% of plants carried independent Ds insertions, indicating transposition early in callus formation. In the remaining population, the majority of plants carried only Ac. Most of the new Ds insertions were stably transmitted to a subsequent generation. An exceptionally high proportion of independent transposants in the regenerated population means that selection markers for transposed Ds and continual monitoring of Ac/Ds activities may not necessarily be required. By analyzing 1297 Ds-flanking DNA sequences, a genetic map of 1072 Ds insertion sites was developed. The map showed that Ds elements were transposed onto all of the rice chromosomes, with preference not only near donor sites (36%) but also on certain physically unlinked arms. Populations from both genetic crossing and tissue culture showed the same distribution patterns of Ds insertion sites. The information of these mapped Ds insertion sites was deposited in GenBank. Among them, 55% of Ds elements were on predicted open-reading frame (ORF) regions. Thus, we propose an optimal strategy for the rapid generation of a large population of Ds transposants in rice. PMID:15225289

  6. Germinal and Somatic Activity of the Maize Element Activator (Ac) in Arabidopsis

    PubMed Central

    Keller, J.; Lim, E.; James-Jr., D. W.; Dooner, H. K.

    1992-01-01

    We have investigated the germinal and somatic activity of the maize Activator (Ac) element in Arabidopsis with the objective of developing an efficient transposon-based system for gene isolation in that plant. Transposition activity was assayed with a chimeric marker that consists of the cauliflower mosaic virus 35S promoter and a bacterial streptomycin phosphotransferase gene (SPT). Somatic activity was detected in seedlings germinated on plates containing streptomycin as green-resistant sectors against a background of white-sensitive cells. Germinal excisions resulted in fully green seedlings. The transposition frequency was extremely low when a single copy of the transposon was present, but appeared to increase with an increase in Ac copy number. Plants that were selected as variegated produced an increased number of green progeny. The methylation state of the Ac elements in lines with either low or high levels of excision was assessed by restriction analysis. No difference was found between these lines, indicating that the degree of methylation did not contribute to the level of Ac activity. Germinal excision events were analyzed molecularly and shown to carry reinserted transposons in about 50% of the cases. In several instances, streptomycin-resistant siblings carried the same transposed Ac element, indicating that excision had occurred prior to meiosis in the parent. We discuss parameters that need to be considered to optimize the use of Ac as a transposon tag in Arabidopsis. PMID:1322854

  7. Characterization of EamaT1, a member of maT family of transposable elements from the earthworm Eisenia andrei (Annelida, Oligochaeta).

    PubMed

    Jee, Sang Hyun; Kim, Go Eun; Hong, Seung Hyun; Seo, Sang Beom; Shim, Jae Kuk; Park, Soon Cheol; Choo, Jong Kil

    2007-10-01

    The maT family is a unique clade within the Tc1-mariner superfamily, and their distribution is to date known as being limited to invertebrates. A novel transposon named EamaT1 is described from the genome of the earthworm Eisenia andrei. The full sized EamaT1 was obtained by degenerate and inverse PCR-based amplification. Sequence analysis of multiple copies of the EamaT1, which consisted of 0.9 and 1.4 kb elements, showed that the consensual EamaT1 with inverted terminal repeats (ITRs) of 69 bp was 1,422 bp long and flanked by a duplicated TA dinucleotide. The EamaT1 is present in approximately 120-250 copies per diploid genome but undergoes an inactivation process as a result of accumulating multiple mutations and is nonfunctional. The open reading frame (ORF) of the EamaT1 consensus encoding 356 amino acid sequences of transposase contained a DD37D signature and a conserved paired-like DNA binding motif for the transposition mechanism. The result of ITRs comparison confirmed their consensus terminal sequences (5'-CAGGGTG-3') and AT-rich region on the internal bases for ITRs-transposase interaction. PMID:17609978

  8. The characteristics and functions of a miniature inverted-repeat transposable element TaMITE81 in the 5' UTR of TaCHS7BL from Triticum aestivum.

    PubMed

    Xi, Xinyuan; Li, Na; Li, Shiming; Chen, Wenjie; Zhang, Bo; Liu, Baolong; Zhang, Huaigang

    2016-10-01

    Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in eukaryotic and prokaryotic genomes. In this article, a MITE, TaMITE81, was isolated from the 5' untranslated region (UTR) of TaCHS7BL, chalcone synthase (CHS) catalyzing the first committed step of anthocyanin biosynthesis, in the wheat cultivar 'Opata' with white grain. TaMITE81 was only 81 nucleotides, including a terminal inverted repeat with 39 nucleotides and was flanked by two nucleotides, "TA", target site duplications that were typical features of stowaway-like MITEs. Compared with the wheat cultivar 'Gy115' with purple grain, which is without the insertion, the expression of TaCHS7BL was lower in several organs of 'Opata'. The insertion of TaMITE81 into the 5' UTR of the GUS gene also reduced the transient expression of GUS on the coleoptiles of 'Opata', which means the insertion of TaMITE81 was the reason for the low expression of TaCHS7BL in 'Opata'. But the genotype of TaCHS7BL was not linked to phenotype of grain color in the RILs derived from a cross 'Gy115' and 'Opata'. The TaMITE81 density of the hexaploid variety of T. aestivum was more than 10 times that of diploid relatives, which implies that polyploidization caused the amplification of TaMITE81 homologous sequences. Further research should be conducted on decoding the relationship between TaCHS7BL and other traits relative to anthocyanin biosynthesis in wheat, and discovering the mechanism of TaMITE81 transposon action. PMID:27481288

  9. Transposed compression piston and cylinder

    SciTech Connect

    Ross, M.A.

    1992-04-14

    This patent describes an improved V-type two piston Stirling engine wherein the improvement is a transposed compression piston slidably engaged in a mating cylinder. It comprises: a cylindrical body which is pivotally connected to a connecting rod at a pivot axis which is relatively nearer the outer end of the cylindrical body and has a seal relatively nearer the inner end of the cylindrical body.

  10. Excisions of a defective transposable CACTA element (Tetu1) generate new alleles of a CYCLOIDEA-like gene of Helianthus annuus.

    PubMed

    Fambrini, Marco; Basile, Alice; Salvini, Mariangela; Pugliesi, Claudio

    2014-10-01

    Tubular ray flower (turf) is a sunflower mutant that caught attention because it bears actinomorphic ray flowers, due to the presence of an active, although non-autonomous CACTA transposon (Tetu1) in the TCP domain of a CYCLOIDEA-like gene, HaCYC2c, a major regulator of sunflower floral symmetry. Here, we analyzed its excision rates in F3 population deriving from independent crosses of turf with common sunflower accessions. Our results suggest that the excision rate, ranging from 1.21 to 6.29%, depends on genetic background; moreover, the absence of somatic sectors in inflorescences of revertant individuals analyzed (182) and genetic analyses suggests a tight developmental control of Tetu1 excision, likely restricted to germinal cells. We individuate events of Tetu1 excision through molecular analysis that restore the wild type (WT) HaCYC2c allele, but even transposon excisions during which footprints are left. All mutations we detected occurred at the TCP basic motif and cause a change in ray flower phenotype. In particular, we selected five mutants with a one-to-four amino acid change that influence the capacity of reproductive organ development and ray flower corolla shaping (MUT-1, -2, -3, -4, -5). Revertant alleles not affecting turf phenotype (i.e. reading frame mutations) have also been identified (MUT-6). In all mutants, Real-time quantitative PCR (qPCR) experiments revealed variations of the steady state level of HaCYC2c mRNA. MUT-1 and MUT-4 showed a significant HaCYC2c down-regulation with respect to WT. A large variation within the biological replicates of MUT-2, MUT-3 and MUT-5 was detected and not significant differences in transcription levels between mutants and WT were observed. We detected low steady state level of HaCYC2c mRNA both in turf as in MUT-6. A three dimensional (3D) structure prediction tool let us predict an incorrect folding of the TCP protein already after a single amino acid deletion. This in turn is detectable as the restore of

  11. Positive partial transpose from spectra

    SciTech Connect

    Hildebrand, Roland

    2007-11-15

    In this paper we solve the following problem. Let H{sub nm} be a Hilbert space of dimension nm, and let A be a positive semidefinite self-adjoint linear operator on H{sub nm}. Under which conditions on the spectrum has A a positive partial transpose (is PPT) with respect to any partition H{sub n} x H{sub m} of the space H{sub nm} as a tensor product of an n-dimensional and an m-dimensional Hilbert space? We show that the necessary and sufficient conditions can be expressed as a set of linear matrix inequalities (LMIs) on the eigenvalues of A.

  12. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  13. Evolutionary origin of Rosaceae-specific active non-autonomous hAT elements and their contribution to gene regulation and genomic structural variation.

    PubMed

    Wang, Lu; Peng, Qian; Zhao, Jianbo; Ren, Fei; Zhou, Hui; Wang, Wei; Liao, Liao; Owiti, Albert; Jiang, Quan; Han, Yuepeng

    2016-05-01

    Transposable elements account for approximately 30 % of the Prunus genome; however, their evolutionary origin and functionality remain largely unclear. In this study, we identified a hAT transposon family, termed Moshan, in Prunus. The Moshan elements consist of three types, aMoshan, tMoshan, and mMoshan. The aMoshan and tMoshan types contain intact or truncated transposase genes, respectively, while the mMoshan type is miniature inverted-repeat transposable element (MITE). The Moshan transposons are unique to Rosaceae, and the copy numbers of different Moshan types are significantly correlated. Sequence homology analysis reveals that the mMoshan MITEs are direct deletion derivatives of the tMoshan progenitors, and one kind of mMoshan containing a MuDR-derived fragment were amplified predominately in the peach genome. The mMoshan sequences contain cis-regulatory elements that can enhance gene expression up to 100-fold. The mMoshan MITEs can serve as potential sources of micro and long noncoding RNAs. Whole-genome re-sequencing analysis indicates that mMoshan elements are highly active, and an insertion into S-haplotype-specific F-box gene was reported to cause the breakdown of self-incompatibility in sour cherry. Taken together, all these results suggest that the mMoshan elements play important roles in regulating gene expression and driving genomic structural variation in Prunus. PMID:26941188

  14. The Heritable Activation of Cryptic Suppressor-Mutator Elements by an Active Element

    PubMed Central

    Fedoroff, N.

    1989-01-01

    A weakly active maize Suppressor-mutator (Spm-w) element is able to heritably activate cryptic Spm elements in the maize genome. The spontaneous activation frequency, which is 1-5 X 10(-5) in the present genetic background, increases by about 100-fold in the presence of an Spm-w and remains an order of magnitude above the background level a generation after removal of the activating Spm-w. Sectorial somatic reactivation of cryptic elements can be detected phenotypically in kernels. Selection of such kernels constitutes an efficient selection for plants with reactivated Spm elements. Analysis of the reactivation process reveals that it is gradual and proceeds through genetically metastable intermediates that exhibit different patterns of element expression during plant development. Newly reactivated elements tend to return to an inactive form. However, the probability that an element will remain in a heritably active state increases when the element is maintained in the presence of an active Spm element for several generations. PMID:2541047

  15. The protist Trichomonas vaginalis harbors multiple lineages of transcriptionally active Mutator-like elements

    PubMed Central

    Lopes, Fabrício R; Silva, Joana C; Benchimol, Marlene; Costa, Gustavo GL; Pereira, Gonçalo AG; Carareto, Claudia MA

    2009-01-01

    Background For three decades the Mutator system was thought to be exclusive of plants, until the first homolog representatives were characterized in fungi and in early-diverging amoebas earlier in this decade. Results Here, we describe and characterize four families of Mutator-like elements in a new eukaryotic group, the Parabasalids. These Trichomonas vaginalis Mutator- like elements, or TvMULEs, are active in T. vaginalis and patchily distributed among 12 trichomonad species and isolates. Despite their relatively distinctive amino acid composition, the inclusion of the repeats TvMULE1, TvMULE2, TvMULE3 and TvMULE4 into the Mutator superfamily is justified by sequence, structural and phylogenetic analyses. In addition, we identified three new TvMULE-related sequences in the genome sequence of Candida albicans. While TvMULE1 is a member of the MuDR clade, predominantly from plants, the other three TvMULEs, together with the C. albicans elements, represent a new and quite distinct Mutator lineage, which we named TvCaMULEs. The finding of TvMULE1 sequence inserted into other putative repeat suggests the occurrence a novel TE family not yet described. Conclusion These findings expand the taxonomic distribution and the range of functional motif of MULEs among eukaryotes. The characterization of the dynamics of TvMULEs and other transposons in this organism is of particular interest because it is atypical for an asexual species to have such an extreme level of TE activity; this genetic landscape makes an interesting case study for causes and consequences of such activity. Finally, the extreme repetitiveness of the T. vaginalis genome and the remarkable degree of sequence identity within its repeat families highlights this species as an ideal system to characterize new transposable elements. PMID:19622157

  16. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration

    PubMed Central

    Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony

    2012-01-01

    Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491

  17. Transpositional activation of mPing in an asymmetric nuclear somatic cell hybrid of rice and Zizania latifolia was accompanied by massive element loss.

    PubMed

    Shan, X H; Ou, X F; Liu, Z L; Dong, Y Z; Lin, X Y; Li, X W; Liu, B

    2009-11-01

    We have reported previously that the most active miniature inverted terminal repeat transposable element (MITE) of rice, mPing, was transpositionally mobilized in several rice recombinant inbred lines (RILs) derived from an introgressive hybridization between rice and wild rice (Zizania latifolia Griseb.). To further study the phenomenon of hybridization-induced mPing activity, we undertook the present study to investigate the element's behavior in a highly asymmetric somatic nuclear hybrid (SH6) of rice and Z. latifolia, which is similar in genomic composition to that of the RILs, though probably contains more introgressed alien chromatins from the donor species than the RILs. We found that mPing, together with its transposase-donor, Pong, underwent rampant transpositional activation in the somatic hybrid (SH6). Because possible effects of protoplast isolation and cell culture can be ruled out, we attribute the transpositional activation of mPing and Pong in SH6 to the process of asymmetric somatic hybridization, namely, one-step introgression of multiple chromatin segments of the donor species Z. latifolia into the recipient rice genome. A salient feature of mPing transposition in the somatic hybrid is that the element's activation was accompanied by massive loss of its original copies, i.e., abortive transpositions, which was not observed in previously reported cases of mPing activity. These data not only corroborated our earlier finding that wide hybridization and introgression may trigger transpositional activation of otherwise quiescent transposable elements, but also suggest that transpositional mobilization of a MITE like mPing can be accompanied by dramatic reduction of its original copy numbers under certain conditions, thus provide novel insights into the dynamics of MITEs in the course of genome evolution. PMID:19711051

  18. Behavior of a modified Dissociation element in barley: a tool for genetic studies and for breeding transgenic barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize-derived sequences from the transposable elements Activator (Ac) and Dissociation (Ds) have enabled studies of gene function via transposon tagging. The characteristics of synthetic, transgene-containing Ds elements constructed for some of these studies has demonstrated their ability to resolve...

  19. Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria)

    PubMed Central

    Dziewit, Lukasz; Baj, Jadwiga; Szuplewska, Magdalena; Maj, Anna; Tabin, Mateusz; Czyzkowska, Anna; Skrzypczyk, Grazyna; Adamczuk, Marcin; Sitarek, Tomasz; Stawinski, Piotr; Tudek, Agnieszka; Wanasz, Katarzyna; Wardal, Ewa; Piechucka, Ewa; Bartosik, Dariusz

    2012-01-01

    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial

  20. Mobilized retrotransposon Tos17 of rice by alien DNA introgression transposes into genes and causes structural and methylation alterations of a flanking genomic region.

    PubMed

    Han, F P; Liu, Z L; Tan, M; Hao, S; Fedak, G; Liu, B

    2004-01-01

    Tos17 is a copia-like endogenous retrotransposon of rice, which can be activated by various stresses such as tissue culture and alien DNA introgression. To confirm element mobilization by introgression and to study possible structural and epigenetic effects of Tos17 insertion on its target sequences, we isolated all flanking regions of Tos17 in an introgressed rice line (Tong35) that contains minute amount of genomic DNA from wild rice (Zizania latifolia). It was found that there has been apparent but limited mobilization of Tos17 in this introgression line, as being reflected by increased but stable copy number of the element in progeny of the line. Three of the five activated copies of the element have transposed into genes. Based on sequence analysis and Southern blot hybridization with several double-enzyme digests, no structural change in Tos17 could be inferred in the introgression line. Cytosine methylation status at all seven CCGG sites within Tos17 was also identical between the introgression line and its rice parent (Matsumae)-all sites being heavily methylated. In contrast, changes in structure and cytosine methylation patterns were detected in one of the three low-copy genomic regions that flank newly transposed Tos17, and all changes are stably inherited through selfed generations. PMID:15703040

  1. Circulant states with positive partial transpose

    SciTech Connect

    Chruscinski, Dariusz; Kossakowski, Andrzej

    2007-09-15

    We construct a large class of quantum dxd states which are positive under partial transposition (so called PPT states). The construction is based on certain direct sum decomposition of the total Hilbert space displaying characteristic circular structure - that is why we call them circulant states. It turns out that partial transposition maps any such decomposition into another one and hence both original density matrix and its partially transposed partner share similar cyclic properties. This class contains many well-known examples of PPT states from the literature and gives rise to a huge family of completely new states.

  2. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats.

    PubMed

    Pagán, Heidi J T; Macas, Jiří; Novák, Petr; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-01

    The repetitive landscapes of mammalian genomes typically display high Class I (retrotransposon) transposable element (TE) content, which usually comprises around half of the genome. In contrast, the Class II (DNA transposon) contribution is typically small (<3% in model mammals). Most mammalian genomes exhibit a precipitous decline in Class II activity beginning roughly 40 Ma. The first signs of more recently active mammalian Class II TEs were obtained from the little brown bat, Myotis lucifugus, and are reflected by higher genome content (~5%). To aid in determining taxonomic limits and potential impacts of this elevated Class II activity, we performed 454 survey sequencing of a second Myotis species as well as four additional taxa within the family Vespertilionidae and an outgroup species from Phyllostomidae. Graph-based clustering methods were used to reconstruct the major repeat families present in each species and novel elements were identified in several taxa. Retrotransposons remained the dominant group with regard to overall genome mass. Elevated Class II TE composition (3-4%) was observed in all five vesper bats, while less than 0.5% of the phyllostomid reads were identified as Class II derived. Differences in satellite DNA and Class I TE content are also described among vespertilionid taxa. These analyses present the first cohesive description of TE evolution across closely related mammalian species, revealing genome-scale differences in TE content within a single family. PMID:22491057

  3. Transposed-Letter and Laterality Effects in Lexical Decision

    ERIC Educational Resources Information Center

    Perea, Manuel; Fraga, Isabel

    2006-01-01

    Two divided visual field lexical decision experiments were conducted to examine the role of the cerebral hemispheres in transposed-letter similarity effects. In Experiment 1, we created two types of nonwords: nonadjacent transposed-letter nonwords ("TRADEGIA"; the base word was "TRAGEDIA," the Spanish for "TRAGEDY") and two-letter different…

  4. Transposed-Letter Priming of Prelexical Orthographic Representations

    ERIC Educational Resources Information Center

    Kinoshita, Sachiko; Norris, Dennis

    2009-01-01

    A prime generated by transposing two internal letters (e.g., jugde) produces strong priming of the original word (judge). In lexical decision, this transposed-letter (TL) priming effect is generally weak or absent for nonword targets; thus, it is unclear whether the origin of this effect is lexical or prelexical. The authors describe the Bayesian…

  5. Experiment in Learning to Discriminate Frequency Transposed Speech.

    ERIC Educational Resources Information Center

    Ahlstrom, K.G.; And Others

    In order to improve speech perception by transposing the speech signals to lower frequencies, to determine which aspects of the information in the acoustic speech signals were influenced by transposition, and to compare two different methods of training speech perception, 44 subjects were trained to discriminate between transposed words or…

  6. Encoding Active Device Elements at Nanowire Tips.

    PubMed

    No, You-Shin; Gao, Ruixuan; Mankin, Max N; Day, Robert W; Park, Hong-Gyu; Lieber, Charles M

    2016-07-13

    Semiconductor nanowires and other one-dimensional materials are attractive for highly sensitive and spatially confined electrical and optical signal detection in biological and physical systems, although it has been difficult to localize active electronic or optoelectronic device function at one end of such one-dimensional structures. Here we report a new nanowire structure in which the material and dopant are modulated specifically at only one end of nanowires to encode an active two-terminal device element. We present a general bottom-up synthetic scheme for these tip-modulated nanowires and illustrate this with the synthesis of nanoscale p-n junctions. Electron microscopy imaging verifies the designed p-Si nanowire core with SiO2 insulating inner shell and n-Si outer shell with clean p-Si/n-Si tip junction. Electrical transport measurements with independent contacts to the p-Si core and n-Si shell exhibited a current rectification behavior through the tip and no detectable current through the SiO2 shell. Electrical measurements also exhibited an n-type response in conductance versus water-gate voltage with pulsed gate experiments yielding a temporal resolution of at least 0.1 ms and ∼90% device sensitivity localized to within 0.5 μm from the nanowire p-n tip. In addition, photocurrent experiments showed an open-circuit voltage of 0.75 V at illumination power of ∼28.1 μW, exhibited linear dependence of photocurrent with respect to incident illumination power with an estimated responsivity up to ∼0.22 A/W, and revealed localized photocurrent generation at the nanowire tip. The tip-modulated concept was further extended to a top-down/bottom-up hybrid approach that enabled large-scale production of vertical tip-modulated nanowires with a final synthetic yield of >75% with >4300 nanowires. Vertical tip-modulated nanowires were fabricated into >50 individually addressable nanowire device arrays showing diode-like current-voltage characteristics. These tip

  7. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells.

    PubMed

    Elsässer, Simon J; Noh, Kyung-Min; Diaz, Nichole; Allis, C David; Banaszynski, Laura A

    2015-06-11

    Transposable elements comprise roughly 40% of mammalian genomes. They have an active role in genetic variation, adaptation and evolution through the duplication or deletion of genes or their regulatory elements, and transposable elements themselves can act as alternative promoters for nearby genes, resulting in non-canonical regulation of transcription. However, transposable element activity can lead to detrimental genome instability, and hosts have evolved mechanisms to silence transposable element mobility appropriately. Recent studies have demonstrated that a subset of transposable elements, endogenous retroviral elements (ERVs) containing long terminal repeats (LTRs), are silenced through trimethylation of histone H3 on lysine 9 (H3K9me3) by ESET (also known as SETDB1 or KMT1E) and a co-repressor complex containing KRAB-associated protein 1 (KAP1; also known as TRIM28) in mouse embryonic stem cells. Here we show that the replacement histone variant H3.3 is enriched at class I and class II ERVs, notably those of the early transposon (ETn)/MusD family and intracisternal A-type particles (IAPs). Deposition at a subset of these elements is dependent upon the H3.3 chaperone complex containing α-thalassaemia/mental retardation syndrome X-linked (ATRX) and death-domain-associated protein (DAXX). We demonstrate that recruitment of DAXX, H3.3 and KAP1 to ERVs is co-dependent and occurs upstream of ESET, linking H3.3 to ERV-associated H3K9me3. Importantly, H3K9me3 is reduced at ERVs upon H3.3 deletion, resulting in derepression and dysregulation of adjacent, endogenous genes, along with increased retrotransposition of IAPs. Our study identifies a unique heterochromatin state marked by the presence of both H3.3 and H3K9me3, and establishes an important role for H3.3 in control of ERV retrotransposition in embryonic stem cells. PMID:25938714

  8. A new large-DNA-fragment delivery system based on integrase activity from an integrative and conjugative element.

    PubMed

    Miyazaki, Ryo; van der Meer, Jan Roelof

    2013-07-01

    During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria. PMID:23686268

  9. Structure and properties of the algebra of partially transposed permutation operators

    SciTech Connect

    Mozrzymas, Marek; Horodecki, Michał; Studziński, Michał

    2014-03-15

    We consider the structure of algebra of operators, acting in n-fold tensor product space, which are partially transposed on the last term. Using purely algebraical methods we show that this algebra is semi-simple and then, considering its regular representation, we derive basic properties of the algebra. In particular, we describe all irreducible representations of the algebra of partially transposed operators and derive expressions for matrix elements of the representations. It appears that there are two kinds of irreducible representations of the algebra. The first one is strictly connected with the representations of the group S(n − 1) induced by irreducible representations of the group S(n − 2). The second kind is structurally connected with irreducible representations of the group S(n − 1)

  10. MORC1 represses transposable elements in the mouse male germline

    PubMed Central

    Pastor, William A.; Stroud, Hume; Nee, Kevin; Liu, Wanlu; Pezic, Dubravka; Manakov, Sergei; Lee, Serena A.; Moissiard, Guillaume; Zamudio, Natasha; Bourc’his, Déborah; Aravin, Alexei A.; Clark, Amander T.; Jacobsen, Steven E.

    2014-01-01

    The Microrchidia (Morc) family of GHKL ATPases are present in a wide variety of prokaryotic and eukaryotic organisms but are of largely unknown function. Genetic screens in Arabidopsis thaliana have identified Morc genes as important repressors of transposons and other DNA-methylated and silent genes. MORC1-deficient mice were previously found to display male-specific germ cell loss and infertility. Here we show that MORC1 is responsible for transposon repression in the male germline in a pattern that is similar to that observed for germ cells deficient for the DNA methyltransferase homologue DNMT3L. Morc1 mutants show highly localized defects in the establishment of DNA methylation at specific classes of transposons, and this is associated with failed transposon silencing at these sites. Our results identify MORC1 as an important new regulator of the epigenetic landscape of male germ cells during the period of global de novo methylation. PMID:25503965

  11. Analysis of energetically biased transcripts of viruses and transposable elements

    PubMed Central

    Secolin, Rodrigo; Pascoal, Vinícius D’Ávila Bitencourt; Lopes-Cendes, Iscia; Pereira, Tiago Campos

    2012-01-01

    RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs. PMID:23271949

  12. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  13. Elements of active vibration control for rotating machinery

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  14. Conformal optical elements for correcting wavefront distortions in YAG : Nd{sup 3+} active elements

    SciTech Connect

    Korolkov, V P; Nasyrov, R K; Poleshchuk, A G; Arapov, Yu D; Ivanov, A F

    2013-02-28

    Correction of the wavefront is studied for the light beam passing wide-aperture YAG : Nd3+ single-crystal rods, which are used as active elements in high-power solid-state lasers. A nonideal character of the crystal structure is responsible for the deformation of the wavefront of passing radiation. By using the halftone technology we have developed conformal aberration correctors capable of compensating rod nonuniformities and reducing the laser radiation divergence by an order of magnitude. The results obtained make it possible to employ optically nonuniform active elements in laser constructions. (laser optics 2012)

  15. Parallel matrix transpose algorithms on distributed memory concurrent computers

    SciTech Connect

    Choi, J.; Walker, D.W.; Dongarra, J.J. |

    1993-10-01

    This paper describes parallel matrix transpose algorithms on distributed memory concurrent processors. It is assumed that the matrix is distributed over a P x Q processor template with a block scattered data distribution. P, Q, and the block size can be arbitrary, so the algorithms have wide applicability. The communication schemes of the algorithms are determined by the greatest common divisor (GCD) of P and Q. If P and Q are relatively prime, the matrix transpose algorithm involves complete exchange communication. If P and Q are not relatively prime, processors are divided into GCD groups and the communication operations are overlapped for different groups of processors. Processors transpose GCD wrapped diagonal blocks simultaneously, and the matrix can be transposed with LCM/GCD steps, where LCM is the least common multiple of P and Q. The algorithms make use of non-blocking, point-to-point communication between processors. The use of nonblocking communication allows a processor to overlap the messages that it sends to different processors, thereby avoiding unnecessary synchronization. Combined with the matrix multiplication routine, C = A{center_dot}B, the algorithms are used to compute parallel multiplications of transposed matrices, C = A{sup T}{center_dot}B{sup T}, in the PUMMA package. Details of the parallel implementation of the algorithms are given, and results are presented for runs on the Intel Touchstone Delta computer.

  16. Finite-element model of the active organ of Corti.

    PubMed

    Ni, Guangjian; Elliott, Stephen J; Baumgart, Johannes

    2016-02-01

    The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback. PMID:26888950

  17. Plant regeneration methods for rapid generation of a large scale Ds transposant population in rice.

    PubMed

    Xuan, Yuan Hu; Huang, Jin; Yi, Gihwan; Park, Dong-Soo; Park, Soo Kwon; Eun, Moo Young; Yun, Doh Won; Lee, Gang-Seob; Kim, Tae Ho; Han, Chang-deok

    2013-01-01

    To mutagenize rice genomes, a two-element system is utilized. This system comprises an immobile Ac element driven by the CaMV 35S promoter, and a gene trap Ds carrying a partial intron with alternative splice acceptors fused to the GUS coding region. Rapid, large-scale generation of a Ds transposant population was achieved using a plant regeneration procedure involving the tissue culture of seed-derived calli carrying Ac and Ds elements. During tissue cultures, Ds mobility accompanies changes in methylation patterns of a terminal region of Ds, where over 70% of plants contained independent Ds insertions. In the transposon population, around 12% of plants expressed GUS at the early seedling stage. A flanking-sequence-tag (FST) database has been established by cloning over 19,968 Ds insertion sites and the Ds map shows relatively uniform distribution across the rice chromosomes. PMID:23918423

  18. ACTIVATION OF THE LAC GENES OF TN951 BY INSERTION SEQUENCES FROM PSUEDOMONAS CEPACIA

    EPA Science Inventory

    We have identified several transposable gene-activating elements from Psuedomonas cepacia on the basis of their ability to increase expression of the genes of the broad-hos-range plasmid pGC9l.14. hen introduced into auxotrophic derivatives of P. cepacia 249 (ATCC 17616), this pl...

  19. VISUAL ELEMENTS OF SUBJECTIVE PREFERENCE MODULATE AMYGDALA ACTIVATION

    PubMed Central

    Bar, Moshe; Neta, Maital

    2010-01-01

    What are the basic visual cues that determine our preference towards mundane everyday objects? We previously showed that a highly potent cue is the nature of the object’s contour: people generally like objects with a curved contour compared with objects that have pointed features and a sharp-angled contour. This bias is hypothesized here to stem from an implicit perception of potential threat conveyed by sharp elements. Using human neuroimaging to test this hypothesis, we report that the amygdala, a brain structure that is involved in fear processing and has been shown to exhibit activation level that is proportional to arousal in general, is significantly more active for everyday sharp objects (e.g., a sofa with sharp corners) compared with their curved-contour counterparts. Therefore, our results indicate that a preference bias towards a visual object can be induced by low-level perceptual properties, independent of semantic meaning, via visual elements that on some level could be associated with threat. We further present behavioral results that provide initial support for the link between the sharpness of the contour and threat perception. Our brains might be organized to extract these basic contour elements rapidly for deriving an early warning signal in the presence of potential danger. PMID:17462678

  20. Parallel matrix transpose algorithms on distributed memory concurrent computers

    SciTech Connect

    Choi, Jaeyoung; Dongarra, J. |; Walker, D.W.

    1994-12-31

    This paper describes parallel matrix transpose algorithms on distributed memory concurrent processors. We assume that the matrix is distributed over a P {times} Q processor template with a block scattered data distribution. P, Q, and the block size can be arbitrary, so the algorithms have wide applicability. The algorithms make use of non-blocking, point-to-point communication between processors. The use of nonblocking communication allows a processor to overlap the messages that it sends to different processors, thereby avoiding unnecessary synchronization. Combined with the matrix multiplication routine, C = A {center_dot} B, the algorithms are used to compute parallel multiplications of transposed matrices, C = A{sup T} {center_dot} B{sup T}, in the PUMMA package. Details of the parallel implementation of the algorithms are given, and results are presented for runs on the Intel Touchstone Delta computer.

  1. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  2. Matching Element Symbols with State Abbreviations: A Fun Activity for Browsing the Periodic Table of Chemical Elements

    ERIC Educational Resources Information Center

    Woelk, Klaus

    2009-01-01

    A classroom activity is presented in which students are challenged to find matches between the United States two-letter postal abbreviations for states and chemical element symbols. The activity aims to lessen negative apprehensions students might have when the periodic table of the elements with its more than 100 combinations of letters is first…

  3. A non-autonomous insect piggyBac trasposable element is mobile in tobacco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid onl...

  4. Active control of multi-element rotor blade airfoils

    NASA Technical Reports Server (NTRS)

    Torok, Michael S. (Inventor); Moffitt, Robert C. (Inventor); Bagai, Ashish (Inventor)

    2005-01-01

    A multi-element rotor blade includes an individually controllable main element and fixed aerodynamic surface in an aerodynamically efficient location relative to the main element. The main element is controlled to locate the fixed aerodynamic surface in a position to increase lift and/or reduce drag upon the main element at various azimuthal positions during rotation.

  5. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  6. IS elements in Aliivibrio salmonicida LFI1238: occurrence, variability and impact on adaptability.

    PubMed

    Kashulin, Alexander; Sørum, Henning; Hjerde, Erik; Willassen, Nils P

    2015-01-01

    Insertion sequence (IS) elements are short, self-replicating DNA sequences that are capable of efficiently spreading over the host genome. Possessing varied integration specificity IS elements are capable of the irreversible inactivation of genes, which diversifies the pool of intact genetic determinants in host populations. In the current study, we performed a complex analysis of IS elements (Vsa IS) in the previously sequenced genome of Aliivibrio salmonicida LFI1238 and proposed a model of the spread of the Vsa IS elements over the genome of this microorganism. Along with the prediction of the integration sites for Vsa IS elements, the current study provides an overview of the properties of A. salmonicida IS elements, as well as information regarding their occurrence in different bacterial classes. An analysis of individual alleles of the IS elements has allowed us to depict a history of the accumulation of mutations and to describe distinctive microevolution lines for actively transposing Vsa IS elements in the genome of A. salmonicida LFI1238. Our results demonstrate the high importance of the dead end microevolution of actively transposing Vsa IS elements for the inactivation of genes in A. salmonicida LFI1238. PMID:25447025

  7. Neutron activation analysis; A sensitive test for trace elements

    SciTech Connect

    Hossain, T.Z. . Ward Lab.)

    1992-01-01

    This paper discusses neutron activation analysis (NAA), an extremely sensitive technique for determining the elemental constituents of an unknown specimen. Currently, there are some twenty-five moderate-power TRIGA reactors scattered across the United States (fourteen of them at universities), and one of their principal uses is for NAA. NAA is procedurally simple. A small amount of the material to be tested (typically between one and one hundred milligrams) is irradiated for a period that varies from a few minutes to several hours in a neutron flux of around 10{sup 12} neutrons per square centimeter per second. A tiny fraction of the nuclei present (about 10{sup {minus}8}) is transmuted by nuclear reactions into radioactive forms. Subsequently, the nuclei decay, and the energy and intensity of the gamma rays that they emit can be measured in a gamma-ray spectrometer.

  8. Miniature Transposable Sequences Are Frequently Mobilized in the Bacterial Plant Pathogen Pseudomonas syringae pv. phaseolicola

    PubMed Central

    Bardaji, Leire; Añorga, Maite; Jackson, Robert W.; Martínez-Bilbao, Alejandro; Yanguas-Casás, Natalia; Murillo, Jesús

    2011-01-01

    Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10−5 and 1.1×10−6, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total

  9. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines.

    PubMed Central

    Bhatt, A M; Lister, C; Crawford, N; Dean, C

    1998-01-01

    Tag1 was identified as a highly active endogenous transposable element in transgenic Arabidopsis thaliana Landsberg erecta plants carrying the maize transposable element Activator (Ac). Here, we describe experiments designed to determine the basis for the high activity of Tag1. The frequency of transposition of Tag1 elements was compared in lines containing or lacking Ac transposase to assess the effect of Ac transposase on Tag1 activity. Three populations of nontransgenic plants, including nontransformed regenerants, were also analyzed. The high level of activity of Tag1 did not correlate with the presence or absence of Ac transposase but was significantly higher in transgenic lines. This result was maintained through at least six generations after transformation. These data suggest that Tag1 transposition is stimulated by processes that occur during the Agrobacterium transformation and that thereafter remain active. Two Tag1 elements are tightly linked in the Landsberg erecta genome and map to the lower arm of chromosome 1. Tag1 elements were found in only a few A. thaliana ecotypes but were present in four other Arabidopsis species. PMID:9501115

  10. The hobo transposable element excises and has related elements in tephritid species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Function of the Drosophila melanogaster hobo transposon in tephritid species was tested in transient embryonic excision assays by scientists at the USDA Agricultural Research Service, Center for Medical Agricultural and Veterinary Entomology, Gainesville, Florida. Wild-type and mutant strains of Ana...

  11. Assessment of nose protector for sport activities: finite element analysis.

    PubMed

    Coto, Neide Pena; Meira, Josete Barbosa Cruz; Brito e Dias, Reinaldo; Driemeier, Larissa; de Oliveira Roveri, Guilherme; Noritomi, Pedro Yoshito

    2012-04-01

    There has been a significant increase in the number of facial fractures stemming from sport activities in recent years, with the nasal bone one of the most affected structures. Researchers recommend the use of a nose protector, but there is no standardization regarding the material employed. Clinical experience has demonstrated that a combination of a flexible and rigid layer of ethylene vinyl acetate (EVA) offers both comfort and safety to practitioners of sports. The aim of the present study was the investigation into the stresses generated by the impact of a rigid body on the nasal bone on models with and without an EVA protector. For such, finite element analysis was employed. A craniofacial model was constructed from images obtained through computed tomography. The nose protector was modeled with two layers of EVA (1 mm of rigid EVA over 2 mm of flexible EVA), following the geometry of the soft tissue. Finite element analysis was performed using the LS Dyna program. The bone and rigid EVA were represented as elastic linear material, whereas the soft tissues and flexible EVA were represented as hyperelastic material. The impact from a rigid sphere on the frontal region of the face was simulated with a constant velocity of 20 m s(-1) for 9.1 μs. The model without the protector served as the control. The distribution of maximal stress of the facial bones was recorded. The maximal stress on the nasal bone surpassed the breaking limit of 0.13-0.34 MPa on the model without a protector, while remaining below this limit on the model with the protector. Thus, the nose protector made from both flexible and rigid EVA proved effective at protecting the nasal bones under high-impact conditions. PMID:21790992

  12. TRANSPOSED LETTER EFFECTS IN PREFIXED WORDS: IMPLICATIONS FOR MORPHOLOGICAL DECOMPOSITION.

    PubMed

    Masserang, Kathleen M; Pollatsek, Alexander

    2012-01-01

    A crucial issue in word encoding is whether morphemes are involved in early stages. One paradigm that tests for this employs the transposed letter (TL) effect - the difference in the times to process a word (misfile) when it is preceded by a TL prime (mifsile) and when it is preceded by a substitute letter (SL) prime (mintile) - and examines whether the TL effect is smaller when the two adjacent letters cross a morpheme boundary. The evidence from prior studies is not consistent. Experiments 1 and 2 employed a parafoveal preview paradigm in which the transposed letters either crossed the prefix-stem boundary or did not, and found a clear TL effect regardless of whether the two letters crossed the morpheme boundary. Experiment 3 replicated this finding employing a masked priming lexical-decision paradigm. It thus appears that morphemes are not involved in early processes in English that are sensitive to letter order. There is some evidence for morphemic modulation of the TL effect in other languages; thus, the properties of the language may modulate when morphemes influence early letter position encoding. PMID:23082239

  13. LRE2, an active human L1 element, has low level transcriptional activity and extremely low reverse transcriptase activity

    SciTech Connect

    Holmes, S.E.; Dombroski, B.A.; Sassaman, D.M.

    1994-09-01

    Previously, we found a 2 kb insertion containing a rearranged L1 element plus a unique sequence component (USC) within exon 48 of the dystrophin gene of a patient with muscular dystrophy. We used the USC to clone the precursor of this insertion, the second known {open_quotes}active{close_quotes} human L1 element. The locus LRE2 (L1 Retrotransposable Element 2) has an allele derived from the patient which matches the insertion sequence exactly. LRE2 has a perfect 13-15 bp target site duplication, 2 open reading frames (ORFs), and an unusual 21 bp truncation of the 5{prime} end in a region known to be important for L1 transcription. The truncated LRE2 promoter has about 20% of the transcriptional activity of a previously studied L1 promoter after transfection into NTera2D1 cells of a construct in which the L1 promoter drives the expression of a lacZ gene. In addition, the reverse transcriptase (RT) encoded by LRE2 is active in an in vivo pseudogene assay in yeast and an in vitro assay. However, in both assays the RT of LRE2 is 1-5% as active as that of LRE1. These data demonstrate that multiple {open_quotes}active{close_quotes} L1 elements exist in the human genome, and that active elements can have highly variable rates of transcription and reverse transcriptase activity. That the RT of LRE2 has extremely low activity suggests the possibility that retrotransposition of an L1 element may in some cases involve an RT encoded by another L1 element.

  14. High Rate of Recent Transposable Element–Induced Adaptation in Drosophila melanogaster

    PubMed Central

    González, Josefa; Lenkov, Kapa; Lipatov, Mikhail; Macpherson, J. Michael; Petrov, Dmitri A

    2008-01-01

    Although transposable elements (TEs) are known to be potent sources of mutation, their contribution to the generation of recent adaptive changes has never been systematically assessed. In this work, we conduct a genome-wide screen for adaptive TE insertions in Drosophila melanogaster that have taken place during or after the spread of this species out of Africa. We determine population frequencies of 902 of the 1,572 TEs in Release 3 of the D. melanogaster genome and identify a set of 13 putatively adaptive TEs. These 13 TEs increased in population frequency sharply after the spread out of Africa. We argue that many of these TEs are in fact adaptive by demonstrating that the regions flanking five of these TEs display signatures of partial selective sweeps. Furthermore, we show that eight out of the 13 putatively adaptive elements show population frequency heterogeneity consistent with these elements playing a role in adaptation to temperate climates. We conclude that TEs have contributed considerably to recent adaptive evolution (one TE-induced adaptation every 200–1,250 y). The majority of these adaptive insertions are likely to be involved in regulatory changes. Our results also suggest that TE-induced adaptations arise more often from standing variants than from new mutations. Such a high rate of TE-induced adaptation is inconsistent with the number of fixed TEs in the D. melanogaster genome, and we discuss possible explanations for this discrepancy. PMID:18942889

  15. Repair of transposable phage Mu DNA insertions begins only when the E. coli replisome collides with the transpososome.

    PubMed

    Jang, Sooin; Harshey, Rasika M

    2015-08-01

    We report a new cellular interaction between the infecting transposable phage Mu and the host Escherichia coli replication machinery during repair of Mu insertions, which involves filling-in of short target gaps on either side of the insertion, concomitant with degradation of extraneous long flanking DNA (FD) linked to Mu. Using the FD as a marker to follow repair, we find that after transposition into the chromosome, the unrepaired Mu is indefinitely stable until the replication fork arrives at the insertion site, whereupon the FD is rapidly degraded. When the fork runs into a Mu target gap, a double strand end (DSE) will result; we demonstrate fork-dependent DSEs proximal to Mu. These findings suggest that Pol III stalled at the transpososome is exploited for co-ordinated repair of both target gaps flanking Mu without replicating the intervening 37 kb of Mu, disassembling the stable transpososome in the process. This work is relevant to all transposable elements, including retroviral elements like HIV-1, which share with Mu the common problem of repair of their flanking target gaps. PMID:25983038

  16. Emergy of the Global Biogeochemical Cycles of Biologically Active Elements

    EPA Science Inventory

    Accurate estimates of the emergy of elemental flows are needed to accurately evaluate the far field effects of anthropogenic wastes. The transformity and specific emergy of the elements and of their different chemical species is also needed to quantify the inputs to many producti...

  17. Transposition Pattern of the Maize Element Ds in Arabidopsis Thaliana

    PubMed Central

    Bancroft, I.; Dean, C.

    1993-01-01

    As part of establishing an efficient transposon tagging system in Arabidopsis using the maize elements Ac and Ds, we have analyzed the inheritance and pattern of Ds transposition in four independent Arabidopsis transformants. A low proportion (33%) of plants inheriting the marker used to monitor excision contained a transposed Ds. Selection for the transposed Ds increased this to at least 49%. Overall, 68% of Ds transpositions inherited with the excision marker were to genetically linked sites; however, the distribution of transposed elements varied around the different donor sites. Mapping of transposed Ds elements that were genetically unlinked to the donor site showed that a proportion (3 of 11 tested) integrated into sites which were still physically linked. PMID:8397137

  18. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  19. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  20. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  1. Trace elements by instrumental neutron activation analysis for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene, filtered air particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was plus or minus 25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%.

  2. Finite Element Learning Modules as Active Learning Tools

    ERIC Educational Resources Information Center

    Brown, Ashland O.; Jensen, Daniel; Rencis, Joseph; Wood, Kristin; Wood, John; White, Christina; Raaberg, Kristen Kaufman; Coffman, Josh

    2012-01-01

    The purpose of active learning is to solicit participation by students beyond the passive mode of traditional classroom lectures. Reading, writing, participating in discussions, hands-on activities, engaging in active problem solving, and collaborative learning can all be involved. The skills acquired during active learning tend to go above and…

  3. Trace elements removal from water using modified activated carbon.

    PubMed

    Campos, V; Buchler, P M

    2008-02-01

    This paper present the possible alternative options for the remove of trace elements from drinking water supplies in the trace. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causing various adverse effects on living bodies. The performance of three filter bed methods was evaluated in the laboratory. Experiments were conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe3C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon, powder carbon steel and ceramic spheres in the ion-sorption columns as a cleaning process. The modified powdered block carbon is a satisfactory and economical sorbent for trace elements (arsenite and chromate) dissolved in water due to its low unit cost of about $23 and compatibility with the traditional household filtration system. PMID:18613611

  4. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  5. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2013-01-01

    A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.

  6. Genomic Organization of the Drosophila Telomere RetrotransposableElements

    SciTech Connect

    George, J.A.; DeBaryshe, P.G.; Traverse, K.L.; Celniker, S. E.; Pardue, M-L.

    2006-10-16

    The emerging sequence of the heterochromatic portion of the Drosophila melanogaster genome, with the most recent update of euchromatic sequence, gives the first genome-wide view of the chromosomal distribution of the telomeric retrotransposons, HeT-A, TART, and Tahre. As expected, these elements are entirely excluded from euchromatin, although sequence fragments of HeT-A and TART 3 untranslated regions are found in nontelomeric heterochromatin on the Y chromosome. The proximal ends of HeT-A/TART arrays appear to be a transition zone because only here do other transposable elements mix in the array. The sharp distinction between the distribution of telomeric elements and that of other transposable elements suggests that chromatin structure is important in telomere element localization. Measurements reported here show (1) D. melanogaster telomeres are very long, in the size range reported for inbred mouse strains (averaging 46 kb per chromosome end in Drosophila stock 2057). As in organisms with telomerase, their length varies depending on genotype. There is also slight under-replication in polytene nuclei. (2) Surprisingly, the relationship between the number of HeT-A and TART elements is not stochastic but is strongly correlated across stocks, supporting the idea that the two elements are interdependent. Although currently assembled portions of the HeT-A/TART arrays are from the most-proximal part of long arrays, {approx}61% of the total HeT-A sequence in these regions consists of intact, potentially active elements with little evidence of sequence decay, making it likely that the content of the telomere arrays turns over more extensively than has been thought.

  7. Binaural hearing in children using Gaussian enveloped and transposed tones.

    PubMed

    Ehlers, Erica; Kan, Alan; Winn, Matthew B; Stoelb, Corey; Litovsky, Ruth Y

    2016-04-01

    Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be important cues for sound localization. Interestingly, little is known about binaural sensitivity in NH children, in particular, with stimuli that constrain acoustic cues in a manner representative of CI processing. In order to better understand and evaluate binaural hearing in children with BiCIs, the authors first undertook a study on binaural sensitivity in NH children ages 8-10, and in adults. Experiments evaluated sound discrimination and lateralization using ITD and ILD cues, for stimuli with robust envelope cues, but poor representation of temporal fine structure. Stimuli were spondaic words, Gaussian-enveloped tone pulse trains (100 pulse-per-second), and transposed tones. Results showed that discrimination thresholds in children were adult-like (15-389 μs for ITDs and 0.5-6.0 dB for ILDs). However, lateralization based on the same binaural cues showed higher variability than seen in adults. Results are discussed in the context of factors that may be responsible for poor representation of binaural cues in bilaterally implanted children. PMID:27106319

  8. Determination of elements in National Bureau of Standards' geological Standard Reference Materials by neutron activation analysis

    SciTech Connect

    Graham, C.C.; Glascock, M.D.; Carni, J.J.; Vogt, J.R.; Spalding, T.G.

    1982-08-01

    Instrumental neutron activation analysis (INAA) and prompt gamma neutron activation analysis (PGNAA) have been used to determine elemental concentrations in two recently issued National Bureau of Standards (NBS) Standard Reference Materials (SRM's). The results obtained are in good agreement with the certified and information values reported by NBS for those elements in each material for which comparisons are available. Average concentrations of 35 elements in SRM 278 obsidian rock and 32 elements in SRM 688 basalt rock are reported for comparison with results that may be obtained by other laboratories.

  9. Optical activity of catalytic elements of hetero-metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Antosiewicz, Tomasz J.; Apell, S. Peter; Wadell, Carl; Langhammer, Christoph

    2015-05-01

    Interaction of light with metals in the form of surface plasmons is used in a wide range of applications in which the scattering decay channel is important. The absorption channel is usually thought of as unwanted and detrimental to the efficiency of the device. This is true in many applications, however, recent studies have shown that maximization of the decay channel of surface plasmons has potentially significant uses. One of these is the creation of electron-hole pairs or hot electrons which can be used for e.g. catalysis. Here, we study the optical properties of hetero-metallic nanostructures that enhance light interaction with the catalytic elements of the nanostructures. A hybridized LSPR that matches the spectral characteristic of the light source is excited. This LSPR through coupling between the plasmonic elements maximizes light absorption in the catalytic part of the nanostructure. Numerically calculated visible light absorption in the catalytic nanoparticles is enhanced 12-fold for large catalytic disks and by more 30 for small nanoparticles on the order of 5 nm. In experiments we measure a sizable increase in the absorption cross section when small palladium nanoparticles are coupled to a large silver resonator. These observations suggest that heterometallic nanostructures can enhance catalytic reaction rates.

  10. Preconcentration and Speciation of Trace Elements and Trace-Element Analogues of Radionuclides by Neutron Activation Analysis

    SciTech Connect

    Chatt, A.

    1999-11-14

    We have developed a number of preconcentration neutron activation analysis (PNAA) methods in our laboratory for the determination of trace elements in a variety of complex sample matrices. We developed a number of cocrystallization and coprecipitation methods for the determination of trace elements in water samples. We developed several methods for the determination of I in foods and diets. We have developed a number of PNAA methods in our laboratory We determined As and Sb in geological materials and natural waters by coprecipitation with Se and Au in silicate rocks and ores by coprecipitation with Te followed by NAA. We developed an indirect NAA method for the determination of B in leachates of borosilicate glass. We have been interested in studying the speciation of Am, Tc, and Np in simulated vitrified groundwater leachates of high-level wastes under oxid and anoxic conditions using a number of techniques. We then used PNAA methods to study speciation of trace-element analogues of radionuclides. We have been able to apply biochemical techniques and NAA for the separation, preconcentration, and characterization of metalloprotein and protein-bound trace-element species in subcellular fractions of bovine kidneys. Lately, we have concentrated our efforts to develop chemical and biochemical methods in conjunction with NAA, NMR, and MS for the separation and identification of extractable organohalogens (EOX) in tissues of beluga whales, cod, and northern pink shrimp

  11. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    EPA Science Inventory

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  12. Compensation for thermally induced birefringence in polycrystalline ceramic active elements

    SciTech Connect

    Kagan, M A; Khazanov, E A

    2003-10-31

    Polycrystalline ceramics differ significantly from single crystals in that the crystallographic axes (and hence of the axes of thermally induced birefringence) are oriented randomly in each granule of the ceramic. The quaternion formalism is employed to calculate the depolarisation in the ceramics and the efficiency of its compensation. The obtained analytic expressions are in good agreement with the numerical relations. It is shown that the larger the ratio of the sample length to the granule size, the closer the properties of the ceramics to those of a single crystal with the [111] orientation (in particular, the uncompensated depolarisation is inversely proportional to this ratio). (active media)

  13. Optimal placement of active elements in control augmented structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Jin, I. M.; Schmit, L. A., Jr.

    1992-01-01

    A methodology for structural/control synthesis is presented in which the optimal location of active members is treated in terms of (0,1) variables. Structural member sizes, control gains and (0,1) placement variables are treated simultaneously as design variables. Optimization is carried out by generating and solving a sequence of explicit approximate problems using a branch and bound strategy. Intermediate design variable and intermediate response quantity concepts are used to enhance the quality of the approximate design problems. Numerical results for example problems are presented to illustrate the efficacy of the design procedure set forth.

  14. neutron activation analysis using thermochromatography. II. thermochromatographic separation of elements in the analysis of geological samples

    SciTech Connect

    Sattarov, G.; Davydov, A.V.; Khamatov, S.; Kist, A.A.

    1986-07-01

    The use of gas thermochromatography (GTC) in the radioactivation analysis of difficulty soluble samples with a strongly activating substrate is discussed. The effect of sample coarseness and ore type on the rate of extraction of gold and accompanying elements was studied. The limits of detection of 22 elements were compared using neutron activation analysis with GTC and INAA. The analytical parameters of the procedure were estimated.

  15. Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation.

    PubMed

    Holsheimer, Jan

    2002-01-01

    The purpose of this paper is to discuss which nerve fibers in the various quadrants of the spinal cord are immediately activated under normal conditions of spinal cord stimulation, ie, at voltages within the therapeutic range. The conclusions are based on both empirical and computer modeling data. The recruitment of dorsal column (DC) fibers is most likely restricted to Aβ fibers with a diameter ≥ 10.7 μm in a 0.20-0.25 mm layer under the pia mater and fibers of 9.4-10.7 μm in an even smaller outer layer when a conventional SCS lead is used. In a 0.25-mm outer layer of the T11 segment the number of Aβ fibers ≥ 10.7 μm, as estimated in a recent morphometric study, is about 56 in each DC. Because a DC at T11 innervates 12 dermatomes, a maximum of 4-5 fibers (≥ 10.7 μm) may be recruited in each dermatome near the discomfort threshold. The dermatome activated just below the discomfort threshold is likely to be stimulated by just a single fiber, suggesting that paresthesia and pain relief may be effected in a dermatome by the stimulation of a single large Aβ fiber. The depth of stimulation in the DCs, and thereby the number of recruited Aβ fibers, may be increased 2-3 fold when stimulation is applied by an optimized electrode configuration (a narrow bi/tripole or a transverse tripole). Assuming that the largest Aβ fibers in a dorsal root have a diameter of 15 μm, the smallest ones recruited at discomfort threshold would be 12 μm. The latter are presumably of proprioceptive origin and responsible for segmental reflexes and uncomfortable sensations. Furthermore, it is shown to be unlikely that, apart from dorsal roots and a thin outer layer of the DCs, any other spinal structures are recruited when stimulation is applied in the dorsal epidural space. Finally, anodal excitation and anodal propagation block are unlikely to occur with SCS. PMID:22151778

  16. Activation of enhancer elements by the homeobox gene Cdx2 is cell line specific.

    PubMed Central

    Taylor, J K; Levy, T; Suh, E R; Traber, P G

    1997-01-01

    Cdx2 is a caudal-related homeodomain transcription factor that is expressed in complex patterns during mouse development and at high levels in the intestinal epithelium of adult mice. Cdx2 activates transcription of intestinal gene promoters containing specific binding sites. Moreover, Cdx2 has been shown to induce intestinal differentiation in cell lines. In this study, we show that Cdx2 is able to bind to two well defined enhancer elements in the HoxC8 gene. We then demonstrate that Cdx2 is able to activate transcription of heterologous promoters when its DNA binding element is placed in an enhancer context. Furthermore, the ability to activate enhancer elements is cell-line dependent. When the Cdx2 activation domain was linked to the Gal4 DNA binding domain, the chimeric protein was able to activate Gal4 enhancer constructs in an intestinal cell line, but was unable to activate transcription in NIH3T3 cells. These data suggest that there are cell-specific factors that allow the Cdx2 activation domain to function in the activation of enhancer elements. We hypothesize that either a co-activator protein or differential phosphorylation of the activation domain may be the mechanism for intestinal cell line-specific function of Cdx2 and possibly in other tissues in early development. PMID:9171078

  17. Tunable diffractive optical elements on various electro active polymers

    NASA Astrophysics Data System (ADS)

    Döring, Sebastian; Kollosche, Matthias; Hildebrandt, Niko; Stumpe, Joachim; Kofod, Guggi

    2010-05-01

    An innovative approach for voltage-tunable optical gratings based on dielectric elastomer actuators (DEAs) using electro active polymers is presented. Sinusoidal surface gratings, holographically written into azobenzene containing films, are transferred via nanoimprinting to DEAs of different carrier materials. We demonstrate that the surface relief deformation depends on the mechanical and geometrical properties of the actuators. The tested DEAs were made using commercially available elastomers, including a tri-block copolymer poly-styrene-ethylene-butadiene-styrene (SEBS), a silicone polydimethylsiloxane rubber (PDMS) and commonly used polyacrylic glue. The polyacrylic glue is ready to use, whereas the SEBS and the PDMS precursors have to be processed into thin films via different casting methods. The DEA material was pre-stretched, fixed to a stiff frame and coated with stretchable electrodes in appropriate designs. Since the actuation strain of the DEA depends strongly upon the conditions such as material properties, pre-stretch and geometry, the desired voltage-controllable deformations can be optimized during manufacturing of the DEA and also in the choice of materials in the grating transfer process. A full characterization of the grating deformation includes measurements of the grating pitch and depth modulation, plus the change of the diffraction angle and efficiency. The structural surface distortion was characterized by measuring the shape of the transmitted and diffracted laser beam with a beam profiling system while applying an electro-mechanical stress to the grating. Such surface distortions may lead to decreasing diffraction efficiency and lower beam quality. With properly chosen manufacturing parameters, we found a period shift of up to 9 % in a grating with 1 μm pitch. To describe the optical behavior, a model based on independently measured material parameters is presented.

  18. Eye Movements When Reading Transposed Text: The Importance of Word-Beginning Letters

    PubMed Central

    White, Sarah J.; Johnson, Rebecca L.; Liversedge, Simon P.; Rayner, Keith

    2009-01-01

    Participants’ eye movements were recorded as they read sentences with words containing transposed adjacent letters. Transpositions were either external (e.g., problme, rpoblem) or internal (e.g., porblem, probelm) and at either the beginning (e.g., rpoblem, porblem) or end (e.g., problme, probelm) of words. The results showed disruption for words with transposed letters compared to the normal baseline condition, and the greatest disruption was observed for word-initial transpositions. In Experiment 1, transpositions within low frequency words led to longer reading times than when letters were transposed within high frequency words. Experiment 2 demonstrated that the position of word-initial letters is most critical even when parafoveal preview of words to the right of fixation is unavailable. The findings have important implications for the roles of different letter positions in word recognition and the effects of parafoveal preview on word recognition processes. PMID:18823209

  19. Birth of three stowaway-like MITE families via microhomology-mediated miniaturization of a Tc1/Mariner element in the yellow fever mosquito.

    PubMed

    Yang, Guojun; Fattash, Isam; Lee, Chia-Ni; Liu, Kun; Cavinder, Brad

    2013-01-01

    Eukaryotic genomes contain numerous DNA transposons that move by a cut-and-paste mechanism. The majority of these elements are self-insufficient and dependent on their autonomous relatives to transpose. Miniature inverted repeat transposable elements (MITEs) are often the most numerous nonautonomous DNA elements in a higher eukaryotic genome. Little is known about the origin of these MITE families as few of them are accompanied by their direct ancestral elements in a genome. Analyses of MITEs in the yellow fever mosquito identified its youngest MITE family, designated as Gnome, that contains at least 116 identical copies. Genome-wide search for direct ancestral autonomous elements of Gnome revealed an elusive single copy Tc1/Mariner-like element, named as Ozma, that encodes a transposase with a DD37E triad motif. Strikingly, Ozma also gave rise to two additional MITE families, designated as Elf and Goblin. These three MITE families were derived at different times during evolution and bear internal sequences originated from different regions of Ozma. Upon close inspection of the sequence junctions, the internal deletions during the formation of these three MITE families always occurred between two microhomologous sites (6-8 bp). These results suggest that multiple MITE families may originate from a single ancestral autonomous element, and formation of MITEs can be mediated by sequence microhomology. Ozma and its related MITEs are exceptional candidates for the long sought-after endogenous active transposon tool in genetic control of mosquitoes. PMID:24068652

  20. Birth of Three Stowaway-like MITE Families via Microhomology-Mediated Miniaturization of a Tc1/Mariner Element in the Yellow Fever Mosquito

    PubMed Central

    Yang, Guojun; Fattash, Isam; Lee, Chia-Ni; Liu, Kun; Cavinder, Brad

    2013-01-01

    Eukaryotic genomes contain numerous DNA transposons that move by a cut-and-paste mechanism. The majority of these elements are self-insufficient and dependent on their autonomous relatives to transpose. Miniature inverted repeat transposable elements (MITEs) are often the most numerous nonautonomous DNA elements in a higher eukaryotic genome. Little is known about the origin of these MITE families as few of them are accompanied by their direct ancestral elements in a genome. Analyses of MITEs in the yellow fever mosquito identified its youngest MITE family, designated as Gnome, that contains at least 116 identical copies. Genome-wide search for direct ancestral autonomous elements of Gnome revealed an elusive single copy Tc1/Mariner-like element, named as Ozma, that encodes a transposase with a DD37E triad motif. Strikingly, Ozma also gave rise to two additional MITE families, designated as Elf and Goblin. These three MITE families were derived at different times during evolution and bear internal sequences originated from different regions of Ozma. Upon close inspection of the sequence junctions, the internal deletions during the formation of these three MITE families always occurred between two microhomologous sites (6–8 bp). These results suggest that multiple MITE families may originate from a single ancestral autonomous element, and formation of MITEs can be mediated by sequence microhomology. Ozma and its related MITEs are exceptional candidates for the long sought-after endogenous active transposon tool in genetic control of mosquitoes. PMID:24068652

  1. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed. PMID:10376325

  2. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  3. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  4. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  5. EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...

  6. DEVELOPMENT OF A CL-IMPREGNATED ACTIVATED CARBON FOR ENTRAINED-FLOW CAPTURE OF ELEMENTAL MERCURY

    EPA Science Inventory

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury [Hg(0)] and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to incre...

  7. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  8. BENCH-SCALE INVESTIGATION OF MECHANISMS OF ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON

    EPA Science Inventory

    The paper gives results of an investigation of the sorption and desorption of gaseous elemental mercury by activated carbon sorbents. wo sorbents were chosen for the study, one (PC-100) thermally activated and the other (HGR) chemically impregnated with sulfur. he sorbents had si...

  9. Binding among Select Episodic Elements Is Altered via Active Short-Term Retrieval

    ERIC Educational Resources Information Center

    Bridge, Donna J.; Voss, Joel L.

    2015-01-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated…

  10. Impact of detector-element active-area shape and fill factor on super-resolution

    NASA Astrophysics Data System (ADS)

    Hardie, Russell; Droege, Douglas; Dapore, Alexander; Greiner, Mark

    2015-05-01

    In many undersampled imaging systems, spatial integration from the individual detector elements is the dominant component of the system point spread function (PSF). Conventional focal plane arrays (FPAs) utilize square detector elements with a nearly 100% fill factor, where fill factor is defined as the fraction of the detector element area that is active in light detection. A large fill factor is generally considered to be desirable because more photons are collected for a given pitch, and this leads to a higher signal-to-noise-ratio (SNR). However, the large active area works against super-resolution (SR) image restoration by acting as an additional low pass filter in the overall PSF when modeled on the SR sampling grid. A high fill factor also tends to increase blurring from pixel cross-talk. In this paper, we study the impact of FPA detector-element shape and fill factor on SR. A detailed modulation transfer function analysis is provided along with a number of experimental results with both simulated data and real data acquired with a midwave infrared (MWIR) imaging system. We demonstrate the potential advantage of low fill factor detector elements when combined with SR image restoration. Our results suggest that low fill factor circular detector elements may be the best choice. New video results are presented using robust adaptive Wiener filter SR processing applied to data from a commercial MWIR imaging system with both high and low detector element fill factors.

  11. Survey of trace elements in coals and coal-related materials by neutron activation analysis

    USGS Publications Warehouse

    Ruch, R.R.; Cahill, R.A.; Frost, J.K.; Camp, L.R.; Gluskoter, H.J.

    1977-01-01

    Utilizing primarily instrumental neutron activation analysis (INAA) and other analytical methods as many as 61 elements were quantitatively surveyed in 170 U.S. whole coals, 70 washed coals, and 40 bench samples. Data on areal and vertical distributions in various regions were obtained along with extensive information on the mode of occurrence of various elements in the coal matrix itself. ?? 1977 Akade??miai Kiado??.

  12. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method. PMID:11077961

  13. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    PubMed Central

    Capannesi, Geraldo; Lopez, Francesco

    2013-01-01

    Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb) the levels measured are only slight lower than those proposed as air ambient standard. PMID:23878525

  14. Identification of three kinds of mutually related composite elements conferring S phase-specific transcriptional activation.

    PubMed

    Taoka, K; Kaya, H; Nakayama, T; Araki, T; Meshi, T; Iwabuchi, M

    1999-06-01

    Conservation of the Oct motif (CGCGGATC) is a remarkable feature of plant histone gene promoters. Many of the Oct motifs are paired with a distinct motif, Hex, TCA or CCAAT-box, constituting the type I element (CCACGTCANCGATCCGCG), type II element (TCACGCGGATC) and type III element (GATCCGCG-N14-ACCAATCA). To clarify the roles of these Oct-containing composite elements (OCEs) in cell cycle-dependent and tissue-specific expression, we performed gain-of-function experiments with transgenic tobacco cell lines and plants harboring a derivative of the 35S core promoter/beta-glucuronidase fusion gene in which three or four copies of an OCE had been placed upstream. Although their activities were slightly different, results showed that each of the three types of OCEs could confer the ability to direct S phase-specific expression on a heterologous promoter. In transgenic plants, the type I and III elements exhibited a similar activity, directing expression in meristematic tissues, whereas the activity of the type II element appeared to be restricted to young cotyledons and maturating guard cells. Mutational analyses demonstrated that the co-operation of Oct with another module (Hex, TCA or CCAAT-box) was absolutely required for both temporal and spatial regulation. Thus, OCEs play a pivotal role in regulation of the expression of plant histone genes. PMID:10417712

  15. Orthographic Reading Deficits in Dyslexic Japanese Children: Examining the Transposed-Letter Effect in the Color-Word Stroop Paradigm.

    PubMed

    Ogawa, Shino; Shibasaki, Masahiro; Isomura, Tomoko; Masataka, Nobuo

    2016-01-01

    In orthographic reading, the transposed-letter effect (TLE) is the perception of a transposed-letter position word such as "cholocate" as the correct word "chocolate." Although previous studies on dyslexic children using alphabetic languages have reported such orthographic reading deficits, the extent of orthographic reading impairment in dyslexic Japanese children has remained unknown. This study examined the TLE in dyslexic Japanese children using the color-word Stroop paradigm comprising congruent and incongruent Japanese hiragana words with correct and transposed-letter positions. We found that typically developed children exhibited Stroop effects in Japanese hiragana words with both correct and transposed-letter positions, thus indicating the presence of TLE. In contrast, dyslexic children indicated Stroop effects in correct letter positions in Japanese words but not in transposed, which indicated an absence of the TLE. These results suggest that dyslexic Japanese children, similar to dyslexic children using alphabetic languages, may also have a problem with orthographic reading. PMID:27303331

  16. Miniature inverted-repeat transposable element identification and genetic marker development in Agrostis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Creeping bentgrass (Agrostis stolonifera L.) is an important species to the turfgrass industry because of its adaptation for use in high quality turf stands such as golf course putting greens, tees, and fairways. A. stolonifera is a highly outcrossing allotetraploid making genetic marker developmen...

  17. Drosophila telomeres: an example of co-evolution with transposable elements.

    PubMed

    Silva-Sousa, R; López-Panadѐs, E; Casacuberta, E

    2012-01-01

    Telomeres have a DNA component composed of repetitive sequences. In most eukaryotes these repeats are very similar in length and sequence and are maintained by a highly conserved specialized cellular enzyme, telomerase. Some exceptions of the telomerase mechanism exist in eukaryotes of which the most studied are concentrated in insects, and from these, Drosophila species stand out in particular. The alternative mechanism of telomere maintenance in Drosophila is based on targeted transposition of 3 very special non-LTR retrotransposons, HeT-A, TART and TAHRE. The fingerprint of the co-evolution between the Drosophila genome and the telomeric retrotransposons is visible in special features of both. In this chapter, we will review the main aspects of Drosophila telomeres and the telomere retrotransposons that explain how this alternative mechanism works, is regulated, and evolves. By going through the different aspects of this symbiotic relationship, we will try to unravel which have been the necessary changes at Drosophila telomeres in order to exert their telomeric function analogously to telomerase telomeres, and also which particularities have been maintained in order to preserve the retrotransposon personality of HeT-A, TART and TAHRE. Drosophila telomeres constitute a remarkable variant that reminds us how exceptions should be treasured in order to widen our knowledge in any particular biological mechanism. PMID:22759813

  18. Transposable element junctions in marker development and genomic characterization of barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  19. Chromosomal organization and evolutionary history of Mariner transposable elements in Scarabaeinae coleopterans

    PubMed Central

    2013-01-01

    Background With the aim to increase the knowledge on the evolution of coleopteran genomes, we investigated through cytogenetics and nucleotide sequence analysis Mariner transposons in three Scarabaeinae species (Coprophanaeus cyanescens, C. ensifer and Diabroctis mimas). Results The cytogenetic mapping revealed an accumulation of Mariner transposon in the pericentromeric repetitive regions characterized as rich in heterochromatin and C 0 t-1 DNA fraction (DNA enriched with high and moderately repeated sequences). Nucleotide sequence analysis of Mariner revealed the presence of two major groups of Mariner copies in the three investigated coleoptera species. Conclusions The Mariner is accumulated in the centromeric area of the coleopteran chromosomes probably as a consequence of the absence of recombination in the heterochromatic regions. Our analysis detected high diversification of Mariner sequences during the evolutionary history of the group. Furthermore, comparisons between the coleopterans sequences with other insects and mammals, suggest that the horizontal transfer (HT) could have acted in the spreading of the Mariner in diverse non-related animal groups. PMID:24286129

  20. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  1. Synthetic promoter elements obtained by nucleotide sequence variation and selection for activity

    PubMed Central

    Edelman, Gerald M.; Meech, Robyn; Owens, Geoffrey C.; Jones, Frederick S.

    2000-01-01

    Eukaryotic transcriptional regulation in different cells involves large numbers and arrangements of cis and trans elements. To survey the number of cis regulatory elements that are active in different contexts, we have devised a high-throughput selection procedure permitting synthesis of active cis motifs that enhance the activity of a minimal promoter. This synthetic promoter construction method (SPCM) was used to identify >100 DNA sequences that showed increased promoter activity in the neuroblastoma cell line Neuro2A. After determining DNA sequences of selected synthetic promoters, database searches for known elements revealed a predominance of eight motifs: AP2, CEBP, GRE, Ebox, ETS, CREB, AP1, and SP1/MAZ. The most active of the selected synthetic promoters contain composites of a number of these motifs. Assays of DNA binding and promoter activity of three exemplary motifs (ETS, CREB, and SP1/MAZ) were used to prove the effectiveness of SPCM in uncovering active sequences. Up to 10% of 133 selected active sequences had no match in currently available databases, raising the possibility that new motifs and transcriptional regulatory proteins to which they bind may be revealed by SPCM. The method may find uses in constructing databases of active cis motifs, in diagnostics, and in gene therapy. PMID:10725347

  2. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  3. Highly similar piggyBac elements in Bactrocera that share a common lineage with elements in noctuid moths

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The piggyBac IFP2 transposable element, originally discovered in a Trichoplusia ni cell line, also exists as nearly identical elements in other noctuid lepidopteran species and in mutant and wild type strains of the oriental fruit fly, Bactrocera dorsalis. To further define the distribution of pigg...

  4. Construction of three-qubit genuine entanglement with bipartite positive partial transposes

    NASA Astrophysics Data System (ADS)

    Ha, Kil-Chan; Kye, Seung-Hyeok

    2016-03-01

    We construct triqubit genuinely entangled states which have positive partial transposes (PPTs) with respect to the bipartition of systems. These examples disprove a conjecture [Novo, Moroder, and Gühne, Phys. Rev A 88, 012305 (2013), 10.1103/PhysRevA.88.012305] which claims that PPT mixtures are necessary and sufficient for the biseparability of three qubits.

  5. Transposed Letter Priming with Horizontal and Vertical Text in Japanese and English Readers

    ERIC Educational Resources Information Center

    Witzel, Naoko; Qiao, Xiaomei; Forster, Kenneth

    2011-01-01

    It is well established that in masked priming, a target word (e.g., "JUDGE") is primed more effectively by a transposed letter (TL) prime (e.g., "jugde") than by an orthographic control prime (e.g., "junpe"). This is inconsistent with the slot coding schemes used in many models of visual word recognition. Several alternative coding schemes have…

  6. Preview Effects of Plausibility and Character Order in Reading Chinese Transposed Words: Evidence from Eye Movements

    ERIC Educational Resources Information Center

    Yang, Jinmian

    2013-01-01

    The current paper examined the role of plausibility information in the parafovea for Chinese readers by using two-character transposed words (in which the order of the component characters is reversed but are still words). In two eye-tracking experiments, readers received a preview of a target word that was (1) identical to the target word, (2) a…

  7. Distributional Analysis of the Transposed-Letter Neighborhood Effect on Naming Latency

    ERIC Educational Resources Information Center

    Johnson, Rebecca L.; Staub, Adrian; Fleri, Amanda M.

    2012-01-01

    Printed words that have a transposed-letter (TL) neighbor (e.g., angel has the TL neighbor angle) have been shown to be more difficult to process, in a range of paradigms, than words that do not have a TL neighbor. However, eye movement evidence suggests that this processing difficulty may occur on only a subset of trials. To investigate this…

  8. The Quiet Clam Is Quite Calm: Transposed-Letter Neighborhood Effects on Eye Movements during Reading

    ERIC Educational Resources Information Center

    Johnson, Rebecca L.

    2009-01-01

    In responses time tasks, inhibitory neighborhood effects have been found for word pairs that differ in a transposition of two adjacent letters (e.g., "clam/calm"). Here, the author describes two eye-tracking experiments conducted to explore transposed-letter (TL) neighborhood effects within the context of normal silent reading. In Experiment 1,…

  9. Integrator element as a promoter of active learning in engineering teaching

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-03-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator element, called the physics elevator project. This integrator element allows us to use, in a single project, all the content taught in the course and uses several active learning strategies. In this paper, we analyse this project as: (i) a clarifying element of the contents covered in the course; (ii) a promoter element of motivation and active participation in class and finally and (iii) a link between the contents covered in the course and the 'real world'. The data were collected by a questionnaire and interviews to students. From the data collected, it seems that the integrator element improves students' motivation towards physics and develops several skills that they consider to be important to their professional future. It also acts as a clarifying element and makes the connection between the physics that is taught and the 'real world'.

  10. Studies of generalized elemental imbalances in neurological disease patients using INAA (instrumental neutron activation analysis)

    SciTech Connect

    Ehmann, W.D.; Vance, D.E.; Khare, S.S.; Kasarskis, E.J.; Markesbery, W.R.

    1988-01-01

    Evidence has been presented in the literature to implicate trace elements in the etiology of several age-related neurological diseases. Most of these studies are based on brain analyses. Using instrumental neutron activation analysis (INAA), we have observed trace element imbalances in brains of patients with Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Picks's disease. The most prevalent elemental imbalances found in the brain were for bromine, mercury, and the alkali metals. In this study the authors report INAA studies of trace elements in nonneural tissues from Alzheimer's disease and ALS patients. Samples from household relatives were collected for use as controls wherever possible. Hair samples were washed according to the International Atomic Energy Agency recommended procedure. Fingernail samples were scraped with a quartz knife prior to washing by the same procedure. For ALS patients, blood samples were also collected. These data indicate that elemental imbalances in Alzheimer's disease and ALS are not restricted to the brain. Many elements perturbed in the brain are also altered in the several nonneural tissues examined to date. The imbalances in different tissues, however, are not always in the same direction. The changes observed may represent causes, effects, or simply epiphenomena. Longitudinal studies of nonneural tissues and blood, as well as tissue microprobe analyses at the cellular and subcellular level, will be required in order to better assess the role of trace elements in the etiology of these diseases.

  11. Electrically active light-element complexes in silicon crystals grown by cast method

    NASA Astrophysics Data System (ADS)

    Sato, Kuniyuki; Ogura, Atsushi; Ono, Haruhiko

    2016-09-01

    Electrically active light-element complexes called thermal donors and shallow thermal donors in silicon crystals grown by the cast method were studied by low-temperature far-infrared absorption spectroscopy. The relationship between these complexes and either crystal defects or light-element impurities was investigated by comparing different types of silicon crystals, that is, conventional cast-grown multicrystalline Si, seed-cast monolike-Si, and Czochralski-grown Si. The dependence of thermal and the shallow thermal donors on the light-element impurity concentration and their annealing behaviors were examined to compare the crystals. It was found that crystal defects such as dislocations and grain boundaries did not affect the formation of thermal or shallow thermal donors. The formation of these complexes was dominantly affected by the concentration of light-element impurities, O and C, independent of the existence of crystal defects.

  12. Elemental characterization of Hazm El-Jalamid phosphorite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A; Khater, Ashraf E M

    2016-08-01

    Instrumental neutron activation analyses (INAA) have been used to achieve accurate knowledge about the elemental analysis of phosphate ore deposits collected from Hazm El-Jalamid Northeast of Saudi Arabia. The samples were prepared for irradiation by thermal neutrons using a thermal neutron flux of 7×10(12)ncm(-2)s(-1) at ACT Lab Canada. The concentrations of 19 elements were determined. These included 12 major, minor and trace elements (Au, As, Ba, Br, Cr, Mo, Sb, Sc, Sr, Th, U and Zn) and 7 rare earth elements (REEs) (La, Ce, Nd, Sm, Eu, Yb and Lu). Major elements (Si, Al, Fe, Ca, Mg, Na, K, Cr, Ti, Mn, P, Sr and Ba) were determined using an inductively coupled plasma-mass spectrometer (ICP-MS). The comparison of the concentration of U and the REEs in the Hazm El-Jalamid phosphate samples with those of the Umm Wu'al phosphate from Saudi Arabia and El-Sibayia and El Hamrawein phosphate from Egypt shows that the contents of U and REEs are clearly higher in the Umm Wu'al, El-Sibayia and El Hamrawein phosphates than in the Hazm El-Jalamid phosphate samples. The results of major, trace elements, uranium and rare earth elements (REE) from El Jalamid phosphate have been compared with the global values of these elements. The concentrations for most of the elements studied are lower than the concentrations reported in the literature. The acquired data will serve as a reference for the follow-up studies to assess the agronomic effectiveness of the Hazm El-Jalamid phosphate rocks. PMID:27235886

  13. Overabundance of s-process elements in the atmosphere of the active red giant PZ Mon

    NASA Astrophysics Data System (ADS)

    Pakhomov, Yu. V.

    2015-11-01

    Based on high-resolution ( R = 60 000) spectra taken with the NES spectrograph (the 6-m BTA telescope, the Special Astrophysical Observatory of the Russian Academy of Sciences), we have determined the abundances of 26 elements, from lithium to europium, in the atmosphere of the active red giant PZ Mon, which belongs to the class of RS CVn variable stars, by the method of model stellar atmospheres. We have taken into account the hyperfine splitting, the isotopic shift, and the departure from local thermodynamic equilibrium. Analysis of our data has revealed an overabundance of lithium and neutron-capture elements compared to normal red giants. For lithium, this is explained by the activity of the star, while the overabundance of s-elements is presumably similar in nature to that inmild bariumstars.

  14. The Element Effect Revisited: Factors Determining Leaving Group Ability in Activated Nucleophilic Aromatic Substitution Reactions

    PubMed Central

    Senger, Nicholas A.; Bo, Bo; Cheng, Qian; Keeffe, James R.; Gronert, Scott; Wu, Weiming

    2012-01-01

    The “element effect” in nucleophilic aromatic substitution reactions (SNAr) is characterized by the leaving group order, F > NO2 > Cl ≈ Br > I, in activated aryl halides. Multiple causes for this result have been proposed. Experimental evidence shows that the element effect order in the reaction of piperidine with 2,4-dinitrophenyl halides in methanol is governed by the differences in enthalpies of activation. Computational studies of the reaction of piperidine and dimethylamine with the same aryl halides using the polarizable continuum model (PCM) for solvation indicate that polar, polarizability, solvation, and negative hyperconjugative effects are all of some importance in producing the element effect in methanol. In addition, a reversal of polarity of the C–X bond from reactant to transition state in the case of ArCl and ArBr compared to ArF also contributes to their difference in reactivity. The polarity reversal, and hyperconjugative influences have received little or no attention in the past. Nor has differential solvation of the different transition states been strongly emphasized. An anionic nucleophile, thiolate, gives very early transition states and negative activation enthalpies with activated aryl halides. The element effect is not established for these reactions. We suggest that the leaving group order in the gas phase will be dependent on the exact combination of nucleophile, leaving group, and substrate framework. The geometry of the SNAr transition state permits useful, qualitative conceptual distinctions to be made between this reaction and other modes of nucleophilic attack. PMID:23057717

  15. Measurement of the gain in a disk amplification stage with neodymium phosphate glass active elements

    SciTech Connect

    Voronich, Ivan N; Galakhov, I V; Garanin, Sergey G; Eroshenko, V A; Zaretskii, Aleksei I; Zimalin, B G; Ignat'ev, Ivan V; Kirdyashkin, M Yu; Kirillov, G A; Osin, Vladimir A; Rukavishnikov, N N; Sukharev, Stanislav A; Sharov, Oleg A; Charukhchev, Aleksandr V

    2003-06-30

    The measuring technique is described and time-resolved measurements of the small-signal gain as a function of the pump energy in a disk amplification stage with neodymium phosphate glass active elements in the 'Luch' facility are presented. The distribution of the gain over the amplifier aperture in the horizontal plane is measured. (lasers)

  16. Development of an active truss element for control of precision structures

    NASA Technical Reports Server (NTRS)

    Anderson, Eric H.; Moore, Donald M.; Fanson, James L.; Ealey, Mark A.

    1990-01-01

    An active structural element for use in precision control of large space structures is described. The active member is intended to replace a passive strut in a truss-like structure. It incorporates an eddy current displacement sensor and an actuator that is either piezoelectric (PZT) or electrostrictive (PMN). The design of the device is summarized. Performance of separate PZT and PMN actuators is compared for several properties relevant to submicrometer control of precision structures.

  17. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders.

    PubMed

    Wakabayashi, Aoi; Ulirsch, Jacob C; Ludwig, Leif S; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I; Sankaran, Vijay G

    2016-04-19

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders. PMID:27044088

  18. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders

    PubMed Central

    Wakabayashi, Aoi; Ulirsch, Jacob C.; Ludwig, Leif S.; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I.; Sankaran, Vijay G.

    2016-01-01

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptional cis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders. PMID:27044088

  19. Rare-earth elements in Egyptian granite by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2007-04-01

    The mobilization of rare-earth elements (REEs) in the environment requires monitoring of these elements in environmental matrices, in which they are mainly present at trace levels. The similarity in REEs chemical behavior makes the separate determination of each element by chemical methods difficult; instrumental neutron activation analysis (INAA), based on nuclear properties of the elements to be determined, is a method of choice in trace analysis of REEs and related elements. Therefore, INAA was applied as a sensitive nondestructive analytical tool for the determination of REEs to find out what information could be obtained about the REEs of some Egyptian granite collected from four locations in Aswan area in south Egypt as follows wadi El-Allaqi, El-Shelal, Gabel Ibrahim Pasha and from Sehyel Island and to estimate the accuracy, reproducibility and detection limit of NAA method in case of the given samples. The samples were properly prepared together with standards and simultaneously irradiated in a neutron flux of 7 x 10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The following elements have been determined: La, Ce, Nd, Sm, Eu, Yb and Lu. The gamma spectra was collected by HPGe detector and the analysis was done by means of computerized multichannel analyzer. The X-ray fluorescence (XRF) was also used. PMID:17208446

  20. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.

    PubMed

    Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar

    2012-01-01

    Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. PMID:23486178

  1. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which

  2. A finite element method for active vibration control of uncertain structures

    NASA Astrophysics Data System (ADS)

    Morales, A. L.; Rongong, J. A.; Sims, N. D.

    2012-10-01

    This work introduces a fuzzy design method using the finite element procedure to simulate and analyze active vibration control of structures subjected to uncertain parameters. The purpose of this work is to provide a tool for studying the influence of uncertainty propagation on both stability and performance of a vibration control system, whilst avoiding the need for computationally expensive probabilistic methods or complex robust control techniques. The proposed procedure applies a general and efficient strategy for computing fuzzy results to a sequence of finite element calculations. Finally, the applicability of the methodology is illustrated through some realistic case studies related to structural control where spillover instability may arise.

  3. Nuclear activation method and apparatus for detecting and quantifying earth elements

    SciTech Connect

    Carroll, J.F.

    1993-08-17

    A method is described for characterizing at least one activated element in an earth formation surrounding a borehole, comprising the steps of: (a) displacing in said borehole a sonde comprising a neutron source and at least two gamma ray detectors longitudinally spaced from said source, while irradiating said formation with neutrons of sufficient energy to interact with said element according to the activation reaction; (b) detecting and counting at each detector the gamma rays resulting from the activation of atoms of said element; (c) determining, at each depth, the number of gamma ray counts detected during the time period defined by the time instants when respectively said source and said detectors pass that depth, said determination of gamma ray counts being made for each detector at each depth; (d) establishing a relationship, for each depth, between the counts from the respective detectors for that depth and the corresponding time instants when the corresponding detector passes that depth; and (e) deriving from said relationship at least one characteristic of said element.

  4. Hop, an active Mutator-like element in the genome of the fungus Fusarium oxysporum.

    PubMed

    Chalvet, Fabienne; Grimaldi, Christine; Kaper, Fiona; Langin, Thierry; Daboussi, Marie-Josée

    2003-08-01

    A new type of active DNA transposon has been identified in the genome of Fusarium oxysporum by its transposition into the niaD target gene. Two insertions within the final exon, in opposite orientations at the same nucleotide site, have been characterized. These elements, called Hop, are 3,299 bp long, with perfect terminal inverted repeats (TIRs) of 99 bp. The sequencing of genomic copies reveals a 9-bp target site duplication and no apparent sequence specificity at the insertion sites. The sequencing of a cDNA indicates that Hop does not contain an intron and encodes a putative transposase of 836 amino acids. The structural features (length, TIRs size, and 9-bp duplication), together with the presence of conserved domains in the transposase, strongly suggest that Hop is a Mutator-like element (MULE). Hop is thus the first active member of this family found beyond plants. The high rate of excision observed indicates that Hop is very active and thus represents a promising efficient tagging system for the isolation of fungal genes. The distribution of Hop elements within the Fusarium genus revealed that they are present in different species, suggesting that related elements could be present in other fungal genomes. In fact, Hop-related sequences have been identified in the survey of the entire genome sequence of three other ascomycetes, Magnaporthe grisea, Neurospora crassa, and Aspergillus fumigatus. PMID:12777515

  5. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM. PMID:21294008

  6. Controlled trial of polymeric versus elemental diet in treatment of active Crohn's disease.

    PubMed

    Giaffer, M H; North, G; Holdsworth, C D

    1990-04-01

    30 patients with active Crohn's disease, mean Crohn's Disease Activity Index 301 (SE 32), who would otherwise have been treated with steroids, were randomised to receive for 4 weeks either an elemental diet ('Vivonex') (n = 16) or a polymeric diet ('Fortison') (n = 14). Assessment on days 10 and 28 showed that clinical remission occurred in 5 (36%) of the 14 patients on fortison compared with 12 (75%) of the 16 patients assigned to vivonex. The difference in remission rate was significant (p less than 0.03). Dietary treatment resulted in little change in the nutritional state and various laboratory indices of activity over a 4 week period despite clinical improvement. Polymeric diets do not seem to offer an effective therapeutic alternative to elemental diets in patients with acute exacerbations of Crohn's disease. PMID:1969560

  7. Neutron activation analysis of major, minor, and trace elements in marine sediments

    SciTech Connect

    Stone, S.F.; Zeisler, R.; Koster, B.J.

    1988-01-01

    Neutron activation analysis (NAA) techniques are well established in the multielement assay of geological materials. Similarly, applications of NAA to the analysis of marine sediments have been described. The different emphasis on elemental composition in studying and monitoring the health of the environment, however, presents a new challenge to the analyst. To investigate as many elements as possible, previous multielement procedures need to be reevaluated and modified. In this work, the authors have utilized the NAA steps of a recently developed sequential analysis procedure that obtained concentrations for 45 biological and pollutant elements in marine bivalves. This procedure, with modification, was applied to samples of marine sediments collected for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends (NS T) specimen banking program.

  8. Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    D'Agostino, G.; Bergamaschi, L.; Giordani, L.; Mana, G.; Massa, E.; Oddone, M.

    2012-12-01

    Impurity measurements of the 28Si crystal used for the determination of the Avogadro constant are essential to prevent biased results or underestimated uncertainties. A review of the existing data confirmed the high purity of silicon with respect to a large number of elements. In order to obtain direct evidence of purity, we developed a relative analytical method based on neutron activation. As a preliminary test, this method was applied to a sample of the Avogadro natural silicon crystal WASO 04. The investigation concerned 29 elements. The mass fraction of Au was quantified to be (1.03 ± 0.18) × 10-12. For the remaining 28 elements, the mass fractions were below the detection limits, which ranged between 1 × 10-12 and 1 × 10-5.

  9. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality.

    PubMed

    Pundhir, Sachin; Bagger, Frederik O; Lauridsen, Felicia B; Rapin, Nicolas; Porse, Bo T

    2016-05-19

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare. PMID:27095194

  10. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    PubMed Central

    Pundhir, Sachin; Bagger, Frederik O.; Lauridsen, Felicia B.; Rapin, Nicolas; Porse, Bo T.

    2016-01-01

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare. PMID:27095194

  11. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors

    SciTech Connect

    Liu, W.; Vidic, R.D.; Brown, T.D.

    2000-02-01

    Following previous success with the use of activated carbon impregnated with sulfur at elevated temperatures for elemental mercury control, possible improvements in the impregnation procedure were evaluated in this study. Adsorbents prepared by thoroughly mixing sulfur and activated carbon in the furnace at the initial sulfur-to-carbon ratio (SCR) ranging from 4:1 to 1:2 showed similar adsorptive behavior in a fixed-bed system. Maintaining a stagnant inert atmosphere during the impregnation process improves sulfur deposition resulting in the enhanced dynamic capacity of the adsorbent when compared to other sulfur impregnated carbons. The fate of spent adsorbents was assessed using a toxicity characteristics leaching procedure (TCLP). Although mercury concentration in all leachates was below the TCLP limit, virgin activated carbon lost a significant fraction of the adsorbed elemental mercury during storage, while no loss was observed for sulfur-impregnated carbons. This finding suggests that virgin activated carbon may not be appropriate adsorbent for permanent sequestration of anthropogenic elemental mercury emissions.

  12. Amidase activity in soils. IV. Effects of trace elements and pesticides

    SciTech Connect

    Frankenberger, W.T., Jr.; Tabatabai, M.A.

    1981-11-01

    Amidase was recently detected in soils, and this study was carried out to assess the effects of 21 trace elements, 12 herbicides, 2 fungicides, and 2 insecticides on the activity of this enzyme. Results showed that most of the trace elements and pesticides studied inhibited amidase activity in soils. The degree of inhibition varied among the soils used. When the trace elements were compared by using 5 ..mu..mol/g of soil, the average inhibition of amidase in three soils showed that Ag(I), Hg(I), As(III), and Se(IV) were the most effective inhibitors, but only Ag(I) and As(III) showed average inhibition > 50%. The least effective inhibitors (average inhibition < 3%) included Cu(I), Ba(II), Cu(II), Fe(II), Ni(II), Al(III), Fe(III), Ti(IV), V(IV), As(V), Mo(VI), and W(VI). Other elements that inhibited amidase activity in soils were Cd(II), Co(II), Mn(II), Pb(II), Sn(II), Zn(II), B(III), and Cr(III). Enzyme kinetic studies showed that As(III) was a competitive inhibitor of amidase, whereas Ag(I), Hg(II), and Se(IV) were noncompetitive inhibitors. When the pesticides studied were compared by using 10 ..mu..g of active ingredient per gram of soil, the average inhibition of amidase in three soils ranged from 2% with dinitroamine, EPTC plus R-25788, and captan to 10% with butylate. Other pesticides that inhibited amidase activity in soils were atrazine, naptalam, chloramben, dicamba, cyanazine, 2,4-D, alachlor, paraquat, trifluralin, maneb, diazinon, and malathion. The inhibition of amidase by diazinon, alachlor, and butylate followed noncompetitive kinetics.

  13. Transmit B1 Field Correction at 7T using Actively Tuned Coupled Inner Elements

    PubMed Central

    Merkle, Hellmut; Murphy-Boesch, Joseph; van Gelderen, Peter; Wang, Shumin; Li, Tie-Qiang; Koretsky, Alan P.; Duyn, Josef H.

    2011-01-01

    When volume coils are used for 1H imaging of the human head at 7T, wavelength effects in tissue cause intensity variations that are typically brighter at the center of the head and darker in the periphery. Much of this image non-uniformity can be attributed to variation in the effective transmit B1 field, which falls by about 50% to the left and right of center at mid-elevation in the brain. Because most of this B1 loss occurs in the periphery of the brain, we have explored use of actively controlled, off-resonant loop elements to locally enhance the transmit B1 field in these regions. When tuned to frequencies above the NMR frequency, these elements provide strong local enhancement of the B1 field of the transmit coil. Because they are tuned off-resonance, some volume coil detuning results, but resistive loading of the coil mode remains dominated by the sample. By digitally controlling their frequency offsets, the field enhancement of each inner element can be placed under active control. Using an array of eight, digitally-controlled elements placed around a custom-built head phantom, we demonstrate the feasibility of improving the B1 homogeneity of a transmit/receive volume coil without the need for multiple RF transmit channels. PMID:21437974

  14. Micromechanical analysis and finite element modeling of electromechanical properties of active piezoelectric structural fiber (PSF) composites

    NASA Astrophysics Data System (ADS)

    Dai, Qingli; Ng, Kenny

    2013-04-01

    This paper presents the combined micromechanics analysis and finite element modeling of the electromechanical properties of piezoelectric structural fiber (PSF) composites. The active piezoelectric materials are widely used due to their high stiffness, voltage-dependent actuation capability, and broadband electro-mechanical interactions. However, the fragile nature of piezoceramics limits their sensing and actuating applications. In this study, the active PSF composites were made by deploying the longitudinally poled PSFs into a polymer matrix. The PSF itself consists a silicon carbide (SiC) or carbon core fiber as reinforcement to the fragile piezoceramic shell. To predict the electromechanical properties of PSF composites, the micromechanics analysis was firstly conducted with the dilute approximation model and the Mori-Tanaka approach. The extended Rule of Mixtures was also applied to accurately predict the transverse properties by considering the effects of microstructure including inclusion sizes and geometries. The piezoelectric finite element (FE) modeling was developed with the ABAQUS software to predict the detailed mechanical and electrical field distribution within a representative volume element (RVE) of PSF composites. The simulated energy or deformation under imposed specific boundary conditions was used to calculate each individual property with constitutive laws. The comparison between micromechanical analysis and finite element modeling indicates the combination of the dilute approximation model, the Mori-Tanaka approach and the extended Rule of Mixtures can favorably predict the electromechanical properties of three-phase PSF composites.

  15. Elemental abundances in atmospheres of cool dwarfs with solar-like activity

    NASA Astrophysics Data System (ADS)

    Antipova, L. I.; Boyarchuk, A. A.

    2016-01-01

    The elemental abundances in the atmosphere of the red dwarf HD 32147, which belongs to the HR 1614 moving groups, are analyzed. The atmospheric parameters determined from spectroscopic data (the condition of equal abundances for neutral and ionized atoms of a given element) differ considerably from those derived from photometry and parallax data. The abundances of several elements are also anomalous, with the anomaly increasing with decreasing ionization potential. It is concluded that this star is a red dwarf displaying solar-like activity; i.e., having dark (cool) spots on its surface, which may sometimes be considerable in size. Modeling synthetic spectra of stars with cool spots on their surfaces, with the spectral lines consisting of two components formed in media with different temperatures, indicate that the spectroscopic atmospheric parameters derived in such cases are incorrect; this can also explain the observed dependence of the elemental abundances on the corresponding ionization potentials. This leads to the conclusion thatHD32147 is indeed a star with solar-like activity. Several other such stars considered as examples display the same anomalies as those of HD 32147. These modeling results are also valid for Ap and Am stars, and are able to explain short-wavelength observations of the Sun and some stars (the FIP effect).

  16. ERV-L Elements: a Family of Endogenous Retrovirus-Like Elements Active throughout the Evolution of Mammals

    PubMed Central

    Bénit, Laurence; Lallemand, Jean-Baptiste; Casella, Jean-François; Philippe, Hervé; Heidmann, Thierry

    1999-01-01

    We have previously identified in the human genome a family of 200 endogenous retrovirus-like elements, the HERV-L elements, disclosing similarities with the foamy retroviruses and which might be the evolutionary intermediate between classical intracellular retrotransposons and infectious retroviruses. Southern blot analysis of a large series of mammalian genomic DNAs shows that HERV-L-related elements—so-called ERV-L—are present among all placental mammals, suggesting that ERV-L elements were already present at least 70 million years ago. Most species exhibit a low copy number of ERV-L elements (from 10 to 30), while simians (not prosimians) and mice (not rats) have been subjected to bursts resulting in increases in the number of copies up to 200. The burst of copy number in primates can be dated to shortly after the prosimian and simian branchpoint, 45 to 65 million years ago, whereas murine species have been subjected to two much more recent bursts (less than 10 million years ago), occurring after the Mus/Rattus split. We have amplified and sequenced 360-bp ERV-L internal fragments of the highly conserved pol gene from a series of 22 mammalian species. These sequences exhibit high percentages of identity (57 to 99%) with the murine fully coding MuERV-L element. Phylogenetic analyses allowed the establishment of a plausible evolutionary scheme for ERV-L elements, which accounts for the high level of sequence conservation and the widespread dispersion among mammals. PMID:10074184

  17. On the processing of canonical word order during eye fixations in reading: Do readers process transposed word previews?

    PubMed

    Rayner, Keith; Angele, Bernhard; Schotter, Elizabeth R; Bicknell, Klinton

    2013-03-01

    Whether readers always identify words in the order they are printed is subject to considerable debate. In the present study, we used the gaze-contingent boundary paradigm (Rayner, 1975) to manipulate the preview for a two-word target region (e.g. white walls in My neighbor painted the white walls black). Readers received an identical (white walls), transposed (walls white), or unrelated preview (vodka clubs). We found that there was a clear cost of having a transposed preview compared to an identical preview, indicating that readers cannot or do not identify words out of order. However, on some measures, the transposed preview condition did lead to faster processing than the unrelated preview condition, suggesting that readers may be able to obtain some useful information from a transposed preview. Implications of the results for models of eye movement control in reading are discussed. PMID:24003322

  18. Transposed-letter priming effects in reading aloud words and nonwords.

    PubMed

    Mousikou, Petroula; Kinoshita, Sachiko; Wu, Simon; Norris, Dennis

    2015-10-01

    A masked nonword prime generated by transposing adjacent inner letters in a word (e.g., jugde) facilitates the recognition of the target word (JUDGE) more than a prime in which the relevant letters are replaced by different letters (e.g., junpe). This transposed-letter (TL) priming effect has been widely interpreted as evidence that the coding of letter position is flexible, rather than precise. Although the TL priming effect has been extensively investigated in the domain of visual word recognition using the lexical decision task, very few studies have investigated this empirical phenomenon in reading aloud. In the present study, we investigated TL priming effects in reading aloud words and nonwords and found that these effects are of equal magnitude for the two types of items. We take this result as support for the view that the TL priming effect arises from noisy perception of letter order within the prime prior to the mapping of orthography to phonology. PMID:25665798

  19. Nonexistence of entangled continuous-variable Werner states with positive partial transpose

    NASA Astrophysics Data System (ADS)

    McNulty, Daniel; Tatham, Richard; Mišta, Ladislav

    2014-03-01

    We address an open question about the existence of entangled continuous-variable (CV) Werner states with positive partial transpose (PPT). We prove that no such state exists by showing that all PPT CV Werner states are separable. The separability follows by observing that these CV Werner states can be approximated by truncating the states into a finite-dimensional convex mixture of product states. In addition, the constituents of the product states comprise a generalized non-Gaussian measurement which gives, rather surprisingly, a strictly tighter upper bound on quantum discord than photon counting. These results uncover the presence of only negative partial transpose entanglement and illustrate the complexity of more general nonclassical correlations in this paradigmatic class of genuine non-Gaussian quantum states.

  20. A structured annotation frame for the transposable phages: a new proposed family "Saltoviridae" within the Caudovirales.

    PubMed

    Hulo, Chantal; Masson, Patrick; Le Mercier, Philippe; Toussaint, Ariane

    2015-03-01

    Enterobacteriophage Mu is the best studied and paradigm member of the transposable phages. Mu-encoded proteins have been annotated in detail in UniProtKB and linked to a controlled vocabulary describing the various steps involved in the phage lytic and lysogenic cycles. Transposable phages are ubiquitous temperate bacterial viruses with a dsDNA linear genome. Twenty-six of them, that infect α, β and γ-proteobacteria, have been sequenced. Their conserved properties are described. Based on these characteristics, we propose a reorganization of the Caudovirales, to allow for the inclusion of a "Saltoviridae" family and two newly proposed subfamilies, the "Myosaltovirinae" and "Siphosaltovirinae". The latter could temporarily be included in the existing Myoviridae and Siphoviridae families. PMID:25500185

  1. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    NASA Technical Reports Server (NTRS)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-01-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  2. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    DOE PAGESBeta

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-05-07

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring themore » arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.« less

  3. Development of multi-element active aerodynamics for the formula sae car

    NASA Astrophysics Data System (ADS)

    Merkel, James Patrick

    This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.

  4. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    NASA Astrophysics Data System (ADS)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-05-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  5. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    NASA Astrophysics Data System (ADS)

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-08-01

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. A method for measuring the arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.

  6. Multipartite positive-partial-transpose inequalities exponentially stronger than local reality inequalities

    SciTech Connect

    Nagata, Koji

    2007-08-15

    We show that positivity of every partial transpose of N-partite quantum states implies inequalities on Bell correlations which are stronger than standard Bell inequalities by a factor of 2{sup (N-1)/2}. A violation of the inequality implies that the system is in a bipartite distillable entangled state. It turns out that a family of N-qubit bound entangled states proposed by Duer [Phys. Rev. Lett. 87, 230402 (2001)] violates the inequality for N{>=}4.

  7. The Evolution of Tyrosine-Recombinase Elements in Nematoda

    PubMed Central

    Szitenberg, Amir; Koutsovoulos, Georgios; Blaxter, Mark L.; Lunt, David H.

    2014-01-01

    Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum. PMID:25197791

  8. Native Thrombocidin-1 and Unfolded Thrombocidin-1 Exert Antimicrobial Activity via Distinct Structural Elements

    PubMed Central

    Kwakman, Paulus H. S.; Krijgsveld, Jeroen; de Boer, Leonie; Nguyen, Leonard T.; Boszhard, Laura; Vreede, Jocelyne; Dekker, Henk L.; Speijer, Dave; Drijfhout, Jan W.; te Velde, Anje A.; Crielaard, Wim; Vogel, Hans J.; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2011-01-01

    Chemokines (chemotactic cytokines) can have direct antimicrobial activity, which is apparently related to the presence of a distinct positively charged patch on the surface. However, chemokines can retain antimicrobial activity upon linearization despite the loss of their positive patch, thus questioning the importance of this patch for activity. Thrombocidin-1 (TC-1) is a microbicidal protein isolated from human blood platelets. TC-1 only differs from the chemokine NAP-2/CXCL7 by a two-amino acid C-terminal deletion, but this truncation is crucial for antimicrobial activity. We assessed the structure-activity relationship for antimicrobial activity of TC-1. Reduction of the charge of the TC-1-positive patch by replacing lysine 17 with alanine reduced the activity against bacteria and almost abolished activity against the yeast Candida albicans. Conversely, augmentation of the positive patch by increasing charge density or size resulted in a 2–3-fold increased activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis but did not substantially affect activity against C. albicans. Reduction of TC-1 resulted in loss of the folded conformation, but this disruption of the positive patch did not affect antimicrobial activity. Using overlapping 15-mer synthetic peptides, we demonstrate peptides corresponding to the N-terminal part of TC-1 to have similar antimicrobial activity as intact TC-1. Although we demonstrate that the positive patch is essential for activity of folded TC-1, unfolded TC-1 retained antimicrobial activity despite the absence of a positive patch. This activity is probably exerted by a linear peptide stretch in the N-terminal part of the molecule. We conclude that intact TC-1 and unfolded TC-1 exert antimicrobial activity via distinct structural elements. PMID:22025617

  9. Thin-disk laser based on an Yb:YAG / YAG composite active element

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. I.; Mukhin, I. B.; Vadimova, O. L.; Palashov, O. V.

    2015-03-01

    A thin-disk laser module based on an Yb:YAG / YAG composite active element is developed with a small-signal gain of 1.25 and a stored energy of 400 mJ under cw pumping. The gain and thermally induced phase distortions in the module are studied experimentally. Based on this module, a thin-disk laser with an average power of 300 W and a slope efficiency of 42% is designed.

  10. Direct tests of micro channel plates as the active element of a new shower maximum detector

    SciTech Connect

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-05-22

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. Furthermore, the time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  11. Direct tests of micro channel plates as the active element of a new shower maximum detector

    NASA Astrophysics Data System (ADS)

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-09-01

    We continue the study of micro channel plates (MCP) as the active element of a shower maximum (SM) detector. We present below test beam results obtained with MCPs detecting directly secondary particles of an electromagnetic shower. The MCP efficiency to shower particles is close to 100%. The time resolution obtained for this new type of the SM detector is at the level of 40 ps.

  12. New Fast Shower Max Detector Based on MCP as an Active Element

    NASA Astrophysics Data System (ADS)

    Ronzhin, A.; Los, S.; Ramberg, E.; Spiropulu, M.; Apresyan, A.; Xie, S.; Kim, H.; Zatserklyaniy, A.

    2015-02-01

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photo detectors based on micro channel plates (MCP) as secondary emitter. The SM time resolution - we obtained for this new type of detector is at the level of 20-30 ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP.

  13. Qualitative Elemental Analyses of a Meteorite Sample Found in Turkey by Photo-activation Analysis Method

    NASA Astrophysics Data System (ADS)

    Ertugay, C.; Boztosun, I.; Ozmen, S. F.; Dapo, H.

    2015-04-01

    In this paper, a meteorite sample provided from TÜBITAK National Observatory found in Turkey has been investigated by using a clinical linear accelerator that has endpoint energy of 18 MeV, and a high purity Germanium detector for qualitative elemental analysis within photo-activation analysis method. 21 nuclei ranging from 24Na to 149Nd have been identified in the meteorite sample.

  14. Many or most genes in Arabidopsis transposed after the origin of the order Brassicales

    PubMed Central

    Freeling, Michael; Lyons, Eric; Pedersen, Brent; Alam, Maqsudul; Ming, Ray; Lisch, Damon

    2008-01-01

    Previous to this work, typical genes were thought to move from one position to another infrequently. On the contrary, we now estimate that between one-fourth and three-fourths of the genes in Arabidopsis transposed in the Brassicales. We used the CoGe comparative genomics system to perform and visualize multiple orthologous chromosomal alignments. Using this tool, we found large differences between different categories of genes. Ten of the gene families examined, including genes in most transcription factor families, exhibited a median frequency of 5% transposed genes. In contrast, other gene families were composed largely of transposed genes: NB-LRR disease-resistance genes, genes encoding MADS-box and B3 transcription factors, and genes encoding F-box proteins. A unique method involving transposition-rich regions of genome allowed us to obtain an indirect estimate of the positional stability of the average gene. The observed differences between gene families raise important questions concerning the causes and consequences of gene transposition. PMID:18836034

  15. Periodontal Effects of a Transposed Versus a Conventional Flap in Mandibular Third Molar Extractions.

    PubMed

    Laurito, Domenica; Lollobrigida, Marco; Graziani, Filippo; Guerra, Fabrizio; Vestri, Annarita; De Biase, Alberto

    2016-05-01

    The aim of this study was to compare a transposed with a repositioned flap by assessing the periodontal effects on the second molar and primary healing after extraction of partially impacted lower third molars. A total of 24 patients requiring partially impacted mandibular wisdom tooth removal were enrolled in the study. The test group (n = 12) underwent a transposed flap procedure, whereas the control group (n = 12) underwent a repositioned flap procedure. Plaque index, probing depth, bleeding on probing, and width of keratinized tissue were recorded the day of surgery (T1) and after 60 days (T4). Wound dehiscence was assessed on the mesio-distal and bucco-lingual directions at days 2 (T2), 7 (T3), and T4. No significant differences have been observed in the periodontal parameters between the groups at T1 and T4 (P > 0.05). Similarly, no difference was found at T2, T3, and T4 in wound dehiscence incidence (P > 0.05). To date, no data exists on the use of transposed flaps in third molar surgery; thus a comparison of results cannot be done. Further studies with larger population are needed to investigate the potential advantages of this type of flap. PMID:27054424

  16. A developmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements.

    PubMed Central

    Gober, J W; Shapiro, L

    1992-01-01

    The transcription of a group of flagellar genes is temporally and spatially regulated during the Caulobacter crescentus cell cycle. These genes all share the same 5' cis-regulatory elements: a sigma 54 promoter, a binding site for integration host factor (IHF), and an enhancer sequence, known as the ftr element. We have partially purified the ftr-binding proteins, and we show that they require the same enhancer sequences for binding as are required for transcriptional activation. We have also partially purified the Caulobacter homolog of IHF and demonstrate that it can facilitate in vitro integrase-mediated lambda recombination. Using site-directed mutagenesis, we provide the first demonstration that natural enhancer sequences and IHF binding elements that reside 3' to the sigma 54 promoter of a bacterial gene, flaNQ, are required for transcription of the operon, in vivo. The IHF protein and the ftr-binding protein is primarily restricted to the predivisional cell, the cell type in which these promoters are transcribed. flaNQ promoter expression is localized to the swarmer pole of the predivisional cell, as are other flagellar promoters that possess these regulatory sequences 5' to the start site. The requirement for an IHF binding site and an ftr-enhancer element in spatially transcribed flagellar promoters indicates that a common mechanism may be responsible for both temporal and polar transcription. Images PMID:1392079

  17. Experimental analysis of biasing elements for dielectric electro-active polymers

    NASA Astrophysics Data System (ADS)

    Hodgins, Micah; Seelecke, Stefan

    2011-04-01

    This paper presents an experimental investigation of three different, small profile and scalable DEAP actuators. These actuators are designed for use in small scale pumping and valve applications. The actuators used in this paper consist of a biasing element (either a mass, linear spring, or a non-linear spring) coupled with a circular dielectric electro-active polymer (DEAP). These mechanisms bias the DEAP allowing out-of-plane actuation when the voltage is cycled. A constant force input, a linear spring, and a non-linear spring are separately tested as the biasing element of a circular/diaphragm DEAP. Tests are systematically performed at various DEAP pre-deflections, biasing stiffness and electrical loading rates. The displacement stroke performance of each test is examined and analyzed. It was found that the non-linear spring provided the largest displacement stroke over two other biasing elements. It also showed better performance at higher electrical loading rates. Thus, of the three types of biasing tested the non-linear spring shows most promise for use in fluid pump/valve applications. Future work will include optimizing this biasing element for the current DEAP design.

  18. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    PubMed

    Heim, Olga; Treitler, Julia T; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  19. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas

    PubMed Central

    Heim, Olga; Treitler, Julia T.; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  20. Observation of new spontaneous fission activities from elements 100 to 105

    SciTech Connect

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include /sup 257/Rf(3.8 s, 14% SF), /sup 258/Rf(13 ms), /sup 259/Rf(approx. 3 s, 8% SF), /sup 260/Rf(approx. 20 ms), and /sup 262/Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (/sup 260/104) was not observed. A difficulty exists in the interpretation that /sup 260/Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV /sup 18/O + /sup 248/Cm, 88- to 100-MeV /sup 15/N + /sup 249/Bk, and 96-MeV /sup 18/O + /sup 249/Cf must be other nuclides due to their large production cross sections, or the cross sections for production of /sup 260/Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in /sup 258/Lr(4.5 s) to the SF emitter /sup 258/No(1.2 ms) and an upper limit of 0.05% for SF branching in /sup 254/No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s (/sup 18/O + /sup 248/CM), indications of a approx. 47-s SF activity (75-MeV /sup 12/C + /sup 249/Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s (/sup 18/O + /sup 249/Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier.

  1. Repetitive elements, architects of genomic variation in Verticillium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular wilt pathogens in the genus Verticillium show considerable variation with respect to their host ranges, genomic organization, and the variety and number of transposable elements (TEs) that they carry. These families of TE sequences were first documented in the wide host range, plant pathog...

  2. Sequence, Genomic Distribution and DNA Modification of a Mu1 Element from Non-Mutator Maize Stocks

    PubMed Central

    Chandler, V. L.; Talbert, L. E.; Raymond, F.

    1988-01-01

    The increased mutation rate of Mutator stocks of maize has been shown to be the result of transposition of Mu elements. One element, Mu1, is present in 10-60 copies in Mutator stocks and approximately 0-3 copies in non-Mutator stocks. The sequence, structure and genomic distribution of an intact Mu1 element cloned from the non-Mutator inbred line B37 has been determined. The sequence of this element, termed Mu1.4-B37, is identical to Mu1 and it is flanked by 9-bp direct repeats indicative of a target site duplication. Mu1.4-B37 is not in the same genomic location in all stocks, which further suggests that it transposed into its genomic location in B37. We previously reported that in genomic DNA this element is modified such that certain methylation-sensitive restriction enzymes will not cut sites within the element. This is similar to that observed for Mu elements in Mutator stocks that have lost activity. We report herein that the Mu1.4-B37 element loses its modification and becomes accessible to digestion when placed in an active Mutator stock by genetic crosses. This suggests that factors conditioning unmodified elements are dominant in the initial cross between Mutator and non-Mutator stocks. In F(2) individuals that have subsequently lost Mutator activity the Mu1.4-B37 element again becomes modified as do most of the Mu elements in the stock. Thus, the modification state of the Mu1.4-B37 element and the other Mu1-like elements correlates with Mutator activity. We hypothesize that factor(s) within an active Mutator stock may inhibit the modification of Mu elements, and that this activity is missing in non-Mutator stocks and may become limiting in certain Mutator stocks resulting in DNA modification. PMID:2842229

  3. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  4. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. PMID:22406218

  5. Hoxa5 gene regulation: A gradient of binding activity to a brachial spinal cord element.

    PubMed

    Nowling, T; Zhou, W; Krieger, K E; Larochelle, C; Nguyen-Huu, M C; Jeannotte, L; Tuggle, C K

    1999-04-01

    The Hox genes cooperate in providing positional information needed for spatial and temporal patterning of the vertebrate body axis. However, the biological mechanisms behind spatial Hox expression are largely unknown. In transgenic mice, gene fusions between Hoxa5 (previously called Hox-1.3) 5' flanking regions and the lacZ reporter gene show tissue- and time-specific expression in the brachial spinal cord in day 11-13 embryos. A 604-bp regulatory region with enhancer properties directs this spatially specific expression. Fine-detail mapping of the enhancer has identified several elements involved in region-specific expression, including an element required for expression in the brachial spinal cord. Factors in embryonic day 12.5 nuclear extracts bind this element in electrophoretic mobility shift assays (EMSA) and protect three regions from DNase digestion. All three sites contain an AAATAA sequence and mutations at these sites reduce or abolish binding. Furthermore, this element binds specific individual embryonic proteins on a protein blot. The binding activity appears as a gradient along the anterior-posterior axis with two- to threefold higher levels observed in extracts from anterior regions than from posterior regions. In parallel with the EMSA, the proteins on the protein blot also show reduced binding to probes with mutations at the AAATAA sites. Most importantly, transgenic mice carrying Hoxa5/lacZ fusions with the three AAATAA sites mutated either do not express the transgene or have altered transgene expression. The brachial spinal cord element and its binding proteins are likely to be involved in spatial expression of Hoxa5 during development. PMID:10075847

  6. Speed of sound estimation with active PZT element for thermal monitoring during ablation therapy: feasibility study

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Guo, Xiaoyu; Cheng, Alexis; Boctor, Emad M.

    2016-04-01

    Controlling the thermal dose during ablation therapy is instrumental to successfully removing the tumor while preserving the surrounding healthy tissue. In the practical scenario, surgeons must be able to determine the ablation completeness in the tumor region. Various methods have been proposed to monitor it, one of which uses ultrasound since it is a common intraoperative imaging modality due to its non-invasive, cost-effective, and convenient natures. In our approach, we propose to use time of flight (ToF) information to estimate speed of sound changes. Accurate speed of sound estimation is crucial because it is directly correlated with temperature change and subsequent determination of ablation completeness. We divide the region of interest in a circular fashion with a variable radius from the ablator tip. We introduce the concept of effective speed of sound in each of the sub-regions. Our active PZT element control system facilitates this unique approach by allowing us to acquire one-way ToF information between the PZT element and each of the ultrasound elements. We performed a simulation and an experiment to verify feasibility of this method. The simulation result showed that we could compute the effective speed of sound within 0.02m/s error in our discrete model. We also perform a sensitivity analysis for this model. Most of the experimental results had less than 1% error. Simulation using a Gaussian continuous model with multiple PZT elements is also demonstrated. We simulate the effect of the element location one the optimization result.

  7. Evaluation of the JPL X-band 32 element active array. [for deep space communication

    NASA Technical Reports Server (NTRS)

    Boreham, J. F.; Postal, R. B.; Conroy, B. L.

    1979-01-01

    Tests performed on an X-band 32-element active array are described. Antenna pattern characteristics of the array were tested in its standard operating mode as well as several degraded performance modes, including failures of 1, 2, 3, 4, 8, 16, and 31 elements. Additionally, the array was characterized with the addition of a metallic shroud, and also characterized versus rf drive level and at a single off-axis electronic beamsteered position. Characterization was performed on several of the 3/4-watt, three-stage, X-band solid-state power amplifier modules. The characterization included swept amplitude response, amplitude and phase versus temperature from -20 to +60 C, and intermodulation distortion of selected modules. The array is described and conclusions and recommendations based upon the experience and results achieved are included.

  8. Distribution of trace elements in the human body determined by neutron activation analysis

    SciTech Connect

    Yukawa, M.; Suzuki-Yasumoto, M.; Amano, K.; Terai, M.

    1980-01-01

    Neutron activation analysis and instrumental semiconductor gamma-ray spectrometry were used for analysis of 20 trace elements in 10 autopsied human organs and tissues (liver, kidney, cerebrum, cerebellum, heart, muscle, pancreas, spleen, lung, and aorta) from 63 Japanese persons, whose ages ranged from 15 days to 85 yr. Distributions of aluminum, bromine, magnesium, manganese, rubidium, selenium, and vanadium in human body were almost uniform. High concentrations of cadmium were found in kidney and liver samples. There was a high mercury concentration in the liver, kidney, and brain samples. Concentrations of other elements (arsenic, gold, cobalt, chromium, copper, iron, indium, antimony, selenium, titanium, and zinc) in each organ or tissue are also presented in this paper.

  9. Trace element landscape of resting and activated human neutrophils on the sub-micrometer level.

    PubMed

    Niemiec, M J; De Samber, B; Garrevoet, J; Vergucht, E; Vekemans, B; De Rycke, R; Björn, E; Sandblad, L; Wellenreuther, G; Falkenberg, G; Cloetens, P; Vincze, L; Urban, C F

    2015-06-01

    Every infection is a battle for trace elements. Neutrophils migrate first to the infection site and accumulate quickly to high numbers. They fight pathogens by phagocytosis and intracellular toxication. Additionally, neutrophils form neutrophil extracellular traps (NETs) to inhibit extracellular microbes. Yet, neutrophil trace element characteristics are largely unexplored. We investigated unstimulated and phorbol myristate acetate-stimulated neutrophils using synchrotron radiation X-ray fluorescence (SR-XRF) on the sub-micron spatial resolution level. PMA activates pinocytosis, cytoskeletal rearrangements and the release of NETs, all mechanisms deployed by neutrophils to combat infection. By analyzing Zn, Fe, Cu, Mn, P, S, and Ca, not only the nucleus but also vesicular granules were identifiable in the elemental maps. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) revealed a neutrophil-specific composition of Zn, Fe, Cu, and Mn in comparison with J774 and HeLa cells, indicating a neutrophil-specific metallome complying with their designated functions. When investigating PMA-activated neutrophils, the SR-XRF analysis depicted typical subcellular morphological changes: the transformation of nucleus and granules and the emergence of void vacuoles. Mature NETs were evenly composed of Fe, P, S, and Ca with occasional hot spots containing Zn, Fe, and Ca. An ICP-MS-based quantification of NET supernatants revealed a NETosis-induced decrease of soluble Zn, whereas Fe, Cu, and Mn concentrations were only slightly affected. In summary, we present a combination of SR-XRF and ICP-MS as a powerful tool to analyze trace elements in human neutrophils. The approach will be applicable and valuable to numerous aspects of nutritional immunity. PMID:25832493

  10. A protein kinase C isozyme is translocated to cytoskeletal elements on activation.

    PubMed Central

    Mochly-Rosen, D; Henrich, C J; Cheever, L; Khaner, H; Simpson, P C

    1990-01-01

    Protein kinase C (PKC)1 isozymes comprise a family of related cytosolic kinases that translocate to the cell particulate fraction on stimulation. The activated enzyme is thought to be on the plasma membrane. However, phosphorylation of protein substrates occurs throughout the cell and is inconsistent with plasma membrane localization. Using an isozyme-specific monoclonal antibody we found that, on activation, this PKC isozyme translocates to myofibrils in cardiac myocytes and to microfilaments in fibroblasts. Translocation of this activated PKC isozyme to cytoskeletal elements may explain some of the effects of PKC on cell contractility and morphology. In addition, differences in the translocation site of individual isozymes--and, therefore, phosphorylation of different substrates localized at these sites--may explain the diverse biological effects of PKC. Images PMID:2078573

  11. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  12. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  13. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    PubMed Central

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  14. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity.

    PubMed

    Wydeven, Nicole; Young, Daniele; Mirkovic, Kelsey; Wickman, Kevin

    2012-12-26

    G protein-gated inwardly rectifying K(+) (Girk/K(IR)3) channels mediate the inhibitory effect of many neurotransmitters on excitable cells. Girk channels are tetramers consisting of various combinations of four mammalian Girk subunits (Girk1 to -4). Although Girk1 is unable to form functional homomeric channels, its presence in cardiac and neuronal channel complexes correlates with robust channel activity. This study sought to better understand the potentiating influence of Girk1, using the GABA(B) receptor and Girk1/Girk2 heteromer as a model system. Girk1 did not increase the protein levels or alter the trafficking of Girk2-containing channels to the cell surface in transfected cells or hippocampal neurons, indicating that its potentiating influence involves enhancement of channel activity. Structural elements in both the distal carboxyl-terminal domain and channel core were identified as key determinants of robust channel activity. In the distal carboxyl-terminal domain, residue Q404 was identified as a key determinant of receptor-induced channel activity. In the Girk1 core, three unique residues in the pore (P) loop (F137, A142, Y150) were identified as a collective potentiating influence on both receptor-dependent and receptor-independent channel activity, exerting their influence, at least in part, by enhancing mean open time and single-channel conductance. Interestingly, the potentiating influence of the Girk1 P-loop is tempered by residue F162 in the second membrane-spanning domain. Thus, discontinuous and sometime opposing elements in Girk1 underlie the Girk1-dependent potentiation of receptor-dependent and receptor-independent heteromeric channel activity. PMID:23236146

  15. DIVERSITY OF DcMaster-LIKE ELEMENTS OF THE PIF/Harbinger SUPERFAMILY IN THE CARROT GENOME

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transposable elements constitute a significant fraction of plant genomes. Both autonomous and non-autonomous elements of the DcMaster family, residing in the carrot genome, were described previously. DcMaster elements were classified as members of the PIF/Harbinger superfamily. In the present paper ...

  16. Aortic ascorbic acid, trace elements, and superoxide dismutase activity in human aneurysmal and occlusive disease

    SciTech Connect

    Dubick, M.A.; Hunter, G.C.; Casey, S.M.; Keen, C.L.

    1987-02-01

    Altered trace elements and ascorbic acid metabolism have been implicated in the pathogenesis of atherosclerotic cardiovascular disease. However, their role in the disease process, or the effect of atherosclerosis on their tissue levels within plaque, is poorly understood. The presence study analyzes the concentrations of Fe, Cu, Zn, and Mn, and ascorbic acid and superoxide dismutase (SOD) activity in tissue samples from 29 patients with abdominal aortic aneurysms (AAA) and 14 patients with atherosclerotic occlusive disease (AOD). It was observed that the Fe and Mn concentrations in AAA and AOD tissue were higher than the levels in nondiseased control aorta, whereas Cu and Zn levels in AAA and AOD tissue were similar to the levels in controls. The Zn:Cu ratio was significantly lower in the AAA tissue in comparison to both AOD and control tissue. In addition, AAA and AOD tissue had low ascorbic acid levels and low Cu, Zn-SOD activity with Cu,Zn-SOD:Mn-SOD ratios of 0.27 and 0.19, respectively, compared to a ratio of 3.20 in control aorta. These data indicate that aorta affected by aneurysms and occlusive disease have altered trace element and ascorbic acid concentrations, as well as low Cu,Zn-SOD activity. Although these observations do not directly support the hypothesis that AAA is associated with aortic Cu deficiency they do suggest a role for oxygen radicals or increased lipid peroxidation in occlusive and aneurysmal disease of the aorta.

  17. Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination.

    PubMed

    Austenaa, Liv M I; Barozzi, Iros; Simonatto, Marta; Masella, Silvia; Della Chiara, Giulia; Ghisletti, Serena; Curina, Alessia; de Wit, Elzo; Bouwman, Britta A M; de Pretis, Stefano; Piccolo, Viviana; Termanini, Alberto; Prosperini, Elena; Pelizzola, Mattia; de Laat, Wouter; Natoli, Gioacchino

    2015-11-01

    Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. PMID:26593720

  18. Glucose Enhances Basal or Melanocortin-Induced cAMP-Response Element Activity in Hypothalamic Cells.

    PubMed

    Breit, Andreas; Wicht, Kristina; Boekhoff, Ingrid; Glas, Evi; Lauffer, Lisa; Mückter, Harald; Gudermann, Thomas

    2016-07-01

    Melanocyte-stimulating hormone (MSH)-induced activation of the cAMP-response element (CRE) via the CRE-binding protein in hypothalamic cells promotes expression of TRH and thereby restricts food intake and increases energy expenditure. Glucose also induces central anorexigenic effects by acting on hypothalamic neurons, but the underlying mechanisms are not completely understood. It has been proposed that glucose activates the CRE-binding protein-regulated transcriptional coactivator 2 (CRTC-2) in hypothalamic neurons by inhibition of AMP-activated protein kinases (AMPKs), but whether glucose directly affects hypothalamic CRE activity has not yet been shown. Hence, we dissected effects of glucose on basal and MSH-induced CRE activation in terms of kinetics, affinity, and desensitization in murine, hypothalamic mHypoA-2/10-CRE cells that stably express a CRE-dependent reporter gene construct. Physiologically relevant increases in extracellular glucose enhanced basal or MSH-induced CRE-dependent gene transcription, whereas prolonged elevated glucose concentrations reduced the sensitivity of mHypoA-2/10-CRE cells towards glucose. Glucose also induced CRCT-2 translocation into the nucleus and the AMPK activator metformin decreased basal and glucose-induced CRE activity, suggesting a role for AMPK/CRTC-2 in glucose-induced CRE activation. Accordingly, small interfering RNA-induced down-regulation of CRTC-2 expression decreased glucose-induced CRE-dependent reporter activation. Of note, glucose also induced expression of TRH, suggesting that glucose might affect the hypothalamic-pituitary-thyroid axis via the regulation of hypothalamic CRE activity. These findings significantly advance our knowledge about the impact of glucose on hypothalamic signaling and suggest that TRH release might account for the central anorexigenic effects of glucose and could represent a new molecular link between hyperglycaemia and thyroid dysfunction. PMID:27144291

  19. Activation of carbohydrate response element binding protein (ChREBP) by ethanol

    PubMed Central

    Liangpunsakul, Suthat; Ross, Ruth A.; Crabb, David W.

    2012-01-01

    Carbohydrate response element binding protein (ChREBP) is a transcription factor involved in hepatic lipogenesis. Its function is in part under the control of AMP-activated protein kinase (AMPK) and protein phosphatase 2A (PP2A). Given known effects of ethanol on AMPK and PP2A, it is plausible that ethanol might enhance fatty acid synthesis by increasing the activity of ChREBP. We hypothesized that another potential pathway of ethanol-induced hepatic steatosis is mediated by activation of ChREBP. Methods The effects of ethanol on ChREBP were assessed in hepatoma cells and in C57BL/6J mice fed with the Lieber-DeCarli diet. Results When the cells were exposed to ethanol (50 mM) for 24 hrs, the activity of a liver pyruvate kinase (LPK) promoter-luciferase reporter was increased by ~4-fold. Ethanol feeding of mice resulted in the translocation of ChREBP from cytosol to the nucleus. PP2A activity was increased in the liver of ethanol-fed mice by 22%. We found no difference in the levels of hepatic Xu-5-P between ethanol-fed mice and controls. Transfection of a constitutively active AMPK expression plasmid suppressed the basal activity of the LPK luciferase reporter and abolished the effect of ethanol on the reporter activity. However, transfection of rat hepatoma cells with a dominant negative AMPK expression plasmid induced basal LPK luciferase activity by only ~20%. The effect of ethanol on ChREBP was attenuated in the presence of okadaic acid, an inhibitor of PP2A. Conclusions The effects of ethanol on AMPK and PP2A may result in activation of ChREBP, providing another potential mechanism for ethanol-induced hepatic steatosis. However, additional okadaic acid-insensitive effects appear to be important as well. PMID:23266705

  20. The nature of catalytically active complexes of Ziegler-type systems based on iron subgroup elements

    SciTech Connect

    Brodskii, A.R.; Noskova, N.F.

    1995-02-01

    Complexation processes that occur in Ziegler-type systems on the basis of the carboxylate compounds of elements belonging mainly to the Iron Subgroup are investigated. The influence of genesis on the composition and structure of the complexes forming in the catalytic systems is demonstrated. A general scheme to describe the interaction of the catalyst components depending on their formation conditions is proposed. It is established that, along with other complexes, polynuclear associated species are present in the catalysts and play a decisive role in the catalytic activity of the investigated systems.

  1. Sensing Nature's Electric Fields: Ion Channels as Active Elements of Linear Amplification

    NASA Astrophysics Data System (ADS)

    Bezrukov, Sergey M.

    2003-05-01

    Given the parameters of familiar cellular elements — voltage-sensitive ion channels, carriers, pumps, phospholipid insulators, and electrolytic conductors — is it possible to construct an amplifier whose sensitivity matches the 5 nV/cm threshold found in behavioral experiments on elasmobranch fish? Or, in addition to clever circuitry that uses commonly known elements and principles, do we need something else to understand this sensitivity? The resolution of this question is important not only for studies in sensory biophysics seeking to reveal underlying mechanisms and molecular structures. More generally, it deepens our appreciation of the stochastic nature of inter- and intra-cellular control circuits. Here I analyze a simplified circuit involving negative differential resistance of voltage-sensitive ion channels. The analysis establishes an off-equilibrium criterion for amplification, shows that ion channels are the dominant noise sources, and, by minimizing channel noise within the given constraints, demonstrates that generic voltage-sensitive ion channels are likely candidates for the active elements of the linear cellular amplifiers. Finally, I highlight a number of unsolved issues.

  2. Reward Contingency Modulates Neuronal Activity in Rat Septal Nuclei during Elemental and Configural Association Tasks

    PubMed Central

    Matsuyama, Nozomu; Uwano, Teruko; Hori, Etsuro; Ono, Taketoshi; Nishijo, Hisao

    2011-01-01

    It has been suggested that septal nuclei are important in the control of behavior during various reward and non-reward situations. In the present study, neuronal activity was recorded from rat septal nuclei during discrimination of conditioned sensory stimuli (CSs) of the medial forebrain bundle associated with or without a reward (sucrose solution or intracranial self-stimulation, ICSS). Rats were trained to lick a spout protruding close to the mouth just after a CS to obtain a reward stimulus. The CSs included both elemental and configural stimuli. In the configural condition, the reward contingency of the stimuli presented together was opposite to that of each elemental stimulus presented alone, although the same sensory stimuli were involved. Of the 72 responsive septal neurons, 18 responded selectively to the CSs predicting reward (CS+-related), four to the CSs predicting non-reward (CS0-related), nine to some CSs predicting reward or non-reward, and 15 non-differentially to all CSs. The remaining 26 neurons responded mainly during the ingestion/ICSS phase. A multivariate analysis of the septal neuronal responses to elemental and configural stimuli indicated that septal neurons encoded the CSs based on reward contingency, regardless of the stimulus physical properties and were categorized into three groups; CSs predicting the sucrose solution, CSs predicting a non-reward, and CSs predicting ICSS. The results suggest that septal nuclei are deeply involved in discriminating the reward contingency of environmental stimuli to manifest appropriate behaviors in response to changing stimuli. PMID:21633493

  3. Evaluation of a combination of continuum and truss finite elements in a model of passive and active muscle tissue.

    PubMed

    Hedenstierna, S; Halldin, P; Brolin, K

    2008-12-01

    The numerical method of finite elements (FE) is a powerful tool for analysing stresses and strains in the human body. One area of increasing interest is the skeletal musculature. This study evaluated modelling of skeletal muscle tissue using a combination of passive non-linear, viscoelastic solid elements and active Hill-type truss elements, the super-positioned muscle finite element (SMFE). The performance of the combined materials and elements was evaluated for eccentric motions by simulating a tensile experiment from a published study on a stimulated rabbit muscle including three different strain rates. It was also evaluated for isometric and concentric contractions. The resulting stress-strain curves had the same overall pattern as the experiments, with the main limitation being sensitivity to the active force-length relation. It was concluded that the SMFE could model active and passive muscle tissue at constant rate elongations for strains below failure, as well as isometric and concentric contractions. PMID:18642161

  4. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    PubMed

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. PMID:26803551

  5. [Antilipoxygenase activity and the trace elements content of Aloe vera in relation to the therapeutical effect].

    PubMed

    Bezáková, L; Oblozinský, M; Sýkorová, M; Paulíková, I; Kostálová, D

    2005-01-01

    Aloe vera is a rich source of many natural-health-promoting substances. The results of contemporary research on animal models indicate that the extracts have an antiinflammatory property. In this work the results of some in vitro experiments are shown: determination of the inhibitory effect of the Aloe vera extracts on the activity of partially purified lipoxygenase from the rat lung cytosol fraction, and quantitative determination of the trace elements presented in the extract (Mn, Fe, Cu, Zn) carried out by using the x-ray fluorescence analysis. The findings could explain the inhibitory effect (antilipoxygenase activity) of the Aloe vera extract in the acute inflammation process, expecially in the topical application for healing of minor burns and skin ulcers. PMID:15751795

  6. Human Research Program Human Health Countermeasures Element Extravehicular Activity (EVA) Risk Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Norfleet, William; Harris, Bernard

    2009-01-01

    The Extravehicular Activity (EVA) Risk Standing Review Panel (SRP) was favorably impressed by the operational risk management approach taken by the Human Research Program (HRP) Integrated Research Plan (IRP) to address the stated life sciences issues. The life sciences community at the Johnson Space Center (JSC) seems to be focused on operational risk management. This approach is more likely to provide risk managers with the information they need at the time they need it. Concerning the information provided to the SRP by the EVA Physiology, Systems, and Performance Project (EPSP), it is obvious that a great deal of productive activity is under way. Evaluation of this information was hampered by the fact that it often was not organized in a fashion that reflects the "Gaps and Tasks" approach of the overall Human Health Countermeasures (HHC) effort, and that a substantial proportion of the briefing concerned subjects that, while interesting, are not part of the HHC Element (e.g., the pressurized rover presentation). Additionally, no information was provided on several of the tasks or how they related to work underway or already accomplished. This situation left the SRP having to guess at the efforts and relationship to other elements, and made it hard to easily map the EVA Project efforts currently underway, and the data collected thus far, to the gaps and tasks in the IRP. It seems that integration of the EPSP project into the HHC Element could be improved. Along these lines, we were concerned that our SRP was split off from the other participating SRPs at an early stage in the overall agenda for the meeting. In reality, the concerns of EPSP and other projects share much common ground. For example, the commonality of the concerns of the EVA and exercise physiology groups is obvious, both in terms of what reduced exercise capacity can do to EVA capability, and how the exercise performed during an EVA could contribute to an overall exercise countermeasure prescription.

  7. Orthographic Reading Deficits in Dyslexic Japanese Children: Examining the Transposed-Letter Effect in the Color-Word Stroop Paradigm

    PubMed Central

    Ogawa, Shino; Shibasaki, Masahiro; Isomura, Tomoko; Masataka, Nobuo

    2016-01-01

    In orthographic reading, the transposed-letter effect (TLE) is the perception of a transposed-letter position word such as “cholocate” as the correct word “chocolate.” Although previous studies on dyslexic children using alphabetic languages have reported such orthographic reading deficits, the extent of orthographic reading impairment in dyslexic Japanese children has remained unknown. This study examined the TLE in dyslexic Japanese children using the color-word Stroop paradigm comprising congruent and incongruent Japanese hiragana words with correct and transposed-letter positions. We found that typically developed children exhibited Stroop effects in Japanese hiragana words with both correct and transposed-letter positions, thus indicating the presence of TLE. In contrast, dyslexic children indicated Stroop effects in correct letter positions in Japanese words but not in transposed, which indicated an absence of the TLE. These results suggest that dyslexic Japanese children, similar to dyslexic children using alphabetic languages, may also have a problem with orthographic reading. PMID:27303331

  8. Elemental abundances and temperatures of quiescent solar active region cores from X-ray observations

    NASA Astrophysics Data System (ADS)

    Del Zanna, G.; Mason, H. E.

    2014-05-01

    A brief review of studies of elemental abundances and emission measures in quiescent solar active region cores is presented. Hinode EUV Imaging Spectrometer (EIS) observations of strong iron spectral lines have shown sharply peaked distributions around 3 MK. EIS observations of lines emitted by a range of elements have allowed good estimates of abundances relative to iron. However, X-ray observations are required to measure the plasma emission above 3 MK and the abundances of oxygen and neon. We revisit, using up-to-date atomic data, older X-ray observations obtained by a sounding rocket and by the Solar Maximum Mission (SMM) Flat Crystal Spectrometer (FCS). We find that the Fe/O and Fe/Ne ratios are normally increased by a factor of 3.2, compared to the photospheric values. Similar results are obtained from FCS observations of six quiescent active region cores. The FCS observations also indicate that the emission measure above 3 MK has a very steep negative slope, with very little plasma observed at 5 MK or above. Appendix A is available in electronic form at http://www.aanda.org

  9. Role of surface-active elements during keyhole-mode laser welding

    NASA Astrophysics Data System (ADS)

    Ribic, B.; Tsukamoto, S.; Rai, R.; DebRoy, T.

    2011-12-01

    During high power density laser welding of mild steel, the keyhole depth, liquid metal flow, weld geometry and weld integrity are affected by base-metal sulfur content and oxygen (O2) present in the atmosphere or shielding gas. The role of these surface-active elements during keyhole-mode laser welding of steels is not well understood. In order to better understand their effects, welding of mild steel specimens containing various concentrations of oxygen and sulfur are examined. In addition, a numerical model is used to evaluate the influence of the surface-active elements on heat transfer and fluid flow in keyhole-mode laser welding. Increase in base-metal sulfur concentration or O2 content of shielding gas results in decreased weld widths. Sulfur results in a negligible increase in penetration depth whereas the presence of O2 in shielding gas significantly affects the weld penetration. It has earlier been proposed that oxygen, if present in the shielding gas, can get introduced into the weld pool resulting in formation of carbon monoxide (CO) at the keyhole surface and additional pressure from CO can result in increased penetration. Numerical modelling has been used in this work to understand the effects of formation of CO on the keyhole and weld geometries.

  10. Three-element trap filter radiometer based on large active area silicon photodiodes.

    PubMed

    Salim, S G R; Anhalt, K; Taubert, D R; Hollandt, J

    2016-05-20

    This paper shows the opto-mechanical design of a new filter radiometer built at the Physikalisch-Technische Bundesanstalt, Germany, for the accurate determination of the thermodynamic temperature of high-temperature blackbodies. The filter radiometer is based on a three-element reflection-type trap detector that uses three large active area silicon photodiodes. Its spectral coverage and field of view are defined by a detachable narrow-band filter and a diamond-turned precision aperture, respectively. The temperature of the filter radiometer is stabilized using a water-streamed housing and is measured using a thin-film platinum thermometer placed onto the first photodiode element. The trap "mount" has been made as compact as possible, which, together with the large active area of the chosen photodiodes, allows a wide field of view. This work presents the design of the filter radiometer and discusses the criteria that have been considered in order for the filter radiometer to suit the application. PMID:27411121

  11. Identification of active transcriptional regulatory elements from GRO-seq data.

    PubMed

    Danko, Charles G; Hyland, Stephanie L; Core, Leighton J; Martins, Andre L; Waters, Colin T; Lee, Hyung Won; Cheung, Vivian G; Kraus, W Lee; Lis, John T; Siepel, Adam

    2015-05-01

    Modifications to the global run-on and sequencing (GRO-seq) protocol that enrich for 5'-capped RNAs can be used to reveal active transcriptional regulatory elements (TREs) with high accuracy. Here, we introduce discriminative regulatory-element detection from GRO-seq (dREG), a sensitive machine learning method that uses support vector regression to identify active TREs from GRO-seq data without requiring cap-based enrichment (https://github.com/Danko-Lab/dREG/). This approach allows TREs to be assayed together with gene expression levels and other transcriptional features in a single experiment. Predicted TREs are more enriched for several marks of transcriptional activation—including expression quantitative trait loci, disease-associated polymorphisms, acetylated histone 3 lysine 27 (H3K27ac) and transcription factor binding—than those identified by alternative functional assays. Using dREG, we surveyed TREs in eight human cell types and provide new insights into global patterns of TRE function. PMID:25799441

  12. The level of elements and antioxidant activity of commercial dietary supplement formulations based on edible mushrooms.

    PubMed

    Stilinović, Nebojša; Škrbić, Biljana; Živančev, Jelena; Mrmoš, Nataša; Pavlović, Nebojša; Vukmirović, Saša

    2014-12-01

    Commercial preparations of Cordyceps sinensis, Ganoderma lucidum and Coprinus comatus mushroom marketed as healthy food supplements in Serbia were analyzed by atomic absorption spectrometry with a graphite furnace (GFAAS) for their element content. Antioxidant activity potential and total phenolics of the same mushrooms were determined. The element content of mushroom samples was in the range of 0.130-0.360 mg kg(-1) for lead (Pb), <0.03-0.46 mg kg(-1) for arsenic (As), 0.09-0.39 mg kg(-1) for cadmium (Cd), 98.14-989.18 mg kg(-1) for iron (Fe), 0.10-101.32 mg kg(-1) for nickel (Ni), 5.06-26.50 mg kg(-1) for copper (Cu), 0.20-0.70 mg kg(-1) for cobalt (Co), 1.74-136.33 mg kg(-1) for chromium (Cr) and 2.19-21.54 mg kg(-1) for manganese (Mn). In the tests for measuring the antioxidant activity, the methanolic extract of C. sinensis showed the best properties. The same was seen for the analysis of selected phenolic compounds; C. sinensis was found to have the highest content. Commercial preparations of C. sinensis and C. comatus can be considered to be safe and suitable food supplements included in well-balanced diets. PMID:25294630

  13. Bisphenol A activates the Nrf1/2-antioxidant response element pathway in HEK 293 cells.

    PubMed

    Chepelev, Nikolai L; Enikanolaiye, Mutiat I; Chepelev, Leonid L; Almohaisen, Abdulrahman; Chen, Qixuan; Scoggan, Kylie A; Coughlan, Melanie C; Cao, Xu-Liang; Jin, Xiaolei; Willmore, William G

    2013-03-18

    Bisphenol A (BPA) is used in the production of polycarbonate plastics and epoxy resins for baby bottles, liners of canned food, and many other consumer products. Previously, BPA has been shown to reduce the activity of several antioxidant enzymes, which may contribute to oxidative stress. However, the underlying mechanism of the BPA-mediated effect upon antioxidant enzyme activity is unknown. Antioxidant and phase II metabolizing enzymes protect cells from oxidative stress and are transcriptionally activated by Nrf1 and Nrf2 factors through their cis-regulatory antioxidant response elements (AREs). In this work, we have assessed the effect of BPA on the Nrf1/2-ARE pathway in cultured human embryonic kidney (HEK) 293 cells. Surprisingly, glutathione and reactive oxygen species (ROS) assays revealed that BPA application created a more reduced intracellular environment in cultured HEK 293 cells. Furthermore, BPA increased the transactivation activity of ectopic Nrf1 and Nrf2 and increased the expression of ARE-target genes ho-1 and nqo1 at high (100-200 μM) BPA concentrations only. Our study suggests that BPA activates the Nrf1/2-ARE pathway at high (>10 μM) micromolar concentrations. PMID:23360430

  14. Analysis of solid-rocket effluents for aluminum, silicon, and other trace elements by neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Furr, A. K.

    1974-01-01

    The sensitivity and reliability of neutron activation analysis in detecting trace elements in solid rocket effluents are discussed. Special attention was given to Al and Si contaminants. The construction and performance of a thermal column irradiation unit was reported.

  15. Quantitative comparison of cis-regulatory element (CRE) activities in transgenic Drosophila melanogaster.

    PubMed

    Rogers, William A; Williams, Thomas M

    2011-01-01

    Gene expression patterns are specified by cis-regulatory element (CRE) sequences, which are also called enhancers or cis-regulatory modules. A typical CRE possesses an arrangement of binding sites for several transcription factor proteins that confer a regulatory logic specifying when, where, and at what level the regulated gene(s) is expressed. The full set of CREs within an animal genome encodes the organism's program for development, and empirical as well as theoretical studies indicate that mutations in CREs played a prominent role in morphological evolution. Moreover, human genome wide association studies indicate that genetic variation in CREs contribute substantially to phenotypic variation. Thus, understanding regulatory logic and how mutations affect such logic is a central goal of genetics. Reporter transgenes provide a powerful method to study the in vivo function of CREs. Here a known or suspected CRE sequence is coupled to heterologous promoter and coding sequences for a reporter gene encoding an easily observable protein product. When a reporter transgene is inserted into a host organism, the CRE's activity becomes visible in the form of the encoded reporter protein. P-element mediated transgenesis in the fruit fly species Drosophila (D.) melanogaster has been used for decades to introduce reporter transgenes into this model organism, though the genomic placement of transgenes is random. Hence, reporter gene activity is strongly influenced by the local chromatin and gene environment, limiting CRE comparisons to being qualitative. In recent years, the phiC31 based integration system was adapted for use in D. melanogaster to insert transgenes into specific genome landing sites. This capability has made the quantitative measurement of gene and, relevant here, CRE activity feasible. The production of transgenic fruit flies can be outsourced, including phiC31-based integration, eliminating the need to purchase expensive equipment and/or have proficiency at

  16. Activity of a Py-Im Polyamide Targeted to the Estrogen Response Element

    PubMed Central

    Nickols, Nicholas G.; Szablowski, Jerzy O.; Hargrove, Amanda E.; Li, Benjamin C.; Raskatov, Jevgenij A.; Dervan, Peter B.

    2013-01-01

    Pyrrole-imidazole (Py-Im) polyamides are a class of programmable DNA minor groove binders capable of modulating the activity of DNA-binding proteins and affecting changes in gene expression. Estrogen Receptor Alpha (ERα) is a ligand-activated hormone receptor that binds as a homodimer to estrogen response elements (EREs) and is a driving oncogene in a majority of breast cancers. We tested a selection of structurally similar Py-Im polyamides with differing DNA sequence specificity for activity against 17β-estadiol (E2) induced transcription and cytotoxicity in ERα positive, E2 stimulated T47D-KBLUC cells, which express luciferase under ERα control. The most active polyamide targeted the sequence: 5’-WGGWCW-3’ (W = A or T), which is the canonical ERE-half site. Whole transcriptome analysis using RNA-Seq revealed that treatment of E2-stimulated breast cancer cells with this polyamide reduced the effects of E2 on the majority of those most strongly affected by E2, but had much less effect on the majority of E2 induced transcripts. In vivo, this polyamide circulated at detectable levels following subcutaneous injection and reduced levels of ER-driven luciferase expression in xenografted tumors in mice after subcutaneous compound administration without significant host toxicity. PMID:23443804

  17. Effects of heavy metal and other elemental additives to activated sludge on growth of Eisenia foetida

    SciTech Connect

    Hartenstein, R.; Neuhauser, E.F.; Narahara, A.

    1981-09-01

    The approximate level at which added concentrations of certain elements would cause an activated sludge to induce a toxic effect upon the growth of Eisenia foetida was determined. During 43 trials on sludge samples obtained throughout 1 year of study, earthworms grew from 3 to 10 mg live wt at hatching to 792 mg +- 18% (mean +- C.V.) in 8 weeks, when sludge was 24/sup 0/C and contained no additives. None of several elements commonly used in microbial growth media enhanced the growth rate of the earthworm. At salt concentrations up to about 6.6% on a dry wt basis, none of six anions tested was in and of itself toxic, while five of 15 cations - Co, Hg, Cu, Ni, and Cd - appeared specifically to inhibit growth rate or cause death. Manganese, Cr, and Pb were innocuous even at the highest levels of application - 22,000, 46,000, and 52,000 mg/kg, respectively. Neither the anionic nor cationic component of certain salts, such as NaCl or NH/sub 4/Cl, could be said to inhibit growth, which occurred only at high concentrations of these salts (about 3.3 and/or 6.6%). Below 7 mmho/cm, toxicity could not be correlated with electrolytic conductance, though higher values may help to explain the nonspecific growth inhibitory effects of salts like NaCl and KCl. Nor could toxicity ever be ascribed to hydrogen ion activity, since sludge pH was not altered even at the highest salt dose. It is concluded that except under very extreme conditions, the levels of heavy metals and salts generally found in activated sludges will not have an adverse affect on the growth of E. foetida.

  18. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements.

    PubMed

    Prior, Sara; Miousse, Isabelle R; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R; Allen, Antiño R; Raber, Jacob; Tackett, Alan J; Hauer-Jensen, Martin; Nelson, Gregory A; Koturbash, Igor

    2016-10-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368

  19. Tn4351 transposes in Bacteroides spp. and mediates the integration of plasmid R751 into the Bacteroides chromosome

    SciTech Connect

    Shoemaker, N.B.; Getty, C.; Gardner, J.F.; Salyers, A.A.

    1986-03-01

    The gene for resistance to erythromycin and clindamycin, which is carried on the conjugative Bacteroides plasmid, pBF4, has been shown previously to be part of an element (Tn4351) that transposes in Escherichia coli. The authors have now introduced Tn4351 into Bacteroides uniformis 0061 on the following two suicide vectors: (i) the broad-host-range IncP plasmid R751 (R751::Tn4351) and (ii) pSS-2, a chimeric plasmid which contains 33 kilobases of pBF4 (including Tn4351) cloned into the IncQ plasmid RSF1010 and which is mobilized by R751. When E. coli HB101, carrying either R751::Tn4351 or R751 and pSS-2, was mated with B. uniformis under aerobic conditions, Em/sup r/ transconjugants were detected at a frequency of 10 /sup -6/ to 10/sup -5/ (R751::Tn4351) or 10/sup -8/ to 10/sup -6/ (R751 and pSS-2). In matings involving pSS-2, all Em/sup r/ transconjugants contained simple insertions of Tn4351 in the chromosome, whereas in matings involving R751::Tn4351, about half of the Em/sup r/ transconjugants had R751 cointegrated with Tn4351 in the chromosome. Of the Em/sup r/ transconjugants, 13% were auxotrophs. Bacteroides spp. which had R751 cointegrated with Tn4351 in the chromosome did not transfer R751 or Tn4351 to E. coli HB101 or to isogenic B. uniformis, nor did the integrated R751 mobilize pE5-2, an E. coli-Bacteroides shuttle vector that contains a transfer origin that is recognized by R751.

  20. Putative cis-Regulatory Elements Associated with Heat Shock Genes Activated During Excystation of Cryptosporidium parvum

    PubMed Central

    Lara, Ana M.; Serrano, Myrna; Sheth, Nihar; Buck, Gregory

    2010-01-01

    Background Cryptosporidiosis is a ubiquitous infectious disease, caused by the protozoan parasites Cryptosporidium hominis and C. parvum, leading to acute, persistent and chronic diarrhea worldwide. Although the complications of this disease can be serious, even fatal, in immunocompromised patients of any age, they have also been found to lead to long term effects, including growth inhibition and impaired cognitive development, in infected immunocompetent children. The Cryptosporidium life cycle alternates between a dormant stage, the oocyst, and a highly replicative phase that includes both asexual vegetative stages as well as sexual stages, implying fine genetic regulatory mechanisms. The parasite is extremely difficult to study because it cannot be cultured in vitro and animal models are equally challenging. The recent publication of the genome sequence of C. hominis and C. parvum has, however, significantly advanced our understanding of the biology and pathogenesis of this parasite. Methodology/Principal Findings Herein, our goal was to identify cis-regulatory elements associated with heat shock response in Cryptosporidium using a combination of in silico and real time RT-PCR strategies. Analysis with Gibbs-Sampling algorithms of upstream non-translated regions of twelve genes annotated as heat shock proteins in the Cryptosporidium genome identified a highly conserved over-represented sequence motif in eleven of them. RT-PCR analyses, described herein and also by others, show that these eleven genes bearing the putative element are induced concurrent with excystation of parasite oocysts via heat shock. Conclusions/Significance Our analyses suggest that occurrences of a motif identified in the upstream regions of the Cryptosporidium heat shock genes represent parts of the transcriptional apparatus and function as stress response elements that activate expression of these genes during excystation, and possibly at other stages in the life cycle of the parasite

  1. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2015-04-01

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  2. TRANSPOSED LETTER EFFECTS IN PREFIXED WORDS: IMPLICATIONS FOR MORPHOLOGICAL DECOMPOSITION1

    PubMed Central

    Masserang, Kathleen M.; Pollatsek, Alexander

    2012-01-01

    A crucial issue in word encoding is whether morphemes are involved in early stages. One paradigm that tests for this employs the transposed letter (TL) effect – the difference in the times to process a word (misfile) when it is preceded by a TL prime (mifsile) and when it is preceded by a substitute letter (SL) prime (mintile) – and examines whether the TL effect is smaller when the two adjacent letters cross a morpheme boundary. The evidence from prior studies is not consistent. Experiments 1 and 2 employed a parafoveal preview paradigm in which the transposed letters either crossed the prefix-stem boundary or did not, and found a clear TL effect regardless of whether the two letters crossed the morpheme boundary. Experiment 3 replicated this finding employing a masked priming lexical-decision paradigm. It thus appears that morphemes are not involved in early processes in English that are sensitive to letter order. There is some evidence for morphemic modulation of the TL effect in other languages; thus, the properties of the language may modulate when morphemes influence early letter position encoding. PMID:23082239

  3. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    SciTech Connect

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  4. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    DOE PAGESBeta

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  5. The recent invasion of natural Drosophila simulans populations by the P-element

    PubMed Central

    Kofler, Robert; Hill, Tom; Nolte, Viola; Betancourt, Andrea J.; Schlötterer, Christian

    2015-01-01

    The P-element is one of the best understood eukaryotic transposable elements. It invaded Drosophila melanogaster populations within a few decades but was thought to be absent from close relatives, including Drosophila simulans. Five decades after the spread in D. melanogaster, we provide evidence that the P-element has also invaded D. simulans. P-elements in D. simulans appear to have been acquired recently from D. melanogaster probably via a single horizontal transfer event. Expression data indicate that the P-element is processed in the germ line of D. simulans, and genomic data show an enrichment of P-element insertions in putative origins of replication, similar to that seen in D. melanogaster. This ongoing spread of the P-element in natural populations provides a unique opportunity to understand the dynamics of transposable element spread and the associated piwi-interacting RNAs defense mechanisms. PMID:25964349

  6. [KIL-d] Protein Element Confers Antiviral Activity via Catastrophic Viral Mutagenesis.

    PubMed

    Suzuki, Genjiro; Weissman, Jonathan S; Tanaka, Motomasa

    2015-11-19

    Eukaryotic cells are targeted by pathogenic viruses and have developed cell defense mechanisms against viral infection. In yeast, the cellular extrachromosomal genetic element [KIL-d] alters killer activity of M double-stranded RNA killer virus and confers cell resistance against the killer virus. However, its underlying mechanism and the molecular nature of [KIL-d] are unknown. Here, we demonstrate that [KIL-d] is a proteinaceous prion-like aggregate with non-Mendelian cytoplasmic transmission. Deep sequencing analyses revealed that [KIL-d] selectively increases the rate of de novo mutation in the killer toxin gene of the viral genome, producing yeast harboring a defective mutant killer virus with a selective growth advantage over those with WT killer virus. These results suggest that a prion-like [KIL-d] element reprograms the viral replication machinery to induce mutagenesis and genomic inactivation via the long-hypothesized mechanism of "error catastrophe." The findings also support a role for prion-like protein aggregates in cellular defense and adaptation. PMID:26590718

  7. Molluscan mobile elements similar to the vertebrate recombination-activating genes

    PubMed Central

    Panchin, Yuri; Moroz, Leonid L.

    2009-01-01

    Animal genomes contain ~20,000 genes. Additionally millions of genes for antigen receptors are generated in cells of the immune system from the sets of separate gene segments by a mechanism known as the V(D)J somatic recombination. The components of the V(D)J recombination system, Recombination-Activating Gene proteins (RAG1 and RAG2) and recombination signal sequence (RSS), are thought to have “entered” the vertebrate genome as a hypothetical “RAG transposon”. Recently discovered mobile elements have terminal inverted repeats (TIRs) similar to RSS and may encode proteins with a different degree of similarity to RAG1. We describe a novel N-RAG-TP transposon identified from the sea slug Aplysia californica that encodes a protein similar to the N-terminal part of RAG1 in vertebrates. This refines the “RAG transposon” hypothesis and allows us to propose a scenario for V(D)J recombination machinery evolution from a relic transposon related to the existing mobile elements N-RAG-TP, Chapaev and Transib. PMID:18313399

  8. Determination of trace elements by instrumental neutron activation analysis in Anatolian bentonitic clays

    NASA Astrophysics Data System (ADS)

    Güngör, N.; Tulun, T.; Alemdar, A.

    1998-08-01

    Instrumental Neutron Activation Analysis (INAA) was carried out for the determination of trace elements in non-swelling type bentonitic clays. Samples were irradiated in Triga Mark II type of reactor at the Nuclear Institute of Technical University of Istanbul. Irradiation was performed in two steps for "short and long lived" isotopes. The γ spectra of short lived isotopes were interpreted with respect to Al, Ca, Mg, Na, K, Ti, Mn, V qualitatively and that of long lived isotopes with respect to Sc, Cr, Br, Sb, Cs, La, Ce, Sm, Yb, Hf quantitatively. The relative richness of the trace elements (Al, Ti, Ca, Mg, Na, K) observed in the Sampo 90 program was obtained using Atomic Absorption technique by normalizing its value to that of sodium. The silicon content of samples was determined by gravimetry. The results indicated that Sample I contained relatively higher amount of REE, Sb, Ca and Na than Sample II. The amount of Sc, Cr and Br were about similar in both samples. Concentrations of La, Ce, Sm and Yb are higher than REE abundances found in all natural waters. These results suggest that Ca-bentonite samples are representative of primary deposition environment. In addition, the Sc content of both the samples indicates that Ca-bentonite deposits originated from continental crust. The relatively high amount of REE might bring about porosity problems in the use of Ca-bentonite in cement and concrete production.

  9. Finite element modeling of the cyclic wetting mechanism in the active part of wheat awns.

    PubMed

    Zickler, Gerald A; Ruffoni, Davide; Dunlop, John W C; Elbaum, Rivka; Weinkamer, Richard; Fratzl, Peter; Antretter, Thomas

    2012-12-01

    Many plant tissues and organs are capable of moving due to changes in the humidity of the environment, such as the opening of the seed capsule of the ice plant and the opening of the pine cone. These are fascinating examples for the materials engineer, as these tissues are non-living and move solely through the differential swelling of anisotropic tissues and in principle may serve as examples for the bio-inspired design of artificial actuators. In this paper, we model the microstructure of the wild wheat awn (Triticum turgidum ssp. dicoccoides) by finite elements, especially focusing on the specific microscopic features of the active part of the awn. Based on earlier experimental findings, cell walls are modeled as multilayered cylindrical tubes with alternating cellulose fiber orientation in successive layers. It is shown that swelling upon hydration of this system leads to the formation of gaps between the layers, which could act as valves, thus enabling the entry of water into the cell wall. This supports the hypothesis that this plywood-like arrangement of cellulose fibrils enhances the effect of ambient humidity by accelerated water or vapor diffusion along the gaps. The finite element model shows that a certain distribution of axially and tangentially oriented fibers is necessary to generate sufficient tensile stresses within the cell wall to open nanometer-sized gaps between cell wall layers. PMID:22791359

  10. Ambient temperature fatigue tests of elements of an actively cooled honeycomb sandwich structural panel

    NASA Technical Reports Server (NTRS)

    Sharpe, E. L.; Elber, W.

    1977-01-01

    Elements of an actively cooled structural panel for a hypersonic aircraft have been investigated for fatigue characteristics. The study involved a bonded honeycomb sandwich panel with d-shaped coolant tubes. The curved portion of these tubes was embedded in the honeycomb, and the flat portion was bonded or soldered to the inner surface of the outer skin. The elements examined were two plain skin specimens (aluminum alloy); two specimens with skins attached to manifolds and tubes (one specimen was bonded, the other soldered); and a specimen representative of a corner section of the complete cooled sandwich. Sinusoidal loads were applied to all specimens. The honeycomb sandwich specimen was loaded in both tension and compression; the other specimens were loaded in tension only. The cooling tubes were pressurized with oil throughout the fatigue tests. The most significant results of these tests follow: All specimens exceeded their design life of 20,000 cycles without damage. Crack growth rates obtained in the plain skin specimens were used to determine the crack growth characteristics of aluminum alloy. Cracks in skins either bonded or soldered to cooling tubes propagated past the tubes without penetration. The coolant tubes served as crack arresters and temporarily stopped crack growth when a crack reached a tube-skin interface. The honeycomb core demonstrated that it could contain leakage from a tube.

  11. Linear Closed-form Solution and Finite-element Analysis of an Active Tensegrity Unit

    NASA Astrophysics Data System (ADS)

    Kmeť, Stanislav; Platko, Peter

    2012-11-01

    Results of the linear closed form solution of an active or adaptive tensegrity unit, as well as its numerical analysis using finite element method are presented in the paper. The shape of the unit is an octahedral cell with a square base and it is formed by thirteen members (four bottom and four top cables, four edge struts and one central strut). The central strut is designed as an actuator that allows for an adjustment of the shape of the unit which leads to changes of tensile forces in the cables. Due to the diagonal symmetry of the 3D tensegrity unit the closed-form analysis is based on the 2D solution of the equivalent planar biconvex cable system with one central strut under a vertical point load.

  12. Recent perspectives in solar physics - Elemental composition, coronal structure and magnetic fields, solar activity

    NASA Technical Reports Server (NTRS)

    Newkirk, G., Jr.

    1975-01-01

    Elemental abundances in the solar corona are studied. Abundances in the corona, solar wind and solar cosmic rays are compared to those in the photosphere. The variation in silicon and iron abundance in the solar wind as compared to helium is studied. The coronal small and large scale structure is investigated, emphasizing magnetic field activity and examining cosmic ray generation mechanisms. The corona is observed in the X-ray and EUV regions. The nature of coronal transients is discussed with emphasis on solar-wind modulation of galactic cosmic rays. A schematic plan view of the interplanetary magnetic field during sunspot minimum is given showing the presence of magnetic bubbles and their concentration in the region around 4-5 AU by a fast solar wind stream.

  13. Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Jones, Michael W.; Kulick, Jeffrey H.; Lindquist, Robert G.; Kowel, Stephen T.

    1996-12-01

    We describe the design, construction, and performance of the first real-time autostereoscopic 3D display based on the partial pixel 3D display architecture. The primary optical components of the 3D display are an active-matrix liquid crystal display and a diffractive optical element (DOE). The display operates at video frame rates and is driven with a conventional VGA signal. 3D animations with horizontal motion parallax are readily viewable as sets of stereo images. Formation of the virtual viewing slits by diffraction from the partial pixel apertures is experimentally verified. The measured contrast and perceived brightness of the display are excellent, but there are minor flaws in image quality due to secondary images. The source of these images and how they may be eliminated is discussed. The effects of manufacturing-related systematic errors in the DOE are also analyzed.

  14. Activation of antioxidant response element (ARE)-dependent genes by roasted coffee extracts.

    PubMed

    Yazheng, Liu; Kitts, David D

    2012-09-01

    Coffee beans contain numerous bioactive components that exhibit antioxidant capacity when assessed using both chemical, cell free, and biological, cell-based model systems. However, the mechanisms underlying the antioxidant effects of coffee in biological systems are not totally understood and in some cases vary considerably from results obtained with simpler in vitro chemical assays. In the present study, the physicochemical characteristics and antioxidant activity of roasted and non-roasted coffee extracts were investigated in both cell free (ORAC(FL)) and cell-based systems. A profile of antioxidant gene expression in cultured human colon adenocarcinoma Caco-2 cells treated with both roasted and non-roasted coffee extracts, respectively, was investigated using Real-Time polymerase chain reaction (PCR) array technology. Results demonstrated that the mechanisms of the antioxidant activity associated with coffee constituents assessed by the ORAC(FL) assay were different to those observed using an intracellular oxidation assay with Caco-2 cells. Moreover, roasted coffee (both light and dark roasted) extracts produced both increased- and decreased-expressions of numerous genes that are involved in the management of oxidative stress via the antioxidant defence system. The selective and specific positive induction of antioxidant response element (ARE)-dependent genes, including gastrointestinal glutathione peroxidase (GPX2), sulfiredoxin (SRXN1), thioredoxin reductase 1 (TXNRD1), peroxiredoxin 1 (PRDX1), peroxiredoxin 4 (PDRX4) and peroxiredoxin 6 (PDRX6) were identified with the activation of the endogenous antioxidant defence system in Caco-2 cells. PMID:22699814

  15. Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation.

    PubMed

    Simandi, Zoltan; Horvath, Attila; Nagy, Peter; Nagy, Laszlo

    2016-01-01

    Embryonic development is a multistep process involving activation and repression of many genes. Enhancer elements in the genome are known to contribute to tissue and cell-type specific regulation of gene expression during the cellular differentiation. Thus, their identification and further investigation is important in order to understand how cell fate is determined. Integration of gene expression data (e.g., microarray or RNA-seq) and results of chromatin immunoprecipitation (ChIP)-based genome-wide studies (ChIP-seq) allows large-scale identification of these regulatory regions. However, functional validation of cell-type specific enhancers requires further in vitro and in vivo experimental procedures. Here we describe how active enhancers can be identified and validated experimentally. This protocol provides a step-by-step workflow that includes: 1) identification of regulatory regions by ChIP-seq data analysis, 2) cloning and experimental validation of putative regulatory potential of the identified genomic sequences in a reporter assay, and 3) determination of enhancer activity in vivo by measuring enhancer RNA transcript level. The presented protocol is detailed enough to help anyone to set up this workflow in the lab. Importantly, the protocol can be easily adapted to and used in any cellular model system. PMID:27403939

  16. Impact and insights from ancient repetitive elements in plant genomes.

    PubMed

    Maumus, Florian; Quesneville, Hadi

    2016-04-01

    Transposable elements and other repeated sequences are predominant contributors to most plant genomes. The vast majority of repeated elements accumulate mutations to the extent of becoming anonymous sequences, also known as 'genomic dark matter' which is also thought to contribute significantly to the composition of plant genomes. This review aims to highlight recent methods and analyses suggesting that ancient repeats have profound effects on plant genome biology. PMID:26874965

  17. Effects of Physical Activity on Trace Elements and Depression Related Biomarkers in Children and Adolescents.

    PubMed

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas

    2016-08-01

    Not much is known about the role of physical activity (PA), obesity related variables, and trace elements as potential risk factors affecting neurotransmitters in schoolchildren with depression. Our objective was to investigate the effect of physical activity (PA) on depressive symptoms in children and adolescents. Also, we aimed to study the association of demographic variables, serum levels of Copper (Cu), Zinc (Zn), serotonin, and salivary cortisol with depression in this population. One hundred and fifty school children (90 boys and 60 girls) aged 7-18 years were recruited for this study. All participants were evaluated for depression using CDI-score analysis. Their physical activity levels were checked using pre-validated questionnaires. The serum levels of Copper (Cu), Zinc (Zn), cortisol, and serotonin were estimated using atomic absorption, and immunoassay techniques. About 48.7 % of the study population had depressive symptoms (CDI-score; ≥13), and were classified into mild, moderate, and severe categories. Older children, especially girls, had higher levels of depression. Participants with moderate and severe depression had significantly lower physical activity, serotonin, and zinc levels, Zn/Cu ratios, and significantly higher copper and cortisol levels. Physically active boys showed significantly lower depressive CDI-scores and improvement in cortisol, serotonin, Cu, and Zn concentrations compared to girls of sedentary life style. CDI- scores correlated positively with BMI, cortisol and Cu, and negatively with PA, serotonin and Zn concentrations. BMI, cortisol, serotonin, Cu and Zn, could explain about 59.3-79 % of the depressive symptoms among schoolchildren, according to stepwise regression analysis. This was especially true in especially older girls. PA and an adequate balance in Zn and Cu levels, plays a positive role in improving CDI-depressive score, BMI, serotonin and cortisol levels among schoolchildren. PMID:26701336

  18. Activity of the transposon Tam3 in Antirrhinum and tobacco: possible role of DNA methylation.

    PubMed Central

    Martin, C; Prescott, A; Lister, C; MacKay, S

    1989-01-01

    The transposon Tam3 from Antirrhinum majus can transpose in a heterologous host (Nicotiana tabacum); thus the element is autonomous, probably encoding the specific information required for its own transposition. In transgenic tobacco Tam3 rapidly becomes methylated at its ends whilst adjacent flanking sequences remain hypomethylated. This methylation may account for our failure to detect Tam3 transposition in the progeny of transgenic tobacco. Treatment with the inhibitor of cytosine methylation, 5 aza-cytosine appeared to induce transposon related activity at a low level. In Antirrhinum methylation also appears to be associated with inactivation of Tam3 copies. Images PMID:2545443

  19. Sustained impact of community-based physical activity interventions: key elements for success

    PubMed Central

    2013-01-01

    Background Compelling evidence supports the cost effectiveness and potential impact of physical activity on chronic disease prevention and health promotion. Quality of evidence is one piece, but certainly not the sole determinant of whether public health interventions, physical activity focused or otherwise, achieve their full potential for impact. Health promotion at both population and community levels must progress beyond health intervention models that isolate individuals from social, environmental, and political systems of influence. We offer a critical evaluation of lessons learned from two successful research initiatives to provide insights as to how health promotion research contributes to sustained impact. We highlight factors key to success including the theoretical and methodological integration of: i) a social ecological approach; ii) participatory action research (PAR) methods; and iii) an interdisciplinary team. Methods To identify and illustrate the key elements of our success we layered an evaluation of steps taken atop a review of relevant literature. Results In the school-based case study (Action Schools! BC), the success of our approach included early and sustained engagement with a broad cross-section of stakeholders, establishing partnerships across sectors and at different levels of government, and team members across multiple disciplines. In the neighbourhood built environment case study, the three domains guided our approach through study design and team development, and the integration of older adults’ perspectives into greenway design plans. In each case study we describe how elements of the domains serve as a guide for our work. Conclusion To sustain and maximize the impact of community-based public health interventions we propose the integration of elements from three domains of research that acknowledge the interplay between social, environmental and poilitical systems of influence. We emphasize that a number of key factors determine

  20. Enhancer and promoter elements directing activation and glucocorticoid repression of the. cap alpha. /sub 1/-fetoprotein gene in hepatocytes

    SciTech Connect

    Guertin, M.; La Rue, H.; Bernier, D.; Wrange, O.; Chevrette, M.; Gingras, M.C.; Belanger, L.

    1988-04-01

    Mutations were introduced in 7 kilobases of 5'-flanking rat ..cap alpha../sub 1/-fetoprotein (AFP) genomic DNA, linked to the chloramphenicol acetyltransferase gene. AFP promoter activity and its repression by a glucocorticoid hormone were assessed by stable and transient expression assays. Stable transfection assays were more sensitive and accurate than transient expression assays in a Morris 7777 rat hepatoma recipient (Hepa7.6), selected for its strong AFP repression by dexamethasone. The segment of DNA encompassing a hepatocyte-constitutive chromatin DNase I-hypersensitive site at -3.7 kilobases and a liver developmental stage-specific site at -2.5 kilobases contains interacting enhancer elements sufficient for high AFP promoter activity in Hepa7.6 or HepG2 cells. Deletions and point mutations define an upstream promoter domain of AFP gene activation, operating with at least three distinct promoter-activating elements, PEI at -65 base pairs, PEII at -120 base pairs, and DE at -160 base pairs. PEI and PEII share homologies with albumin promoter sequences, PEII is a near-consensus nuclear factor I recognition sequence, and DE overlaps a glucocorticoid receptor recognition sequence. An element conferring glucocorticoid repression of AFP gene activity is located in the upstream AFP promoter domain. Receptor-binding assays indicate that this element is the glucocorticoid receptor recognition sequence which overlaps with promoter-activating element DE.