Sample records for active transposable elements

  1. Transposable elements in cancer.

    PubMed

    Burns, Kathleen H

    2017-07-01

    Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.

  2. Transcriptional activity of transposable elements in coelacanth.

    PubMed

    Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas

    2014-09-01

    The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity. © 2013 Wiley Periodicals, Inc.

  3. Transposable Elements and Genetic Instabilities in Crop Plants

    DOE R&D Accomplishments Database

    Burr, B.; Burr, F.

    1981-04-10

    Transposable elements have long been associated with certain unstable loci in maize and have been intensively studied by McClintock and others. It is known that a transposable element can control the expression of the structural genes at the locus where it resides. These controlling elements in maize are now beginning to be studied at the molecular level. Using recombinant molecular probes we have been able to describe the changes induced by the controlling element Ds at the shrunken locus. Ds elements appear to be large and dissimilar insertions into the wild-type locus - two elements actually map within the transcribed region of the gene. Genetic instabilities have been described in other economically important plants but the bases for these phenomena have not been understood. We believe that it is likely that some of these instabilities are the result of transposable element activity much as in the case of maize.

  4. Regulatory activities of transposable elements: from conflicts to benefits

    PubMed Central

    Chuong, Edward B.; Elde, Nels C.; Feschotte, Cédric

    2017-01-01

    Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor binding sites and non-coding RNAs. A wealth of recent studies reinvigorates the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalyzed the evolution of gene regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic impact of regulatory activities encoded by TEs in health and disease. PMID:27867194

  5. [Active miniature inverted-repeat transposable elements transposon in plants: a review].

    PubMed

    Hu, Bingjie; Zhou, Mingbing

    2018-02-25

    Miniature inverted-repeat transposable elements transposon is a special transposon that could transpose by "cut-paste" mechanism, which is one of characteristics of DNA transposons. Otherwise, the copy number of MITEs is very high, which is one of characteristics of RNA transposons. Many MITE families have been reported, but little about active MITEs. We summarize recent advances in studying active MITEs. Most the MITEs belong to the Tourist-like family, such as mPing, mGing, PhTourist1, Tmi1 and PhTst-3. Additionally, DTstu1 and MITE-39 belong to Stowaway-like family, and AhMITEs1 belongs to Mutator-like family. Moreover, we summarize the structure (terminal inverse repeats and target site duplications), copy number, evolution pattern and transposition characteristics of these active MITEs, to provide the foundation for the identification of other active MITEs and subsequent research on MITE transposition and amplification mechanism.

  6. Rapid inactivation of the maize transposable element En/Spm in Medicago truncatula.

    PubMed

    d'Erfurth, I; Cosson, V; Eschstruth, A; Rippa, S; Messinese, E; Durand, P; Trinh, H; Kondorosi, A; Ratet, P

    2003-09-01

    Transposable elements have been widely used as mutagens in many organisms. Among them, the maize transposable element En/Spm has been shown to transpose efficiently in several plant species including the model plant Arabidopsis, where it has been used for large-scale mutagenesis. To determine whether we could use this transposon as a mutagen in the model legume plant Medicago truncatula, we tested the activity of the autonomous element, as well as two defective elements, in this plant, and in Arabidopsis as a positive control. In agreement with previous reports, we observed efficient excision of the autonomous En/Spm element in A. thaliana. This element was also active in M. truncatula, but the transposition activity was low and was apparently restricted to the tissue culture step necessary for the production of transgenic plants. The activity of one of the defective transposable elements, dSpm, was very low in A. thaliana and even lower in M. truncatula. The use of different sources of transposases suggested that this defect in transposition was associated with the dSpm element itself. Transposition of the other defective element, I6078, was also detected in M. truncatula, but, as observed with the autonomous element, transposition events were very rare and occurred during tissue culture. These results suggest that the En/Spm element is rapidly inactivated in the regenerated plants and their progeny, and therefore is not suitable for routine insertion mutagenesis in M. truncatula.

  7. Male Germline Control of Transposable Elements1

    PubMed Central

    Bao, Jianqiang; Yan, Wei

    2012-01-01

    ABSTRACT Repetitive sequences, especially transposon-derived interspersed repetitive elements, account for a large fraction of the genome in most eukaryotes. Despite the repetitive nature, these transposable elements display quantitative and qualitative differences even among species of the same lineage. Although transposable elements contribute greatly as a driving force to the biological diversity during evolution, they can induce embryonic lethality and genetic disorders as a result of insertional mutagenesis and genomic rearrangement. Temporary relaxation of the epigenetic control of retrotransposons during early germline development opens a risky window that can allow retrotransposons to escape from host constraints and to propagate abundantly in the host genome. Because germline mutations caused by retrotransposon activation are heritable and thus can be deleterious to the offspring, an adaptive strategy has evolved in host cells, especially in the germline. In this review, we will attempt to summarize general defense mechanisms deployed by the eukaryotic genome, with an emphasis on pathways utilized by the male germline to confer retrotransposon silencing. PMID:22357546

  8. Albinism due to transposable element insertion in fish.

    PubMed

    Koga, A; Hori, H

    1997-12-01

    The i locus of the medaka fish, Oryzias latipes, is responsible for tyrosinase expression, and several mutant alleles have been identified. The genotype i1/i1 exhibits a complete albino phenotype, having pale orange-red skin and red eyes. This mutant lacks in vivo tyrosinase activity. The genotype i4/i4, on the other hand, shows a quasi-albino phenotype with skin as bright as that of i1/i1 but with red-wine-colored eyes. At the light microscope level, reduced pigmentation is observed both in the skin and eyes of this mutant. The tyrosinase genes for the i1 and the i4 alleles were cloned and sequenced, and compared with that of the wild-type tyrosinase gene. The i1 allele was found to contain a 1.9-kb transposable element in the 1st exon, and the i4 allele was found to contain a 4.7-kb transposable element in the 5th exon. Both i1 and i4 are alleles that were found in a commercial breeding population. The insertion of a transposable element thus appears to constitute a natural cause of mutations that cause albinism in this organism.

  9. Transposable elements in Drosophila.

    PubMed

    McCullers, Tabitha J; Steiniger, Mindy

    2017-01-01

    Transposable elements (TEs) are mobile genetic elements that can mobilize within host genomes. As TEs comprise more than 40% of the human genome and are linked to numerous diseases, understanding their mechanisms of mobilization and regulation is important. Drosophila melanogaster is an ideal model organism for the study of eukaryotic TEs as its genome contains a diverse array of active TEs. TEs universally impact host genome size via transposition and deletion events, but may also adopt unique functional roles in host organisms. There are 2 main classes of TEs: DNA transposons and retrotransposons. These classes are further divided into subgroups of TEs with unique structural and functional characteristics, demonstrating the significant variability among these elements. Despite this variability, D. melanogaster and other eukaryotic organisms utilize conserved mechanisms to regulate TEs. This review focuses on the transposition mechanisms and regulatory pathways of TEs, and their functional roles in D. melanogaster .

  10. The Transposable Element Mariner Mediates Germline Transformation in Drosophila Melanogaster

    PubMed Central

    Lidholm, D. A.; Lohe, A. R.; Hartl, D. L.

    1993-01-01

    A vector for germline transformation in Drosophila melanogaster was constructed using the transposable element mariner. The vector, denoted pMlwB, contains a mariner element disrupted by an insertion containing the wild-type white gene from D. melanogaster, the β-galactosidase gene from Escherichia coli and sequences that enable plasmid replication and selection in E. coli. The white gene is controlled by the promoter of the D. melanogaster gene for heat-shock protein 70, and the β-galactosidase gene is flanked upstream by the promoter of the transposable element P as well as that of mariner. The MlwB element was introduced into the germline of D. melanogaster by co-injection into embryos with an active mariner element, Mos1, which codes for a functional transposase and serves as a helper. Two independent germline insertions were isolated and characterized. The results show that the MlwB element inserted into the genome in a mariner-dependent manner with the termini of the inverted repeats inserted at a TA dinucleotide. Both insertions exhibit an unexpected degree of germline and somatic stability, even in the presence of an active mariner element in the genetic background. These results demonstrate that the mariner transposable element, which is small (1286 bp) and relatively homogeneous in size among different copies, is nevertheless capable of promoting the insertion of the large (13.2 kb) MlwB element. Because of the widespread phylogenetic distribution of mariner among insects, these results suggest that mariner might provide a wide hostrange transformation vector for insects. PMID:8394264

  11. Transposable elements in Drosophila

    PubMed Central

    McCullers, Tabitha J.; Steiniger, Mindy

    2017-01-01

    ABSTRACT Transposable elements (TEs) are mobile genetic elements that can mobilize within host genomes. As TEs comprise more than 40% of the human genome and are linked to numerous diseases, understanding their mechanisms of mobilization and regulation is important. Drosophila melanogaster is an ideal model organism for the study of eukaryotic TEs as its genome contains a diverse array of active TEs. TEs universally impact host genome size via transposition and deletion events, but may also adopt unique functional roles in host organisms. There are 2 main classes of TEs: DNA transposons and retrotransposons. These classes are further divided into subgroups of TEs with unique structural and functional characteristics, demonstrating the significant variability among these elements. Despite this variability, D. melanogaster and other eukaryotic organisms utilize conserved mechanisms to regulate TEs. This review focuses on the transposition mechanisms and regulatory pathways of TEs, and their functional roles in D. melanogaster. PMID:28580197

  12. Transposable genetic elements in Spirulina and potential applications for genetic engineering

    NASA Astrophysics Data System (ADS)

    Hiroyuki, Kojima; Qin, Song; Thankappan, Ajith Kumar; Yoshikazu, Kawata; Shin-Ichi, Yano

    1998-03-01

    Transposable elements in cyanobacteria are briefly reviewed. Evidence is presented to show that transposable elements in Spirulina platensis is actually reflected on the phenotype change, i e., helical to straight filaments. Transposition intermediates of DNA were isolated from the extrachromosome and the transposition was related to helical variations in Spirulina. Uses of transposable elements for microalgal recombination are discussed based on the transposition mechanism.

  13. Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.).

    PubMed

    Scholz, S; Lörz, H; Lütticke, S

    2001-01-01

    Transposition of the maize autonomous element Ac (Activator) was investigated in barley (Hordeum vulgare L.) with the aim of developing a transposon tagging system for the latter. The Ac element was introduced into meristematic tissue of barley by microprojectile bombardment. Transposon activity was then examined in the resulting transgenic plants. Multiple excision events were detected in leaf tissue of all plant lines. The mobile elements generated empty donor sites with small DNA sequence alterations, similar to those found in maize. Reintegration of Ac at independent genomic loci in somatic tissue was demonstrated by isolation of new element-flanking regions by AIMS-PCR (amplification of insertion-mutagenized sites). In addition, transmission of transposed Ac elements to progeny plants was confirmed. The results indicate that the introduced Ac element is able to transpose in barley. This is a first step towards the establishment of a transposon tagging system in this economically important crop.

  14. Genomic patterns associated with paternal/maternal distribution of transposable elements

    NASA Astrophysics Data System (ADS)

    Jurka, Jerzy

    2003-03-01

    Transposable elements (TEs) are specialized DNA or RNA fragments capable of surviving in intragenomic niches. They are commonly, perhaps unjustifiably referred to as "selfish" or "parasitic" elements. TEs can be divided in two major classes: retroelements and DNA transposons. The former include non-LTR retrotransposons and retrovirus-like elements, using reverse transriptase for their reproduction prior to integration into host DNA. The latter depend mostly on host DNA replication, with possible exception of rolling-circle transposons recently discovered by our team. I will review basic information on TEs, with emphasis on human Alu and L1 retroelements discussed in the context of genomic organization. TEs are non-randomly distributed in chromosomal DNA. In particular, human Alu elements tend to prefer GC-rich regions, whereas L1 accumulate in AT-rich regions. Current explanations of this phenomenon focus on the so called "target effects" and post-insertional selection. However, the proposed models appear to be unsatisfactory and alternative explanations invoking "channeling" to different chromosomal regions will be a major focus of my presentation. Transposable elements (TEs) can be expressed and integrated into host DNA in the male or female germlines, or both. Different models of expression and integration imply different proportions of TEs on sex chromosomes and autosomes. The density of recently retroposed human Alu elements is around three times higher on chromosome Y than on chromosome X, and over two times higher than the average density for all human autosomes. This implies Alu activity in paternal germlines. Analogous inter-chromosomal proportions for other repeat families should determine their compatibility with one of the three basic models describing the inheritance of TEs. Published evidence indicates that maternally and paternally imprinted genes roughly correspond to GC-rich and AT-rich DNA. This may explain the observed chromosomal distribution of

  15. Identification and characterization of the first active endogenous transposable element in soybean

    USDA-ARS?s Scientific Manuscript database

    In soybean [Glycine max (L.) Merr.], W4 is one of the loci that control anthocyanin biosynthesis in flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable T322 line resulting in the w4-m allele. We have shown that the W4 locu...

  16. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues.

    PubMed

    De Cecco, Marco; Criscione, Steven W; Peterson, Abigail L; Neretti, Nicola; Sedivy, John M; Kreiling, Jill A

    2013-12-01

    Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells.

  17. LINE dancing in the human genome: transposable elements and disease.

    PubMed

    Belancio, Victoria P; Deininger, Prescott L; Roy-Engel, Astrid M

    2009-10-27

    Transposable elements (TEs) have been consistently underestimated in their contribution to genetic instability and human disease. TEs can cause human disease by creating insertional mutations in genes, and also contributing to genetic instability through non-allelic homologous recombination and introduction of sequences that evolve into various cis-acting signals that alter gene expression. Other outcomes of TE activity, such as their potential to cause DNA double-strand breaks or to modulate the epigenetic state of chromosomes, are less fully characterized. The currently active human transposable elements are members of the non-LTR retroelement families, LINE-1, Alu (SINE), and SVA. The impact of germline insertional mutagenesis by TEs is well established, whereas the rate of post-insertional TE-mediated germline mutations and all forms of somatic mutations remain less well quantified. The number of human diseases discovered to be associated with non-allelic homologous recombination between TEs, and particularly between Alu elements, is growing at an unprecedented rate. Improvement in the technology for detection of such events, as well as the mounting interest in the research and medical communities in resolving the underlying causes of the human diseases with unknown etiology, explain this increase. Here, we focus on the most recent advances in understanding of the impact of the active human TEs on the stability of the human genome and its relevance to human disease.

  18. The hobo transposable element has transposase-dependent and -independent excision activity in drosophilid species

    USDA-ARS?s Scientific Manuscript database

    Mobility of the hobo transposable element was determined for several strains of Drosophila melanogaster and several Drosophila species. Mobility was assessed by use of an in vivo transient assay in the soma of developing embryos, which monitored hobo excision from injected indicator plasmids. Excisi...

  19. The impact of transposable elements on mammalian development

    PubMed Central

    Garcia-Perez, Jose L.; Widmann, Thomas J.; Adams, Ian R.

    2018-01-01

    Summary Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that significantly impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and how the somatic activity of TEs can influence gene regulatory networks. PMID:27875251

  20. Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion.

    PubMed

    Vaschetto, Luis María

    2018-04-01

    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.

  1. Transposable elements as genetic regulatory substrates in early development.

    PubMed

    Gifford, Wesley D; Pfaff, Samuel L; Macfarlan, Todd S

    2013-05-01

    The abundance and ancient origins of transposable elements (TEs) in eukaryotic genomes has spawned research into the potential symbiotic relationship between these elements and their hosts. In this review, we introduce the diversity of TEs, discuss how distinct classes are uniquely regulated in development, and describe how they appear to have been coopted for the purposes of gene regulation and the orchestration of a number of processes during early embryonic development. Although young, active TEs play an important role in somatic tissues and evolution, we focus mostly on the contributions of the older, fixed elements in mammalian genomes. We also discuss major challenges inherent in the study of TEs and contemplate future experimental approaches to further investigate how they coordinate developmental processes. Published by Elsevier Ltd.

  2. Transposable elements as genetic regulatory substrates in early development

    PubMed Central

    Gifford, Wesley D.; Pfaff, Samuel L.; Macfarlan, Todd S.

    2014-01-01

    The abundance and ancient origins of transposable elements (TEs) in eukaryotic genomes has spawned research into the potential symbiotic relationship between these elements and their hosts. In this review, we introduce the diversity of TEs, discuss how distinct classes are uniquely regulated in development, and describe how they appear to have been coopted for the purposes of gene regulation and the orchestration of a number of processes during early embryonic development. Although young, active TEs play an important role in somatic tissues and evolution, we focus mostly on the contributions of the older, fixed elements in mammalian genomes. We also discuss major challenges inherent in the study of TEs and contemplate future experimental approaches to further investigate how they coordinate developmental processes. PMID:23411159

  3. HTT-DB: horizontally transferred transposable elements database.

    PubMed

    Dotto, Bruno Reis; Carvalho, Evelise Leis; Silva, Alexandre Freitas; Duarte Silva, Luiz Fernando; Pinto, Paulo Marcos; Ortiz, Mauro Freitas; Wallau, Gabriel Luz

    2015-09-01

    Horizontal transfer of transposable (HTT) elements among eukaryotes was discovered in the mid-1980s. As then, >300 new cases have been described. New findings about HTT are revealing the evolutionary impact of this phenomenon on host genomes. In order to provide an up to date, interactive and expandable database for such events, we developed the HTT-DB database. HTT-DB allows easy access to most of HTT cases reported along with rich information about each case. Moreover, it allows the user to generate tables and graphs based on searches using Transposable elements and/or host species classification and export them in several formats. This database is freely available on the web at http://lpa.saogabriel.unipampa.edu.br:8080/httdatabase. HTT-DB was developed based on Java and MySQL with all major browsers supported. Tools and software packages used are free for personal or non-profit projects. bdotto82@gmail.com or gabriel.wallau@gmail.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The impact of transposable elements on mammalian development.

    PubMed

    Garcia-Perez, Jose L; Widmann, Thomas J; Adams, Ian R

    2016-11-15

    Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks. © 2016. Published by The Company of Biologists Ltd.

  5. Low diversity, activity, and density of transposable elements in five avian genomes.

    PubMed

    Gao, Bo; Wang, Saisai; Wang, Yali; Shen, Dan; Xue, Songlei; Chen, Cai; Cui, Hengmi; Song, Chengyi

    2017-07-01

    In this study, we conducted the activity, diversity, and density analysis of transposable elements (TEs) across five avian genomes (budgerigar, chicken, turkey, medium ground finch, and zebra finch) to explore the potential reason of small genome sizes of birds. We found that these avian genomes exhibited low density of TEs by about 10% of genome coverages and low diversity of TEs with the TE landscapes dominated by CR1 and ERV elements, and contrasting proliferation dynamics both between TE types and between species were observed across the five avian genomes. Phylogenetic analysis revealed that CR1 clade was more diverse in the family structure compared with R2 clade in birds; avian ERVs were classified into four clades (alpha, beta, gamma, and ERV-L) and belonged to three classes of ERV with an uneven distributed in these lineages. The activities of DNA and SINE TEs were very low in the evolution history of avian genomes; most LINEs and LTRs were ancient copies with a substantial decrease of activity in recent, with only LTRs and LINEs in chicken and zebra finch exhibiting weak activity in very recent, and very few TEs were intact; however, the recent activity may be underestimated due to the sequencing/assembly technologies in some species. Overall, this study demonstrates low diversity, activity, and density of TEs in the five avian species; highlights the differences of TEs in these lineages; and suggests that the current and recent activity of TEs in avian genomes is very limited, which may be one of the reasons of small genome sizes in birds.

  6. Evolutionary interaction between W/Y chromosome and transposable elements.

    PubMed

    Śliwińska, Ewa B; Martyka, Rafał; Tryjanowski, Piotr

    2016-06-01

    The W/Y chromosome is unique among chromosomes as it does not recombine in its mature form. The main side effect of cessation of recombination is evolutionary instability and degeneration of the W/Y chromosome, or frequent W/Y chromosome turnovers. Another important feature of W/Y chromosome degeneration is transposable element (TEs) accumulation. Transposon accumulation has been confirmed for all W/Y chromosomes that have been sequenced so far. Models of W/Y chromosome instability include the assemblage of deleterious mutations in protein coding genes, but do not include the influence of transposable elements that are accumulated gradually in the non-recombining genome. The multiple roles of genomic TEs, and the interactions between retrotransposons and genome defense proteins are currently being studied intensively. Small RNAs originating from retrotransposon transcripts appear to be, in some cases, the only mediators of W/Y chromosome function. Based on the review of the most recent publications, we present knowledge on W/Y evolution in relation to retrotransposable element accumulation.

  7. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology.

    PubMed

    Debladis, Emilie; Llauro, Christel; Carpentier, Marie-Christine; Mirouze, Marie; Panaud, Olivier

    2017-07-17

    Transposables elements (TEs) contribute to both structural and functional dynamics of most eukaryotic genomes. Because of their propensity to densely populate plant and animal genomes, the precise estimation of the impact of transposition on genomic diversity has been considered as one of the main challenges of today's genomics. The recent development of NGS (next generation sequencing) technologies has open new perspectives in population genomics by providing new methods for high throughput detection of Transposable Elements-associated Structural Variants (TEASV). However, these have relied on Illumina platform that generates short reads (up to 350 nucleotides). This limitation in size of sequence reads can cause high false discovery rate (FDR) and therefore limit the power of detection of TEASVs, especially in the case of large, complex genomes. The newest sequencing technologies, such as Oxford Nanopore Technologies (ONT) can generate kilobases-long reads thus representing a promising tool for TEASV detection in plant and animals. We present the results of a pilot experiment for TEASV detection on the model plant species Arabidopsis thaliana using ONT sequencing and show that it can be used efficiently to detect TE movements. We generated a ~0.8X genome coverage of a met1-derived epigenetic recombinant inbred line (epiRIL) using a MinIon device with R7 chemistry. We were able to detect nine new copies of the LTR-retrotransposon Evadé (EVD). We also evidenced the activity of the DNA transposon CACTA, CAC1. Even at a low sequence coverage (0.8X), ONT sequencing allowed us to reliably detect several TE insertions in Arabidopsis thaliana genome. The long read length allowed a precise and un-ambiguous mapping of the structural variations caused by the activity of TEs. This suggests that the trade-off between read length and genome coverage for TEASV detection may be in favor of the former. Should the technology be further improved both in terms of lower error rate

  8. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates.

    PubMed

    Warren, Ian A; Naville, Magali; Chalopin, Domitille; Levin, Perrine; Berger, Chloé Suzanne; Galiana, Delphine; Volff, Jean-Nicolas

    2015-09-01

    Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.

  9. Nezha, a novel active miniature inverted-repeat transposable element in cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Fengfeng; Tran Thao; Xu Ying

    2008-01-25

    Miniature inverted-repeat transposable elements (MITEs) were first identified in plants and exerted extensive proliferations throughout eukaryotic and archaeal genomes. But very few MITEs have been characterized in bacteria. We identified a novel MITE, called Nezha, in cyanobacteria Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120. Nezha, like most previously known MITEs in other organisms, is small in size, non-coding, carrying TIR and DR signals, and of potential to form a stable RNA secondary structure, and it tends to insert into A+T-rich regions. Recent transpositions of Nezha were observed in A. variabilis ATCC 29413 and Nostoc sp. PCC 7120, respectively.more » Nezha might have proliferated recently with aid from the transposase encoded by ISNpu3-like elements. A possible horizontal transfer event of Nezha from cyanobacteria to Polaromonas JS666 is also observed.« less

  10. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene.

    PubMed

    Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil

    2007-11-29

    Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.

  11. Colonization of heterochromatic genes by transposable elements in Drosophila.

    PubMed

    Dimitri, Patrizio; Junakovic, Nikolaj; Arcà, Bruno

    2003-04-01

    As a further step toward understanding transposable element-host genome interactions, we investigated the molecular anatomy of introns from five heterochromatic and 22 euchromatic protein-coding genes of Drosophila melanogaster. A total of 79 kb of intronic sequences from heterochromatic genes and 355 kb of intronic sequences from euchromatic genes have been used in Blast searches against Drosophila transposable elements (TEs). The results show that TE-homologous sequences belonging to 19 different families represent about 50% of intronic DNA from heterochromatic genes. In contrast, only 0.1% of the euchromatic intron DNA exhibits homology to known TEs. Intraspecific and interspecific size polymorphisms of introns were found, which are likely to be associated with changes in TE-related sequences. Together, the enrichment in TEs and the apparent dynamic state of heterochromatic introns suggest that TEs contribute significantly to the evolution of genes located in heterochromatin.

  12. Transposable elements re-wire and fine-tune the transcriptome.

    PubMed

    Cowley, Michael; Oakey, Rebecca J

    2013-01-01

    What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes.

  13. Population genetics and molecular evolution of DNA sequences in transposable elements. I. A simulation framework.

    PubMed

    Kijima, T E; Innan, Hideki

    2013-11-01

    A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.

  14. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene

    PubMed Central

    Amit, Maayan; Sela, Noa; Keren, Hadas; Melamed, Ze'ev; Muler, Inna; Shomron, Noam; Izraeli, Shai; Ast, Gil

    2007-01-01

    Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains. PMID:18047649

  15. Transposable Elements Re-Wire and Fine-Tune the Transcriptome

    PubMed Central

    Cowley, Michael; Oakey, Rebecca J.

    2013-01-01

    What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs—particularly retrotransposons—contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription. We also discuss a critical role for the mobilome in engineering transcriptional networks, permitting coordinated gene expression, and facilitating the evolution of novel physiological processes. PMID:23358118

  16. Transposable elements in TDP-43-mediated neurodegenerative disorders.

    PubMed

    Li, Wanhe; Jin, Ying; Prazak, Lisa; Hammell, Molly; Dubnau, Josh

    2012-01-01

    Elevated expression of specific transposable elements (TEs) has been observed in several neurodegenerative disorders. TEs also can be active during normal neurogenesis. By mining a series of deep sequencing datasets of protein-RNA interactions and of gene expression profiles, we uncovered extensive binding of TE transcripts to TDP-43, an RNA-binding protein central to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Second, we find that association between TDP-43 and many of its TE targets is reduced in FTLD patients. Third, we discovered that a large fraction of the TEs to which TDP-43 binds become de-repressed in mouse TDP-43 disease models. We propose the hypothesis that TE mis-regulation contributes to TDP-43 related neurodegenerative diseases.

  17. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response.

    PubMed

    Horváth, Vivien; Merenciano, Miriam; González, Josefa

    2017-11-01

    A relationship between transposable elements (TEs) and the eukaryotic stress response was suggested in the first publications describing TEs. Since then, it has often been assumed that TEs are activated by stress, and that this activation is often beneficial for the organism. In recent years, the availability of new high-throughput experimental techniques has allowed further interrogation of the relationship between TEs and stress. By reviewing the recent literature, we conclude that although there is evidence for a beneficial effect of TE activation under stress conditions, the relationship between TEs and the eukaryotic stress response is quite complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Transposable elements as a molecular evolutionary force

    NASA Technical Reports Server (NTRS)

    Fedoroff, N. V.

    1999-01-01

    This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.

  19. Tn4556, a 6.8-kilobase-pair transposable element of Streptomyces fradiae.

    PubMed Central

    Chung, S T

    1987-01-01

    A 6.8-kilobase-pair (kbp) transposable element (Tn4556) was found in a neomycin-producing strain of Streptomyces fradiae. This element was first observed in two 30.3-kbp plasmids (pUC1123 and pUC1124) which arose when a thiostrepton resistance gene (1 kbp) was ligated with the BclI-2 fragment (22.5 kbp) that contains the origin of replication of phage SF1. The Tn4556 segment was deleted when these plasmids were transduced into another S. fradiae host with phage SF1. These deletion plasmids (pUC1210 and pUC1211) had copy numbers of less than 1 per chromosome and were unstable. In contrast, pUC1123 and pUC1124, with copy numbers of 12 to 15 per chromosome, respectively, were relatively stable. When pUC1210 and pUC1211 were reintroduced into S. fradiae by protoplast transformation, the Tn4556 element transposed again to the plasmids at numerous new locations in either of two orientations. A copy of Tn4556 was found in the S. fradiae chromosome by hybridization studies. It appears that Tn4556 originated from the chromosome, transposed into unstable pUC1210 and pUC1211, and made stable plasmids. A temperature-sensitive hybrid plasmid carrying a viomycin resistance derivative of Tn4556 (pMT660::Tn4556::vph) was constructed. When Streptomyces lividans UC8390 containing the hybrid plasmid was grown at 39 degrees C, Tn4556::vph (Tn4560) transposed to random positions in the host chromosome. Images PMID:2820925

  20. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage.

    PubMed

    Morales, Maria E; Servant, Geraldine; Ade, Catherine; Roy-Engel, Astrid M

    2015-07-01

    Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.

  1. The biology and evolution of transposable elements in parasites.

    PubMed

    Thomas, M Carmen; Macias, Francisco; Alonso, Carlos; López, Manuel C

    2010-07-01

    Transposable elements (TEs) are dynamic elements that can reshape host genomes by generating rearrangements with the potential to create or disrupt genes, to shuffle existing genes, and to modulate their patterns of expression. In the genomes of parasites that infect mammals several TEs have been identified that probably have been maintained throughout evolution due to their contribution to gene function and regulation of gene expression. This review addresses how TEs are organized, how they colonize the genomes of mammalian parasites, the functional role these elements play in parasite biology, and the interactions between these elements and the parasite genome. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres.

    PubMed

    Arkhipova, Irina R; Yushenova, Irina A; Rodriguez, Fernando

    2017-09-01

    Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3'-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3'-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. [Plant transposable elements and their application in genetics and biotechnology].

    PubMed

    Ovcharenko, O O; Rudas, V A; Kuchuk, M V

    2006-01-01

    Data concerning plant transposable elements and their contribution to plant genome evolution are reviewed. Much attention is focused on utilization of transgenic plants as heterologous hosts of transposons for investigation of transposition mechanisms and gene cloning. Probable ways of the use of plant transposons as genetic tools in biotechnology are discussed.

  4. Transposable Element Proliferation and Genome Expansion Are Rare in Contemporary Sunflower Hybrid Populations Despite Widespread Transcriptional Activity of LTR Retrotransposons

    PubMed Central

    Kawakami, Takeshi; Dhakal, Preeti; Katterhenry, Angela N.; Heatherington, Chelsea A.; Ungerer, Mark C.

    2011-01-01

    Hybridization is a natural phenomenon that has been linked in several organismal groups to transposable element derepression and copy number amplification. A noteworthy example involves three diploid annual sunflower species from North America that have arisen via ancient hybridization between the same two parental taxa, Helianthus annuus and H. petiolaris. The genomes of the hybrid species have undergone large-scale increases in genome size attributable to long terminal repeat (LTR) retrotransposon proliferation. The parental species that gave rise to the hybrid taxa are widely distributed, often sympatric, and contemporary hybridization between them is common. Natural H. annuus × H. petiolaris hybrid populations likely served as source populations from which the hybrid species arose and, as such, represent excellent natural experiments for examining the potential role of hybridization in transposable element derepression and proliferation in this group. In the current report, we examine multiple H. annuus × H. petiolaris hybrid populations for evidence of genome expansion, LTR retrotransposon copy number increases, and LTR retrotransposon transcriptional activity. We demonstrate that genome expansion and LTR retrotransposon proliferation are rare in contemporary hybrid populations, despite independent proliferation events that took place in the genomes of the ancient hybrid species. Interestingly, LTR retrotransposon lineages that proliferated in the hybrid species genomes remain transcriptionally active in hybrid and nonhybrid genotypes across the entire sampling area. The finding of transcriptional activity but not copy number increases in hybrid genotypes suggests that proliferation and genome expansion in contemporary hybrid populations may be mitigated by posttranscriptional mechanisms of repression. PMID:21282712

  5. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. Results We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. Conclusions Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group. PMID:24088337

  6. A Brief History of the Status of Transposable Elements: From Junk DNA to Major Players in Evolution

    PubMed Central

    Biémont, Christian

    2010-01-01

    The idea that some genetic factors are able to move around chromosomes emerged more than 60 years ago when Barbara McClintock first suggested that such elements existed and had a major role in controlling gene expression and that they also have had a major influence in reshaping genomes in evolution. It was many years, however, before the accumulation of data and theories showed that this latter revolutionary idea was correct although, understandably, it fell far short of our present view of the significant influence of what are now known as “transposable elements” in evolution. In this article, I summarize the main events that influenced my thinking about transposable elements as a young scientist and the influence and role of these specific genomic elements in evolution over subsequent years. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work. PMID:21156958

  7. Transposable elements and G-quadruplexes.

    PubMed

    Kejnovsky, Eduard; Tokan, Viktor; Lexa, Matej

    2015-09-01

    A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.

  8. The industrial melanism mutation in British peppered moths is a transposable element.

    PubMed

    Van't Hof, Arjen E; Campagne, Pascal; Rigden, Daniel J; Yung, Carl J; Lingley, Jessica; Quail, Michael A; Hall, Neil; Darby, Alistair C; Saccheri, Ilik J

    2016-06-02

    Discovering the mutational events that fuel adaptation to environmental change remains an important challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction between bird predation and coal pollution. The carbonaria locus has been coarsely localized to a 200-kilobase region, but the specific identity and nature of the sequence difference controlling the carbonaria-typica polymorphism, and the gene it influences, are unknown. Here we show that the mutation event giving rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element into the first intron of the gene cortex. Statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the historical record. We have begun to dissect the mode of action of the carbonaria transposable element by showing that it increases the abundance of a cortex transcript, the protein product of which plays an important role in cell-cycle regulation, during early wing disc development. Our findings fill a substantial knowledge gap in the iconic example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in response to natural selection. The discovery that the mutation itself is a transposable element will stimulate further debate about the importance of 'jumping genes' as a source of major phenotypic novelty.

  9. Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs

    USDA-ARS?s Scientific Manuscript database

    Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the br...

  10. Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae.

    PubMed

    Fléchard, Maud; Gilot, Philippe

    2014-07-01

    We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB-lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the 'success' of the infectious process. © 2014 The Authors.

  11. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    PubMed

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. © 2015 John Wiley & Sons Ltd.

  12. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castanera, Raul; Lopez-Varas, Leticia; Borgognone, Alessandra

    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Classmore » I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.« less

  13. Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles

    DOE PAGES

    Castanera, Raul; Lopez-Varas, Leticia; Borgognone, Alessandra; ...

    2016-06-13

    Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Classmore » I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.« less

  14. Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation.

    PubMed

    Inoue, Azusa; Matoba, Shogo; Zhang, Yi

    2012-12-01

    The methylation state of the paternal genome is rapidly reprogrammed shortly after fertilization. Recent studies have revealed that loss of 5-methylcytosine (5mC) in zygotes correlates with appearance of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). This process is mediated by Tet3 and the 5mC oxidation products generated in zygotes are gradually lost during preimplantation development through a replication-dependent dilution process. Despite these findings, the biological significance of Tet3-mediated oxidation of 5mC to 5hmC/5fC/5caC in zygotes is unknown. DNA methylation plays an important role in silencing gene expression including the repression of transposable elements (TEs). Given that the activation of TEs during preimplantation development correlates with loss of DNA methylation, it is believed that paternal DNA demethylation may have an important role in TE activation. Here we examined this hypothesis and found that Tet3-mediated 5mC oxidation does not have a significant contribution to TE activation. We show that the expression of LINE-1 (long interspersed nucleotide element 1) and ERVL (endogenous retroviruses class III) are activated from both paternal and maternal genomes in zygotes. Inhibition of 5mC oxidation by siRNA-mediated depletion of Tet3 affected neither TE activation, nor global transcription in zygotes. Thus, our study provides the first evidence demonstrating that activation of both TEs and global transcription in zygotes are independent of Tet3-mediated 5mC oxidation.

  15. The application of the high throughput sequencing technology in the transposable elements.

    PubMed

    Liu, Zhen; Xu, Jian-hong

    2015-09-01

    High throughput sequencing technology has dramatically improved the efficiency of DNA sequencing, and decreased the costs to a great extent. Meanwhile, this technology usually has advantages of better specificity, higher sensitivity and accuracy. Therefore, it has been applied to the research on genetic variations, transcriptomics and epigenomics. Recently, this technology has been widely employed in the studies of transposable elements and has achieved fruitful results. In this review, we summarize the application of high throughput sequencing technology in the fields of transposable elements, including the estimation of transposon content, preference of target sites and distribution, insertion polymorphism and population frequency, identification of rare copies, transposon horizontal transfers as well as transposon tagging. We also briefly introduce the major common sequencing strategies and algorithms, their advantages and disadvantages, and the corresponding solutions. Finally, we envision the developing trends of high throughput sequencing technology, especially the third generation sequencing technology, and its application in transposon studies in the future, hopefully providing a comprehensive understanding and reference for related scientific researchers.

  16. DPTEdb, an integrative database of transposable elements in dioecious plants.

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gu, Lian-Feng; Gao, Wu-Jun

    2016-01-01

    Dioecious plants usually harbor 'young' sex chromosomes, providing an opportunity to study the early stages of sex chromosome evolution. Transposable elements (TEs) are mobile DNA elements frequently found in plants and are suggested to play important roles in plant sex chromosome evolution. The genomes of several dioecious plants have been sequenced, offering an opportunity to annotate and mine the TE data. However, comprehensive and unified annotation of TEs in these dioecious plants is still lacking. In this study, we constructed a dioecious plant transposable element database (DPTEdb). DPTEdb is a specific, comprehensive and unified relational database and web interface. We used a combination of de novo, structure-based and homology-based approaches to identify TEs from the genome assemblies of previously published data, as well as our own. The database currently integrates eight dioecious plant species and a total of 31 340 TEs along with classification information. DPTEdb provides user-friendly web interfaces to browse, search and download the TE sequences in the database. Users can also use tools, including BLAST, GetORF, HMMER, Cut sequence and JBrowse, to analyze TE data. Given the role of TEs in plant sex chromosome evolution, the database will contribute to the investigation of TEs in structural, functional and evolutionary dynamics of the genome of dioecious plants. In addition, the database will supplement the research of sex diversification and sex chromosome evolution of dioecious plants.Database URL: http://genedenovoweb.ticp.net:81/DPTEdb/index.php. © The Author(s) 2016. Published by Oxford University Press.

  17. Characterization of Transposable Elements in Laccaria bicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copies elements distributed within 172 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs are ancient except some terminal inverted repeats (TIRS),more » long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TEs expansion in L. bicolor; the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 500,000 years ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis represents an initial characterization of TEs in the L. bicolor genome, contributes to genome assembly and to a greater understanding of the role TEs played in genome organization and evolution, and provides a valuable resource for the ongoing Laccaria Pan-Genome project supported by the U.S.-DOE Joint Genome Institute.« less

  18. Genomic impact of eukaryotic transposable elements

    PubMed Central

    2012-01-01

    The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come. PMID:23171443

  19. Genomic impact of eukaryotic transposable elements.

    PubMed

    Arkhipova, Irina R; Batzer, Mark A; Brosius, Juergen; Feschotte, Cédric; Moran, John V; Schmitz, Jürgen; Jurka, Jerzy

    2012-11-21

    The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come.

  20. Characterization of the Fb-Nof Transposable Element of Drosophila Melanogaster

    PubMed Central

    Harden, N.; Ashburner, M.

    1990-01-01

    FB-NOF is a composite transposable element of Drosophila melanogaster. It is composed of foldback sequences, of variable length, which flank a 4-kb NOF sequence with 308-bp inverted repeat termini. The NOF sequence could potentially code for a 120-kD polypeptide. The FB-NOF element is responsible for unstable mutations of the white gene (w(c) and w(DZL)) and is associated with the large TEs of G. Ising. Although most strains of D. melanogaster have 20-30 sites of FB insertion, FB-NOF elements are usually rare, many strains lack this composite element or have only one copy of it. A few strains, including w(DZL) and Basc have many (8-21) copies of FB-NOF, and these show a tendency to insert at ``hot-spots.'' These strains also have an increased number of FB elements. The DNA sequence of the NOF region associated with TE146(Z) has been determined. PMID:2174013

  1. Detection and characterization of miniature inverted-repeat transposable elements in “Candidatus Liberibacter asiaticus”

    USDA-ARS?s Scientific Manuscript database

    Miniature inverted-repeat transposable elements (MITEs) are non-autonomous transposons (devoid a transposase gene, tps) involving insertion/deletion of genomic DNA in bacterial genomes influencing gene functions. No transposon has yet been reported in “Candidatus Liberibacter asiaticus”, an alpha-pr...

  2. The impact of transposable elements in environmental adaptation.

    PubMed

    Casacuberta, Elena; González, Josefa

    2013-03-01

    Transposable elements (TEs) play an important role in the responsive capacity of their hosts in the face of environmental challenges. The variety of mechanisms by which TEs influence the capacity of adaptation of the host is as large as the variety of TEs and host genomes. For example, TEs might directly affect the function of individual genes, provide a mechanism for rapidly acquiring new genetic material and disseminate regulatory elements that can lead to the creation of stress-inducible regulatory networks. In this review, we summarize recent examples that are part of an increasing body of evidence suggesting a significant role of TEs in the host response to an ever-changing environment, both in prokaryote and in eukaryote organisms. We argue that in the near future, the increasing availability of genome sequences and the development of new tools to discover and analyse TE insertions will further show the relevant role of TEs in environmental adaptation. © 2013 Blackwell Publishing Ltd.

  3. Transposable elements in sexual and ancient asexual taxa

    PubMed Central

    Arkhipova, Irina; Meselson, Matthew

    2000-01-01

    Sexual reproduction allows deleterious transposable elements to proliferate in populations, whereas the loss of sex, by preventing their spread, has been predicted eventually to result in a population free of such elements [Hickey, D. A. (1982) Genetics 101, 519–531]. We tested this expectation by screening representatives of a majority of animal phyla for LINE-like and gypsy-like reverse transcriptases and mariner/Tc1-like transposases. All species tested positive for reverse transcriptases except rotifers of the class Bdelloidea, the largest eukaryotic taxon in which males, hermaphrodites, and meiosis are unknown and for which ancient asexuality is supported by molecular genetic evidence. Mariner-like transposases are distributed sporadically among species and are present in bdelloid rotifers. The remarkable lack of LINE-like and gypsy-like retrotransposons in bdelloids and their ubiquitous presence in other taxa support the view that eukaryotic retrotransposons are sexually transmitted nuclear parasites and that bdelloid rotifers evolved asexually. PMID:11121049

  4. Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Jaqueline; Skrede, Inger; Wolfe, Benjamin E.

    Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanitamore » fungi. We used methods developed to interrogate both assembled and unassembled sequences, and characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species’ natural histories may have in shaping genome architecture.« less

  5. Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi

    DOE PAGES

    Hess, Jaqueline; Skrede, Inger; Wolfe, Benjamin E.; ...

    2014-06-12

    Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanitamore » fungi. We used methods developed to interrogate both assembled and unassembled sequences, and characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species’ natural histories may have in shaping genome architecture.« less

  6. Isolation and molecular characterization of dTnp1, a mobile and defective transposable element of Nicotiana plumbaginifolia.

    PubMed

    Meyer, C; Pouteau, S; Rouzé, P; Caboche, M

    1994-01-01

    By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after gamma-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 bp insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 bp terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5' and 3' ends of dTnp1 together with a perfect palindrome located after the 5' inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.

  7. Evolutionary Histories of Transposable Elements in the Genome of the Largest Living Marsupial Carnivore, the Tasmanian Devil

    PubMed Central

    Gallus, Susanne; Hallström, Björn M; Kumar, Vikas; Dodt, William G; Janke, Axel; Schumann, Gerald G; Nilsson, Maria A

    2015-01-01

    The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions. PMID:25633377

  8. Population and clinical genetics of human transposable elements in the (post) genomic era

    PubMed Central

    Rishishwar, Lavanya; Wang, Lu; Clayton, Evan A.; Mariño-Ramírez, Leonardo; McDonald, John F.; Jordan, I. King

    2017-01-01

    ABSTRACT Recent technological developments—in genomics, bioinformatics and high-throughput experimental techniques—are providing opportunities to study ongoing human transposable element (TE) activity at an unprecedented level of detail. It is now possible to characterize genome-wide collections of TE insertion sites for multiple human individuals, within and between populations, and for a variety of tissue types. Comparison of TE insertion site profiles between individuals captures the germline activity of TEs and reveals insertion site variants that segregate as polymorphisms among human populations, whereas comparison among tissue types ascertains somatic TE activity that generates cellular heterogeneity. In this review, we provide an overview of these new technologies and explore their implications for population and clinical genetic studies of human TEs. We cover both recent published results on human TE insertion activity as well as the prospects for future TE studies related to human evolution and health. PMID:28228978

  9. Sequence of retrovirus provirus resembles that of bacterial transposable elements

    NASA Astrophysics Data System (ADS)

    Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.

    1980-06-01

    The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.

  10. Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants.

    PubMed

    Kuhn, Alexandre; Ong, Yao Min; Quake, Stephen R; Burkholder, William F

    2015-07-08

    Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed. We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate. This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.

  11. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation.

    PubMed

    Anwar, Sumadi Lukman; Wulaningsih, Wahyu; Lehmann, Ulrich

    2017-05-04

    Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers.

  12. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation

    PubMed Central

    Anwar, Sumadi Lukman; Wulaningsih, Wahyu; Lehmann, Ulrich

    2017-01-01

    Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers. PMID:28471386

  13. Can "CANISO" Activate "CASINO"? Transposed-Letter Similarity Effects with Nonadjacent Letter Positions

    ERIC Educational Resources Information Center

    Perea, Manuel; Lupker, Stephen J.

    2004-01-01

    Nonwords created by transposing two "adjacent" letters (i.e., transposed-letter (TL) nonwords like "jugde") are very effective at activating the lexical representation of their base words. This fact poses problems for most computational models of word recognition (e.g., the interactive-activation model and its extensions), which assume that exact…

  14. Transposable elements and insecticide resistance.

    PubMed

    Rostant, Wayne G; Wedell, Nina; Hosken, David J

    2012-01-01

    Transposable elements (TEs) are mobile DNA sequences that are able to copy themselves within a host genome. They were initially characterized as selfish genes because of documented or presumed costs to host fitness, but it has become increasingly clear that not all TEs reduce host fitness. A good example of TEs benefiting hosts is seen with insecticide resistance, where in a number of cases, TE insertions near specific genes confer resistance to these man-made products. This is particularly true of Accord and associated TEs in Drosophila melanogaster and Doc insertions in Drosophila simulans. The first of these insertions also has sexually antagonistic fitness effects in the absence of insecticides, and although the magnitude of this effect depends on the genetic background in which Accord finds itself, this represents an excellent example of intralocus sexual conflict where the precise allele involved is well characterized. We discuss this finding and the role of TEs in insecticide resistance. We also highlight areas for further research, including the need for surveys of the prevalence and fitness consequences of the Doc insertion and how Drosophila can be used as models to investigate resistance in pest species. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome.

    PubMed

    Greally, John M

    2002-01-08

    To test whether regions undergoing genomic imprinting have unique genomic characteristics, imprinted and nonimprinted human loci were compared for nucleotide and retroelement composition. Maternally and paternally expressed subgroups of imprinted genes were found to differ in terms of guanine and cytosine, CpG, and retroelement content, indicating a segregation into distinct genomic compartments. Imprinted regions have been normally permissive to L1 long interspersed transposable element retroposition during mammalian evolution but universally and significantly lack short interspersed transposable elements (SINEs). The primate-specific Alu SINEs, as well as the more ancient mammalian-wide interspersed repeat SINEs, are found at significantly low densities in imprinted regions. The latter paleogenomic signature indicates that the sequence characteristics of currently imprinted regions existed before the mammalian radiation. Transitions from imprinted to nonimprinted genomic regions in cis are characterized by a sharp inflection in SINE content, demonstrating that this genomic characteristic can help predict the presence and extent of regions undergoing imprinting. During primate evolution, SINE accumulation in imprinted regions occurred at a decreased rate compared with control loci. The constraint on SINE accumulation in imprinted regions may be mediated by an active selection process. This selection could be because of SINEs attracting and spreading methylation, as has been found at other loci. Methylation-induced silencing could lead to deleterious consequences at imprinted loci, where inactivation of one allele is already established, and expression is often essential for embryonic growth and survival.

  16. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome

    PubMed Central

    Greally, John M.

    2002-01-01

    To test whether regions undergoing genomic imprinting have unique genomic characteristics, imprinted and nonimprinted human loci were compared for nucleotide and retroelement composition. Maternally and paternally expressed subgroups of imprinted genes were found to differ in terms of guanine and cytosine, CpG, and retroelement content, indicating a segregation into distinct genomic compartments. Imprinted regions have been normally permissive to L1 long interspersed transposable element retroposition during mammalian evolution but universally and significantly lack short interspersed transposable elements (SINEs). The primate-specific Alu SINEs, as well as the more ancient mammalian-wide interspersed repeat SINEs, are found at significantly low densities in imprinted regions. The latter paleogenomic signature indicates that the sequence characteristics of currently imprinted regions existed before the mammalian radiation. Transitions from imprinted to nonimprinted genomic regions in cis are characterized by a sharp inflection in SINE content, demonstrating that this genomic characteristic can help predict the presence and extent of regions undergoing imprinting. During primate evolution, SINE accumulation in imprinted regions occurred at a decreased rate compared with control loci. The constraint on SINE accumulation in imprinted regions may be mediated by an active selection process. This selection could be because of SINEs attracting and spreading methylation, as has been found at other loci. Methylation-induced silencing could lead to deleterious consequences at imprinted loci, where inactivation of one allele is already established, and expression is often essential for embryonic growth and survival. PMID:11756672

  17. The role of transposable elements in health and diseases of the central nervous system.

    PubMed

    Reilly, Matthew T; Faulkner, Geoffrey J; Dubnau, Joshua; Ponomarev, Igor; Gage, Fred H

    2013-11-06

    First discovered in maize by Barbara McClintock in the 1940s, transposable elements (TEs) are DNA sequences that in some cases have the ability to move along chromosomes or "transpose" in the genome. This revolutionary finding was initially met with resistance by the scientific community and viewed by some as heretical. A large body of knowledge has accumulated over the last 60 years on the biology of TEs. Indeed, it is now known that TEs can generate genomic instability and reconfigure gene expression networks both in the germline and somatic cells. This review highlights recent findings on the role of TEs in health and diseases of the CNS, which were presented at the 2013 Society for Neuroscience meeting. The work of the speakers in this symposium shows that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings on TE expression and function in the CNS have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in shaping individual behavior and contribute to vulnerability to disease.

  18. What makes up plant genomes: The vanishing line between transposable elements and genes.

    PubMed

    Zhao, Dongyan; Ferguson, Ann A; Jiang, Ning

    2016-02-01

    The ultimate source of evolution is mutation. As the largest component in plant genomes, transposable elements (TEs) create numerous types of mutations that cannot be mimicked by other genetic mechanisms. When TEs insert into genomic sequences, they influence the expression of nearby genes as well as genes unlinked to the insertion. TEs can duplicate, mobilize, and recombine normal genes or gene fragments, with the potential to generate new genes or modify the structure of existing genes. TEs also donate their transposase coding regions for cellular functions in a process called TE domestication. Despite the host defense against TE activity, a subset of TEs survived and thrived through discreet selection of transposition activity, target site, element size, and the internal sequence. Finally, TEs have established strategies to reduce the efficacy of host defense system by increasing the cost of silencing TEs. This review discusses the recent progress in the area of plant TEs with a focus on the interaction between TEs and genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii).

    PubMed

    Xu, Zhenzhen; Liu, Jing; Ni, Wanchao; Peng, Zhen; Guo, Yue; Ye, Wuwei; Huang, Fang; Zhang, Xianggui; Xu, Peng; Guo, Qi; Shen, Xinlian; Du, Jianchang

    2017-01-01

    Although several diploid and tetroploid Gossypium species genomes have been sequenced, the well annotated web-based transposable elements (TEs) database is lacking. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the cotton genome, a comprehensive, specific, and user-friendly web-based database, Gossypium raimondii transposable elements database (GrTEdb), was constructed. A total of 14 332 TEs were structurally annotated and clearly categorized in G. raimondii genome, and these elements have been classified into seven distinct superfamilies based on the order of protein-coding domains, structures and/or sequence similarity, including 2929 Copia-like elements, 10 368 Gypsy-like elements, 299 L1 , 12 Mutators , 435 PIF-Harbingers , 275 CACTAs and 14 Helitrons . Meanwhile, the web-based sequence browsing, searching, downloading and blast tool were implemented to help users easily and effectively to annotate the TEs or TE fragments in genomic sequences from G. raimondii and other closely related Gossypium species. GrTEdb provides resources and information related with TEs in G. raimondii , and will facilitate gene and genome analyses within or across Gossypium species, evaluating the impact of TEs on their host genomes, and investigating the potential interaction between TEs and protein-coding genes in Gossypium species. http://www.grtedb.org/. © The Author(s) 2017. Published by Oxford University Press.

  20. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti.

    PubMed

    Maringer, Kevin; Yousuf, Amjad; Heesom, Kate J; Fan, Jun; Lee, David; Fernandez-Sesma, Ana; Bessant, Conrad; Matthews, David A; Davidson, Andrew D

    2017-01-19

    Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism's mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE's genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to 'conventional' proteomic approaches in both our transposon and genome annotation analyses. We present the first proteomic characterisation of an organism's repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome's annotation to guide annotation efforts which has the potential to improve the

  1. Natural variation of piRNA expression affects immunity to transposable elements.

    PubMed

    Ryazansky, Sergei; Radion, Elizaveta; Mironova, Anastasia; Akulenko, Natalia; Abramov, Yuri; Morgunova, Valeriya; Kordyukova, Maria Y; Olovnikov, Ivan; Kalmykova, Alla

    2017-04-01

    In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. Genomes of R strains do not contain active I-elements, but harbour remnants of ancestral I-related elements. The permissivity to I-element activity of R females, called reactivity, varies considerably in natural R populations, indicating the existence of a strong natural polymorphism in defense systems targeting transposons. To reveal the nature of such polymorphisms, we compared ovarian small RNAs between R strains with low and high reactivity and show that reactivity negatively correlates with the ancestral I-element-specific piRNA content. Analysis of piRNA clusters containing remnants of I-elements shows increased expression of the piRNA precursors and enrichment by the Heterochromatin Protein 1 homolog, Rhino, in weak R strains, which is in accordance with stronger piRNA expression by these regions. To explore the nature of the differences in piRNA production, we focused on two R strains, weak and strong, and showed that the efficiency of maternal inheritance of piRNAs as well as the I-element copy number are very similar in both strains. At the same time, germline and somatic uni-strand piRNA clusters generate more piRNAs in strains with low reactivity, suggesting the relationship between the efficiency of primary piRNA production and variable response to TE invasions. The strength of adaptive genome defense is likely driven by naturally occurring polymorphisms in the rapidly evolving piRNA pathway proteins. We hypothesize that hyper-efficient piRNA production is contributing to elimination of a telomeric retrotransposon He

  2. Transcriptional Activity, Chromosomal Distribution and Expression Effects of Transposable Elements in Coffea Genomes

    PubMed Central

    da Silva, Carlos R. M.; Andrade, Alan C.; Marraccini, Pierre; Teixeira, João B.; Carazzolle, Marcelo F.; Pereira, Gonçalo A. G.; Pereira, Luiz Filipe P.; Vanzela, André L. L.; Wang, Lu; Jordan, I. King; Carareto, Claudia M. A.

    2013-01-01

    Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences. PMID:24244387

  3. Transposable elements contribute to activation of maize genes in response to abiotic stress.

    PubMed

    Makarevitch, Irina; Waters, Amanda J; West, Patrick T; Stitzer, Michelle; Hirsch, Candice N; Ross-Ibarra, Jeffrey; Springer, Nathan M

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.

  4. Zaba: a novel miniature transposable element present in genomes of legume plants.

    PubMed

    Macas, J; Neumann, P; Pozárková, D

    2003-08-01

    A novel family of miniature transposable elements, named Zaba, was identified in pea (Pisum sativum) and subsequently also in other legume species using computer analysis of their DNA sequences. Zaba elements are 141-190 bp long, generate 10-bp target site duplications, and their terminal inverted repeats make up most of the sequence. Zaba elements thus resemble class 3 foldback transposons. The elements are only moderately repetitive in pea (tens to hundreds copies per haploid genome), but they are present in up to thousands of copies in the genomes of several Medicago and Vicia species. More detailed analysis of the elements from pea, including isolation of new sequences from a genomic library, revealed that a fraction of these elements are truncated, and that their last transposition probably did not occur recently. A search for Zaba sequences in EST databases showed that at least some elements are transcribed, most probably due to their association with genic regions.

  5. Identification and applications of the Petunia class II Act1/dTph1 transposable element system.

    PubMed

    Gerats, Tom; Zethof, Jan; Vandenbussche, Michiel

    2013-01-01

    Transposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia. Representatives of all three major groups of class II elements, viz., hAT-, CACTA- and Mutator-like elements, have been identified in Petunia. Here we focus on the research "history" of the Petunia two-element Act1-dTph1 system and the development of its application in forward- and reverse-genetics studies.

  6. Germline Transformation of Drosophila Virilis Mediated by the Transposable Element Hobo

    PubMed Central

    Lozovskaya, E. R.; Nurminsky, D. I.; Hartl, D. L.; Sullivan, D. T.

    1996-01-01

    A laboratory strain of Drosophila virilis was genetically transformed with a hobo vector carrying the miniwhite cassette using a helper plasmid with an hsp70-driven hobo transposase-coding sequence. The rate of transformation was 0.5% per fertile G0 animal. Three transgenic insertions were cloned and characterized and found to be authentic hobo insertions. These results, together with the known wide-spread distribution of hobo in diverse insect species, suggest that hobo and related transposable elements may be of considerable utility in the germline transformation of insects other than D. melanogaster. PMID:8770594

  7. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

    PubMed Central

    Puterova, Janka; Razumova, Olga; Martinek, Tomas; Alexandrov, Oleg; Divashuk, Mikhail; Kubat, Zdenek; Hobza, Roman; Karlov, Gennady

    2017-01-01

    Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes. PMID:28057732

  8. Massive contribution of transposable elements to mammalian regulatory sequences.

    PubMed

    Rayan, Nirmala Arul; Del Rosario, Ricardo C H; Prabhakar, Shyam

    2016-09-01

    Barbara McClintock discovered the existence of transposable elements (TEs) in the late 1940s and initially proposed that they contributed to the gene regulatory program of higher organisms. This controversial idea gained acceptance only much later in the 1990s, when the first examples of TE-derived promoter sequences were uncovered. It is now known that half of the human genome is recognizably derived from TEs. It is thus important to understand the scope and nature of their contribution to gene regulation. Here, we provide a timeline of major discoveries in this area and discuss how transposons have revolutionized our understanding of mammalian genomes, with a special emphasis on the massive contribution of TEs to primate evolution. Our analysis of primate-specific functional elements supports a simple model for the rate at which new functional elements arise in unique and TE-derived DNA. Finally, we discuss some of the challenges and unresolved questions in the field, which need to be addressed in order to fully characterize the impact of TEs on gene regulation, evolution and disease processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Potential roles for transposable elements in creating imprinted expression.

    PubMed

    Anderson, Sarah N; Springer, Nathan M

    2018-04-01

    Changes in gene expression can have profound effects on phenotype. Nature has provided many complex patterns of gene regulation such as imprinting. Imprinted genes exhibit differences in the expression of the maternal and paternal alleles, even though they reside in the same nucleus with access to the same trans-acting factors. Significant attention has been focused on the potential reasons that imprinted expression could be beneficial and stabilized by selection. However, less attention has focused on understanding how imprinted expression might arise or decay. We discuss the evidence for frequent turnover of imprinted expression based on evolutionary analyses in plants and the potential role for transposable elements (TEs) in creating imprinted expression patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Contribution of transposable elements in the plant's genome.

    PubMed

    Sahebi, Mahbod; Hanafi, Mohamed M; van Wijnen, Andre J; Rice, David; Rafii, M Y; Azizi, Parisa; Osman, Mohamad; Taheri, Sima; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat; Noor, Yusuf Muhammad

    2018-07-30

    Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A novel hAT element in Bombyx mori and Rhodnius prolixus: its relationship with miniature inverted repeat transposable elements (MITEs) and horizontal transfer.

    PubMed

    Zhang, H-H; Shen, Y-H; Xu, H-E; Liang, H-Y; Han, M-J; Zhang, Z

    2013-10-01

    Comparative analysis of transposable elements (TEs) from different species can make it possible to reconstruct their history over evolutionary time. In this study, we identified a novel hAT element in Bombyx mori and Rhodnius prolixus with characteristic GGGCGGCA repeats in its subterminal region. Meanwhile, phylogenetic analysis demonstrated that the elements in these two species might represent a separate cluster of the hAT superfamily. Strikingly, a previously identified miniature inverted repeat transposable element (MITE) shared high identity with this autonomous element across the entire length, supporting the hypothesis that MITEs are derived from the internal deletion of DNA transposons. Interestingly, identity of the consensus sequences of this novel hAT element between B. mori and R. prolixus, which diverged about 370 million years ago, was as high as 96.5% over their full length (about 3.6 kb) at the nucleotide level. The patchy distribution amongst species, coupled with overall lack of intense purifying selection acting on this element, suggest that this novel hAT element might have experienced horizontal transfer between the ancestors of B. mori and R. prolixus. Our results highlight that this novel hAT element could be used as a potential tool for germline transformation of R. prolixus to control the transmission of Trypanosoma cruzi, which causes Chagas disease. © 2013 Royal Entomological Society.

  12. Transposable elements and polyploid evolution in animals.

    PubMed

    Rodriguez, Fernando; Arkhipova, Irina R

    2018-04-28

    Polyploidy in animals is much less common than in plants, where it is thought to be pervasive in all higher plant lineages. Recent studies have highlighted the impact of polyploidization and the associated process of diploidy restoration on the evolution and speciation of selected taxonomic groups in the animal kingdom: from vertebrates represented by salmonid fishes and African clawed frogs to invertebrates represented by parasitic root-knot nematodes and bdelloid rotifers. In this review, we focus on the unique and diverse roles that transposable elements may play in these processes, from marking and diversifying subgenome-specific chromosome sets before hybridization, to influencing genome restructuring during rediploidization, to affecting subgenome-specific regulatory evolution, and occasionally providing opportunities for domestication and gene amplification to restore and improve functionality. There is still much to be learned from the future comparative genomic studies of chromosome-sized and haplotype-aware assemblies, and from postgenomic studies elucidating genetic and epigenetic regulatory phenomena across short and long evolutionary distances in the metazoan tree of life. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The Role of Transposable Elements in Speciation

    PubMed Central

    Serrato-Capuchina, Antonio; Matute, Daniel R.

    2018-01-01

    Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species. PMID:29762547

  14. Evolution and Diversity of Transposable Elements in Vertebrate Genomes.

    PubMed

    Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A

    2017-01-01

    Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes.

    PubMed

    Puterova, Janka; Razumova, Olga; Martinek, Tomas; Alexandrov, Oleg; Divashuk, Mikhail; Kubat, Zdenek; Hobza, Roman; Karlov, Gennady; Kejnovsky, Eduard

    2017-01-01

    Seabuckthorn (Hippophae rhamnoides) is a dioecious shrub commonly used in the pharmaceutical, cosmetic, and environmental industry as a source of oil, minerals and vitamins. In this study, we analyzed the transposable elements and satellites in its genome. We carried out Illumina DNA sequencing and reconstructed the main repetitive DNA sequences. For data analysis, we developed a new bioinformatics approach for advanced satellite DNA analysis and showed that about 25% of the genome consists of satellite DNA and about 24% is formed of transposable elements, dominated by Ty3/Gypsy and Ty1/Copia LTR retrotransposons. FISH mapping revealed X chromosome-accumulated, Y chromosome-specific or both sex chromosomes-accumulated satellites but most satellites were found on autosomes. Transposable elements were located mostly in the subtelomeres of all chromosomes. The 5S rDNA and 45S rDNA were localized on one autosomal locus each. Although we demonstrated the small size of the Y chromosome of the seabuckthorn and accumulated satellite DNA there, we were unable to estimate the age and extent of the Y chromosome degeneration. Analysis of dioecious relatives such as Shepherdia would shed more light on the evolution of these sex chromosomes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Transposable element distribution, abundance and role in genome size variation in the genus Oryza.

    PubMed

    Zuccolo, Andrea; Sebastian, Aswathy; Talag, Jayson; Yu, Yeisoo; Kim, HyeRan; Collura, Kristi; Kudrna, Dave; Wing, Rod A

    2007-08-29

    The genus Oryza is composed of 10 distinct genome types, 6 diploid and 4 polyploid, and includes the world's most important food crop - rice (Oryza sativa [AA]). Genome size variation in the Oryza is more than 3-fold and ranges from 357 Mbp in Oryza glaberrima [AA] to 1283 Mbp in the polyploid Oryza ridleyi [HHJJ]. Because repetitive elements are known to play a significant role in genome size variation, we constructed random sheared small insert genomic libraries from 12 representative Oryza species and conducted a comprehensive study of the repetitive element composition, distribution and phylogeny in this genus. Particular attention was paid to the role played by the most important classes of transposable elements (Long Terminal Repeats Retrotransposons, Long interspersed Nuclear Elements, helitrons, DNA transposable elements) in shaping these genomes and in their contributing to genome size variation. We identified the elements primarily responsible for the most strikingly genome size variation in Oryza. We demonstrated how Long Terminal Repeat retrotransposons belonging to the same families have proliferated to very different extents in various species. We also showed that the pool of Long Terminal Repeat Retrotransposons is substantially conserved and ubiquitous throughout the Oryza and so its origin is ancient and its existence predates the speciation events that originated the genus. Finally we described the peculiar behavior of repeats in the species Oryza coarctata [HHKK] whose placement in the Oryza genus is controversial. Long Terminal Repeat retrotransposons are the major component of the Oryza genomes analyzed and, along with polyploidization, are the most important contributors to the genome size variation across the Oryza genus. Two families of Ty3-gypsy elements (RIRE2 and Atlantys) account for a significant portion of the genome size variations present in the Oryza genus.

  17. A call for benchmarking transposable element annotation methods.

    PubMed

    Hoen, Douglas R; Hickey, Glenn; Bourque, Guillaume; Casacuberta, Josep; Cordaux, Richard; Feschotte, Cédric; Fiston-Lavier, Anna-Sophie; Hua-Van, Aurélie; Hubley, Robert; Kapusta, Aurélie; Lerat, Emmanuelle; Maumus, Florian; Pollock, David D; Quesneville, Hadi; Smit, Arian; Wheeler, Travis J; Bureau, Thomas E; Blanchette, Mathieu

    2015-01-01

    DNA derived from transposable elements (TEs) constitutes large parts of the genomes of complex eukaryotes, with major impacts not only on genomic research but also on how organisms evolve and function. Although a variety of methods and tools have been developed to detect and annotate TEs, there are as yet no standard benchmarks-that is, no standard way to measure or compare their accuracy. This lack of accuracy assessment calls into question conclusions from a wide range of research that depends explicitly or implicitly on TE annotation. In the absence of standard benchmarks, toolmakers are impeded in improving their tools, annotators cannot properly assess which tools might best suit their needs, and downstream researchers cannot judge how accuracy limitations might impact their studies. We therefore propose that the TE research community create and adopt standard TE annotation benchmarks, and we call for other researchers to join the authors in making this long-overdue effort a success.

  18. Worldwide distribution of transposable element copy number in natural populations of Drosophila simulans.

    PubMed

    Biémont, Christian; Nardon, Christiane; Deceliere, Grégory; Lepetit, David; Loevenbruck, Catherine; Vieira, Cristina

    2003-01-01

    Transposable elements (TEs), which promote various kinds of mutations, constitute a large fraction of the genome. How they invade natural populations and species is therefore of fundamental importance for understanding the dynamics of genetic diversity and genome composition. On the basis of 85 samples of natural populations of Drosophila simulans, we report the distributions of the genome insertion site numbers of nine TEs that were chosen because they have a low average number of sites. Most populations were found to have 0-3 insertion sites, but some of them had a significantly higher number of sites for a given TE. The populations located in regions outside Africa had the highest number of sites for all elements except HMS Beagle and Coral, suggesting a recent increase in the activity of some TEs associated with the colonization patterns of Drosophila simulans. The element Tirant had a very distinctive pattern of distribution: it was identified mainly in populations from East Africa and some islands in the Indian Ocean, and its insertion site number was low in all these populations. The data suggest that the genome of the entire species of Drosophila simulans may be being invaded by TEs from populations in which they are present in high copy number.

  19. Expressing genes do not forget their LINEs: transposable elements and gene expression

    PubMed Central

    Kines, Kristine J.; Belancio, Victoria P.

    2012-01-01

    1. ABSTRACT Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue-or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored. PMID:22201807

  20. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.

    PubMed

    Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S

    2015-12-01

    Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.

  1. piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation?

    PubMed

    Sarkar, Arpita; Volff, Jean-Nicolas; Vaury, Chantal

    2017-02-01

    P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are small, noncoding RNAs known for silencing transposable elements (TEs) in the germline of animals. Most genomes host TEs, which are notorious for mobilizing themselves and endangering survival of the host if not controlled. By silencing TEs in the germline, piRNAs prevent harmful mutations from being passed on to the next generation. How piRNAs are generated and how they silence TEs were the focus of researchers ever since their discovery. Now a spate of recent papers are beginning to tell us that piRNAs can play roles beyond TE silencing and are involved in diverse cellular processes from mRNA regulation to development or genome rearrangement. In this review, we discuss some of these recently reported roles. Data on these new roles are often rudimentary, and the involvement of piRNAs in these processes is yet to be definitely established. What is interesting is that the reports are on animals widely separated on the phylogenetic tree of life and that piRNAs were also found outside the gonadal tissues. Some of these piRNAs map to TE sequences, prompting us to hypothesize that genomes may have co-opted the TE-derived piRNA system for their own regulation.-Sarkar, A., Volff, J.-N., Vaury, C. piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation? © FASEB.

  2. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster

    PubMed Central

    Adrion, Jeffrey R.; Song, Michael J.; Schrider, Daniel R.; Hahn, Matthew W.

    2017-01-01

    Abstract Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species. PMID:28338986

  3. SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements.

    PubMed

    Do, Dang Vinh; Strauss, Bernhard; Cukuroglu, Engin; Macaulay, Iain; Wee, Keng Boon; Hu, Tim Xiaoming; Igor, Ruiz De Los Mozos; Lee, Caroline; Harrison, Andrew; Butler, Richard; Dietmann, Sabine; Jernej, Ule; Marioni, John; Smith, Christopher W J; Göke, Jonathan; Surani, M Azim

    2018-01-01

    The RNA-binding protein SRSF3 (also known as SRp20) has critical roles in the regulation of pre-mRNA splicing. Zygotic knockout of Srsf3 results in embryo arrest at the blastocyst stage. However, SRSF3 is also present in oocytes, suggesting that it might be critical as a maternally inherited factor. Here we identify SRSF3 as an essential regulator of alternative splicing and of transposable elements to maintain transcriptome integrity in mouse oocyte. Using 3D time-lapse confocal live imaging, we show that conditional deletion of Srsf3 in fully grown germinal vesicle oocytes substantially compromises the capacity of germinal vesicle breakdown (GVBD), and consequently entry into meiosis. By combining single cell RNA-seq, and oocyte micromanipulation with steric blocking antisense oligonucleotides and RNAse-H inducing gapmers, we found that the GVBD defect in mutant oocytes is due to both aberrant alternative splicing and derepression of B2 SINE transposable elements. Together, our study highlights how control of transcriptional identity of the maternal transcriptome by the RNA-binding protein SRSF3 is essential to the development of fertilized-competent oocytes.

  4. A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein.

    PubMed Central

    Li, W; Shaw, J E

    1993-01-01

    A variant C. elegans Tc4 transposable element, Tc4-rh1030, has been sequenced and is 3483 bp long. The Tc4 element that had been analyzed previously is 1605 bp long, consists of two 774-bp nearly perfect inverted terminal repeats connected by a 57-bp loop, and lacks significant open reading frames. In Tc4-rh1030, by comparison, a 2343-bp novel sequence is present in place of a 477-bp segment in one of the inverted repeats. The novel sequence of Tc4-rh1030 is present about five times per haploid genome and is invariably associated with Tc4 elements; we have used the designation Tc4v to denote this variant subfamily of Tc4 elements. Sequence analysis of three cDNA clones suggests that a Tc4v element contains at least five exons that could encode a novel basic protein of 537 amino acid residues. On northern blots, a 1.6-kb Tc4v-specific transcript was detected in the mutator strain TR679 but not in the wild-type strain N2; Tc4 elements are known to transpose in TR679 but appear to be quiescent in N2. We have analyzed transcripts produced by an unc-33 gene that has the Tc4-rh1030 insertional mutation in its transcribed region; all or almost all of the Tc4v sequence is frequently spliced out of the mutant unc-33 transcripts, sometimes by means of non-consensus splice acceptor sites. Images PMID:8382791

  5. Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor.

    PubMed

    Labbé, Jessy; Murat, Claude; Morin, Emmanuelle; Tuskan, Gerald A; Le Tacon, François; Martin, Francis

    2012-01-01

    The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.

  6. Characterization of Transposable Elements in the Ectomycorrhizal Fungus Laccaria bicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TEspecific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intactmore » copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.« less

  7. How does selfing affect the dynamics of selfish transposable elements?

    PubMed

    Boutin, Thibaud S; Le Rouzic, Arnaud; Capy, Pierre

    2012-03-07

    Many theoretical models predicting the dynamics of transposable elements (TEs) in genomes, populations, and species have already been proposed. However, most of them only focus on populations of sexual diploid individuals, and TE dynamics in populations partly composed by autogamous individuals remains poorly investigated. To estimate the impact of selfing on TE dynamics, the short- and long-term evolution of TEs was simulated in outcrossing populations with various proportions of selfing individuals. Selfing has a deep impact on TE dynamics: the higher the selfing rate, the lower the probability of invasion. Already known non-equilibrium dynamics (complete loss, domestication, cyclical invasion of TEs) can all be described whatever the mating system. However, their pattern and their respective frequencies greatly depend on the selfing rate. For instance, in cyclical dynamics resulting from interactions between autonomous and non-autonomous copies, cycles are faster when the selfing rate increases. Interestingly, an abrupt change in the mating system from sexuality to complete asexuality leads to the loss of all the elements over a few hundred generations. In general, for intermediate selfing rates, the transposition activity remains maintained. Our theoretical results evidence that a clear and systematic contrast in TE content according to the mating system is expected, with a smooth transition for intermediate selfing rates. Several parameters impact the TE copy number, and all dynamics described in allogamous populations can be also observed in partly autogamous species. This study thus provides new insights to understand the complex signal from empirical comparison of closely related species with different mating systems.

  8. Response of transposable elements to environmental stressors.

    PubMed

    Miousse, Isabelle R; Chalbot, Marie-Cecile G; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for

  9. Transposable elements in response to environmental stressors&

    PubMed Central

    Miousse, Isabelle R.; Chalbot, Marie-Cecile G.; Lumen, Annie; Ferguson, Alesia; Kavouras, Ilias G.; Koturbash, Igor

    2015-01-01

    Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as “junk DNA,” TEs are now well-accepted driving forces of evolution and critical regulators the of expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets

  10. Bursts of transposable elements as an evolutionary driving force.

    PubMed

    Belyayev, A

    2014-12-01

    A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  11. ARGONAUTE9-dependent silencing of transposable elements in pericentromeric regions of Arabidopsis.

    PubMed

    Durán-Figueroa, Noé; Vielle-Calzada, Jean-Philippe

    2010-11-01

    Recent evidence indicates that the establishment of the haploid phase of the plant life cycle requires epigenetic mechanisms that control reproductive cell fate. We previously showed that in Arabidopsis thaliana (Arabidopsis) mutations in ARGONAUTE9 (AGO9) result in defective cell specification during megasporogenesis. AGO9 preferentially interacts with 24 nucleotide (nt) small RNAs (sRNAs) derived from transposable elements (TEs), and its sporophytic activity is required to silence TEs in the female gametophyte. Here we show that AGO9 can bind in vitro to 24 nt sRNAs corresponding to Athila retrotransposons expressed in the ovule prior to pollination. We also show that AGO9 is necessary to inactivate a significant proportion of long terminal repeat retrotransposons (LTRs) in the ovule, and that its predominant TE targets are located in the pericentromeric regions of all 5 chromosomes, suggesting a link between the AGO9-dependent sRNA pathway and heterochromatin formation. Our extended results point towards the existence of a tissue-specific mechanism of sRNA-dependent TE silencing in the ovule.

  12. Genotype dependent burst of transposable element expression in crowns of hexaploid wheat (Triticum aestivum L.) during cold acclimation

    USDA-ARS?s Scientific Manuscript database

    The expression of 1,613 transposable elements (TEs) represented in the Affymetix Wheat Genome Chip was examined during cold treatment in crowns of 4 hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throug...

  13. Minos as a novel Tc1/mariner-type transposable element for functional genomic analysis in Aspergillus nidulans.

    PubMed

    Evangelinos, Minoas; Anagnostopoulos, Gerasimos; Karvela-Kalogeraki, Iliana; Stathopoulou, Panagiota M; Scazzocchio, Claudio; Diallinas, George

    2015-08-01

    Transposons constitute powerful genetic tools for gene inactivation, exon or promoter trapping and genome analyses. The Minos element from Drosophila hydei, a Tc1/mariner-like transposon, has proved as a very efficient tool for heterologous transposition in several metazoa. In filamentous fungi, only a handful of fungal-specific transposable elements have been exploited as genetic tools, with the impala Tc1/mariner element from Fusarium oxysporum being the most successful. Here, we developed a two-component transposition system to manipulate Minos transposition in Aspergillus nidulans (AnMinos). Our system allows direct selection of transposition events based on re-activation of niaD, a gene necessary for growth on nitrate as a nitrogen source. On average, among 10(8) conidiospores, we obtain up to ∼0.8×10(2) transposition events leading to the expected revertant phenotype (niaD(+)), while ∼16% of excision events lead to AnMinos loss. Characterized excision footprints consisted of the four terminal bases of the transposon flanked by the TA target duplication and led to no major DNA rearrangements. AnMinos transposition depends on the presence of its homologous transposase. Its frequency was not significantly affected by temperature, UV irradiation or the transcription status of the original integration locus (niaD). Importantly, transposition is dependent on nkuA, encoding an enzyme essential for non-homologous end joining of DNA in double-strand break repair. AnMinos proved to be an efficient tool for functional analysis as it seems to transpose in different genomic loci positions in all chromosomes, including a high proportion of integration events within or close to genes. We have used Minos to obtain morphological and toxic analogue resistant mutants. Interestingly, among morphological mutants some seem to be due to Minos-elicited over-expression of specific genes, rather than gene inactivation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Tn5401, a new class II transposable element from Bacillus thuringiensis.

    PubMed Central

    Baum, J A

    1994-01-01

    A new class II (Tn3-like) transposable element, designated Tn5401, was recovered from a sporulation-deficient variant of Bacillus thuringiensis subsp. morrisoni EG2158 following its insertion into a recombinant plasmid. Sequence analysis of the insert revealed a 4,837-bp transposon with two large open reading frames, in the same orientation, encoding proteins of 36 kDa (306 residues) and 116 kDa (1,005 residues) and 53-bp terminal inverted repeats. The deduced amino acid sequence for the 36-kDa protein shows 24% sequence identity with the TnpI recombinase of the B. thuringiensis transposon Tn4430, a member of the phage integrase family of site-specific recombinases. The deduced amino acid sequence for the 116-kDa protein shows 42% sequence identity with the transposase of Tn3 but only 28% identity with the TnpA transposase of Tn4430. Two small open reading frames of unknown function, designated orf1 (85 residues) and orf2 (74 residues), were also identified. Southern blot analysis indicated that Tn5401, in contrast to Tn4430, is not commonly found among different subspecies of B. thuringiensis and is not typically associated with known insecticidal crystal protein genes. Transposition was studied with B. thuringiensis by using plasmid pEG922, a temperature-sensitive shuttle vector containing Tn5401. Tn5401 transposed to both chromosomal and plasmid target sites but displayed an apparent preference for plasmid sites. Transposition was replicative and resulted in the generation of a 5-bp duplication at the target site. Transcriptional start sites within Tn5401 were mapped by primer extension analysis. Two promoters, designated PL and PR, direct the transcription of orf1-orf2 and tnpI-tnpA, respectively, and are negatively regulated by TnpI. Sequence comparison of the promoter regions of Tn5401 and Tn4430 suggests that the conserved sequence element ATGTCCRCTAAY mediates TnpI binding and cointegrate resolution. The same element is contained within the 53-bp terminal

  15. Striking a balance: regulation of transposable elements by Zfp281 and Mll2 in mouse embryonic stem cells

    PubMed Central

    Dai, Qian; Shen, Yang; Wang, Yan; Wang, Xin; Francisco, Joel Celio; Luo, Zhuojuan

    2017-01-01

    Abstract Transposable elements (TEs) compose about 40% of the murine genome. Retrotransposition of active TEs such as LINE-1 (L1) tremendously impacts genetic diversification and genome stability. Therefore, transcription and transposition activities of retrotransposons are tightly controlled. Here, we show that the Krüppel-like zinc finger protein Zfp281 directly binds and suppresses a subset of retrotransposons, including the active young L1 repeat elements, in mouse embryonic stem (ES) cells. In addition, we find that Zfp281-regulated L1s are highly enriched for 5-hydroxymethylcytosine (5hmC) and H3K4me3. The COMPASS-like H3K4 methyltransferase Mll2 is the major H3K4me3 methylase at the Zfp281-regulated L1s and required for their proper expression. Our studies also reveal that Zfp281 functions partially through recruiting the L1 regulators DNA hydroxymethylase Tet1 and Sin3A, and restricting Mll2 at these active L1s, leading to their balanced expression. In summary, our data indicate an instrumental role of Zfp281 in suppressing the young active L1s in mouse ES cells. PMID:29036642

  16. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome.

    PubMed

    Rizzon, Carène; Marais, Gabriel; Gouy, Manolo; Biémont, Christian

    2002-03-01

    We analyzed the distribution of 54 families of transposable elements (TEs; transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of Drosophila melanogaster, using data from the sequenced genome. The density of LTR and non-LTR retrotransposons (RNA-based elements) was high in regions with low recombination rates, but there was no clear tendency to parallel the recombination rate. However, the density of transposons (DNA-based elements) was significantly negatively correlated with recombination rate. The accumulation of TEs in regions of reduced recombination rate is compatible with selection acting against TEs, as selection is expected to be weaker in regions with lower recombination. The differences in the relationship between recombination rate and TE density that exist between chromosome arms suggest that TE distribution depends on specific characteristics of the chromosomes (chromatin structure, distribution of other sequences), the TEs themselves (transposition mechanism), and the species (reproductive system, effective population size, etc.), that have differing influences on the effect of natural selection acting against the TE insertions.

  17. The devil is in the details: Transposable element analysis of the Tasmanian devil genome

    PubMed Central

    Nilsson, Maria A.

    2016-01-01

    ABSTRACT The third marsupial genome was sequenced from the Tasmanian devil (Sarcophilus harrisii), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the Long INterspersed Element 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the Short INterspersed Elements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome. PMID:27066301

  18. Identification of novel MITEs (miniature inverted-repeat transposable elements) in Coxiella burnetii: implications for protein and small RNA evolution.

    PubMed

    Wachter, Shaun; Raghavan, Rahul; Wachter, Jenny; Minnick, Michael F

    2018-04-11

    Coxiella burnetii is a Gram-negative gammaproteobacterium and zoonotic agent of Q fever. C. burnetii's genome contains an abundance of pseudogenes and numerous selfish genetic elements. MITEs (miniature inverted-repeat transposable elements) are non-autonomous transposons that occur in all domains of life and are thought to be insertion sequences (ISs) that have lost their transposase function. Like most transposable elements (TEs), MITEs are thought to play an active role in evolution by altering gene function and expression through insertion and deletion activities. However, information regarding bacterial MITEs is limited. We describe two MITE families discovered during research on small non-coding RNAs (sRNAs) of C. burnetii. Two sRNAs, Cbsr3 and Cbsr13, were found to originate from a novel MITE family, termed QMITE1. Another sRNA, CbsR16, was found to originate from a separate and novel MITE family, termed QMITE2. Members of each family occur ~ 50 times within the strains evaluated. QMITE1 is a typical MITE of 300-400 bp with short (2-3 nt) direct repeats (DRs) of variable sequence and is often found overlapping annotated open reading frames (ORFs). Additionally, QMITE1 elements possess sigma-70 promoters and are transcriptionally active at several loci, potentially influencing expression of nearby genes. QMITE2 is smaller (150-190 bps), but has longer (7-11 nt) DRs of variable sequences and is mainly found in the 3' untranslated region of annotated ORFs and intergenic regions. QMITE2 contains a GTAG repetitive extragenic palindrome (REP) that serves as a target for IS1111 TE insertion. Both QMITE1 and QMITE2 display inter-strain linkage and sequence conservation, suggesting that they are adaptive and existed before divergence of C. burnetii strains. We have discovered two novel MITE families of C. burnetii. Our finding that MITEs serve as a source for sRNAs is novel. QMITE2 has a unique structure and occurs in large or small versions with unique DRs

  19. The diversity of sequence and chromosomal distribution of new transposable element-related segments in the rye genome revealed by FISH and lineage annotation

    USDA-ARS?s Scientific Manuscript database

    The rye genome features a high percentage of repetitive elements, especially transposable elements (TEs). However, studies about the constitution and organization of TEs on rye chromosomes are limited. In this study, 97 unique TE segments were isolated and characterized; 50 TE segmemts showed varyin...

  20. Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris).

    PubMed

    Gao, Dongying; Abernathy, Brian; Rohksar, Daniel; Schmutz, Jeremy; Jackson, Scott A

    2014-01-01

    Common bean (Phaseolus vulgaris) is an important legume crop grown and consumed worldwide. With the availability of the common bean genome sequence, the next challenge is to annotate the genome and characterize functional DNA elements. Transposable elements (TEs) are the most abundant component of plant genomes and can dramatically affect genome evolution and genetic variation. Thus, it is pivotal to identify TEs in the common bean genome. In this study, we performed a genome-wide transposon annotation in common bean using a combination of homology and sequence structure-based methods. We developed a 2.12-Mb transposon database which includes 791 representative transposon sequences and is available upon request or from www.phytozome.org. Of note, nearly all transposons in the database are previously unrecognized TEs. More than 5,000 transposon-related expressed sequence tags (ESTs) were detected which indicates that some transposons may be transcriptionally active. Two Ty1-copia retrotransposon families were found to encode the envelope-like protein which has rarely been identified in plant genomes. Also, we identified an extra open reading frame (ORF) termed ORF2 from 15 Ty3-gypsy families that was located between the ORF encoding the retrotransposase and the 3'LTR. The ORF2 was in opposite transcriptional orientation to retrotransposase. Sequence homology searches and phylogenetic analysis suggested that the ORF2 may have an ancient origin, but its function is not clear. These transposon data provide a useful resource for understanding the genome organization and evolution and may be used to identify active TEs for developing transposon-tagging system in common bean and other related genomes.

  1. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes

    PubMed Central

    Lerat, Emmanuelle; Fablet, Marie; Modolo, Laurent; Lopez-Maestre, Hélène

    2017-01-01

    Abstract Over recent decades, substantial efforts have been made to understand the interactions between host genomes and transposable elements (TEs). The impact of TEs on the regulation of host genes is well known, with TEs acting as platforms of regulatory sequences. Nevertheless, due to their repetitive nature it is considerably hard to integrate TE analysis into genome-wide studies. Here, we developed a specific tool for the analysis of TE expression: TEtools. This tool takes into account the TE sequence diversity of the genome, it can be applied to unannotated or unassembled genomes and is freely available under the GPL3 (https://github.com/l-modolo/TEtools). TEtools performs the mapping of RNA-seq data obtained from classical mRNAs or small RNAs onto a list of TE sequences and performs differential expression analyses with statistical relevance. Using this tool, we analyzed TE expression from five Drosophila wild-type strains. Our data show for the first time that the activity of TEs is strictly linked to the activity of the genes implicated in the piwi-interacting RNA biogenesis and therefore fits an arms race scenario between TE sequences and host control genes. PMID:28204592

  2. Massive horizontal transfer of transposable elements in insects

    PubMed Central

    Peccoud, Jean; Loiseau, Vincent; Cordaux, Richard

    2017-01-01

    Horizontal transfer (HT) of genetic material is central to the architecture and evolution of prokaryote genomes. Within eukaryotes, the majority of HTs reported so far are transfers of transposable elements (TEs). These reports essentially come from studies focusing on specific lineages or types of TEs. Because of the lack of large-scale survey, the amount and impact of HT of TEs (HTT) in eukaryote evolution, as well as the trends and factors shaping these transfers, are poorly known. Here, we report a comprehensive analysis of HTT in 195 insect genomes, representing 123 genera and 13 of the 28 insect orders. We found that these insects were involved in at least 2,248 HTT events that essentially occurred during the last 10 My. We show that DNA transposons transfer horizontally more often than retrotransposons, and unveil phylogenetic relatedness and geographical proximity as major factors facilitating HTT in insects. Even though our study is restricted to a small fraction of insect biodiversity and to a recent evolutionary timeframe, the TEs we found to be horizontally transferred generated up to 24% (2.08% on average) of all nucleotides of insect genomes. Together, our results establish HTT as a major force shaping insect genome evolution. PMID:28416702

  3. Striking a balance: regulation of transposable elements by Zfp281 and Mll2 in mouse embryonic stem cells.

    PubMed

    Dai, Qian; Shen, Yang; Wang, Yan; Wang, Xin; Francisco, Joel Celio; Luo, Zhuojuan; Lin, Chengqi

    2017-12-01

    Transposable elements (TEs) compose about 40% of the murine genome. Retrotransposition of active TEs such as LINE-1 (L1) tremendously impacts genetic diversification and genome stability. Therefore, transcription and transposition activities of retrotransposons are tightly controlled. Here, we show that the Krüppel-like zinc finger protein Zfp281 directly binds and suppresses a subset of retrotransposons, including the active young L1 repeat elements, in mouse embryonic stem (ES) cells. In addition, we find that Zfp281-regulated L1s are highly enriched for 5-hydroxymethylcytosine (5hmC) and H3K4me3. The COMPASS-like H3K4 methyltransferase Mll2 is the major H3K4me3 methylase at the Zfp281-regulated L1s and required for their proper expression. Our studies also reveal that Zfp281 functions partially through recruiting the L1 regulators DNA hydroxymethylase Tet1 and Sin3A, and restricting Mll2 at these active L1s, leading to their balanced expression. In summary, our data indicate an instrumental role of Zfp281 in suppressing the young active L1s in mouse ES cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Modeling Interactions between Transposable Elements and the Plant Epigenetic Response: A Surprising Reliance on Element Retention.

    PubMed

    Roessler, Kyria; Bousios, Alexandros; Meca, Esteban; Gaut, Brandon S

    2018-03-01

    Transposable elements (TEs) compose the majority of angiosperm DNA. Plants counteract TE activity by silencing them epigenetically. One form of epigenetic silencing requires 21-22 nt small interfering RNAs that act to degrade TE mRNA and may also trigger DNA methylation. DNA methylation is reinforced by a second mechanism, the RNA-dependent DNA methylation (RdDM) pathway. RdDM relies on 24 nt small interfering RNAs and ultimately establishes TEs in a quiescent state. These host factors interact at a systems level, but there have been no system level analyses of their interactions. Here, we define a deterministic model that represents the propagation of active TEs, aspects of the host response and the accumulation of silenced TEs. We describe general properties of the model and also fit it to biological data in order to explore two questions. The first is why two overlapping pathways are maintained, given that both are likely energetically expensive. Under our model, RdDM silenced TEs effectively even when the initiation of silencing was weak. This relationship implies that only a small amount of RNAi is needed to initiate TE silencing, but reinforcement by RdDM is necessary to efficiently counter TE propagation. Second, we investigated the reliance of the host response on rates of TE deletion. The model predicted that low levels of deletion lead to few active TEs, suggesting that silencing is most efficient when methylated TEs are retained in the genome, thereby providing one explanation for the large size of plant genomes.

  5. Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective.

    PubMed

    Luo, Shiqi; Lu, Jian

    2017-06-01

    Transposable elements (TEs) are DNA sequences that can move within the genome. TEs have greatly shaped the genomes, transcriptomes, and proteomes of the host organisms through a variety of mechanisms. However, TEs generally disrupt genes and destabilize the host genomes, which substantially reduce fitness of the host organisms. Understanding the genomic distribution and evolutionary dynamics of TEs will greatly deepen our understanding of the TE-mediated biological processes. Most TE insertions are highly polymorphic in Drosophila melanogaster, providing us a good system to investigate the evolution of TEs at the population level. Decades of theoretical and experimental studies have well established "transposition-selection" population genetics model, which assumes that the equilibrium between TE replication and purifying selection determines the copy number of TEs in the genome. In the last decade, P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) were demonstrated to be master repressors of TE activities in Drosophila. The discovery of piRNAs revolutionized our understanding of TE repression, because it reveals that the host organisms have evolved an adaptive mechanism to defend against TE invasion. Tremendous progress has been made to understand the molecular mechanisms by which piRNAs repress active TEs, although many details in this process remain to be further explored. The interaction between piRNAs and TEs well explains the molecular mechanisms underlying hybrid dysgenesis for the I-R and P-M systems in Drosophila, which have puzzled evolutionary biologists for decades. The piRNA repression pathway provides us an unparalleled system to study the co-evolutionary process between parasites and host organisms. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  6. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    PubMed Central

    Chen, Song; Li, Xianchun

    2007-01-01

    Background Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes. PMID:17381843

  7. Molecular and bioinformatic analysis of the FB-NOF transposable element.

    PubMed

    Badal, Martí; Portela, Anna; Xamena, Noel; Cabré, Oriol

    2006-04-12

    The Drosophila melanogaster transposable element FB-NOF is known to play a role in genome plasticity through the generation of all sort of genomic rearrangements. Moreover, several insertional mutants due to FB mobilizations have been reported. Its structure and sequence, however, have been poorly studied mainly as a consequence of the long, complex and repetitive sequence of FB inverted repeats. This repetitive region is composed of several 154 bp blocks, each with five almost identical repeats. In this paper, we report the sequencing process of 2 kb long FB inverted repeats of a complete FB-NOF element, with high precision and reliability. This achievement has been possible using a new map of the FB repetitive region, which identifies unambiguously each repeat with new features that can be used as landmarks. With this new vision of the element, a list of FB-NOF in the D. melanogaster genomic clones has been done, improving previous works that used only bioinformatic algorithms. The availability of many FB and FB-NOF sequences allowed an analysis of the FB insertion sequences that showed no sequence specificity, but a preference for A/T rich sequences. The position of NOF into FB is also studied, revealing that it is always located after a second repeat in a random block. With the results of this analysis, we propose a model of transposition in which NOF jumps from FB to FB, using an unidentified transposase enzyme that should specifically recognize the second repeat end of the FB blocks.

  8. Transposable element islands facilitate adaptation to novel environments in an invasive species

    PubMed Central

    Schrader, Lukas; Kim, Jay W.; Ence, Daniel; Zimin, Aleksey; Klein, Antonia; Wyschetzki, Katharina; Weichselgartner, Tobias; Kemena, Carsten; Stökl, Johannes; Schultner, Eva; Wurm, Yannick; Smith, Christopher D.; Yandell, Mark; Heinze, Jürgen; Gadau, Jürgen; Oettler, Jan

    2014-01-01

    Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species. PMID:25510865

  9. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana

    PubMed Central

    Le, Tu N.; Miyazaki, Yuji; Takuno, Shohei; Saze, Hidetoshi

    2015-01-01

    Genomes of higher eukaryotes, including plants, contain numerous transposable elements (TEs), that are often silenced by epigenetic mechanisms, such as histone modifications and DNA methylation. Although TE silencing adversely affects expression of nearby genes, recent studies reveal the presence of intragenic TEs marked by repressive heterochromatic epigenetic marks within transcribed genes. However, even for the well-studied plant model Arabidopsis thaliana, the abundance of intragenic TEs, how they are epigenetically regulated, and their potential impacts on host gene expression, remain unexplored. In this study, we comprehensively analyzed genome-wide distribution and epigenetic regulation of intragenic TEs in A. thaliana. Our analysis revealed that about 3% of TEs are located within gene bodies, dominantly at intronic regions. Most of them are shorter and less methylated than intergenic TEs, but they are still targeted by RNA-directed DNA methylation-dependent and independent pathways. Surprisingly, the heterochromatic epigenetic marks at TEs are maintained within actively transcribed genes. Moreover, the heterochromatic state of intronic TEs is critical for proper transcription of associated genes. Our study provides the first insight into how intragenic TEs affect the transcriptional landscape of the A. thaliana genome, and suggests the importance of epigenetic mechanisms for regulation of TEs within transcriptional gene units. PMID:25813042

  10. Jumping Genes: The Transposable DNAs of Bacteria.

    ERIC Educational Resources Information Center

    Berg, Claire M.; Berg, Douglas E.

    1984-01-01

    Transposons are transposable elements that carry genes for antibiotic resistance. Provides background information on the structure and organization of these "jumping genes" in bacteria. Also describes the use of transposons in tagging genes and lists pertinent references and resource materials. (DH)

  11. Formation and loss of large, unstable tandem arrays of the piggyBac transposable element in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Adelman, Zach N; Jasinskiene, Nijole; Vally, K J M; Peek, Corrie; Travanty, Emily A; Olson, Ken E; Brown, Susan E; Stephens, Janice L; Knudson, Dennis L; Coates, Craig J; James, Anthony A

    2004-10-01

    The Class II transposable element, piggyBac, was used to transform the yellow fever mosquito, Aedes aegypti. In two transformed lines only 15-30% of progeny inherited the transgene, with these individuals displaying mosaic expression of the EGFP marker gene. Southern analyses, gene amplification of genomic DNA, and plasmid rescue experiments provided evidence that these lines contained a high copy number of piggyBac transformation constructs and that much of this DNA consisted of both donor and helper plasmids. A detailed analysis of one line showed that the majority of piggyBac sequences were unit-length donor or helper plasmids arranged in a large tandem array that could be lost en masse in a single generation. Despite the presence of a transposase source and many intact donor elements, no conservative (cut and paste) transposition of piggyBac was observed in these lines. These results reveal one possible outcome of uncontrolled and/or unexpected recombination in this mosquito, and support the conclusion that further investigation is necessary before transposable elements such as piggyBac can be used as genetic drive mechanisms to move pathogen-resistance genes into mosquito populations.

  12. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements.

    PubMed

    Schartl, Manfred; Schories, Susanne; Wakamatsu, Yuko; Nagao, Yusuke; Hashimoto, Hisashi; Bertin, Chloé; Mourot, Brigitte; Schmidt, Cornelia; Wilhelm, Dagmar; Centanin, Lazaro; Guiguen, Yann; Herpin, Amaury

    2018-01-29

    Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.

  13. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes.

    PubMed

    Janicki, Mateusz; Rooke, Rebecca; Yang, Guojun

    2011-08-01

    A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.

  14. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution

    PubMed Central

    Lee, Yuh Chwen G; Karpen, Gary H

    2017-01-01

    Transposable elements (TEs) are widespread genomic parasites, and their evolution has remained a critical question in evolutionary genomics. Here, we study the relatively unexplored epigenetic impacts of TEs and provide the first genome-wide quantification of such effects in D. melanogaster and D. simulans. Surprisingly, the spread of repressive epigenetic marks (histone H3K9me2) to nearby DNA occurs at >50% of euchromatic TEs, and can extend up to 20 kb. This results in differential epigenetic states of genic alleles and, in turn, selection against TEs. Interestingly, the lower TE content in D. simulans compared to D. melanogaster correlates with stronger epigenetic effects of TEs and higher levels of host genetic factors known to promote epigenetic silencing. Our study demonstrates that the epigenetic effects of euchromatic TEs, and host genetic factors modulating such effects, play a critical role in the evolution of TEs both within and between species. DOI: http://dx.doi.org/10.7554/eLife.25762.001 PMID:28695823

  15. Comparative Analysis of Transposable Elements Highlights Mobilome Diversity and Evolution in Vertebrates

    PubMed Central

    Chalopin, Domitille; Naville, Magali; Plard, Floriane; Galiana, Delphine; Volff, Jean-Nicolas

    2015-01-01

    Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages. PMID:25577199

  16. Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards.

    PubMed

    Feiner, Nathalie

    2016-10-12

    Transposable elements (TEs) are DNA sequences that can insert elsewhere in the genome and modify genome structure and gene regulation. The role of TEs in evolution is contentious. One hypothesis posits that TE activity generates genomic incompatibilities that can cause reproductive isolation between incipient species. This predicts that TEs will accumulate during speciation events. Here, I tested the prediction that extant lineages with a relatively high rate of speciation have a high number of TEs in their genomes. I sequenced and analysed the TE content of a marker genomic region (Hox clusters) in Anolis lizards, a classic case of an adaptive radiation. Unlike other vertebrates, including closely related lizards, Anolis lizards have high numbers of TEs in their Hox clusters, genomic regions that regulate development of the morphological adaptations that characterize habitat specialists in these lizards. Following a burst of TE activity in the lineage leading to extant Anolis, TEs have continued to accumulate during or after speciation events, resulting in a positive relationship between TE density and lineage speciation rate. These results are consistent with the prediction that TE activity contributes to adaptive radiation by promoting speciation. Although there was no evidence that TE density per se is associated with ecological morphology, the activity of TEs in Hox clusters could have been a rich source for phenotypic variation that may have facilitated the rapid parallel morphological adaptation to microhabitats seen in extant Anolis lizards. © 2016 The Author(s).

  17. Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards

    PubMed Central

    2016-01-01

    Transposable elements (TEs) are DNA sequences that can insert elsewhere in the genome and modify genome structure and gene regulation. The role of TEs in evolution is contentious. One hypothesis posits that TE activity generates genomic incompatibilities that can cause reproductive isolation between incipient species. This predicts that TEs will accumulate during speciation events. Here, I tested the prediction that extant lineages with a relatively high rate of speciation have a high number of TEs in their genomes. I sequenced and analysed the TE content of a marker genomic region (Hox clusters) in Anolis lizards, a classic case of an adaptive radiation. Unlike other vertebrates, including closely related lizards, Anolis lizards have high numbers of TEs in their Hox clusters, genomic regions that regulate development of the morphological adaptations that characterize habitat specialists in these lizards. Following a burst of TE activity in the lineage leading to extant Anolis, TEs have continued to accumulate during or after speciation events, resulting in a positive relationship between TE density and lineage speciation rate. These results are consistent with the prediction that TE activity contributes to adaptive radiation by promoting speciation. Although there was no evidence that TE density per se is associated with ecological morphology, the activity of TEs in Hox clusters could have been a rich source for phenotypic variation that may have facilitated the rapid parallel morphological adaptation to microhabitats seen in extant Anolis lizards. PMID:27733546

  18. Glider and Vision: two new families of miniature inverted-repeat transposable elements in Xenopus laevis genome.

    PubMed

    Lepetit, D; Pasquet, S; Olive, M; Thézé, N; Thiébaud, P

    2000-01-01

    We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the alpha-tropomyosin (alpha-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated alpha-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the Xenopus laevis genome. Every MITEs elements but two described in our study are found either in 5' or in 3' regulatory regions of genes suggesting a potential role in gene regulation.

  19. A new approach for annotation of transposable elements using small RNA mapping

    PubMed Central

    El Baidouri, Moaine; Kim, Kyung Do; Abernathy, Brian; Arikit, Siwaret; Maumus, Florian; Panaud, Olivier; Meyers, Blake C.; Jackson, Scott A.

    2015-01-01

    Transposable elements (TEs) are mobile genomic DNA sequences found in most organisms. They so densely populate the genomes of many eukaryotic species that they are often the major constituents. With the rapid generation of many plant genome sequencing projects over the past few decades, there is an urgent need for improved TE annotation as a prerequisite for genome-wide studies. Analogous to the use of RNA-seq for gene annotation, we propose a new method for de novo TE annotation that uses as a guide 24 nt-siRNAs that are a part of TE silencing pathways. We use this new approach, called TASR (for Transposon Annotation using Small RNAs), for de novo annotation of TEs in Arabidopsis, rice and soybean and demonstrate that this strategy can be successfully applied for de novo TE annotation in plants. Executable PERL is available for download from: http://tasr-pipeline.sourceforge.net/ PMID:25813049

  20. SimulaTE: simulating complex landscapes of transposable elements of populations.

    PubMed

    Kofler, Robert

    2018-04-15

    Estimating the abundance of transposable elements (TEs) in populations (or tissues) promises to answer many open research questions. However, progress is hampered by the lack of concordance between different approaches for TE identification and thus potentially unreliable results. To address this problem, we developed SimulaTE a tool that generates TE landscapes for populations using a newly developed domain specific language (DSL). The simple syntax of our DSL allows for easily building even complex TE landscapes that have, for example, nested, truncated and highly diverged TE insertions. Reads may be simulated for the populations using different sequencing technologies (PacBio, Illumina paired-ends) and strategies (sequencing individuals and pooled populations). The comparison between the expected (i.e. simulated) and the observed results will guide researchers in finding the most suitable approach for a particular research question. SimulaTE is implemented in Python and available at https://sourceforge.net/projects/simulates/. Manual https://sourceforge.net/p/simulates/wiki/Home/#manual; Test data and tutorials https://sourceforge.net/p/simulates/wiki/Home/#walkthrough; Validation https://sourceforge.net/p/simulates/wiki/Home/#validation. robert.kofler@vetmeduni.ac.at.

  1. Heterochromatin and molecular characterization of DsmarMITE transposable element in the beetle Dichotomius schiffleri (Coleoptera: Scarabaeidae).

    PubMed

    Xavier, Crislaine; Cabral-de-Mello, Diogo Cavalcanti; de Moura, Rita Cássia

    2014-12-01

    Cytogenetic studies of the Neotropical beetle genus Dichotomius (Scarabaeinae, Coleoptera) have shown dynamism for centromeric constitutive heterochromatin sequences. In the present work we studied the chromosomes and isolated repetitive sequences of Dichotomius schiffleri aiming to contribute to the understanding of coleopteran genome/chromosomal organization. Dichotomius schiffleri presented a conserved karyotype and heterochromatin distribution in comparison to other species of the genus with 2n = 18, biarmed chromosomes, and pericentromeric C-positive blocks. Similarly to heterochromatin distributional patterns, the highly and moderately repetitive DNA fraction (C 0 t-1 DNA) was detected in pericentromeric areas, contrasting with the euchromatic mapping of an isolated TE (named DsmarMITE). After structural analyses, the DsmarMITE was classified as a non-autonomous element of the type miniature inverted-repeat transposable element (MITE) with terminal inverted repeats similar to Mariner elements of insects from different orders. The euchromatic distribution for DsmarMITE indicates that it does not play a part in the dynamics of constitutive heterochromatin sequences.

  2. Two new miniature inverted-repeat transposable elements in the genome of the clam Donax trunculus.

    PubMed

    Šatović, Eva; Plohl, Miroslav

    2017-10-01

    Repetitive sequences are important components of eukaryotic genomes that drive their evolution. Among them are different types of mobile elements that share the ability to spread throughout the genome and form interspersed repeats. To broaden the generally scarce knowledge on bivalves at the genome level, in the clam Donax trunculus we described two new non-autonomous DNA transposons, miniature inverted-repeat transposable elements (MITEs), named DTC M1 and DTC M2. Like other MITEs, they are characterized by their small size, their A + T richness, and the presence of terminal inverted repeats (TIRs). DTC M1 and DTC M2 are 261 and 286 bp long, respectively, and in addition to TIRs, both of them contain a long imperfect palindrome sequence in their central parts. These elements are present in complete and truncated versions within the genome of the clam D. trunculus. The two new MITEs share only structural similarity, but lack any nucleotide sequence similarity to each other. In a search for related elements in databases, blast search revealed within the Crassostrea gigas genome a larger element sharing sequence similarity only to DTC M1 in its TIR sequences. The lack of sequence similarity with any previously published mobile elements indicates that DTC M1 and DTC M2 elements may be unique to D. trunculus.

  3. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences.

    PubMed

    Gilbert, Clément; Feschotte, Cédric

    2018-04-01

    It is becoming clear that most eukaryotic transposable elements (TEs) owe their evolutionary success in part to horizontal transfer events, which enable them to invade new species. Recent large-scale studies are beginning to unravel the mechanisms and ecological factors underlying this mode of transmission. Viruses are increasingly recognized as vectors in the process but also as a direct source of genetic material horizontally acquired by eukaryotic organisms. Because TEs and endogenous viruses are major catalysts of variation and innovation in genomes, we argue that horizontal inheritance has had a more profound impact in eukaryotic evolution than is commonly appreciated. To support this proposal, we compile a list of examples, including some previously unrecognized, whereby new host functions and phenotypes can be directly attributed to horizontally acquired TE or viral sequences. We predict that the number of examples will rapidly grow in the future as the prevalence of horizontal transfer in the life cycle of TEs becomes even more apparent, firmly establishing this form of non-Mendelian inheritance as a consequential facet of eukaryotic evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates.

    PubMed

    Chalopin, Domitille; Naville, Magali; Plard, Floriane; Galiana, Delphine; Volff, Jean-Nicolas

    2015-01-09

    Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Exaptation of Transposable Elements into Novel Cis-Regulatory Elements: Is the Evidence Always Strong?

    PubMed Central

    de Souza, Flávio S.J.; Franchini, Lucía F.; Rubinstein, Marcelo

    2013-01-01

    Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to have been co-opted—or exapted—by providing transcription factor binding sites (TFBSs) that serve as promoters and enhancers, leading to the hypothesis that TE exaptation is a major factor in the evolution of gene regulation. Here, we critically review the evidence for exaptation of TE-derived sequences as TFBSs, promoters, enhancers, and silencers/insulators both at the gene and genome levels. We classify the functional impact attributed to TE insertions into four categories of increasing complexity and argue that so far very few studies have conclusively demonstrated exaptation of TEs as transcriptional regulatory regions. We also contend that many genome-wide studies dealing with TE exaptation in recent lineages of mammals are still inconclusive and that the hypothesis of rapid transcriptional regulatory rewiring mediated by TE mobilization must be taken with caution. Finally, we suggest experimental approaches that may help attributing higher-order functions to candidate exapted TEs. PMID:23486611

  6. Genetics of Ustilago violacea. XXXII. Genetic evidence for transposable elements.

    PubMed

    Garber, E D; Ruddat, M

    1994-12-01

    Crosses between Ustilago violacea mutant strains with different color phenotypes that were derived from the 1.A1 and 2.A2 laboratory strains yielded, as expected, bisectored teliospore colonies with the parental colors as well as the a-1 and the a-2 mating-types. Generally, wild teliospore collections usually produced sporidia of both mating-types, providing two-mating-type (TMT) strains. Occasionally, however, sporidia with only one mating-type allele, a-1 or a-2, were obtained from teliospores, providing one-mating-type (OMT) strains. Crosses between OMT and laboratory strains with different color phenotypes gave (1) bisectored teliospore colonies with the parental colors or colonies with a parental color and a nonparental color and (2) nonsectored colonies with the nonparental color or with the parental color. The frequencies for the occurrence of non-parental color ranged from 41% to 93%, depending on the strain. The yield of teliospore colonies was usually reduced for these crosses. In many of these teliospore colonies, morphologically-altered sporidia (MAS phenotype) were observed. The morphology and the size of the sporidia with the MAS phenotype differed from those of teliospore colonies of the crosses between the laboratory strains. In addition, these sporidia did not form conjugants. A cross involving the TMT strains C449 yielded the MAS phenotype as well as a high incidence of tetrad colonies with a nonparental color. The high degree of instability of the parental color phenotypes, and the high frequency of the appearance of nonparental color phenotypes as well as the appearance of the MAS phenotype, are in accord with the presence of active and inactive transposable elements in the OMT strains, TMT strains, and laboratory strains.

  7. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome.

    PubMed

    González, Leonardo Galindo; Deyholos, Michael K

    2012-11-21

    Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in unassembled repetitive regions of

  8. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome

    PubMed Central

    2012-01-01

    Background Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Results Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. Conclusions The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in

  9. The endogenous transposable element Tgm9 is suitable for functional analyses of soybean genes and generating novel mutants for genetic improvement of soybean

    USDA-ARS?s Scientific Manuscript database

    In soybean, variegated flowers can be caused by somatic excision of the CACTA-type transposable element Tgm9 from intron 2 of the DFR2 gene encoding dihydroflavonol-4-reductase in the anthocyanin pigment biosynthetic pathway. DFR2 has been mapped to the W4 locus where the allele containing the elem...

  10. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.

    PubMed

    Glinsky, Gennadi V

    2018-03-01

    Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both

  11. Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions.

    PubMed

    Muramoto, Hiroki; Yagi, Shintaro; Hirabayashi, Keiji; Sato, Shinya; Ohgane, Jun; Tanaka, Satoshi; Shiota, Kunio

    2010-08-01

    Embryonic stem cells (ESCs) have a distinctive epigenome, which includes their genome-wide DNA methylation modification status, as represented by the ESC-specific hypomethylation of tissue-dependent and differentially methylated regions (T-DMRs) of Pou5f1 and Nanog. Here, we conducted a genome-wide investigation of sequence characteristics associated with T-DMRs that were differentially methylated between ESCs and somatic cells, by focusing on transposable elements including short interspersed elements (SINEs), long interspersed elements (LINEs) and long terminal repeats (LTRs). We found that hypomethylated T-DMRs were predominantly present in SINE-rich/LINE-poor genomic loci. The enrichment for SINEs spread over 300 kb in cis and there existed SINE-rich genomic domains spreading continuously over 1 Mb, which contained multiple hypomethylated T-DMRs. The characterization of sequence information showed that the enriched SINEs were relatively CpG rich and belonged to specific subfamilies. A subset of the enriched SINEs were hypomethylated T-DMRs in ESCs at Dppa3 gene locus, although SINEs are overall methylated in both ESCs and the liver. In conclusion, we propose that SINE enrichment is the genomic property of regions harboring hypomethylated T-DMRs in ESCs, which is a novel aspect of the ESC-specific epigenomic information.

  12. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements

    PubMed Central

    Wang, Lu; Mariño-Ramírez, Leonardo

    2017-01-01

    Abstract Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5. The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification. PMID:27998931

  13. Transposable element evolution in the allotetraploid Capsella bursa-pastoris.

    PubMed

    Ågren, J Arvid; Huang, Hui-Run; Wright, Stephen I

    2016-07-01

    Shifts in ploidy affect the evolutionary dynamics of genomes in a myriad of ways. Population genetic theory predicts that transposable element (TE) proliferation may follow because the genomewide efficacy of selection should be reduced and the increase in gene copies may mask the deleterious effects of TE insertions. Moreover, in allopolyploids, TEs may further accumulate because of hybrid breakdown of TE silencing. However, to date the evidence of TE proliferation following an increase in ploidy is mixed, and the relative importance of relaxed selection vs. silencing breakdown remains unclear. We used high-coverage whole-genome sequence data to evaluate the abundance, genomic distribution, and population frequencies of TEs in the self-fertilizing recent allotetraploid Capsella bursa-pastoris (Brassicaceae). We then compared the C. bursa-pastoris TE profile with that of its two parental diploid species, outcrossing C. grandiflora and self-fertilizing C. orientalis. We found no evidence that C. bursa-pastoris has experienced a large genomewide proliferation of TEs relative to its parental species. However, when centromeric regions are excluded, we found evidence of significantly higher abundance of retrotransposons in C. bursa-pastoris along the gene-rich chromosome arms compared with C. grandiflora and C. orientalis. The lack of a genomewide effect of allopolyploidy on TE abundance, combined with the increases TE abundance in gene-rich regions, suggests that relaxed selection rather than hybrid breakdown of host silencing explains the TE accumulation in C. bursa-pastoris. © 2016 Botanical Society of America.

  14. Cell type-specific termination of transcription by transposable element sequences.

    PubMed

    Conley, Andrew B; Jordan, I King

    2012-09-30

    Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription

  15. FB-NOF is a non-autonomous transposable element, expressed in Drosophila melanogaster and present only in the melanogaster group.

    PubMed

    Badal, Martí; Xamena, Noel; Cabré, Oriol

    2013-09-10

    Most foldback elements are defective due to the lack of coding sequences but some are associated with coding sequences and may represent the entire element. This is the case of the NOF sequences found in the FB of Drosophila melanogaster, formerly considered as an autonomous TE and currently proposed as part of the so-called FB-NOF element, the transposon that would be complete and fully functional. NOF is always associated with FB and never seen apart from the FB inverted repeats (IR). This is the reason why the FB-NOF composite element can be considered the complete element. At least one of its ORFs encodes a protein that has always been considered its transposase, but no detailed studies have been carried out to verify this. In this work we test the hypothesis that FB-NOF is an active transposon nowadays. We search for its expression product, obtaining its cDNA, and propose the ORF and the sequence of its potential protein. We found that the NOF protein is not a transposase as it lacks any of the motifs of known transposases and also shows structural homology with hydrolases, therefore FB-NOF cannot belong to the superfamily MuDR/foldback, as up to now it has been classified, and can be considered as a non-autonomous transposable element. The alignment with the published genomes of 12 Drosophila species shows that NOF presence is restricted only to the 6 Drosophila species belonging to the melanogaster group. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The devil is in the details: Transposable element analysis of the Tasmanian devil genome.

    PubMed

    Nilsson, Maria A

    2016-01-01

    The third marsupial genome was sequenced from the Tasmanian devil ( Sarcophilus harrisii ), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the L ong IN terspersed E lement 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the S hort IN terspersed E lements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome.

  17. Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element

    PubMed Central

    Benson, Meredith A.; Ohneck, Elizabeth A.; Ryan, Chanelle; Alonzo, Francis; Smith, Hannah; Narechania, Apurva; Kolokotronis, Sergios-Orestis; Satola, Sarah W.; Uhlemann, Anne-Catrin; Sebra, Robert; Deikus, Gintaras; Shopsin, Bo; Planet, Paul J.; Torres, Victor J.

    2014-01-01

    SUMMARY Staphylococcus aureus has evolved as a pathogen that causes a range of diseases in humans. There are two dominant modes of evolution thought to explain most of the virulence differences between strains. First, virulence genes may be acquired from other organisms. Second, mutations may cause changes in the regulation and expression of genes. Here we describe an evolutionary event in which transposition of an IS element has a direct impact on virulence gene regulation resulting in hypervirulence. Whole genome analysis of a methicillin-resistant S. aureus (MRSA) strain USA500 revealed acquisition of a transposable element (IS256) that is absent from close relatives of this strain. Of the multiple copies of IS256 found in the USA500 genome, one was inserted in the promoter sequence of repressor of toxins (Rot), a master transcriptional regulator responsible for the expression of virulence factors in S. aureus. We show that insertion into the rot promoter by IS256 results in the derepression of cytotoxin expression and increased virulence. Taken together, this work provides new insight into evolutionary strategies by which S. aureus is able to modify its virulence properties and demonstrates a novel mechanism by which horizontal gene transfer directly impacts virulence through altering toxin regulation. PMID:24962815

  18. Identification of Transposable Elements Contributing to Tissue-Specific Expression of Long Non-Coding RNAs

    PubMed Central

    Chishima, Takafumi; Iwakiri, Junichi

    2018-01-01

    It has been recently suggested that transposable elements (TEs) are re-used as functional elements of long non-coding RNAs (lncRNAs). This is supported by some examples such as the human endogenous retrovirus subfamily H (HERVH) elements contained within lncRNAs and expressed specifically in human embryonic stem cells (hESCs), as required to maintain hESC identity. There are at least two unanswered questions about all lncRNAs. How many TEs are re-used within lncRNAs? Are there any other TEs that affect tissue specificity of lncRNA expression? To answer these questions, we comprehensively identify TEs that are significantly related to tissue-specific expression levels of lncRNAs. We downloaded lncRNA expression data corresponding to normal human tissue from the Expression Atlas and transformed the data into tissue specificity estimates. Then, Fisher’s exact tests were performed to verify whether the presence or absence of TE-derived sequences influences the tissue specificity of lncRNA expression. Many TE–tissue pairs associated with tissue-specific expression of lncRNAs were detected, indicating that multiple TE families can be re-used as functional domains or regulatory sequences of lncRNAs. In particular, we found that the antisense promoter region of L1PA2, a LINE-1 subfamily, appears to act as a promoter for lncRNAs with placenta-specific expression. PMID:29315213

  19. Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate

    PubMed Central

    Kimura-Yoshida, Chiharu; Yan, Kuo; Bormuth, Olga; Ding, Qiong; Nakanishi, Akiko; Sasaki, Takeshi; Hirakawa, Mika; Sumiyama, Kenta; Furuta, Yasuhide; Tarabykin, Victor; Matsuo, Isao; Okada, Norihiro

    2016-01-01

    Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution. PMID:27741242

  20. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes.

    PubMed

    Lyu, Haomin; He, Ziwen; Wu, Chung-I; Shi, Suhua

    2018-01-01

    Several clades of mangrove trees independently invade the interface between land and sea at the margin of woody plant distribution. As phenotypic convergence among mangroves is common, the possibility of convergent adaptation in their genomes is quite intriguing. To study this molecular convergence, we sequenced multiple mangrove genomes. In this study, we focused on the evolution of transposable elements (TEs) in relation to the genome size evolution. TEs, generally considered genomic parasites, are the most common components of woody plant genomes. Analyzing the long terminal repeat-retrotransposon (LTR-RT) type of TE, we estimated their death rates by counting solo-LTRs and truncated elements. We found that all lineages of mangroves massively and convergently reduce TE loads in comparison to their nonmangrove relatives; as a consequence, genome size reduction happens independently in all six mangrove lineages; TE load reduction in mangroves can be attributed to the paucity of young elements; the rarity of young LTR-RTs is a consequence of fewer births rather than access death. In conclusion, mangrove genomes employ a convergent strategy of TE load reduction by suppressing element origination in their independent adaptation to a new environment. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Modular assembly of transposable element arrays by microsatellite targeting in the guayule and rice genomes.

    PubMed

    Valdes Franco, José A; Wang, Yi; Huo, Naxin; Ponciano, Grisel; Colvin, Howard A; McMahan, Colleen M; Gu, Yong Q; Belknap, William R

    2018-04-19

    Guayule (Parthenium argentatum A. Gray) is a rubber-producing desert shrub native to Mexico and the United States. Guayule represents an alternative to Hevea brasiliensis as a source for commercial natural rubber. The efficient application of modern molecular/genetic tools to guayule improvement requires characterization of its genome. The 1.6 Gb guayule genome was sequenced, assembled and annotated. The final 1.5 Gb assembly, while fragmented (N 50  = 22 kb), maps > 95% of the shotgun reads and is essentially complete. Approximately 40,000 transcribed, protein encoding genes were annotated on the assembly. Further characterization of this genome revealed 15 families of small, microsatellite-associated, transposable elements (TEs) with unexpected chromosomal distribution profiles. These SaTar (Satellite Targeted) elements, which are non-autonomous Mu-like elements (MULEs), were frequently observed in multimeric linear arrays of unrelated individual elements within which no individual element is interrupted by another. This uniformly non-nested TE multimer architecture has not been previously described in either eukaryotic or prokaryotic genomes. Five families of similarly distributed non-autonomous MULEs (microsatellite associated, modularly assembled) were characterized in the rice genome. Families of TEs with similar structures and distribution profiles were identified in sorghum and citrus. The sequencing and assembly of the guayule genome provides a foundation for application of current crop improvement technologies to this plant. In addition, characterization of this genome revealed SaTar elements with distribution profiles unique among TEs. Satar targeting appears based on an alternative MULE recombination mechanism with the potential to impact gene evolution.

  2. The role of Transposable Elements in shaping the combinatorial interaction of Transcription Factors

    PubMed Central

    2012-01-01

    Background In the last few years several studies have shown that Transposable Elements (TEs) in the human genome are significantly associated with Transcription Factor Binding Sites (TFBSs) and that in several cases their expansion within the genome led to a substantial rewiring of the regulatory network. Another important feature of the regulatory network which has been thoroughly studied is the combinatorial organization of transcriptional regulation. In this paper we combine these two observations and suggest that TEs, besides rewiring the network, also played a central role in the evolution of particular patterns of combinatorial gene regulation. Results To address this issue we searched for TEs overlapping Estrogen Receptor α (ERα) binding peaks in two publicly available ChIP-seq datasets from the MCF7 cell line corresponding to different modalities of exposure to estrogen. We found a remarkable enrichment of a few specific classes of Transposons. Among these a prominent role was played by MIR (Mammalian Interspersed Repeats) transposons. These TEs underwent a dramatic expansion at the beginning of the mammalian radiation and then stabilized. We conjecture that the special affinity of ERα for the MIR class of TEs could be at the origin of the important role assumed by ERα in Mammalians. We then searched for TFBSs within the TEs overlapping ChIP-seq peaks. We found a strong enrichment of a few precise combinations of TFBS. In several cases the corresponding Transcription Factors (TFs) were known cofactors of ERα, thus supporting the idea of a co-regulatory role of TFBS within the same TE. Moreover, most of these correlations turned out to be strictly associated to specific classes of TEs thus suggesting the presence of a well-defined "transposon code" within the regulatory network. Conclusions In this work we tried to shed light into the role of Transposable Elements (TEs) in shaping the regulatory network of higher eukaryotes. To test this idea we focused

  3. Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies

    PubMed Central

    Talla, Venkat; Suh, Alexander; Kalsoom, Faheema; Dincă, Vlad; Vila, Roger; Friberg, Magne; Wiklund, Christer

    2017-01-01

    Abstract Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths. PMID:28981642

  4. Long-Term and Short-Term Evolutionary Impacts of Transposable Elements on Drosophila

    PubMed Central

    Lee, Yuh Chwen G.; Langley, Charles H.

    2012-01-01

    Transposable elements (TEs) are considered to be genomic parasites and their interactions with their hosts have been likened to the coevolution between host and other nongenomic, horizontally transferred pathogens. TE families, however, are vertically inherited as integral segments of the nuclear genome. This transmission strategy has been suggested to weaken the selective benefits of host alleles repressing the transposition of specific TE variants. On the other hand, the elevated rates of TE transposition and high incidences of deleterious mutations observed during the rare cases of horizontal transfers of TE families between species could create at least a transient process analogous to the influence of horizontally transmitted pathogens. Here, we formally address this analogy, using empirical and theoretical analysis to specify the mechanism of how host–TE interactions may drive the evolution of host genes. We found that host TE-interacting genes actually have more pervasive evidence of adaptive evolution than immunity genes that interact with nongenomic pathogens in Drosophila. Yet, both our theoretical modeling and empirical observations comparing Drosophila melanogaster populations before and after the horizontal transfer of P elements, which invaded D. melanogaster early last century, demonstrated that horizontally transferred TEs have only a limited influence on host TE-interacting genes. We propose that the more prevalent and constant interaction with multiple vertically transmitted TE families may instead be the main force driving the fast evolution of TE-interacting genes, which is fundamentally different from the gene-for-gene interaction of host–pathogen coevolution. PMID:22997235

  5. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element.

    PubMed

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-12-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar 'Daisy' carries both defective genes, whereas a spontaneous deep-colored mutant 'Daisy-VPR' lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar '06-LA' and a deep-colored cultivar 'Spectrum' produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the 'Spectrum' parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century.

  6. Transposon Insertion Finder (TIF): a novel program for detection of de novo transpositions of transposable elements.

    PubMed

    Nakagome, Mariko; Solovieva, Elena; Takahashi, Akira; Yasue, Hiroshi; Hirochika, Hirohiko; Miyao, Akio

    2014-03-14

    Transposition event detection of transposable element (TE) in the genome using short reads from the next-generation sequence (NGS) was difficult, because the nucleotide sequence of TE itself is repetitive, making it difficult to identify locations of its insertions by alignment programs for NGS. We have developed a program with a new algorithm to detect the transpositions from NGS data. In the process of tool development, we used next-generation sequence (NGS) data of derivative lines (ttm2 and ttm5) of japonica rice cv. Nipponbare, regenerated through cell culture. The new program, called a transposon insertion finder (TIF), was applied to detect the de novo transpositions of Tos17 in the regenerated lines. TIF searched 300 million reads of a line within 20 min, identifying 4 and 12 de novo transposition in ttm2 and ttm5 lines, respectively. All of the transpositions were confirmed by PCR/electrophoresis and sequencing. Using the program, we also detected new transposon insertions of P-element from NGS data of Drosophila melanogaster. TIF operates to find the transposition of any elements provided that target site duplications (TSDs) are generated by their transpositions.

  7. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome.

    PubMed

    Watanabe, Kohei; Koga, Hajime; Nakamura, Kodai; Fujita, Akiko; Hattori, Akimasa; Matsuda, Masaru; Koga, Akihiko

    2014-04-01

    DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.

  8. The genomic landscape shaped by selection on transposable elements across 18 mouse strains.

    PubMed

    Nellåker, Christoffer; Keane, Thomas M; Yalcin, Binnaz; Wong, Kim; Agam, Avigail; Belgard, T Grant; Flint, Jonathan; Adams, David J; Frankel, Wayne N; Ponting, Chris P

    2012-06-15

    Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.

  9. Effects of a Transposable Element Insertion on Alcohol Dehydrogenase Expression in Drosophila Melanogaster

    PubMed Central

    Dunn, R. C.; Laurie, C. C.

    1995-01-01

    Variation in the DNA sequence and level of alcohol dehydrogenase (Adh) gene expression in Drosophila melanogaster have been studied to determine what types of DNA polymorphisms contribute to phenotypic variation in natural populations. The Adh gene, like many others, shows a high level of variability in both DNA sequence and quantitative level of expression. A number of transposable element insertions occur in the Adh region and one of these, a copia insertion in the 5' flanking region, is associated with unusually low Adh expression. To determine whether this insertion (called RI42) causes the low expression level, the insertion was excised from the cloned RI42 Adh gene and the effect was assessed by P-element transformation. Removal of this insertion causes a threefold increase in the level of ADH, clearly showing that it contributes to the naturally occurring variation in expression at this locus. Removal of all but one LTR also causes a threefold increase, indicating that the mechanism is not a simple sequence disruption. Furthermore, this copia insertion, which is located between the two Adh promoters and their upstream enhancer sequences, has differential effects on the levels of proximal and distal transcripts. Finally, a test for the possible modifying effects of two suppressor loci, su(w(a)) and su(f), on this insertional mutation was negative, in contrast to a previous report in the literature. PMID:7498745

  10. Transposable elements in fish chromosomes: a study in the marine cobia species.

    PubMed

    Costa, G W W F; Cioffi, M B; Bertollo, L A C; Molina, W F

    2013-01-01

    Rachycentron canadum, a unique representative of the Rachycentridae family, has been the subject of considerable biotechnological interest due to its potential use in marine fish farming. This species has undergone extensive research concerning the location of genes and multigene families on its chromosomes. Although most of the genome of some organisms is composed of repeated DNA sequences, aspects of the origin and dispersion of these elements are still largely unknown. The physical mapping of repetitive sequences on the chromosomes of R. canadum proved to be relevant for evolutionary and applied purposes. Therefore, here, we present the mapping by fluorescence in situ hybridization of the transposable element (TE) Tol2, the non-LTR retrotransposons Rex1 and Rex3, together with the 18S and 5S rRNA genes in the chromosome of this species. The Tol2 TE, belonging to the family of hAT transposons, is homogeneously distributed in the euchromatic regions of the chromosomes but with huge colocalization with the 18S rDNA sites. The hybridization signals for Rex1 and Rex3 revealed a semi-arbitrary distribution pattern, presenting differentiated dispersion in euchromatic and heterochromatic regions. Rex1 elements are associated preferentially in heterochromatic regions, while Rex3 shows a scarce distribution in the euchromatic regions of the chromosomes. The colocalization of TEs with 18S and 5S rDNA revealed complex chromosomal regions of repetitive sequences. In addition, the nonpreferential distribution of Rex1 and Rex3 in all heterochromatic regions, as well as the preferential distribution of the Tol2 transposon associated with 18S rDNA sequences, reveals a distinct pattern of organization of TEs in the genome of this species. A heterogeneous chromosomal colonization of TEs may confer different evolutionary rates to the heterochromatic regions of this species.

  11. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs.

    PubMed

    Nuthikattu, Saivageethi; McCue, Andrea D; Panda, Kaushik; Fultz, Dalen; DeFraia, Christopher; Thomas, Erica N; Slotkin, R Keith

    2013-05-01

    Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing.

  12. Multilevel Selection Theory and the Evolutionary Functions of Transposable Elements

    PubMed Central

    Brunet, Tyler D.P.; Doolittle, W. Ford

    2015-01-01

    One of several issues at play in the renewed debate over “junk DNA” is the organizational level at which genomic features might be seen as selected, and thus to exhibit function, as etiologically defined. The intuition frequently expressed by molecular geneticists that junk DNA is functional because it serves to “speed evolution” or as an “evolutionary repository” could be recast as a claim about selection between species (or clades) rather than within them, but this is not often done. Here, we review general arguments for the importance of selection at levels above that of organisms in evolution, and develop them further for a common genomic feature: the carriage of transposable elements (TEs). In many species, not least our own, TEs comprise a large fraction of all nuclear DNA, and whether they individually or collectively contribute to fitness—or are instead junk— is a subject of ongoing contestation. Even if TEs generally owe their origin to selfish selection at the lowest level (that of genomes), their prevalence in extant organisms and the prevalence of extant organisms bearing them must also respond to selection within species (on organismal fitness) and between species (on rates of speciation and extinction). At an even higher level, the persistence of clades may be affected (positively or negatively) by TE carriage. If indeed TEs speed evolution, it is at these higher levels of selection that such a function might best be attributed to them as a class. PMID:26253318

  13. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements.

    PubMed

    Lewis, Samuel H; Quarles, Kaycee A; Yang, Yujing; Tanguy, Melanie; Frézal, Lise; Smith, Stephen A; Sharma, Prashant P; Cordaux, Richard; Gilbert, Clément; Giraud, Isabelle; Collins, David H; Zamore, Phillip D; Miska, Eric A; Sarkies, Peter; Jiggins, Francis M

    2018-01-01

    In animals, small RNA molecules termed PIWI-interacting RNAs (piRNAs) silence transposable elements (TEs), protecting the germline from genomic instability and mutation. piRNAs have been detected in the soma in a few animals, but these are believed to be specific adaptations of individual species. Here, we report that somatic piRNAs were probably present in the ancestral arthropod more than 500 million years ago. Analysis of 20 species across the arthropod phylum suggests that somatic piRNAs targeting TEs and messenger RNAs are common among arthropods. The presence of an RNA-dependent RNA polymerase in chelicerates (horseshoe crabs, spiders and scorpions) suggests that arthropods originally used a plant-like RNA interference mechanism to silence TEs. Our results call into question the view that the ancestral role of the piRNA pathway was to protect the germline and demonstrate that small RNA silencing pathways have been repurposed for both somatic and germline functions throughout arthropod evolution.

  14. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element

    PubMed Central

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-01-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar ‘Daisy’ carries both defective genes, whereas a spontaneous deep-colored mutant ‘Daisy-VPR’ lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar ‘06-LA’ and a deep-colored cultivar ‘Spectrum’ produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the ‘Spectrum’ parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century. PMID:24399917

  15. Rapid Increase in Genome Size as a Consequence of Transposable Element Hyperactivity in Wood-White (Leptidea) Butterflies.

    PubMed

    Talla, Venkat; Suh, Alexander; Kalsoom, Faheema; Dinca, Vlad; Vila, Roger; Friberg, Magne; Wiklund, Christer; Backström, Niclas

    2017-10-01

    Characterizing and quantifying genome size variation among organisms and understanding if genome size evolves as a consequence of adaptive or stochastic processes have been long-standing goals in evolutionary biology. Here, we investigate genome size variation and association with transposable elements (TEs) across lepidopteran lineages using a novel genome assembly of the common wood-white (Leptidea sinapis) and population re-sequencing data from both L. sinapis and the closely related L. reali and L. juvernica together with 12 previously available lepidopteran genome assemblies. A phylogenetic analysis confirms established relationships among species, but identifies previously unknown intraspecific structure within Leptidea lineages. The genome assembly of L. sinapis is one of the largest of any lepidopteran taxon so far (643 Mb) and genome size is correlated with abundance of TEs, both in Lepidoptera in general and within Leptidea where L. juvernica from Kazakhstan has considerably larger genome size than any other Leptidea population. Specific TE subclasses have been active in different Lepidoptera lineages with a pronounced expansion of predominantly LINEs, DNA elements, and unclassified TEs in the Leptidea lineage after the split from other Pieridae. The rate of genome expansion in Leptidea in general has been in the range of four Mb/Million year (My), with an increase in a particular L. juvernica population to 72 Mb/My. The considerable differences in accumulation rates of specific TE classes in different lineages indicate that TE activity plays a major role in genome size evolution in butterflies and moths. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Topological Constraints on Transvection between White Genes within the Transposing Element Te35b in Drosophila Melanogaster

    PubMed Central

    Gubb, D.; Roote, J.; Trenear, J.; Coulson, D.; Ashburner, M.

    1997-01-01

    The transposable element TE35B carries two copies of the white (w) gene at 35B1.2 on the second chromosome. These w genes are suppressed in a zeste-1 (z(1)) mutant background in a synapsis-dependent manner. Single-copy derivatives of the original TE35B stock give red eyes when heterozygous, but zeste eyes when homozygous. TE35B derivatives carrying single, double or triple copies of w were crossed to generate flies carrying from two to five ectopic w genes. Within this range, z(1)-mediated suppression is insensitive to copynumber and does not distinguish between w genes that are in cis or in trans. Suppression does not require the juxtaposition of even numbers of w genes, but is extremely sensitive to chromosomal topology. When arranged in a tight cluster, in triple-copy TE derivatives, w genes are nonsuppressible. Breakpoints falling within TE35B and separating two functional w genes act as partial suppressors of z(1). Similarly, breakpoints immediately proximal or distal to both w genes give partial suppression. This transvection-dependent downregulation of w genes may result from mis-activation of the X-chromosome dosage compensation mechanism. PMID:9215897

  17. A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements

    PubMed Central

    Elisaphenko, Eugeny A.; Kolesnikov, Nikolay N.; Shevchenko, Alexander I.; Rogozin, Igor B.; Nesterova, Tatyana B.; Brockdorff, Neil; Zakian, Suren M.

    2008-01-01

    X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA. PMID:18575625

  18. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells

    PubMed Central

    Pezic, Dubravka; Manakov, Sergei A.; Sachidanandam, Ravi; Aravin, Alexei A.

    2014-01-01

    Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments. PMID:24939875

  19. Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements

    PubMed Central

    2012-01-01

    Background Histone H3 lysine 27 tri-methylation and lysine 9 di-methylation are independent repressive chromatin modifications in Arabidopsis thaliana. H3K27me3 is established and maintained by Polycomb repressive complexes whereas H3K9me2 is catalyzed by SUVH histone methyltransferases. Both modifications can spread to flanking regions after initialization and were shown to be mutually exclusive in Arabidopsis. Results We analyzed the extent of natural variation of H3K27me3 in the two accessions Landsberg erecta (Ler) and Columbia (Col) and their F1 hybrids. The majority of H3K27me3 target genes in Col were unchanged in Ler and F1 hybrids. A small number of Ler-specific targets were detected and confirmed. Consistent with a cis-regulatory mechanism for establishing H3K27me3, differential targets showed allele-specific H3K27me3 in hybrids. Five Ler-specific targets showed the active mark H3K4me3 in Col and for this group, differential H3K27me3 enrichment accorded to expression variation. On the other hand, the majority of Ler-specific targets were not expressed in Col, Ler or 17 other accessions. Instead of H3K27me3, the antagonistic mark H3K9me2 and other heterochromatic features were observed at these loci in Col. These loci were frequently flanked by transposable elements, which were often missing in the Ler genome assembly. Conclusion There is little variation in H3K27me3 occupancy within the species, although H3K27me3 targets were previously shown as overrepresented among differentially expressed genes. The existing variation in H3K27me3 seems mostly explained by flanking polymorphic transposable elements. These could nucleate heterochromatin, which then spreads into neighboring H3K27me3 genes, thus converting them to H3K9me2 targets. PMID:23253144

  20. Interspecific hybridization as a genomic stressor inducing mobilization of transposable elements in Drosophila

    PubMed Central

    Guerreiro, Maria Pilar García

    2014-01-01

    Transposable elements (TEs) are DNA sequences able to be mobilized in host genomes. They are currently recognized as the major mutation inducers because of their insertion in the target, their effect on neighboring regions, or their ectopic recombination. A large number of factors including chemical and physical factors as well as intraspecific crosses have traditionally been identified as inducers of transposition. Besides environmental factors, interspecific crosses have also been proposed as promoters of transposition of particular TEs in plants and different animals. Our previous published work includes a genome-wide survey with the set of genomic TEs and shows that interspecific hybridization between the species Drosophila buzzatii and Drosophila koepferae induces genomic instability by transposition bursts. A high percentage of this instability corresponds to TEs belonging to classes I and II. The detailed study of three TEs (Osvaldo, Helena, and Galileo), representative of the different TE families, shows an increase of transposition in hybrids compared with parental species, that varies depending on the element. This study suggests ample variation in TE regulation mechanisms and the question is why this variation occurs. Interspecific hybridization is a genomic stressor that disrupts the stability of TEs probably contributing to a relaxation of the mechanisms controlling TEs in the Drosophila genome. In this commentary paper we will discuss these results and the molecular mechanisms that could explain these increases of transposition rates observed in interspecific Drosophila hybrids. PMID:25136509

  1. Molecular Characterization and Chromosomal Distribution of Galileo, Kepler and Newton, Three Foldback Transposable Elements of the Drosophila buzzatii Species Complex

    PubMed Central

    Casals, Ferran; Cáceres, Mario; Manfrin, Maura Helena; González, Josefa; Ruiz, Alfredo

    2005-01-01

    Galileo is a foldback transposable element that has been implicated in the generation of two polymorphic chromosomal inversions in Drosophila buzzatii. Analysis of the inversion breakpoints led to the discovery of two additional elements, called Kepler and Newton, sharing sequence and structural similarities with Galileo. Here, we describe in detail the molecular structure of these three elements, on the basis of the 13 copies found at the inversion breakpoints plus 10 additional copies isolated during this work. Similarly to the foldback elements described in other organisms, these elements have long inverted terminal repeats, which in the case of Galileo possess a complex structure and display a high degree of internal variability between copies. A phylogenetic tree built with their shared sequences shows that the three elements are closely related and diverged ∼10 million years ago. We have also analyzed the abundance and chromosomal distribution of these elements in D. buzzatii and other species of the repleta group by Southern analysis and in situ hybridization. Overall, the results suggest that these foldback elements are present in all the buzzatti complex species and may have played an important role in shaping their genomes. In addition, we show that recombination rate is the main factor determining the chromosomal distribution of these elements. PMID:15695364

  2. Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzatii species complex.

    PubMed

    Casals, Ferran; Cáceres, Mario; Manfrin, Maura Helena; González, Josefa; Ruiz, Alfredo

    2005-04-01

    Galileo is a foldback transposable element that has been implicated in the generation of two polymorphic chromosomal inversions in Drosophila buzzatii. Analysis of the inversion breakpoints led to the discovery of two additional elements, called Kepler and Newton, sharing sequence and structural similarities with Galileo. Here, we describe in detail the molecular structure of these three elements, on the basis of the 13 copies found at the inversion breakpoints plus 10 additional copies isolated during this work. Similarly to the foldback elements described in other organisms, these elements have long inverted terminal repeats, which in the case of Galileo possess a complex structure and display a high degree of internal variability between copies. A phylogenetic tree built with their shared sequences shows that the three elements are closely related and diverged approximately 10 million years ago. We have also analyzed the abundance and chromosomal distribution of these elements in D. buzzatii and other species of the repleta group by Southern analysis and in situ hybridization. Overall, the results suggest that these foldback elements are present in all the buzzatti complex species and may have played an important role in shaping their genomes. In addition, we show that recombination rate is the main factor determining the chromosomal distribution of these elements.

  3. A role for palindromic structures in the cis-region of maize Sirevirus LTRs in transposable element evolution and host epigenetic response.

    PubMed

    Bousios, Alexandros; Diez, Concepcion M; Takuno, Shohei; Bystry, Vojtech; Darzentas, Nikos; Gaut, Brandon S

    2016-02-01

    Transposable elements (TEs) proliferate within the genome of their host, which responds by silencing them epigenetically. Much is known about the mechanisms of silencing in plants, particularly the role of siRNAs in guiding DNA methylation. In contrast, little is known about siRNA targeting patterns along the length of TEs, yet this information may provide crucial insights into the dynamics between hosts and TEs. By focusing on 6456 carefully annotated, full-length Sirevirus LTR retrotransposons in maize, we show that their silencing associates with underlying characteristics of the TE sequence and also uncover three features of the host-TE interaction. First, siRNA mapping varies among families and among elements, but particularly along the length of elements. Within the cis-regulatory portion of the LTRs, a complex palindrome-rich region acts as a hotspot of both siRNA matching and sequence evolution. These patterns are consistent across leaf, tassel, and immature ear libraries, but particularly emphasized for floral tissues and 21- to 22-nt siRNAs. Second, this region has the ability to form hairpins, making it a potential template for the production of miRNA-like, hairpin-derived small RNAs. Third, Sireviruses are targeted by siRNAs as a decreasing function of their age, but the oldest elements remain highly targeted, partially by siRNAs that cross-map to the youngest elements. We show that the targeting of older Sireviruses reflects their conserved palindromes. Altogether, we hypothesize that the palindromes aid the silencing of active elements and influence transposition potential, siRNA targeting levels, and ultimately the fate of an element within the genome. © 2016 Bousios et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Multilevel Selection Theory and the Evolutionary Functions of Transposable Elements.

    PubMed

    Brunet, Tyler D P; Doolittle, W Ford

    2015-08-06

    One of several issues at play in the renewed debate over "junk DNA" is the organizational level at which genomic features might be seen as selected, and thus to exhibit function, as etiologically defined. The intuition frequently expressed by molecular geneticists that junk DNA is functional because it serves to "speed evolution" or as an "evolutionary repository" could be recast as a claim about selection between species (or clades) rather than within them, but this is not often done. Here, we review general arguments for the importance of selection at levels above that of organisms in evolution, and develop them further for a common genomic feature: the carriage of transposable elements (TEs). In many species, not least our own, TEs comprise a large fraction of all nuclear DNA, and whether they individually or collectively contribute to fitness--or are instead junk--is a subject of ongoing contestation. Even if TEs generally owe their origin to selfish selection at the lowest level (that of genomes), their prevalence in extant organisms and the prevalence of extant organisms bearing them must also respond to selection within species (on organismal fitness) and between species (on rates of speciation and extinction). At an even higher level, the persistence of clades may be affected (positively or negatively) by TE carriage. If indeed TEs speed evolution, it is at these higher levels of selection that such a function might best be attributed to them as a class. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Tropical Africa as a cradle for horizontal transfers of transposable elements between species of the genera Drosophila and Zaprionus

    PubMed Central

    2011-01-01

    We have recently reported numerous cases of horizontal transfers of transposable elements between species of drosophilids. These studies revealed a substantial number of horizontal transfers between species of the subgroup melanogaster of the genus Drosophila and between these species and species of the genus Zaprionus. In this review, these transfers and similar, previously reported events are discussed and reanalysed to portray the interrelationships between the species that allowed the occurrence of so many horizontal transfers. The paper also addresses problems that may arise in drawing inferences about the time period during which the horizontal transfers occurred and the factors that may be associated with these transfers are discussed. PMID:22312591

  6. The genomic proliferation of transposable elements in colonizing populations: Schistosoma mansoni in the new world.

    PubMed

    Wijayawardena, Bhagya K; DeWoody, J Andrew; Minchella, Dennis J

    2015-06-01

    Transposable elements (TEs) are mobile genes with an inherent ability to move within and among genomes. Theory predicts that TEs proliferate extensively during physiological stress due to the breakdown of TE repression systems. We tested this hypothesis in Schistosoma mansoni, a widespread trematode parasite that causes the human disease schistosomiasis. According to phylogenetic analysis, S. mansoni invaded the new world during the last 500 years. We hypothesized that new world strains of S. mansoni would have more copies of TEs than old world strains due to the physiological stress associated with invasion of the new world. We quantified the copy number of six TEs (Saci-1, Saci-2 and Saci-3, Perere-1, Merlin-sm1, and SmTRC1) in the genome and the transcriptome of old world and new world strains of S. mansoni, using qPCR relative quantification. As predicted, the genomes of new world parasites contain significantly more copies of class I and class II TEs in both laboratory and field strains. However, such differences are not observed in the transcriptome suggesting that either TE silencing mechanisms have reactivated to control the expression of these elements or the presence of inactive truncated copies of TEs.

  7. Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements.

    PubMed

    Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra

    2017-04-26

    DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61

  8. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings

    PubMed Central

    Mao, Hude; Wang, Hongwei; Liu, Shengxue; Li, Zhigang; Yang, Xiaohong; Yan, Jianbing; Li, Jiansheng; Tran, Lam-Son Phan; Qin, Feng

    2015-01-01

    Drought represents a major constraint on maize production worldwide. Understanding the genetic basis for natural variation in drought tolerance of maize may facilitate efforts to improve this trait in cultivated germplasm. Here, using a genome-wide association study, we show that a miniature inverted-repeat transposable element (MITE) inserted in the promoter of a NAC gene (ZmNAC111) is significantly associated with natural variation in maize drought tolerance. The 82-bp MITE represses ZmNAC111 expression via RNA-directed DNA methylation and H3K9 dimethylation when heterologously expressed in Arabidopsis. Increasing ZmNAC111 expression in transgenic maize enhances drought tolerance at the seedling stage, improves water-use efficiency and induces upregulation of drought-responsive genes under water stress. The MITE insertion in the ZmNAC111 promoter appears to have occurred after maize domestication and spread among temperate germplasm. The identification of this MITE insertion provides insight into the genetic basis for natural variation in maize drought tolerance. PMID:26387805

  9. Transposable Element Misregulation Is Linked to the Divergence between Parental piRNA Pathways in Drosophila Hybrids

    PubMed Central

    Romero-Soriano, Valèria; Modolo, Laurent; Lopez-Maestre, Hélène; Mugat, Bruno; Pessia, Eugénie; Chambeyron, Séverine; Vieira, Cristina

    2017-01-01

    Abstract Interspecific hybridization is a genomic stress condition that leads to the activation of transposable elements (TEs) in both animals and plants. In hybrids between Drosophila buzzatii and Drosophila koepferae, mobilization of at least 28 TEs has been described. However, the molecular mechanisms underlying this TE release remain poorly understood. To give insight on the causes of this TE activation, we performed a TE transcriptomic analysis in ovaries (notorious for playing a major role in TE silencing) of parental species and their F1 and backcrossed (BC) hybrids. We find that 15.2% and 10.6% of the expressed TEs are deregulated in F1 and BC1 ovaries, respectively, with a bias toward overexpression in both cases. Although differences between parental piRNA (Piwi-interacting RNA) populations explain only partially these results, we demonstrate that piRNA pathway proteins have divergent sequences and are differentially expressed between parental species. Thus, a functional divergence of the piRNA pathway between parental species, together with some differences between their piRNA pools, might be at the origin of hybrid instabilities and ultimately cause TE misregulation in ovaries. These analyses were complemented with the study of F1 testes, where TEs tend to be less expressed than in D. buzzatii. This can be explained by an increase in piRNA production, which probably acts as a defence mechanism against TE instability in the male germline. Hence, we describe a differential impact of interspecific hybridization in testes and ovaries, which reveals that TE expression and regulation are sex-biased. PMID:28854624

  10. Germinal and Somatic Activity of the Maize Element Activator (Ac) in Arabidopsis

    PubMed Central

    Keller, J.; Lim, E.; James-Jr., D. W.; Dooner, H. K.

    1992-01-01

    We have investigated the germinal and somatic activity of the maize Activator (Ac) element in Arabidopsis with the objective of developing an efficient transposon-based system for gene isolation in that plant. Transposition activity was assayed with a chimeric marker that consists of the cauliflower mosaic virus 35S promoter and a bacterial streptomycin phosphotransferase gene (SPT). Somatic activity was detected in seedlings germinated on plates containing streptomycin as green-resistant sectors against a background of white-sensitive cells. Germinal excisions resulted in fully green seedlings. The transposition frequency was extremely low when a single copy of the transposon was present, but appeared to increase with an increase in Ac copy number. Plants that were selected as variegated produced an increased number of green progeny. The methylation state of the Ac elements in lines with either low or high levels of excision was assessed by restriction analysis. No difference was found between these lines, indicating that the degree of methylation did not contribute to the level of Ac activity. Germinal excision events were analyzed molecularly and shown to carry reinserted transposons in about 50% of the cases. In several instances, streptomycin-resistant siblings carried the same transposed Ac element, indicating that excision had occurred prior to meiosis in the parent. We discuss parameters that need to be considered to optimize the use of Ac as a transposon tag in Arabidopsis. PMID:1322854

  11. Horizontal Transfer Can Drive a Greater Transposable Element Load in Large Populations.

    PubMed

    Groth, Sam B; Blumenstiel, Justin P

    2017-01-01

    Genomes are comprised of contrasting domains of euchromatin and heterochromatin, and transposable elements (TEs) play an important role in defining these genomic regions. Therefore, understanding the forces that control TE abundance can help us understand the chromatin landscape of the genome. What determines the burden of TEs in populations? Some have proposed that drift plays a determining role. In small populations, mildly deleterious TE insertion alleles are allowed to fix, leading to increased copy number. However, it is not clear how the rate of exposure to new TE families, via horizontal transfer (HT), can contribute to broader patterns of genomic TE abundance. Here, using simulation and analytical approaches, we show that when the effects of drift are weak, exposure rate to new TE families via HT can be an important determinant of genomic copy number. If population exposure rate is proportional to population size, larger populations are expected to have a higher rate of exposure to rare HT events. This leads to the counterintuitive prediction that larger populations may carry a higher TE load. We also find that increased rates of recombination can lead to greater probabilities of TE establishment. This work has implications for our understanding of the evolution of chromatin landscapes, genome defense by RNA silencing, and recombination rates. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.).

    PubMed

    Kim, Sunggil; Park, Jee Young; Yang, Tae-Jin

    2015-06-01

    Intact retrotransposon and DNA transposons inserted in a single gene were characterized in onions (Allium cepa) and their transcription and copy numbers were estimated in this study. While analyzing diverse onion germplasm, large insertions in the DFR-A gene encoding dihydroflavonol 4-reductase (DFR) involved in the anthocyanin biosynthesis pathway were found in two accessions. A 5,070-bp long terminal repeat (LTR) retrotransposon inserted in the active DFR-A (R4) allele was identified from one of the large insertions and designated AcCOPIA1. An intact ORF encoded typical domains of copia-like LTR retrotransposons. However, AcCOPIA1 contained atypical 'TG' and 'TA' dinucleotides at the ends of the LTRs. A 4,615-bp DNA transposon was identified in the other large insertion. This DNA transposon, designated AcCACTA1, contained an ORF coding for a transposase showing homology with the CACTA superfamily transposable elements (TEs). Another 5,073-bp DNA transposon was identified from the DFR-A (TRN) allele. This DNA transposon, designated AchAT1, belonged to the hAT superfamily with short 4-bp terminal inverted repeats (TIRs). Finally, a 6,258-bp non-autonomous DNA transposon, designated AcPINK, was identified in the ANS-p allele encoding anthocyanidin synthase, the next downstream enzyme to DFR in the anthocyanin biosynthesis pathway. AcPINK also possessed very short 3-bp TIRs. Active transcription of AcCOPIA1, AcCACTA1, and AchAT1 was observed through RNA-Seq analysis and RT-PCR. The copy numbers of AcPINK estimated by mapping the genomic DNA reads produced by NextSeq 500 were predominantly high compared with the other TEs. A series of evidence indicated that these TEs might have transposed in these onion genes very recently, providing a stepping stone for elucidation of enormously large-sized onion genome structure.

  13. Turning gold into ‘junk’: transposable elements utilize central proteins of cellular networks

    PubMed Central

    Abrusán, György; Szilágyi, András; Zhang, Yang; Papp, Balázs

    2013-01-01

    The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts. PMID:23341038

  14. TEcandidates: Prediction of genomic origin of expressed Transposable Elements using RNA-seq data.

    PubMed

    Valdebenito-Maturana, Braulio; Riadi, Gonzalo

    2018-06-01

    In recent years, Transposable Elements (TEs) have been related to gene regulation. However, estimating the origin of expression of TEs through RNA-seq is complicated by multimapping reads coming from their repetitive sequences. Current approaches that address multimapping reads are focused in expression quantification and not in finding the origin of expression. Addressing the genomic origin of expressed TEs could further aid in understanding the role that TEs might have in the cell. We have developed a new pipeline called TEcandidates, based on de novo transcriptome assembly to assess the instances of TEs being expressed, along with their location, to include in downstream DE analysis. TEcandidates takes as input the RNA-seq data, the genome sequence and the TE annotation file, and returns a list of coordinates of candidate TEs being expressed, the TEs that have been removed, and the genome sequence with removed TEs as masked. This masked genome is suited to include TEs in downstream expression analysis, as the ambiguity of reads coming from TEs is significantly reduced in the mapping step of the analysis. The script which runs the pipeline can be downloaded at http://www.mobilomics.org/tecandidates/downloads or http://github.com/TEcandidates/TEcandidates. griadi@utalca.cl. Supplementary data are available at Bioinformatics online.

  15. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures.

    PubMed

    Sytnikova, Yuliya A; Rahman, Reazur; Chirn, Gung-Wei; Clark, Josef P; Lau, Nelson C

    2014-12-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity. © 2014 Sytnikova et al.; Published by Cold Spring Harbor Laboratory Press.

  16. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells.

    PubMed

    Mugat, Bruno; Akkouche, Abdou; Serrano, Vincent; Armenise, Claudia; Li, Blaise; Brun, Christine; Fulga, Tudor A; Van Vactor, David; Pélisson, Alain; Chambeyron, Séverine

    2015-05-01

    RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression.

  17. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat (Triticum turgidum ssp. dicoccoides).

    PubMed

    Domb, Katherine; Keidar, Danielle; Yaakov, Beery; Khasdan, Vadim; Kashkush, Khalil

    2017-10-27

    Natural populations of the tetraploid wild emmer wheat (genome AABB) were previously shown to demonstrate eco-geographically structured genetic and epigenetic diversity. Transposable elements (TEs) might make up a significant part of the genetic and epigenetic variation between individuals and populations because they comprise over 80% of the wild emmer wheat genome. In this study, we performed detailed analyses to assess the dynamics of transposable elements in 50 accessions of wild emmer wheat collected from 5 geographically isolated sites. The analyses included: the copy number variation of TEs among accessions in the five populations, population-unique insertional patterns, and the impact of population-unique/specific TE insertions on structure and expression of genes. We assessed the copy numbers of 12 TE families using real-time quantitative PCR, and found significant copy number variation (CNV) in the 50 wild emmer wheat accessions, in a population-specific manner. In some cases, the CNV difference reached up to 6-fold. However, the CNV was TE-specific, namely some TE families showed higher copy numbers in one or more populations, and other TE families showed lower copy numbers in the same population(s). Furthermore, we assessed the insertional patterns of 6 TE families using transposon display (TD), and observed significant population-specific insertional patterns. The polymorphism levels of TE-insertional patterns reached 92% among all wild emmer wheat accessions, in some cases. In addition, we observed population-specific/unique TE insertions, some of which were located within or close to protein-coding genes, creating allelic variations in a population-specific manner. We also showed that those genes are differentially expressed in wild emmer wheat. For the first time, this study shows that TEs proliferate in wild emmer wheat in a population-specific manner, creating new alleles of genes, which contribute to the divergent evolution of homeologous genes

  18. Transposable Element Misregulation Is Linked to the Divergence between Parental piRNA Pathways in Drosophila Hybrids.

    PubMed

    Romero-Soriano, Valèria; Modolo, Laurent; Lopez-Maestre, Hélène; Mugat, Bruno; Pessia, Eugénie; Chambeyron, Séverine; Vieira, Cristina; Garcia Guerreiro, Maria Pilar

    2017-06-01

    Interspecific hybridization is a genomic stress condition that leads to the activation of transposable elements (TEs) in both animals and plants. In hybrids between Drosophila buzzatii and Drosophila koepferae, mobilization of at least 28 TEs has been described. However, the molecular mechanisms underlying this TE release remain poorly understood. To give insight on the causes of this TE activation, we performed a TE transcriptomic analysis in ovaries (notorious for playing a major role in TE silencing) of parental species and their F1 and backcrossed (BC) hybrids. We find that 15.2% and 10.6% of the expressed TEs are deregulated in F1 and BC1 ovaries, respectively, with a bias toward overexpression in both cases. Although differences between parental piRNA (Piwi-interacting RNA) populations explain only partially these results, we demonstrate that piRNA pathway proteins have divergent sequences and are differentially expressed between parental species. Thus, a functional divergence of the piRNA pathway between parental species, together with some differences between their piRNA pools, might be at the origin of hybrid instabilities and ultimately cause TE misregulation in ovaries. These analyses were complemented with the study of F1 testes, where TEs tend to be less expressed than in D. buzzatii. This can be explained by an increase in piRNA production, which probably acts as a defence mechanism against TE instability in the male germline. Hence, we describe a differential impact of interspecific hybridization in testes and ovaries, which reveals that TE expression and regulation are sex-biased. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Effects of Transposable Elements on the Expression of the Forked Gene of Drosophila Melanogaster

    PubMed Central

    Hoover, K. K.; Chien, A. J.; Corces, V. G.

    1993-01-01

    The products of the forked gene are involved in the formation and/or maintenance of a temporary fibrillar structure within the developing bristle rudiment of Drosophila melanogaster. Mutations in the forked locus alter this structure and result in aberrant development of macrochaetae, microchaetae and trichomes. The locus has been characterized at the molecular level by walking, mutant characterization and transcript analysis. Expression of the six forked transcripts is temporally restricted to midlate pupal development. At this time, RNAs of 6.4, 5.6, 5.4, 2.5, 1.9 and 1.1 kilobases (kb) are detected by Northern analysis. The coding region of these RNAs has been found to be within a 21-kb stretch of genomic DNA. The amino terminus of the proteins encoded by the 5.4- and 5.6-kb forked transcripts contain tandem copies of ankyrin-like repeats that may play an important role in the function of forked-encoded products. The profile of forked RNA expression is altered in seven spontaneous mutations characterized during this study. Three forked mutations induced by the insertion of the gypsy retrotransposon contain a copy of this element inserted into an intron of the gene. In these mutants, the 5.6-, 5.4- and 2.5-kb forked mRNAs are truncated via recognition of the polyadenylation site in the 5' long terminal repeat of the gypsy retrotransposon. These results help explain the role of the forked gene in fly development and further our understanding of the role of transposable elements in mutagenesis. PMID:8244011

  20. The Initiation of Epigenetic Silencing of Active Transposable Elements Is Triggered by RDR6 and 21-22 Nucleotide Small Interfering RNAs1[W][OA

    PubMed Central

    Nuthikattu, Saivageethi; McCue, Andrea D.; Panda, Kaushik; Fultz, Dalen; DeFraia, Christopher; Thomas, Erica N.; Slotkin, R. Keith

    2013-01-01

    Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing. PMID:23542151

  1. Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice

    PubMed Central

    Ou-Yang, Fangqian; Luo, Qing-Jun; Zhang, Yue; Richardson, Casey R.; Jiang, Yingwen; Rock, Christopher D.

    2013-01-01

    microRNAs (miRNAs) are a class of small RNAs (sRNAs) of ~21 nucleotides (nt) in length processed from foldback hairpins by DICER-LIKE1 (DCL1) or DCL4. They regulate the expression of target mRNAs by base pairing through RNA-Induced Silencing Complex (RISC). In the RISC, ARGONAUTE1 (AGO1) is the key protein that cleaves miRNA targets at position ten of a miRNA:target duplex. The authenticity of many annotated rice miRNA hairpins is under debate because of their homology to repeat sequences. Some of them, like miR1884b, have been removed from the current release of miRBase based on incomplete information. In this study, we investigated the association of transposable element (TE)-derived miRNAs with typical miRNA pathways (DCL1/4- and AGO1-dependent) using publicly available deep sequencing datasets. Seven miRNA hairpins with 13 unique sRNAs were specifically enriched in AGO1 immunoprecipitation samples and relatively reduced in DCL1/4 knockdown genotypes. Interestingly, these species are ~21-nt long, instead of 24-nt as annotated in miRBase and the literature. Their expression profiles meet current criteria for functional annotation of miRNAs. In addition, diagnostic cleavage tags were found in degradome datasets for predicted target mRNAs. Most of these miRNA hairpins share significant homology with miniature inverted-repeat transposable elements (MITEs), one type of abundant DNA transposons in rice. Finally, the root-specific production of a 24 nt miRNA-like sRNA was confirmed by RNA blot for a novel EST that maps to the 3'-UTR of a candidate pseudogene showing extensive sequence homology to miR1884b hairpin. Our data are consistent with the hypothesis that TEs can serve as a driving force for the evolution of some MIRNAs, where co-opting of DICER-LIKE1/4 processing and integration into AGO1 could exapt transcribed TE-associated hairpins into typical miRNA pathways. PMID:23420033

  2. Regional Dissemination of a Trimethoprim-Resistance Gene Cassette via a Successful Transposable Element

    PubMed Central

    Opintan, Japheth A.; Bishar, Rima A.; Aboderin, A. Oladipo; Newman, Mercy J.; Lamikanra, Adebayo; Okeke, Iruka N.

    2012-01-01

    Background Antimicrobial resistance is a growing international problem. We observed a 50% increase in the prevalence of trimethoprim resistance among fecal Escherichia coli from healthy Nigerian students between 1998 and 2005, a trend to increase that continued in 2009. Methods and Findings A PCR-based screen revealed that 131 (43.1%) of isolates obtained in Nigeria in 2005 and 2009 carried integron-borne dfrA cassettes. In the case of 67 (51.1%) of these isolates, the cassette was a class 1-integron-borne dfrA7 gene, which has been reported at high prevalence from E. coli isolates from other parts of Africa. Complete sequencing of a 27 Kb dfrA7-bearing plasmid from one isolate located the dfrA7 gene within a Tn21-type transposon. The transposon also contained an IS26-derived bla/sul/str element, encoding resistance to β-lactams, sulphonamides and streptomycin, and mercury resistance genes. Although the plasmid backbone was only found in 12 (5.8%) of trimethoprim-resistant isolates, dfrA7 and other transposon-borne genes were detected in 14 (16.3%) and 32 (26.3%) of trimethoprim resistant isolates collected in Nigeria in 2005 and 2009, respectively. Additionally, 37 (19.3%) of trimethoprim-resistant E. coli isolates collected between 2006 and 2008 from Ghana were positive for the dfrA7 and a transposon marker, but only 4 (2.1%) harbored the plasmid backbone. Conclusions Our data point to transposition as a principal mechanism for disseminating dfrA7 among E. coli from Nigeria and Ghana. On-going intensive use of the affordable broad-spectrum antibacterials is likely to promote selective success of a highly prevalent transposable element in West Africa. PMID:22666464

  3. LINE-1 Elements in Structural Variation and Disease

    PubMed Central

    Beck, Christine R.; Garcia-Perez, José Luis; Badge, Richard M.; Moran, John V.

    2014-01-01

    The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes. PMID:21801021

  4. CACTA-superfamily transposable element is inserted in MYB transcription factor gene of soybean line producing variegated seeds.

    PubMed

    Yan, Fan; Di, Shaokang; Takahashi, Ryoji

    2015-08-01

    The R gene of soybean, presumably encoding a MYB transcription factor, controls seed coat color. The gene consists of multiple alleles, R (black), r-m (black spots and (or) concentric streaks on brown seed), and r (brown seed). This study was conducted to determine the structure of the MYB transcription factor gene in a near-isogenic line (NIL) having r-m allele. PCR amplification of a fragment of the candidate gene Glyma.09G235100 generated a fragment of about 1 kb in the soybean cultivar Clark, whereas a fragment of about 14 kb in addition to fragments of 1 and 1.4 kb were produced in L72-2040, a Clark 63 NIL with the r-m allele. Clark 63 is a NIL of Clark with the rxp and Rps1 alleles. A DNA fragment of 13 060 bp was inserted in the intron of Glyma.09G235100 in L72-2040. The fragment had the CACTA motif at both ends, imperfect terminal inverted repeats (TIR), inverse repetition of short sequence motifs close to the 5' and 3' ends, and a duplication of three nucleotides at the site of integration, indicating that it belongs to a CACTA-superfamily transposable element. We designated the element as Tgm11. Overall nucleotide sequence, motifs of TIR, and subterminal repeats were similar to those of Tgm1 and Tgs1, suggesting that these elements comprise a family.

  5. No evidence that sex and transposable elements drive genome size variation in evening primroses.

    PubMed

    Ågren, J Arvid; Greiner, Stephan; Johnson, Marc T J; Wright, Stephen I

    2015-04-01

    Genome size varies dramatically across species, but despite an abundance of attention there is little agreement on the relative contributions of selective and neutral processes in governing this variation. The rate of sex can potentially play an important role in genome size evolution because of its effect on the efficacy of selection and transmission of transposable elements (TEs). Here, we used a phylogenetic comparative approach and whole genome sequencing to investigate the contribution of sex and TE content to genome size variation in the evening primrose (Oenothera) genus. We determined genome size using flow cytometry for 30 species that vary in genetic system and find that variation in sexual/asexual reproduction cannot explain the almost twofold variation in genome size. Moreover, using whole genome sequences of three species of varying genome sizes and reproductive system, we found that genome size was not associated with TE abundance; instead the larger genomes had a higher abundance of simple sequence repeats. Although it has long been clear that sexual reproduction may affect various aspects of genome evolution in general and TE evolution in particular, it does not appear to have played a major role in genome size evolution in the evening primroses. © 2015 The Author(s).

  6. Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize (Zea mays ssp. mays) Genome

    PubMed Central

    Diez, Concepcion M.; Meca, Esteban; Tenaillon, Maud I.; Gaut, Brandon S.

    2014-01-01

    Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24∶22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome. PMID:24743518

  7. Mating system shifts and transposable element evolution in the plant genus Capsella.

    PubMed

    Agren, J Ågren; Wang, Wei; Koenig, Daniel; Neuffer, Barbara; Weigel, Detlef; Wright, Stephen I

    2014-07-16

    Despite having predominately deleterious fitness effects, transposable elements (TEs) are major constituents of eukaryote genomes in general and of plant genomes in particular. Although the proportion of the genome made up of TEs varies at least four-fold across plants, the relative importance of the evolutionary forces shaping variation in TE abundance and distributions across taxa remains unclear. Under several theoretical models, mating system plays an important role in governing the evolutionary dynamics of TEs. Here, we use the recently sequenced Capsella rubella reference genome and short-read whole genome sequencing of multiple individuals to quantify abundance, genome distributions, and population frequencies of TEs in three recently diverged species of differing mating system, two self-compatible species (C. rubella and C. orientalis) and their self-incompatible outcrossing relative, C. grandiflora. We detect different dynamics of TE evolution in our two self-compatible species; C. rubella shows a small increase in transposon copy number, while C. orientalis shows a substantial decrease relative to C. grandiflora. The direction of this change in copy number is genome wide and consistent across transposon classes. For insertions near genes, however, we detect the highest abundances in C. grandiflora. Finally, we also find differences in the population frequency distributions across the three species. Overall, our results suggest that the evolution of selfing may have different effects on TE evolution on a short and on a long timescale. Moreover, cross-species comparisons of transposon abundance are sensitive to reference genome bias, and efforts to control for this bias are key when making comparisons across species.

  8. Mobility of the maize suppressor-mutator element in transgenic tobacco cells.

    PubMed Central

    Masson, P; Fedoroff, N V

    1989-01-01

    Maize Suppressor-mutator (Spm) transposable elements have been introduced into tobacco cells and a visual assay for Spm activity has been developed using a bacterial beta-glucuronidase gene. The Spm element is mobile in tobacco and can trans-activate excision of a transposition-defective Spm (dSpm) element either from a different site on the same transforming Ti plasmid or from a second plasmid. An Spm element expressed from the stronger cauliflower mosaic virus 35S promoter trans-activates transposition of a dSpm element earlier after its introduction into tobacco cells than an element expressed from its own promoter. Images PMID:2538837

  9. Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance.

    PubMed

    Staton, S Evan; Burke, John M

    2015-08-20

    The transposable element (TE) content of the genomes of plant species varies from near zero in the genome of Utricularia gibba to more than 80% in many species. It is not well understood whether this variation in genome composition results from common mechanisms or stochastic variation. The major obstacles to investigating mechanisms of TE evolution have been a lack of comparative genomic data sets and efficient computational methods for measuring differences in TE composition between species. In this study, we describe patterns of TE evolution in 14 species in the flowering plant family Asteraceae and 1 outgroup species in the Calyceraceae to investigate phylogenetic patterns of TE dynamics in this important group of plants. Our findings indicate that TE families in the Asteraceae exhibit distinct patterns of non-neutral evolution, and that there has been a directional increase in copy number of Gypsy retrotransposons since the origin of the Asteraceae. Specifically, there is marked increase in Gypsy abundance at the origin of the Asteraceae and at the base of the tribe Heliantheae. This latter shift in genome composition has had a significant impact on the diversity and abundance distribution of TEs in a lineage-specific manner. We show that the TE-driven expansion of plant genomes can be facilitated by just a few TE families, and is likely accompanied by the modification and/or replacement of the TE community. Importantly, large shifts in TE composition may be correlated with major of phylogenetic transitions.

  10. A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity.

    PubMed

    Piégu, Benoît; Bire, Solenne; Arensburger, Peter; Bigot, Yves

    2015-05-01

    The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE). Copyright © 2015 Elsevier Inc. All rights reserved.

  11. International Congress on Transposable Elements (ICTE) 2012 in Saint Malo and the sea of TE stories.

    PubMed

    Ainouche, Abdelkader; Bétermier, Mireille; Chandler, Mick; Cordaux, Richard; Cristofari, Gaël; Deragon, Jean-Marc; Lesage, Pascale; Panaud, Olivier; Quesneville, Hadi; Vaury, Chantal; Vieira, Cristina; Vitte, Clémentine

    2012-10-30

    An international conference on Transposable Elements (TEs) was held 21-24 April 2012 in Saint Malo, France. Organized by the French Transposition Community (GDR Elements Génétiques Mobiles et Génomes, CNRS) and the French Society of Genetics (SFG), the conference's goal was to bring together researchers from around the world who study transposition in diverse organisms using multiple experimental approaches. The meeting drew more than 217 attendees and most contributed through poster presentations (117), invited talks and short talks selected from poster abstracts (48 in total). The talks were organized into four scientific sessions, focused on: impact of TEs on genomes, control of transposition, evolution of TEs and mechanisms of transposition. Here, we present highlights from the talks given during the platform sessions. The conference was sponsored by Alliance pour les sciences de la vie et de la santé (Aviesan), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (INSERM), Institut de recherche pour le développement (IRD), Institut national de la recherche agronomique (INRA), Université de Perpignan, Université de Rennes 1, Région Bretagne and Mobile DNA. CHAIR OF THE ORGANIZATION COMMITTEE: Jean-Marc Deragon ORGANIZERS: Abdelkader Ainouche, Mireille Bétermier, Mick Chandler, Richard Cordaux, Gaël Cristofari, Jean-Marc Deragon, Pascale Lesage, Didier Mazel, Olivier Panaud, Hadi Quesneville, Chantal Vaury, Cristina Vieira and Clémentine Vitte.

  12. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters.

    PubMed

    Dallery, Jean-Félix; Lapalu, Nicolas; Zampounis, Antonios; Pigné, Sandrine; Luyten, Isabelle; Amselem, Joëlle; Wittenberg, Alexander H J; Zhou, Shiguo; de Queiroz, Marisa V; Robin, Guillaume P; Auger, Annie; Hainaut, Matthieu; Henrissat, Bernard; Kim, Ki-Tae; Lee, Yong-Hwan; Lespinet, Olivier; Schwartz, David C; Thon, Michael R; O'Connell, Richard J

    2017-08-29

    The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.

  13. Associative priming effects with visible, transposed-letter nonwords: JUGDE facilitates COURT.

    PubMed

    Perea, Manuel; Palti, Dafna; Gomez, Pablo

    2012-04-01

    Associative priming effects can be obtained with masked nonword primes or with masked pseudohomophone primes (e.g., judpe-COURT, tode-FROG), but not with visible primes. The usual explanation is that when the prime is visible, these stimuli no longer activate the semantic representations of their base words. Given the important role of transposed-letter stimuli (e.g., jugde) in visual word recognition, here we examined whether or not an associative priming effect could be obtained with visible transposed-letter nonword primes (e.g., jugde-COURT) in a series of lexical decision experiments. Results showed a sizable associative priming effect with visible transposed-letter nonword primes (i.e., jugde-COURT faster than neevr-COURT) in Experiments 1-3 that was close to that with word primes. In contrast, we failed to find a parallel effect with replacement-letter nonword primes (Experiment 2). These findings pose some constraints to models of visual word recognition.

  14. Scanning of Transposable Elements and Analyzing Expression of Transposase Genes of Sweet Potato [Ipomoea batatas

    PubMed Central

    Tao, Xiang; Lai, Xian-Jun; Zhang, Yi-Zheng; Tan, Xue-Mei; Wang, Haiyan

    2014-01-01

    Background Transposable elements (TEs) are the most abundant genomic components in eukaryotes and affect the genome by their replications and movements to generate genetic plasticity. Sweet potato performs asexual reproduction generally and the TEs may be an important genetic factor for genome reorganization. Complete identification of TEs is essential for the study of genome evolution. However, the TEs of sweet potato are still poorly understood because of its complex hexaploid genome and difficulty in genome sequencing. The recent availability of the sweet potato transcriptome databases provides an opportunity for discovering and characterizing the expressed TEs. Methodology/Principal Findings We first established the integrated-transcriptome database by de novo assembling four published sweet potato transcriptome databases from three cultivars in China. Using sequence-similarity search and analysis, a total of 1,405 TEs including 883 retrotransposons and 522 DNA transposons were predicted and categorized. Depending on mapping sets of RNA-Seq raw short reads to the predicted TEs, we compared the quantities, classifications and expression activities of TEs inter- and intra-cultivars. Moreover, the differential expressions of TEs in seven tissues of Xushu 18 cultivar were analyzed by using Illumina digital gene expression (DGE) tag profiling. It was found that 417 TEs were expressed in one or more tissues and 107 in all seven tissues. Furthermore, the copy number of 11 transposase genes was determined to be 1–3 copies in the genome of sweet potato by Real-time PCR-based absolute quantification. Conclusions/Significance Our result provides a new method for TE searching on species with transcriptome sequences while lacking genome information. The searching, identification and expression analysis of TEs will provide useful TE information in sweet potato, which are valuable for the further studies of TE-mediated gene mutation and optimization in asexual reproduction

  15. Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes.

    PubMed

    Marburger, Sarah; Alexandrou, Markos A; Taggart, John B; Creer, Simon; Carvalho, Gary; Oliveira, Claudio; Taylor, Martin I

    2018-02-14

    Genome size varies significantly across eukaryotic taxa and the largest changes are typically driven by macro-mutations such as whole genome duplications (WGDs) and proliferation of repetitive elements. These two processes may affect the evolutionary potential of lineages by increasing genetic variation and changing gene expression. Here, we elucidate the evolutionary history and mechanisms underpinning genome size variation in a species-rich group of Neotropical catfishes (Corydoradinae) with extreme variation in genome size-0.6 to 4.4 pg per haploid cell. First, genome size was quantified in 65 species and mapped onto a novel fossil-calibrated phylogeny. Two evolutionary shifts in genome size were identified across the tree-the first between 43 and 49 Ma (95% highest posterior density (HPD) 36.2-68.1 Ma) and the second at approximately 19 Ma (95% HPD 15.3-30.14 Ma). Second, restriction-site-associated DNA (RAD) sequencing was used to identify potential WGD events and quantify transposable element (TE) abundance in different lineages. Evidence of two lineage-scale WGDs was identified across the phylogeny, the first event occurring between 54 and 66 Ma (95% HPD 42.56-99.5 Ma) and the second at 20-30 Ma (95% HPD 15.3-45 Ma) based on haplotype numbers per contig and between 35 and 44 Ma (95% HPD 30.29-64.51 Ma) and 20-30 Ma (95% HPD 15.3-45 Ma) based on SNP read ratios. TE abundance increased considerably in parallel with genome size, with a single TE-family (TC1-IS630-Pogo) showing several increases across the Corydoradinae, with the most recent at 20-30 Ma (95% HPD 15.3-45 Ma) and an older event at 35-44 Ma (95% HPD 30.29-64.51 Ma). We identified signals congruent with two WGD duplication events, as well as an increase in TE abundance across different lineages, making the Corydoradinae an excellent model system to study the effects of WGD and TEs on genome and organismal evolution. © 2018 The Authors.

  16. Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs

    PubMed Central

    Zhao, Siming; Luo, Kaixuan; Pavlovic, Bryan J; Karimi, Mohammad M; Stephens, Matthew

    2018-01-01

    Transposable elements (TEs) comprise almost half of primate genomes and their aberrant regulation can result in deleterious effects. In pluripotent stem cells, rapidly evolving KRAB-ZNF genes target TEs for silencing by H3K9me3. To investigate the evolution of TE silencing, we performed H3K9me3 ChIP-seq experiments in induced pluripotent stem cells from 10 human and 7 chimpanzee individuals. We identified four million orthologous TEs and found the SVA and ERV families to be marked most frequently by H3K9me3. We found little evidence of inter-species differences in TE silencing, with as many as 82% of putatively silenced TEs marked at similar levels in humans and chimpanzees. TEs that are preferentially silenced in one species are a similar age to those silenced in both species and are not more likely to be associated with expression divergence of nearby orthologous genes. Our data suggest limited species-specificity of TE silencing across 6 million years of primate evolution. PMID:29648536

  17. Studies on transposable elements in yeast. I. ROAM mutations causing increased expression of yeast genes: their activation by signals directed toward conjugation functions and their formation by insertion of Tyl repetitive elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errede, B.; Cardillo, T.S.; Wever, G.

    1981-01-01

    Mechanisms available to eukaryotic organisms for the coordinate regulation of gene expression are being examined by genetic and biochemical characterization of an unusual mutation, CYC7-H2, which causes over-production of iso-2-cytochrome c in the yeast Saccharomyces cerevisiae. The CYC7-H2 mutation causes overproduction in haploid strains but only a 1- to 40-fold overproduction in MATa/MAT..cap alpha.. diploid strains. This regulation of overproduction has been characterized as a response to signals controlling conjugation in yeast. Furthermore, the abnormal controlling region has been identified as an insertion of a transposable and reiterated Ty1 element adjacent to the structural gene. Therefore, we suggest that Ty1more » elements or portions of Ty1 elements occur adjacent to some of the genes required for conjugation and that they normally function to control expression of this process. The suggested role of reiterated sequences may represent a general mechanism of coordinate regulation in eukaryotes. The CYC7-H2 mutation is closely related to other regulatory mutations occurring at the cargA, cargB and DUR1,2 loci. Similar to the CYC7-H2 mutation, the mutations designated cargA/sup +/O/sup h/, cargB/sup +/O/sup h/, and durO/sup h/ cause constitutive production of their respective gene products at much lower levels of MATa/MAT..cap alpha.. diploid strains than in the corresponding haploid strains. A consistent relationship between conjugation competence and the level of overproduction in all four mutants has been established. Observations characterizing the regulation of overproduction in the CYC7-H2 mutant are presented with the additional and parallel observations for the O/sup h/ mutants. Together these results provide a demonstration of the specificity and equivalence of regulatory control exhibited by ROAM mutants.« less

  18. Transposed-Letter and Laterality Effects in Lexical Decision

    ERIC Educational Resources Information Center

    Perea, Manuel; Fraga, Isabel

    2006-01-01

    Two divided visual field lexical decision experiments were conducted to examine the role of the cerebral hemispheres in transposed-letter similarity effects. In Experiment 1, we created two types of nonwords: nonadjacent transposed-letter nonwords ("TRADEGIA"; the base word was "TRAGEDIA," the Spanish for "TRAGEDY") and two-letter different…

  19. Evaluating the protein coding potential of exonized transposable element sequences

    PubMed Central

    Piriyapongsa, Jittima; Rutledge, Mark T; Patel, Sanil; Borodovsky, Mark; Jordan, I King

    2007-01-01

    Background Transposable element (TE) sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS) and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM) approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently exonized but unlikely to

  20. A non-autonomous insect piggyBac trasposable element is mobile in tobacco

    USDA-ARS?s Scientific Manuscript database

    The piggyBac transposable element, originally isolated from a virus in an insect cell line, is a valuable molecular tool for transgenesis and mutagenesis of invertebrates. For heterologous transgenesis in a variety of mammals, transfer of the piggyBac transposable element from an ectopic plasmid onl...

  1. Transposable Element Genomic Fissuring in Pyrenophora teres Is Associated With Genome Expansion and Dynamics of Host–Pathogen Genetic Interactions

    PubMed Central

    Syme, Robert A.; Martin, Anke; Wyatt, Nathan A.; Lawrence, Julie A.; Muria-Gonzalez, Mariano J.; Friesen, Timothy L.; Ellwood, Simon R.

    2018-01-01

    Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable elements (TEs), a process that isolates blocks of genic sequence. The phenomenon is particularly pronounced in PTT, which has a larger, more repetitive genome than PTM and more recent transposon activity measured by the frequency and size of genome fissures. PTT has a longer cultivated host association and, notably, a greater range of host–pathogen genetic interactions compared to other Pyrenophora spp., a property which associates better with genome size than pathogen lifestyle. The two forms possess similar complements of TE families with Tc1/Mariner and LINE-like Tad-1 elements more abundant in PTT. Tad-1 was only detectable as vestigial fragments in PTM and, within the forms, differences in genome sizes and the presence and absence of several TE families indicated recent lineage invasions. Gene differences between P. teres forms are mainly associated with gene-sparse regions near or within TE-rich regions, with many genes possessing characteristics of fungal effectors. Instances of gene interruption by transposons resulting in pseudogenization were detected in PTT. In addition, both forms have a large complement of secondary metabolite gene clusters indicating significant capacity to produce an array of different molecules. This study provides genomic resources for functional genetics to help

  2. Families of transposable elements, population structure and the origin of species.

    PubMed

    Jurka, Jerzy; Bao, Weidong; Kojima, Kenji K

    2011-09-19

    Eukaryotic genomes harbor diverse families of repetitive DNA derived from transposable elements (TEs) that are able to replicate and insert into genomic DNA. The biological role of TEs remains unclear, although they have profound mutagenic impact on eukaryotic genomes and the origin of repetitive families often correlates with speciation events. We present a new hypothesis to explain the observed correlations based on classical concepts of population genetics. The main thesis presented in this paper is that the TE-derived repetitive families originate primarily by genetic drift in small populations derived mostly by subdivisions of large populations into subpopulations. We outline the potential impact of the emerging repetitive families on genetic diversification of different subpopulations, and discuss implications of such diversification for the origin of new species. Several testable predictions of the hypothesis are examined. First, we focus on the prediction that the number of diverse families of TEs fixed in a representative genome of a particular species positively correlates with the cumulative number of subpopulations (demes) in the historical metapopulation from which the species has emerged. Furthermore, we present evidence indicating that human AluYa5 and AluYb8 families might have originated in separate proto-human subpopulations. We also revisit prior evidence linking the origin of repetitive families to mammalian phylogeny and present additional evidence linking repetitive families to speciation based on mammalian taxonomy. Finally, we discuss evidence that mammalian orders represented by the largest numbers of species may be subject to relatively recent population subdivisions and speciation events. The hypothesis implies that subdivision of a population into small subpopulations is the major step in the origin of new families of TEs as well as of new species. The origin of new subpopulations is likely to be driven by the availability of new

  3. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates

    PubMed Central

    2010-01-01

    Background Transposable elements (TEs) have played an important role in the diversification and enrichment of mammalian transcriptomes through various mechanisms such as exonization and intronization (the birth of new exons/introns from previously intronic/exonic sequences, respectively), and insertion into first and last exons. However, no extensive analysis has compared the effects of TEs on the transcriptomes of mammals, non-mammalian vertebrates and invertebrates. Results We analyzed the influence of TEs on the transcriptomes of five species, three invertebrates and two non-mammalian vertebrates. Compared to previously analyzed mammals, there were lower levels of TE introduction into introns, significantly lower numbers of exonizations originating from TEs and a lower percentage of TE insertion within the first and last exons. Although the transcriptomes of vertebrates exhibit significant levels of exonization of TEs, only anecdotal cases were found in invertebrates. In vertebrates, as in mammals, the exonized TEs are mostly alternatively spliced, indicating that selective pressure maintains the original mRNA product generated from such genes. Conclusions Exonization of TEs is widespread in mammals, less so in non-mammalian vertebrates, and very low in invertebrates. We assume that the exonization process depends on the length of introns. Vertebrates, unlike invertebrates, are characterized by long introns and short internal exons. Our results suggest that there is a direct link between the length of introns and exonization of TEs and that this process became more prevalent following the appearance of mammals. PMID:20525173

  4. T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data.

    PubMed

    Fiston-Lavier, Anna-Sophie; Barrón, Maite G; Petrov, Dmitri A; González, Josefa

    2015-02-27

    Transposable elements (TEs) constitute the most active, diverse and ancient component in a broad range of genomes. Complete understanding of genome function and evolution cannot be achieved without a thorough understanding of TE impact and biology. However, in-depth analysis of TEs still represents a challenge due to the repetitive nature of these genomic entities. In this work, we present a broadly applicable and flexible tool: T-lex2. T-lex2 is the only available software that allows routine, automatic and accurate genotyping of individual TE insertions and estimation of their population frequencies both using individual strain and pooled next-generation sequencing data. Furthermore, T-lex2 also assesses the quality of the calls allowing the identification of miss-annotated TEs and providing the necessary information to re-annotate them. The flexible and customizable design of T-lex2 allows running it in any genome and for any type of TE insertion. Here, we tested the fidelity of T-lex2 using the fly and human genomes. Overall, T-lex2 represents a significant improvement in our ability to analyze the contribution of TEs to genome function and evolution as well as learning about the biology of TEs. T-lex2 is freely available online at http://sourceforge.net/projects/tlex. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Interaction of the Enhancer of White-Apricot with Transposable Element Alleles at the White Locus in Drosophila Melanogaster

    PubMed Central

    Birchler, J. A.; Hiebert, J. C.

    1989-01-01

    The Enhancer of w(a) [E(w(a))] mutation was shown to interact strongly with 4 of 41 tested alleles of the white (w) eye color locus. All four of the affected w alleles result from the insertion of a transposable element. E(w(a)) was further localized cytogenetically. The locus lies between the breakpoints of T(Y;2)L11 and T(Y;2)H137 (section 60) in 2R. The original mutation was shown to be antimorphic on the basis of its action in the presence of additional normal copies and the ability to revert the original allele to one that mimics the effect of a deficiency for the locus. The RNA transcribed from w(a) was analyzed from flies segregating for E(w(a)) and normal. The low level of normal functional messenger RNA present in white-apricot is reduced further in Enhancer homozygotes. Total copia RNA was also examined on Northern analyses from the segregating population but no quantitative change in the major copia RNA was produced by E(w(a)) homozygotes compared to normal. PMID:2471668

  6. Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes

    PubMed Central

    Marburger, Sarah; Alexandrou, Markos A.; Creer, Simon

    2018-01-01

    Genome size varies significantly across eukaryotic taxa and the largest changes are typically driven by macro-mutations such as whole genome duplications (WGDs) and proliferation of repetitive elements. These two processes may affect the evolutionary potential of lineages by increasing genetic variation and changing gene expression. Here, we elucidate the evolutionary history and mechanisms underpinning genome size variation in a species-rich group of Neotropical catfishes (Corydoradinae) with extreme variation in genome size—0.6 to 4.4 pg per haploid cell. First, genome size was quantified in 65 species and mapped onto a novel fossil-calibrated phylogeny. Two evolutionary shifts in genome size were identified across the tree—the first between 43 and 49 Ma (95% highest posterior density (HPD) 36.2–68.1 Ma) and the second at approximately 19 Ma (95% HPD 15.3–30.14 Ma). Second, restriction-site-associated DNA (RAD) sequencing was used to identify potential WGD events and quantify transposable element (TE) abundance in different lineages. Evidence of two lineage-scale WGDs was identified across the phylogeny, the first event occurring between 54 and 66 Ma (95% HPD 42.56–99.5 Ma) and the second at 20–30 Ma (95% HPD 15.3–45 Ma) based on haplotype numbers per contig and between 35 and 44 Ma (95% HPD 30.29–64.51 Ma) and 20–30 Ma (95% HPD 15.3–45 Ma) based on SNP read ratios. TE abundance increased considerably in parallel with genome size, with a single TE-family (TC1-IS630-Pogo) showing several increases across the Corydoradinae, with the most recent at 20–30 Ma (95% HPD 15.3–45 Ma) and an older event at 35–44 Ma (95% HPD 30.29–64.51 Ma). We identified signals congruent with two WGD duplication events, as well as an increase in TE abundance across different lineages, making the Corydoradinae an excellent model system to study the effects of WGD and TEs on genome and organismal evolution. PMID:29445022

  7. The epigenetic control of transposable elements and imprinted genes in newborns is affected by the mode of conception: ART versus spontaneous conception without underlying infertility.

    PubMed

    Choux, C; Binquet, C; Carmignac, V; Bruno, C; Chapusot, C; Barberet, J; Lamotte, M; Sagot, P; Bourc'his, D; Fauque, P

    2018-02-01

    Do assisted reproductive technologies alter DNA methylation and/or transcription of transposable elements and imprinted genes in cord blood and placenta? After ART, DNA methylation and/or transcription changes of some transposable elements and imprinted genes were found in placenta samples while transcription modifications for some transposable elements were also discovered in cord blood. Recent studies have confirmed the increased risk of placenta-related adverse pregnancy outcomes and the excess of imprinted disorders with abnormal methylation patterns after ART, which raises the issue of a potential ART-induced epigenetic risk. A total of 51 IVF/ICSI (15 conventional and 36 ICSI) singleton pregnancies were prospectively included from January 2013 to April 2015 and compared to 48 spontaneously conceived singleton pregnancies. The DNA methylation and transcription of three imprinted loci (H19/IGF2, KCNQ1OT1 and SNURF DMRs) and four transposon families (LINE-1, ERVFRD, AluYa5 and ERVW) in cord blood and placenta obtained at birth were assessed by pyrosequencing and quantitative RT-PCR, respectively. All data were adjusted for gestational age at delivery, sex of the newborn, parity and maternal age. DNA methylation levels of H19/IGF2, KCNQ1OT1, LINE-1Hs and ERVFRD-1 were significantly lower in IVF/ICSI placentas than in control placentas, while there was no difference for cord blood. Moreover, the expression of ERVFRD-1 and LINE-1 ORF2 in cord blood and ERVFRD-1 in placenta was lower in the IVF/ICSI group than in controls. The expression of ERVFRD-1 in placenta correlated positively with birth weight and placenta weight, but only in the control group, thus pointing to the potential deregulation of syncytin function after ART. N/A. The control group of fertile couples having conceived within 1 year prevented us from deciphering the distinct roles of ART and infertility. These novel findings of ERVFRD (syncytin-2) expression correlating with birth weight and placenta

  8. Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes.

    PubMed

    Rius, Nuria; Guillén, Yolanda; Delprat, Alejandra; Kapusta, Aurélie; Feschotte, Cédric; Ruiz, Alfredo

    2016-05-10

    Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy.

  9. Lateralization of high-frequency transposed stimuli under conditions of binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2005-04-01

    The purpose of this study was to determine whether binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs rather than extents of laterality, suggested that high-frequency transposed stimuli might be immune to binaural interference effects resulting from the addition of a spectrally-remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets can, indeed, be susceptible to binaural interference. High-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did Gaussian noise targets presented in isolation. That is, the enhanced potency of ITDs conveyed by transposed stimuli persisted even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for binaural interference obtained with conventional Gaussian noise targets but generally over-predicted the amounts of interference found with the transposed targets.

  10. Orthodontic Intervention to Impacted and Transposed Lower Canines

    PubMed Central

    Kılıç, Nihat

    2017-01-01

    Impacted and transposed teeth cause serious difficulties in tooth eruption and movement as well as esthetic and functional outcomes. Proper treatment planning including good biomechanical control is essential in order to avoid side effects during traction and aligning of the impacted and/or transposed teeth. The purpose of the present study was to present a successfully treated female patient having transposed and impacted lower canines by means of a modified lingual arch and fixed orthodontic appliance. A female patient aged 13 years and 9 months presented to the orthodontic department with a chief compliant of bilateral spacing and missing teeth in mandibular dentition. After leveling and creating sufficient space in the mandibular arch for the canines, a modified lingual arch was cemented to the mandibular first molars. The lingual arch had two hooks extending to the distobuccal areas of the canine spaces. Elastic chains were applied between the hooks on the lingual arch and the ligatures tied to the attachments on the canine crowns. The light forces generated by elastic materials caused impacted canines to erupt and tend towards their own spaces in the dental arch. As a result, impacted and transposed lower canines were properly positioned in their spaces, and the treatment results were stable during the retention period. PMID:28540090

  11. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants.

    PubMed

    Wang, Dong; Qu, Zhipeng; Yang, Lan; Zhang, Qingzhu; Liu, Zhi-Hong; Do, Trung; Adelson, David L; Wang, Zhen-Yu; Searle, Iain; Zhu, Jian-Kang

    2017-04-01

    Noncoding RNAs have been extensively described in plant and animal transcriptomes by using high-throughput sequencing technology. Of these noncoding RNAs, a growing number of long intergenic noncoding RNAs (lincRNAs) have been described in multicellular organisms, however the origins and functions of many lincRNAs remain to be explored. In many eukaryotic genomes, transposable elements (TEs) are widely distributed and often account for large fractions of plant and animal genomes yet the contribution of TEs to lincRNAs is largely unknown. By using strand-specific RNA-sequencing, we profiled the expression patterns of lincRNAs in Arabidopsis, rice and maize, and identified 47 611 and 398 TE-associated lincRNAs (TE-lincRNAs), respectively. TE-lincRNAs were more often derived from retrotransposons than DNA transposons and as retrotransposon copy number in both rice and maize genomes so did TE-lincRNAs. We validated the expression of these TE-lincRNAs by strand-specific RT-PCR and also demonstrated tissue-specific transcription and stress-induced TE-lincRNAs either after salt, abscisic acid (ABA) or cold treatments. For Arabidopsis TE-lincRNA11195, mutants had reduced sensitivity to ABA as demonstrated by longer roots and higher shoot biomass when compared to wild-type. Finally, by altering the chromatin state in the Arabidopsis chromatin remodelling mutant ddm1, unique lincRNAs including TE-lincRNAs were generated from the preceding untranscribed regions and interestingly inherited in a wild-type background in subsequent generations. Our findings not only demonstrate that TE-associated lincRNAs play important roles in plant abiotic stress responses but lincRNAs and TE-lincRNAs might act as an adaptive reservoir in eukaryotes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata

    PubMed Central

    2012-01-01

    Background Transposable elements (TEs) are major contributors to genome evolution. One factor that influences their evolutionary dynamics is whether their host reproduces through selfing or through outcrossing. According to the recombinational spreading hypothesis, for instance, TEs can spread more easily in outcrossing species through recombination, and should thus be less abundant in selfing species. We here studied the distribution and evolutionary dynamics of TE families in the predominantly selfing plant Arabidopsis thaliana and its close outcrossing relative Arabidopsis lyrata on a genome-wide scale. We characterized differences in TE abundance between them and asked which, if any, existing hypotheses about TE abundances may explain these differences. Results We identified 1,819 TE families representing all known classes of TEs in both species, and found three times more copies in the outcrossing A. lyrata than in the predominantly selfing A. thaliana, as well as ten times more TE families unique to A. lyrata. On average, elements in A. lyrata are younger than elements in A. thaliana. In particular, A. thaliana shows a marked decrease in element number that occurred during the most recent 10% of the time interval since A. thaliana split from A. lyrata. This most recent period in the evolution of A. thaliana started approximately 500,000 years ago, assuming a splitting time of 5 million years ago, and coincides with the time at which predominant selfing originated. Conclusions Our results indicate that the mating system may be important for determining TE copy number, and that selfing species are likely to have fewer TEs. PMID:22313744

  13. TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION

    PubMed Central

    Allen, Genevera I.; Tibshirani, Robert

    2015-01-01

    Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility. PMID:26877823

  14. TRANSPOSABLE REGULARIZED COVARIANCE MODELS WITH AN APPLICATION TO MISSING DATA IMPUTATION.

    PubMed

    Allen, Genevera I; Tibshirani, Robert

    2010-06-01

    Missing data estimation is an important challenge with high-dimensional data arranged in the form of a matrix. Typically this data matrix is transposable , meaning that either the rows, columns or both can be treated as features. To model transposable data, we present a modification of the matrix-variate normal, the mean-restricted matrix-variate normal , in which the rows and columns each have a separate mean vector and covariance matrix. By placing additive penalties on the inverse covariance matrices of the rows and columns, these so called transposable regularized covariance models allow for maximum likelihood estimation of the mean and non-singular covariance matrices. Using these models, we formulate EM-type algorithms for missing data imputation in both the multivariate and transposable frameworks. We present theoretical results exploiting the structure of our transposable models that allow these models and imputation methods to be applied to high-dimensional data. Simulations and results on microarray data and the Netflix data show that these imputation techniques often outperform existing methods and offer a greater degree of flexibility.

  15. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice

    PubMed Central

    Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C.; Cao, Xiaofeng

    2014-01-01

    Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078

  16. Loss-of-function of a ubiquitin-related modifier promotes the mobilization of the active MITE mPing.

    PubMed

    Tsukiyama, Takuji; Teramoto, Shota; Yasuda, Kanako; Horibata, Akira; Mori, Nanako; Okumoto, Yutaka; Teraishi, Masayoshi; Saito, Hiroki; Onishi, Akiko; Tamura, Kanako; Tanisaka, Takatoshi

    2013-05-01

    Miniature inverted-repeat transposable elements (MITEs) are widespread in both prokaryotic and eukaryotic genomes, where their copy numbers can attain several thousands. Little is known, however, about the genetic factor(s) affecting their transpositions. Here, we show that disruption of a gene encoding ubiquitin-like protein markedly enhances the transposition activity of a MITE mPing in intact rice plants without any exogenous stresses. We found that the transposition activity of mPing is far higher in the lines harboring a non-functional allele at the Rurm1 (Rice ubiquitin-related modifier-1) locus than in the wild-type line. Although the alteration of cytosine methylation pattern triggers the activation of transposable elements under exogenous stress conditions, the methylation degrees in the whole genome, the mPing-body region, and the mPing-flanking regions of the non-functional Rurm1 line were unchanged. This study provides experimental evidence for one of the models of genome shock theory that genetic accidents within cells enhance the transposition activities of transposable elements.

  17. Transposable Elements as Stress Adaptive Capacitors Induce Genomic Instability in Fungal Pathogen Magnaporthe oryzae

    PubMed Central

    Chadha, Sonia; Sharma, Mradul

    2014-01-01

    A fundamental problem in fungal pathogenesis is to elucidate the evolutionary forces responsible for genomic rearrangements leading to races with fitter genotypes. Understanding the adaptive evolutionary mechanisms requires identification of genomic components and environmental factors reshaping the genome of fungal pathogens to adapt. Herein, Magnaporthe oryzae, a model fungal plant pathogen is used to demonstrate the impact of environmental cues on transposable elements (TE) based genome dynamics. For heat shock and copper stress exposed samples, eight TEs belonging to class I and II family were employed to obtain DNA profiles. Stress induced mutant bands showed a positive correlation with dose/duration of stress and provided evidences of TEs role in stress adaptiveness. Further, we demonstrate that genome dynamics differ for the type/family of TEs upon stress exposition and previous reports of stress induced MAGGY transposition has underestimated the role of TEs in M. oryzae. Here, we identified Pyret, MAGGY, Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 as contributors of high genomic instability in M. oryzae in respective order. Sequencing of mutated bands led to the identification of LTR-retrotransposon sequences within regulatory regions of psuedogenes. DNA transposon Pot3 was identified in the coding regions of chromatin remodelling protein containing tyrosinase copper-binding and PWWP domains. LTR-retrotransposons Pyret and MAGGY are identified as key components responsible for the high genomic instability and perhaps these TEs are utilized by M. oryzae for its acclimatization to adverse environmental conditions. Our results demonstrate how common field stresses change genome dynamics of pathogen and provide perspective to explore the role of TEs in genome adaptability, signalling network and its impact on the virulence of fungal pathogens. PMID:24709911

  18. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements

    PubMed Central

    Szitenberg, Amir; Cha, Soyeon; Opperman, Charles H.; Bird, David M.; Blaxter, Mark L.; Lunt, David H.

    2016-01-01

    Abstract Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host’s genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes. PMID:27566762

  19. The Evolution of Tyrosine-Recombinase Elements in Nematoda

    PubMed Central

    Szitenberg, Amir; Koutsovoulos, Georgios; Blaxter, Mark L.; Lunt, David H.

    2014-01-01

    Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum. PMID:25197791

  20. The evolution of tyrosine-recombinase elements in Nematoda.

    PubMed

    Szitenberg, Amir; Koutsovoulos, Georgios; Blaxter, Mark L; Lunt, David H

    2014-01-01

    Transposable elements can be categorised into DNA and RNA elements based on their mechanism of transposition. Tyrosine recombinase elements (YREs) are relatively rare and poorly understood, despite sharing characteristics with both DNA and RNA elements. Previously, the Nematoda have been reported to have a substantially different diversity of YREs compared to other animal phyla: the Dirs1-like YRE retrotransposon was encountered in most animal phyla but not in Nematoda, and a unique Pat1-like YRE retrotransposon has only been recorded from Nematoda. We explored the diversity of YREs in Nematoda by sampling broadly across the phylum and including 34 genomes representing the three classes within Nematoda. We developed a method to isolate and classify YREs based on both feature organization and phylogenetic relationships in an open and reproducible workflow. We also ensured that our phylogenetic approach to YRE classification identified truncated and degenerate elements, informatively increasing the number of elements sampled. We identified Dirs1-like elements (thought to be absent from Nematoda) in the nematode classes Enoplia and Dorylaimia indicating that nematode model species do not adequately represent the diversity of transposable elements in the phylum. Nematode Pat1-like elements were found to be a derived form of another Pat1-like element that is present more widely in animals. Several sequence features used widely for the classification of YREs were found to be homoplasious, highlighting the need for a phylogenetically-based classification scheme. Nematode model species do not represent the diversity of transposable elements in the phylum.

  1. Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from Transposable Elements.

    PubMed

    Joly-Lopez, Zoé; Hoen, Douglas R; Blanchette, Mathieu; Bureau, Thomas E

    2016-08-01

    Once perceived as merely selfish, transposable elements (TEs) are now recognized as potent agents of adaptation. One way TEs contribute to evolution is through TE exaptation, a process whereby TEs, which persist by replicating in the genome, transform into novel host genes, which persist by conferring phenotypic benefits. Known exapted TEs (ETEs) contribute diverse and vital functions, and may facilitate punctuated equilibrium, yet little is known about this process. To better understand TE exaptation, we designed an approach to resolve the phylogenetic context and timing of exaptation events and subsequent patterns of ETE diversification. Starting with known ETEs, we search in diverse genomes for basal ETEs and closely related TEs, carefully curate the numerous candidate sequences, and infer detailed phylogenies. To distinguish TEs from ETEs, we also weigh several key genomic characteristics including repetitiveness, terminal repeats, pseudogenic features, and conserved domains. Applying this approach to the well-characterized plant ETEs MUG and FHY3, we show that each group is paraphyletic and we argue that this pattern demonstrates that each originated in not one but multiple exaptation events. These exaptations and subsequent ETE diversification occurred throughout angiosperm evolution including the crown group expansion, the angiosperm radiation, and the primitive evolution of angiosperms. In addition, we detect evidence of several putative novel ETE families. Our findings support the hypothesis that TE exaptation generates novel genes more frequently than is currently thought, often coinciding with key periods of evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis.

    PubMed

    Dinh, Thanh Theresa; Gao, Lei; Liu, Xigang; Li, Dongming; Li, Shengben; Zhao, Yuanyuan; O'Leary, Michael; Le, Brandon; Schmitz, Robert J; Manavella, Pablo A; Manavella, Pablo; Li, Shaofang; Weigel, Detlef; Pontes, Olga; Ecker, Joseph R; Chen, Xuemei

    2014-07-01

    RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.

  3. HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis.

    PubMed

    Liu, Xuncheng; Yu, Chun-Wei; Duan, Jun; Luo, Ming; Wang, Koching; Tian, Gang; Cui, Yuhai; Wu, Keqiang

    2012-01-01

    The molecular mechanism of how the histone deacetylase HDA6 participates in maintaining transposable element (TE) silencing in Arabidopsis (Arabidopsis thaliana) is not yet defined. In this study, we show that a subset of TEs was transcriptionally reactivated and that TE reactivation was associated with elevated histone H3 and H4 acetylation as well as increased H3K4Me3 and H3K4Me2 in hda6 mutants. Decreased DNA methylation of the TEs was also detected in hda6 mutants, suggesting that HDA6 silences the TEs by regulating histone acetylation and methylation as well as the DNA methylation status of the TEs. Similarly, transcripts of some of these TEs were also increased in the methyltransferase1 (met1) mutant, with decreased DNA methylation. Furthermore, H4 acetylation, H3K4Me3, H3K4Me2, and H3K36Me2 were enriched at the coregulated TEs in the met1 and hda6 met1 mutants. Protein-protein interaction analysis indicated that HDA6 physically interacts with MET1 in vitro and in vivo, and further deletion analysis demonstrated that the carboxyl-terminal region of HDA6 and the bromo-adjacent homology domain of MET1 were responsible for the interaction. These results suggested that HDA6 and MET1 interact directly and act together to silence TEs by modulating DNA methylation, histone acetylation, and histone methylation status.

  4. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs.

    PubMed

    Hutchins, Andrew Paul; Pei, Duanqing

    Transposable elements (TEs) are mobile genomic sequences of DNA capable of autonomous and non-autonomous duplication. TEs have been highly successful, and nearly half of the human genome now consists of various families of TEs. Originally thought to be non-functional, these elements have been co-opted by animal genomes to perform a variety of physiological functions ranging from TE-derived proteins acting directly in normal biological functions, to innovations in transcription factor logic and influence on epigenetic control of gene expression. During embryonic development, when the genome is epigenetically reprogrammed and DNA-demethylated, TEs are released from repression and show embryonic stage-specific expression, and in human and mouse embryos, intact TE-derived endogenous viral particles can even be detected. A similar process occurs during the reprogramming of somatic cells to pluripotent cells: When the somatic DNA is demethylated, TEs are released from repression. In embryonic stem cells (ESCs), where DNA is hypomethylated, an elaborate system of epigenetic control is employed to suppress TEs, a system that often overlaps with normal epigenetic control of ESC gene expression. Finally, many long non-coding RNAs (lncRNAs) involved in normal ESC function and those assisting or impairing reprogramming contain multiple TEs in their RNA. These TEs may act as regulatory units to recruit RNA-binding proteins and epigenetic modifiers. This review covers how TEs are interlinked with the epigenetic machinery and lncRNAs, and how these links influence each other to modulate aspects of ESCs, embryogenesis, and somatic cell reprogramming.

  5. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs

    PubMed Central

    Glinsky, Gennadi V.

    2015-01-01

    Despite significant progress in the structural and functional characterization of the human genome, understanding of the mechanisms underlying the genetic basis of human phenotypic uniqueness remains limited. Here, I report that transposable element-derived sequences, most notably LTR7/HERV-H, LTR5_Hs, and L1HS, harbor 99.8% of the candidate human-specific regulatory loci (HSRL) with putative transcription factor-binding sites in the genome of human embryonic stem cells (hESC). A total of 4,094 candidate HSRL display selective and site-specific binding of critical regulators (NANOG [Nanog homeobox], POU5F1 [POU class 5 homeobox 1], CCCTC-binding factor [CTCF], Lamin B1), and are preferentially located within the matrix of transcriptionally active DNA segments that are hypermethylated in hESC. hESC-specific NANOG-binding sites are enriched near the protein-coding genes regulating brain size, pluripotency long noncoding RNAs, hESC enhancers, and 5-hydroxymethylcytosine-harboring regions immediately adjacent to binding sites. Sequences of only 4.3% of hESC-specific NANOG-binding sites are present in Neanderthals’ genome, suggesting that a majority of these regulatory elements emerged in Modern Humans. Comparisons of estimated creation rates of novel TF-binding sites revealed that there was 49.7-fold acceleration of creation rates of NANOG-binding sites in genomes of Chimpanzees compared with the mouse genomes and further 5.7-fold acceleration in genomes of Modern Humans compared with the Chimpanzees genomes. Preliminary estimates suggest that emergence of one novel NANOG-binding site detectable in hESC required 466 years of evolution. Pathway analysis of coding genes that have hESC-specific NANOG-binding sites within gene bodies or near gene boundaries revealed their association with physiological development and functions of nervous and cardiovascular systems, embryonic development, behavior, as well as development of a diverse spectrum of pathological conditions

  6. Distribution of Unlinked Transpositions of a Ds Element from a T-DNA Locus on Tomato Chromosome 4

    PubMed Central

    Briza, J.; Carroll, B. J.; Klimyuk, V. I.; Thomas, C. M.; Jones, D. A.; Jones, JDG.

    1995-01-01

    In maize, receptor sites for unlinked transpositions of Activator (Ac) elements are not distributed randomly. To test whether the same is true in tomato, the receptor sites for a Dissociation (Ds) element derived from Ac, were mapped for 26 transpositions unlinked to a donor T-DNA locus on chromosome 4. Four independent transposed Dss mapped to sites on chromosome 4 genetically unlinked to the donor T-DNA, consistent with a preference for transposition to unlinked sites on the same chromosome as opposed to sites on other chromosomes. There was little preference among the nondonor chromosomes, except perhaps for chromosome 2, which carried seven transposed Dss, but these could not be proven to be independent. However, these data, when combined with those from other studies in tomato examining the distribution of transposed Acs or Dss among nondonor chromosomes, suggest there may be absolute preferences for transposition irrespective of the chromosomal location of the donor site. If true, transposition to nondonor chromosomes in tomato would differ from that in maize, where the preference seems to be determined by the spatial arrangement of chromosomes in the interphase nucleus. The tomato lines carrying Ds elements at known locations are available for targeted transposon tagging experiments. PMID:8536985

  7. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria).

    PubMed

    Dziewit, Lukasz; Baj, Jadwiga; Szuplewska, Magdalena; Maj, Anna; Tabin, Mateusz; Czyzkowska, Anna; Skrzypczyk, Grazyna; Adamczuk, Marcin; Sitarek, Tomasz; Stawinski, Piotr; Tudek, Agnieszka; Wanasz, Katarzyna; Wardal, Ewa; Piechucka, Ewa; Bartosik, Dariusz

    2012-01-01

    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial

  8. Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria)

    PubMed Central

    Dziewit, Lukasz; Baj, Jadwiga; Szuplewska, Magdalena; Maj, Anna; Tabin, Mateusz; Czyzkowska, Anna; Skrzypczyk, Grazyna; Adamczuk, Marcin; Sitarek, Tomasz; Stawinski, Piotr; Tudek, Agnieszka; Wanasz, Katarzyna; Wardal, Ewa; Piechucka, Ewa; Bartosik, Dariusz

    2012-01-01

    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial

  9. Phylogenetic Conflict in Bears Identified by Automated Discovery of Transposable Element Insertions in Low-Coverage Genomes

    PubMed Central

    Gallus, Susanne; Janke, Axel

    2017-01-01

    Abstract Phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high-throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) identified 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Analysis of single nucleotide substitutions in the flanking regions of the TEs shows that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, despite strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun, and sloth bear form a monophyletic clade, in which phylogenetic incongruence originates from incomplete lineage sorting. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it possible to confidently extract thousands of TE insertions even from low-coverage genomes (∼10×) of nonmodel organisms. This opens new possibilities for biologists to study phylogenies and evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation. PMID:28985298

  10. Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element.

    PubMed

    Christiansen, Guntram; Molitor, Carole; Philmus, Benjamin; Kurmayer, Rainer

    2008-08-01

    Blooms that are formed by cyanobacteria consist of toxic and nontoxic strains. The mechanisms that result in the occurrence of nontoxic strains are enigmatic. All the nontoxic strains of the filamentous cyanobacterium Planktothrix that were isolated from 9 European countries were found to have lost 90% of a large microcystin synthetase (mcy) gene cluster that encoded the synthesis of the toxic peptide microcystin (MC). Those strains still contain the flanking regions of the mcy gene cluster along with remnants of the transposable elements that are found in between. The majority of the strains still contain a gene coding for a distinct thioesterase type II (mcyT), which is putatively involved in MC synthesis. The insertional inactivation of mcyT in an MC-producing strain resulted in the reduction of MC synthesis by 94 +/- 2% (1 standard deviation). Nontoxic strains that occur in shallow lakes throughout Europe form a monophyletic lineage. A second lineage consists of strains that contain the mcy gene cluster but differ in their photosynthetic pigment composition, which is due to the occurrence of strains that contain phycocyanin or large amounts of phycoerythrin in addition to phycocyanin. Strains containing phycoerythrin typically occur in deep-stratified lakes. The rare occurrence of gene cluster deletion, paired with the evolutionary diversification of the lineages of strains that lost or still contain the mcy gene cluster, needs to be invoked in order to explain the absence or dominance of toxic cyanobacteria in various habitats.

  11. The Role of Small RNA-Based Epigenetic Silencing for Purifying Selection on Transposable Elements in Capsella grandiflora

    PubMed Central

    Horvath, Robert

    2017-01-01

    Abstract To avoid negative effects of transposable element (TE) proliferation, plants epigenetically silence TEs using a number of mechanisms, including RNA-directed DNA methylation. These epigenetic modifications can extend outside the boundaries of TE insertions and lead to silencing of nearby genes, resulting in a trade-off between TE silencing and interference with nearby gene regulation. Therefore, purifying selection is expected to remove silenced TE insertions near genes more efficiently and prevent their accumulation within a population. To explore how effects of TE silencing on gene regulation shapes purifying selection on TEs, we analyzed whole genome sequencing data from 166 individuals of a large population of the outcrossing species Capsella grandiflora. We found that most TEs are rare, and in chromosome arms, silenced TEs are exposed to stronger purifying selection than those that are not silenced by 24-nucleotide small RNAs, especially with increasing proximity to genes. An age-of-allele test of neutrality on a subset of TEs supports our inference of purifying selection on silenced TEs, suggesting that our results are robust to varying transposition rates. Our results provide new insights into the processes affecting the accumulation of TEs in an outcrossing species and support the view that epigenetic silencing of TEs results in a trade-off between preventing TE proliferation and interference with nearby gene regulation. We also suggest that in the centromeric and pericentromeric regions, the negative aspects of epigenetic TE silencing are missing. PMID:29036316

  12. Genomic Organization of the Drosophila Telomere RetrotransposableElements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, J.A.; DeBaryshe, P.G.; Traverse, K.L.

    2006-10-16

    The emerging sequence of the heterochromatic portion of the Drosophila melanogaster genome, with the most recent update of euchromatic sequence, gives the first genome-wide view of the chromosomal distribution of the telomeric retrotransposons, HeT-A, TART, and Tahre. As expected, these elements are entirely excluded from euchromatin, although sequence fragments of HeT-A and TART 3 untranslated regions are found in nontelomeric heterochromatin on the Y chromosome. The proximal ends of HeT-A/TART arrays appear to be a transition zone because only here do other transposable elements mix in the array. The sharp distinction between the distribution of telomeric elements and that ofmore » other transposable elements suggests that chromatin structure is important in telomere element localization. Measurements reported here show (1) D. melanogaster telomeres are very long, in the size range reported for inbred mouse strains (averaging 46 kb per chromosome end in Drosophila stock 2057). As in organisms with telomerase, their length varies depending on genotype. There is also slight under-replication in polytene nuclei. (2) Surprisingly, the relationship between the number of HeT-A and TART elements is not stochastic but is strongly correlated across stocks, supporting the idea that the two elements are interdependent. Although currently assembled portions of the HeT-A/TART arrays are from the most-proximal part of long arrays, {approx}61% of the total HeT-A sequence in these regions consists of intact, potentially active elements with little evidence of sequence decay, making it likely that the content of the telomere arrays turns over more extensively than has been thought.« less

  13. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species.

    PubMed

    Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin

    2014-06-20

    MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists

  14. Miniature Transposable Sequences Are Frequently Mobilized in the Bacterial Plant Pathogen Pseudomonas syringae pv. phaseolicola

    PubMed Central

    Bardaji, Leire; Añorga, Maite; Jackson, Robert W.; Martínez-Bilbao, Alejandro; Yanguas-Casás, Natalia; Murillo, Jesús

    2011-01-01

    Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10−5 and 1.1×10−6, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total

  15. Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola.

    PubMed

    Bardaji, Leire; Añorga, Maite; Jackson, Robert W; Martínez-Bilbao, Alejandro; Yanguas-Casás, Natalia; Murillo, Jesús

    2011-01-01

    Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10(-5) and 1.1×10(-6), depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total

  16. Phylogenetic Conflict in Bears Identified by Automated Discovery of Transposable Element Insertions in Low-Coverage Genomes.

    PubMed

    Lammers, Fritjof; Gallus, Susanne; Janke, Axel; Nilsson, Maria A

    2017-10-01

    Phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high-throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) identified 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Analysis of single nucleotide substitutions in the flanking regions of the TEs shows that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, despite strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun, and sloth bear form a monophyletic clade, in which phylogenetic incongruence originates from incomplete lineage sorting. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it possible to confidently extract thousands of TE insertions even from low-coverage genomes (∼10×) of nonmodel organisms. This opens new possibilities for biologists to study phylogenies and evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. The relative immunity of high-frequency transposed stimuli to low-frequency binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2004-05-01

    We have recently demonstrated that high-frequency transposed stimuli, having envelopes designed to provide high-frequency channels with information similar to that normally available in only low-frequency channels, yield threshold-ITDs and extents of laterality comparable to those obtained with conventional low-frequency stimuli. This enhanced potency of ITDs conveyed by high-frequency transposed stimuli, as compared to conventional high-frequency stimuli, suggested to us that ITDs conveyed by transposed stimuli might be relatively immune to the presence of low-frequency binaural interferers. To investigate this issue, threshold-ITDs and extents of laterality were measured with a variety of conventional and transposed targets centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs and reduced extents of laterality for the conventional high-frequency stimuli. In contrast, these interference effects were either greatly attenuated or absent for ITDs conveyed by the high-frequency transposed targets. The results will be discussed in the context of current models of binaural interference. [Work supported by NIH DC 04147, NIH DC04073, NIH DC 002304.

  18. Mammary Cancer and Activation of Transposable Elements

    DTIC Science & Technology

    2015-03-01

    regularly hold meetings. • Completed Y1 4-6 6. • Preliminary Methyl-MAPS analysis of pilot virgin samples • This material was never received. Based...construct the libraries for sequencing. A strategic decision was made to hold the material for validation, rather than attempt library construction. Y2 10...derived adipo- cytes and ADS-derived induced pluripotent stem cells (ADS-iPSCs) (19) and primary mouse ES cells to isolated sperm and oocytes (20). We

  19. Mammary Cancer and Activation of Transposable Elements

    DTIC Science & Technology

    2013-09-01

    formal monthly electronic lab meeting between Peaston lab and Edwards lab. And regularly hold meetings. • An informal schedule was set up with a plan...cytes and ADS-derived induced pluripotent stem cells (ADS-iPSCs) (19) and primary mouse ES cells to isolated sperm and oocytes (20). We selected an...051 59 5 92% H9-IMR90 5875 7 669 782 605 58 91% oocyte - ES cell (mouse) 4727 1 204 883 334 25 93% sperm - ES cell (mouse) 4580 4 364 748 1027 104 91

  20. Mammary Cancer and Activation of Transposable Elements

    DTIC Science & Technology

    2015-03-01

    EGFP). No other cell type in the mammary fat pad was observed to express EGFP. Wholemount and FACS analyses of mammary fat pads after involution from...were sacrificed for PI-MEC isolation in groups of up to 4 control or cancer-prone uniparous or triparous females. Both 4 th mammary fat pads were...to unknown reason (n=46), and smaller numbers of animals with various conditions (malocclusion, head tilt , dystocia, respiratory complaints, identity

  1. Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species

    PubMed Central

    Lorenzi, Hernan; Thiagarajan, Mathangi; Haas, Brian; Wortman, Jennifer; Hall, Neil; Caler, Elisabet

    2008-01-01

    Background Identification and mapping of repetitive elements is a key step for accurate gene prediction and overall structural annotation of genomes. During the assembly and annotation of three highly repetitive amoeba genomes, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens, we performed comparative sequence analysis to identify and map all class I and class II transposable elements in their sequences. Results Here, we report the identification of two novel Entamoeba-specific repeats: ERE1 and ERE2; ERE1 is spread across the three genomes and associated with different repeats in a species-specific manner, while ERE2 is unique to E. histolytica. We also report the identification of two novel subfamilies of LINE and SINE retrotransposons in E. dispar and provide evidence for how the different LINE and SINE subfamilies evolved in these species. Additionally, we found a putative transposase-coding gene in E. histolytica and E. dispar related to the mariner transposon Hydargos from E. invadens. The distribution of transposable elements in these genomes is markedly skewed with a tendency of forming clusters. More than 70% of the three genomes have a repeat density below their corresponding average value indicating that transposable elements are not evenly distributed. We show that repeats and repeat-clusters are found at syntenic break points between E. histolytica and E. dispar and hence, could work as recombination hot spots promoting genome rearrangements. Conclusion The mapping of all transposable elements found in these parasites shows that repeat coverage is up to three times higher than previously reported. LINE, ERE1 and mariner elements were present in the common ancestor to the three Entamoeba species while ERE2 was likely acquired by E. histolytica after its separation from E. dispar. We demonstrate that E. histolytica and E. dispar share their entire repertoire of LINE and SINE retrotransposons and that Eh_SINE3/Ed_SINE1 originated as a

  2. Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon.

    PubMed

    Mitra, Rupak; Li, Xianghong; Kapusta, Aurélie; Mayhew, David; Mitra, Robi D; Feschotte, Cédric; Craig, Nancy L

    2013-01-02

    A revelation of the genomic age has been the contributions of the mobile DNA segments called transposable elements to chromosome structure, function, and evolution in virtually all organisms. Substantial fractions of vertebrate genomes derive from transposable elements, being dominated by retroelements that move via RNA intermediates. Although many of these elements have been inactivated by mutation, several active retroelements remain. Vertebrate genomes also contain substantial quantities and a high diversity of cut-and-paste DNA transposons, but no active representative of this class has been identified in mammals. Here we show that a cut-and-paste element called piggyBat, which has recently invaded the genome of the little brown bat (Myotis lucifugus) and is a member of the piggyBac superfamily, is active in its native form in transposition assays in bat and human cultured cells, as well as in the yeast Saccharomyces cerevisiae. Our study suggests that some DNA transposons are still actively shaping some mammalian genomes and reveals an unprecedented opportunity to study the mechanism, regulation, and genomic impact of cut-and-paste transposition in a natural mammalian host.

  3. Measures of extents of laterality for high-frequency ``transposed'' stimuli under conditions of binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2005-09-01

    Our purpose in this study was to determine whether across-frequency binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs, rather than extents of laterality, suggested that high-frequency transposed stimuli might be ``immune'' to binaural interference effects resulting from the addition of a spectrally remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets are susceptible to binaural interference. Nevertheless, high-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did high-frequency Gaussian noise targets presented in isolation. That is, the ``enhanced potency'' of ITDs conveyed by transposed stimuli persisted, even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for across-frequency binaural interference obtained with conventional Gaussian noise targets but, in all but one case, overpredicted the amounts of interference found with the transposed targets.

  4. Evolutionary Dynamics of 5S rDNA and Recurrent Association of Transposable Elements in Electric Fish of the Family Gymnotidae (Gymnotiformes): The Case of Gymnotus mamiraua.

    PubMed

    da Silva, Maelin; Barbosa, Patricia; Artoni, Roberto F; Feldberg, Eliana

    2016-01-01

    Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome. © 2016 S. Karger AG, Basel.

  5. Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration

    PubMed Central

    Zhu, Wei; Kuo, Dwight; Nathanson, Jason; Satoh, Akira; Pao, Gerald M.; Yeo, Gene W.; Bryant, Susan V.; Voss, S. Randal; Gardiner, David M.; Hunter, Tony

    2012-01-01

    Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mammals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of salamander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration. In addition, higher genomic LINE-1 content was also detected in the limb regenerate when compared to that before amputation indicating that LINE-1 retrotransposition is indeed active during regeneration. Active LINE-1 retrotransposition has been suggested to have a potentially deleterious impact on genomic integrity. Silencing of activated LINE-1 by small RNAs has been reported to be part of the machinery aiming to maintain genomic integrity. Indeed, we were able to identify putative LINE-1-related piRNAs in the limb blastema. Transposable element-related piRNAs have been identified frequently in the germline in other organisms. Thus, we present here a scenario in which a unique germline-like state is established during axolotl limb regeneration, and the re-activation of LINE-1 may serve as a marker for cellular dedifferentiation in the early-stage of limb regeneration. PMID:22913491

  6. Identification of a recently active Prunus-specific non-autonomous Mutator element with considerable genome shaping force.

    PubMed

    Halász, Júlia; Kodad, Ossama; Hegedűs, Attila

    2014-07-01

    Miniature inverted-repeat transposable elements (MITEs) are known to contribute to the evolution of plants, but only limited information is available for MITEs in the Prunus genome. We identified a MITE that has been named Falling Stones, FaSt. All structural features (349-bp size, 82-bp terminal inverted repeats and 9-bp target site duplications) are consistent with this MITE being a putative member of the Mutator transposase superfamily. FaSt showed a preferential accumulation in the short AT-rich segments of the euchromatin region of the peach genome. DNA sequencing and pollination experiments have been performed to confirm that the nested insertion of FaSt into the S-haplotype-specific F-box gene of apricot resulted in the breakdown of self-incompatibility (SI). A bioinformatics-based survey of the known Rosaceae and other genomes and a newly designed polymerase chain reaction (PCR) assay verified the Prunoideae-specific occurrence of FaSt elements. Phylogenetic analysis suggested a recent activity of FaSt in the Prunus genome. The occurrence of a nested insertion in the apricot genome further supports the recent activity of FaSt in response to abiotic stress conditions. This study reports on a presumably active non-autonomous Mutator element in Prunus that exhibits a major indirect genome shaping force through inducing loss-of-function mutation in the SI locus. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Bigfoot. a new family of MITE elements characterized from the Medicago genus.

    PubMed

    Charrier, B; Foucher, F; Kondorosi, E; d'Aubenton-Carafa, Y; Thermes, C; Kondorosi, A; Ratet, P

    1999-05-01

    We have characterized from the legume plant Medicago a new family of miniature inverted-repeat transposable elements (MITE), called the Bigfoot transposable elements. Two of these insertion elements are present only in a single allele of two different M. sativa genes. Using a PCR strategy we have isolated 19 other Bigfoot elements from the M. sativa and M. truncatula genomes. They differ from the previously characterized MITEs by their sequence, a target site of 9 bp and a partially clustered genomic distribution. In addition, we show that they exhibit a significantly stable secondary structure. These elements may represent up to 0.1% of the genome of the outcrossing Medicago sativa but are present at a reduced copy number in the genome of the autogamous M. truncatula plant, revealing major differences in the genome organization of these two plants.

  8. There is no clam with coats in the calm coast: delimiting the transposed-letter priming effect.

    PubMed

    Duñabeitia, Jon Andoni; Perea, Manuel; Carreiras, Manuel

    2009-10-01

    In this article, we explore the transposed-letter priming effect (e.g., jugde-JUDGE vs. jupte-JUDGE), a phenomenon that taps into some key issues on how the brain encodes letter positions and has favoured the creation of new input coding schemes. However, almost all the empirical evidence from transposed-letter priming experiments comes from nonword primes (e.g., jugde-JUDGE). Indeed, previous evidence when using word-word pairs (e.g., causal-CASUAL) is not conclusive. Here, we conducted five masked priming lexical decision experiments that examined the relationship between pairs of real words that differed only in the transposition of two of their letters (e.g., CASUAL vs. CAUSAL). Results showed that, unlike transposed-letter nonwords, transposed-letter words do not seem to affect the identification time of their transposed-letter mates. Thus, prime lexicality is a key factor that modulates the magnitude of transposed-letter priming effects. These results are interpreted under the assumption of the existence of lateral inhibition processes occurring within the lexical level-which cancels out any orthographic facilitation due to the overlapping letters. We examine the implications of these findings for models of visual-word recognition.

  9. Transposed-Letter Priming across Inflectional Morpheme Boundaries

    ERIC Educational Resources Information Center

    Zargar, Ehsan Shafiee; Witzel, Naoko

    2017-01-01

    This study reports findings from two experiments testing whether a transposed-letter (TL) priming effect can be obtained when the transposition occurs across morphological boundaries. Previous studies have primarily tested derivationally complex words or compound words, but have not examined a more rule-based and productive morphological…

  10. The Role of piRNA-Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in Drosophila melanogaster

    PubMed Central

    Lee, Yuh Chwen G.

    2015-01-01

    The piwi-interacting RNAs (piRNA) are small RNAs that target selfish transposable elements (TEs) in many animal genomes. Until now, piRNAs’ role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known “Position-effect variegation”, heterochromatin induced by TEs can “spread” into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously unexplored, yet

  11. Enhancing interaural-delay-based extents of laterality at high frequencies by using ``transposed stimuli''

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2003-06-01

    An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency ``transposed'' stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.

  12. An efficient parallel-processing method for transposing large matrices in place.

    PubMed

    Portnoff, M R

    1999-01-01

    We have developed an efficient algorithm for transposing large matrices in place. The algorithm is efficient because data are accessed either sequentially in blocks or randomly within blocks small enough to fit in cache, and because the same indexing calculations are shared among identical procedures operating on independent subsets of the data. This inherent parallelism makes the method well suited for a multiprocessor computing environment. The algorithm is easy to implement because the same two procedures are applied to the data in various groupings to carry out the complete transpose operation. Using only a single processor, we have demonstrated nearly an order of magnitude increase in speed over the previously published algorithm by Gate and Twigg for transposing a large rectangular matrix in place. With multiple processors operating in parallel, the processing speed increases almost linearly with the number of processors. A simplified version of the algorithm for square matrices is presented as well as an extension for matrices large enough to require virtual memory.

  13. Orthodontic correction of a transposed maxillary canine and first premolar in the permanent dentition.

    PubMed

    Nishimura, Kazuaki; Nakao, Kimihisa; Aoki, Taijyu; Fuyamada, Mariko; Saito, Keisuke; Goto, Shigemi

    2012-10-01

    The patient was a 16-year-old Japanese girl whose chief complaints were crowding and transposition of the maxillary canine and first premolar. A setup model was used to preoperatively align the teeth in their transposed positions. The amount of postoperative reshaping was estimated for the occlusal surfaces of the teeth. However, the patient did not wish to have her teeth reduced by reshaping or to have composite materials for restorative camouflage. Because she strongly expected alignment of her teeth in the correct intra-arch position, her transposed teeth were corrected without extraction of the transposed teeth. Cone-beam computed tomography was used to obtain more detailed information about the transposition, and the direction of tooth movement was examined. Although the duration of the treatment was long, both the crowns and the roots of the transposed teeth were aligned correctly. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Applying transpose matrix on advanced encryption standard (AES) for database content

    NASA Astrophysics Data System (ADS)

    Manurung, E. B. P.; Sitompul, O. S.; Suherman

    2018-03-01

    Advanced Encryption Standard (AES) is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) and has been adopted by the U.S. government and is now used worldwide. This paper reports the impact of transpose matrix integration to AES. Transpose matrix implementation on AES is aimed at first stage of chypertext modifications for text based database security so that the confidentiality improves. The matrix is also able to increase the avalanche effect of the cryptography algorithm 4% in average.

  15. Feminist theorizing as 'transposed autobiography'.

    PubMed

    Hoogland, Renée C

    2007-01-01

    This piece considers personal investments endemic in academic writing, more specifically, in Lesbian Studies. Taking Elizabeth Bowen's phrase, "transposed autobiography," as a starting-point, the author briefly discusses the development of lesbian/straight feminist debates, and continues to explore the relative absence of lesbianism in current feminist and queer theorizing. Three 'moments' serve to explain the casting aside of lesbian desire: the subsidence of lesbian/straight feminist debates, the prevalence of 'race'/ethnicity in critical theorizing and the emergence of post-theoretical trends of thought.

  16. A novel mode of enhancer evolution: The Tal1 stem cell enhancer recruited a MIR element to specifically boost its activity

    PubMed Central

    Smith, Aileen M.; Sanchez, Maria-Jose; Follows, George A.; Kinston, Sarah; Donaldson, Ian J.; Green, Anthony R.; Göttgens, Berthold

    2008-01-01

    Altered cis-regulation is thought to underpin much of metazoan evolution, yet the underlying mechanisms remain largely obscure. The stem cell leukemia TAL1 (also known as SCL) transcription factor is essential for the normal development of blood stem cells and we have previously shown that the Tal1 +19 enhancer directs expression to hematopoietic stem cells, hematopoietic progenitors, and to endothelium. Here we demonstrate that an adjacent region 1 kb upstream (+18 element) is in an open chromatin configuration and carries active histone marks but does not function as an enhancer in transgenic mice. Instead, it boosts activity of the +19 enhancer both in stable transfection assays and during differentiation of embryonic stem (ES) cells carrying single-copy reporter constructs targeted to the Hprt locus. The +18 element contains a mammalian interspersed repeat (MIR) which is essential for the +18 function and which was transposed to the Tal1 locus ∼160 million years ago at the time of the mammalian/marsupial branchpoint. Our data demonstrate a previously unrecognized mechanism whereby enhancer activity is modulated by a transposon exerting a “booster” function which would go undetected by conventional transgenic approaches. PMID:18687876

  17. Ac-immobilized, a stable source of Activator transposase that mediates sporophytic and gametophytic excision of Dissociation elements in maize.

    PubMed

    Conrad, Liza J; Brutnell, Thomas P

    2005-12-01

    We have identified and characterized a novel Activator (Ac) element that is incapable of excision yet contributes to the canonical negative dosage effect of Ac. Cloning and sequence analysis of this immobilized Ac (Ac-im) revealed that it is identical to Ac with the exception of a 10-bp deletion of sequences at the left end of the element. In screens of approximately 6800 seeds, no germinal transpositions of Ac-im were detected. Importantly, Ac-im catalyzes germinal excisions of a Ds element resident at the r1 locus resulting in the recovery of independent transposed Ds insertions in approximately 4.5% of progeny kernels. Many of these transposition events occur during gametophytic development. Furthermore, we demonstrate that Ac-im transactivates multiple Ds insertions in somatic tissues including those in reporter alleles at bronze1, anthocyaninless1, and anthocyaninless2. We propose a model for the generation of Ac-im as an aberrant transposition event that failed to generate an 8-bp target site duplication and resulted in the deletion of Ac end sequences. We also discuss the utility of Ac-im in two-component Ac/Ds gene-tagging programs in maize.

  18. A SINE in the genome of the cephalochordate amphioxus is an Alu element

    PubMed Central

    Holland, Linda Z.

    2006-01-01

    Transposable elements of about 300 bp, termed “short interspersed nucleotide elements or SINEs are common in eukaryotes. However, Alu elements, SINEs containing restriction sites for the AluI enzyme, have been known only from primates. Here I report the first SINE found in the genome of the cephalochordate, amphioxus. It is an Alu element of 375 bp that does not share substantial identity with any genomic sequences in vertebrates. It was identified because it was located in the FoxD regulatory region in a cosmid derived from one individual, but absent from the two FoxD alleles of BACs from a second individual. However, searches of sequences of BACs and genomic traces from this second individual gave an estimate of 50-100 copies in the amphioxus genome. The finding of an Alu element in amphioxus raises the question of whether Alu elements in amphioxus and primates arose by convergent evolution or by inheritance from a common ancestor. Genome-wide analyses of transposable elements in amphioxus and other chordates such as tunicates, agnathans and cartilaginous fishes could well provide the answer. PMID:16733535

  19. The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine?

    PubMed

    Arensburger, Peter; Piégu, Benoît; Bigot, Yves

    2016-01-01

    Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.

  20. The Tc1/mariner transposable element family shapes genetic variation and gene expression in the protist Trichomonas vaginalis

    PubMed Central

    2014-01-01

    Background Trichomonas vaginalis is the most prevalent non-viral sexually transmitted parasite. Although the protist is presumed to reproduce asexually, 60% of its haploid genome contains transposable elements (TEs), known contributors to genome variability. The availability of a draft genome sequence and our collection of >200 global isolates of T. vaginalis facilitate the study and analysis of TE population dynamics and their contribution to genomic variability in this protist. Results We present here a pilot study of a subset of class II Tc1/mariner TEs that belong to the T. vaginalis Tvmar1 family. We report the genetic structure of 19 Tvmar1 loci, their ability to encode a full-length transposase protein, and their insertion frequencies in 94 global isolates from seven regions of the world. While most of the Tvmar1 elements studied exhibited low insertion frequencies, two of the 19 loci (locus 1 and locus 9) show high insertion frequencies of 1.00 and 0.96, respectively. The genetic structuring of the global populations identified by principal component analysis (PCA) of the Tvmar1 loci is in general agreement with published data based on genotyping, showing that Tvmar1 polymorphisms are a robust indicator of T. vaginalis genetic history. Analysis of expression of 22 genes flanking 13 Tvmar1 loci indicated significantly altered expression of six of the genes next to five Tvmar1 insertions, suggesting that the insertions have functional implications for T. vaginalis gene expression. Conclusions Our study is the first in T. vaginalis to describe Tvmar1 population dynamics and its contribution to genetic variability of the parasite. We show that a majority of our studied Tvmar1 insertion loci exist at very low frequencies in the global population, and insertions are variable between geographical isolates. In addition, we observe that low frequency insertion is related to reduced or abolished expression of flanking genes. While low insertion frequencies might be

  1. Orthographic Reading Deficits in Dyslexic Japanese Children: Examining the Transposed-Letter Effect in the Color-Word Stroop Paradigm

    PubMed Central

    Ogawa, Shino; Shibasaki, Masahiro; Isomura, Tomoko; Masataka, Nobuo

    2016-01-01

    In orthographic reading, the transposed-letter effect (TLE) is the perception of a transposed-letter position word such as “cholocate” as the correct word “chocolate.” Although previous studies on dyslexic children using alphabetic languages have reported such orthographic reading deficits, the extent of orthographic reading impairment in dyslexic Japanese children has remained unknown. This study examined the TLE in dyslexic Japanese children using the color-word Stroop paradigm comprising congruent and incongruent Japanese hiragana words with correct and transposed-letter positions. We found that typically developed children exhibited Stroop effects in Japanese hiragana words with both correct and transposed-letter positions, thus indicating the presence of TLE. In contrast, dyslexic children indicated Stroop effects in correct letter positions in Japanese words but not in transposed, which indicated an absence of the TLE. These results suggest that dyslexic Japanese children, similar to dyslexic children using alphabetic languages, may also have a problem with orthographic reading. PMID:27303331

  2. Orthographic Reading Deficits in Dyslexic Japanese Children: Examining the Transposed-Letter Effect in the Color-Word Stroop Paradigm.

    PubMed

    Ogawa, Shino; Shibasaki, Masahiro; Isomura, Tomoko; Masataka, Nobuo

    2016-01-01

    In orthographic reading, the transposed-letter effect (TLE) is the perception of a transposed-letter position word such as "cholocate" as the correct word "chocolate." Although previous studies on dyslexic children using alphabetic languages have reported such orthographic reading deficits, the extent of orthographic reading impairment in dyslexic Japanese children has remained unknown. This study examined the TLE in dyslexic Japanese children using the color-word Stroop paradigm comprising congruent and incongruent Japanese hiragana words with correct and transposed-letter positions. We found that typically developed children exhibited Stroop effects in Japanese hiragana words with both correct and transposed-letter positions, thus indicating the presence of TLE. In contrast, dyslexic children indicated Stroop effects in correct letter positions in Japanese words but not in transposed, which indicated an absence of the TLE. These results suggest that dyslexic Japanese children, similar to dyslexic children using alphabetic languages, may also have a problem with orthographic reading.

  3. Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs

    PubMed Central

    Kapusta, Aurélie; Zhuo, Xiaoyu; Ramsay, LeeAnn; Bourque, Guillaume; Yandell, Mark; Feschotte, Cédric

    2013-01-01

    Advances in vertebrate genomics have uncovered thousands of loci encoding long noncoding RNAs (lncRNAs). While progress has been made in elucidating the regulatory functions of lncRNAs, little is known about their origins and evolution. Here we explore the contribution of transposable elements (TEs) to the makeup and regulation of lncRNAs in human, mouse, and zebrafish. Surprisingly, TEs occur in more than two thirds of mature lncRNA transcripts and account for a substantial portion of total lncRNA sequence (∼30% in human), whereas they seldom occur in protein-coding transcripts. While TEs contribute less to lncRNA exons than expected, several TE families are strongly enriched in lncRNAs. There is also substantial interspecific variation in the coverage and types of TEs embedded in lncRNAs, partially reflecting differences in the TE landscapes of the genomes surveyed. In human, TE sequences in lncRNAs evolve under greater evolutionary constraint than their non–TE sequences, than their intronic TEs, or than random DNA. Consistent with functional constraint, we found that TEs contribute signals essential for the biogenesis of many lncRNAs, including ∼30,000 unique sites for transcription initiation, splicing, or polyadenylation in human. In addition, we identified ∼35,000 TEs marked as open chromatin located within 10 kb upstream of lncRNA genes. The density of these marks in one cell type correlate with elevated expression of the downstream lncRNA in the same cell type, suggesting that these TEs contribute to cis-regulation. These global trends are recapitulated in several lncRNAs with established functions. Finally a subset of TEs embedded in lncRNAs are subject to RNA editing and predicted to form secondary structures likely important for function. In conclusion, TEs are nearly ubiquitous in lncRNAs and have played an important role in the lineage-specific diversification of vertebrate lncRNA repertoires. PMID:23637635

  4. Pathogen Infection and MORC Proteins Affect Chromatin Accessibility of Transposable Elements and Expression of Their Proximal Genes in Arabidopsis.

    PubMed

    Bordiya, Yogendra; Zheng, Yi; Nam, Ji-Chul; Bonnard, April C; Choi, Hyong Woo; Lee, Bum-Kyu; Kim, Jonghwan; Klessig, Daniel F; Fei, Zhangjun; Kang, Hong-Gu

    2016-09-01

    To assess the role of MORC1 in epigenetics in relation to plant immunity, genome-wide chromatin accessibility was compared between mock- or Pseudomonas syringae pv. tomato-inoculated wild type (WT) Arabidopsis, the morc1/2 double mutant, or both. Most changes in chromatin accessibility, scored by DNase I hypersensitive sites (DHSs), were located in the promoters of genes and transposable elements (TEs). Comparisons between morc1/2 and WT receiving the same treatment revealed differential DHSs (dDHSs) predominantly associated with heterochromatic TEs. By contrast, comparisons between mock- and P. syringae pv. tomato-inoculated plants from the same genotype showed dDHSs associated with biotic and abiotic stress-related genes; a smaller but significant population was in TEs. Moreover, many defense genes, including PR-1, PR-2, and PR-5, were proximal to P. syringae pv. tomato-induced, TE-associated dDHSs. A random subset of these defense genes showed moderately delayed or reduced expression or both in P. syringae pv. tomato-infected morc1/2 as compared with WT. MORC1 was physically bound to chromatin in a P. syringae pv. tomato infection-responsive manner at sites dispersed throughout the genome. Notably, silencing of TE-associated dDHSs proximal to these infection-induced, MORC1-interacting sites led to significant suppression of P. syringae pv. tomato-induced transcription of adjacent defense genes, including PR-1. These results provide evidence that MORC1 is associated with TEs and suggest that a subset of these TEs may help regulate their proximal defense genes.

  5. Transposed-letter priming of prelexical orthographic representations.

    PubMed

    Kinoshita, Sachiko; Norris, Dennis

    2009-01-01

    A prime generated by transposing two internal letters (e.g., jugde) produces strong priming of the original word (judge). In lexical decision, this transposed-letter (TL) priming effect is generally weak or absent for nonword targets; thus, it is unclear whether the origin of this effect is lexical or prelexical. The authors describe the Bayesian Reader theory of masked priming (D. Norris & S. Kinoshita, 2008), which explains why nonwords do not show priming in lexical decision but why they do in the cross-case same-different task. This analysis is followed by 3 experiments that show that priming in this task is not based on low-level perceptual similarity between the prime and target, or on phonology, to make the case that priming is based on prelexical orthographic representation. The authors then use this task to demonstrate equivalent TL priming effects for nonwords and words. The results are interpreted as the first reliable evidence based on the masked priming procedure that letter position is not coded absolutely within the prelexical, orthographic representation. The implications of the results for current letter position coding schemes are discussed.

  6. Repetitive elements dynamics in cell identity programming, maintenance and disease.

    PubMed

    Bodega, Beatrice; Orlando, Valerio

    2014-12-01

    The days of 'junk DNA' seem to be over. The rapid progress of genomics technologies has been unveiling unexpected mechanisms by which repetitive DNA and in particular transposable elements (TEs) have evolved, becoming key issues in understanding genome structure and function. Indeed, rather than 'parasites', recent findings strongly suggest that TEs may have a positive function by contributing to tissue specific transcriptional programs, in particular as enhancer-like elements and/or modules for regulation of higher order chromatin structure. Further, it appears that during development and aging genomes experience several waves of TEs activation, and this contributes to individual genome shaping during lifetime. Interestingly, TEs activity is major target of epigenomic regulation. These findings are shedding new light on the genome-phenotype relationship and set the premises to help to explain complex disease manifestation, as consequence of TEs activity deregulation. Copyright © 2014. Published by Elsevier Ltd.

  7. Mucin gene expression in human urothelium and in intestinal segments transposed into the urinary tract.

    PubMed

    N'Dow, J; Pearson, J P; Bennett, M K; Neal, D E; Robson, C N

    2000-10-01

    The repertoire of mucin (MUC) gene expression in the normal human urothelium is poorly defined and the alterations in MUC gene expression following transposition of intestinal segments into the urinary tract has not previously been studied. The aims of this study were to define MUC gene expression in the normal human urothelium; and in transposed intestinal segments. Non-isotopic in-situ hybridization was carried out using eight digoxigenin labeled oligonucleotide mucin gene probes (MUC 1 - 7). Immunohistochemistry using NCL-MUC1 and NCL-MUC2 monoclonal antibodies was performed on sections of paraffin-embedded tissues. Twenty-seven patients were investigated (normal human urothelium, n = 6; transposed ileal segments, n = 14 and normal ileal controls, n = 7). MUC1 and MUC4 were the predominant mucin genes expressed in the normal urothelium with MUC3 being expressed in a third of cases studied; MUC2, 5AC, 5B, 6 and 7 were not expressed. Despite the morphological changes seen in transposed ileal segments, MUC2 and MUC3 continued to be expressed in these segments albeit in a disorganised fashion. Both MUC1 and MUC4 were up-regulated in transposed ileal segments, genes expressed by the normal human urothelium. All eight mucin genes were expressed in an area of pyloric-type metaplasia found in one transposed ileal segment. In patients with clam enterocystoplasty there was evidence of increasing up-regulation of MUC2, 3, 4 and 5AC expression in the urothelium toward the anastomotic site. Transposition of ileal segments into the urinary tract results in up-regulation of MUC1 and MUC4, the predominant MUC genes expressed in the human bladder. The clinical implication of the up-regulation of some MUC genes toward the anastomotic site in patients with an enteroplasty and the aberrant expression of MUC5AC - MUC7 by transposed segments is at present unclear.

  8. Multitasking of the piRNA Silencing Machinery: Targeting Transposable Elements and Foreign Genes in the Bdelloid Rotifer Adineta vaga.

    PubMed

    Rodriguez, Fernando; Arkhipova, Irina R

    2016-05-01

    RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piwi-interacting RNAs (piRNAs) are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome of Adineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), is characterized by massive levels of horizontal gene transfer, by unusually low transposon content, and by highly diversified RNA-mediated silencing machinery. Here, we investigate genome-wide distribution of pi-like small RNAs, which in A. vaga are 25-31 nucleotides in length and have a strong 5'-uridine bias, while lacking ping-pong amplification signatures. In agreement with expectations, 71% of mapped reads corresponded to annotated transposons, with 93% of these reads being in the antisense orientation. Unexpectedly, a significant fraction of piRNAs originate from predicted coding regions corresponding to genes of putatively foreign origin. The distribution of piRNAs across foreign genes is not biased toward 3'-UTRs, instead resembling transposons in uniform distribution pattern throughout the gene body, and in predominantly antisense orientation. We also find that genes with small RNA coverage, including a number of genes of metazoan origin, are characterized by higher occurrence of telomeric repeats in the surrounding genomic regions, and by higher density of transposons in the vicinity, which have the potential to promote antisense transcription. Our findings highlight the complex interplay between RNA-based silencing processes and acquisition of genes at the genome periphery, which can result either in their loss or eventual domestication and integration into the host genome. Copyright © 2016 by the Genetics Society of America.

  9. Multitasking of the piRNA Silencing Machinery: Targeting Transposable Elements and Foreign Genes in the Bdelloid Rotifer Adineta vaga

    PubMed Central

    Rodriguez, Fernando; Arkhipova, Irina R.

    2016-01-01

    RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piwi-interacting RNAs (piRNAs) are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome of Adineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), is characterized by massive levels of horizontal gene transfer, by unusually low transposon content, and by highly diversified RNA-mediated silencing machinery. Here, we investigate genome-wide distribution of pi-like small RNAs, which in A. vaga are 25–31 nucleotides in length and have a strong 5′-uridine bias, while lacking ping-pong amplification signatures. In agreement with expectations, 71% of mapped reads corresponded to annotated transposons, with 93% of these reads being in the antisense orientation. Unexpectedly, a significant fraction of piRNAs originate from predicted coding regions corresponding to genes of putatively foreign origin. The distribution of piRNAs across foreign genes is not biased toward 3′-UTRs, instead resembling transposons in uniform distribution pattern throughout the gene body, and in predominantly antisense orientation. We also find that genes with small RNA coverage, including a number of genes of metazoan origin, are characterized by higher occurrence of telomeric repeats in the surrounding genomic regions, and by higher density of transposons in the vicinity, which have the potential to promote antisense transcription. Our findings highlight the complex interplay between RNA-based silencing processes and acquisition of genes at the genome periphery, which can result either in their loss or eventual domestication and integration into the host genome. PMID:27017627

  10. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data.

    PubMed

    Zhang, Wensheng; Edwards, Andrea; Fan, Wei; Fang, Zhide; Deininger, Prescott; Zhang, Kun

    2013-08-28

    The exonization of transposable elements (TEs) has proven to be a significant mechanism for the creation of novel exons. Existing knowledge of the retention patterns of TE exons in mRNAs were mainly established by the analysis of Expressed Sequence Tag (EST) data and microarray data. This study seeks to validate and extend previous studies on the expression of TE exons by an integrative statistical analysis of high throughput RNA sequencing data. We collected 26 RNA-seq datasets spanning multiple tissues and cancer types. The exon-level digital expressions (indicating retention rates in mRNAs) were quantified by a double normalized measure, called the rescaled RPKM (Reads Per Kilobase of exon model per Million mapped reads). We analyzed the distribution profiles and the variability (across samples and between tissue/disease groups) of TE exon expressions, and compared them with those of other constitutive or cassette exons. We inferred the effects of four genomic factors, including the location, length, cognate TE family and TE nucleotide proportion (RTE, see Methods section) of a TE exon, on the exons' expression level and expression variability. We also investigated the biological implications of an assembly of highly-expressed TE exons. Our analysis confirmed prior studies from the following four aspects. First, with relatively high expression variability, most TE exons in mRNAs, especially those without exact counterparts in the UCSC RefSeq (Reference Sequence) gene tables, demonstrate low but still detectable expression levels in most tissue samples. Second, the TE exons in coding DNA sequences (CDSs) are less highly expressed than those in 3' (5') untranslated regions (UTRs). Third, the exons derived from chronologically ancient repeat elements, such as MIRs, tend to be highly expressed in comparison with those derived from younger TEs. Fourth, the previously observed negative relationship between the lengths of exons and the inclusion levels in transcripts

  11. In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome

    PubMed Central

    2013-01-01

    Background Only a few transposable elements are known to exhibit site-specific insertion patterns, including the well-studied R-element retrotransposons that insert into specific sites within the multigene rDNA. The only known rDNA-specific DNA transposon, Pokey (superfamily: piggyBac) is found in the freshwater microcrustacean, Daphnia pulex. Here, we present a genome-wide analysis of Pokey based on the recently completed whole genome sequencing project for D. pulex. Results Phylogenetic analysis of Pokey elements recovered from the genome sequence revealed the presence of four lineages corresponding to two divergent autonomous families and two related lineages of non-autonomous miniature inverted repeat transposable elements (MITEs). The MITEs are also found at the same 28S rRNA gene insertion site as the Pokey elements, and appear to have arisen as deletion derivatives of autonomous elements. Several copies of the full-length Pokey elements may be capable of producing an active transposase. Surprisingly, both families of Pokey possess a series of 200 bp repeats upstream of the transposase that is derived from the rDNA intergenic spacer (IGS). The IGS sequences within the Pokey elements appear to be evolving in concert with the rDNA units. Finally, analysis of the insertion sites of Pokey elements outside of rDNA showed a target preference for sites similar to the specific sequence that is targeted within rDNA. Conclusions Based on the target site preference of Pokey elements and the concerted evolution of a segment of the element with the rDNA unit, we propose an evolutionary path by which the ancestors of Pokey elements have invaded the rDNA niche. We discuss how specificity for the rDNA unit may have evolved and how this specificity has played a role in the long-term survival of these elements in the subgenus Daphnia. PMID:24059783

  12. An active ac/ds transposon system for activation tagging in tomato cultivar m82 using clonal propagation.

    PubMed

    Carter, Jared D; Pereira, Andy; Dickerman, Allan W; Veilleux, Richard E

    2013-05-01

    Tomato (Solanum lycopersicum) is a model organism for Solanaceae in both molecular and agronomic research. This project utilized Agrobacterium tumefaciens transformation and the transposon-tagging construct Activator (Ac)/Dissociator (Ds)-ATag-Bar_gosGFP to produce activation-tagged and knockout mutants in the processing tomato cultivar M82. The construct carried hygromycin resistance (hyg), green fluorescent protein (GFP), and the transposase (TPase) of maize (Zea mays) Activator major transcript X054214.1 on the stable Ac element, along with a 35S enhancer tetramer and glufosinate herbicide resistance (BAR) on the mobile Ds-ATag element. An in vitro propagation strategy was used to produce a population of 25 T0 plants from a single transformed plant regenerated in tissue culture. A T1 population of 11,000 selfed and cv M82 backcrossed progeny was produced from the functional T0 line. This population was screened using glufosinate herbicide, hygromycin leaf painting, and multiplex polymerase chain reaction (PCR). Insertion sites of transposed Ds-ATag elements were identified through thermal asymmetric interlaced PCR, and resulting product sequences were aligned to the recently published tomato genome. A population of 509 independent, Ds-only transposant lines spanning all 12 tomato chromosomes has been developed. Insertion site analysis demonstrated that more than 80% of these lines harbored Ds insertions conducive to activation tagging. The capacity of the Ds-ATag element to alter transcription was verified by quantitative real-time reverse transcription-PCR in two mutant lines. The transposon-tagged lines have been immortalized in seed stocks and can be accessed through an online database, providing a unique resource for tomato breeding and analysis of gene function in the background of a commercial tomato cultivar.

  13. Proteomic analysis of urine in patients with intestinal segments transposed into the urinary tract.

    PubMed

    Nabi, Ghulam; N'Dow, James; Hasan, Tahseen S; Booth, Ian R; Cash, Phil

    2005-04-01

    Intestinal segments are used to replace or reconstruct the urinary bladder when it has become dysfunctional or develops life-threatening disease such as cancer. The quality of life in patients with intestinal segments used to either enlarge or completely replace the native bladder is adversely affected by recurrent urinary tract infections, excessive mucus production and the occasional development of malignancy. At present, there is no reliable method of predicting or noninvasively monitoring these patients for the development of these complications. The characterisation of proteins secreted into urine from the transposed intestinal segments could serve as important indicators of these clinical complications. Urine is an ideal source of material in which to search for biomarkers, since it bathes the affected tissues and can be obtained relatively easily by noninvasive methods. The urinary proteome of patients with intestinal segments transposed into the urinary tract is unknown and we present the first global description of the urinary protein profile in these patients. Sample preparation is a critical step in achieving accurate and reliable data. We describe a method to prepare urinary proteins that was compatible with their subsequent analysis using two-dimensional polyacrylamide gel electrophoresis. This method helped to overcome some of the technical problems encountered in analysing urine from this patient cohort. The method was used to analyse urinary proteins recovered from five healthy controls and ten patients with intestinal segments transposed into the urinary tract. Four low molecular weight proteins were found to be present in nine out of ten for the patient group but for none of the healthy controls. The four proteins were identified as lithostathine-1 alpha precursor, pancreatitis associated protein-1 precursor, liver fatty acid binding protein and testis expressed protein-12. The role of these proteins as potential biomarkers of intestinal cell

  14. Partial transpose of random quantum states: Exact formulas and meanders

    NASA Astrophysics Data System (ADS)

    Fukuda, Motohisa; Śniady, Piotr

    2013-04-01

    We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.

  15. Transposed-letter priming effects in reading aloud words and nonwords.

    PubMed

    Mousikou, Petroula; Kinoshita, Sachiko; Wu, Simon; Norris, Dennis

    2015-10-01

    A masked nonword prime generated by transposing adjacent inner letters in a word (e.g., jugde) facilitates the recognition of the target word (JUDGE) more than a prime in which the relevant letters are replaced by different letters (e.g., junpe). This transposed-letter (TL) priming effect has been widely interpreted as evidence that the coding of letter position is flexible, rather than precise. Although the TL priming effect has been extensively investigated in the domain of visual word recognition using the lexical decision task, very few studies have investigated this empirical phenomenon in reading aloud. In the present study, we investigated TL priming effects in reading aloud words and nonwords and found that these effects are of equal magnitude for the two types of items. We take this result as support for the view that the TL priming effect arises from noisy perception of letter order within the prime prior to the mapping of orthography to phonology.

  16. The Ecological Genomics of Fungi: Repeated Elements in Filamentous Fungi with a Focus on Wood-Decay Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murat, Claude; Payen, Thibaut; Petitpierre, Denis

    2013-01-01

    In the last decade, the genome of several dozen filamentous fungi have been sequenced. Interestingly, vast diversity in genome size was observed (Fig. 2.1) with 14-fold differences between the 9 Mb of the human pathogenic dandruff fungus (Malassezia globosa; Xu, Saunders, et al., 2007) and the 125 Mb of the ectomycorrhizal black truffle of P rigord (Tuber melanosporum; Martin, Kohler, et al., 2010). Recently, Raffaele and Kamoun (2012) highlighted that the genomes of several lineages of filamentous plant pathogens have been shaped by repeat-driven expansion. Indeed, repeated elements are ubiquitous in all prokaryote and eukaryote genomes; however, their frequencies canmore » vary from just a minor percentage of the genome to more that 60 percent of the genome. Repeated elements can be classified in two major types: satellites DNA and transposable elements. In this chapter, the different types of repeated elements and how these elements can impact genome and gene repertoire will be described. Also, an intriguing link between the transposable elements richness and diversity and the ecological niche will be highlighted.« less

  17. Correlation between location of transposed ovary and function in cervical cancer patients who underwent radical hysterectomy.

    PubMed

    Yoon, Aera; Lee, Yoo-Young; Park, Won; Huh, Seung Jae; Choi, Chel Hun; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Bae, Duk-Soo

    2015-05-01

    The study investigated the association between the location of transposed ovaries and posttreatment ovarian function in patients with early cervical cancer (IB1-IIA) who underwent radical hysterectomy and ovarian transposition with or without adjuvant therapies. Retrospective medical records were reviewed to enroll the patients with early cervical cancer who underwent ovarian transposition during radical hysterectomy at Samsung Medical Center between July 1995 and July 2012. Serum follicle-stimulating hormone (FSH) level was used as a surrogate marker for ovarian function. Twenty-one patients were enrolled. The median age and body mass index (BMI) were 31 years (range, 24-39 years) and 21.3 kg/m² (range, 17.7-31.2 kg/m²), respectively. The median serum FSH level after treatment was 7.9 mIU/mL (range, 2.4-143.4 mIU/mL). The median distance from the iliac crest to transposed ovaries on erect plain abdominal x-ray was 0.5 cm (range, -2.7 to 5.2 cm). In multivariate analysis, posttreatment serum FSH levels were significantly associated with the location of transposed ovaries (β = -8.1, P = 0.032), concurrent chemoradiation (CCRT) as an adjuvant therapy (β = 71.08, P = 0.006), and BMI before treatment (underweight: β = -59.93, P = 0.05; overweight: β = -40.62, P = 0.041). Location of transposed ovaries, adjuvant CCRT, and BMI before treatment may be associated with ovarian function after treatment. We suggest that ovaries should be transposed as highly as possible during radical hysterectomy to preserve ovarian function in young patients with early cervical cancer who might be a candidate for adjuvant CCRT and who have low BMI before treatment.

  18. Dynamics and Differential Proliferation of Transposable Elements During the Evolution of the B and A Genomes of Wheat

    PubMed Central

    Charles, Mathieu; Belcram, Harry; Just, Jérémy; Huneau, Cécile; Viollet, Agnès; Couloux, Arnaud; Segurens, Béatrice; Carter, Meredith; Huteau, Virginie; Coriton, Olivier; Appels, Rudi; Samain, Sylvie; Chalhoub, Boulos

    2008-01-01

    Transposable elements (TEs) constitute >80% of the wheat genome but their dynamics and contribution to size variation and evolution of wheat genomes (Triticum and Aegilops species) remain unexplored. In this study, 10 genomic regions have been sequenced from wheat chromosome 3B and used to constitute, along with all publicly available genomic sequences of wheat, 1.98 Mb of sequence (from 13 BAC clones) of the wheat B genome and 3.63 Mb of sequence (from 19 BAC clones) of the wheat A genome. Analysis of TE sequence proportions (as percentages), ratios of complete to truncated copies, and estimation of insertion dates of class I retrotransposons showed that specific types of TEs have undergone waves of differential proliferation in the B and A genomes of wheat. While both genomes show similar rates and relatively ancient proliferation periods for the Athila retrotransposons, the Copia retrotransposons proliferated more recently in the A genome whereas Gypsy retrotransposon proliferation is more recent in the B genome. It was possible to estimate for the first time the proliferation periods of the abundant CACTA class II DNA transposons, relative to that of the three main retrotransposon superfamilies. Proliferation of these TEs started prior to and overlapped with that of the Athila retrotransposons in both genomes. However, they also proliferated during the same periods as Gypsy and Copia retrotransposons in the A genome, but not in the B genome. As estimated from their insertion dates and confirmed by PCR-based tracing analysis, the majority of differential proliferation of TEs in B and A genomes of wheat (87 and 83%, respectively), leading to rapid sequence divergence, occurred prior to the allotetraploidization event that brought them together in Triticum turgidum and Triticum aestivum, <0.5 million years ago. More importantly, the allotetraploidization event appears to have neither enhanced nor repressed retrotranspositions. We discuss the apparent proliferation

  19. Chemical images of marine bio-active compounds by surface enhanced Raman spectroscopy and transposed orthogonal partial least squares (T-OPLS).

    PubMed

    Abbas, Aamer; Josefson, Mats; Nylund, Göran M; Pavia, Henrik; Abrahamsson, Katarina

    2012-08-06

    Surface enhanced Raman spectroscopy combined with transposed Orthogonal Partial Least Squares (T-OPLS) was shown to produce chemical images of the natural antibacterial surface-active compound 1,1,3,3-tetrabromo-2-heptanone (TBH) on Bonnemaisonia hamifera. The use of gold colloids functionalised with the internal standard 4-mercapto-benzonitrile (MBN) made it possible to create images of the relative concentration of TBH over the surfaces. A gradient of TBH could be mapped over and in the close vicinity of the B. hamifera algal vesicles at the attomol/pixel level. T-OPLS produced a measure of the spectral correlation for each pixel of the hyperspectral images whilst not including spectral variation that was linearly independent of the target spectrum. In this paper we show the possibility to retrieve specific spectral information with a low magnitude in a complex matrix. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Letter-transposition effects are not universal: The impact of transposing letters in Hebrew

    PubMed Central

    Velan, Hadas; Frost, Ram

    2009-01-01

    We examined the effects of letter transposition in Hebrew in three masked-priming experiments. Hebrew, like English has an alphabetic orthography where sequential and contiguous letter strings represent phonemes. However, being a Semitic language it has a non-concatenated morphology that is based on root derivations. Experiment 1 showed that transposed-letter (TL) root primes inhibited responses to targets derived from the non-transposed root letters, and that this inhibition was unrelated to relative root frequency. Experiment 2 replicated this result and showed that if the transposed letters of the root created a nonsense-root that had no lexical representation, then no inhibition and no facilitation were obtained. Finally, Experiment 3 demonstrated that in contrast to English, French, or Spanish, TL nonword primes did not facilitate recognition of targets, and when the root letters embedded in them consisted of a legal root morpheme, they produced inhibition. These results suggest that lexical space in alphabetic orthographies may be structured very differently in different languages if their morphological structure diverges qualitatively. In Hebrew, lexical space is organized according to root families rather than simple orthographic structure, so that all words derived from the same root are interconnected or clustered together, independent of overall orthographic similarity. PMID:20161017

  1. The Tolypocladium inflatum CPA element encodes a RecQ helicase-like gene.

    PubMed

    Kempken, Frank

    2008-12-01

    Previously, a repetitive CPA element was discovered in the genome of the filamentous fungus Tolypocladium inflatum; however, no further characterization was technically possible at that time. In this study, PCR amplification was used to detect a 4 kb conserved portion of the CPA element that appeared to be present in most, if not all, genomic CPA elements. The amplicons included a large open reading frame that was most similar to a RecQ helicase-like gene from Metarhizium anisopliae. The repetitive nature of the CPA element suggests that it is related to the eukaryotic Helitron class of transposable elements.

  2. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen.

    PubMed

    Frantzeskakis, Lamprinos; Kracher, Barbara; Kusch, Stefan; Yoshikawa-Maekawa, Makoto; Bauer, Saskia; Pedersen, Carsten; Spanu, Pietro D; Maekawa, Takaki; Schulze-Lefert, Paul; Panstruga, Ralph

    2018-05-22

    Powdery mildews are biotrophic pathogenic fungi infecting a number of economically important plants. The grass powdery mildew, Blumeria graminis, has become a model organism to study host specialization of obligate biotrophic fungal pathogens. We resolved the large-scale genomic architecture of B. graminis forma specialis hordei (Bgh) to explore the potential influence of its genome organization on the co-evolutionary process with its host plant, barley (Hordeum vulgare). The near-chromosome level assemblies of the Bgh reference isolate DH14 and one of the most diversified isolates, RACE1, enabled a comparative analysis of these haploid genomes, which are highly enriched with transposable elements (TEs). We found largely retained genome synteny and gene repertoires, yet detected copy number variation (CNV) of secretion signal peptide-containing protein-coding genes (SPs) and locally disrupted synteny blocks. Genes coding for sequence-related SPs are often locally clustered, but neither the SPs nor the TEs reside preferentially in genomic regions with unique features. Extended comparative analysis with different host-specific B. graminis formae speciales revealed the existence of a core suite of SPs, but also isolate-specific SP sets as well as congruence of SP CNV and phylogenetic relationship. We further detected evidence for a recent, lineage-specific expansion of TEs in the Bgh genome. The characteristics of the Bgh genome (largely retained synteny, CNV of SP genes, recently proliferated TEs and a lack of significant compartmentalization) are consistent with a "one-speed" genome that differs in its architecture and (co-)evolutionary pattern from the "two-speed" genomes reported for several other filamentous phytopathogens.

  3. Extremal states of positive partial transpose in a system of three qubits

    NASA Astrophysics Data System (ADS)

    Steensgaard Garberg, Øyvind; Irgens, Børge; Myrheim, Jan

    2013-03-01

    We have studied mixed states in the system of three qubits with the property that all their partial transposes are positive; these are called PPT states. We classify a PPT state by the ranks of the state itself and its three single partial transposes. In random numerical searches, we find entangled PPT states with a large variety of rank combinations. For ranks equal to five or higher, we find both extremal and nonextremal PPT states of nearly every rank combination, with the restriction that the square sum of the four ranks of an extremal PPT state can be at most 193. We have studied especially the rank-four entangled PPT states, which are found to have rank four for every partial transpose. These states are all extremal because of the previously known result that every PPT state of rank three or less is separable. We find two distinct classes of rank-4444 entangled PPT states, identified by a real valued quadratic expression invariant under local SL(2,C) transformations, mathematically equivalent to Lorentz transformations. This quadratic Lorentz invariant is nonzero for one class of states (type I in our terminology) and zero for the other class (type II). The previously known states based on unextendible product bases are a nongeneric subclass of the type-I states. We present analytical constructions of states of both types, general enough to reproduce all the rank-4444 PPT states we have found numerically. We can not exclude the possibility that there exist nongeneric rank-four PPT states that we do not find in our random numerical searches.

  4. Entanglement cost under positive-partial-transpose-preserving operations.

    PubMed

    Audenaert, K; Plenio, M B; Eisert, J

    2003-01-17

    We study the entanglement cost under quantum operations preserving the positivity of the partial transpose (PPT operations). We demonstrate that this cost is directly related to the logarithmic negativity, thereby providing the operational interpretation for this entanglement measure. As examples we discuss general Werner states and arbitrary bipartite Gaussian states. Then we prove that for the antisymmetric Werner state PPT cost and PPT entanglement of distillation coincide. This is the first example of a truly mixed state for which entanglement manipulation is asymptotically reversible, which points towards a unique entanglement measure under PPT operations.

  5. Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing

    PubMed Central

    Kelleher, Erin S.

    2016-01-01

    Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression. PMID:27516614

  6. Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs.

    PubMed

    Ichiyanagi, Kenji

    2013-01-01

    Short interspersed elements (SINEs) are a class of retrotransposons, which amplify their copy numbers in their host genomes by retrotransposition. More than a million copies of SINEs are present in a mammalian genome, constituting over 10% of the total genomic sequence. In contrast to the other two classes of retrotransposons, long interspersed elements (LINEs) and long terminal repeat (LTR) elements, SINEs are transcribed by RNA polymerase III. However, like LINEs and LTR elements, the SINE transcription is likely regulated by epigenetic mechanisms such as DNA methylation, at least for human Alu and mouse B1. Whereas SINEs and other transposable elements have long been thought as selfish or junk DNA, recent studies have revealed that they play functional roles at their genomic locations, for example, as distal enhancers, chromatin boundaries and binding sites of many transcription factors. These activities imply that SINE retrotransposition has shaped the regulatory network and chromatin landscape of their hosts. Whereas it is thought that the epigenetic mechanisms were originated as a host defense system against proliferation of parasitic elements, this review discusses a possibility that the same mechanisms are also used to regulate the SINE-derived functions.

  7. Distributional Analysis of the Transposed-Letter Neighborhood Effect on Naming Latency

    ERIC Educational Resources Information Center

    Johnson, Rebecca L.; Staub, Adrian; Fleri, Amanda M.

    2012-01-01

    Printed words that have a transposed-letter (TL) neighbor (e.g., angel has the TL neighbor angle) have been shown to be more difficult to process, in a range of paradigms, than words that do not have a TL neighbor. However, eye movement evidence suggests that this processing difficulty may occur on only a subset of trials. To investigate this…

  8. Mobile Genetic Elements: In Silico, In Vitro, In Vivo

    PubMed Central

    Arkhipova, Irina R.; Rice, Phoebe A.

    2016-01-01

    Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function, and evolution. However, there is currently a gap between fast-paced TE discovery in silico, stimulated by exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic, and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, “Mobile Genetic Elements: in silico, in vitro, in vivo,” held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA. PMID:26822117

  9. Ovarian metastasis in a transposed ovary 10 years after primary cervical cancer: the importance of histologic examination and review of literature.

    PubMed

    Janse, Julienne A; Sie-Go, Daisy M D S; Schreuder, Henk W R

    2011-06-17

    Cases of cervical carcinoma metastasing to the transposed ovary are rarely reported in the literature. In this report, the authors present the case of a 53-year-old woman with a persisting, unsuspected cyst in the right transposed ovary, 10 years after treatment for adenosquamous carcinoma of the cervix. It is the first report describing a secondary ovarian malignancy originating from a cervical adenosquamous carcinoma in a transposed ovary. In addition, this is the first account of an ovarian metastasis 10 years after primary treatment for cervical cancer. Furthermore, pathologic examination with immunohistochemistry and human papillomavirus genotyping played a key role in the diagnostic process, as the case did not raise suspicion by ultrasound findings neither by cytological examination after cytological aspiration or by appearance during surgery.

  10. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila.

    PubMed

    Ladevèze, Véronique; Chaminade, Nicole; Lemeunier, Françoise; Periquet, Georges; Aulard, Sylvie

    2012-09-01

    The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.

  11. Identification of misexpressed genetic elements in hybrids between Drosophila-related species.

    PubMed

    Lopez-Maestre, Hélène; Carnelossi, Elias A G; Lacroix, Vincent; Burlet, Nelly; Mugat, Bruno; Chambeyron, Séverine; Carareto, Claudia M A; Vieira, Cristina

    2017-01-16

    Crosses between close species can lead to genomic disorders, often considered to be the cause of hybrid incompatibility, one of the initial steps in the speciation process. How these incompatibilities are established and what are their causes remain unclear. To understand the initiation of hybrid incompatibility, we performed reciprocal crosses between two species of Drosophila (D. mojavensis and D. arizonae) that diverged less than 1 Mya. We performed a genome-wide transcriptomic analysis on ovaries from parental lines and on hybrids from reciprocal crosses. Using an innovative procedure of co-assembling transcriptomes, we show that parental lines differ in the expression of their genes and transposable elements. Reciprocal hybrids presented specific gene categories and few transposable element families misexpressed relative to the parental lines. Because TEs are mainly silenced by piwi-interacting RNAs (piRNAs), we hypothesize that in hybrids the deregulation of specific TE families is due to the absence of such small RNAs. Small RNA sequencing confirmed our hypothesis and we therefore propose that TEs can indeed be major players of genome differentiation and be implicated in the first steps of genomic incompatibilities through small RNA regulation.

  12. Identification of misexpressed genetic elements in hybrids between Drosophila-related species

    PubMed Central

    Lopez-Maestre, Hélène; Carnelossi, Elias A. G.; Lacroix, Vincent; Burlet, Nelly; Mugat, Bruno; Chambeyron, Séverine; Carareto, Claudia M. A.; Vieira, Cristina

    2017-01-01

    Crosses between close species can lead to genomic disorders, often considered to be the cause of hybrid incompatibility, one of the initial steps in the speciation process. How these incompatibilities are established and what are their causes remain unclear. To understand the initiation of hybrid incompatibility, we performed reciprocal crosses between two species of Drosophila (D. mojavensis and D. arizonae) that diverged less than 1 Mya. We performed a genome-wide transcriptomic analysis on ovaries from parental lines and on hybrids from reciprocal crosses. Using an innovative procedure of co-assembling transcriptomes, we show that parental lines differ in the expression of their genes and transposable elements. Reciprocal hybrids presented specific gene categories and few transposable element families misexpressed relative to the parental lines. Because TEs are mainly silenced by piwi-interacting RNAs (piRNAs), we hypothesize that in hybrids the deregulation of specific TE families is due to the absence of such small RNAs. Small RNA sequencing confirmed our hypothesis and we therefore propose that TEs can indeed be major players of genome differentiation and be implicated in the first steps of genomic incompatibilities through small RNA regulation. PMID:28091568

  13. FB elements can promote exon shuffling: a promoter-less white allele can be reactivated by FB mediated transposition in Drosophila melanogaster.

    PubMed

    Moschetti, R; Marsano, R M; Barsanti, P; Caggese, C; Caizzi, R

    2004-05-01

    Foldback ( FB) elements are transposable elements found in many eukaryotic genomes; they are thought to contribute significantly to genome plasticity. In Drosophila melanogaster, FBs have been shown to be involved in the transposition of large chromosomal regions and in the genetic instability of some alleles of the white gene. In this report we show that FB mediated transposition of w(67C23), a mutation that deletes the promoter of the white gene and its first exon, containing the start codon, can restore expression of the white gene. We have characterized three independent events in which a 14-kb fragment from the w(67C23) locus was transposed into an intron region in three different genes. In each case a local promoter drives the expression of white, producing a chimeric mRNA. These findings suggest that, on an evolutionary timescale, FB elements may contribute to the creation of new genes via exon shuffling.

  14. Elevated Rate of Fixation of Endogenous Retroviral Elements in Haplorhini TRIM5 and TRIM22 Genomic Sequences: Impact on Transcriptional Regulation

    PubMed Central

    Diehl, William E.; Johnson, Welkin E.; Hunter, Eric

    2013-01-01

    All genes in the TRIM6/TRIM34/TRIM5/TRIM22 locus are type I interferon inducible, with TRIM5 and TRIM22 possessing antiviral properties. Evolutionary studies involving the TRIM6/34/5/22 locus have predominantly focused on the coding sequence of the genes, finding that TRIM5 and TRIM22 have undergone high rates of both non-synonymous nucleotide replacements and in-frame insertions and deletions. We sought to understand if divergent evolutionary pressures on TRIM6/34/5/22 coding regions have selected for modifications in the non-coding regions of these genes and explore whether such non-coding changes may influence the biological function of these genes. The transcribed genomic regions, including the introns, of TRIM6, TRIM34, TRIM5, and TRIM22 from ten Haplorhini primates and one prosimian species were analyzed for transposable element content. In Haplorhini species, TRIM5 displayed an exaggerated interspecies variability, predominantly resulting from changes in the composition of transposable elements in the large first and fourth introns. Multiple lineage-specific endogenous retroviral long terminal repeats (LTRs) were identified in the first intron of TRIM5 and TRIM22. In the prosimian genome, we identified a duplication of TRIM5 with a concomitant loss of TRIM22. The transposable element content of the prosimian TRIM5 genes appears to largely represent the shared Haplorhini/prosimian ancestral state for this gene. Furthermore, we demonstrated that one such differentially fixed LTR provides for species-specific transcriptional regulation of TRIM22 in response to p53 activation. Our results identify a previously unrecognized source of species-specific variation in the antiviral TRIM genes, which can lead to alterations in their transcriptional regulation. These observations suggest that there has existed long-term pressure for exaptation of retroviral LTRs in the non-coding regions of these genes. This likely resulted from serial viral challenges and provided a

  15. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  16. Transposed Letter Priming with Horizontal and Vertical Text in Japanese and English Readers

    ERIC Educational Resources Information Center

    Witzel, Naoko; Qiao, Xiaomei; Forster, Kenneth

    2011-01-01

    It is well established that in masked priming, a target word (e.g., "JUDGE") is primed more effectively by a transposed letter (TL) prime (e.g., "jugde") than by an orthographic control prime (e.g., "junpe"). This is inconsistent with the slot coding schemes used in many models of visual word recognition. Several…

  17. Terminal-Repeat Retrotransposons with GAG Domain in Plant Genomes: A New Testimony on the Complex World of Transposable Elements

    PubMed Central

    Chaparro, Cristian; Gayraud, Thomas; de Souza, Rogerio Fernandes; Domingues, Douglas Silva; Akaffou, Sélastique; Laforga Vanzela, Andre Luis; de Kochko, Alexandre; Rigoreau, Michel; Crouzillat, Dominique; Hamon, Serge; Hamon, Perla; Guyot, Romain

    2015-01-01

    A novel structure of nonautonomous long terminal repeat (LTR) retrotransposons called terminal repeat with GAG domain (TR-GAG) has been described in plants, both in monocotyledonous, dicotyledonous and basal angiosperm genomes. TR-GAGs are relatively short elements in length (<4 kb) showing the typical features of LTR-retrotransposons. However, they carry only one open reading frame coding for the GAG precursor protein involved for instance in transposition, the assembly, and the packaging of the element into the virus-like particle. GAG precursors show similarities with both Copia and Gypsy GAG proteins, suggesting evolutionary relationships of TR-GAG elements with both families. Despite the lack of the enzymatic machinery required for their mobility, strong evidences suggest that TR-GAGs are still active. TR-GAGs represent ubiquitous nonautonomous structures that could be involved in the molecular diversities of plant genomes. PMID:25573958

  18. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements1

    PubMed Central

    Prior, Sara; Miousse, Isabelle R.; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R.; Allen, Antiño R.; Raber, Jacob; Tackett, Alan J.; Hauer-Jensen, Martin; Nelson, Gregory A.; Koturbash, Igor

    2016-01-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368

  19. Functional Anatomy of Recognition of Chinese Multi-Character Words: Convergent Evidence from Effects of Transposable Nonwords, Lexicality, and Word Frequency.

    PubMed

    Lin, Nan; Yu, Xi; Zhao, Ying; Zhang, Mingxia

    2016-01-01

    This fMRI study aimed to identify the neural mechanisms underlying the recognition of Chinese multi-character words by partialling out the confounding effect of reaction time (RT). For this purpose, a special type of nonword-transposable nonword-was created by reversing the character orders of real words. These nonwords were included in a lexical decision task along with regular (non-transposable) nonwords and real words. Through conjunction analysis on the contrasts of transposable nonwords versus regular nonwords and words versus regular nonwords, the confounding effect of RT was eliminated, and the regions involved in word recognition were reliably identified. The word-frequency effect was also examined in emerged regions to further assess their functional roles in word processing. Results showed significant conjunctional effect and positive word-frequency effect in the bilateral inferior parietal lobules and posterior cingulate cortex, whereas only conjunctional effect was found in the anterior cingulate cortex. The roles of these brain regions in recognition of Chinese multi-character words were discussed.

  20. Functional Anatomy of Recognition of Chinese Multi-Character Words: Convergent Evidence from Effects of Transposable Nonwords, Lexicality, and Word Frequency

    PubMed Central

    Lin, Nan; Yu, Xi; Zhao, Ying; Zhang, Mingxia

    2016-01-01

    This fMRI study aimed to identify the neural mechanisms underlying the recognition of Chinese multi-character words by partialling out the confounding effect of reaction time (RT). For this purpose, a special type of nonword—transposable nonword—was created by reversing the character orders of real words. These nonwords were included in a lexical decision task along with regular (non-transposable) nonwords and real words. Through conjunction analysis on the contrasts of transposable nonwords versus regular nonwords and words versus regular nonwords, the confounding effect of RT was eliminated, and the regions involved in word recognition were reliably identified. The word-frequency effect was also examined in emerged regions to further assess their functional roles in word processing. Results showed significant conjunctional effect and positive word-frequency effect in the bilateral inferior parietal lobules and posterior cingulate cortex, whereas only conjunctional effect was found in the anterior cingulate cortex. The roles of these brain regions in recognition of Chinese multi-character words were discussed. PMID:26901644

  1. Selfish genetic elements favor the evolution of a distinction between soma and germline.

    PubMed

    Johnson, Louise J

    2008-08-01

    Many multicellular organisms have evolved a dedicated germline. This can benefit the whole organism, but its advantages to genetic parasites have not been explored. Here I model the evolutionary success of a selfish element, such as a transposable element or endosymbiont, which is capable of creating or strengthening a germline-soma distinction in a primitively multicellular host, and find that it will always benefit the element to do so. Genes causing germline sequestration can therefore spread in a population even if germline sequestration is maladaptive for the host organism. Costly selfish elements are expected to survive only in sexual populations, so sexual species may experience an additional push toward germline-soma distinction, and hence toward cell differentiation and multicellularity.

  2. Substituted-letter and transposed-letter effects in a masked priming paradigm with French developing readers and dyslexics.

    PubMed

    Lété, Bernard; Fayol, Michel

    2013-01-01

    The aim of the study was to undertake a behavioral investigation of the development of automatic orthographic processing during reading acquisition in French. Following Castles and colleagues' 2007 study (Journal of Experimental Child Psychology, 97, 165-182) and their lexical tuning hypothesis framework, substituted-letter and transposed-letter primes were used in a masked priming paradigm with third graders, fifth graders, adults, and phonological dyslexics matched on reading level with the third graders. No priming effect was found in third graders. In adults, only a transposed-letter priming effect was found; there was no substituted-letter priming effect. Finally, fifth graders and dyslexics showed both substituted-letter and transposed-letter priming effects. Priming effects between the two groups were of the same magnitude after response time (RT) z-score transformation. Taken together, our results show that the pattern of priming effects found by Castles and colleagues in English normal readers emerges later in French normal readers. In other words, language orthographies seem to constrain the tuning of the orthographic system, with an opaque orthography producing faster tuning of orthographic processing than more transparent orthographies because of the high level of reliance on phonological decoding while learning to read. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, Sara; Miousse, Isabelle R.

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2′-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promotermore » type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5′-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. - Highlights: • DNA methylation of LINE-1 elements is dependent on their evolutionary age. • Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. • Radiation-induced reactivation of LINE-1 is DNA methylation-independent. • Histone modifications dictate the transcriptional activity of LINE-1.« less

  4. Do Transposed-Letter Similarity Effects Occur at a Morpheme Level? Evidence for Morpho-Orthographic Decomposition

    ERIC Educational Resources Information Center

    Dunabeitia, Jon Andoni; Peream, Manuel; Carreiras, Manuel

    2007-01-01

    When does morphological decomposition occur in visual word recognition? An increasing body of evidence suggests the presence of early morphological processing. The present work investigates this issue via an orthographic similarity manipulation. Three masked priming lexical decision experiments were conducted to examine the transposed-letter…

  5. Identification of a Recently Active Mammalian SINE Derived from Ribosomal RNA

    PubMed Central

    Longo, Mark S.; Brown, Judy D.; Zhang, Chu; O’Neill, Michael J.; O’Neill, Rachel J.

    2015-01-01

    Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes. PMID:25637222

  6. Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications.

    PubMed

    Ben Lazhar-Ajroud, Wafa; Caruso, Aurore; Mezghani, Maha; Bouallegue, Maryem; Tastard, Emmanuelle; Denis, Françoise; Rouault, Jacques-Deric; Makni, Hanem; Capy, Pierre; Chénais, Benoît; Makni, Mohamed; Casse, Nathalie

    2016-08-01

    Genomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B. oleae. Additionally, the sequenced genomes of Bactrocera tryoni (Froggatt) and Bactrocera cucurbitae (Diptera: Tephritidae) have been explored to identify irritans MLEs. A total of 129 sequences from B. tryoni have been extracted, while the genome of B. cucurbitae appears probably devoid of irritans MLEs. All detected irritans MLEs are defective due to several mutations and are clustered together in a monophyletic group suggesting a common ancestor. The evolutionary history and dynamics of these TEs are discussed in relation with the phylogenetic distribution of their hosts. The knowledge on the structure, distribution, dynamic, and evolution of irritans MLEs in Bactrocera species contributes to the understanding of both their evolutionary history and the invasion history of their hosts. This could also be the basis for genetic control strategies using transposable elements.

  7. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish.

    PubMed

    Glugoski, Larissa; Giuliano-Caetano, Lucia; Moreira-Filho, Orlando; Vicari, Marcelo R; Nogaroto, Viviane

    2018-04-15

    Co-located 5S rDNA genes and interstitial telomeric sites (ITS) revealed the involvement of multiple 5S rDNA clusters in chromosome rearrangements of Loricariidae. Interstitial (TTAGGG)n vestiges, in addition to telomeric sites, can coincide with locations of chromosomal rearrangements, and they are considered to be hotspots for chromosome breaks. This study aimed the molecular characterization of 5S rDNA in two Rineloricaria latirostris populations and examination of roles of 5S rDNA in breakpoint sites and its in situ localization. Rineloricaria latirostris from Brazil's Das Pedras river (2n = 46 chromosomes) presented five pairs identified using a 5S rDNA probe, in addition to a pair bearing a co-located ITS/5S rDNA. Rineloricaria latirostris from the Piumhi river (2n = 48 chromosomes) revealed two pairs containing 5S rDNA, without ITS. A 702-bp amplified sequence, using 5S rDNA primers, revealed an insertion of the hAT transposable element (TE), referred to as a degenerate 5S rDNA. Double-FISH (fluorescence in situ hybridization) demonstrated co-localization of 5S rDNA/degenerate 5S rDNA, 5S rDNA/hAT and ITS/5S rDNA from the Das Pedras river population. Piumhi river isolates possessed only 5S rDNA sites. We suggest that the degenerate 5S rDNA was generated by unequal crossing over, which was driven by invasion of hAT, establishing a breakpoint region susceptible to chromosome breakage, non-homologous recombination and Robertsonian (Rb) fusion. Furthermore, the presence of clusters of 5S rDNA at fusion points in other armored catfish species suggests its re-use and that these regions represent hotspots for evolutionary rearrangements within Loricariidae genomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

    PubMed Central

    Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham; Wilhelm, Larry J.; Goodwin, Stephen B.; Berlin, Aaron M.; Figueroa, Melania; Freitag, Michael; Hane, James K.; Henrissat, Bernard; Holman, Wade H.; Kodira, Chinnappa D.; Martin, Joel; Oliver, Richard P.; Robbertse, Barbara; Schackwitz, Wendy; Schwartz, David C.; Spatafora, Joseph W.; Turgeon, B. Gillian; Yandava, Chandri; Young, Sarah; Zhou, Shiguo; Zeng, Qiandong; Grigoriev, Igor V.; Ma, Li-Jun; Ciuffetti, Lynda M.

    2013-01-01

    Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes. PMID:23316438

  9. Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham

    2012-08-16

    Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11more » chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.« less

  10. Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements.

    PubMed

    Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N

    2015-12-01

    Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.

  11. The Quiet Clam Is Quite Calm: Transposed-Letter Neighborhood Effects on Eye Movements during Reading

    ERIC Educational Resources Information Center

    Johnson, Rebecca L.

    2009-01-01

    In responses time tasks, inhibitory neighborhood effects have been found for word pairs that differ in a transposition of two adjacent letters (e.g., "clam/calm"). Here, the author describes two eye-tracking experiments conducted to explore transposed-letter (TL) neighborhood effects within the context of normal silent reading. In…

  12. Real-Time Observation of Human LINE-1 Retrotransposon Activity in Bacteria

    NASA Astrophysics Data System (ADS)

    Kaur, Davneet; Kuhlman, Thomas; Kuhlman Team; Nigel Goldenfeld Collaboration

    Transposable elements (TEs) are fundamental building blocks of all genomes. Retrotransposable elements (RTEs) are one of the two primary classes of TEs that are ubiquitous in eukaryotes. They propagate through a copy-and-paste mechanism utilizing reverse-transcribed mRNA intermediates. This leads to disruption and dispersal of coding and control elements throughout the genome, and consequently TEs are thought to be a major driving force behind diversification. However, RTEs are absent in most prokaryotes including E. coli. and the reason for this remains an open question. Despite their prevalence, there still remain many unanswered questions about how `hot' or active L1 RTEs (L1Hs) function. In particular, their rates of activity and their effects upon their host are currently poorly understood and only roughly estimated within the limitations of available technology. To address these unanswered questions, we have constructed and released an L1H element in E. coli to quantify its rates of activity and physiological effects on its host. To overcome the technical limitations, we've designed fluorescent visualization and quantification techniques that make real time high resolution observations of retrotransposition events as they occur in living cells.

  13. Chompy: an infestation of MITE-like repetitive elements in the crocodilian genome.

    PubMed

    Ray, David A; Hedges, Dale J; Herke, Scott W; Fowlkes, Justin D; Barnes, Erin W; LaVie, Daniel K; Goodwin, Lindsey M; Densmore, Llewellyn D; Batzer, Mark A

    2005-12-05

    Interspersed repeats are a major component of most eukaryotic genomes and have an impact on genome size and stability, but the repetitive element landscape of crocodilian genomes has not yet been fully investigated. In this report, we provide the first detailed characterization of an interspersed repeat element in any crocodilian genome. Chompy is a putative miniature inverted-repeat transposable element (MITE) family initially recovered from the genome of Alligator mississippiensis (American alligator) but also present in the genomes of Crocodylus moreletii (Morelet's crocodile) and Gavialis gangeticus (Indian gharial). The element has all of the hallmarks of MITEs including terminal inverted repeats, possible target site duplications, and a tendency to form secondary structures. We estimate the copy number in the alligator genome to be approximately 46,000 copies. As a result of their size and unique properties, Chompy elements may provide a useful source of genomic variation for crocodilian comparative genomics.

  14. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2015-04-01

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).

  15. Regulation of P-element transposase activity in Drosophila melanogaster by hobo transgenes that contain KP elements.

    PubMed Central

    Simmons, Michael J; Haley, Kevin J; Grimes, Craig D; Raymond, John D; Fong, Joseph C L

    2002-01-01

    Fusions between the Drosophila hsp70 promoter and three different incomplete P elements, KP, SP, and BP1, were inserted into the Drosophila genome by means of hobo transformation vectors and the resulting transgenic stocks were tested for repression of P-element transposase activity. Only the H(hsp/KP) transgenes repressed transposase activity, and the degree of repression was comparable to that of a naturally occurring KP element. The KP transgenes repressed transposase activity both with and without heat-shock treatments. Both the KP element and H(hsp/KP) transgenes repressed the transposase activity encoded by the modified P element in the P(ry(+), Delta2-3)99B transgene more effectively than that encoded by the complete P element in the H(hsp/CP)2 transgene even though the P(ry(+), Delta2-3)99B transgene was the stronger transposase source. Repression of both transposase sources appeared to be due to a zygotic effect of the KP element or transgene. There was no evidence for repression by a strictly maternal effect; nor was there any evidence for enhancement of KP repression by the joint maternal transmission of H(hsp/KP) and H(hsp/CP) transgenes. These results are consistent with the idea that KP-mediated repression of P-element activity involves a KP-repressor polypeptide that is not maternally transmitted and that KP-mediated repression is not strengthened by the 66-kD repressor produced by complete P elements through alternate splicing of their RNA. PMID:12019235

  16. Alpha3, a transposable element that promotes host sexual reproduction.

    PubMed

    Barsoum, Emad; Martinez, Paula; Aström, Stefan U

    2010-01-01

    Theoretical models predict that selfish DNA elements require host sex to persist in a population. Therefore, a transposon that induces sex would strongly favor its own spread. We demonstrate that a protein homologous to transposases, called alpha3, was essential for mating type switch in Kluyveromyces lactis. Mutational analysis showed that amino acids conserved among transposases were essential for its function. During switching, sequences in the 5' and 3' flanking regions of the alpha3 gene were joined, forming a DNA circle, showing that alpha3 mobilized from the genome. The sequences encompassing the alpha3 gene circle junctions in the mating type alpha (MATalpha) locus were essential for switching from MATalpha to MATa, suggesting that alpha3 mobilization was a coupled event. Switching also required a DNA-binding protein, Mating type switch 1 (Mts1), whose binding sites in MATalpha were important. Expression of Mts1 was repressed in MATa/MATalpha diploids and by nutrients, limiting switching to haploids in low-nutrient conditions. A hairpin-capped DNA double-strand break (DSB) was observed in the MATa locus in mre11 mutant strains, indicating that mating type switch was induced by MAT-specific DSBs. This study provides empirical evidence for selfish DNA promoting host sexual reproduction by mediating mating type switch.

  17. LTR-Retrotransposons in R. exoculata and Other Crustaceans: The Outstanding Success of GalEa-Like Copia Elements

    PubMed Central

    Esnault, Caroline; Graça, Paula; Higuet, Dominique; Bonnivard, Eric

    2013-01-01

    Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. They can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. LTR-retrotransposons have been reported in many diverse eukaryote species, describing a ubiquitous distribution. Given their abundance, diversity and their extended ranges in C-values, environment and life styles, crustaceans are a great taxon to investigate the genomic component of adaptation and its possible relationships with TEs. However, crustaceans have been greatly underrepresented in transposable element studies. Using both degenerate PCR and in silico approaches, we have identified 35 Copia and 46 Gypsy families in 15 and 18 crustacean species, respectively. In particular, we characterized several full-length elements from the shrimp Rimicaris exoculata that is listed as a model organism from hydrothermal vents. Phylogenic analyses show that Copia and Gypsy retrotransposons likely present two opposite dynamics within crustaceans. The Gypsy elements appear relatively frequent and diverse whereas Copia are much more homogeneous, as 29 of them belong to the single GalEa clade, and species- or lineage-dependent. Our results also support the hypothesis of the Copia retrotransposon scarcity in metazoans compared to Gypsy elements. In such a context, the GalEa-like elements present an outstanding wide distribution among eukaryotes, from fishes to red algae, and can be even highly predominant within a large taxon, such as Malacostraca. Their distribution among crustaceans suggests a dynamics that follows a “domino days spreading” branching process in which successive amplifications may interact positively. PMID:23469217

  18. Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods.

    PubMed

    Kamoun, Choumouss; Payen, Thibaut; Hua-Van, Aurélie; Filée, Jonathan

    2013-10-11

    Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of

  19. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response.

    PubMed

    Wheeler, Bayly S

    2013-12-01

    Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.

  20. Elements of active vibration control for rotating machinery

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  1. Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula

    PubMed Central

    Grzebelus, Dariusz; Lasota, Slawomir; Gambin, Tomasz; Kucherov, Gregory; Gambin, Anna

    2007-01-01

    Background Transposable elements constitute a significant fraction of plant genomes. The PIF/Harbinger superfamily includes DNA transposons (class II elements) carrying terminal inverted repeats and producing a 3 bp target site duplication upon insertion. The presence of an ORF coding for the DDE/DDD transposase, required for transposition, is characteristic for the autonomous PIF/Harbinger-like elements. Based on the above features, PIF/Harbinger-like elements were identified in several plant genomes and divided into several evolutionary lineages. Availability of a significant portion of Medicago truncatula genomic sequence allowed for mining PIF/Harbinger-like elements, starting from a single previously described element MtMaster. Results Twenty two putative autonomous, i.e. carrying an ORF coding for TPase and complete terminal inverted repeats, and 67 non-autonomous PIF/Harbinger-like elements were found in the genome of M. truncatula. They were divided into five families, MtPH-A5, MtPH-A6, MtPH-D,MtPH-E, and MtPH-M, corresponding to three previously identified and two new lineages. The largest families, MtPH-A6 and MtPH-M were further divided into four and three subfamilies, respectively. Non-autonomous elements were usually direct deletion derivatives of the putative autonomous element, however other types of rearrangements, including inversions and nested insertions were also observed. An interesting structural characteristic – the presence of 60 bp tandem repeats – was observed in a group of elements of subfamily MtPH-A6-4. Some families could be related to miniature inverted repeat elements (MITEs). The presence of empty loci (RESites), paralogous to those flanking the identified transposable elements, both autonomous and non-autonomous, as well as the presence of transposon insertion related size polymorphisms, confirmed that some of the mined elements were capable for transposition. Conclusion The population of PIF/Harbinger-like elements in the

  2. Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula.

    PubMed

    d'Erfurth, Isabelle; Cosson, Viviane; Eschstruth, Alexis; Lucas, Helene; Kondorosi, Adam; Ratet, P

    2003-04-01

    The tobacco element, Tnt1, is one of the few active retrotransposons in plants. Its transposition is activated during protoplast culture in tobacco and tissue culture in the heterologous host Arabidopsis thaliana. Here, we report its transposition in the R108 line of Medicago truncatula during the early steps of the in vitro transformation-regeneration process. Two hundred and twenty-five primary transformants containing Tnt1 were obtained. Among them, 11.2% contained only transposed copies of the element, indicating that Tnt1 transposed very early and efficiently during the in vitro transformation process, possibly even before the T-DNA integration. The average number of insertions per transgenic line was estimated to be about 15. These insertions were stable in the progeny and could be separated by segregation. Inspection of the sequences flanking the insertion sites revealed that Tnt1 had no insertion site specificity and often inserted in genes (one out of three insertions). Thus, our work demonstrates the functioning of an efficient transposable element in leguminous plants. These results indicate that Tnt1 can be used as a powerful tool for insertion mutagenesis in M. truncatula.

  3. Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice.

    PubMed

    Huang, Jian; Zhang, Kewei; Shen, Yi; Huang, Zejun; Li, Ming; Tang, Ding; Gu, Minghong; Cheng, Zhukuan

    2009-03-01

    Recent completion of rice genome sequencing has revealed that more than 40% of its genome consists of repetitive sequences, and most of them are related to inactive transposable elements. In the present study, a transposable element, nDaiZ0, which is induced by tissue culture with high frequency, was identified by sequence analysis of an allelic line of the golden hull and internode 2 (gh2) mutant, which was integrated into the forth exon of GH2. The 528-bp nDaiZ0 has 14-bp terminal inverted repeats (TIRs), and generates an 8-bp duplication of its target sites (TSD) during its mobilization. nDaiZs are non-autonomous transposons and have no coding capacity. Bioinformatics analysis and southern blot hybridization showed that at least 16 copies of nDaiZ elements exist in the japonica cultivar Nipponbare genome and 11 copies in the indica cultivar 93-11 genome. During tissue culture, only one copy, nDaiZ9, located on chromosome 5 in the genome of Nipponbare can be activated with its transposable frequency reaching 30%. However, nDaiZ9 was not present in the 93-11 genome. The larger elements, DaiZs, were further identified by database searching using nDaiZ0 as a query because they share similar TIRs and subterminal sequences. DaiZ can also generate an 8-bp TSD. DaiZ elements contain a conserved region with a high similarity to the hAT dimerization motif, suggesting that the nDaiZ-DaiZ transposon system probably belongs to the hAT superfamily of class II transposons. Phylogenetic analysis indicated that it is a new type of plant hAT-like transposon. Although nDaiZ is activated by tissue culture, the high transposable frequency indicates that it could become a useful gene tagging system for rice functional genomic studies. In addition, the mechanism of the high transposable ability of nDaiZ9 is discussed.

  4. Controlled activation of retrotransposition for plant breeding.

    PubMed

    Paszkowski, Jerzy

    2015-04-01

    Plant genomes consist to a large extent of transposable elements (TEs), predominantly retrotransposons. Their accumulation through periodic transposition bursts has shaped the structure and regulatory organization of plant genomes, often contributing to phenotypic traits. Transposon-generated phenotypes selected by humans during plant domestication have been maintained under strict selection during subsequent plant breeding. Our knowledge of the epigenetic, environmental, and developmental regulation of TE activity has advanced considerably in recent years. Here I will consider TEs as an attractive endogenous source of genetic variation that can be liberated in a controlled fashion and thus offer novel phenotypic diversity to be selected for crop improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme.

    PubMed Central

    Burke, W D; Calalang, C C; Eickbush, T H

    1987-01-01

    Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover. Images PMID:2439905

  6. Searching for non-transposable targets of planarian nuclear PIWI in pluripotent stem cells and differentiated cells.

    PubMed

    Kashima, Makoto; Agata, Kiyokazu; Shibata, Norito

    2018-06-01

    Nuclear PIWIs together with their guide RNAs (piRNAs) epigenetically silence various genes including transposons in many organisms. In planarians, the nuclear piwi family gene, DjpiwiB is specifically transcribed in adult pluripotent stem cells (adult PSC, neoblast), but not in differentiated cells. However, the protein accumulates in the nuclei of both neoblasts and their descendant differentiated cells. Interestingly, PIWI(DjPiwiB)-piRNA complexes are indispensable for the repression of transposable genes at the onset of differentiation from neoblasts. Here, we conducted a comparative transcriptome analysis between control and DjpiwiB(RNAi) animals to identify non-transposable target genes of the DjPiwiB-piRNA complexes. Using bioinformatic analyses and RNAi we demonstrate that DjPiwiB-piRNA complexes are required for the proper expression of Djmcm2 and Djhistone h4 in neoblasts and that DjPiwiB-piRNA complexes regulate the transient expression of Djcalu during neoblast differentiation. Thus, DjPiwiB-piRNA complexes regulate the correct expression patterns during neoblast self-renewal and differentiation. © 2018 Japanese Society of Developmental Biologists.

  7. Association between the location of transposed ovary and ovarian function in patients with uterine cervical cancer treated with (postoperative or primary) pelvic radiotherapy.

    PubMed

    Hwang, Jong Ha; Yoo, Heon Jong; Park, Sae Hyun; Lim, Myong Cheol; Seo, Sang-Soo; Kang, Sokbom; Kim, Joo-Young; Park, Sang-Yoon

    2012-06-01

    To evaluate the effectiveness of ovarian transposition procedures in preserving ovarian function in relation to the location of the transposed ovaries in patients who underwent surgery with or without pelvic radiotherapy. Retrospective. Uterine cancer center. A total of 53 patients with cervical cancer who underwent ovarian transposition between November 2002 and November 2010. Ovarian transposition to the paracolic gutters with or without radical hysterectomy and lymph node dissection. Preservation of ovarian function, which was assessed by patient's symptoms and serum FSH level. Lateral ovarian transposition was performed in 53 patients. Based on receiver operator characteristic curve analysis, optimum cutoff value of location more than 1.5 cm above the iliac crest was significantly associated with preservation of ovarian function after treatment (area under receiver operator characteristic curve: 0.757, 95% confidence interval [CI]: 0.572-0.943). In univariate analysis, higher location of transposed ovary more than 1.5 cm from the iliac crest was the only independent factor for intact ovarian function (odds ratio 9.91, 95% CI: 1.75-56.3). Multivariate analysis confirmed that the location of transposed ovary (odds ratio 11.72, 95% CI 1.64-83.39) was the most important factor for intact ovarian function. Location of transposed ovary higher than 1.5 cm above the iliac crest is recommended to avoid ovarian failure after lateral ovarian transposition after primary or adjuvant pelvic radiotherapy in cervical cancer. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU

    DOE PAGES

    Lyakh, Dmitry I.

    2015-01-05

    An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less

  9. [The effect of modified Nance arch on treating maxillary impacted canine transposed with first premolar].

    PubMed

    Xu, Qing-chao; Sun, Hao; Lin, Yan; Wang, Xiu-ying; Hu, Rong-dang

    2015-10-01

    To explore the effect of modified Nance arch on treating maxillary canine-first premolar transposition cases, in which the anchorage and force direction were discussed. Modified Nance arch was applied to 5 cases with maxillary impacted canine-first premolar transposition. First, a lingual knot button was bonded on the surface of the canine crown. Modified Nance arch was decorated with a hook that moved horizontally and buccally. Then the location of the hook was gradually adjusted in order to move the canine cross the root of the first premolar and move the canine to the right position. At last the canine was moved downward by straight wire appliance. Five maxillary transposed canines were fully erupted in their right position, with normal pulp activity and gingival morphology. No obvious root resorption was detected. The mean treatment time was 30 months. Modified Nance arch has advantages in treating canine-first premolar transposition.

  10. The Tgm9-induced indexed insertional mutant collection to conduct community-based reverse genetics studies in soybean

    USDA-ARS?s Scientific Manuscript database

    Until now, functional analyses of soybean genes have been very arduous because of the lack of a rapid transformation procedure. Recently identified the active endogenous type II transposable element, Tgm9, excises from insertion sites and restores wild-type phenotypes. Thus, this element provides a ...

  11. Inferring transposons activity chronology by TRANScendence - TEs database and de-novo mining tool.

    PubMed

    Startek, Michał Piotr; Nogły, Jakub; Gromadka, Agnieszka; Grzebelus, Dariusz; Gambin, Anna

    2017-10-16

    The constant progress in sequencing technology leads to ever increasing amounts of genomic data. In the light of current evidence transposable elements (TEs for short) are becoming useful tools for learning about the evolution of host genome. Therefore the software for genome-wide detection and analysis of TEs is of great interest. Here we describe the computational tool for mining, classifying and storing TEs from newly sequenced genomes. This is an online, web-based, user-friendly service, enabling users to upload their own genomic data, and perform de-novo searches for TEs. The detected TEs are automatically analyzed, compared to reference databases, annotated, clustered into families, and stored in TEs repository. Also, the genome-wide nesting structure of found elements are detected and analyzed by new method for inferring evolutionary history of TEs. We illustrate the functionality of our tool by performing a full-scale analyses of TE landscape in Medicago truncatula genome. TRANScendence is an effective tool for the de-novo annotation and classification of transposable elements in newly-acquired genomes. Its streamlined interface makes it well-suited for evolutionary studies.

  12. Preview Effects of Plausibility and Character Order in Reading Chinese Transposed Words: Evidence from Eye Movements

    ERIC Educational Resources Information Center

    Yang, Jinmian

    2013-01-01

    The current paper examined the role of plausibility information in the parafovea for Chinese readers by using two-character transposed words (in which the order of the component characters is reversed but are still words). In two eye-tracking experiments, readers received a preview of a target word that was (1) identical to the target word, (2) a…

  13. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs).

    PubMed

    Szuplewska, Magdalena; Ludwiczak, Marta; Lyzwa, Katarzyna; Czarnecki, Jakub; Bartosik, Dariusz

    2014-01-01

    Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not

  14. The Microprocessor controls the activity of mammalian retrotransposons.

    PubMed

    Heras, Sara R; Macias, Sara; Plass, Mireya; Fernandez, Noemí; Cano, David; Eyras, Eduardo; Garcia-Perez, José L; Cáceres, Javier F

    2013-10-01

    More than half of the human genome is made of transposable elements whose ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogenesis, also recognizes and binds RNAs derived from human long interspersed element 1 (LINE-1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture-based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor of mammalian retrotransposons and a defender of human genome integrity.

  15. E622, a miniature, virulence-associated mobile element.

    PubMed

    Stavrinides, John; Kirzinger, Morgan W B; Beasley, Federico C; Guttman, David S

    2012-01-01

    Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.

  16. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.

    PubMed

    Xie, Zhiqun; Tang, Haixu

    2017-11-01

    The insertion sequence (IS) elements are the smallest but most abundant autonomous transposable elements in prokaryotic genomes, which play a key role in prokaryotic genome organization and evolution. With the fast growing genomic data, it is becoming increasingly critical for biology researchers to be able to accurately and automatically annotate ISs in prokaryotic genome sequences. The available automatic IS annotation systems are either providing only incomplete IS annotation or relying on the availability of existing genome annotations. Here, we present a new IS elements annotation pipeline to address these issues. ISEScan is a highly sensitive software pipeline based on profile hidden Markov models constructed from manually curated IS elements. ISEScan performs better than existing IS annotation systems when tested on prokaryotic genomes with curated annotations of IS elements. Applying it to 2784 prokaryotic genomes, we report the global distribution of IS families across taxonomic clades in Archaea and Bacteria. ISEScan is implemented in Python and released as an open source software at https://github.com/xiezhq/ISEScan. hatang@indiana.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Initial investigations into preschoolers' mirror-style versus transposed bodily imitation.

    PubMed

    Dunphy-Lelii, Sarah

    2014-03-01

    In typical development, imitation plays a key role in sociocognitive competence. The current study investigated a hypothesised developmental trajectory in face-to-face full body imitation style in 91 preschoolers, as well as a relation between imitation style and theory of mind (ToM). Children's response style to 8 lateralized action prompts was recorded as either "mirror" or "transposed." Overall, mirror-style response increased with age, and was predominant for children and an adult comparison group. Imitation style varied depending on the prompt given, with certain actions showing a side bias regardless of prompt viewed. Mirror-style response was correlated with ToM performance after controlling for language ability, but not after controlling for age. Findings are discussed regarding the hypothesised relation between postural synchrony and larger perspective-taking competence.

  18. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    PubMed Central

    Marie, Pauline P.; Ronsseray, Stéphane; Boivin, Antoine

    2016-01-01

    In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development. PMID:27932388

  19. When Genomics Is Not Enough: Experimental Evidence for a Decrease in LINE-1 Activity During the Evolution of Australian Marsupials

    PubMed Central

    Gallus, Susanne; Lammers, Fritjof

    2016-01-01

    The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads. PMID:27389686

  20. DNA methylation dynamics during early plant life.

    PubMed

    Bouyer, Daniel; Kramdi, Amira; Kassam, Mohamed; Heese, Maren; Schnittger, Arp; Roudier, François; Colot, Vincent

    2017-09-25

    Cytosine methylation is crucial for gene regulation and silencing of transposable elements in mammals and plants. While this epigenetic mark is extensively reprogrammed in the germline and early embryos of mammals, the extent to which DNA methylation is reset between generations in plants remains largely unknown. Using Arabidopsis as a model, we uncovered distinct DNA methylation dynamics over transposable element sequences during the early stages of plant development. Specifically, transposable elements and their relics show invariably high methylation at CG sites but increasing methylation at CHG and CHH sites. This non-CG methylation culminates in mature embryos, where it reaches saturation for a large fraction of methylated CHH sites, compared to the typical 10-20% methylation level observed in seedlings or adult plants. Moreover, the increase in CHH methylation during embryogenesis matches the hypomethylated state in the early endosperm. Finally, we show that interfering with the embryo-to-seedling transition results in the persistence of high CHH methylation levels after germination, specifically over sequences that are targeted by the RNA-directed DNA methylation (RdDM) machinery. Our findings indicate the absence of extensive resetting of DNA methylation patterns during early plant life and point instead to an important role of RdDM in reinforcing DNA methylation of transposable element sequences in every cell of the mature embryo. Furthermore, we provide evidence that this elevated RdDM activity is a specific property of embryogenesis.

  1. Vertical Transmission of the Retrotransposable Elements R1 and R2 during the Evolution of the Drosophila Melanogaster Species Subgroup

    PubMed Central

    Eickbush, D. G.; Eickbush, T. H.

    1995-01-01

    R1 and R2 are non-long-terminal repeat retrotransposable elements that insert into specific sequences of insect 28S ribosomal RNA genes. These elements have been extensively described in Drosophila melanogaster. To determine whether these elements have been horizontally or vertically transmitted, we characterized R1 and R2 elements from the seven other members of the melanogaster species subgroup by genomic blotting and nucleotide sequencing. Each species was found to have homogeneous families of R1 and R2 elements with the exception of erecta and orena, which have no R2 elements. The DNA sequences of multiple R1 and R2 copies from each species indicated nucleotide divergence within each species averaged only 0.48% for R1 and 0.35% for R2, well below the level of divergence among the species. Most copies of R1 and R2 (40 of 47) sequenced from the seven species were potentially functional, as indicated by the absence of premature termination codons or translational frameshifts that would destroy the open reading frame of the element. The sequence relationships of both the R1 and R2 elements from the various members of the melanogaster subgroup closely followed that of the species phylogeny, suggesting that R1 and R2 have been stably maintained by vertical transmission since the origin of this species subgroup 17-20 million years ago. The remarkable stability of R1 and R2, compared to what has been suggested for transposable elements that insert at multiple locations in these same species, may be due to their unique specificity for sites in the rRNA gene locus. Under low copy number conditions, when it is essential for any mobile element to transpose, the insertion specificities of R1 and R2 ensure uniform developmentally regulated target sites that can be occupied with little or no detrimental effect on the host. PMID:7713424

  2. The Microprocessor controls the activity of mammalian retrotransposons

    PubMed Central

    Heras, Sara R.; Macias, Sara; Plass, Mireya; Fernandez, Noemí; Cano, David; Eyras, Eduardo; Garcia-Perez, José L.; Cáceres, Javier F.

    2013-01-01

    More than half of the human genome is made of Transposable Elements. Their ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogenesis, also recognizes and binds RNAs derived from human LINE-1 (Long INterspersed Element 1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture-based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor of mammalian retrotransposons acting as a defender of human genome integrity. PMID:23995758

  3. Moving from Science to Service: Transposing and Sustaining the Early Risers Prevention Program in a Community Service System

    ERIC Educational Resources Information Center

    Bloomquist, Michael L.; August, Gerald J.; Horowitz, Jason L.; Lee, Susanne S.; Jensen, Cheryl

    2008-01-01

    This paper summarizes an effort to transpose and sustain the evidence-based Early Risers "Skills for Success" conduct problems prevention program in a real world community service system. The Early Risers program had previously been implemented by a local agency within the context of research-based operations. In the current initiative,…

  4. Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells.

    PubMed

    Houba-Hérin, N; Domin, M; Pédron, J

    1994-07-01

    Nicotiana plumbaginifolia haploid protoplasts were co-transformed with two plasmids, one with a NPT-II/Ds element and one with a gene encoding an amino-terminal truncated Ac transposase. It is shown that Ds can efficiently transpose from extrachromosomal DNA to N. plumbaginifolia chromosomes when the Ac transposase gene is present in trans. Ds has been shown to have transposed into the plant genome in a limited number of copies (1.9 copies per genome), for 21/32 transgenic lines tested. The flanking sequences present in the original plasmid are missing in these 21 plants. In only two of 21 plants was part of the transposase construct integrated. By segregation analysis of transgenic progeny, Ds was shown to be present in the heterozygous state in 10 lines even though haploid protoplasts had been originally transformed. This observation could indicate that integration occurred after or during DNA replication that leads to protoplast diploidization.

  5. MaRGEE: Move and Rotate Google Earth Elements

    NASA Astrophysics Data System (ADS)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  6. Matching Element Symbols with State Abbreviations: A Fun Activity for Browsing the Periodic Table of Chemical Elements

    ERIC Educational Resources Information Center

    Woelk, Klaus

    2009-01-01

    A classroom activity is presented in which students are challenged to find matches between the United States two-letter postal abbreviations for states and chemical element symbols. The activity aims to lessen negative apprehensions students might have when the periodic table of the elements with its more than 100 combinations of letters is first…

  7. S Elements: A Family of Tc1-like Transposons in the Genome of Drosophila Melanogaster

    PubMed Central

    Merriman, P. J.; Grimes, C. D.; Ambroziak, J.; Hackett, D. A.; Skinner, P.; Simmons, M. J.

    1995-01-01

    The S elements form a diverse family of long-inverted-repeat transposons within the genome of Drosophila melanogaster. These elements vary in size and sequence, the longest consisting of 1736 bp with 234-bp inverted terminal repeats. The longest open reading frame in an intact S element could encode a 345-amino acid polypeptide. This polypeptide is homologous to the transposases of the mariner-Tc1 superfamily of transposable elements. S elements are ubiquitous in D. melanogaster populations and also appear to be present in the genomes of two sibling species; however, they seem to be absent from 17 other Drosophila species that were examined. Within D. melanogaster strains, there are, on average, 37.4 cytologically detectable S elements per diploid genome. These elements are scattered throughout the chromosomes, but several sites in both the euchromatin and β heterochromatin are consistently occupied. The discovery of an S-element-insertion mutation and a reversion of this mutation indicates that S elements are at least occasionally mobile in the D. melanogaster genome. These elements seem to insert at an AT dinucleotide within a short palindrome and apparently duplicate that dinucleotide upon insertion. PMID:8601484

  8. Finite-element model of the active organ of Corti

    PubMed Central

    Elliott, Stephen J.; Baumgart, Johannes

    2016-01-01

    The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback. PMID:26888950

  9. Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome

    PubMed Central

    Goldberg, Michael L.; Sheen, Jenq-Yunn; Gehring, Walter J.; Green, M. M.

    1983-01-01

    The molecular structure of reciprocal duplications and deficiencies produced by unequal crossing-over at the white (w) locus of Drosophila melanogaster females heterozygous for the alleles wa and wa4 has been examined. A transposable, copia-like element is found at the rearrangement breakpoints. Further characterization indicates that asymmetrical pairing between two copies of this element, which are at least 60 kilobases apart in the parental chromosomes, followed by a crossover within the paired elements, is responsible for the duplication and deficiencies observed. The frequency of these events is high compared with normal homologous exchange, implying that synaptic pairing during meiosis must be sufficiently flexible as to allow efficient recognition of sequences located in nonidentical positions on homologous chromosomes. These results suggest a possible mechanism for the generation of tandem duplications in eukaryotic organisms. Images PMID:16593354

  10. Evolutionary trajectory of Pack-MULEs is determined by their epigenetic status

    USDA-ARS?s Scientific Manuscript database

    Acquisition and rearrangement of host genes by transposable elements is one mechanism to increase gene diversity. The rice genome is replete in such sequences and while ~3,000 Pack- Mutator-like transposable elements containing gene sequences (Pack-MULEs) have been identified, their function remains...

  11. Negative effect of the 5'-untranslated leader sequence on Ac transposon promoter expression.

    PubMed

    Scortecci, K C; Raina, R; Fedoroff, N V; Van Sluys, M A

    1999-08-01

    Transposable elements are used in heterologous plant hosts to clone genes by insertional mutagenesis. The Activator (Ac) transposable element has been cloned from maize, and introduced into a variety of plants. However, differences in regulation and transposition frequency have been observed between different host plants. The cause of this variability is still unknown. To better understand the activity of the Ac element, we analyzed the Ac promoter region and its 5'-untranslated leader sequence (5' UTL). Transient assays in tobacco NT1 suspension cells showed that the Ac promoter is a weak promoter and its activity was localized by deletion analyses. The data presented here indicate that the core of the Ac promoter is contained within 153 bp fragment upstream to transcription start sites. An important inhibitory effect (80%) due to the presence of the 5' UTL was found on the expression of LUC reporter gene. Here we demonstrate that the presence of the 5' UTL in the constructs reduces the expression driven by either strong or weak promoters.

  12. TEs or not TEs? That is the evolutionary question.

    PubMed

    Vaknin, Keren; Goren, Amir; Ast, Gil

    2009-10-23

    Transposable elements (TEs) have contributed a wide range of functional sequences to their host genomes. A recent paper in BMC Molecular Biology discusses the creation of new transcripts by transposable element insertion upstream of retrocopies and the involvement of such insertions in tissue-specific post-transcriptional regulation.

  13. A Helitron-like Transposon Superfamily from Lepidoptera Disrupts (GAAA)n Microsatellites and is Responsible for Flanking Sequence Similarity within a Microsatellite Family

    USDA-ARS?s Scientific Manuscript database

    Transposable elements (TEs) are mobile DNA regions that alter host genome structure and gene expression. A novel 588 bp non-autonomous high copy number TE in the Ostrinia nubilalis genome has features in common with miniature inverted-repeat transposable elements (MITEs): high A+T content (62.3%),...

  14. Useful DNA polymorphisms are identified by snapback, a midrepetitive element in Tribolium castaneum.

    PubMed

    Stuart, J J; De Gortari, M J; Hall, P S; Maxwell, M E; Mocelin, G; Brown, S J; Muir, W M

    1996-06-01

    The red flour bettle, Tribolium castaneum, is both a pest of stored grain products and an important experimental organism. To improve its facility as a genetic model, we are developing DNA fingerprinting methods for this insect. A Tribolium DNA fragment, snapback-1 (SBI), identified among sequences that reassociate before a Cot of 0.03 mol.s/L, was found to produce a banding pattern in restriction endonuclease digested genomic DNA that is characteristic of a midrepetitive element. DNA fingerprints of individual beetles demonstrated that unvarying inherited DNA polymorphism is revealed, and that polymorphism is inherited in a dominant Mendelian fashion. Linkage between bands was minimal. The sequence of SBI was determined, and hybridization experiments indicated that SBI is a fragment of a larger midrepetitive element. Fingerprinting individuals with known inbreeding coefficients indicated that SBI loci have relatively high mutation rates. The possibility that SBI is a fragment of a transposable element is discussed.

  15. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses.

    PubMed

    Pritham, Ellen J; Putliwala, Tasneem; Feschotte, Cédric

    2007-04-01

    We previously identified a group of atypical mobile elements designated Mavericks from the nematodes Caenorhabditis elegans and C. briggsae and the zebrafish Danio rerio. Here we present the results of comprehensive database searches of the genome sequences available, which reveal that Mavericks are widespread in invertebrates and non-mammalian vertebrates but show a patchy distribution in non-animal species, being present in the fungi Glomus intraradices and Phakopsora pachyrhizi and in several single-celled eukaryotes such as the ciliate Tetrahymena thermophila, the stramenopile Phytophthora infestans and the trichomonad Trichomonas vaginalis, but not detectable in plants. This distribution, together with comparative and phylogenetic analyses of Maverick-encoded proteins, is suggestive of an ancient origin of these elements in eukaryotes followed by lineage-specific losses and/or recurrent episodes of horizontal transmission. In addition, we report that Maverick elements have amplified recently to high copy numbers in T. vaginalis where they now occupy as much as 30% of the genome. Sequence analysis confirms that most Mavericks encode a retroviral-like integrase, but lack other open reading frames typically found in retroelements. Nevertheless, the length and conservation of the target site duplication created upon Maverick insertion (5- or 6-bp) is consistent with a role of the integrase-like protein in the integration of a double-stranded DNA transposition intermediate. Mavericks also display long terminal-inverted repeats but do not contain ORFs similar to proteins encoded by DNA transposons. Instead, Mavericks encode a conserved set of 5 to 9 genes (in addition to the integrase) that are predicted to encode proteins with homology to replication and packaging proteins of some bacteriophages and diverse eukaryotic double-stranded DNA viruses, including a DNA polymerase B homolog and putative capsid proteins. Based on these and other structural similarities, we

  16. Identification of an active endogenous transposon from the W4 locus in soybean

    USDA-ARS?s Scientific Manuscript database

    In soybean [Glycine max (L.) Merr.], W4 is one of the loci that control anthocyanin biosynthesis in flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable T322 line resulting in the w4-m allele. We have shown that the W4 locu...

  17. Selfish genetic elements and the gene’s-eye view of evolution

    PubMed Central

    2016-01-01

    During the last few decades, we have seen an explosion in the influx of details about the biology of selfish genetic elements. Ever since the early days of the field, the gene’s-eye view of Richard Dawkins, George Williams, and others, has been instrumental to make sense of new empirical observations and to the generation of new hypotheses. However, the close association between selfish genetic elements and the gene’s-eye view has not been without critics and several other conceptual frameworks have been suggested. In particular, proponents of multilevel selection models have used selfish genetic elements to criticize the gene’s-eye view. In this paper, I first trace the intertwined histories of the study of selfish genetic elements and the gene’s-eye view and then discuss how their association holds up when compared with other proposed frameworks. Next, using examples from transposable elements and the major transitions, I argue that different models highlight separate aspects of the evolution of selfish genetic elements and that the productive way forward is to maintain a plurality of perspectives. Finally, I discuss how the empirical study of selfish genetic elements has implications for other conceptual issues associated with the gene’s-eye view, such as agential thinking, adaptationism, and the role of fitness maximizing models in evolution. PMID:29491953

  18. Spec Rekindled-A Simple Torque Correction Mechanics for Transposed Teeth in Conjunction with Pre-adjusted Edgewise Appliance System

    PubMed Central

    Singh, Harpreet; Thakkar, Surbhi

    2016-01-01

    Complete transposition of teeth is a rather rare phenomenon. After correction of transposed and malaligned lateral incisor and canine, attainment of appropriate individual antagonistic tooth torque is indispensable, which many orthodontists consider to be a herculean task. Here, a novel method is proposed which demonstrates the use of Spec reverse torquing auxillary as an effective adjunctive aid in conjunction with pre-adjusted edgewise brackets. PMID:28209017

  19. Spec Rekindled-A Simple Torque Correction Mechanics for Transposed Teeth in Conjunction with Pre-adjusted Edgewise Appliance System.

    PubMed

    Singh, Harpreet; Maurya, Raj Kumar; Thakkar, Surbhi

    2016-12-01

    Complete transposition of teeth is a rather rare phenomenon. After correction of transposed and malaligned lateral incisor and canine, attainment of appropriate individual antagonistic tooth torque is indispensable, which many orthodontists consider to be a herculean task. Here, a novel method is proposed which demonstrates the use of Spec reverse torquing auxillary as an effective adjunctive aid in conjunction with pre-adjusted edgewise brackets.

  20. The Dynamic Mu Transpososome: MuB activation prevents disintegration

    PubMed Central

    Lemberg, Kathryn M.; Schweidenback, Caterina T. H.; Baker, Tania A.

    2007-01-01

    Summary DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration vs. disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the ‘joining’ configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and thus may provide a mechanism to antagonize formation of single-end transposition products. PMID:17988683

  1. Derepression of the Plant Chromovirus LORE1 Induces Germline Transposition in Regenerated Plants

    PubMed Central

    Fukai, Eigo; Umehara, Yosuke; Sato, Shusei; Endo, Makoto; Kouchi, Hiroshi; Hayashi, Makoto; Stougaard, Jens; Hirochika, Hirohiko

    2010-01-01

    Transposable elements represent a large proportion of the eukaryotic genomes. Long Terminal Repeat (LTR) retrotransposons are very abundant and constitute the predominant family of transposable elements in plants. Recent studies have identified chromoviruses to be a widely distributed lineage of Gypsy elements. These elements contain chromodomains in their integrases, which suggests a preference for insertion into heterochromatin. In turn, this preference might have contributed to the patterning of heterochromatin observed in host genomes. Despite their potential importance for our understanding of plant genome dynamics and evolution, the regulatory mechanisms governing the behavior of chromoviruses and their activities remain largely uncharacterized. Here, we report a detailed analysis of the spatio-temporal activity of a plant chromovirus in the endogenous host. We examined LORE1a, a member of the endogenous chromovirus LORE1 family from the model legume Lotus japonicus. We found that this chromovirus is stochastically de-repressed in plant populations regenerated from de-differentiated cells and that LORE1a transposes in the male germline. Bisulfite sequencing of the 5′ LTR and its surrounding region suggests that tissue culture induces a loss of epigenetic silencing of LORE1a. Since LTR promoter activity is pollen specific, as shown by the analysis of transgenic plants containing an LTR::GUS fusion, we conclude that male germline-specific LORE1a transposition in pollen grains is controlled transcriptionally by its own cis-elements. New insertion sites of LORE1a copies were frequently found in genic regions and show no strong insertional preferences. These distinctive novel features of LORE1 indicate that this chromovirus has considerable potential for generating genetic and epigenetic diversity in the host plant population. Our results also define conditions for the use of LORE1a as a genetic tool. PMID:20221264

  2. The impact of dissociation on transposon-mediated disease control strategies.

    PubMed

    Marshall, John M

    2008-03-01

    Vector-borne diseases such as malaria and dengue fever continue to be a major health concern through much of the world. The emergence of chloroquine-resistant strains of malaria and insecticide-resistant mosquitoes emphasize the need for novel methods of disease control. Recently, there has been much interest in the use of transposable elements to drive resistance genes into vector populations as a means of disease control. One concern that must be addressed before a release is performed is the potential loss of linkage between a transposable element and a resistance gene. Transposable elements such as P and hobo have been shown to produce internal deletion derivatives at a significant rate, and there is concern that a similar process could lead to loss of the resistance gene from the drive system following a transgenic release. Additionally, transposable elements such as Himar1 have been shown to transpose significantly more frequently when free of exogenous DNA. Here, we show that any transposon-mediated gene drive strategy must have an exceptionally low rate of dissociation if it is to be effective. Additionally, the resistance gene must confer a large selective advantage to the vector to surmount the effects of a moderate dissociation rate and transpositional handicap.

  3. Determination of elements in hospital waste with neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Dwijananti, P.; Astuti, B.; Alwiyah; Fianti

    2018-03-01

    The producer of the biggest B3 waste is hospital. The waste is from medical and laboratory activities. The purpose of this study is to determine the elements contained in the liquid waste from hospital and calculate the levels of these elements. This research was done by analysis of the neutron activation conducted at BATAN Yogyakarta. The neutron activation analysis is divided into two stages: activation of the samples using neutron sources of reactor Kartini, then chopping by using a set of tools, gamma spectrometer with HPGe detector. Qualitative and quantitative analysis were done by matching the gamma spectrum peak to the Neutron Activation Table. The sample was taken from four points of the liquid waste treatment plant (WWTP) Bhakti Wira Tamtama Semarang hospital. The results showed that the samples containing elements of Cr, Zn, Fe, Co, and Na, with the levels of each element is Cr (0.033 - 0.075) mg/L, Zn (0.090 - 1.048) mg/L, Fe (2.937-37.743) mg/L, Co (0.005-0.023) mg/L, and Na (61.088-116.330) mg/L. Comparing to the standard value, the liquid is safe to the environment.

  4. The struggle for life of the genome's selfish architects

    PubMed Central

    2011-01-01

    Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution. Reviewers This article was reviewed by Jerzy Jurka, Jürgen Brosius and I. King Jordan. For complete reports, see the Reviewers' reports section. PMID:21414203

  5. Single molecule counting and assessment of random molecular tagging errors with transposable giga-scale error-correcting barcodes.

    PubMed

    Lau, Billy T; Ji, Hanlee P

    2017-09-21

    RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.

  6. Genome-Wide Comparison of Magnaporthe Species Reveals a Host-Specific Pattern of Secretory Proteins and Transposable Elements

    PubMed Central

    Gowda, Malali

    2016-01-01

    Blast disease caused by the Magnaporthe species is a major factor affecting the productivity of rice, wheat and millets. This study was aimed at generating genomic information for rice and non-rice Magnaporthe isolates to understand the extent of genetic variation. We have sequenced the whole genome of the Magnaporthe isolates, infecting rice (leaf and neck), finger millet (leaf and neck), foxtail millet (leaf) and buffel grass (leaf). Rice and finger millet isolates infecting both leaf and neck tissues were sequenced, since the damage and yield loss caused due to neck blast is much higher as compared to leaf blast. The genome-wide comparison was carried out to study the variability in gene content, candidate effectors, repeat element distribution, genes involved in carbohydrate metabolism and SNPs. The analysis of repeat element footprints revealed some genes such as naringenin, 2-oxoglutarate 3-dioxygenase being targeted by Pot2 and Occan, in isolates from different host species. Some repeat insertions were host-specific while other insertions were randomly shared between isolates. The distributions of repeat elements, secretory proteins, CAZymes and SNPs showed significant variation across host-specific lineages of Magnaporthe indicating an independent genome evolution orchestrated by multiple genomic factors. PMID:27658241

  7. Eukaryotic gene regulation by targeted chromatin re-modeling at dispersed, middle-repetitive sequence elements.

    PubMed

    Hodgetts, Ross

    2004-12-01

    RNA interference might have evolved to minimize the deleterious impact of transposable elements and viruses on eukaryotic genomes, because mutations in genes within the RNAi pathway cause mobilization of transposons in nematodes and flies. Although the first examples of RNAi involved post-transcriptional gene silencing, recently the pathway has been shown to act at the transcriptional level. It does so by establishing a chromatin configuration on the target DNA that has many of the hallmarks of heterochromatin, thus preventing its transcription. Members of dispersed, repeated sequence families appear to have been utilized by the RNAi machinery to regulate nearby genes in yeast. The unusual genomic distribution of three repeated element families in the chicken, fruit-fly and nematode genomes prompts speculation that some of these repeats have been co-opted to control gene expression, either locally or over extended chromosomal domains.

  8. Destabilization of B2 RNA by EZH2 activates the stress response

    PubMed Central

    Zovoilis, Athanasios; Cifuentes-Rojas, Catherine; Chu, Hsueh-Ping; Hernandez, Alfredo J.; Lee, Jeannie T.

    2017-01-01

    SUMMARY More than 98% of the mammalian genome is noncoding and interspersed transposable elements account for ~50% of noncoding space. Here, we demonstrate that a specific interaction between the Polycomb protein, EZH2, and RNA made from B2 SINE retrotransposons controls stress-responsive genes in mouse cells. In the heat shock model, B2 RNA binds stress genes and suppresses their transcription. Upon stress, EZH2 is recruited and triggers cleavage of B2 RNA. B2 degradation in turn upregulates stress genes. Evidence indicates that B2 RNA operates as “speed bump” against advancement of RNA Polymerase II, and temperature stress releases the brakes on transcriptional elongation. These data attribute a new function to EZH2 that is independent of its histone methyltransferase activity and reconcile how EZH2 can be associated with both gene repression and activation. Our study reveals that EZH2 and B2 together control activation of a large network of genes involved in thermal stress. PMID:27984727

  9. Seedling lethality in Nicotiana plumbaginifolia conferred by Ds transposable element insertion into a plant-specific gene.

    PubMed

    Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole

    2002-10-01

    A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.

  10. Identification of Genetic Elements Associated with EPSPS Gene Amplification

    PubMed Central

    Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.

    2013-01-01

    Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434

  11. Cis-regulatory RNA elements that regulate specialized ribosome activity.

    PubMed

    Xue, Shifeng; Barna, Maria

    2015-01-01

    Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.

  12. DNA transposon-based gene vehicles - scenes from an evolutionary drive

    PubMed Central

    2013-01-01

    DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation. PMID:24320156

  13. Does Kaniso activate CASINO?: input coding schemes and phonology in visual-word recognition.

    PubMed

    Acha, Joana; Perea, Manuel

    2010-01-01

    Most recent input coding schemes in visual-word recognition assume that letter position coding is orthographic rather than phonological in nature (e.g., SOLAR, open-bigram, SERIOL, and overlap). This assumption has been drawn - in part - by the fact that the transposed-letter effect (e.g., caniso activates CASINO) seems to be (mostly) insensitive to phonological manipulations (e.g., Perea & Carreiras, 2006, 2008; Perea & Pérez, 2009). However, one could argue that the lack of a phonological effect in prior research was due to the fact that the manipulation always occurred in internal letter positions - note that phonological effects tend to be stronger for the initial syllable (Carreiras, Ferrand, Grainger, & Perea, 2005). To reexamine this issue, we conducted a masked priming lexical decision experiment in which we compared the priming effect for transposed-letter pairs (e.g., caniso-CASINO vs. caviro-CASINO) and for pseudohomophone transposed-letter pairs (kaniso-CASINO vs. kaviro-CASINO). Results showed a transposed-letter priming effect for the correctly spelled pairs, but not for the pseudohomophone pairs. This is consistent with the view that letter position coding is (primarily) orthographic in nature.

  14. Krylov Deferred Correction Accelerated Method of Lines Transpose for Parabolic Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jun; Jingfang, Huang

    2008-01-01

    In this paper, a new class of numerical methods for the accurate and efficient solutions of parabolic partial differential equations is presented. Unlike traditional method of lines (MoL), the new {\\bf \\it Krylov deferred correction (KDC) accelerated method of lines transpose (MoL^T)} first discretizes the temporal direction using Gaussian type nodes and spectral integration, and symbolically applies low-order time marching schemes to form a preconditioned elliptic system, which is then solved iteratively using Newton-Krylov techniques such as Newton-GMRES or Newton-BiCGStab method. Each function evaluation in the Newton-Krylov method is simply one low-order time-stepping approximation of the error by solving amore » decoupled system using available fast elliptic equation solvers. Preliminary numerical experiments show that the KDC accelerated MoL^T technique is unconditionally stable, can be spectrally accurate in both temporal and spatial directions, and allows optimal time-step sizes in long-time simulations.« less

  15. Making things difficult in lexical decision: the impact of pseudohomophones and transposed-letter nonwords on frequency and semantic priming effects.

    PubMed

    Lupker, Stephen J; Pexman, Penny M

    2010-09-01

    Performance in a lexical decision task is crucially dependent on the difficulty of the word-nonword discrimination. More wordlike nonwords cause not only a latency increase for words but also, as reported by Stone and Van Orden (1993), larger word frequency effects. Several current models of lexical decision making can explain these types of results in terms of a single mechanism, a mechanism driven by the nature of the interactions within the lexicon. In 2 experiments, we replicated Stone and Van Orden's increased frequency effect using both pseudohomophones (e.g., BEEST) and transposed-letter nonwords (e.g., JUGDE) as the more wordlike nonwords. In a 3rd experiment, we demonstrated that simply increasing word latencies without changing the difficulty of the word-nonword discrimination does not produce larger frequency effects. These results are reasonably consistent with many current models. In contrast, neither pseudohomophones nor transposed-letter nonwords altered the size of semantic priming effects across 4 additional experiments, posing a challenge to models that would attempt to explain both nonword difficulty effects and semantic priming effects in lexical decision tasks in terms of a single, lexically driven mechanism. (c) 2010 APA, all rights reserved).

  16. Activation product analysis in a mixed sample containing both fission and neutron activation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Samuel S.; Clark, Sue B.; Eggemeyer, Tere A.

    Activation analysis of gold (Au) is used to estimate neutron fluence resulting from a criticality event; however, such analyses are complicated by simultaneous production of other gamma-emitting fission products. Confidence in neutron fluence estimates can be increased by quantifying additional activation products such as platinum (Pt), tantalum (Ta), and tungsten (W). This work describes a radiochemical separation procedure for the determination of these activation products. Anion exchange chromatography is used to separate anionic forms of these metals in a nitric acid matrix; thiourea is used to isolate the Au and Pt fraction, followed by removal of the Ta fraction usingmore » hydrogen peroxide. W, which is not retained on the first anion exchange column, is transposed to an HCl/HF matrix to enhance retention on a second anion exchange column and finally eluted using HNO3/HF. Chemical separations result in a reduction in the minimum detectable activity by a factor of 287, 207, 141, and 471 for 182Ta, 187W, 197Pt, and 198Au respectively, with greater than 90% recovery for all elements. These results represent the highest recoveries and lowest minimum detectable activities for 182Ta, 187W, 197Pt, and 198Au from mixed fission-activation product samples to date, enabling considerable refinement in the measurement uncertainties for neutron fluences in highly complex sample matrices.« less

  17. Domestic chickens activate a piRNA defense against avian leukosis virus

    PubMed Central

    Sun, Yu Huining; Xie, Li Huitong; Zhuo, Xiaoyu; Chen, Qiang; Ghoneim, Dalia; Zhang, Bin; Jagne, Jarra; Yang, Chengbo; Li, Xin Zhiguo

    2017-01-01

    PIWI-interacting RNAs (piRNAs) protect the germ line by targeting transposable elements (TEs) through the base-pair complementarity. We do not know how piRNAs co-evolve with TEs in chickens. Here we reported that all active TEs in the chicken germ line are targeted by piRNAs, and as TEs lose their activity, the corresponding piRNAs erode away. We observed de novo piRNA birth as host responds to a recent retroviral invasion. Avian leukosis virus (ALV) has endogenized prior to chicken domestication, remains infectious, and threatens poultry industry. Domestic fowl produce piRNAs targeting ALV from one ALV provirus that was known to render its host ALV resistant. This proviral locus does not produce piRNAs in undomesticated wild chickens. Our findings uncover rapid piRNA evolution reflecting contemporary TE activity, identify a new piRNA acquisition modality by activating a pre-existing genomic locus, and extend piRNA defense roles to include the period when endogenous retroviruses are still infectious. DOI: http://dx.doi.org/10.7554/eLife.24695.001 PMID:28384097

  18. Transcriptional Dynamics of LTR Retrotransposons in Early Generation and Ancient Sunflower Hybrids

    PubMed Central

    Ungerer, Mark C.; Kawakami, Takeshi

    2013-01-01

    Hybridization and abiotic stress are natural agents hypothesized to influence activation and proliferation of transposable elements in wild populations. In this report, we examine the effects of these agents on expression dynamics of both quiescent and transcriptionally active sublineages of long terminal repeat (LTR) retrotransposons in wild sunflower species with a notable history of transposable element proliferation. For annual sunflower species Helianthus annuus and H. petiolaris, neither early generation hybridization nor abiotic stress, alone or in combination, induced transcriptional activation of quiescent sublineages of LTR retrotransposons. These treatments also failed to further induce expression of sublineages that are transcriptionally active; instead, expression of active sublineages in F1 and backcross hybrids was nondistinguishable from, or intermediate relative to, parental lines, and abiotic stress generally decreased normalized expression relative to controls. In contrast to findings for early generation hybridization between H. annuus and H. petiolaris, ancient sunflower hybrid species derived from these same two species and which have undergone massive proliferation events of LTR retrotransposons display 2× to 6× higher expression levels of transcriptionally active sublineages relative to parental sunflower species H. annuus and H. petiolaris. Implications and possible explanations for these findings are discussed. PMID:23335122

  19. Integrator element as a promoter of active learning in engineering teaching

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-03-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator element, called the physics elevator project. This integrator element allows us to use, in a single project, all the content taught in the course and uses several active learning strategies. In this paper, we analyse this project as: (i) a clarifying element of the contents covered in the course; (ii) a promoter element of motivation and active participation in class and finally and (iii) a link between the contents covered in the course and the 'real world'. The data were collected by a questionnaire and interviews to students. From the data collected, it seems that the integrator element improves students' motivation towards physics and develops several skills that they consider to be important to their professional future. It also acts as a clarifying element and makes the connection between the physics that is taught and the 'real world'.

  20. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  1. Activation and inactivation of Pseudomonas stutzeri methylbenzene catabolism pathways mediated by a transposable element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolognese, F.; Di Lecce, C.; Galli, E.

    The arrangement of the genes involved in o-xylene, m-xylene, and p-xylene catabolism was investigated in three Pseudomonas stutzeri strains: the wild-type strain OX1, which is able to grow on o-xylene but not on the meta and para isomers; the mutant M1, which grows on m-xylene and p-xylene but is unable to utilize the ortho isomer; and the revertant R1, which can utilize all the three isomers of xylene. A 3-kb insertion sequence (IS) termed ISPs1, which inactivates the m-xylene and p-xylene catabolic pathway in P. stutzeri OX1 and the o-xylene catabolic genes in P. stutzeri M1, was detected. No ISmore » was detected in the corresponding catabolic regions of the P. stutzeri R1 genome. ISPs1 is present in several copies in the genomes of the three strains. It is flanked by 24-bp imperfect inverted repeats, causes the direct duplication of 8 bp in the target DNA, and seems to be related to the ISL3 family.« less

  2. Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor.

    PubMed

    Fu, Yu; Kawabe, Akira; Etcheverry, Mathilde; Ito, Tasuku; Toyoda, Atsushi; Fujiyama, Asao; Colot, Vincent; Tarutani, Yoshiaki; Kakutani, Tetsuji

    2013-08-28

    Transposable elements (TEs) have a major impact on genome evolution, but they are potentially deleterious, and most of them are silenced by epigenetic mechanisms, such as DNA methylation. Here, we report the characterization of a TE encoding an activity to counteract epigenetic silencing by the host. In Arabidopsis thaliana, we identified a mobile copy of the Mutator-like element (MULE) with degenerated terminal inverted repeats (TIRs). This TE, named Hiun (Hi), is silent in wild-type plants, but it transposes when DNA methylation is abolished. When a Hi transgene was introduced into the wild-type background, it induced excision of the endogenous Hi copy, suggesting that Hi is the autonomously mobile copy. In addition, the transgene induced loss of DNA methylation and transcriptional activation of the endogenous Hi. Most importantly, the trans-activation of Hi depends on a Hi-encoded protein different from the conserved transposase. Proteins related to this anti-silencing factor, which we named VANC, are widespread in the non-TIR MULEs and may have contributed to the recent success of these TEs in natural Arabidopsis populations.

  3. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets.

    PubMed

    Mao, Hongliang; Wang, Hao

    2017-03-01

    Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan , implemented in PERL and supported on Linux. wangh8@fudan.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets

    PubMed Central

    Mao, Hongliang

    2017-01-01

    Abstract Motivation: Short Interspersed Nuclear Elements (SINEs) are transposable elements (TEs) that amplify through a copy-and-paste mode via RNA intermediates. The computational identification of new SINEs are challenging because of their weak structural signals and rapid diversification in sequences. Results: Here we report SINE_Scan, a highly efficient program to predict SINE elements in genomic DNA sequences. SINE_Scan integrates hallmark of SINE transposition, copy number and structural signals to identify a SINE element. SINE_Scan outperforms the previously published de novo SINE discovery program. It shows high sensitivity and specificity in 19 plant and animal genome assemblies, of which sizes vary from 120 Mb to 3.5 Gb. It identifies numerous new families and substantially increases the estimation of the abundance of SINEs in these genomes. Availability and Implementation: The code of SINE_Scan is freely available at http://github.com/maohlzj/SINE_Scan, implemented in PERL and supported on Linux. Contact: wangh8@fudan.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062442

  5. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements.

    PubMed

    Secco, David; Wang, Chuang; Shou, Huixia; Schultz, Matthew D; Chiarenza, Serge; Nussaume, Laurent; Ecker, Joseph R; Whelan, James; Lister, Ryan

    2015-07-21

    Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.

  6. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  7. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    NASA Astrophysics Data System (ADS)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  8. Observation of New Spontaneous Fission Activities from Elements 100 TO 105.

    NASA Astrophysics Data System (ADS)

    Somerville, Lawrence Patrick

    Several new Spontaneous Fission (SF) activities have been found. Their half-lives and production cross sections in several reactions have been measured by collecting and transporting recoils at known speed past mica track detectors. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include ('257)Rf(3.8 s, 14% SF), ('258)Rf(13 ms), ('259)Rf((TURN)3 s, 8% SF), ('260)Rf((TURN)20 ms), and ('262)Rf((TURN)50ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 (('260)104) was not observed. A difficulty exists in the interpretation that ('260)Rf is a (TURN)20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV ('18)O + ('248)Cm, 88- to 100-MeV ('15)N + ('249)Bk, and 96-MeV ('18)O + ('249)Cf must be other nuclides due to their large production cross sections, or the cross sections for production of ('260)Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible (TURN)1% electron-capture branch in ('258)Lr(4.5 s) to the SF emitter ('258)No(1.2 ms) and an upper limit of 0.05% for SF branching in ('254)No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include (TURN)1.6 s (('18)O + ('248)Cm), indications of a (TURN)47-s SF activity (75-MeV ('12)C + ('249)Cf), and two or more SF activities with 3 s (LESSTHEQ) T(, 1/2) (LESSTHEQ) 60 s (('18)O + ('249)Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element -104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically by Randrup et al. and Baran et al. and attributed to the disappearance of the second hump of the double-humped fission

  9. Intracisternal A-Particle Element Transposition into the Murine β-Glucuronidase Gene Correlates with Loss of Enzyme Activity: a New Model for β-Glucuronidase Deficiency in the C3H Mouse†

    PubMed Central

    Gwynn, Babette; Lueders, Kira; Sands, Mark S.; Birkenmeier, Edward H.

    1998-01-01

    The severity of human mucopolysaccharidosis type VII (MPS VII), or Sly syndrome, depends on the relative activity of the enzyme β-glucuronidase. Loss of β-glucuronidase activity can cause hydrops fetalis, with in utero or postnatal death of the patient. In this report, we show that β-glucuronidase activity is not detectable by a standard fluorometric assay in C3H/HeOuJ (C3H) mice homozygous for a new mutation, gusmps2J. These gusmps2J/gusmps2J mice are born and survive much longer than the previously characterized β-glucuronidase-null B6.C-H-2bm1/ByBir-gusmps (gusmps/gusmps) mice. Northern blot analysis of liver from gusmps2J/gusmps2J mice demonstrates a 750-bp reduction in size of β-glucuronidase mRNA. A 5.4-kb insertion in the Gus-sh nucleotide sequence from these mice was localized by Southern blot analysis to intron 8. The ends of the inserted sequences were cloned by inverse PCR and revealed an intracisternal A-particle (IAP) element inserted near the 3′ end of the intron. The sequence of the long terminal repeat (LTR) regions of the IAP most closely matches that of a composite LTR found in transposed IAPs previously identified in the C3H strain. The inserted IAP may contribute to diminished β-glucuronidase activity either by interfering with transcription or by destabilizing the message. The resulting phenotype is much less severe than that previously described in the gusmps/gusmps mouse and provides an opportunity to study MPS VII on a genetic background that clearly modulates disease severity. PMID:9774663

  10. A HLA class I cis-regulatory element whose activity can be modulated by hormones.

    PubMed

    Sim, B C; Hui, K M

    1994-12-01

    To elucidate the basis of the down-regulation in major histocompatibility complex (MHC) class I gene expression and to identify possible DNA-binding regulatory elements that have the potential to interact with class I MHC genes, we have studied the transcriptional regulation of class I HLA genes in human breast carcinoma cells. A 9 base pair (bp) negative cis-regulatory element (NRE) has been identified using band-shift assays employing DNA sequences derived from the 5'-flanking region of HLA class I genes. This 9-bp element, GTCATGGCG, located within exon I of the HLA class I gene, can potently inhibit the expression of a heterologous thymidine kinase (TK) gene promoter and the HLA enhancer element. Furthermore, this regulatory element can exert its suppressive function in either the sense or anti-sense orientation. More interestingly, NRE can suppress dexamethasone-mediated gene activation in the context of the reported glucocorticoid-responsive element (GRE) in MCF-7 cells but has no influence on the estrogen-mediated transcriptional activation of MCF-7 cells in the context of the reported estrogen-responsive element (ERE). Furthermore, the presence of such a regulatory element within the HLA class I gene whose activity can be modulated by hormones correlates well with our observation that the level of HLA class I gene expression can be down-regulated by hormones in human breast carcinoma cells. Such interactions between negative regulatory elements and specific hormone trans-activators are novel and suggest a versatile form of transcriptional control.

  11. Demonstration of retrotransposition of the Tf1 element in fission yeast.

    PubMed

    Levin, H L; Boeke, J D

    1992-03-01

    Tf1, a retrotransposon from fission yeast, has LTRs and coding sequences resembling the protease, reverse transcriptase and integrase domains of retroviral pol genes. A unique aspect of Tf1 is that it contains a single open reading frame whereas other retroviruses and retrotransposons usually possess two or more open reading frames. To determine whether Tf1 can transpose, we overproduced Tf1 transcripts encoded by a plasmid copy of the element marked with a neo gene. Approximately 0.1-4.0% of the cell population acquired chromosomally inherited resistance to G418. DNA blot analysis demonstrated that such strains had acquired both Tf1 and neo specific sequences within a restriction fragment of the same size; the size of this restriction fragment varied between different isolates. Structural analysis of the cloned DNA flanking the Tf1-neo element of two transposition candidates with the same regions in the parent strain showed that the ability to grow on G418 was due to transposition of Tf1-neo and not other types of recombination events.

  12. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  13. Trace elements and antibacterial activity in amniotic fluid.

    PubMed

    Honkonen, E; Näntö, V; Hyörä, H; Vuorinen, K; Erkkola, R

    1986-01-01

    Antibacterial activity and trace element concentrations in amniotic fluid (AF) were determined in a population of 39 pregnant women in the second half of gestation. Antibacterial activity in each AF was measured by a spectrophotometric micromethod after 18 h incubation at 37 degrees C using Escherichia coli K 12 as a reference bacterium. Concentrations of zinc, iron, copper, calcium, potassium and bromine were measured by particle-induced X-ray emission method and the zinc concentration was also measured by atomic absorption spectrophotometry. Phosphate concentration was determined by direct albumin adding method. In AFs with good antibacterial activity significantly lower concentrations of potassium and bromine were found when compared to AFs with lower antibacterial activity. Concentrations of zinc, iron, copper, calcium or phosphate did not correlate with antibacterial activity in AF.

  14. Alu elements in primates are preferentially lost from areas of high GC content

    PubMed Central

    Brookfield, John FY

    2013-01-01

    The currently-accepted dogma when analysing human Alu transposable elements is that ‘young’ Alu elements are found in low GC regions and ‘old’ Alus in high GC regions. The correlation between high GC regions and high gene frequency regions make this observation particularly difficult to explain. Although a number of studies have tackled the problem, no analysis has definitively explained the reason for this trend. These observations have been made by relying on the subfamily as a proxy for age of an element. In this study, we suggest that this is a misleading assumption and instead analyse the relationship between the taxonomic distribution of an individual element and its surrounding GC environment. An analysis of 103906 Alu elements across 6 human chromosomes was carried out, using the presence of orthologous Alu elements in other primate species as a proxy for age. We show that the previously-reported effect of GC content correlating with subfamily age is not reflected by the ages of the individual elements. Instead, elements are preferentially lost from areas of high GC content over time. The correlation between GC content and subfamily may be due to a change in insertion bias in the young subfamilies. The link between Alu subfamily age and GC region was made due to an over-simplification of the data and is incorrect. We suggest that use of subfamilies as a proxy for age is inappropriate and that the analysis of ortholog presence in other primate species provides a deeper insight into the data. PMID:23717800

  15. An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome.

    PubMed

    Durand, Pierre M; Oelofse, Andries J; Coetzer, Theresa L

    2006-11-04

    The completed genome sequences of the malaria parasites P. falciparum, P. y. yoelii and P. vivax have revealed some unusual features. P. falciparum contains the most AT rich genome sequenced so far--over 90% in some regions. In comparison, P. y. yoelii is approximately 77% and P. vivax is approximately 55% AT rich. The evolutionary reasons for these findings are unknown. Mobile genetic elements have a considerable impact on genome evolution but a thorough investigation of these elements in Plasmodium has not been undertaken. We therefore performed a comprehensive genome analysis of these elements and their derivatives in the three Plasmodium species. Whole genome analysis was performed using bioinformatic methods. Forty potential protein encoding sequences with features of transposable elements were identified in P. vivax, eight in P. y. yoelii and only six in P. falciparum. Further investigation of the six open reading frames in P. falciparum revealed that only one is potentially an active mobile genetic element. Most of the open reading frames identified in all three species are hypothetical proteins. Some represent annotated host proteins such as the putative telomerase reverse transcriptase genes in P. y. yoelii and P. falciparum. One of the P. vivax open reading frames identified in this study demonstrates similarity to telomerase reverse transcriptase and we conclude it to be the orthologue of this gene. There is a divergence in the frequencies of mobile genetic elements in the three Plasmodium species investigated. Despite the limitations of whole genome analytical methods, it is tempting to speculate that mobile genetic elements might have been a driving force behind the compositional bias of the P. falciparum genome.

  16. Recent Amplification of the Kangaroo Endogenous Retrovirus, KERV, Limited to the Centromere▿

    PubMed Central

    Ferreri, Gianni C.; Brown, Judith D.; Obergfell, Craig; Jue, Nathaniel; Finn, Caitlin E.; O'Neill, Michael J.; O'Neill, Rachel J.

    2011-01-01

    Mammalian retrotransposons, transposable elements that are processed through an RNA intermediate, are categorized as short interspersed elements (SINEs), long interspersed elements (LINEs), and long terminal repeat (LTR) retroelements, which include endogenous retroviruses. The ability of transposable elements to autonomously amplify led to their initial characterization as selfish or junk DNA; however, it is now known that they may acquire specific cellular functions in a genome and are implicated in host defense mechanisms as well as in genome evolution. Interactions between classes of transposable elements may exert a markedly different and potentially more significant effect on a genome than interactions between members of a single class of transposable elements. We examined the genomic structure and evolution of the kangaroo endogenous retrovirus (KERV) in the marsupial genus Macropus. The complete proviral structure of the kangaroo endogenous retrovirus, phylogenetic relationship among relative retroviruses, and expression of this virus in both Macropus rufogriseus and M. eugenii are presented for the first time. In addition, we show the relative copy number and distribution of the kangaroo endogenous retrovirus in the Macropus genus. Our data indicate that amplification of the kangaroo endogenous retrovirus occurred in a lineage-specific fashion, is restricted to the centromeres, and is not correlated with LINE depletion. Finally, analysis of KERV long terminal repeat sequences using massively parallel sequencing indicates that the recent amplification in M. rufogriseus is likely due to duplications and concerted evolution rather than a high number of independent insertion events. PMID:21389136

  17. Binding among select episodic elements is altered via active short-term retrieval.

    PubMed

    Bridge, Donna J; Voss, Joel L

    2015-08-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated memory of associated objects, which was associated with unique patterns of viewing behavior during study and enhanced ERP correlates of retrieval during test, relative to other reminder cues that were not actively retrieved. Active short-term retrieval therefore enhanced binding of retrieved elements with others, thus creating powerful memory cues for entire episodes. © 2015 Bridge and Voss; Published by Cold Spring Harbor Laboratory Press.

  18. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0

    PubMed Central

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M.; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P.; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M.; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org. PMID:21036865

  19. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0.

    PubMed

    Llorens, Carlos; Futami, Ricardo; Covelli, Laura; Domínguez-Escribá, Laura; Viu, Jose M; Tamarit, Daniel; Aguilar-Rodríguez, Jose; Vicente-Ripolles, Miguel; Fuster, Gonzalo; Bernet, Guillermo P; Maumus, Florian; Munoz-Pomer, Alfonso; Sempere, Jose M; Latorre, Amparo; Moya, Andres

    2011-01-01

    This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.

  20. Active Site Sharing and Subterminal Hairpin Recognition in a New Class of DNA Transposases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronning, Donald R.; Guynet, Catherine; Ton-Hoang, Bao

    2010-07-20

    Many bacteria harbor simple transposable elements termed insertion sequences (IS). In Helicobacter pylori, the chimeric IS605 family elements are particularly interesting due to their proximity to genes encoding gastric epithelial invasion factors. Protein sequences of IS605 transposases do not bear the hallmarks of other well-characterized transposases. We have solved the crystal structure of full-length transposase (TnpA) of a representative member, ISHp608. Structurally, TnpA does not resemble any characterized transposase; rather, it is related to rolling circle replication (RCR) proteins. Consistent with RCR, Mg{sup 2+} and a conserved tyrosine, Tyr127, are essential for DNA nicking and the formation of a covalentmore » intermediate between TnpA and DNA. TnpA is dimeric, contains two shared active sites, and binds two DNA stem loops representing the conserved inverted repeats near each end of ISHp608. The cocrystal structure with stem-loop DNA illustrates how this family of transposases specifically recognizes and pairs ends, necessary steps during transposition.« less

  1. Transposon tagging of a male-sterility, female-sterility gene, St8, revealed that the meiotic MER3 DNA helicase activity is essential for fertility in soybean

    USDA-ARS?s Scientific Manuscript database

    The W4 locus in soybean encodes a dihydroflavonol-4-reductase (DFR2) that regulates pigmentation patterns in flowers and hypocotyl. The mutable w4-m allele that governs variegated flowers has arisen through insertion of a CACTA-type transposable element, Tgm9, in DFR2. In the w4-m line, reversion fr...

  2. Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation.

    PubMed

    Rep, Martijn; van der Does, H Charlotte; Cornelissen, Ben J C

    2005-06-01

    The facultative pathogenic fungus Fusarium oxysporum is known to harbour many different transposable and/or repetitive elements. We have identified Drifter, a novel DNA transposon of the hAT family in F. oxysporum. It was found adjoining SIX1-H, a truncated homolog of the SIX1 avirulence gene in F. oxysporum f. sp. lycopersici. Absence of a target site duplication as well as the 5' part of SIX1-H suggests that transposition of Drifter into the ancestor of SIX1-H was followed by loss of a chromosomal segment through recombination between Drifters. F. oxysporum isolates belonging to various formae speciales harbour between 0 and 5 full-length copies of Drifter and/or one or more copies with an internal deletion. Transcription of Drifter is activated during starvation for carbon or nitrogen.

  3. Repetitive Elements May Comprise Over Two-Thirds of the Human Genome

    PubMed Central

    de Koning, A. P. Jason; Gu, Wanjun; Castoe, Todd A.; Batzer, Mark A.; Pollock, David D.

    2011-01-01

    Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo “clouds”). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%–69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed “element-specific” P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed. PMID:22144907

  4. EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...

  5. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus.

    PubMed

    Sun, Cheng; Feschotte, Cédric; Wu, Zhiqiang; Mueller, Rachel Lockridge

    2015-06-12

    Transposable elements are mobile DNA sequences that are widely distributed in prokaryotic and eukaryotic genomes, where they represent a major force in genome evolution. However, transposable elements have rarely been documented in viruses, and their contribution to viral genome evolution remains largely unexplored. Pandoraviruses are recently described DNA viruses with genome sizes that exceed those of some prokaryotes, rivaling parasitic eukaryotes. These large genomes appear to include substantial noncoding intergenic spaces, which provide potential locations for transposable element insertions. However, no mobile genetic elements have yet been reported in pandoravirus genomes. Here, we report a family of miniature inverted-repeat transposable elements (MITEs) in the Pandoravirus salinus genome, representing the first description of a virus populated with a canonical transposable element family that proliferated by transposition within the viral genome. The MITE family, which we name Submariner, includes 30 copies with all the hallmarks of MITEs: short length, terminal inverted repeats, TA target site duplication, and no coding capacity. Submariner elements show signs of transposition and are undetectable in the genome of Pandoravirus dulcis, the closest known relative Pandoravirus salinus. We identified a DNA transposon related to Submariner in the genome of Acanthamoeba castellanii, a species thought to host pandoraviruses, which contains remnants of coding sequence for a Tc1/mariner transposase. These observations suggest that the Submariner MITEs of P. salinus belong to the widespread Tc1/mariner superfamily and may have been mobilized by an amoebozoan host. Ten of the 30 MITEs in the P. salinus genome are located within coding regions of predicted genes, while others are close to genes, suggesting that these transposons may have contributed to viral genetic novelty. Our discovery highlights the remarkable ability of DNA transposons to colonize and shape

  6. Soils element activities for the period October 1973--September 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, E.B.; Essington, E.H.; White, M.G.

    Soils Element activities were conducted on behalf of the U. S. Atomic Energy Commission's Nevada Applied Ecology Group (NAEG) program to provide source term information for the other program elements and maintain continuous cognizance of program requirements for sampling, sample preparation, and analysis. Activities included presentation of papers; participation in workshops; analysis of soil, vegetation, and animal tissue samples for $sup 238$Pu, $sup 239-240$Pu, $sup 241$Am, $sup 137$Cs, $sup 60$Co, and gamma scan for routine and laboratory quality control purposes; preparation and analysis of animal tissue samples for NAEG laboratory certification; studies on a number of analytical, sample preparation, andmore » sample collection procedures; and contributions to the evaluation of procedures for calculation of specialized counting statistics. (auth)« less

  7. Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.)

    PubMed Central

    Benjak, Andrej; Boué, Stéphanie; Forneck, Astrid

    2009-01-01

    Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II transposons present in genomes as highly homogeneous populations of small elements. Their high copy number and close association to genes make their potential impact on gene evolution particularly relevant. Here, we present a detailed analysis of the MITE families directly related to grapevine “cut-and-paste” transposons. Our results show that grapevine MITEs have transduplicated and amplified genomic sequences, including gene sequences and fragments of other mobile elements. Our results also show that although some of the MITE families were already present in the ancestor of the European and American Vitis wild species, they have been amplified and have been actively transposing accompanying grapevine domestication and breeding. We show that MITEs are abundant in grapevine and some of them are frequently inserted within the untranslated regions of grapevine genes. MITE insertions are highly polymorphic among grapevine cultivars, which frequently generate transcript variability. The data presented here show that MITEs have greatly contributed to the grapevine genetic diversity which has been used for grapevine domestication and breeding. PMID:20333179

  8. A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae).

    PubMed

    Oyama, Ryan K; Silber, Martina V; Renner, Susanne S

    2010-06-14

    Relatively few species of flowering plants are dioecious and even fewer are known to have sex chromosomes. Current theory posits that homomorphic sex chromosomes, such as found in Bryonia dioica (Cucurbitaceae), offer insight into the early stages in the evolution of sex chromosomes from autosomes. Little is known about these early steps, but an accumulation of transposable element sequences has been observed on the Y-chromosomes of some species with heteromorphic sex chromosomes. Recombination, by which transposable elements are removed, is suppressed on at least part of the emerging Y-chromosome, and this may explain the correlation between the emergence of sex chromosomes and transposable element enrichment. We sequenced 2321 bp of the Y-chromosome in Bryonia dioica that flank a male-linked marker, BdY1, reported previously. Within this region, which should be suppressed for recombination, we observed a solo-LTR nested in a Copia-like transposable element. We also found other, presumably paralogous, solo-LTRs in a consensus sequence of the underlying Copia-like transposable element. Given that solo-LTRs arise via recombination events, it is noteworthy that we find one in a genomic region where recombination should be suppressed. Although the solo-LTR could have arisen before recombination was suppressed, creating the male-linked marker BdY1, our previous study on B. dioica suggested that BdY1 may not lie in the recombination-suppressed region of the Y-chromosome in all populations. Presence of a solo-LTR near BdY1 therefore fits with the observed correlation between retrotransposon accumulation and the suppression of recombination early in the evolution of sex chromosomes. These findings further suggest that the homomorphic sex chromosomes of B. dioica, the first organism for which genetic XY sex-determination was inferred, are evolutionarily young and offer reference information for comparative studies of other plant sex chromosomes.

  9. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements

    PubMed Central

    Secco, David; Wang, Chuang; Shou, Huixia; Schultz, Matthew D; Chiarenza, Serge; Nussaume, Laurent; Ecker, Joseph R; Whelan, James; Lister, Ryan

    2015-01-01

    Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress. DOI: http://dx.doi.org/10.7554/eLife.09343.001 PMID:26196146

  10. Reduced transposed flicker noise in microwave oscillators using gaas-based feedforward amplifiers.

    PubMed

    Everard, Jeremy K A; Broomfield, Carl D

    2007-06-01

    Transposed flicker noise reduction and removal is demonstrated in 7.6 GHz microwave oscillators for offsets greater than 10 kHz. This is achieved by using a GaAs-based feedforward power amplifier as the oscillation-sustaining stage and incorporating a limiter and resonator elsewhere in the loop. 20 dB noise suppression is demonstrated at 12.5 kHz offset when the error correcting amplifier is switched on. Three oscillator pairs have been built. A transmission line feedback oscillator with a Qo of 180 and two sapphire-based, dielectric resonator oscillators (DROs) with a Qo of 44,500. The difference between the two DROs is a change in the limiter threshold power level of 10 dB. The phase noise rolls-off at (1/f)(2) for offsets greater than 10 kHz for the transmission line oscillator and is set by the thermal noise to within 0-1 dB of the theoretical minimum. The noise performance of the DROs is within 6-12 dB of the theory. Possible reasons for this discrepancy are presented.

  11. Transcriptional activation of short interspersed elements by DNA-damaging agents.

    PubMed

    Rudin, C M; Thompson, C B

    2001-01-01

    Short interspersed elements (SINEs), typified by the human Alu repeat, are RNA polymerase III (pol III)-transcribed sequences that replicate within the genome through an RNA intermediate. Replication of SINEs has been extensive in mammalian evolution: an estimated 5% of the human genome consists of Alu repeats. The mechanisms regulating transcription, reverse transcription, and reinsertion of SINE elements in genomic DNA are poorly understood. Here we report that expression of murine SINE transcripts of both the B1 and B2 classes is strongly upregulated after prolonged exposure to cisplatin, etoposide, or gamma radiation. A similar induction of Alu transcripts in human cells occurs under these conditions. This induction is not due to a general upregulation of pol III activity in either species. Genotoxic treatment of murine cells containing an exogenous human Alu element induced Alu transcription. Concomitant with the increased expression of SINEs, an increase in cellular reverse transcriptase was observed after exposure to these same DNA-damaging agents. These findings suggest that genomic damage may be an important activator of SINEs, and that SINE mobility may contribute to secondary malignancy after exposure to DNA-damaging chemotherapy.

  12. Evolutionary modes of emergence of short interspersed nuclear element (SINE) families in grasses.

    PubMed

    Kögler, Anja; Schmidt, Thomas; Wenke, Torsten

    2017-11-01

    Short interspersed nuclear elements (SINEs) are non-autonomous transposable elements which are propagated by retrotransposition and constitute an inherent part of the genome of most eukaryotic species. Knowledge of heterogeneous and highly abundant SINEs is crucial for de novo (or improvement of) annotation of whole genome sequences. We scanned Poaceae genome sequences of six important cereals (Oryza sativa, Triticum aestivum, Hordeum vulgare, Panicum virgatum, Sorghum bicolor, Zea mays) and Brachypodium distachyon to examine the diversity and evolution of SINE populations. We comparatively analyzed the structural features, distribution, evolutionary relation and abundance of 32 SINE families and subfamilies within grasses, comprising 11 052 individual copies. The investigation of activity profiles within the Poaceae provides insights into their species-specific diversification and amplification. We found that Poaceae SINEs (PoaS) fall into two length categories: simple SINEs of up to 180 bp and dimeric SINEs larger than 240 bp. Detailed analysis at the nucleotide level revealed that multimerization of related and unrelated SINE copies is an important evolutionary mechanism of SINE formation. We conclude that PoaS families diversify by massive reshuffling between SINE families, likely caused by insertion of truncated copies, and provide a model for this evolutionary scenario. Twenty-eight of 32 PoaS families and subfamilies show significant conservation, in particular either in the 5' or 3' regions, across Poaceae species and share large sequence stretches with one or more other PoaS families. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  13. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon.

    PubMed

    Soifer, Harris S; Zaragoza, Adriana; Peyvan, Maany; Behlke, Mark A; Rossi, John J

    2005-01-01

    Long interspersed nuclear elements (LINE-1 or L1) comprise 17% of the human genome, although only 80-100 L1s are considered retrotransposition-competent (RC-L1). Despite their small number, RC-L1s are still potential hazards to genome integrity through insertional mutagenesis, unequal recombination and chromosome rearrangements. In this study, we provide several lines of evidence that the LINE-1 retrotransposon is susceptible to RNA interference (RNAi). First, double-stranded RNA (dsRNA) generated in vitro from an L1 template is converted into functional short interfering RNA (siRNA) by DICER, the RNase III enzyme that initiates RNAi in human cells. Second, pooled siRNA from in vitro cleavage of L1 dsRNA, as well as synthetic L1 siRNA, targeting the 5'-UTR leads to sequence-specific mRNA degradation of an L1 fusion transcript. Finally, both synthetic and pooled siRNA suppressed retrotransposition from a highly active RC-L1 clone in cell culture assay. Our report is the first to demonstrate that a human transposable element is subjected to RNAi.

  14. Finite element predictions of active buckling control of stiffened panels

    NASA Astrophysics Data System (ADS)

    Thompson, Danniella M.; Griffin, O. H., Jr.

    1993-04-01

    Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.

  15. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements)

    PubMed Central

    Giresi, Paul G.; Lieb, Jason D.

    2009-01-01

    The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization. PMID:19303047

  16. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin

    PubMed Central

    Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.

    2007-01-01

    DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217

  17. Binaural hearing in children using Gaussian enveloped and transposed tones.

    PubMed

    Ehlers, Erica; Kan, Alan; Winn, Matthew B; Stoelb, Corey; Litovsky, Ruth Y

    2016-04-01

    Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be important cues for sound localization. Interestingly, little is known about binaural sensitivity in NH children, in particular, with stimuli that constrain acoustic cues in a manner representative of CI processing. In order to better understand and evaluate binaural hearing in children with BiCIs, the authors first undertook a study on binaural sensitivity in NH children ages 8-10, and in adults. Experiments evaluated sound discrimination and lateralization using ITD and ILD cues, for stimuli with robust envelope cues, but poor representation of temporal fine structure. Stimuli were spondaic words, Gaussian-enveloped tone pulse trains (100 pulse-per-second), and transposed tones. Results showed that discrimination thresholds in children were adult-like (15-389 μs for ITDs and 0.5-6.0 dB for ILDs). However, lateralization based on the same binaural cues showed higher variability than seen in adults. Results are discussed in the context of factors that may be responsible for poor representation of binaural cues in bilaterally implanted children.

  18. LTR12 promoter activation in a broad range of human tumor cells by HDAC inhibition

    PubMed Central

    Krönung, Sonja K.; Beyer, Ulrike; Chiaramonte, Maria Luisa; Dolfini, Diletta; Mantovani, Roberto; Dobbelstein, Matthias

    2016-01-01

    A considerable proportion of the human genome consists of transposable elements, including the long terminal repeats (LTRs) of endogenous retroviruses. During evolution, such LTRs were occasionally inserted upstream of protein-coding genes, contributing to their regulation. We previously identified the LTR12 from endogenous retrovirus 9 (ERV9) as a regulator of proapoptotic genes such as TP63 or TNFRSF10B. The promoter activity of LTR12 is largely confined to the testes, silenced in testicular carcinoma, but reactivated in testicular cancer cells by broad-range histone deacetylase (HDAC) inhibitors. Here we show that inhibition of HDAC1-3 is sufficient for LTR12 activation. Importantly, HDAC inhibitors induce LTR12 activity not only in testicular cancer cells, but also in cells derived from many additional tumor species. Finally, we characterize the transcription factor NF-Y as a mediator of LTR12 promoter activity and HDAC inhibitor-induced apoptosis, in the context of widespread genomic binding of NF-Y to specific LTR12 sequences. Thus, HDAC inhibitor-driven LTR12 activation represents a generally applicable means to induce proapoptotic genes in human cancer cells. PMID:27172897

  19. Elimination of active tad elements during the sexual phase of the Neurospora crassa life cycle.

    PubMed

    Anderson, C; Tang, Q; Kinsey, J A

    2001-06-01

    Tad is an active LINE-like retrotransposon isolated from the Adiopodoumé strain of Neurospora crassa. Extensive analysis of other Neurospora strains has revealed no other strain with active Tad, but all strains tested have multiple copies of defective Tad elements. We have examined the ability of Tad to survive during the sexual cycle of Neurospora and find that active Tad is rapidly eliminated. The characteristics of this elimination suggest that the repeat-induced point mutation (RIP) mechanism was responsible. By the use of transformation to switch the mating type of the Adiopodoumé strain we concluded that this strain is not defective in the RIP process. Analysis of defective Tad elements isolated from a variety of strains indicates that the major difference between these elements and active Tad is due to the presence of a large number of G-C to A-T transition mutations. This would be expected if the changes were due primarily to the RIP process. Mapping of a selection of defective Tad elements reveals that they are present on all of the chromosomes; however, many of the elements are not widely shared among strains. This suggests that repeated introduction and elimination of Tad elements has occurred. Mechanisms that might be responsible for this repeated introduction are discussed. Copyright 2001 Academic Press.

  20. The hobo transposable element excises and has related elements in tephritid species

    USDA-ARS?s Scientific Manuscript database

    Function of the Drosophila melanogaster hobo transposon in tephritid species was tested in transient embryonic excision assays by scientists at the USDA Agricultural Research Service, Center for Medical Agricultural and Veterinary Entomology, Gainesville, Florida. Wild-type and mutant strains of Ana...

  1. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit

  2. Lineage-specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage-specific elements created by both sequence and functional turnover.

    PubMed

    Young, Robert S

    2016-07-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  3. Automatic prediction of tongue muscle activations using a finite element model.

    PubMed

    Stavness, Ian; Lloyd, John E; Fels, Sidney

    2012-11-15

    Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION

    EPA Science Inventory

    The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...

  5. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  6. Correlation of LNCR rasiRNAs Expression with Heterochromatin Formation during Development of the Holocentric Insect Spodoptera frugiperda

    PubMed Central

    Stanojcic, Slavica; Gimenez, Sylvie; Permal, Emmanuelle; Cousserans, François; Quesneville, Hadi; Fournier, Philippe; d'Alençon, Emmanuelle

    2011-01-01

    Repeat-associated small interfering RNAs (rasiRNAs) are derived from various genomic repetitive elements and ensure genomic stability by silencing endogenous transposable elements. Here we describe a novel subset of 46 rasiRNAs named LNCR rasiRNAs due to their homology with one long non-coding RNA (LNCR) of Spodoptera frugiperda. LNCR operates as the intermediate of an unclassified transposable element (TE-LNCR). TE-LNCR is a very invasive transposable element, present in high copy numbers in the S. frugiperda genome. LNCR rasiRNAs are single-stranded RNAs without a prominent nucleotide motif, which are organized in two distinct, strand-specific clusters. The expression of LNCR and LNCR rasiRNAs is developmentally regulated. Formation of heterochromatin in the genomic region where three copies of the TE-LNCR are embedded was followed by chromatin immunoprecipitation (ChIP) and we observed this chromatin undergo dynamic changes during development. In summary, increased LNCR expression in certain developmental stages is followed by the appearance of a variety of LNCR rasiRNAs which appears to correlate with subsequent accumulation of a heterochromatic histone mark and silencing of the genomic region with TE-LNCR. These results support the notion that a repeat-associated small interfering RNA pathway is linked to heterochromatin formation and/or maintenance during development to establish repression of the TE-LNCR transposable element. This study provides insights into the rasiRNA silencing pathway and its role in the formation of fluctuating heterochromatin during the development of one holocentric organism. PMID:21980354

  7. ELEMENTAL MERCURY CAPTURE BY ACTIVATED CARBON IN A FLOW REACTOR

    EPA Science Inventory


    The paper gives results of bench-scale experiments in a flow reactor to simulate the entrained-flow capture of elemental mercury (Hgo) using solid sorbents. Adsorption of Hgo by a lignite-based activated carbon (Calgon FGD) was examined at different carbon/mercury (C/Hg) rat...

  8. Development of multi-element active aerodynamics for the formula sae car

    NASA Astrophysics Data System (ADS)

    Merkel, James Patrick

    This thesis focuses on the design, development, and implementation of an active aerodynamics system on 2013 Formula SAE car. The aerodynamics package itself consists of five element front and rear wings as well as an under body diffuser. Five element wings produce significant amounts of drag which is a compromise between the cornering ability of the car and the acceleration capability on straights. The active aerodynamics system allows for the wing angle of attack to dynamically change their configuration on track based on sensory data to optimize the wings for any given scenario. The wings are studied using computational fluid dynamics both in their maximum lift configuration as well as a minimum drag configuration. A control system is then developed using an electro mechanical actuation system to articulate the wings between these two states.

  9. Determination of Interesting Toxicological Elements in PM2.5 by Neutron and Photon Activation Analysis

    PubMed Central

    Capannesi, Geraldo; Lopez, Francesco

    2013-01-01

    Human activities introduce compounds increasing levels of many dangerous species for environment and population. In this way, trace elements in airborne particulate have a preeminent position due to toxic element presence affecting the biological systems. The main problem is the analytical determination of such species at ultratrace levels: a very specific methodology is necessary with regard to the accuracy and precision and contamination problems. Instrumental Neutron Activation Analysis and Instrumental Photon Activation Analysis assure these requirements. A retrospective element analysis in airborne particulate collected in the last 4 decades has been carried out for studying their trend. The samples were collected in urban location in order to determine only effects due to global aerosol circulation; semiannual samples have been used to characterize the summer/winter behavior of natural and artificial origin. The levels of natural origin element are higher than those in other countries owing to geological and meteorological factors peculiar to Central Italy. The levels of artificial elements are sometimes less than those in other countries, suggesting a less polluted general situation for Central Italy. However, for a few elements (e.g., Pb) the levels measured are only slight lower than those proposed as air ambient standard. PMID:23878525

  10. Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum usitatissimum L.) accessions.

    PubMed

    Galindo-González, Leonardo; Mhiri, Corinne; Grandbastien, Marie-Angèle; Deyholos, Michael K

    2016-12-07

    Initial characterization of the flax genome showed that Ty1-copia retrotransposons are abundant, with several members being recently inserted, and in close association with genes. Recent insertions indicate a potential for ongoing transpositional activity that can create genomic diversity among accessions, cultivars or varieties. The polymorphisms generated constitute a good source of molecular markers that may be associated with phenotype if the insertions alter gene activity. Flax, where accessions are bred mainly for seed nutritional properties or for fibers, constitutes a good model for studying the relationship of transpositional activity with diversification and breeding. In this study, we estimated copy number and used a type of transposon display known as Sequence-Specific Amplification Polymorphisms (SSAPs), to characterize six families of Ty1-copia elements across 14 flax accessions. Polymorphic insertion sites were sequenced to find insertions that could potentially alter gene expression, and a preliminary test was performed with selected genes bearing transposable element (TE) insertions. Quantification of six families of Ty1-copia elements indicated different abundances among TE families and between flax accessions, which suggested diverse transpositional histories. SSAPs showed a high level of polymorphism in most of the evaluated retrotransposon families, with a trend towards higher levels of polymorphism in low-copy number families. Ty1-copia insertion polymorphisms among cultivars allowed a general distinction between oil and fiber types, and between spring and winter types, demonstrating their utility in diversity studies. Characterization of polymorphic insertions revealed an overwhelming association with genes, with insertions disrupting exons, introns or within 1 kb of coding regions. A preliminary test on the potential transcriptional disruption by TEs of four selected genes evaluated in three different tissues, showed one case of significant

  11. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila

    PubMed Central

    Shapiro, Lori R.; Scully, Erin D.; Straub, Timothy J.; Park, Jihye; Stephenson, Andrew G.; Beattie, Gwyn A.; Gleason, Mark L.; Kolter, Roberto; Coelho, Miguel C.; De Moraes, Consuelo M.; Mescher, Mark C.; Zhaxybayeva, Olga

    2016-01-01

    Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila’s current ecological niche. PMID:26992913

  12. Binding among Select Episodic Elements Is Altered via Active Short-Term Retrieval

    ERIC Educational Resources Information Center

    Bridge, Donna J.; Voss, Joel L.

    2015-01-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated…

  13. Androgen receptor stimulates bone sialoprotein (BSP) gene transcription via cAMP response element and activator protein 1/glucocorticoid response elements.

    PubMed

    Takai, Hideki; Nakayama, Youhei; Kim, Dong-Soon; Arai, Masato; Araki, Shouta; Mezawa, Masaru; Nakajima, Yu; Kato, Naoko; Masunaga, Hiroshi; Ogata, Yorimasa

    2007-09-01

    Bone sialoprotein (BSP) is an early marker of osteoblast differentiation. Androgens are steroid hormones that are essential for skeletal development. The androgen receptor (AR) is a transcription factor and a member of the steroid receptor superfamily that plays an important role in male sexual differentiation and prostate cell proliferation. To determine the molecular mechanism involved in the stimulation of bone formation, we have analyzed the effects of androgens and AR effects on BSP gene transcription. AR protein levels were increased after AR overexpression in ROS17/2.8 cells. BSP mRNA levels were increased by AR overexpression. However, the endogenous and overexpressed BSP mRNA levels were not changed by DHT (10(-8) M, 24 h). Whereas luciferase (LUC) activities in all constructs, including a short construct (nts -116 to +60), were increased by AR overexpression, the basal and LUC activities enhanced by AR overexpression were not induced by DHT (10(-8)M, 24 h). The effect of AR overexpression was abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that AR overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were supershifted by phospho-CREB antibody, and CREB, c-Fos, c-Jun, and AR antibodies disrupted the complexes formation. The AP1/GRE-protein complexes were supershifted by c-Fos antibody and c-Jun, and AR antibodies disrupted the complexes formation. These studies demonstrate that AR stimulates BSP gene transcription by targeting the CRE and AP1/GRE elements in the promoter of the rat BSP gene.

  14. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis

    PubMed Central

    2013-01-01

    Background Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. Results In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Conclusions Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome. PMID:23374229

  15. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis.

    PubMed

    Marzo, Mar; Bello, Xabier; Puig, Marta; Maside, Xulio; Ruiz, Alfredo

    2013-02-04

    Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.

  16. The Reverse Transcription Inhibitor Abacavir Shows Anticancer Activity in Prostate Cancer Cell Lines

    PubMed Central

    Molinari, Agnese; Parisi, Chiara; Bozzuto, Giuseppina; Toccacieli, Laura; Formisano, Giuseppe; De Orsi, Daniela; Paradisi, Silvia; Grober, OlÌ Maria Victoria; Ravo, Maria; Weisz, Alessandro; Arcieri, Romano; Vella, Stefano; Gaudi, Simona

    2010-01-01

    Background Transposable Elements (TEs) comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1) and Human Endogenous Retroviruses (HERVs) that code for their own endogenous reverse transcriptase (RT). Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs) induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC), a nucleoside reverse transcription inhibitor (NRTI), on PC3 and LNCaP prostate cancer cell lines. Principal Findings ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. Conclusions Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications. PMID:21151977

  17. Identification and chromosome mapping of repetitive elements in the Astyanax scabripinnis (Teleostei: Characidae) species complex.

    PubMed

    Barbosa, Patrícia; de Oliveira, Luiz Antonio; Pucci, Marcela Baer; Santos, Mateus Henrique; Moreira-Filho, Orlando; Vicari, Marcelo Ricardo; Nogaroto, Viviane; de Almeida, Mara Cristina; Artoni, Roberto Ferreira

    2015-02-01

    Most part of the eukaryotic genome is composed of repeated sequences or multiple copies of DNA, which were considered as "junk DNA", and may be associated to the heterochromatin. In this study, three populations of Astyanax aff. scabripinnis from Brazilian rivers of Guaratinguetá and Pindamonhangaba (São Paulo) and a population from Maringá (Paraná) were analyzed concerning the localization of the nucleolar organizer regions (Ag-NORs), the As51 satellite DNA, the 18S ribosomal DNA (rDNA), and the 5S rDNA. Repeated sequences were also isolated and identified by the Cot - 1 method, which indicated similarity (90%) with the LINE UnaL2 retrotransposon. The fluorescence in situ hybridization (FISH) showed the retrotransposon dispersed and more concentrated markers in centromeric and telomeric chromosomal regions. These sequences were co-localized and interspaced with 18S and 5S rDNA and As51, confirmed by fiber-FISH essay. The B chromosome found in these populations pointed to a conspicuous hybridization with LINE probe, which is also co-located in As51 sequences. The NORs were active at unique sites of a homologous pair in the three populations. There were no evidences that transposable elements and repetitive DNA had influence in the transcriptional regulation of ribosomal genes in our analyses.

  18. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  19. The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription.

    PubMed

    Akay, Alper; Di Domenico, Tomas; Suen, Kin M; Nabih, Amena; Parada, Guillermo E; Larance, Mark; Medhi, Ragini; Berkyurek, Ahmet C; Zhang, Xinlian; Wedeles, Christopher J; Rudolph, Konrad L M; Engelhardt, Jan; Hemberg, Martin; Ma, Ping; Lamond, Angus I; Claycomb, Julie M; Miska, Eric A

    2017-08-07

    Small RNAs play a crucial role in genome defense against transposable elements and guide Argonaute proteins to nascent RNA transcripts to induce co-transcriptional gene silencing. However, the molecular basis of this process remains unknown. Here, we identify the conserved RNA helicase Aquarius/EMB-4 as a direct and essential link between small RNA pathways and the transcriptional machinery in Caenorhabditis elegans. Aquarius physically interacts with the germline Argonaute HRDE-1. Aquarius is required to initiate small-RNA-induced heritable gene silencing. HRDE-1 and Aquarius silence overlapping sets of genes and transposable elements. Surprisingly, removal of introns from a target gene abolishes the requirement for Aquarius, but not HRDE-1, for small RNA-dependent gene silencing. We conclude that Aquarius allows small RNA pathways to compete for access to nascent transcripts undergoing co-transcriptional splicing in order to detect and silence transposable elements. Thus, Aquarius and HRDE-1 act as gatekeepers coordinating gene expression and genome defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which

  1. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  2. Large diversity of the piggyBac-like elements in the genome of Tribolium castaneum

    PubMed Central

    Wang, Jianjun; Du, Yuzhou; Wang, Suzhi; Brown, Sue; Park, Yoonseong

    2011-01-01

    The piggyBac transposable element, originally discovered in the cabbage looper, Trichoplusia ni, has been widely used in insect transgenesis including the red flour beetle Tribolium castaneum. We surveyed piggyBac-like (PLE) sequences in the genome of Tribolium castaneum by homology searches using as queries the diverse PLE sequences that have been described previously. The search yielded a total of 32 piggyBac-like elements (TcPLEs) which were classified into 14 distinct groups. Most of the TcPLEs contain defective functional motifs in that they are lacking inverted terminal repeats or have disrupted open reading frames. Only one single copy of TcPLE1 appears to be intact with imperfect 16 bp inverted terminal repeats flanking an open reading frame encoding a transposase of 571 amino acid residues. Many copies of TcPLEs were found to be inserted into or close to other transposon-like sequences. This large diversity of TcPLEs with generally low copy numbers suggests multiple invasions of the TcPLEs over a long evolutionary time without extensive multiplications or occurrence of rapid loss of TcPLEs copies. PMID:18342253

  3. Even parasites have parasites: oscillatory population dynamics of mobile genetic elements in your genome

    NASA Astrophysics Data System (ADS)

    Xue, Chi; Goldenfeld, Nigel

    Transposable elements (TEs), or transposons, are a class of mobile genetic elements that can either move or duplicate themselves in the genome, sometimes interfering with gene expression as a result. Some TEs can code all necessary enzymes for their transposition and are thus autonomous, while non-autonomous TEs are parasitic and must depend on the machinery of autonomous ones. I present and solve a stochastic model to describe the dynamics of non-autonomous/autonomous pairs of retrotransposons in the human genome that proliferate by a copy-and-paste mechanism. We predict noise-induced persistent oscillations in their copy numbers, analogous to predator-prey dynamics in an ecosystem. We discuss if it is experimentally feasible to measure these phenomena in the laboratory and to observe them over evolutionary time through bioinformatics. This work shows that it is fruitful to regard the genome as an ecosystem that is host to diverse interacting populations. This work was partially supported by the National Science Foundation through Grant No. PHY-1430124, and by the National Aeronautics and Space Administration Astrobiology Institute (NAI) under Cooperative Agreement No. NNA13AA91A.

  4. Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903.

    PubMed Central

    Grindley, N D; Joyce, C M

    1980-01-01

    The kanamycin resistance transposon Tn903 consists of a unique region of about 1000 base pairs bounded by a pair of 1050-base-pair inverted repeat sequences. Each repeat contains two Pvu II endonuclease cleavage sites separated by 520 base pairs. We have constructed derivatives of Tn903 in which this 520-base-pair fragment is deleted from one or both repeats. Those derivatives that lack both 520-base-pair fragments cannot transpose, whereas those that lack just one remain transposition proficient. One such transposable derivative, Tn903 delta I, has been selected for further study. We have determined the sequence of the intact inverted repeat. The 18 base pairs at each end are identical and inverted relative to one another, a structure characteristic of insertion sequences. Additional experiments indicate that a single inverted repeat from Tn903 can, in fact, transpose; we propose that this element be called IS903. To correlate the DNA sequence with genetic activities, we have created mutations by inserting a 10-base-pair DNA fragment at several sites within the intact repeat of Tn903 delta 1, and we have examined the effect of such insertions on transposability. The results suggest that IS903 encodes a 307-amino-acid polypeptide (a "transposase") that is absolutely required for transposition of IS903 or Tn903. Images PMID:6261245

  5. Activating distillation with an infinitesimal amount of bound entanglement.

    PubMed

    Vollbrecht, Karl Gerd H; Wolf, Michael M

    2002-06-17

    We show that bipartite quantum states of any dimension, which do not have a positive partial transpose (NPPT), become 1-distillable when one adds an infinitesimal amount of bound entanglement. To this end we investigate the activation properties of a new class of symmetric bound entangled states of full rank. It is shown that in this set there exist universal activator states capable of activating the distillation of any NPPT state. The result shows that even a small amount of bound entanglement can be useful for quantum information purposes.

  6. Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose.

    PubMed

    Wang, Xin; Duan, Runyao

    2017-11-03

    We demonstrate the irreversibility of asymptotic entanglement manipulation under quantum operations that completely preserve the positivity of partial transpose (PPT), resolving a major open problem in quantum information theory. Our key tool is a new efficiently computable additive lower bound for the asymptotic relative entropy of entanglement with respect to PPT states, which can be used to evaluate the entanglement cost under local operations and classical communication (LOCC). We find that for any rank-two mixed state supporting on the 3⊗3 antisymmetric subspace, the amount of distillable entanglement by PPT operations is strictly smaller than one entanglement bit (ebit) while its entanglement cost under PPT operations is exactly one ebit. As a by-product, we find that for this class of states, both the Rains's bound and its regularization are strictly less than the asymptotic relative entropy of entanglement. So, in general, there is no unique entanglement measure for the manipulation of entanglement by PPT operations. We further show a computable sufficient condition for the irreversibility of entanglement distillation by LOCC (or PPT) operations.

  7. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    EPA Science Inventory

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  8. Active control of multi-element rotor blade airfoils

    NASA Technical Reports Server (NTRS)

    Torok, Michael S. (Inventor); Moffitt, Robert C. (Inventor); Bagai, Ashish (Inventor)

    2005-01-01

    A multi-element rotor blade includes an individually controllable main element and fixed aerodynamic surface in an aerodynamically efficient location relative to the main element. The main element is controlled to locate the fixed aerodynamic surface in a position to increase lift and/or reduce drag upon the main element at various azimuthal positions during rotation.

  9. Biochar application to hardrock mine tailings: Soil quality, microbial activity, and toxic element sorption

    USGS Publications Warehouse

    Kelly, Charlene N.; Peltz, Christopher D.; Stanton, Mark R.; Rutherford, David W.; Rostad, Colleen E.

    2014-01-01

    Waste rock piles from historic mining activities remain unvegetated as a result of metal toxicity and high acidity. Biochar has been proposed as a low-cost remediation strategy to increase soil pH and reduce leaching of toxic elements, and improve plant establishment. In this laboratory column study, biochar made from beetle-killed pine wood was assessed for utility as a soil amendment by mixing soil material from two mine sites collected near Silverton, Colorado, USA with four application rates of biochar (0%, 10%, 20%, 30% vol:vol). Columns were leached seven times over 65 days and leachate pH and concentration of toxic elements and base cations were measured at each leaching. Nutrient availability and soil physical and biological parameters were determined following the incubation period. We investigated the hypotheses that biochar incorporation into acidic mine materials will (1) reduce toxic element concentrations in leaching solution, (2) improve soil parameters (i.e. increase nutrient and water holding capacity and pH, and decrease compaction), and (3) increase microbial populations and activity. Biochar directly increased soil pH (from 3.33 to 3.63 and from 4.07 to 4.77 in the two materials) and organic matter content, and decreased bulk density and extractable salt content in both mine materials, and increased nitrate availability in one material. No changes in microbial population or activity were detected in either mine material upon biochar application. In leachate solution, biochar increased base cations from both materials and reduced the concentrations of Al, Cd, Cu, Pb, and Zn in leachate solution from one material. However, in the material with greater toxic element content, biochar did not reduce concentrations of any measured dissolved toxic elements in leachate and resulted in a potentially detrimental release of Cd and Zn into solution at concentrations above that of the pure mine material. The length of time of effectiveness and specific

  10. A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive.

    PubMed

    Silva, Ryan; Bhatia, Swapnil; Densmore, Douglas

    2016-07-05

    Microfluidic devices, by definition, are required to move liquids from one physical location to another. Given a finite and frequently fixed set of physical channels to route fluids, a primitive design element that allows reconfigurable routing of that fluid from any of n input ports to any n output ports will dramatically change the paradigms by which these chips are designed and applied. Furthermore, if these elements are "regular" regarding their design, the programming and fabrication of these elements becomes scalable. This paper presents such a design element called a transposer. We illustrate the design, fabrication and operation of a single transposer. We then scale this design to create a programmable fabric towards a general-purpose, reconfigurable microfluidic platform analogous to the Field Programmable Gate Array (FPGA) found in digital electronics.

  11. A Versatile Transposon-Based Activation Tag Vector System for Functional Genomics in Cereals and Other Monocot Plants1[OA

    PubMed Central

    Qu, Shaohong; Desai, Aparna; Wing, Rod; Sundaresan, Venkatesan

    2008-01-01

    Transposon insertional mutagenesis is an effective alternative to T-DNA mutagenesis when transformation through tissue culture is inefficient as is the case for many crop species. When used as activation tags, transposons can be exploited to generate novel gain-of-function phenotypes without transformation and are of particular value in the study of polyploid plants where gene knockouts will not have phenotypes. We have developed an in cis-activation-tagging Ac-Ds transposon system in which a T-DNA vector carries a Dissociation (Ds) element containing 4× cauliflower mosaic virus enhancers along with the Activator (Ac) transposase gene. Stable Ds insertions were selected using green fluorescent protein and red fluorescent protein genes driven by promoters that are functional in maize (Zea mays) and rice (Oryza sativa). The system has been tested in rice, where 638 stable Ds insertions were selected from an initial set of 26 primary transformants. By analysis of 311 flanking sequences mapped to the rice genome, we could demonstrate the wide distribution of the elements over the rice chromosomes. Enhanced expression of rice genes adjacent to Ds insertions was detected in the insertion lines using semiquantitative reverse transcription-PCR method. The in cis-two-element vector system requires minimal number of primary transformants and eliminates the need for crossing, while the use of fluorescent markers instead of antibiotic or herbicide resistance increases the applicability to other plants and eliminates problems with escapes. Because Ac-Ds has been shown to transpose widely in the plant kingdom, the activation vector system developed in this study should be of utility more generally to other monocots. PMID:17993541

  12. Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR1 and L2 LINE elements.

    PubMed

    Metcalfe, Cushla J; Filée, Jonathan; Germon, Isabelle; Joss, Jean; Casane, Didier

    2012-11-01

    Haploid genomes greater than 25,000 Mb are rare, within the animals only the lungfish and some of the salamanders and crustaceans are known to have genomes this large. There is very little data on the structure of genomes this size. It is known, however, that for animal genomes up to 3,000 Mb, there is in general a good correlation between genome size and the percent of the genome composed of repetitive sequence and that this repetitive component is highly dynamic. In this study, we sampled the Australian lungfish genome using three mini-genomic libraries and found that with very little sequence, the results converged on an estimate of 40% of the genome being composed of recognizable transposable elements (TEs), chiefly from the CR1 and L2 long interspersed nuclear element clades. We further characterized the CR1 and L2 elements in the lungfish genome and show that although most CR1 elements probably represent recent amplifications, the L2 elements are more diverse and are more likely the result of a series of amplifications. We suggest that our sampling method has probably underestimated the recognizable TE content. However, on the basis of the most likely sources of error, we suggest that this very large genome is not largely composed of recently amplified, undetected TEs but may instead include a large component of older degenerate TEs. Based on these estimates, and on Thomson's (Thomson K. 1972. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J Exp Zool. 180:363-372) inference that in the lineage leading to the extant Australian lungfish, there was massive increase in genome size between 350 and 200 mya, after which the size of the genome changed little, we speculate that the very large Australian lungfish genome may be the result of a massive amplification of TEs followed by a long period with a very low rate of sequence removal and some ongoing TE activity.

  13. A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles.

    PubMed

    Mo, Fuhao; Li, Fan; Behr, Michel; Xiao, Zhi; Zhang, Guanjun; Du, Xianping

    2018-01-01

    A lower limb-pelvis finite element (FE) model with active three-dimensional (3D) muscles was developed in this study for biomechanical analysis of human body. The model geometry was mainly reconstructed from a male volunteer close to the anthropometry of a 50th percentile Chinese male. Tissue materials and structural features were established based on the literature and new implemented experimental tests. In particular, the muscle was modeled with a combination of truss and hexahedral elements to define its passive and active properties as well as to follow the detailed anatomy structure. Both passive and active properties of the model were validated against the experiments of Post-Mortem Human Surrogate (PMHS) and volunteers, respectively. The model was then used to simulate driver's emergency braking during frontal crashes and investigate Knee-Thigh-Hip (KTH) injury mechanisms and tolerances of the human body. A significant force and bending moment variance was noted for the driver's femur due to the effects of active muscle forces during emergency braking. In summary, the present lower limb-pelvis model can be applied in various research fields to support expensive and complex physical tests or corresponding device design.

  14. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla).

    PubMed

    Gallus, S; Kumar, V; Bertelsen, M F; Janke, A; Nilsson, M A

    2015-10-25

    Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus.

    PubMed

    Marzo, Mar; Puig, Marta; Ruiz, Alfredo

    2008-02-26

    Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs.

  16. The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus

    PubMed Central

    Marzo, Mar; Puig, Marta; Ruiz, Alfredo

    2008-01-01

    Galileo is the only transposable element (TE) known to have generated natural chromosomal inversions in the genus Drosophila. It was discovered in Drosophila buzzatii and classified as a Foldback-like element because of its long, internally repetitive, terminal inverted repeats (TIRs) and lack of coding capacity. Here, we characterized a seemingly complete copy of Galileo from the D. buzzatii genome. It is 5,406 bp long, possesses 1,229-bp TIRs, and encodes a 912-aa transposase similar to those of the Drosophila melanogaster 1360 (Hoppel) and P elements. We also searched the recently available genome sequences of 12 Drosophila species for elements similar to Dbuz\\Galileo by using bioinformatic tools. Galileo was found in six species (ananassae, willistoni, peudoobscura, persimilis, virilis, and mojavensis) from the two main lineages within the Drosophila genus. Our observations place Galileo within the P superfamily of cut-and-paste transposons and extend considerably its phylogenetic distribution. The interspecific distribution of Galileo indicates an ancient presence in the genus, but the phylogenetic tree built with the transposase amino acid sequences contrasts significantly with that of the species, indicating lineage sorting and/or horizontal transfer events. Our results also suggest that Foldback-like elements such as Galileo may evolve from DNA-based transposon ancestors by loss of the transposase gene and disproportionate elongation of TIRs. PMID:18287066

  17. Rye B chromosomes encode a functional Argonaute-like protein with in vitro slicer activities similar to its A chromosome paralog.

    PubMed

    Ma, Wei; Gabriel, Tobias Sebastian; Martis, Mihaela Maria; Gursinsky, Torsten; Schubert, Veit; Vrána, Jan; Doležel, Jaroslav; Grundlach, Heidrun; Altschmied, Lothar; Scholz, Uwe; Himmelbach, Axel; Behrens, Sven-Erik; Banaei-Moghaddam, Ali Mohammad; Houben, Andreas

    2017-01-01

    B chromosomes (Bs) are supernumerary, dispensable parts of the nuclear genome, which appear in many different species of eukaryote. So far, Bs have been considered to be genetically inert elements without any functional genes. Our comparative transcriptome analysis and the detection of active RNA polymerase II (RNAPII) in the proximity of B chromatin demonstrate that the Bs of rye (Secale cereale) contribute to the transcriptome. In total, 1954 and 1218 B-derived transcripts with an open reading frame were expressed in generative and vegetative tissues, respectively. In addition to B-derived transposable element transcripts, a high percentage of short transcripts without detectable similarity to known proteins and gene fragments from A chromosomes (As) were found, suggesting an ongoing gene erosion process. In vitro analysis of the A- and B-encoded AGO4B protein variants demonstrated that both possess RNA slicer activity. These data demonstrate unambiguously the presence of a functional AGO4B gene on Bs and that these Bs carry both functional protein coding genes and pseudogene copies. Thus, B-encoded genes may provide an additional level of gene control and complexity in combination with their related A-located genes. Hence, physiological effects, associated with the presence of Bs, may partly be explained by the activity of B-located (pseudo)genes. © 2016 IPK Gatersleben. New Phytologist © 2016 New Phytologist Trust.

  18. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    NASA Technical Reports Server (NTRS)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-01-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  19. Active earth pressure model tests versus finite element analysis

    NASA Astrophysics Data System (ADS)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  20. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements

    NASA Astrophysics Data System (ADS)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr

    2017-07-01

    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  1. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons.

    PubMed Central

    Xiong, Y; Eickbush, T H

    1988-01-01

    Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. We present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. We have therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons. Images PMID:2447482

  2. Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis

    PubMed

    Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar

    2000-12-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.

  3. Active muscle response using feedback control of a finite element human arm model.

    PubMed

    Östh, Jonas; Brolin, Karin; Happee, Riender

    2012-01-01

    Mathematical human body models (HBMs) are important research tools that are used to study the human response in car crash situations. Development of automotive safety systems requires the implementation of active muscle response in HBM, as novel safety systems also interact with vehicle occupants in the pre-crash phase. In this study, active muscle response was implemented using feedback control of a nonlinear muscle model in the right upper extremity of a finite element (FE) HBM. Hill-type line muscle elements were added, and the active and passive properties were assessed. Volunteer tests with low impact loading resulting in elbow flexion motions were performed. Simulations of posture maintenance in a gravity field and the volunteer tests were successfully conducted. It was concluded that feedback control of a nonlinear musculoskeletal model can be used to obtain posture maintenance and human-like reflexive responses in an FE HBM.

  4. The transposability of the Mediterranean-type diet in non-Mediterranean regions: application to the physician/allied health team.

    PubMed

    Speed, C

    2004-12-01

    Studies are consistently declaring that the Mediterranean-type diet is transposable to non-Mediterranean regions. The nutritional end points of Med-type eating appear to be achievable through foods from a variety of traditions and appear to support predetermined expectations surrounding food preparation, choice, taste and sensory appeal. The broad emphasis on minimally processed plants and their products (vegetables, fruit, legumes, wholegrains, nuts, seeds and oils); low fat dairy, fish, less emphasis on animal products and removal of partially hydrogenated fats has piqued the attention of health professionals who are interested in arresting the incidence of chronic disease. The theoretical underpinnings of Med-type eating have driven new understandings in dietary guidelines, which is especially timely as well-marketed fad diets loom large on the current health horizon.

  5. Biased distributions and decay of long interspersed nuclear elements in the chicken genome.

    PubMed

    Abrusán, György; Krambeck, Hans-Jürgen; Junier, Thomas; Giordano, Joti; Warburton, Peter E

    2008-01-01

    The genomes of birds are much smaller than mammalian genomes, and transposable elements (TEs) make up only 10% of the chicken genome, compared with the 45% of the human genome. To study the mechanisms that constrain the copy numbers of TEs, and as a consequence the genome size of birds, we analyzed the distributions of LINEs (CR1's) and SINEs (MIRs) on the chicken autosomes and Z chromosome. We show that (1) CR1 repeats are longest on the Z chromosome and their length is negatively correlated with the local GC content; (2) the decay of CR1 elements is highly biased, and the 5'-ends of the insertions are lost much faster than their 3'-ends; (3) the GC distribution of CR1 repeats shows a bimodal pattern with repeats enriched in both AT-rich and GC-rich regions of the genome, but the CR1 families show large differences in their GC distribution; and (4) the few MIRs in the chicken are most abundant in regions with intermediate GC content. Our results indicate that the primary mechanism that removes repeats from the chicken genome is ectopic exchange and that the low abundance of repeats in avian genomes is likely to be the consequence of their high recombination rates.

  6. A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene.

    PubMed

    Lee, M O; Liu, Y; Zhang, X K

    1995-08-01

    The lactoferrin gene is highly expressed in many different tissues, and its expression is controlled by different regulators. In this report, we have defined a retinoic acid response element (RARE) in the 5'-flanking region of the lactoferrin gene promoter. The lactoferrin-RARE is composed of two AGGTCA-like motifs arranged as a direct repeat with 1-bp spacing (DR-1). A gel retardation assay demonstrated that it bound strongly with retinoid X receptor (RXR) homodimers and RXR-retinoic acid receptor (RAR) heterodimers as well as chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan receptor. In CV-1 cells, the lactoferrin-RARE linked with a heterologous thymidine kinase promoter was strongly activated by RXR homodimers in response to 9-cis-retinoic acid (9-cis-RA) but not to all-trans-RA. When the COUP-TF orphan receptor was cotransfected, the 9-cis-RA-induced RXR homodimer activity was strongly repressed. A unique feature of the lactoferrin-RARE is that it has an AGGTCA-like motif in common with an estrogen-responsive element (ERE). The composite RARE/ERE contributes to the functional interaction between retinoid receptors and the estrogen receptor (ER) and their ligands. In CV-1 cells, cotransfection of the retinoid and estrogen receptors led to mutual inhibition of the other's activity, while an RA-dependent inhibition of ER activity was observed in breast cancer cells. Furthermore, the lactoferrin-RARE/ERE showed differential transactivation activity in different cell types. RAs could activate the lactoferrin-RARE/ERE in human leukemia HL-60 cells and U937 cells but not in human breast cancer cells. By gel retardation analyses, we demonstrated that strong binding of the endogenous COUP-TF in breast cancer cells to the composite element contributed to diminished RA response in these cells. Thus, the lactoferrin-RARE/ERE functions as a signaling switch module that mediates multihormonal responsiveness in the regulation of lactoferrin gene

  7. DEVELOPMENT OF A CL-IMPREGNATED ACTIVATED CARBON FOR ENTRAINED-FLOW CAPTURE OF ELEMENTAL MERCURY

    EPA Science Inventory

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury [Hg(0)] and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to incre...

  8. Tnt1 Retrotransposon Mutagenesis: A Tool for Soybean Functional Genomics1[W][OA

    PubMed Central

    Cui, Yaya; Barampuram, Shyam; Stacey, Minviluz G.; Hancock, C. Nathan; Findley, Seth; Mathieu, Melanie; Zhang, Zhanyuan; Parrott, Wayne A.; Stacey, Gary

    2013-01-01

    Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean. PMID:23124322

  9. LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences.

    PubMed

    Disdero, Eric; Filée, Jonathan

    2017-01-01

    Population genomic analysis of transposable elements has greatly benefited from recent advances of sequencing technologies. However, the short size of the reads and the propensity of transposable elements to nest in highly repeated regions of genomes limits the efficiency of bioinformatic tools when Illumina or 454 technologies are used. Fortunately, long read sequencing technologies generating read length that may span the entire length of full transposons are now available. However, existing TE population genomic softwares were not designed to handle long reads and the development of new dedicated tools is needed. LoRTE is the first tool able to use PacBio long read sequences to identify transposon deletions and insertions between a reference genome and genomes of different strains or populations. Tested against simulated and genuine Drosophila melanogaster PacBio datasets, LoRTE appears to be a reliable and broadly applicable tool to study the dynamic and evolutionary impact of transposable elements using low coverage, long read sequences. LoRTE is an efficient and accurate tool to identify structural genomic variants caused by TE insertion or deletion. LoRTE is available for download at http://www.egce.cnrs-gif.fr/?p=6422.

  10. Polymorphism and methylation patterns in Agave tequilana Weber var. 'Azul' plants propagated asexually by three different methods.

    PubMed

    Díaz-Martínez, Miriam; Nava-Cedillo, Alejandro; Guzmán-López, José Alfredo; Escobar-Guzmán, Rocío; Simpson, June

    2012-04-01

    Genetic variation in three forms of asexually propagated Agave tequilana Weber var. 'Azul' plants namely offsets, bulbils and in vitro cultured individuals was studied by AFLP analysis. Low levels of variation were observed between mother plants and offsets and a higher level between mother plant and bulbils. Families obtained from commercial plantations showed lower levels of variation in comparison to families grown as ornamentals. No variation was observed between the original explant and four generations of in vitro cultured plants. Epigenetic variation was also studied by analyzing changes in methylation patterns between mother plants and offspring in each form of asexual reproduction. Offsets and bulbils showed an overall decrease in methylation whereas in vitro cultured plants showed patterns specific to each generation: Generations 1 and 4 showed overall demethylation whereas Generations 2 and 3 showed increased methylation. Analysis of ESTs associated with transposable elements revealed higher proportions of ESTs from Ty1-copia-like, Gypsy and CACTA transposable elements in cDNA libraries obtained from pluripotent tissue suggesting a possible correlation between methylation patterns, expression of transposable element associated genes and somaclonal variation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Successful Gene Tagging in Lettuce Using the Tnt1 Retrotransposon from Tobacco

    PubMed Central

    Mazier, Marianne; Botton, Emmanuel; Flamain, Fabrice; Bouchet, Jean-Paul; Courtial, Béatrice; Chupeau, Marie-Christine; Chupeau, Yves; Maisonneuve, Brigitte; Lucas, Hélène

    2007-01-01

    The tobacco (Nicotiana tabacum) element Tnt1 is one of the few identified active retrotransposons in plants. These elements possess unique properties that make them ideal genetic tools for gene tagging. Here, we demonstrate the feasibility of gene tagging using the retrotransposon Tnt1 in lettuce (Lactuca sativa), which is the largest genome tested for retrotransposon mutagenesis so far. Of 10 different transgenic bushes carrying a complete Tnt1 containing T-DNA, eight contained multiple transposed copies of Tnt1. The number of transposed copies of the element per plant was particularly high, the smallest number being 28. Tnt1 transposition in lettuce can be induced by a very simple in vitro culture protocol. Tnt1 insertions were stable in the progeny of the primary transformants and could be segregated genetically. Characterization of the sequences flanking some insertion sites revealed that Tnt1 often inserted into genes. The progeny of some primary transformants showed phenotypic alterations due to recessive mutations. One of these mutations was due to Tnt1 insertion in the gibberellin 3β-hydroxylase gene. Taken together, these results indicate that Tnt1 is a powerful tool for insertion mutagenesis especially in plants with a large genome. PMID:17351058

  13. A simplified formalism of the algebra of partially transposed permutation operators with applications

    NASA Astrophysics Data System (ADS)

    Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał

    2018-03-01

    Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.

  14. Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana.

    PubMed

    Park, Jin-Sup; Frost, Jennifer M; Park, Kyunghyuk; Ohr, Hyonhwa; Park, Guen Tae; Kim, Seohyun; Eom, Hyunjoo; Lee, Ilha; Brooks, Janie S; Fischer, Robert L; Choi, Yeonhee

    2017-02-21

    The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.

  15. Selfish DNA: a pharmaceutical perspective.

    PubMed

    Winckler, T

    2013-07-01

    Almost 25 years ago, Theo Dingermann published the discovery of a new mobile genetic element in the unicellular microbe Dictyostelium discoideum in the journal Science. An interesting property of this new molecular parasite, the Dictyostelium Repetitive Element (DRE), was that all integrations were found approximately 50 base pairs (bp) upstream of transfer RNA (tRNA) genes in the D. discoideum genome, thus implying an active targeting mechanism to avoid the disruption of host cell genes by the retrotransposition process. Since then, the facultative multicellular "social amoeba" D. discoideum has become a popular model for analyzing complex cellular functions such as cell movement, chemotaxis, phagocytosis, and cell differentiation, important areas of biomedical research that are often hard to investigate in cells from "higher organisms" including humans. Therefore, progress in the development of methods to study Dictyostelium biology has also provoked research on transposable elements in this organism. Early work on the DRE element suggested that studying its molecular mechanism of site-specific integration might promote human gene therapy technology through the design of integrating gene transfer vectors with low intrinsic genotoxic potential. In this review article, I will briefly review the original research performed on the DRE transposable element in the Dingermann lab and report on how the emergence of genomics technologies and the development of tools to analyze de novo retrotransposition events in D. discoideum cells will expand our knowledge of DRE biology in the future.

  16. Transient conduction-radiation analysis of an absolute active cavity radiometer using finite elements

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Kowsary, F.; Tira, N.; Gardiner, B. D.

    1987-01-01

    A NASA-developed finite element-based model of a generic active cavity radiometer (ACR) has been developed in order to study the dependence on operating temperature of the closed-loop and open-loop transient response of the instrument. Transient conduction within the sensing element is explored, and the transient temperature distribution resulting from the application of a time-varying radiative boundary condition is calculated. The results verify the prediction that operation of an ACR at cryogenic temperatures results in large gains in frequency response.

  17. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    PubMed

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  18. Generation of Tandem Direct Duplications by Reversed-Ends Transposition of Maize Ac Elements

    PubMed Central

    Peterson, Thomas

    2013-01-01

    Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome. PMID:23966872

  19. Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic.

    PubMed

    Marcon, Helena Sanches; Domingues, Douglas Silva; Silva, Juliana Costa; Borges, Rafael Junqueira; Matioli, Fábio Filippi; Fontes, Marcos Roberto de Mattos; Marino, Celso Luis

    2015-08-14

    In Eucalyptus genus, studies on genome composition and transposable elements (TEs) are particularly scarce. Nearly half of the recently released Eucalyptus grandis genome is composed by retrotransposons and this data provides an important opportunity to understand TE dynamics in Eucalyptus genome and transcriptome. We characterized nine families of transcriptionally active LTR retrotransposons from Copia and Gypsy superfamilies in Eucalyptus grandis genome and we depicted genomic distribution and copy number in two Eucalyptus species. We also evaluated genomic polymorphism and transcriptional profile in three organs of five Eucalyptus species. We observed contrasting genomic and transcriptional behavior in the same family among different species. RLC_egMax_1 was the most prevalent family and RLC_egAngela_1 was the family with the lowest copy number. Most families of both superfamilies have their insertions occurring <3 million years, except one Copia family, RLC_egBianca_1. Protein theoretical models suggest different properties between Copia and Gypsy domains. IRAP and REMAP markers suggested genomic polymorphisms among Eucalyptus species. Using EST analysis and qRT-PCRs, we observed transcriptional activity in several tissues and in all evaluated species. In some families, osmotic stress increases transcript values. Our strategy was successful in isolating transcriptionally active retrotransposons in Eucalyptus, and each family has a particular genomic and transcriptional pattern. Overall, our results show that retrotransposon activity have differentially affected genome and transcriptome among Eucalyptus species.

  20. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages.

    PubMed

    Ma, J-L; Carasco, C; Perot, B; Mauerhofer, E; Kettler, J; Havenith, A

    2012-07-01

    The French Alternative Energies and Atomic Energy Commission (CEA) and National Radioactive Waste Management Agency (ANDRA) are conducting an R&D program to improve the characterization of long-lived and medium activity (LL-MA) radioactive waste packages. In particular, the amount of toxic elements present in radioactive waste packages must be assessed before they can be accepted in repository facilities in order to avoid pollution of underground water reserves. To this aim, the Nuclear Measurement Laboratory of CEA-Cadarache has started to study the performances of Prompt Gamma Neutron Activation Analysis (PGNAA) for elements showing large capture cross sections such as mercury, cadmium, boron, and chromium. This paper reports a comparison between Monte Carlo calculations performed with the MCNPX computer code using the ENDF/B-VII.0 library and experimental gamma rays measured in the REGAIN PGNAA cell with small samples of nickel, lead, cadmium, arsenic, antimony, chromium, magnesium, zinc, boron, and lithium to verify the validity of a numerical model and gamma-ray production data. The measurement of a ∼20kg test sample of concrete containing toxic elements has also been performed, in collaboration with Forschungszentrum Jülich, to validate the model in view of future performance studies for dense and large LL-MA waste packages. Copyright © 2012 Elsevier Ltd. All rights reserved.